]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/zfs_vfsops.c
a0726e117eaea75c0ed3cfa2d0f1788df82d626d
[mirror_zfs-debian.git] / module / zfs / zfs_vfsops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /* Portions Copyright 2010 Robert Milkowski */
26
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/mntent.h>
37 #include <sys/mount.h>
38 #include <sys/cmn_err.h>
39 #include "fs/fs_subr.h"
40 #include <sys/zfs_znode.h>
41 #include <sys/zfs_vnops.h>
42 #include <sys/zfs_dir.h>
43 #include <sys/zil.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/dmu.h>
46 #include <sys/dsl_prop.h>
47 #include <sys/dsl_dataset.h>
48 #include <sys/dsl_deleg.h>
49 #include <sys/spa.h>
50 #include <sys/zap.h>
51 #include <sys/sa.h>
52 #include <sys/varargs.h>
53 #include <sys/policy.h>
54 #include <sys/atomic.h>
55 #include <sys/mkdev.h>
56 #include <sys/modctl.h>
57 #include <sys/refstr.h>
58 #include <sys/zfs_ioctl.h>
59 #include <sys/zfs_fuid.h>
60 #include <sys/bootconf.h>
61 #include <sys/sunddi.h>
62 #include <sys/dnlc.h>
63 #include <sys/dmu_objset.h>
64 #include <sys/spa_boot.h>
65 #include <sys/sa.h>
66 #include <sys/zpl.h>
67 #include "zfs_comutil.h"
68
69
70 /*ARGSUSED*/
71 int
72 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
73 {
74 zfs_sb_t *zsb = sb->s_fs_info;
75
76 /*
77 * Data integrity is job one. We don't want a compromised kernel
78 * writing to the storage pool, so we never sync during panic.
79 */
80 if (unlikely(oops_in_progress))
81 return (0);
82
83 /*
84 * Semantically, the only requirement is that the sync be initiated.
85 * The DMU syncs out txgs frequently, so there's nothing to do.
86 */
87 if (!wait)
88 return (0);
89
90 if (zsb != NULL) {
91 /*
92 * Sync a specific filesystem.
93 */
94 dsl_pool_t *dp;
95
96 ZFS_ENTER(zsb);
97 dp = dmu_objset_pool(zsb->z_os);
98
99 /*
100 * If the system is shutting down, then skip any
101 * filesystems which may exist on a suspended pool.
102 */
103 if (spa_suspended(dp->dp_spa)) {
104 ZFS_EXIT(zsb);
105 return (0);
106 }
107
108 if (zsb->z_log != NULL)
109 zil_commit(zsb->z_log, 0);
110
111 ZFS_EXIT(zsb);
112 } else {
113 /*
114 * Sync all ZFS filesystems. This is what happens when you
115 * run sync(1M). Unlike other filesystems, ZFS honors the
116 * request by waiting for all pools to commit all dirty data.
117 */
118 spa_sync_allpools();
119 }
120
121 return (0);
122 }
123 EXPORT_SYMBOL(zfs_sync);
124
125 boolean_t
126 zfs_is_readonly(zfs_sb_t *zsb)
127 {
128 return (!!(zsb->z_sb->s_flags & MS_RDONLY));
129 }
130 EXPORT_SYMBOL(zfs_is_readonly);
131
132 static void
133 atime_changed_cb(void *arg, uint64_t newval)
134 {
135 ((zfs_sb_t *)arg)->z_atime = newval;
136 }
137
138 static void
139 xattr_changed_cb(void *arg, uint64_t newval)
140 {
141 zfs_sb_t *zsb = arg;
142
143 if (newval == ZFS_XATTR_OFF) {
144 zsb->z_flags &= ~ZSB_XATTR;
145 } else {
146 zsb->z_flags |= ZSB_XATTR;
147
148 if (newval == ZFS_XATTR_SA)
149 zsb->z_xattr_sa = B_TRUE;
150 else
151 zsb->z_xattr_sa = B_FALSE;
152 }
153 }
154
155 static void
156 blksz_changed_cb(void *arg, uint64_t newval)
157 {
158 zfs_sb_t *zsb = arg;
159
160 if (newval < SPA_MINBLOCKSIZE ||
161 newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
162 newval = SPA_MAXBLOCKSIZE;
163
164 zsb->z_max_blksz = newval;
165 }
166
167 static void
168 readonly_changed_cb(void *arg, uint64_t newval)
169 {
170 zfs_sb_t *zsb = arg;
171 struct super_block *sb = zsb->z_sb;
172
173 if (sb == NULL)
174 return;
175
176 if (newval)
177 sb->s_flags |= MS_RDONLY;
178 else
179 sb->s_flags &= ~MS_RDONLY;
180 }
181
182 static void
183 devices_changed_cb(void *arg, uint64_t newval)
184 {
185 }
186
187 static void
188 setuid_changed_cb(void *arg, uint64_t newval)
189 {
190 }
191
192 static void
193 exec_changed_cb(void *arg, uint64_t newval)
194 {
195 }
196
197 static void
198 nbmand_changed_cb(void *arg, uint64_t newval)
199 {
200 zfs_sb_t *zsb = arg;
201 struct super_block *sb = zsb->z_sb;
202
203 if (sb == NULL)
204 return;
205
206 if (newval == TRUE)
207 sb->s_flags |= MS_MANDLOCK;
208 else
209 sb->s_flags &= ~MS_MANDLOCK;
210 }
211
212 static void
213 snapdir_changed_cb(void *arg, uint64_t newval)
214 {
215 ((zfs_sb_t *)arg)->z_show_ctldir = newval;
216 }
217
218 static void
219 vscan_changed_cb(void *arg, uint64_t newval)
220 {
221 ((zfs_sb_t *)arg)->z_vscan = newval;
222 }
223
224 static void
225 acl_inherit_changed_cb(void *arg, uint64_t newval)
226 {
227 ((zfs_sb_t *)arg)->z_acl_inherit = newval;
228 }
229
230 int
231 zfs_register_callbacks(zfs_sb_t *zsb)
232 {
233 struct dsl_dataset *ds = NULL;
234 objset_t *os = zsb->z_os;
235 int error = 0;
236
237 if (zfs_is_readonly(zsb) || !spa_writeable(dmu_objset_spa(os)))
238 readonly_changed_cb(zsb, B_TRUE);
239
240 /*
241 * Register property callbacks.
242 *
243 * It would probably be fine to just check for i/o error from
244 * the first prop_register(), but I guess I like to go
245 * overboard...
246 */
247 ds = dmu_objset_ds(os);
248 error = dsl_prop_register(ds,
249 "atime", atime_changed_cb, zsb);
250 error = error ? error : dsl_prop_register(ds,
251 "xattr", xattr_changed_cb, zsb);
252 error = error ? error : dsl_prop_register(ds,
253 "recordsize", blksz_changed_cb, zsb);
254 error = error ? error : dsl_prop_register(ds,
255 "readonly", readonly_changed_cb, zsb);
256 error = error ? error : dsl_prop_register(ds,
257 "devices", devices_changed_cb, zsb);
258 error = error ? error : dsl_prop_register(ds,
259 "setuid", setuid_changed_cb, zsb);
260 error = error ? error : dsl_prop_register(ds,
261 "exec", exec_changed_cb, zsb);
262 error = error ? error : dsl_prop_register(ds,
263 "snapdir", snapdir_changed_cb, zsb);
264 error = error ? error : dsl_prop_register(ds,
265 "aclinherit", acl_inherit_changed_cb, zsb);
266 error = error ? error : dsl_prop_register(ds,
267 "vscan", vscan_changed_cb, zsb);
268 error = error ? error : dsl_prop_register(ds,
269 "nbmand", nbmand_changed_cb, zsb);
270 if (error)
271 goto unregister;
272
273 return (0);
274
275 unregister:
276 /*
277 * We may attempt to unregister some callbacks that are not
278 * registered, but this is OK; it will simply return ENOMSG,
279 * which we will ignore.
280 */
281 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zsb);
282 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zsb);
283 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zsb);
284 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zsb);
285 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zsb);
286 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zsb);
287 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zsb);
288 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zsb);
289 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
290 zsb);
291 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zsb);
292 (void) dsl_prop_unregister(ds, "nbmand", nbmand_changed_cb, zsb);
293
294 return (error);
295 }
296 EXPORT_SYMBOL(zfs_register_callbacks);
297
298 static int
299 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
300 uint64_t *userp, uint64_t *groupp)
301 {
302 znode_phys_t *znp = data;
303 int error = 0;
304
305 /*
306 * Is it a valid type of object to track?
307 */
308 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
309 return (ENOENT);
310
311 /*
312 * If we have a NULL data pointer
313 * then assume the id's aren't changing and
314 * return EEXIST to the dmu to let it know to
315 * use the same ids
316 */
317 if (data == NULL)
318 return (EEXIST);
319
320 if (bonustype == DMU_OT_ZNODE) {
321 *userp = znp->zp_uid;
322 *groupp = znp->zp_gid;
323 } else {
324 int hdrsize;
325
326 ASSERT(bonustype == DMU_OT_SA);
327 hdrsize = sa_hdrsize(data);
328
329 if (hdrsize != 0) {
330 *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
331 SA_UID_OFFSET));
332 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
333 SA_GID_OFFSET));
334 } else {
335 /*
336 * This should only happen for newly created
337 * files that haven't had the znode data filled
338 * in yet.
339 */
340 *userp = 0;
341 *groupp = 0;
342 }
343 }
344 return (error);
345 }
346
347 static void
348 fuidstr_to_sid(zfs_sb_t *zsb, const char *fuidstr,
349 char *domainbuf, int buflen, uid_t *ridp)
350 {
351 uint64_t fuid;
352 const char *domain;
353
354 fuid = strtonum(fuidstr, NULL);
355
356 domain = zfs_fuid_find_by_idx(zsb, FUID_INDEX(fuid));
357 if (domain)
358 (void) strlcpy(domainbuf, domain, buflen);
359 else
360 domainbuf[0] = '\0';
361 *ridp = FUID_RID(fuid);
362 }
363
364 static uint64_t
365 zfs_userquota_prop_to_obj(zfs_sb_t *zsb, zfs_userquota_prop_t type)
366 {
367 switch (type) {
368 case ZFS_PROP_USERUSED:
369 return (DMU_USERUSED_OBJECT);
370 case ZFS_PROP_GROUPUSED:
371 return (DMU_GROUPUSED_OBJECT);
372 case ZFS_PROP_USERQUOTA:
373 return (zsb->z_userquota_obj);
374 case ZFS_PROP_GROUPQUOTA:
375 return (zsb->z_groupquota_obj);
376 default:
377 return (ENOTSUP);
378 }
379 return (0);
380 }
381
382 int
383 zfs_userspace_many(zfs_sb_t *zsb, zfs_userquota_prop_t type,
384 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
385 {
386 int error;
387 zap_cursor_t zc;
388 zap_attribute_t za;
389 zfs_useracct_t *buf = vbuf;
390 uint64_t obj;
391
392 if (!dmu_objset_userspace_present(zsb->z_os))
393 return (ENOTSUP);
394
395 obj = zfs_userquota_prop_to_obj(zsb, type);
396 if (obj == 0) {
397 *bufsizep = 0;
398 return (0);
399 }
400
401 for (zap_cursor_init_serialized(&zc, zsb->z_os, obj, *cookiep);
402 (error = zap_cursor_retrieve(&zc, &za)) == 0;
403 zap_cursor_advance(&zc)) {
404 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
405 *bufsizep)
406 break;
407
408 fuidstr_to_sid(zsb, za.za_name,
409 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
410
411 buf->zu_space = za.za_first_integer;
412 buf++;
413 }
414 if (error == ENOENT)
415 error = 0;
416
417 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
418 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
419 *cookiep = zap_cursor_serialize(&zc);
420 zap_cursor_fini(&zc);
421 return (error);
422 }
423 EXPORT_SYMBOL(zfs_userspace_many);
424
425 /*
426 * buf must be big enough (eg, 32 bytes)
427 */
428 static int
429 id_to_fuidstr(zfs_sb_t *zsb, const char *domain, uid_t rid,
430 char *buf, boolean_t addok)
431 {
432 uint64_t fuid;
433 int domainid = 0;
434
435 if (domain && domain[0]) {
436 domainid = zfs_fuid_find_by_domain(zsb, domain, NULL, addok);
437 if (domainid == -1)
438 return (ENOENT);
439 }
440 fuid = FUID_ENCODE(domainid, rid);
441 (void) sprintf(buf, "%llx", (longlong_t)fuid);
442 return (0);
443 }
444
445 int
446 zfs_userspace_one(zfs_sb_t *zsb, zfs_userquota_prop_t type,
447 const char *domain, uint64_t rid, uint64_t *valp)
448 {
449 char buf[32];
450 int err;
451 uint64_t obj;
452
453 *valp = 0;
454
455 if (!dmu_objset_userspace_present(zsb->z_os))
456 return (ENOTSUP);
457
458 obj = zfs_userquota_prop_to_obj(zsb, type);
459 if (obj == 0)
460 return (0);
461
462 err = id_to_fuidstr(zsb, domain, rid, buf, B_FALSE);
463 if (err)
464 return (err);
465
466 err = zap_lookup(zsb->z_os, obj, buf, 8, 1, valp);
467 if (err == ENOENT)
468 err = 0;
469 return (err);
470 }
471 EXPORT_SYMBOL(zfs_userspace_one);
472
473 int
474 zfs_set_userquota(zfs_sb_t *zsb, zfs_userquota_prop_t type,
475 const char *domain, uint64_t rid, uint64_t quota)
476 {
477 char buf[32];
478 int err;
479 dmu_tx_t *tx;
480 uint64_t *objp;
481 boolean_t fuid_dirtied;
482
483 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
484 return (EINVAL);
485
486 if (zsb->z_version < ZPL_VERSION_USERSPACE)
487 return (ENOTSUP);
488
489 objp = (type == ZFS_PROP_USERQUOTA) ? &zsb->z_userquota_obj :
490 &zsb->z_groupquota_obj;
491
492 err = id_to_fuidstr(zsb, domain, rid, buf, B_TRUE);
493 if (err)
494 return (err);
495 fuid_dirtied = zsb->z_fuid_dirty;
496
497 tx = dmu_tx_create(zsb->z_os);
498 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
499 if (*objp == 0) {
500 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
501 zfs_userquota_prop_prefixes[type]);
502 }
503 if (fuid_dirtied)
504 zfs_fuid_txhold(zsb, tx);
505 err = dmu_tx_assign(tx, TXG_WAIT);
506 if (err) {
507 dmu_tx_abort(tx);
508 return (err);
509 }
510
511 mutex_enter(&zsb->z_lock);
512 if (*objp == 0) {
513 *objp = zap_create(zsb->z_os, DMU_OT_USERGROUP_QUOTA,
514 DMU_OT_NONE, 0, tx);
515 VERIFY(0 == zap_add(zsb->z_os, MASTER_NODE_OBJ,
516 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
517 }
518 mutex_exit(&zsb->z_lock);
519
520 if (quota == 0) {
521 err = zap_remove(zsb->z_os, *objp, buf, tx);
522 if (err == ENOENT)
523 err = 0;
524 } else {
525 err = zap_update(zsb->z_os, *objp, buf, 8, 1, &quota, tx);
526 }
527 ASSERT(err == 0);
528 if (fuid_dirtied)
529 zfs_fuid_sync(zsb, tx);
530 dmu_tx_commit(tx);
531 return (err);
532 }
533 EXPORT_SYMBOL(zfs_set_userquota);
534
535 boolean_t
536 zfs_fuid_overquota(zfs_sb_t *zsb, boolean_t isgroup, uint64_t fuid)
537 {
538 char buf[32];
539 uint64_t used, quota, usedobj, quotaobj;
540 int err;
541
542 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
543 quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
544
545 if (quotaobj == 0 || zsb->z_replay)
546 return (B_FALSE);
547
548 (void) sprintf(buf, "%llx", (longlong_t)fuid);
549 err = zap_lookup(zsb->z_os, quotaobj, buf, 8, 1, &quota);
550 if (err != 0)
551 return (B_FALSE);
552
553 err = zap_lookup(zsb->z_os, usedobj, buf, 8, 1, &used);
554 if (err != 0)
555 return (B_FALSE);
556 return (used >= quota);
557 }
558 EXPORT_SYMBOL(zfs_fuid_overquota);
559
560 boolean_t
561 zfs_owner_overquota(zfs_sb_t *zsb, znode_t *zp, boolean_t isgroup)
562 {
563 uint64_t fuid;
564 uint64_t quotaobj;
565
566 quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
567
568 fuid = isgroup ? zp->z_gid : zp->z_uid;
569
570 if (quotaobj == 0 || zsb->z_replay)
571 return (B_FALSE);
572
573 return (zfs_fuid_overquota(zsb, isgroup, fuid));
574 }
575 EXPORT_SYMBOL(zfs_owner_overquota);
576
577 int
578 zfs_sb_create(const char *osname, zfs_sb_t **zsbp)
579 {
580 objset_t *os;
581 zfs_sb_t *zsb;
582 uint64_t zval;
583 int i, error;
584 uint64_t sa_obj;
585
586 zsb = kmem_zalloc(sizeof (zfs_sb_t), KM_SLEEP);
587
588 /*
589 * We claim to always be readonly so we can open snapshots;
590 * other ZPL code will prevent us from writing to snapshots.
591 */
592 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zsb, &os);
593 if (error) {
594 kmem_free(zsb, sizeof (zfs_sb_t));
595 return (error);
596 }
597
598 /*
599 * Initialize the zfs-specific filesystem structure.
600 * Should probably make this a kmem cache, shuffle fields,
601 * and just bzero up to z_hold_mtx[].
602 */
603 zsb->z_sb = NULL;
604 zsb->z_parent = zsb;
605 zsb->z_max_blksz = SPA_MAXBLOCKSIZE;
606 zsb->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
607 zsb->z_os = os;
608
609 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zsb->z_version);
610 if (error) {
611 goto out;
612 } else if (zsb->z_version >
613 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
614 (void) printk("Can't mount a version %lld file system "
615 "on a version %lld pool\n. Pool must be upgraded to mount "
616 "this file system.", (u_longlong_t)zsb->z_version,
617 (u_longlong_t)spa_version(dmu_objset_spa(os)));
618 error = ENOTSUP;
619 goto out;
620 }
621 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
622 goto out;
623 zsb->z_norm = (int)zval;
624
625 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
626 goto out;
627 zsb->z_utf8 = (zval != 0);
628
629 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
630 goto out;
631 zsb->z_case = (uint_t)zval;
632
633 /*
634 * Fold case on file systems that are always or sometimes case
635 * insensitive.
636 */
637 if (zsb->z_case == ZFS_CASE_INSENSITIVE ||
638 zsb->z_case == ZFS_CASE_MIXED)
639 zsb->z_norm |= U8_TEXTPREP_TOUPPER;
640
641 zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
642 zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
643
644 if (zsb->z_use_sa) {
645 /* should either have both of these objects or none */
646 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
647 &sa_obj);
648 if (error)
649 goto out;
650
651 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &zval);
652 if ((error == 0) && (zval == ZFS_XATTR_SA))
653 zsb->z_xattr_sa = B_TRUE;
654 } else {
655 /*
656 * Pre SA versions file systems should never touch
657 * either the attribute registration or layout objects.
658 */
659 sa_obj = 0;
660 }
661
662 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
663 &zsb->z_attr_table);
664 if (error)
665 goto out;
666
667 if (zsb->z_version >= ZPL_VERSION_SA)
668 sa_register_update_callback(os, zfs_sa_upgrade);
669
670 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
671 &zsb->z_root);
672 if (error)
673 goto out;
674 ASSERT(zsb->z_root != 0);
675
676 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
677 &zsb->z_unlinkedobj);
678 if (error)
679 goto out;
680
681 error = zap_lookup(os, MASTER_NODE_OBJ,
682 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
683 8, 1, &zsb->z_userquota_obj);
684 if (error && error != ENOENT)
685 goto out;
686
687 error = zap_lookup(os, MASTER_NODE_OBJ,
688 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
689 8, 1, &zsb->z_groupquota_obj);
690 if (error && error != ENOENT)
691 goto out;
692
693 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
694 &zsb->z_fuid_obj);
695 if (error && error != ENOENT)
696 goto out;
697
698 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
699 &zsb->z_shares_dir);
700 if (error && error != ENOENT)
701 goto out;
702
703 mutex_init(&zsb->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
704 mutex_init(&zsb->z_lock, NULL, MUTEX_DEFAULT, NULL);
705 list_create(&zsb->z_all_znodes, sizeof (znode_t),
706 offsetof(znode_t, z_link_node));
707 rrw_init(&zsb->z_teardown_lock);
708 rw_init(&zsb->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
709 rw_init(&zsb->z_fuid_lock, NULL, RW_DEFAULT, NULL);
710 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
711 mutex_init(&zsb->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
712
713 *zsbp = zsb;
714 return (0);
715
716 out:
717 dmu_objset_disown(os, zsb);
718 *zsbp = NULL;
719 kmem_free(zsb, sizeof (zfs_sb_t));
720 return (error);
721 }
722 EXPORT_SYMBOL(zfs_sb_create);
723
724 int
725 zfs_sb_setup(zfs_sb_t *zsb, boolean_t mounting)
726 {
727 int error;
728
729 error = zfs_register_callbacks(zsb);
730 if (error)
731 return (error);
732
733 /*
734 * Set the objset user_ptr to track its zsb.
735 */
736 mutex_enter(&zsb->z_os->os_user_ptr_lock);
737 dmu_objset_set_user(zsb->z_os, zsb);
738 mutex_exit(&zsb->z_os->os_user_ptr_lock);
739
740 zsb->z_log = zil_open(zsb->z_os, zfs_get_data);
741
742 /*
743 * If we are not mounting (ie: online recv), then we don't
744 * have to worry about replaying the log as we blocked all
745 * operations out since we closed the ZIL.
746 */
747 if (mounting) {
748 boolean_t readonly;
749
750 /*
751 * During replay we remove the read only flag to
752 * allow replays to succeed.
753 */
754 readonly = zfs_is_readonly(zsb);
755 if (readonly != 0)
756 readonly_changed_cb(zsb, B_FALSE);
757 else
758 zfs_unlinked_drain(zsb);
759
760 /*
761 * Parse and replay the intent log.
762 *
763 * Because of ziltest, this must be done after
764 * zfs_unlinked_drain(). (Further note: ziltest
765 * doesn't use readonly mounts, where
766 * zfs_unlinked_drain() isn't called.) This is because
767 * ziltest causes spa_sync() to think it's committed,
768 * but actually it is not, so the intent log contains
769 * many txg's worth of changes.
770 *
771 * In particular, if object N is in the unlinked set in
772 * the last txg to actually sync, then it could be
773 * actually freed in a later txg and then reallocated
774 * in a yet later txg. This would write a "create
775 * object N" record to the intent log. Normally, this
776 * would be fine because the spa_sync() would have
777 * written out the fact that object N is free, before
778 * we could write the "create object N" intent log
779 * record.
780 *
781 * But when we are in ziltest mode, we advance the "open
782 * txg" without actually spa_sync()-ing the changes to
783 * disk. So we would see that object N is still
784 * allocated and in the unlinked set, and there is an
785 * intent log record saying to allocate it.
786 */
787 if (spa_writeable(dmu_objset_spa(zsb->z_os))) {
788 if (zil_replay_disable) {
789 zil_destroy(zsb->z_log, B_FALSE);
790 } else {
791 zsb->z_replay = B_TRUE;
792 zil_replay(zsb->z_os, zsb,
793 zfs_replay_vector);
794 zsb->z_replay = B_FALSE;
795 }
796 }
797
798 /* restore readonly bit */
799 if (readonly != 0)
800 readonly_changed_cb(zsb, B_TRUE);
801 }
802
803 return (0);
804 }
805 EXPORT_SYMBOL(zfs_sb_setup);
806
807 void
808 zfs_sb_free(zfs_sb_t *zsb)
809 {
810 int i;
811
812 zfs_fuid_destroy(zsb);
813
814 mutex_destroy(&zsb->z_znodes_lock);
815 mutex_destroy(&zsb->z_lock);
816 list_destroy(&zsb->z_all_znodes);
817 rrw_destroy(&zsb->z_teardown_lock);
818 rw_destroy(&zsb->z_teardown_inactive_lock);
819 rw_destroy(&zsb->z_fuid_lock);
820 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
821 mutex_destroy(&zsb->z_hold_mtx[i]);
822 kmem_free(zsb, sizeof (zfs_sb_t));
823 }
824 EXPORT_SYMBOL(zfs_sb_free);
825
826 static void
827 zfs_set_fuid_feature(zfs_sb_t *zsb)
828 {
829 zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
830 zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
831 }
832
833 void
834 zfs_unregister_callbacks(zfs_sb_t *zsb)
835 {
836 objset_t *os = zsb->z_os;
837 struct dsl_dataset *ds;
838
839 /*
840 * Unregister properties.
841 */
842 if (!dmu_objset_is_snapshot(os)) {
843 ds = dmu_objset_ds(os);
844 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
845 zsb) == 0);
846
847 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
848 zsb) == 0);
849
850 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
851 zsb) == 0);
852
853 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
854 zsb) == 0);
855
856 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
857 zsb) == 0);
858
859 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
860 zsb) == 0);
861
862 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
863 zsb) == 0);
864
865 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
866 zsb) == 0);
867
868 VERIFY(dsl_prop_unregister(ds, "aclinherit",
869 acl_inherit_changed_cb, zsb) == 0);
870
871 VERIFY(dsl_prop_unregister(ds, "vscan",
872 vscan_changed_cb, zsb) == 0);
873
874 VERIFY(dsl_prop_unregister(ds, "nbmand",
875 nbmand_changed_cb, zsb) == 0);
876 }
877 }
878 EXPORT_SYMBOL(zfs_unregister_callbacks);
879
880 #ifdef HAVE_MLSLABEL
881 /*
882 * zfs_check_global_label:
883 * Check that the hex label string is appropriate for the dataset
884 * being mounted into the global_zone proper.
885 *
886 * Return an error if the hex label string is not default or
887 * admin_low/admin_high. For admin_low labels, the corresponding
888 * dataset must be readonly.
889 */
890 int
891 zfs_check_global_label(const char *dsname, const char *hexsl)
892 {
893 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
894 return (0);
895 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
896 return (0);
897 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
898 /* must be readonly */
899 uint64_t rdonly;
900
901 if (dsl_prop_get_integer(dsname,
902 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
903 return (EACCES);
904 return (rdonly ? 0 : EACCES);
905 }
906 return (EACCES);
907 }
908 EXPORT_SYMBOL(zfs_check_global_label);
909 #endif /* HAVE_MLSLABEL */
910
911 int
912 zfs_statvfs(struct dentry *dentry, struct kstatfs *statp)
913 {
914 zfs_sb_t *zsb = dentry->d_sb->s_fs_info;
915 uint64_t refdbytes, availbytes, usedobjs, availobjs;
916 uint32_t bshift;
917
918 ZFS_ENTER(zsb);
919
920 dmu_objset_space(zsb->z_os,
921 &refdbytes, &availbytes, &usedobjs, &availobjs);
922
923 /*
924 * The underlying storage pool actually uses multiple block
925 * size. Under Solaris frsize (fragment size) is reported as
926 * the smallest block size we support, and bsize (block size)
927 * as the filesystem's maximum block size. Unfortunately,
928 * under Linux the fragment size and block size are often used
929 * interchangeably. Thus we are forced to report both of them
930 * as the filesystem's maximum block size.
931 */
932 statp->f_frsize = zsb->z_max_blksz;
933 statp->f_bsize = zsb->z_max_blksz;
934 bshift = fls(statp->f_bsize) - 1;
935
936 /*
937 * The following report "total" blocks of various kinds in
938 * the file system, but reported in terms of f_bsize - the
939 * "preferred" size.
940 */
941
942 statp->f_blocks = (refdbytes + availbytes) >> bshift;
943 statp->f_bfree = availbytes >> bshift;
944 statp->f_bavail = statp->f_bfree; /* no root reservation */
945
946 /*
947 * statvfs() should really be called statufs(), because it assumes
948 * static metadata. ZFS doesn't preallocate files, so the best
949 * we can do is report the max that could possibly fit in f_files,
950 * and that minus the number actually used in f_ffree.
951 * For f_ffree, report the smaller of the number of object available
952 * and the number of blocks (each object will take at least a block).
953 */
954 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
955 statp->f_files = statp->f_ffree + usedobjs;
956 statp->f_fsid.val[0] = dentry->d_sb->s_dev;
957 statp->f_fsid.val[1] = 0;
958 statp->f_type = ZFS_SUPER_MAGIC;
959 statp->f_namelen = ZFS_MAXNAMELEN;
960
961 /*
962 * We have all of 40 characters to stuff a string here.
963 * Is there anything useful we could/should provide?
964 */
965 bzero(statp->f_spare, sizeof (statp->f_spare));
966
967 ZFS_EXIT(zsb);
968 return (0);
969 }
970 EXPORT_SYMBOL(zfs_statvfs);
971
972 int
973 zfs_root(zfs_sb_t *zsb, struct inode **ipp)
974 {
975 znode_t *rootzp;
976 int error;
977
978 ZFS_ENTER(zsb);
979
980 error = zfs_zget(zsb, zsb->z_root, &rootzp);
981 if (error == 0)
982 *ipp = ZTOI(rootzp);
983
984 ZFS_EXIT(zsb);
985 return (error);
986 }
987 EXPORT_SYMBOL(zfs_root);
988
989 /*
990 * Teardown the zfs_sb_t::z_os.
991 *
992 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
993 * and 'z_teardown_inactive_lock' held.
994 */
995 int
996 zfs_sb_teardown(zfs_sb_t *zsb, boolean_t unmounting)
997 {
998 znode_t *zp;
999
1000 rrw_enter(&zsb->z_teardown_lock, RW_WRITER, FTAG);
1001
1002 if (!unmounting) {
1003 /*
1004 * We purge the parent filesystem's super block as the
1005 * parent filesystem and all of its snapshots have their
1006 * inode's super block set to the parent's filesystem's
1007 * super block. Note, 'z_parent' is self referential
1008 * for non-snapshots.
1009 */
1010 shrink_dcache_sb(zsb->z_parent->z_sb);
1011 (void) spl_invalidate_inodes(zsb->z_parent->z_sb, 0);
1012 }
1013
1014 /*
1015 * Drain the iput_taskq to ensure all active references to the
1016 * zfs_sb_t have been handled only then can it be safely destroyed.
1017 */
1018 taskq_wait(dsl_pool_iput_taskq(dmu_objset_pool(zsb->z_os)));
1019
1020 /*
1021 * Close the zil. NB: Can't close the zil while zfs_inactive
1022 * threads are blocked as zil_close can call zfs_inactive.
1023 */
1024 if (zsb->z_log) {
1025 zil_close(zsb->z_log);
1026 zsb->z_log = NULL;
1027 }
1028
1029 rw_enter(&zsb->z_teardown_inactive_lock, RW_WRITER);
1030
1031 /*
1032 * If we are not unmounting (ie: online recv) and someone already
1033 * unmounted this file system while we were doing the switcheroo,
1034 * or a reopen of z_os failed then just bail out now.
1035 */
1036 if (!unmounting && (zsb->z_unmounted || zsb->z_os == NULL)) {
1037 rw_exit(&zsb->z_teardown_inactive_lock);
1038 rrw_exit(&zsb->z_teardown_lock, FTAG);
1039 return (EIO);
1040 }
1041
1042 /*
1043 * At this point there are no vops active, and any new vops will
1044 * fail with EIO since we have z_teardown_lock for writer (only
1045 * relavent for forced unmount).
1046 *
1047 * Release all holds on dbufs.
1048 */
1049 mutex_enter(&zsb->z_znodes_lock);
1050 for (zp = list_head(&zsb->z_all_znodes); zp != NULL;
1051 zp = list_next(&zsb->z_all_znodes, zp))
1052 if (zp->z_sa_hdl) {
1053 ASSERT(atomic_read(&ZTOI(zp)->i_count) > 0);
1054 zfs_znode_dmu_fini(zp);
1055 }
1056 mutex_exit(&zsb->z_znodes_lock);
1057
1058 /*
1059 * If we are unmounting, set the unmounted flag and let new vops
1060 * unblock. zfs_inactive will have the unmounted behavior, and all
1061 * other vops will fail with EIO.
1062 */
1063 if (unmounting) {
1064 zsb->z_unmounted = B_TRUE;
1065 rrw_exit(&zsb->z_teardown_lock, FTAG);
1066 rw_exit(&zsb->z_teardown_inactive_lock);
1067 }
1068
1069 /*
1070 * z_os will be NULL if there was an error in attempting to reopen
1071 * zsb, so just return as the properties had already been
1072 *
1073 * unregistered and cached data had been evicted before.
1074 */
1075 if (zsb->z_os == NULL)
1076 return (0);
1077
1078 /*
1079 * Unregister properties.
1080 */
1081 zfs_unregister_callbacks(zsb);
1082
1083 /*
1084 * Evict cached data
1085 */
1086 if (dmu_objset_is_dirty_anywhere(zsb->z_os))
1087 if (!zfs_is_readonly(zsb))
1088 txg_wait_synced(dmu_objset_pool(zsb->z_os), 0);
1089 (void) dmu_objset_evict_dbufs(zsb->z_os);
1090
1091 return (0);
1092 }
1093 EXPORT_SYMBOL(zfs_sb_teardown);
1094
1095 #if defined(HAVE_BDI) && !defined(HAVE_BDI_SETUP_AND_REGISTER)
1096 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1097 #endif /* HAVE_BDI && !HAVE_BDI_SETUP_AND_REGISTER */
1098
1099 int
1100 zfs_domount(struct super_block *sb, void *data, int silent)
1101 {
1102 zpl_mount_data_t *zmd = data;
1103 const char *osname = zmd->z_osname;
1104 zfs_sb_t *zsb;
1105 struct inode *root_inode;
1106 uint64_t recordsize;
1107 int error;
1108
1109 error = zfs_sb_create(osname, &zsb);
1110 if (error)
1111 return (error);
1112
1113 if ((error = dsl_prop_get_integer(osname, "recordsize",
1114 &recordsize, NULL)))
1115 goto out;
1116
1117 zsb->z_sb = sb;
1118 sb->s_fs_info = zsb;
1119 sb->s_magic = ZFS_SUPER_MAGIC;
1120 sb->s_maxbytes = MAX_LFS_FILESIZE;
1121 sb->s_time_gran = 1;
1122 sb->s_blocksize = recordsize;
1123 sb->s_blocksize_bits = ilog2(recordsize);
1124
1125 #ifdef HAVE_BDI
1126 /*
1127 * 2.6.32 API change,
1128 * Added backing_device_info (BDI) per super block interfaces. A BDI
1129 * must be configured when using a non-device backed filesystem for
1130 * proper writeback. This is not required for older pdflush kernels.
1131 *
1132 * NOTE: Linux read-ahead is disabled in favor of zfs read-ahead.
1133 */
1134 zsb->z_bdi.ra_pages = 0;
1135 sb->s_bdi = &zsb->z_bdi;
1136
1137 error = -bdi_setup_and_register(&zsb->z_bdi, "zfs", BDI_CAP_MAP_COPY);
1138 if (error)
1139 goto out;
1140 #endif /* HAVE_BDI */
1141
1142 /* Set callback operations for the file system. */
1143 sb->s_op = &zpl_super_operations;
1144 sb->s_xattr = zpl_xattr_handlers;
1145 sb->s_export_op = &zpl_export_operations;
1146
1147 /* Set features for file system. */
1148 zfs_set_fuid_feature(zsb);
1149
1150 if (dmu_objset_is_snapshot(zsb->z_os)) {
1151 uint64_t pval;
1152
1153 atime_changed_cb(zsb, B_FALSE);
1154 readonly_changed_cb(zsb, B_TRUE);
1155 if ((error = dsl_prop_get_integer(osname,"xattr",&pval,NULL)))
1156 goto out;
1157 xattr_changed_cb(zsb, pval);
1158 zsb->z_issnap = B_TRUE;
1159 zsb->z_os->os_sync = ZFS_SYNC_DISABLED;
1160
1161 mutex_enter(&zsb->z_os->os_user_ptr_lock);
1162 dmu_objset_set_user(zsb->z_os, zsb);
1163 mutex_exit(&zsb->z_os->os_user_ptr_lock);
1164 } else {
1165 error = zfs_sb_setup(zsb, B_TRUE);
1166 #ifdef HAVE_SNAPSHOT
1167 (void) zfs_snap_create(zsb);
1168 #endif /* HAVE_SNAPSHOT */
1169 }
1170
1171 /* Allocate a root inode for the filesystem. */
1172 error = zfs_root(zsb, &root_inode);
1173 if (error) {
1174 (void) zfs_umount(sb);
1175 goto out;
1176 }
1177
1178 /* Allocate a root dentry for the filesystem */
1179 sb->s_root = d_alloc_root(root_inode);
1180 if (sb->s_root == NULL) {
1181 (void) zfs_umount(sb);
1182 error = ENOMEM;
1183 goto out;
1184 }
1185 out:
1186 if (error) {
1187 dmu_objset_disown(zsb->z_os, zsb);
1188 zfs_sb_free(zsb);
1189 }
1190
1191 return (error);
1192 }
1193 EXPORT_SYMBOL(zfs_domount);
1194
1195 /*ARGSUSED*/
1196 int
1197 zfs_umount(struct super_block *sb)
1198 {
1199 zfs_sb_t *zsb = sb->s_fs_info;
1200 objset_t *os;
1201
1202 VERIFY(zfs_sb_teardown(zsb, B_TRUE) == 0);
1203 os = zsb->z_os;
1204
1205 #ifdef HAVE_BDI
1206 bdi_destroy(sb->s_bdi);
1207 #endif /* HAVE_BDI */
1208
1209 /*
1210 * z_os will be NULL if there was an error in
1211 * attempting to reopen zsb.
1212 */
1213 if (os != NULL) {
1214 /*
1215 * Unset the objset user_ptr.
1216 */
1217 mutex_enter(&os->os_user_ptr_lock);
1218 dmu_objset_set_user(os, NULL);
1219 mutex_exit(&os->os_user_ptr_lock);
1220
1221 /*
1222 * Finally release the objset
1223 */
1224 dmu_objset_disown(os, zsb);
1225 }
1226
1227 zfs_sb_free(zsb);
1228 return (0);
1229 }
1230 EXPORT_SYMBOL(zfs_umount);
1231
1232 int
1233 zfs_remount(struct super_block *sb, int *flags, char *data)
1234 {
1235 /*
1236 * All namespace flags (MNT_*) and super block flags (MS_*) will
1237 * be handled by the Linux VFS. Only handle custom options here.
1238 */
1239 return (0);
1240 }
1241 EXPORT_SYMBOL(zfs_remount);
1242
1243 int
1244 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1245 {
1246 zfs_sb_t *zsb = sb->s_fs_info;
1247 znode_t *zp;
1248 uint64_t object = 0;
1249 uint64_t fid_gen = 0;
1250 uint64_t gen_mask;
1251 uint64_t zp_gen;
1252 int i, err;
1253
1254 *ipp = NULL;
1255
1256 ZFS_ENTER(zsb);
1257
1258 if (fidp->fid_len == LONG_FID_LEN) {
1259 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1260 uint64_t objsetid = 0;
1261 uint64_t setgen = 0;
1262
1263 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1264 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1265
1266 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1267 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1268
1269 ZFS_EXIT(zsb);
1270
1271 #ifdef HAVE_SNAPSHOT
1272 err = zfsctl_lookup_objset(vfsp, objsetid, &zsb);
1273 if (err)
1274 return (EINVAL);
1275 #endif /* HAVE_SNAPSHOT */
1276 ZFS_ENTER(zsb);
1277 }
1278
1279 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1280 zfid_short_t *zfid = (zfid_short_t *)fidp;
1281
1282 for (i = 0; i < sizeof (zfid->zf_object); i++)
1283 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1284
1285 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1286 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1287 } else {
1288 ZFS_EXIT(zsb);
1289 return (EINVAL);
1290 }
1291
1292 #ifdef HAVE_SNAPSHOT
1293 /* A zero fid_gen means we are in the .zfs control directories */
1294 if (fid_gen == 0 &&
1295 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1296 *ipp = zsb->z_ctldir;
1297 ASSERT(*ipp != NULL);
1298 if (object == ZFSCTL_INO_SNAPDIR) {
1299 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp, NULL,
1300 0, NULL, NULL, NULL, NULL, NULL) == 0);
1301 } else {
1302 igrab(*ipp);
1303 }
1304 ZFS_EXIT(zsb);
1305 return (0);
1306 }
1307 #endif /* HAVE_SNAPSHOT */
1308
1309 gen_mask = -1ULL >> (64 - 8 * i);
1310
1311 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1312 if ((err = zfs_zget(zsb, object, &zp))) {
1313 ZFS_EXIT(zsb);
1314 return (err);
1315 }
1316 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb), &zp_gen,
1317 sizeof (uint64_t));
1318 zp_gen = zp_gen & gen_mask;
1319 if (zp_gen == 0)
1320 zp_gen = 1;
1321 if (zp->z_unlinked || zp_gen != fid_gen) {
1322 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1323 iput(ZTOI(zp));
1324 ZFS_EXIT(zsb);
1325 return (EINVAL);
1326 }
1327
1328 *ipp = ZTOI(zp);
1329 if (*ipp)
1330 zfs_inode_update(ITOZ(*ipp));
1331
1332 ZFS_EXIT(zsb);
1333 return (0);
1334 }
1335 EXPORT_SYMBOL(zfs_vget);
1336
1337 /*
1338 * Block out VOPs and close zfs_sb_t::z_os
1339 *
1340 * Note, if successful, then we return with the 'z_teardown_lock' and
1341 * 'z_teardown_inactive_lock' write held.
1342 */
1343 int
1344 zfs_suspend_fs(zfs_sb_t *zsb)
1345 {
1346 int error;
1347
1348 if ((error = zfs_sb_teardown(zsb, B_FALSE)) != 0)
1349 return (error);
1350 dmu_objset_disown(zsb->z_os, zsb);
1351
1352 return (0);
1353 }
1354 EXPORT_SYMBOL(zfs_suspend_fs);
1355
1356 /*
1357 * Reopen zfs_sb_t::z_os and release VOPs.
1358 */
1359 int
1360 zfs_resume_fs(zfs_sb_t *zsb, const char *osname)
1361 {
1362 int err, err2;
1363
1364 ASSERT(RRW_WRITE_HELD(&zsb->z_teardown_lock));
1365 ASSERT(RW_WRITE_HELD(&zsb->z_teardown_inactive_lock));
1366
1367 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zsb, &zsb->z_os);
1368 if (err) {
1369 zsb->z_os = NULL;
1370 } else {
1371 znode_t *zp;
1372 uint64_t sa_obj = 0;
1373
1374 err2 = zap_lookup(zsb->z_os, MASTER_NODE_OBJ,
1375 ZFS_SA_ATTRS, 8, 1, &sa_obj);
1376
1377 if ((err || err2) && zsb->z_version >= ZPL_VERSION_SA)
1378 goto bail;
1379
1380
1381 if ((err = sa_setup(zsb->z_os, sa_obj,
1382 zfs_attr_table, ZPL_END, &zsb->z_attr_table)) != 0)
1383 goto bail;
1384
1385 VERIFY(zfs_sb_setup(zsb, B_FALSE) == 0);
1386
1387 /*
1388 * Attempt to re-establish all the active znodes with
1389 * their dbufs. If a zfs_rezget() fails, then we'll let
1390 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
1391 * when they try to use their znode.
1392 */
1393 mutex_enter(&zsb->z_znodes_lock);
1394 for (zp = list_head(&zsb->z_all_znodes); zp;
1395 zp = list_next(&zsb->z_all_znodes, zp)) {
1396 (void) zfs_rezget(zp);
1397 }
1398 mutex_exit(&zsb->z_znodes_lock);
1399
1400 }
1401
1402 bail:
1403 /* release the VOPs */
1404 rw_exit(&zsb->z_teardown_inactive_lock);
1405 rrw_exit(&zsb->z_teardown_lock, FTAG);
1406
1407 if (err) {
1408 /*
1409 * Since we couldn't reopen zfs_sb_t::z_os, force
1410 * unmount this file system.
1411 */
1412 (void) zfs_umount(zsb->z_sb);
1413 }
1414 return (err);
1415 }
1416 EXPORT_SYMBOL(zfs_resume_fs);
1417
1418 int
1419 zfs_set_version(zfs_sb_t *zsb, uint64_t newvers)
1420 {
1421 int error;
1422 objset_t *os = zsb->z_os;
1423 dmu_tx_t *tx;
1424
1425 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1426 return (EINVAL);
1427
1428 if (newvers < zsb->z_version)
1429 return (EINVAL);
1430
1431 if (zfs_spa_version_map(newvers) >
1432 spa_version(dmu_objset_spa(zsb->z_os)))
1433 return (ENOTSUP);
1434
1435 tx = dmu_tx_create(os);
1436 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
1437 if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
1438 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
1439 ZFS_SA_ATTRS);
1440 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1441 }
1442 error = dmu_tx_assign(tx, TXG_WAIT);
1443 if (error) {
1444 dmu_tx_abort(tx);
1445 return (error);
1446 }
1447
1448 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1449 8, 1, &newvers, tx);
1450
1451 if (error) {
1452 dmu_tx_commit(tx);
1453 return (error);
1454 }
1455
1456 if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
1457 uint64_t sa_obj;
1458
1459 ASSERT3U(spa_version(dmu_objset_spa(zsb->z_os)), >=,
1460 SPA_VERSION_SA);
1461 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1462 DMU_OT_NONE, 0, tx);
1463
1464 error = zap_add(os, MASTER_NODE_OBJ,
1465 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1466 ASSERT3U(error, ==, 0);
1467
1468 VERIFY(0 == sa_set_sa_object(os, sa_obj));
1469 sa_register_update_callback(os, zfs_sa_upgrade);
1470 }
1471
1472 spa_history_log_internal(LOG_DS_UPGRADE,
1473 dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
1474 zsb->z_version, newvers, dmu_objset_id(os));
1475
1476 dmu_tx_commit(tx);
1477
1478 zsb->z_version = newvers;
1479
1480 if (zsb->z_version >= ZPL_VERSION_FUID)
1481 zfs_set_fuid_feature(zsb);
1482
1483 return (0);
1484 }
1485 EXPORT_SYMBOL(zfs_set_version);
1486
1487 /*
1488 * Read a property stored within the master node.
1489 */
1490 int
1491 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
1492 {
1493 const char *pname;
1494 int error = ENOENT;
1495
1496 /*
1497 * Look up the file system's value for the property. For the
1498 * version property, we look up a slightly different string.
1499 */
1500 if (prop == ZFS_PROP_VERSION)
1501 pname = ZPL_VERSION_STR;
1502 else
1503 pname = zfs_prop_to_name(prop);
1504
1505 if (os != NULL)
1506 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
1507
1508 if (error == ENOENT) {
1509 /* No value set, use the default value */
1510 switch (prop) {
1511 case ZFS_PROP_VERSION:
1512 *value = ZPL_VERSION;
1513 break;
1514 case ZFS_PROP_NORMALIZE:
1515 case ZFS_PROP_UTF8ONLY:
1516 *value = 0;
1517 break;
1518 case ZFS_PROP_CASE:
1519 *value = ZFS_CASE_SENSITIVE;
1520 break;
1521 default:
1522 return (error);
1523 }
1524 error = 0;
1525 }
1526 return (error);
1527 }
1528 EXPORT_SYMBOL(zfs_get_zplprop);
1529
1530 void
1531 zfs_init(void)
1532 {
1533 zfs_znode_init();
1534 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
1535 register_filesystem(&zpl_fs_type);
1536 }
1537
1538 void
1539 zfs_fini(void)
1540 {
1541 unregister_filesystem(&zpl_fs_type);
1542 zfs_znode_fini();
1543 }