]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/zfs_vfsops.c
9ae7ab500942b21688693ea88a52eb6e8d2e150f
[mirror_zfs-debian.git] / module / zfs / zfs_vfsops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /* Portions Copyright 2010 Robert Milkowski */
26
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/mntent.h>
37 #include <sys/mount.h>
38 #include <sys/cmn_err.h>
39 #include "fs/fs_subr.h"
40 #include <sys/zfs_znode.h>
41 #include <sys/zfs_vnops.h>
42 #include <sys/zfs_dir.h>
43 #include <sys/zil.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/dmu.h>
46 #include <sys/dsl_prop.h>
47 #include <sys/dsl_dataset.h>
48 #include <sys/dsl_deleg.h>
49 #include <sys/spa.h>
50 #include <sys/zap.h>
51 #include <sys/sa.h>
52 #include <sys/sa_impl.h>
53 #include <sys/varargs.h>
54 #include <sys/policy.h>
55 #include <sys/atomic.h>
56 #include <sys/mkdev.h>
57 #include <sys/modctl.h>
58 #include <sys/refstr.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/zfs_ctldir.h>
61 #include <sys/zfs_fuid.h>
62 #include <sys/bootconf.h>
63 #include <sys/sunddi.h>
64 #include <sys/dnlc.h>
65 #include <sys/dmu_objset.h>
66 #include <sys/spa_boot.h>
67 #include <sys/zpl.h>
68 #include "zfs_comutil.h"
69
70
71 /*ARGSUSED*/
72 int
73 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
74 {
75 zfs_sb_t *zsb = sb->s_fs_info;
76
77 /*
78 * Data integrity is job one. We don't want a compromised kernel
79 * writing to the storage pool, so we never sync during panic.
80 */
81 if (unlikely(oops_in_progress))
82 return (0);
83
84 /*
85 * Semantically, the only requirement is that the sync be initiated.
86 * The DMU syncs out txgs frequently, so there's nothing to do.
87 */
88 if (!wait)
89 return (0);
90
91 if (zsb != NULL) {
92 /*
93 * Sync a specific filesystem.
94 */
95 dsl_pool_t *dp;
96
97 ZFS_ENTER(zsb);
98 dp = dmu_objset_pool(zsb->z_os);
99
100 /*
101 * If the system is shutting down, then skip any
102 * filesystems which may exist on a suspended pool.
103 */
104 if (spa_suspended(dp->dp_spa)) {
105 ZFS_EXIT(zsb);
106 return (0);
107 }
108
109 if (zsb->z_log != NULL)
110 zil_commit(zsb->z_log, 0);
111
112 ZFS_EXIT(zsb);
113 } else {
114 /*
115 * Sync all ZFS filesystems. This is what happens when you
116 * run sync(1M). Unlike other filesystems, ZFS honors the
117 * request by waiting for all pools to commit all dirty data.
118 */
119 spa_sync_allpools();
120 }
121
122 return (0);
123 }
124 EXPORT_SYMBOL(zfs_sync);
125
126 boolean_t
127 zfs_is_readonly(zfs_sb_t *zsb)
128 {
129 return (!!(zsb->z_sb->s_flags & MS_RDONLY));
130 }
131 EXPORT_SYMBOL(zfs_is_readonly);
132
133 static void
134 atime_changed_cb(void *arg, uint64_t newval)
135 {
136 ((zfs_sb_t *)arg)->z_atime = newval;
137 }
138
139 static void
140 xattr_changed_cb(void *arg, uint64_t newval)
141 {
142 zfs_sb_t *zsb = arg;
143
144 if (newval == ZFS_XATTR_OFF) {
145 zsb->z_flags &= ~ZSB_XATTR;
146 } else {
147 zsb->z_flags |= ZSB_XATTR;
148
149 if (newval == ZFS_XATTR_SA)
150 zsb->z_xattr_sa = B_TRUE;
151 else
152 zsb->z_xattr_sa = B_FALSE;
153 }
154 }
155
156 static void
157 blksz_changed_cb(void *arg, uint64_t newval)
158 {
159 zfs_sb_t *zsb = arg;
160
161 if (newval < SPA_MINBLOCKSIZE ||
162 newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
163 newval = SPA_MAXBLOCKSIZE;
164
165 zsb->z_max_blksz = newval;
166 }
167
168 static void
169 readonly_changed_cb(void *arg, uint64_t newval)
170 {
171 zfs_sb_t *zsb = arg;
172 struct super_block *sb = zsb->z_sb;
173
174 if (sb == NULL)
175 return;
176
177 if (newval)
178 sb->s_flags |= MS_RDONLY;
179 else
180 sb->s_flags &= ~MS_RDONLY;
181 }
182
183 static void
184 devices_changed_cb(void *arg, uint64_t newval)
185 {
186 }
187
188 static void
189 setuid_changed_cb(void *arg, uint64_t newval)
190 {
191 }
192
193 static void
194 exec_changed_cb(void *arg, uint64_t newval)
195 {
196 }
197
198 static void
199 nbmand_changed_cb(void *arg, uint64_t newval)
200 {
201 zfs_sb_t *zsb = arg;
202 struct super_block *sb = zsb->z_sb;
203
204 if (sb == NULL)
205 return;
206
207 if (newval == TRUE)
208 sb->s_flags |= MS_MANDLOCK;
209 else
210 sb->s_flags &= ~MS_MANDLOCK;
211 }
212
213 static void
214 snapdir_changed_cb(void *arg, uint64_t newval)
215 {
216 ((zfs_sb_t *)arg)->z_show_ctldir = newval;
217 }
218
219 static void
220 vscan_changed_cb(void *arg, uint64_t newval)
221 {
222 ((zfs_sb_t *)arg)->z_vscan = newval;
223 }
224
225 static void
226 acl_inherit_changed_cb(void *arg, uint64_t newval)
227 {
228 ((zfs_sb_t *)arg)->z_acl_inherit = newval;
229 }
230
231 int
232 zfs_register_callbacks(zfs_sb_t *zsb)
233 {
234 struct dsl_dataset *ds = NULL;
235 objset_t *os = zsb->z_os;
236 boolean_t do_readonly = B_FALSE;
237 int error = 0;
238
239 if (zfs_is_readonly(zsb) || !spa_writeable(dmu_objset_spa(os)))
240 do_readonly = B_TRUE;
241
242 /*
243 * Register property callbacks.
244 *
245 * It would probably be fine to just check for i/o error from
246 * the first prop_register(), but I guess I like to go
247 * overboard...
248 */
249 ds = dmu_objset_ds(os);
250 error = dsl_prop_register(ds,
251 "atime", atime_changed_cb, zsb);
252 error = error ? error : dsl_prop_register(ds,
253 "xattr", xattr_changed_cb, zsb);
254 error = error ? error : dsl_prop_register(ds,
255 "recordsize", blksz_changed_cb, zsb);
256 error = error ? error : dsl_prop_register(ds,
257 "readonly", readonly_changed_cb, zsb);
258 error = error ? error : dsl_prop_register(ds,
259 "devices", devices_changed_cb, zsb);
260 error = error ? error : dsl_prop_register(ds,
261 "setuid", setuid_changed_cb, zsb);
262 error = error ? error : dsl_prop_register(ds,
263 "exec", exec_changed_cb, zsb);
264 error = error ? error : dsl_prop_register(ds,
265 "snapdir", snapdir_changed_cb, zsb);
266 error = error ? error : dsl_prop_register(ds,
267 "aclinherit", acl_inherit_changed_cb, zsb);
268 error = error ? error : dsl_prop_register(ds,
269 "vscan", vscan_changed_cb, zsb);
270 error = error ? error : dsl_prop_register(ds,
271 "nbmand", nbmand_changed_cb, zsb);
272 if (error)
273 goto unregister;
274
275 if (do_readonly)
276 readonly_changed_cb(zsb, B_TRUE);
277
278 return (0);
279
280 unregister:
281 /*
282 * We may attempt to unregister some callbacks that are not
283 * registered, but this is OK; it will simply return ENOMSG,
284 * which we will ignore.
285 */
286 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zsb);
287 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zsb);
288 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zsb);
289 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zsb);
290 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zsb);
291 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zsb);
292 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zsb);
293 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zsb);
294 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
295 zsb);
296 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zsb);
297 (void) dsl_prop_unregister(ds, "nbmand", nbmand_changed_cb, zsb);
298
299 return (error);
300 }
301 EXPORT_SYMBOL(zfs_register_callbacks);
302
303 static int
304 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
305 uint64_t *userp, uint64_t *groupp)
306 {
307 int error = 0;
308
309 /*
310 * Is it a valid type of object to track?
311 */
312 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
313 return (ENOENT);
314
315 /*
316 * If we have a NULL data pointer
317 * then assume the id's aren't changing and
318 * return EEXIST to the dmu to let it know to
319 * use the same ids
320 */
321 if (data == NULL)
322 return (EEXIST);
323
324 if (bonustype == DMU_OT_ZNODE) {
325 znode_phys_t *znp = data;
326 *userp = znp->zp_uid;
327 *groupp = znp->zp_gid;
328 } else {
329 int hdrsize;
330 sa_hdr_phys_t *sap = data;
331 sa_hdr_phys_t sa = *sap;
332 boolean_t swap = B_FALSE;
333
334 ASSERT(bonustype == DMU_OT_SA);
335
336 if (sa.sa_magic == 0) {
337 /*
338 * This should only happen for newly created
339 * files that haven't had the znode data filled
340 * in yet.
341 */
342 *userp = 0;
343 *groupp = 0;
344 return (0);
345 }
346 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
347 sa.sa_magic = SA_MAGIC;
348 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
349 swap = B_TRUE;
350 } else {
351 VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
352 }
353
354 hdrsize = sa_hdrsize(&sa);
355 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
356 *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
357 SA_UID_OFFSET));
358 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
359 SA_GID_OFFSET));
360 if (swap) {
361 *userp = BSWAP_64(*userp);
362 *groupp = BSWAP_64(*groupp);
363 }
364 }
365 return (error);
366 }
367
368 static void
369 fuidstr_to_sid(zfs_sb_t *zsb, const char *fuidstr,
370 char *domainbuf, int buflen, uid_t *ridp)
371 {
372 uint64_t fuid;
373 const char *domain;
374
375 fuid = strtonum(fuidstr, NULL);
376
377 domain = zfs_fuid_find_by_idx(zsb, FUID_INDEX(fuid));
378 if (domain)
379 (void) strlcpy(domainbuf, domain, buflen);
380 else
381 domainbuf[0] = '\0';
382 *ridp = FUID_RID(fuid);
383 }
384
385 static uint64_t
386 zfs_userquota_prop_to_obj(zfs_sb_t *zsb, zfs_userquota_prop_t type)
387 {
388 switch (type) {
389 case ZFS_PROP_USERUSED:
390 return (DMU_USERUSED_OBJECT);
391 case ZFS_PROP_GROUPUSED:
392 return (DMU_GROUPUSED_OBJECT);
393 case ZFS_PROP_USERQUOTA:
394 return (zsb->z_userquota_obj);
395 case ZFS_PROP_GROUPQUOTA:
396 return (zsb->z_groupquota_obj);
397 default:
398 return (ENOTSUP);
399 }
400 return (0);
401 }
402
403 int
404 zfs_userspace_many(zfs_sb_t *zsb, zfs_userquota_prop_t type,
405 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
406 {
407 int error;
408 zap_cursor_t zc;
409 zap_attribute_t za;
410 zfs_useracct_t *buf = vbuf;
411 uint64_t obj;
412
413 if (!dmu_objset_userspace_present(zsb->z_os))
414 return (ENOTSUP);
415
416 obj = zfs_userquota_prop_to_obj(zsb, type);
417 if (obj == 0) {
418 *bufsizep = 0;
419 return (0);
420 }
421
422 for (zap_cursor_init_serialized(&zc, zsb->z_os, obj, *cookiep);
423 (error = zap_cursor_retrieve(&zc, &za)) == 0;
424 zap_cursor_advance(&zc)) {
425 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
426 *bufsizep)
427 break;
428
429 fuidstr_to_sid(zsb, za.za_name,
430 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
431
432 buf->zu_space = za.za_first_integer;
433 buf++;
434 }
435 if (error == ENOENT)
436 error = 0;
437
438 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
439 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
440 *cookiep = zap_cursor_serialize(&zc);
441 zap_cursor_fini(&zc);
442 return (error);
443 }
444 EXPORT_SYMBOL(zfs_userspace_many);
445
446 /*
447 * buf must be big enough (eg, 32 bytes)
448 */
449 static int
450 id_to_fuidstr(zfs_sb_t *zsb, const char *domain, uid_t rid,
451 char *buf, boolean_t addok)
452 {
453 uint64_t fuid;
454 int domainid = 0;
455
456 if (domain && domain[0]) {
457 domainid = zfs_fuid_find_by_domain(zsb, domain, NULL, addok);
458 if (domainid == -1)
459 return (ENOENT);
460 }
461 fuid = FUID_ENCODE(domainid, rid);
462 (void) sprintf(buf, "%llx", (longlong_t)fuid);
463 return (0);
464 }
465
466 int
467 zfs_userspace_one(zfs_sb_t *zsb, zfs_userquota_prop_t type,
468 const char *domain, uint64_t rid, uint64_t *valp)
469 {
470 char buf[32];
471 int err;
472 uint64_t obj;
473
474 *valp = 0;
475
476 if (!dmu_objset_userspace_present(zsb->z_os))
477 return (ENOTSUP);
478
479 obj = zfs_userquota_prop_to_obj(zsb, type);
480 if (obj == 0)
481 return (0);
482
483 err = id_to_fuidstr(zsb, domain, rid, buf, B_FALSE);
484 if (err)
485 return (err);
486
487 err = zap_lookup(zsb->z_os, obj, buf, 8, 1, valp);
488 if (err == ENOENT)
489 err = 0;
490 return (err);
491 }
492 EXPORT_SYMBOL(zfs_userspace_one);
493
494 int
495 zfs_set_userquota(zfs_sb_t *zsb, zfs_userquota_prop_t type,
496 const char *domain, uint64_t rid, uint64_t quota)
497 {
498 char buf[32];
499 int err;
500 dmu_tx_t *tx;
501 uint64_t *objp;
502 boolean_t fuid_dirtied;
503
504 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
505 return (EINVAL);
506
507 if (zsb->z_version < ZPL_VERSION_USERSPACE)
508 return (ENOTSUP);
509
510 objp = (type == ZFS_PROP_USERQUOTA) ? &zsb->z_userquota_obj :
511 &zsb->z_groupquota_obj;
512
513 err = id_to_fuidstr(zsb, domain, rid, buf, B_TRUE);
514 if (err)
515 return (err);
516 fuid_dirtied = zsb->z_fuid_dirty;
517
518 tx = dmu_tx_create(zsb->z_os);
519 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
520 if (*objp == 0) {
521 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
522 zfs_userquota_prop_prefixes[type]);
523 }
524 if (fuid_dirtied)
525 zfs_fuid_txhold(zsb, tx);
526 err = dmu_tx_assign(tx, TXG_WAIT);
527 if (err) {
528 dmu_tx_abort(tx);
529 return (err);
530 }
531
532 mutex_enter(&zsb->z_lock);
533 if (*objp == 0) {
534 *objp = zap_create(zsb->z_os, DMU_OT_USERGROUP_QUOTA,
535 DMU_OT_NONE, 0, tx);
536 VERIFY(0 == zap_add(zsb->z_os, MASTER_NODE_OBJ,
537 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
538 }
539 mutex_exit(&zsb->z_lock);
540
541 if (quota == 0) {
542 err = zap_remove(zsb->z_os, *objp, buf, tx);
543 if (err == ENOENT)
544 err = 0;
545 } else {
546 err = zap_update(zsb->z_os, *objp, buf, 8, 1, &quota, tx);
547 }
548 ASSERT(err == 0);
549 if (fuid_dirtied)
550 zfs_fuid_sync(zsb, tx);
551 dmu_tx_commit(tx);
552 return (err);
553 }
554 EXPORT_SYMBOL(zfs_set_userquota);
555
556 boolean_t
557 zfs_fuid_overquota(zfs_sb_t *zsb, boolean_t isgroup, uint64_t fuid)
558 {
559 char buf[32];
560 uint64_t used, quota, usedobj, quotaobj;
561 int err;
562
563 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
564 quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
565
566 if (quotaobj == 0 || zsb->z_replay)
567 return (B_FALSE);
568
569 (void) sprintf(buf, "%llx", (longlong_t)fuid);
570 err = zap_lookup(zsb->z_os, quotaobj, buf, 8, 1, &quota);
571 if (err != 0)
572 return (B_FALSE);
573
574 err = zap_lookup(zsb->z_os, usedobj, buf, 8, 1, &used);
575 if (err != 0)
576 return (B_FALSE);
577 return (used >= quota);
578 }
579 EXPORT_SYMBOL(zfs_fuid_overquota);
580
581 boolean_t
582 zfs_owner_overquota(zfs_sb_t *zsb, znode_t *zp, boolean_t isgroup)
583 {
584 uint64_t fuid;
585 uint64_t quotaobj;
586
587 quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
588
589 fuid = isgroup ? zp->z_gid : zp->z_uid;
590
591 if (quotaobj == 0 || zsb->z_replay)
592 return (B_FALSE);
593
594 return (zfs_fuid_overquota(zsb, isgroup, fuid));
595 }
596 EXPORT_SYMBOL(zfs_owner_overquota);
597
598 int
599 zfs_sb_create(const char *osname, zfs_sb_t **zsbp)
600 {
601 objset_t *os;
602 zfs_sb_t *zsb;
603 uint64_t zval;
604 int i, error;
605 uint64_t sa_obj;
606
607 zsb = kmem_zalloc(sizeof (zfs_sb_t), KM_SLEEP | KM_NODEBUG);
608
609 /*
610 * We claim to always be readonly so we can open snapshots;
611 * other ZPL code will prevent us from writing to snapshots.
612 */
613 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zsb, &os);
614 if (error) {
615 kmem_free(zsb, sizeof (zfs_sb_t));
616 return (error);
617 }
618
619 /*
620 * Initialize the zfs-specific filesystem structure.
621 * Should probably make this a kmem cache, shuffle fields,
622 * and just bzero up to z_hold_mtx[].
623 */
624 zsb->z_sb = NULL;
625 zsb->z_parent = zsb;
626 zsb->z_max_blksz = SPA_MAXBLOCKSIZE;
627 zsb->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
628 zsb->z_os = os;
629
630 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zsb->z_version);
631 if (error) {
632 goto out;
633 } else if (zsb->z_version >
634 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
635 (void) printk("Can't mount a version %lld file system "
636 "on a version %lld pool\n. Pool must be upgraded to mount "
637 "this file system.", (u_longlong_t)zsb->z_version,
638 (u_longlong_t)spa_version(dmu_objset_spa(os)));
639 error = ENOTSUP;
640 goto out;
641 }
642 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
643 goto out;
644 zsb->z_norm = (int)zval;
645
646 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
647 goto out;
648 zsb->z_utf8 = (zval != 0);
649
650 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
651 goto out;
652 zsb->z_case = (uint_t)zval;
653
654 /*
655 * Fold case on file systems that are always or sometimes case
656 * insensitive.
657 */
658 if (zsb->z_case == ZFS_CASE_INSENSITIVE ||
659 zsb->z_case == ZFS_CASE_MIXED)
660 zsb->z_norm |= U8_TEXTPREP_TOUPPER;
661
662 zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
663 zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
664
665 if (zsb->z_use_sa) {
666 /* should either have both of these objects or none */
667 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
668 &sa_obj);
669 if (error)
670 goto out;
671
672 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &zval);
673 if ((error == 0) && (zval == ZFS_XATTR_SA))
674 zsb->z_xattr_sa = B_TRUE;
675 } else {
676 /*
677 * Pre SA versions file systems should never touch
678 * either the attribute registration or layout objects.
679 */
680 sa_obj = 0;
681 }
682
683 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
684 &zsb->z_attr_table);
685 if (error)
686 goto out;
687
688 if (zsb->z_version >= ZPL_VERSION_SA)
689 sa_register_update_callback(os, zfs_sa_upgrade);
690
691 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
692 &zsb->z_root);
693 if (error)
694 goto out;
695 ASSERT(zsb->z_root != 0);
696
697 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
698 &zsb->z_unlinkedobj);
699 if (error)
700 goto out;
701
702 error = zap_lookup(os, MASTER_NODE_OBJ,
703 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
704 8, 1, &zsb->z_userquota_obj);
705 if (error && error != ENOENT)
706 goto out;
707
708 error = zap_lookup(os, MASTER_NODE_OBJ,
709 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
710 8, 1, &zsb->z_groupquota_obj);
711 if (error && error != ENOENT)
712 goto out;
713
714 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
715 &zsb->z_fuid_obj);
716 if (error && error != ENOENT)
717 goto out;
718
719 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
720 &zsb->z_shares_dir);
721 if (error && error != ENOENT)
722 goto out;
723
724 mutex_init(&zsb->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
725 mutex_init(&zsb->z_lock, NULL, MUTEX_DEFAULT, NULL);
726 list_create(&zsb->z_all_znodes, sizeof (znode_t),
727 offsetof(znode_t, z_link_node));
728 rrw_init(&zsb->z_teardown_lock);
729 rw_init(&zsb->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
730 rw_init(&zsb->z_fuid_lock, NULL, RW_DEFAULT, NULL);
731 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
732 mutex_init(&zsb->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
733
734 avl_create(&zsb->z_ctldir_snaps, snapentry_compare,
735 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node));
736 mutex_init(&zsb->z_ctldir_lock, NULL, MUTEX_DEFAULT, NULL);
737
738 *zsbp = zsb;
739 return (0);
740
741 out:
742 dmu_objset_disown(os, zsb);
743 *zsbp = NULL;
744 kmem_free(zsb, sizeof (zfs_sb_t));
745 return (error);
746 }
747 EXPORT_SYMBOL(zfs_sb_create);
748
749 int
750 zfs_sb_setup(zfs_sb_t *zsb, boolean_t mounting)
751 {
752 int error;
753
754 error = zfs_register_callbacks(zsb);
755 if (error)
756 return (error);
757
758 /*
759 * Set the objset user_ptr to track its zsb.
760 */
761 mutex_enter(&zsb->z_os->os_user_ptr_lock);
762 dmu_objset_set_user(zsb->z_os, zsb);
763 mutex_exit(&zsb->z_os->os_user_ptr_lock);
764
765 zsb->z_log = zil_open(zsb->z_os, zfs_get_data);
766
767 /*
768 * If we are not mounting (ie: online recv), then we don't
769 * have to worry about replaying the log as we blocked all
770 * operations out since we closed the ZIL.
771 */
772 if (mounting) {
773 boolean_t readonly;
774
775 /*
776 * During replay we remove the read only flag to
777 * allow replays to succeed.
778 */
779 readonly = zfs_is_readonly(zsb);
780 if (readonly != 0)
781 readonly_changed_cb(zsb, B_FALSE);
782 else
783 zfs_unlinked_drain(zsb);
784
785 /*
786 * Parse and replay the intent log.
787 *
788 * Because of ziltest, this must be done after
789 * zfs_unlinked_drain(). (Further note: ziltest
790 * doesn't use readonly mounts, where
791 * zfs_unlinked_drain() isn't called.) This is because
792 * ziltest causes spa_sync() to think it's committed,
793 * but actually it is not, so the intent log contains
794 * many txg's worth of changes.
795 *
796 * In particular, if object N is in the unlinked set in
797 * the last txg to actually sync, then it could be
798 * actually freed in a later txg and then reallocated
799 * in a yet later txg. This would write a "create
800 * object N" record to the intent log. Normally, this
801 * would be fine because the spa_sync() would have
802 * written out the fact that object N is free, before
803 * we could write the "create object N" intent log
804 * record.
805 *
806 * But when we are in ziltest mode, we advance the "open
807 * txg" without actually spa_sync()-ing the changes to
808 * disk. So we would see that object N is still
809 * allocated and in the unlinked set, and there is an
810 * intent log record saying to allocate it.
811 */
812 if (spa_writeable(dmu_objset_spa(zsb->z_os))) {
813 if (zil_replay_disable) {
814 zil_destroy(zsb->z_log, B_FALSE);
815 } else {
816 zsb->z_replay = B_TRUE;
817 zil_replay(zsb->z_os, zsb,
818 zfs_replay_vector);
819 zsb->z_replay = B_FALSE;
820 }
821 }
822
823 /* restore readonly bit */
824 if (readonly != 0)
825 readonly_changed_cb(zsb, B_TRUE);
826 }
827
828 return (0);
829 }
830 EXPORT_SYMBOL(zfs_sb_setup);
831
832 void
833 zfs_sb_free(zfs_sb_t *zsb)
834 {
835 int i;
836
837 zfs_fuid_destroy(zsb);
838
839 mutex_destroy(&zsb->z_znodes_lock);
840 mutex_destroy(&zsb->z_lock);
841 list_destroy(&zsb->z_all_znodes);
842 rrw_destroy(&zsb->z_teardown_lock);
843 rw_destroy(&zsb->z_teardown_inactive_lock);
844 rw_destroy(&zsb->z_fuid_lock);
845 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
846 mutex_destroy(&zsb->z_hold_mtx[i]);
847 mutex_destroy(&zsb->z_ctldir_lock);
848 avl_destroy(&zsb->z_ctldir_snaps);
849 kmem_free(zsb, sizeof (zfs_sb_t));
850 }
851 EXPORT_SYMBOL(zfs_sb_free);
852
853 static void
854 zfs_set_fuid_feature(zfs_sb_t *zsb)
855 {
856 zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
857 zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
858 }
859
860 void
861 zfs_unregister_callbacks(zfs_sb_t *zsb)
862 {
863 objset_t *os = zsb->z_os;
864 struct dsl_dataset *ds;
865
866 /*
867 * Unregister properties.
868 */
869 if (!dmu_objset_is_snapshot(os)) {
870 ds = dmu_objset_ds(os);
871 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
872 zsb) == 0);
873
874 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
875 zsb) == 0);
876
877 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
878 zsb) == 0);
879
880 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
881 zsb) == 0);
882
883 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
884 zsb) == 0);
885
886 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
887 zsb) == 0);
888
889 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
890 zsb) == 0);
891
892 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
893 zsb) == 0);
894
895 VERIFY(dsl_prop_unregister(ds, "aclinherit",
896 acl_inherit_changed_cb, zsb) == 0);
897
898 VERIFY(dsl_prop_unregister(ds, "vscan",
899 vscan_changed_cb, zsb) == 0);
900
901 VERIFY(dsl_prop_unregister(ds, "nbmand",
902 nbmand_changed_cb, zsb) == 0);
903 }
904 }
905 EXPORT_SYMBOL(zfs_unregister_callbacks);
906
907 #ifdef HAVE_MLSLABEL
908 /*
909 * zfs_check_global_label:
910 * Check that the hex label string is appropriate for the dataset
911 * being mounted into the global_zone proper.
912 *
913 * Return an error if the hex label string is not default or
914 * admin_low/admin_high. For admin_low labels, the corresponding
915 * dataset must be readonly.
916 */
917 int
918 zfs_check_global_label(const char *dsname, const char *hexsl)
919 {
920 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
921 return (0);
922 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
923 return (0);
924 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
925 /* must be readonly */
926 uint64_t rdonly;
927
928 if (dsl_prop_get_integer(dsname,
929 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
930 return (EACCES);
931 return (rdonly ? 0 : EACCES);
932 }
933 return (EACCES);
934 }
935 EXPORT_SYMBOL(zfs_check_global_label);
936 #endif /* HAVE_MLSLABEL */
937
938 int
939 zfs_statvfs(struct dentry *dentry, struct kstatfs *statp)
940 {
941 zfs_sb_t *zsb = dentry->d_sb->s_fs_info;
942 uint64_t refdbytes, availbytes, usedobjs, availobjs;
943 uint64_t fsid;
944 uint32_t bshift;
945
946 ZFS_ENTER(zsb);
947
948 dmu_objset_space(zsb->z_os,
949 &refdbytes, &availbytes, &usedobjs, &availobjs);
950
951 fsid = dmu_objset_fsid_guid(zsb->z_os);
952 /*
953 * The underlying storage pool actually uses multiple block
954 * size. Under Solaris frsize (fragment size) is reported as
955 * the smallest block size we support, and bsize (block size)
956 * as the filesystem's maximum block size. Unfortunately,
957 * under Linux the fragment size and block size are often used
958 * interchangeably. Thus we are forced to report both of them
959 * as the filesystem's maximum block size.
960 */
961 statp->f_frsize = zsb->z_max_blksz;
962 statp->f_bsize = zsb->z_max_blksz;
963 bshift = fls(statp->f_bsize) - 1;
964
965 /*
966 * The following report "total" blocks of various kinds in
967 * the file system, but reported in terms of f_bsize - the
968 * "preferred" size.
969 */
970
971 statp->f_blocks = (refdbytes + availbytes) >> bshift;
972 statp->f_bfree = availbytes >> bshift;
973 statp->f_bavail = statp->f_bfree; /* no root reservation */
974
975 /*
976 * statvfs() should really be called statufs(), because it assumes
977 * static metadata. ZFS doesn't preallocate files, so the best
978 * we can do is report the max that could possibly fit in f_files,
979 * and that minus the number actually used in f_ffree.
980 * For f_ffree, report the smaller of the number of object available
981 * and the number of blocks (each object will take at least a block).
982 */
983 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
984 statp->f_files = statp->f_ffree + usedobjs;
985 statp->f_fsid.val[0] = (uint32_t)fsid;
986 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
987 statp->f_type = ZFS_SUPER_MAGIC;
988 statp->f_namelen = ZFS_MAXNAMELEN;
989
990 /*
991 * We have all of 40 characters to stuff a string here.
992 * Is there anything useful we could/should provide?
993 */
994 bzero(statp->f_spare, sizeof (statp->f_spare));
995
996 ZFS_EXIT(zsb);
997 return (0);
998 }
999 EXPORT_SYMBOL(zfs_statvfs);
1000
1001 int
1002 zfs_root(zfs_sb_t *zsb, struct inode **ipp)
1003 {
1004 znode_t *rootzp;
1005 int error;
1006
1007 ZFS_ENTER(zsb);
1008
1009 error = zfs_zget(zsb, zsb->z_root, &rootzp);
1010 if (error == 0)
1011 *ipp = ZTOI(rootzp);
1012
1013 ZFS_EXIT(zsb);
1014 return (error);
1015 }
1016 EXPORT_SYMBOL(zfs_root);
1017
1018 #ifdef HAVE_SHRINK
1019 int
1020 zfs_sb_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1021 {
1022 zfs_sb_t *zsb = sb->s_fs_info;
1023 struct shrinker *shrinker = &sb->s_shrink;
1024 struct shrink_control sc = {
1025 .nr_to_scan = nr_to_scan,
1026 .gfp_mask = GFP_KERNEL,
1027 };
1028
1029 ZFS_ENTER(zsb);
1030 *objects = (*shrinker->shrink)(shrinker, &sc);
1031 ZFS_EXIT(zsb);
1032
1033 return (0);
1034 }
1035 EXPORT_SYMBOL(zfs_sb_prune);
1036 #endif /* HAVE_SHRINK */
1037
1038 /*
1039 * Teardown the zfs_sb_t.
1040 *
1041 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1042 * and 'z_teardown_inactive_lock' held.
1043 */
1044 int
1045 zfs_sb_teardown(zfs_sb_t *zsb, boolean_t unmounting)
1046 {
1047 znode_t *zp;
1048
1049 rrw_enter(&zsb->z_teardown_lock, RW_WRITER, FTAG);
1050
1051 if (!unmounting) {
1052 /*
1053 * We purge the parent filesystem's super block as the
1054 * parent filesystem and all of its snapshots have their
1055 * inode's super block set to the parent's filesystem's
1056 * super block. Note, 'z_parent' is self referential
1057 * for non-snapshots.
1058 */
1059 shrink_dcache_sb(zsb->z_parent->z_sb);
1060 }
1061
1062 /*
1063 * If someone has not already unmounted this file system,
1064 * drain the iput_taskq to ensure all active references to the
1065 * zfs_sb_t have been handled only then can it be safely destroyed.
1066 */
1067 if (zsb->z_os)
1068 taskq_wait(dsl_pool_iput_taskq(dmu_objset_pool(zsb->z_os)));
1069
1070 /*
1071 * Close the zil. NB: Can't close the zil while zfs_inactive
1072 * threads are blocked as zil_close can call zfs_inactive.
1073 */
1074 if (zsb->z_log) {
1075 zil_close(zsb->z_log);
1076 zsb->z_log = NULL;
1077 }
1078
1079 rw_enter(&zsb->z_teardown_inactive_lock, RW_WRITER);
1080
1081 /*
1082 * If we are not unmounting (ie: online recv) and someone already
1083 * unmounted this file system while we were doing the switcheroo,
1084 * or a reopen of z_os failed then just bail out now.
1085 */
1086 if (!unmounting && (zsb->z_unmounted || zsb->z_os == NULL)) {
1087 rw_exit(&zsb->z_teardown_inactive_lock);
1088 rrw_exit(&zsb->z_teardown_lock, FTAG);
1089 return (EIO);
1090 }
1091
1092 /*
1093 * At this point there are no VFS ops active, and any new VFS ops
1094 * will fail with EIO since we have z_teardown_lock for writer (only
1095 * relevant for forced unmount).
1096 *
1097 * Release all holds on dbufs.
1098 */
1099 mutex_enter(&zsb->z_znodes_lock);
1100 for (zp = list_head(&zsb->z_all_znodes); zp != NULL;
1101 zp = list_next(&zsb->z_all_znodes, zp)) {
1102 if (zp->z_sa_hdl) {
1103 ASSERT(atomic_read(&ZTOI(zp)->i_count) > 0);
1104 zfs_znode_dmu_fini(zp);
1105 }
1106 }
1107 mutex_exit(&zsb->z_znodes_lock);
1108
1109 /*
1110 * If we are unmounting, set the unmounted flag and let new VFS ops
1111 * unblock. zfs_inactive will have the unmounted behavior, and all
1112 * other VFS ops will fail with EIO.
1113 */
1114 if (unmounting) {
1115 zsb->z_unmounted = B_TRUE;
1116 rrw_exit(&zsb->z_teardown_lock, FTAG);
1117 rw_exit(&zsb->z_teardown_inactive_lock);
1118 }
1119
1120 /*
1121 * z_os will be NULL if there was an error in attempting to reopen
1122 * zsb, so just return as the properties had already been
1123 *
1124 * unregistered and cached data had been evicted before.
1125 */
1126 if (zsb->z_os == NULL)
1127 return (0);
1128
1129 /*
1130 * Unregister properties.
1131 */
1132 zfs_unregister_callbacks(zsb);
1133
1134 /*
1135 * Evict cached data
1136 */
1137 if (dsl_dataset_is_dirty(dmu_objset_ds(zsb->z_os)) &&
1138 !zfs_is_readonly(zsb))
1139 txg_wait_synced(dmu_objset_pool(zsb->z_os), 0);
1140 (void) dmu_objset_evict_dbufs(zsb->z_os);
1141
1142 return (0);
1143 }
1144 EXPORT_SYMBOL(zfs_sb_teardown);
1145
1146 #if defined(HAVE_BDI) && !defined(HAVE_BDI_SETUP_AND_REGISTER)
1147 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1148 #endif /* HAVE_BDI && !HAVE_BDI_SETUP_AND_REGISTER */
1149
1150 int
1151 zfs_domount(struct super_block *sb, void *data, int silent)
1152 {
1153 zpl_mount_data_t *zmd = data;
1154 const char *osname = zmd->z_osname;
1155 zfs_sb_t *zsb;
1156 struct inode *root_inode;
1157 uint64_t recordsize;
1158 int error;
1159
1160 error = zfs_sb_create(osname, &zsb);
1161 if (error)
1162 return (error);
1163
1164 if ((error = dsl_prop_get_integer(osname, "recordsize",
1165 &recordsize, NULL)))
1166 goto out;
1167
1168 zsb->z_sb = sb;
1169 sb->s_fs_info = zsb;
1170 sb->s_magic = ZFS_SUPER_MAGIC;
1171 sb->s_maxbytes = MAX_LFS_FILESIZE;
1172 sb->s_time_gran = 1;
1173 sb->s_blocksize = recordsize;
1174 sb->s_blocksize_bits = ilog2(recordsize);
1175
1176 #ifdef HAVE_BDI
1177 /*
1178 * 2.6.32 API change,
1179 * Added backing_device_info (BDI) per super block interfaces. A BDI
1180 * must be configured when using a non-device backed filesystem for
1181 * proper writeback. This is not required for older pdflush kernels.
1182 *
1183 * NOTE: Linux read-ahead is disabled in favor of zfs read-ahead.
1184 */
1185 zsb->z_bdi.ra_pages = 0;
1186 sb->s_bdi = &zsb->z_bdi;
1187
1188 error = -bdi_setup_and_register(&zsb->z_bdi, "zfs", BDI_CAP_MAP_COPY);
1189 if (error)
1190 goto out;
1191 #endif /* HAVE_BDI */
1192
1193 /* Set callback operations for the file system. */
1194 sb->s_op = &zpl_super_operations;
1195 sb->s_xattr = zpl_xattr_handlers;
1196 sb->s_export_op = &zpl_export_operations;
1197 #ifdef HAVE_S_D_OP
1198 sb->s_d_op = &zpl_dentry_operations;
1199 #endif /* HAVE_S_D_OP */
1200
1201 /* Set features for file system. */
1202 zfs_set_fuid_feature(zsb);
1203
1204 if (dmu_objset_is_snapshot(zsb->z_os)) {
1205 uint64_t pval;
1206
1207 atime_changed_cb(zsb, B_FALSE);
1208 readonly_changed_cb(zsb, B_TRUE);
1209 if ((error = dsl_prop_get_integer(osname,"xattr",&pval,NULL)))
1210 goto out;
1211 xattr_changed_cb(zsb, pval);
1212 zsb->z_issnap = B_TRUE;
1213 zsb->z_os->os_sync = ZFS_SYNC_DISABLED;
1214
1215 mutex_enter(&zsb->z_os->os_user_ptr_lock);
1216 dmu_objset_set_user(zsb->z_os, zsb);
1217 mutex_exit(&zsb->z_os->os_user_ptr_lock);
1218 } else {
1219 error = zfs_sb_setup(zsb, B_TRUE);
1220 }
1221
1222 /* Allocate a root inode for the filesystem. */
1223 error = zfs_root(zsb, &root_inode);
1224 if (error) {
1225 (void) zfs_umount(sb);
1226 goto out;
1227 }
1228
1229 /* Allocate a root dentry for the filesystem */
1230 sb->s_root = d_make_root(root_inode);
1231 if (sb->s_root == NULL) {
1232 (void) zfs_umount(sb);
1233 error = ENOMEM;
1234 goto out;
1235 }
1236
1237 if (!zsb->z_issnap)
1238 zfsctl_create(zsb);
1239 out:
1240 if (error) {
1241 dmu_objset_disown(zsb->z_os, zsb);
1242 zfs_sb_free(zsb);
1243 }
1244
1245 return (error);
1246 }
1247 EXPORT_SYMBOL(zfs_domount);
1248
1249 /*
1250 * Called when an unmount is requested and certain sanity checks have
1251 * already passed. At this point no dentries or inodes have been reclaimed
1252 * from their respective caches. We drop the extra reference on the .zfs
1253 * control directory to allow everything to be reclaimed. All snapshots
1254 * must already have been unmounted to reach this point.
1255 */
1256 void
1257 zfs_preumount(struct super_block *sb)
1258 {
1259 zfs_sb_t *zsb = sb->s_fs_info;
1260
1261 if (zsb != NULL && zsb->z_ctldir != NULL)
1262 zfsctl_destroy(zsb);
1263 }
1264 EXPORT_SYMBOL(zfs_preumount);
1265
1266 /*
1267 * Called once all other unmount released tear down has occurred.
1268 * It is our responsibility to release any remaining infrastructure.
1269 */
1270 /*ARGSUSED*/
1271 int
1272 zfs_umount(struct super_block *sb)
1273 {
1274 zfs_sb_t *zsb = sb->s_fs_info;
1275 objset_t *os;
1276
1277 VERIFY(zfs_sb_teardown(zsb, B_TRUE) == 0);
1278 os = zsb->z_os;
1279
1280 #ifdef HAVE_BDI
1281 bdi_destroy(sb->s_bdi);
1282 #endif /* HAVE_BDI */
1283
1284 /*
1285 * z_os will be NULL if there was an error in
1286 * attempting to reopen zsb.
1287 */
1288 if (os != NULL) {
1289 /*
1290 * Unset the objset user_ptr.
1291 */
1292 mutex_enter(&os->os_user_ptr_lock);
1293 dmu_objset_set_user(os, NULL);
1294 mutex_exit(&os->os_user_ptr_lock);
1295
1296 /*
1297 * Finally release the objset
1298 */
1299 dmu_objset_disown(os, zsb);
1300 }
1301
1302 zfs_sb_free(zsb);
1303 return (0);
1304 }
1305 EXPORT_SYMBOL(zfs_umount);
1306
1307 int
1308 zfs_remount(struct super_block *sb, int *flags, char *data)
1309 {
1310 /*
1311 * All namespace flags (MNT_*) and super block flags (MS_*) will
1312 * be handled by the Linux VFS. Only handle custom options here.
1313 */
1314 return (0);
1315 }
1316 EXPORT_SYMBOL(zfs_remount);
1317
1318 int
1319 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1320 {
1321 zfs_sb_t *zsb = sb->s_fs_info;
1322 znode_t *zp;
1323 uint64_t object = 0;
1324 uint64_t fid_gen = 0;
1325 uint64_t gen_mask;
1326 uint64_t zp_gen;
1327 int i, err;
1328
1329 *ipp = NULL;
1330
1331 ZFS_ENTER(zsb);
1332
1333 if (fidp->fid_len == LONG_FID_LEN) {
1334 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1335 uint64_t objsetid = 0;
1336 uint64_t setgen = 0;
1337
1338 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1339 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1340
1341 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1342 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1343
1344 ZFS_EXIT(zsb);
1345
1346 err = zfsctl_lookup_objset(sb, objsetid, &zsb);
1347 if (err)
1348 return (EINVAL);
1349
1350 ZFS_ENTER(zsb);
1351 }
1352
1353 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1354 zfid_short_t *zfid = (zfid_short_t *)fidp;
1355
1356 for (i = 0; i < sizeof (zfid->zf_object); i++)
1357 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1358
1359 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1360 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1361 } else {
1362 ZFS_EXIT(zsb);
1363 return (EINVAL);
1364 }
1365
1366 /* A zero fid_gen means we are in the .zfs control directories */
1367 if (fid_gen == 0 &&
1368 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1369 *ipp = zsb->z_ctldir;
1370 ASSERT(*ipp != NULL);
1371 if (object == ZFSCTL_INO_SNAPDIR) {
1372 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1373 0, kcred, NULL, NULL) == 0);
1374 } else {
1375 igrab(*ipp);
1376 }
1377 ZFS_EXIT(zsb);
1378 return (0);
1379 }
1380
1381 gen_mask = -1ULL >> (64 - 8 * i);
1382
1383 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1384 if ((err = zfs_zget(zsb, object, &zp))) {
1385 ZFS_EXIT(zsb);
1386 return (err);
1387 }
1388 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb), &zp_gen,
1389 sizeof (uint64_t));
1390 zp_gen = zp_gen & gen_mask;
1391 if (zp_gen == 0)
1392 zp_gen = 1;
1393 if (zp->z_unlinked || zp_gen != fid_gen) {
1394 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1395 iput(ZTOI(zp));
1396 ZFS_EXIT(zsb);
1397 return (EINVAL);
1398 }
1399
1400 *ipp = ZTOI(zp);
1401 if (*ipp)
1402 zfs_inode_update(ITOZ(*ipp));
1403
1404 ZFS_EXIT(zsb);
1405 return (0);
1406 }
1407 EXPORT_SYMBOL(zfs_vget);
1408
1409 /*
1410 * Block out VFS ops and close zfs_sb_t
1411 *
1412 * Note, if successful, then we return with the 'z_teardown_lock' and
1413 * 'z_teardown_inactive_lock' write held.
1414 */
1415 int
1416 zfs_suspend_fs(zfs_sb_t *zsb)
1417 {
1418 int error;
1419
1420 if ((error = zfs_sb_teardown(zsb, B_FALSE)) != 0)
1421 return (error);
1422
1423 dmu_objset_disown(zsb->z_os, zsb);
1424
1425 return (0);
1426 }
1427 EXPORT_SYMBOL(zfs_suspend_fs);
1428
1429 /*
1430 * Reopen zfs_sb_t and release VFS ops.
1431 */
1432 int
1433 zfs_resume_fs(zfs_sb_t *zsb, const char *osname)
1434 {
1435 int err, err2;
1436
1437 ASSERT(RRW_WRITE_HELD(&zsb->z_teardown_lock));
1438 ASSERT(RW_WRITE_HELD(&zsb->z_teardown_inactive_lock));
1439
1440 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zsb, &zsb->z_os);
1441 if (err) {
1442 zsb->z_os = NULL;
1443 } else {
1444 znode_t *zp;
1445 uint64_t sa_obj = 0;
1446
1447 err2 = zap_lookup(zsb->z_os, MASTER_NODE_OBJ,
1448 ZFS_SA_ATTRS, 8, 1, &sa_obj);
1449
1450 if ((err || err2) && zsb->z_version >= ZPL_VERSION_SA)
1451 goto bail;
1452
1453
1454 if ((err = sa_setup(zsb->z_os, sa_obj,
1455 zfs_attr_table, ZPL_END, &zsb->z_attr_table)) != 0)
1456 goto bail;
1457
1458 VERIFY(zfs_sb_setup(zsb, B_FALSE) == 0);
1459 zsb->z_rollback_time = jiffies;
1460
1461 /*
1462 * Attempt to re-establish all the active inodes with their
1463 * dbufs. If a zfs_rezget() fails, then we unhash the inode
1464 * and mark it stale. This prevents a collision if a new
1465 * inode/object is created which must use the same inode
1466 * number. The stale inode will be be released when the
1467 * VFS prunes the dentry holding the remaining references
1468 * on the stale inode.
1469 */
1470 mutex_enter(&zsb->z_znodes_lock);
1471 for (zp = list_head(&zsb->z_all_znodes); zp;
1472 zp = list_next(&zsb->z_all_znodes, zp)) {
1473 err2 = zfs_rezget(zp);
1474 if (err2) {
1475 remove_inode_hash(ZTOI(zp));
1476 zp->z_is_stale = B_TRUE;
1477 }
1478 }
1479 mutex_exit(&zsb->z_znodes_lock);
1480 }
1481
1482 bail:
1483 /* release the VFS ops */
1484 rw_exit(&zsb->z_teardown_inactive_lock);
1485 rrw_exit(&zsb->z_teardown_lock, FTAG);
1486
1487 if (err) {
1488 /*
1489 * Since we couldn't reopen zfs_sb_t or, setup the
1490 * sa framework, force unmount this file system.
1491 */
1492 if (zsb->z_os)
1493 (void) zfs_umount(zsb->z_sb);
1494 }
1495 return (err);
1496 }
1497 EXPORT_SYMBOL(zfs_resume_fs);
1498
1499 int
1500 zfs_set_version(zfs_sb_t *zsb, uint64_t newvers)
1501 {
1502 int error;
1503 objset_t *os = zsb->z_os;
1504 dmu_tx_t *tx;
1505
1506 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1507 return (EINVAL);
1508
1509 if (newvers < zsb->z_version)
1510 return (EINVAL);
1511
1512 if (zfs_spa_version_map(newvers) >
1513 spa_version(dmu_objset_spa(zsb->z_os)))
1514 return (ENOTSUP);
1515
1516 tx = dmu_tx_create(os);
1517 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
1518 if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
1519 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
1520 ZFS_SA_ATTRS);
1521 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1522 }
1523 error = dmu_tx_assign(tx, TXG_WAIT);
1524 if (error) {
1525 dmu_tx_abort(tx);
1526 return (error);
1527 }
1528
1529 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1530 8, 1, &newvers, tx);
1531
1532 if (error) {
1533 dmu_tx_commit(tx);
1534 return (error);
1535 }
1536
1537 if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
1538 uint64_t sa_obj;
1539
1540 ASSERT3U(spa_version(dmu_objset_spa(zsb->z_os)), >=,
1541 SPA_VERSION_SA);
1542 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1543 DMU_OT_NONE, 0, tx);
1544
1545 error = zap_add(os, MASTER_NODE_OBJ,
1546 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1547 ASSERT0(error);
1548
1549 VERIFY(0 == sa_set_sa_object(os, sa_obj));
1550 sa_register_update_callback(os, zfs_sa_upgrade);
1551 }
1552
1553 spa_history_log_internal(LOG_DS_UPGRADE,
1554 dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
1555 zsb->z_version, newvers, dmu_objset_id(os));
1556
1557 dmu_tx_commit(tx);
1558
1559 zsb->z_version = newvers;
1560
1561 if (zsb->z_version >= ZPL_VERSION_FUID)
1562 zfs_set_fuid_feature(zsb);
1563
1564 return (0);
1565 }
1566 EXPORT_SYMBOL(zfs_set_version);
1567
1568 /*
1569 * Read a property stored within the master node.
1570 */
1571 int
1572 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
1573 {
1574 const char *pname;
1575 int error = ENOENT;
1576
1577 /*
1578 * Look up the file system's value for the property. For the
1579 * version property, we look up a slightly different string.
1580 */
1581 if (prop == ZFS_PROP_VERSION)
1582 pname = ZPL_VERSION_STR;
1583 else
1584 pname = zfs_prop_to_name(prop);
1585
1586 if (os != NULL)
1587 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
1588
1589 if (error == ENOENT) {
1590 /* No value set, use the default value */
1591 switch (prop) {
1592 case ZFS_PROP_VERSION:
1593 *value = ZPL_VERSION;
1594 break;
1595 case ZFS_PROP_NORMALIZE:
1596 case ZFS_PROP_UTF8ONLY:
1597 *value = 0;
1598 break;
1599 case ZFS_PROP_CASE:
1600 *value = ZFS_CASE_SENSITIVE;
1601 break;
1602 default:
1603 return (error);
1604 }
1605 error = 0;
1606 }
1607 return (error);
1608 }
1609 EXPORT_SYMBOL(zfs_get_zplprop);
1610
1611 void
1612 zfs_init(void)
1613 {
1614 zfsctl_init();
1615 zfs_znode_init();
1616 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
1617 register_filesystem(&zpl_fs_type);
1618 (void) arc_add_prune_callback(zpl_prune_sbs, NULL);
1619 }
1620
1621 void
1622 zfs_fini(void)
1623 {
1624 unregister_filesystem(&zpl_fs_type);
1625 zfs_znode_fini();
1626 zfsctl_fini();
1627 }