]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/zfs_vnops.c
aa43c065f083d4a8f684c7bb9afe4c4f637eff02
[mirror_zfs-debian.git] / module / zfs / zfs_vnops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /* Portions Copyright 2007 Jeremy Teo */
26 /* Portions Copyright 2010 Robert Milkowski */
27
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/vnode.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/kmem.h>
40 #include <sys/taskq.h>
41 #include <sys/uio.h>
42 #include <sys/vmsystm.h>
43 #include <sys/atomic.h>
44 #include <sys/vm.h>
45 #include <vm/seg_vn.h>
46 #include <vm/pvn.h>
47 #include <vm/as.h>
48 #include <vm/kpm.h>
49 #include <vm/seg_kpm.h>
50 #include <sys/mman.h>
51 #include <sys/pathname.h>
52 #include <sys/cmn_err.h>
53 #include <sys/errno.h>
54 #include <sys/unistd.h>
55 #include <sys/zfs_dir.h>
56 #include <sys/zfs_acl.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/dmu.h>
60 #include <sys/dmu_objset.h>
61 #include <sys/spa.h>
62 #include <sys/txg.h>
63 #include <sys/dbuf.h>
64 #include <sys/zap.h>
65 #include <sys/sa.h>
66 #include <sys/dirent.h>
67 #include <sys/policy.h>
68 #include <sys/sunddi.h>
69 #include <sys/filio.h>
70 #include <sys/sid.h>
71 #include "fs/fs_subr.h"
72 #include <sys/zfs_ctldir.h>
73 #include <sys/zfs_fuid.h>
74 #include <sys/zfs_sa.h>
75 #include <sys/dnlc.h>
76 #include <sys/zfs_rlock.h>
77 #include <sys/extdirent.h>
78 #include <sys/kidmap.h>
79 #include <sys/cred.h>
80 #include <sys/attr.h>
81
82 /*
83 * Programming rules.
84 *
85 * Each vnode op performs some logical unit of work. To do this, the ZPL must
86 * properly lock its in-core state, create a DMU transaction, do the work,
87 * record this work in the intent log (ZIL), commit the DMU transaction,
88 * and wait for the intent log to commit if it is a synchronous operation.
89 * Moreover, the vnode ops must work in both normal and log replay context.
90 * The ordering of events is important to avoid deadlocks and references
91 * to freed memory. The example below illustrates the following Big Rules:
92 *
93 * (1) A check must be made in each zfs thread for a mounted file system.
94 * This is done avoiding races using ZFS_ENTER(zfsvfs).
95 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
96 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
97 * can return EIO from the calling function.
98 *
99 * (2) VN_RELE() should always be the last thing except for zil_commit()
100 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
101 * First, if it's the last reference, the vnode/znode
102 * can be freed, so the zp may point to freed memory. Second, the last
103 * reference will call zfs_zinactive(), which may induce a lot of work --
104 * pushing cached pages (which acquires range locks) and syncing out
105 * cached atime changes. Third, zfs_zinactive() may require a new tx,
106 * which could deadlock the system if you were already holding one.
107 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
108 *
109 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
110 * as they can span dmu_tx_assign() calls.
111 *
112 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
113 * This is critical because we don't want to block while holding locks.
114 * Note, in particular, that if a lock is sometimes acquired before
115 * the tx assigns, and sometimes after (e.g. z_lock), then failing to
116 * use a non-blocking assign can deadlock the system. The scenario:
117 *
118 * Thread A has grabbed a lock before calling dmu_tx_assign().
119 * Thread B is in an already-assigned tx, and blocks for this lock.
120 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
121 * forever, because the previous txg can't quiesce until B's tx commits.
122 *
123 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
124 * then drop all locks, call dmu_tx_wait(), and try again.
125 *
126 * (5) If the operation succeeded, generate the intent log entry for it
127 * before dropping locks. This ensures that the ordering of events
128 * in the intent log matches the order in which they actually occurred.
129 * During ZIL replay the zfs_log_* functions will update the sequence
130 * number to indicate the zil transaction has replayed.
131 *
132 * (6) At the end of each vnode op, the DMU tx must always commit,
133 * regardless of whether there were any errors.
134 *
135 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid)
136 * to ensure that synchronous semantics are provided when necessary.
137 *
138 * In general, this is how things should be ordered in each vnode op:
139 *
140 * ZFS_ENTER(zfsvfs); // exit if unmounted
141 * top:
142 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
143 * rw_enter(...); // grab any other locks you need
144 * tx = dmu_tx_create(...); // get DMU tx
145 * dmu_tx_hold_*(); // hold each object you might modify
146 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign
147 * if (error) {
148 * rw_exit(...); // drop locks
149 * zfs_dirent_unlock(dl); // unlock directory entry
150 * VN_RELE(...); // release held vnodes
151 * if (error == ERESTART) {
152 * dmu_tx_wait(tx);
153 * dmu_tx_abort(tx);
154 * goto top;
155 * }
156 * dmu_tx_abort(tx); // abort DMU tx
157 * ZFS_EXIT(zfsvfs); // finished in zfs
158 * return (error); // really out of space
159 * }
160 * error = do_real_work(); // do whatever this VOP does
161 * if (error == 0)
162 * zfs_log_*(...); // on success, make ZIL entry
163 * dmu_tx_commit(tx); // commit DMU tx -- error or not
164 * rw_exit(...); // drop locks
165 * zfs_dirent_unlock(dl); // unlock directory entry
166 * VN_RELE(...); // release held vnodes
167 * zil_commit(zilog, seq, foid); // synchronous when necessary
168 * ZFS_EXIT(zfsvfs); // finished in zfs
169 * return (error); // done, report error
170 */
171
172 /* ARGSUSED */
173 static int
174 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
175 {
176 znode_t *zp = VTOZ(*vpp);
177 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
178
179 ZFS_ENTER(zfsvfs);
180 ZFS_VERIFY_ZP(zp);
181
182 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
183 ((flag & FAPPEND) == 0)) {
184 ZFS_EXIT(zfsvfs);
185 return (EPERM);
186 }
187
188 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
189 ZTOV(zp)->v_type == VREG &&
190 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
191 if (fs_vscan(*vpp, cr, 0) != 0) {
192 ZFS_EXIT(zfsvfs);
193 return (EACCES);
194 }
195 }
196
197 /* Keep a count of the synchronous opens in the znode */
198 if (flag & (FSYNC | FDSYNC))
199 atomic_inc_32(&zp->z_sync_cnt);
200
201 ZFS_EXIT(zfsvfs);
202 return (0);
203 }
204
205 /* ARGSUSED */
206 static int
207 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
208 caller_context_t *ct)
209 {
210 znode_t *zp = VTOZ(vp);
211 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
212
213 /*
214 * Clean up any locks held by this process on the vp.
215 */
216 cleanlocks(vp, ddi_get_pid(), 0);
217 cleanshares(vp, ddi_get_pid());
218
219 ZFS_ENTER(zfsvfs);
220 ZFS_VERIFY_ZP(zp);
221
222 /* Decrement the synchronous opens in the znode */
223 if ((flag & (FSYNC | FDSYNC)) && (count == 1))
224 atomic_dec_32(&zp->z_sync_cnt);
225
226 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
227 ZTOV(zp)->v_type == VREG &&
228 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
229 VERIFY(fs_vscan(vp, cr, 1) == 0);
230
231 ZFS_EXIT(zfsvfs);
232 return (0);
233 }
234
235 /*
236 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
237 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
238 */
239 static int
240 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
241 {
242 znode_t *zp = VTOZ(vp);
243 uint64_t noff = (uint64_t)*off; /* new offset */
244 uint64_t file_sz;
245 int error;
246 boolean_t hole;
247
248 file_sz = zp->z_size;
249 if (noff >= file_sz) {
250 return (ENXIO);
251 }
252
253 if (cmd == _FIO_SEEK_HOLE)
254 hole = B_TRUE;
255 else
256 hole = B_FALSE;
257
258 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
259
260 /* end of file? */
261 if ((error == ESRCH) || (noff > file_sz)) {
262 /*
263 * Handle the virtual hole at the end of file.
264 */
265 if (hole) {
266 *off = file_sz;
267 return (0);
268 }
269 return (ENXIO);
270 }
271
272 if (noff < *off)
273 return (error);
274 *off = noff;
275 return (error);
276 }
277
278 /* ARGSUSED */
279 static int
280 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
281 int *rvalp, caller_context_t *ct)
282 {
283 offset_t off;
284 int error;
285 zfsvfs_t *zfsvfs;
286 znode_t *zp;
287
288 switch (com) {
289 case _FIOFFS:
290 return (zfs_sync(vp->v_vfsp, 0, cred));
291
292 /*
293 * The following two ioctls are used by bfu. Faking out,
294 * necessary to avoid bfu errors.
295 */
296 case _FIOGDIO:
297 case _FIOSDIO:
298 return (0);
299
300 case _FIO_SEEK_DATA:
301 case _FIO_SEEK_HOLE:
302 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
303 return (EFAULT);
304
305 zp = VTOZ(vp);
306 zfsvfs = zp->z_zfsvfs;
307 ZFS_ENTER(zfsvfs);
308 ZFS_VERIFY_ZP(zp);
309
310 /* offset parameter is in/out */
311 error = zfs_holey(vp, com, &off);
312 ZFS_EXIT(zfsvfs);
313 if (error)
314 return (error);
315 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
316 return (EFAULT);
317 return (0);
318 }
319 return (ENOTTY);
320 }
321
322 /*
323 * Utility functions to map and unmap a single physical page. These
324 * are used to manage the mappable copies of ZFS file data, and therefore
325 * do not update ref/mod bits.
326 */
327 caddr_t
328 zfs_map_page(page_t *pp, enum seg_rw rw)
329 {
330 if (kpm_enable)
331 return (hat_kpm_mapin(pp, 0));
332 ASSERT(rw == S_READ || rw == S_WRITE);
333 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
334 (caddr_t)-1));
335 }
336
337 void
338 zfs_unmap_page(page_t *pp, caddr_t addr)
339 {
340 if (kpm_enable) {
341 hat_kpm_mapout(pp, 0, addr);
342 } else {
343 ppmapout(addr);
344 }
345 }
346
347 /*
348 * When a file is memory mapped, we must keep the IO data synchronized
349 * between the DMU cache and the memory mapped pages. What this means:
350 *
351 * On Write: If we find a memory mapped page, we write to *both*
352 * the page and the dmu buffer.
353 */
354 static void
355 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
356 {
357 int64_t off;
358
359 off = start & PAGEOFFSET;
360 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
361 page_t *pp;
362 uint64_t nbytes = MIN(PAGESIZE - off, len);
363
364 if (pp = page_lookup(vp, start, SE_SHARED)) {
365 caddr_t va;
366
367 va = zfs_map_page(pp, S_WRITE);
368 (void) dmu_read(os, oid, start+off, nbytes, va+off,
369 DMU_READ_PREFETCH);
370 zfs_unmap_page(pp, va);
371 page_unlock(pp);
372 }
373 len -= nbytes;
374 off = 0;
375 }
376 }
377
378 /*
379 * When a file is memory mapped, we must keep the IO data synchronized
380 * between the DMU cache and the memory mapped pages. What this means:
381 *
382 * On Read: We "read" preferentially from memory mapped pages,
383 * else we default from the dmu buffer.
384 *
385 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
386 * the file is memory mapped.
387 */
388 static int
389 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
390 {
391 znode_t *zp = VTOZ(vp);
392 objset_t *os = zp->z_zfsvfs->z_os;
393 int64_t start, off;
394 int len = nbytes;
395 int error = 0;
396
397 start = uio->uio_loffset;
398 off = start & PAGEOFFSET;
399 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
400 page_t *pp;
401 uint64_t bytes = MIN(PAGESIZE - off, len);
402
403 if (pp = page_lookup(vp, start, SE_SHARED)) {
404 caddr_t va;
405
406 va = zfs_map_page(pp, S_READ);
407 error = uiomove(va + off, bytes, UIO_READ, uio);
408 zfs_unmap_page(pp, va);
409 page_unlock(pp);
410 } else {
411 error = dmu_read_uio(os, zp->z_id, uio, bytes);
412 }
413 len -= bytes;
414 off = 0;
415 if (error)
416 break;
417 }
418 return (error);
419 }
420
421 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
422
423 /*
424 * Read bytes from specified file into supplied buffer.
425 *
426 * IN: vp - vnode of file to be read from.
427 * uio - structure supplying read location, range info,
428 * and return buffer.
429 * ioflag - SYNC flags; used to provide FRSYNC semantics.
430 * cr - credentials of caller.
431 * ct - caller context
432 *
433 * OUT: uio - updated offset and range, buffer filled.
434 *
435 * RETURN: 0 if success
436 * error code if failure
437 *
438 * Side Effects:
439 * vp - atime updated if byte count > 0
440 */
441 /* ARGSUSED */
442 static int
443 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
444 {
445 znode_t *zp = VTOZ(vp);
446 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
447 objset_t *os;
448 ssize_t n, nbytes;
449 int error;
450 rl_t *rl;
451 xuio_t *xuio = NULL;
452
453 ZFS_ENTER(zfsvfs);
454 ZFS_VERIFY_ZP(zp);
455 os = zfsvfs->z_os;
456
457 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
458 ZFS_EXIT(zfsvfs);
459 return (EACCES);
460 }
461
462 /*
463 * Validate file offset
464 */
465 if (uio->uio_loffset < (offset_t)0) {
466 ZFS_EXIT(zfsvfs);
467 return (EINVAL);
468 }
469
470 /*
471 * Fasttrack empty reads
472 */
473 if (uio->uio_resid == 0) {
474 ZFS_EXIT(zfsvfs);
475 return (0);
476 }
477
478 /*
479 * Check for mandatory locks
480 */
481 if (MANDMODE(zp->z_mode)) {
482 if (error = chklock(vp, FREAD,
483 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
484 ZFS_EXIT(zfsvfs);
485 return (error);
486 }
487 }
488
489 /*
490 * If we're in FRSYNC mode, sync out this znode before reading it.
491 */
492 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
493 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
494
495 /*
496 * Lock the range against changes.
497 */
498 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
499
500 /*
501 * If we are reading past end-of-file we can skip
502 * to the end; but we might still need to set atime.
503 */
504 if (uio->uio_loffset >= zp->z_size) {
505 error = 0;
506 goto out;
507 }
508
509 ASSERT(uio->uio_loffset < zp->z_size);
510 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
511
512 if ((uio->uio_extflg == UIO_XUIO) &&
513 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
514 int nblk;
515 int blksz = zp->z_blksz;
516 uint64_t offset = uio->uio_loffset;
517
518 xuio = (xuio_t *)uio;
519 if ((ISP2(blksz))) {
520 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
521 blksz)) / blksz;
522 } else {
523 ASSERT(offset + n <= blksz);
524 nblk = 1;
525 }
526 (void) dmu_xuio_init(xuio, nblk);
527
528 if (vn_has_cached_data(vp)) {
529 /*
530 * For simplicity, we always allocate a full buffer
531 * even if we only expect to read a portion of a block.
532 */
533 while (--nblk >= 0) {
534 (void) dmu_xuio_add(xuio,
535 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
536 blksz), 0, blksz);
537 }
538 }
539 }
540
541 while (n > 0) {
542 nbytes = MIN(n, zfs_read_chunk_size -
543 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
544
545 if (vn_has_cached_data(vp))
546 error = mappedread(vp, nbytes, uio);
547 else
548 error = dmu_read_uio(os, zp->z_id, uio, nbytes);
549 if (error) {
550 /* convert checksum errors into IO errors */
551 if (error == ECKSUM)
552 error = EIO;
553 break;
554 }
555
556 n -= nbytes;
557 }
558 out:
559 zfs_range_unlock(rl);
560
561 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
562 ZFS_EXIT(zfsvfs);
563 return (error);
564 }
565
566 /*
567 * Write the bytes to a file.
568 *
569 * IN: vp - vnode of file to be written to.
570 * uio - structure supplying write location, range info,
571 * and data buffer.
572 * ioflag - FAPPEND flag set if in append mode.
573 * cr - credentials of caller.
574 * ct - caller context (NFS/CIFS fem monitor only)
575 *
576 * OUT: uio - updated offset and range.
577 *
578 * RETURN: 0 if success
579 * error code if failure
580 *
581 * Timestamps:
582 * vp - ctime|mtime updated if byte count > 0
583 */
584
585 /* ARGSUSED */
586 static int
587 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
588 {
589 znode_t *zp = VTOZ(vp);
590 rlim64_t limit = uio->uio_llimit;
591 ssize_t start_resid = uio->uio_resid;
592 ssize_t tx_bytes;
593 uint64_t end_size;
594 dmu_tx_t *tx;
595 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
596 zilog_t *zilog;
597 offset_t woff;
598 ssize_t n, nbytes;
599 rl_t *rl;
600 int max_blksz = zfsvfs->z_max_blksz;
601 int error;
602 arc_buf_t *abuf;
603 iovec_t *aiov;
604 xuio_t *xuio = NULL;
605 int i_iov = 0;
606 int iovcnt = uio->uio_iovcnt;
607 iovec_t *iovp = uio->uio_iov;
608 int write_eof;
609 int count = 0;
610 sa_bulk_attr_t bulk[4];
611 uint64_t mtime[2], ctime[2];
612
613 /*
614 * Fasttrack empty write
615 */
616 n = start_resid;
617 if (n == 0)
618 return (0);
619
620 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
621 limit = MAXOFFSET_T;
622
623 ZFS_ENTER(zfsvfs);
624 ZFS_VERIFY_ZP(zp);
625
626 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
627 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
628 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
629 &zp->z_size, 8);
630 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
631 &zp->z_pflags, 8);
632
633 /*
634 * If immutable or not appending then return EPERM
635 */
636 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
637 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
638 (uio->uio_loffset < zp->z_size))) {
639 ZFS_EXIT(zfsvfs);
640 return (EPERM);
641 }
642
643 zilog = zfsvfs->z_log;
644
645 /*
646 * Validate file offset
647 */
648 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
649 if (woff < 0) {
650 ZFS_EXIT(zfsvfs);
651 return (EINVAL);
652 }
653
654 /*
655 * Check for mandatory locks before calling zfs_range_lock()
656 * in order to prevent a deadlock with locks set via fcntl().
657 */
658 if (MANDMODE((mode_t)zp->z_mode) &&
659 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
660 ZFS_EXIT(zfsvfs);
661 return (error);
662 }
663
664 /*
665 * Pre-fault the pages to ensure slow (eg NFS) pages
666 * don't hold up txg.
667 * Skip this if uio contains loaned arc_buf.
668 */
669 if ((uio->uio_extflg == UIO_XUIO) &&
670 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
671 xuio = (xuio_t *)uio;
672 else
673 uio_prefaultpages(n, uio);
674
675 /*
676 * If in append mode, set the io offset pointer to eof.
677 */
678 if (ioflag & FAPPEND) {
679 /*
680 * Obtain an appending range lock to guarantee file append
681 * semantics. We reset the write offset once we have the lock.
682 */
683 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
684 woff = rl->r_off;
685 if (rl->r_len == UINT64_MAX) {
686 /*
687 * We overlocked the file because this write will cause
688 * the file block size to increase.
689 * Note that zp_size cannot change with this lock held.
690 */
691 woff = zp->z_size;
692 }
693 uio->uio_loffset = woff;
694 } else {
695 /*
696 * Note that if the file block size will change as a result of
697 * this write, then this range lock will lock the entire file
698 * so that we can re-write the block safely.
699 */
700 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
701 }
702
703 if (woff >= limit) {
704 zfs_range_unlock(rl);
705 ZFS_EXIT(zfsvfs);
706 return (EFBIG);
707 }
708
709 if ((woff + n) > limit || woff > (limit - n))
710 n = limit - woff;
711
712 /* Will this write extend the file length? */
713 write_eof = (woff + n > zp->z_size);
714
715 end_size = MAX(zp->z_size, woff + n);
716
717 /*
718 * Write the file in reasonable size chunks. Each chunk is written
719 * in a separate transaction; this keeps the intent log records small
720 * and allows us to do more fine-grained space accounting.
721 */
722 while (n > 0) {
723 abuf = NULL;
724 woff = uio->uio_loffset;
725 again:
726 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
727 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
728 if (abuf != NULL)
729 dmu_return_arcbuf(abuf);
730 error = EDQUOT;
731 break;
732 }
733
734 if (xuio && abuf == NULL) {
735 ASSERT(i_iov < iovcnt);
736 aiov = &iovp[i_iov];
737 abuf = dmu_xuio_arcbuf(xuio, i_iov);
738 dmu_xuio_clear(xuio, i_iov);
739 DTRACE_PROBE3(zfs_cp_write, int, i_iov,
740 iovec_t *, aiov, arc_buf_t *, abuf);
741 ASSERT((aiov->iov_base == abuf->b_data) ||
742 ((char *)aiov->iov_base - (char *)abuf->b_data +
743 aiov->iov_len == arc_buf_size(abuf)));
744 i_iov++;
745 } else if (abuf == NULL && n >= max_blksz &&
746 woff >= zp->z_size &&
747 P2PHASE(woff, max_blksz) == 0 &&
748 zp->z_blksz == max_blksz) {
749 /*
750 * This write covers a full block. "Borrow" a buffer
751 * from the dmu so that we can fill it before we enter
752 * a transaction. This avoids the possibility of
753 * holding up the transaction if the data copy hangs
754 * up on a pagefault (e.g., from an NFS server mapping).
755 */
756 size_t cbytes;
757
758 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
759 max_blksz);
760 ASSERT(abuf != NULL);
761 ASSERT(arc_buf_size(abuf) == max_blksz);
762 if (error = uiocopy(abuf->b_data, max_blksz,
763 UIO_WRITE, uio, &cbytes)) {
764 dmu_return_arcbuf(abuf);
765 break;
766 }
767 ASSERT(cbytes == max_blksz);
768 }
769
770 /*
771 * Start a transaction.
772 */
773 tx = dmu_tx_create(zfsvfs->z_os);
774 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
775 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
776 zfs_sa_upgrade_txholds(tx, zp);
777 error = dmu_tx_assign(tx, TXG_NOWAIT);
778 if (error) {
779 if (error == ERESTART) {
780 dmu_tx_wait(tx);
781 dmu_tx_abort(tx);
782 goto again;
783 }
784 dmu_tx_abort(tx);
785 if (abuf != NULL)
786 dmu_return_arcbuf(abuf);
787 break;
788 }
789
790 /*
791 * If zfs_range_lock() over-locked we grow the blocksize
792 * and then reduce the lock range. This will only happen
793 * on the first iteration since zfs_range_reduce() will
794 * shrink down r_len to the appropriate size.
795 */
796 if (rl->r_len == UINT64_MAX) {
797 uint64_t new_blksz;
798
799 if (zp->z_blksz > max_blksz) {
800 ASSERT(!ISP2(zp->z_blksz));
801 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
802 } else {
803 new_blksz = MIN(end_size, max_blksz);
804 }
805 zfs_grow_blocksize(zp, new_blksz, tx);
806 zfs_range_reduce(rl, woff, n);
807 }
808
809 /*
810 * XXX - should we really limit each write to z_max_blksz?
811 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
812 */
813 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
814
815 if (abuf == NULL) {
816 tx_bytes = uio->uio_resid;
817 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
818 uio, nbytes, tx);
819 tx_bytes -= uio->uio_resid;
820 } else {
821 tx_bytes = nbytes;
822 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
823 /*
824 * If this is not a full block write, but we are
825 * extending the file past EOF and this data starts
826 * block-aligned, use assign_arcbuf(). Otherwise,
827 * write via dmu_write().
828 */
829 if (tx_bytes < max_blksz && (!write_eof ||
830 aiov->iov_base != abuf->b_data)) {
831 ASSERT(xuio);
832 dmu_write(zfsvfs->z_os, zp->z_id, woff,
833 aiov->iov_len, aiov->iov_base, tx);
834 dmu_return_arcbuf(abuf);
835 xuio_stat_wbuf_copied();
836 } else {
837 ASSERT(xuio || tx_bytes == max_blksz);
838 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
839 woff, abuf, tx);
840 }
841 ASSERT(tx_bytes <= uio->uio_resid);
842 uioskip(uio, tx_bytes);
843 }
844 if (tx_bytes && vn_has_cached_data(vp)) {
845 update_pages(vp, woff,
846 tx_bytes, zfsvfs->z_os, zp->z_id);
847 }
848
849 /*
850 * If we made no progress, we're done. If we made even
851 * partial progress, update the znode and ZIL accordingly.
852 */
853 if (tx_bytes == 0) {
854 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
855 (void *)&zp->z_size, sizeof (uint64_t), tx);
856 dmu_tx_commit(tx);
857 ASSERT(error != 0);
858 break;
859 }
860
861 /*
862 * Clear Set-UID/Set-GID bits on successful write if not
863 * privileged and at least one of the excute bits is set.
864 *
865 * It would be nice to to this after all writes have
866 * been done, but that would still expose the ISUID/ISGID
867 * to another app after the partial write is committed.
868 *
869 */
870 mutex_enter(&zp->z_acl_lock);
871 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
872 (S_IXUSR >> 6))) != 0 &&
873 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
874 secpolicy_vnode_setid_retain(cr,
875 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
876 uint64_t newmode;
877 zp->z_mode &= ~(S_ISUID | S_ISGID);
878 newmode = zp->z_mode;
879 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
880 (void *)&newmode, sizeof (uint64_t), tx);
881 }
882 mutex_exit(&zp->z_acl_lock);
883
884 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
885 B_TRUE);
886
887 /*
888 * Update the file size (zp_size) if it has changed;
889 * account for possible concurrent updates.
890 */
891 while ((end_size = zp->z_size) < uio->uio_loffset) {
892 (void) atomic_cas_64(&zp->z_size, end_size,
893 uio->uio_loffset);
894 ASSERT(error == 0);
895 }
896 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
897
898 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
899 dmu_tx_commit(tx);
900
901 if (error != 0)
902 break;
903 ASSERT(tx_bytes == nbytes);
904 n -= nbytes;
905 }
906
907 zfs_range_unlock(rl);
908
909 /*
910 * If we're in replay mode, or we made no progress, return error.
911 * Otherwise, it's at least a partial write, so it's successful.
912 */
913 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
914 ZFS_EXIT(zfsvfs);
915 return (error);
916 }
917
918 if (ioflag & (FSYNC | FDSYNC) ||
919 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
920 zil_commit(zilog, zp->z_last_itx, zp->z_id);
921
922 ZFS_EXIT(zfsvfs);
923 return (0);
924 }
925
926 void
927 zfs_get_done(zgd_t *zgd, int error)
928 {
929 znode_t *zp = zgd->zgd_private;
930 objset_t *os = zp->z_zfsvfs->z_os;
931
932 if (zgd->zgd_db)
933 dmu_buf_rele(zgd->zgd_db, zgd);
934
935 zfs_range_unlock(zgd->zgd_rl);
936
937 /*
938 * Release the vnode asynchronously as we currently have the
939 * txg stopped from syncing.
940 */
941 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
942
943 if (error == 0 && zgd->zgd_bp)
944 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
945
946 kmem_free(zgd, sizeof (zgd_t));
947 }
948
949 #ifdef DEBUG
950 static int zil_fault_io = 0;
951 #endif
952
953 /*
954 * Get data to generate a TX_WRITE intent log record.
955 */
956 int
957 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
958 {
959 zfsvfs_t *zfsvfs = arg;
960 objset_t *os = zfsvfs->z_os;
961 znode_t *zp;
962 uint64_t object = lr->lr_foid;
963 uint64_t offset = lr->lr_offset;
964 uint64_t size = lr->lr_length;
965 blkptr_t *bp = &lr->lr_blkptr;
966 dmu_buf_t *db;
967 zgd_t *zgd;
968 int error = 0;
969
970 ASSERT(zio != NULL);
971 ASSERT(size != 0);
972
973 /*
974 * Nothing to do if the file has been removed
975 */
976 if (zfs_zget(zfsvfs, object, &zp) != 0)
977 return (ENOENT);
978 if (zp->z_unlinked) {
979 /*
980 * Release the vnode asynchronously as we currently have the
981 * txg stopped from syncing.
982 */
983 VN_RELE_ASYNC(ZTOV(zp),
984 dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
985 return (ENOENT);
986 }
987
988 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
989 zgd->zgd_zilog = zfsvfs->z_log;
990 zgd->zgd_private = zp;
991
992 /*
993 * Write records come in two flavors: immediate and indirect.
994 * For small writes it's cheaper to store the data with the
995 * log record (immediate); for large writes it's cheaper to
996 * sync the data and get a pointer to it (indirect) so that
997 * we don't have to write the data twice.
998 */
999 if (buf != NULL) { /* immediate write */
1000 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1001 /* test for truncation needs to be done while range locked */
1002 if (offset >= zp->z_size) {
1003 error = ENOENT;
1004 } else {
1005 error = dmu_read(os, object, offset, size, buf,
1006 DMU_READ_NO_PREFETCH);
1007 }
1008 ASSERT(error == 0 || error == ENOENT);
1009 } else { /* indirect write */
1010 /*
1011 * Have to lock the whole block to ensure when it's
1012 * written out and it's checksum is being calculated
1013 * that no one can change the data. We need to re-check
1014 * blocksize after we get the lock in case it's changed!
1015 */
1016 for (;;) {
1017 uint64_t blkoff;
1018 size = zp->z_blksz;
1019 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1020 offset -= blkoff;
1021 zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1022 RL_READER);
1023 if (zp->z_blksz == size)
1024 break;
1025 offset += blkoff;
1026 zfs_range_unlock(zgd->zgd_rl);
1027 }
1028 /* test for truncation needs to be done while range locked */
1029 if (lr->lr_offset >= zp->z_size)
1030 error = ENOENT;
1031 #ifdef DEBUG
1032 if (zil_fault_io) {
1033 error = EIO;
1034 zil_fault_io = 0;
1035 }
1036 #endif
1037 if (error == 0)
1038 error = dmu_buf_hold(os, object, offset, zgd, &db,
1039 DMU_READ_NO_PREFETCH);
1040
1041 if (error == 0) {
1042 zgd->zgd_db = db;
1043 zgd->zgd_bp = bp;
1044
1045 ASSERT(db->db_offset == offset);
1046 ASSERT(db->db_size == size);
1047
1048 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1049 zfs_get_done, zgd);
1050 ASSERT(error || lr->lr_length <= zp->z_blksz);
1051
1052 /*
1053 * On success, we need to wait for the write I/O
1054 * initiated by dmu_sync() to complete before we can
1055 * release this dbuf. We will finish everything up
1056 * in the zfs_get_done() callback.
1057 */
1058 if (error == 0)
1059 return (0);
1060
1061 if (error == EALREADY) {
1062 lr->lr_common.lrc_txtype = TX_WRITE2;
1063 error = 0;
1064 }
1065 }
1066 }
1067
1068 zfs_get_done(zgd, error);
1069
1070 return (error);
1071 }
1072
1073 /*ARGSUSED*/
1074 static int
1075 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1076 caller_context_t *ct)
1077 {
1078 znode_t *zp = VTOZ(vp);
1079 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1080 int error;
1081
1082 ZFS_ENTER(zfsvfs);
1083 ZFS_VERIFY_ZP(zp);
1084
1085 if (flag & V_ACE_MASK)
1086 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1087 else
1088 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1089
1090 ZFS_EXIT(zfsvfs);
1091 return (error);
1092 }
1093
1094 /*
1095 * If vnode is for a device return a specfs vnode instead.
1096 */
1097 static int
1098 specvp_check(vnode_t **vpp, cred_t *cr)
1099 {
1100 int error = 0;
1101
1102 if (IS_DEVVP(*vpp)) {
1103 struct vnode *svp;
1104
1105 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1106 VN_RELE(*vpp);
1107 if (svp == NULL)
1108 error = ENOSYS;
1109 *vpp = svp;
1110 }
1111 return (error);
1112 }
1113
1114
1115 /*
1116 * Lookup an entry in a directory, or an extended attribute directory.
1117 * If it exists, return a held vnode reference for it.
1118 *
1119 * IN: dvp - vnode of directory to search.
1120 * nm - name of entry to lookup.
1121 * pnp - full pathname to lookup [UNUSED].
1122 * flags - LOOKUP_XATTR set if looking for an attribute.
1123 * rdir - root directory vnode [UNUSED].
1124 * cr - credentials of caller.
1125 * ct - caller context
1126 * direntflags - directory lookup flags
1127 * realpnp - returned pathname.
1128 *
1129 * OUT: vpp - vnode of located entry, NULL if not found.
1130 *
1131 * RETURN: 0 if success
1132 * error code if failure
1133 *
1134 * Timestamps:
1135 * NA
1136 */
1137 /* ARGSUSED */
1138 static int
1139 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1140 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1141 int *direntflags, pathname_t *realpnp)
1142 {
1143 znode_t *zdp = VTOZ(dvp);
1144 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1145 int error = 0;
1146
1147 /* fast path */
1148 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1149
1150 if (dvp->v_type != VDIR) {
1151 return (ENOTDIR);
1152 } else if (zdp->z_sa_hdl == NULL) {
1153 return (EIO);
1154 }
1155
1156 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1157 error = zfs_fastaccesschk_execute(zdp, cr);
1158 if (!error) {
1159 *vpp = dvp;
1160 VN_HOLD(*vpp);
1161 return (0);
1162 }
1163 return (error);
1164 } else {
1165 vnode_t *tvp = dnlc_lookup(dvp, nm);
1166
1167 if (tvp) {
1168 error = zfs_fastaccesschk_execute(zdp, cr);
1169 if (error) {
1170 VN_RELE(tvp);
1171 return (error);
1172 }
1173 if (tvp == DNLC_NO_VNODE) {
1174 VN_RELE(tvp);
1175 return (ENOENT);
1176 } else {
1177 *vpp = tvp;
1178 return (specvp_check(vpp, cr));
1179 }
1180 }
1181 }
1182 }
1183
1184 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1185
1186 ZFS_ENTER(zfsvfs);
1187 ZFS_VERIFY_ZP(zdp);
1188
1189 *vpp = NULL;
1190
1191 if (flags & LOOKUP_XATTR) {
1192 /*
1193 * If the xattr property is off, refuse the lookup request.
1194 */
1195 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1196 ZFS_EXIT(zfsvfs);
1197 return (EINVAL);
1198 }
1199
1200 /*
1201 * We don't allow recursive attributes..
1202 * Maybe someday we will.
1203 */
1204 if (zdp->z_pflags & ZFS_XATTR) {
1205 ZFS_EXIT(zfsvfs);
1206 return (EINVAL);
1207 }
1208
1209 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1210 ZFS_EXIT(zfsvfs);
1211 return (error);
1212 }
1213
1214 /*
1215 * Do we have permission to get into attribute directory?
1216 */
1217
1218 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1219 B_FALSE, cr)) {
1220 VN_RELE(*vpp);
1221 *vpp = NULL;
1222 }
1223
1224 ZFS_EXIT(zfsvfs);
1225 return (error);
1226 }
1227
1228 if (dvp->v_type != VDIR) {
1229 ZFS_EXIT(zfsvfs);
1230 return (ENOTDIR);
1231 }
1232
1233 /*
1234 * Check accessibility of directory.
1235 */
1236
1237 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1238 ZFS_EXIT(zfsvfs);
1239 return (error);
1240 }
1241
1242 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1243 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1244 ZFS_EXIT(zfsvfs);
1245 return (EILSEQ);
1246 }
1247
1248 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1249 if (error == 0)
1250 error = specvp_check(vpp, cr);
1251
1252 ZFS_EXIT(zfsvfs);
1253 return (error);
1254 }
1255
1256 /*
1257 * Attempt to create a new entry in a directory. If the entry
1258 * already exists, truncate the file if permissible, else return
1259 * an error. Return the vp of the created or trunc'd file.
1260 *
1261 * IN: dvp - vnode of directory to put new file entry in.
1262 * name - name of new file entry.
1263 * vap - attributes of new file.
1264 * excl - flag indicating exclusive or non-exclusive mode.
1265 * mode - mode to open file with.
1266 * cr - credentials of caller.
1267 * flag - large file flag [UNUSED].
1268 * ct - caller context
1269 * vsecp - ACL to be set
1270 *
1271 * OUT: vpp - vnode of created or trunc'd entry.
1272 *
1273 * RETURN: 0 if success
1274 * error code if failure
1275 *
1276 * Timestamps:
1277 * dvp - ctime|mtime updated if new entry created
1278 * vp - ctime|mtime always, atime if new
1279 */
1280
1281 /* ARGSUSED */
1282 static int
1283 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1284 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1285 vsecattr_t *vsecp)
1286 {
1287 znode_t *zp, *dzp = VTOZ(dvp);
1288 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1289 zilog_t *zilog;
1290 objset_t *os;
1291 zfs_dirlock_t *dl;
1292 dmu_tx_t *tx;
1293 int error;
1294 ksid_t *ksid;
1295 uid_t uid;
1296 gid_t gid = crgetgid(cr);
1297 zfs_acl_ids_t acl_ids;
1298 boolean_t fuid_dirtied;
1299 boolean_t have_acl = B_FALSE;
1300
1301 /*
1302 * If we have an ephemeral id, ACL, or XVATTR then
1303 * make sure file system is at proper version
1304 */
1305
1306 ksid = crgetsid(cr, KSID_OWNER);
1307 if (ksid)
1308 uid = ksid_getid(ksid);
1309 else
1310 uid = crgetuid(cr);
1311
1312 if (zfsvfs->z_use_fuids == B_FALSE &&
1313 (vsecp || (vap->va_mask & AT_XVATTR) ||
1314 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1315 return (EINVAL);
1316
1317 ZFS_ENTER(zfsvfs);
1318 ZFS_VERIFY_ZP(dzp);
1319 os = zfsvfs->z_os;
1320 zilog = zfsvfs->z_log;
1321
1322 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1323 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1324 ZFS_EXIT(zfsvfs);
1325 return (EILSEQ);
1326 }
1327
1328 if (vap->va_mask & AT_XVATTR) {
1329 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1330 crgetuid(cr), cr, vap->va_type)) != 0) {
1331 ZFS_EXIT(zfsvfs);
1332 return (error);
1333 }
1334 }
1335 top:
1336 *vpp = NULL;
1337
1338 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1339 vap->va_mode &= ~VSVTX;
1340
1341 if (*name == '\0') {
1342 /*
1343 * Null component name refers to the directory itself.
1344 */
1345 VN_HOLD(dvp);
1346 zp = dzp;
1347 dl = NULL;
1348 error = 0;
1349 } else {
1350 /* possible VN_HOLD(zp) */
1351 int zflg = 0;
1352
1353 if (flag & FIGNORECASE)
1354 zflg |= ZCILOOK;
1355
1356 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1357 NULL, NULL);
1358 if (error) {
1359 if (strcmp(name, "..") == 0)
1360 error = EISDIR;
1361 ZFS_EXIT(zfsvfs);
1362 return (error);
1363 }
1364 }
1365
1366 if (zp == NULL) {
1367 uint64_t txtype;
1368
1369 /*
1370 * Create a new file object and update the directory
1371 * to reference it.
1372 */
1373 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1374 goto out;
1375 }
1376
1377 /*
1378 * We only support the creation of regular files in
1379 * extended attribute directories.
1380 */
1381
1382 if ((dzp->z_pflags & ZFS_XATTR) &&
1383 (vap->va_type != VREG)) {
1384 error = EINVAL;
1385 goto out;
1386 }
1387
1388 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1389 cr, vsecp, &acl_ids)) != 0)
1390 goto out;
1391 have_acl = B_TRUE;
1392
1393 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1394 zfs_acl_ids_free(&acl_ids);
1395 error = EDQUOT;
1396 goto out;
1397 }
1398
1399 tx = dmu_tx_create(os);
1400
1401 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1402 ZFS_SA_BASE_ATTR_SIZE);
1403
1404 fuid_dirtied = zfsvfs->z_fuid_dirty;
1405 if (fuid_dirtied)
1406 zfs_fuid_txhold(zfsvfs, tx);
1407 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1408 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1409 if (!zfsvfs->z_use_sa &&
1410 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1411 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1412 0, acl_ids.z_aclp->z_acl_bytes);
1413 }
1414 error = dmu_tx_assign(tx, TXG_NOWAIT);
1415 if (error) {
1416 zfs_dirent_unlock(dl);
1417 if (error == ERESTART) {
1418 dmu_tx_wait(tx);
1419 dmu_tx_abort(tx);
1420 goto top;
1421 }
1422 zfs_acl_ids_free(&acl_ids);
1423 dmu_tx_abort(tx);
1424 ZFS_EXIT(zfsvfs);
1425 return (error);
1426 }
1427 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1428
1429 if (fuid_dirtied)
1430 zfs_fuid_sync(zfsvfs, tx);
1431
1432 (void) zfs_link_create(dl, zp, tx, ZNEW);
1433 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1434 if (flag & FIGNORECASE)
1435 txtype |= TX_CI;
1436 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1437 vsecp, acl_ids.z_fuidp, vap);
1438 zfs_acl_ids_free(&acl_ids);
1439 dmu_tx_commit(tx);
1440 } else {
1441 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1442
1443 /*
1444 * A directory entry already exists for this name.
1445 */
1446 /*
1447 * Can't truncate an existing file if in exclusive mode.
1448 */
1449 if (excl == EXCL) {
1450 error = EEXIST;
1451 goto out;
1452 }
1453 /*
1454 * Can't open a directory for writing.
1455 */
1456 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1457 error = EISDIR;
1458 goto out;
1459 }
1460 /*
1461 * Verify requested access to file.
1462 */
1463 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1464 goto out;
1465 }
1466
1467 mutex_enter(&dzp->z_lock);
1468 dzp->z_seq++;
1469 mutex_exit(&dzp->z_lock);
1470
1471 /*
1472 * Truncate regular files if requested.
1473 */
1474 if ((ZTOV(zp)->v_type == VREG) &&
1475 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1476 /* we can't hold any locks when calling zfs_freesp() */
1477 zfs_dirent_unlock(dl);
1478 dl = NULL;
1479 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1480 if (error == 0) {
1481 vnevent_create(ZTOV(zp), ct);
1482 }
1483 }
1484 }
1485 out:
1486
1487 if (dl)
1488 zfs_dirent_unlock(dl);
1489
1490 if (error) {
1491 if (zp)
1492 VN_RELE(ZTOV(zp));
1493 } else {
1494 *vpp = ZTOV(zp);
1495 error = specvp_check(vpp, cr);
1496 }
1497
1498 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1499 zil_commit(zilog, UINT64_MAX, 0);
1500
1501 ZFS_EXIT(zfsvfs);
1502 return (error);
1503 }
1504
1505 /*
1506 * Remove an entry from a directory.
1507 *
1508 * IN: dvp - vnode of directory to remove entry from.
1509 * name - name of entry to remove.
1510 * cr - credentials of caller.
1511 * ct - caller context
1512 * flags - case flags
1513 *
1514 * RETURN: 0 if success
1515 * error code if failure
1516 *
1517 * Timestamps:
1518 * dvp - ctime|mtime
1519 * vp - ctime (if nlink > 0)
1520 */
1521
1522 uint64_t null_xattr = 0;
1523
1524 /*ARGSUSED*/
1525 static int
1526 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1527 int flags)
1528 {
1529 znode_t *zp, *dzp = VTOZ(dvp);
1530 znode_t *xzp = NULL;
1531 vnode_t *vp;
1532 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1533 zilog_t *zilog;
1534 uint64_t acl_obj, xattr_obj = 0;
1535 uint64_t xattr_obj_unlinked = 0;
1536 zfs_dirlock_t *dl;
1537 dmu_tx_t *tx;
1538 boolean_t may_delete_now, delete_now = FALSE;
1539 boolean_t unlinked, toobig = FALSE;
1540 uint64_t txtype;
1541 pathname_t *realnmp = NULL;
1542 pathname_t realnm;
1543 int error;
1544 int zflg = ZEXISTS;
1545
1546 ZFS_ENTER(zfsvfs);
1547 ZFS_VERIFY_ZP(dzp);
1548 zilog = zfsvfs->z_log;
1549
1550 if (flags & FIGNORECASE) {
1551 zflg |= ZCILOOK;
1552 pn_alloc(&realnm);
1553 realnmp = &realnm;
1554 }
1555
1556 top:
1557 /*
1558 * Attempt to lock directory; fail if entry doesn't exist.
1559 */
1560 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1561 NULL, realnmp)) {
1562 if (realnmp)
1563 pn_free(realnmp);
1564 ZFS_EXIT(zfsvfs);
1565 return (error);
1566 }
1567
1568 vp = ZTOV(zp);
1569
1570 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1571 goto out;
1572 }
1573
1574 /*
1575 * Need to use rmdir for removing directories.
1576 */
1577 if (vp->v_type == VDIR) {
1578 error = EPERM;
1579 goto out;
1580 }
1581
1582 vnevent_remove(vp, dvp, name, ct);
1583
1584 if (realnmp)
1585 dnlc_remove(dvp, realnmp->pn_buf);
1586 else
1587 dnlc_remove(dvp, name);
1588
1589 mutex_enter(&vp->v_lock);
1590 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1591 mutex_exit(&vp->v_lock);
1592
1593 /*
1594 * We may delete the znode now, or we may put it in the unlinked set;
1595 * it depends on whether we're the last link, and on whether there are
1596 * other holds on the vnode. So we dmu_tx_hold() the right things to
1597 * allow for either case.
1598 */
1599 tx = dmu_tx_create(zfsvfs->z_os);
1600 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1601 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1602 zfs_sa_upgrade_txholds(tx, zp);
1603 zfs_sa_upgrade_txholds(tx, dzp);
1604 if (may_delete_now) {
1605 toobig =
1606 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1607 /* if the file is too big, only hold_free a token amount */
1608 dmu_tx_hold_free(tx, zp->z_id, 0,
1609 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1610 }
1611
1612 /* are there any extended attributes? */
1613 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1614 &xattr_obj, sizeof (xattr_obj));
1615 if (xattr_obj) {
1616 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1617 ASSERT3U(error, ==, 0);
1618 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1619 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1620 }
1621
1622 /* are there any additional acls */
1623 if ((acl_obj = ZFS_EXTERNAL_ACL(zp)) != 0 && may_delete_now)
1624 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1625
1626 /* charge as an update -- would be nice not to charge at all */
1627 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1628
1629 error = dmu_tx_assign(tx, TXG_NOWAIT);
1630 if (error) {
1631 zfs_dirent_unlock(dl);
1632 VN_RELE(vp);
1633 if (error == ERESTART) {
1634 dmu_tx_wait(tx);
1635 dmu_tx_abort(tx);
1636 goto top;
1637 }
1638 if (realnmp)
1639 pn_free(realnmp);
1640 dmu_tx_abort(tx);
1641 ZFS_EXIT(zfsvfs);
1642 return (error);
1643 }
1644
1645 /*
1646 * Remove the directory entry.
1647 */
1648 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1649
1650 if (error) {
1651 dmu_tx_commit(tx);
1652 goto out;
1653 }
1654
1655 if (unlinked) {
1656
1657 mutex_enter(&vp->v_lock);
1658
1659 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1660 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1661 delete_now = may_delete_now && !toobig &&
1662 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1663 xattr_obj == xattr_obj_unlinked && ZFS_EXTERNAL_ACL(zp) ==
1664 acl_obj;
1665 mutex_exit(&vp->v_lock);
1666 }
1667
1668 if (delete_now) {
1669 if (xattr_obj_unlinked) {
1670 ASSERT3U(xzp->z_links, ==, 2);
1671 mutex_enter(&xzp->z_lock);
1672 xzp->z_unlinked = 1;
1673 xzp->z_links = 0;
1674 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1675 &xzp->z_links, sizeof (xzp->z_links), tx);
1676 ASSERT3U(error, ==, 0);
1677 mutex_exit(&xzp->z_lock);
1678 zfs_unlinked_add(xzp, tx);
1679 if (zp->z_is_sa)
1680 error = sa_remove(zp->z_sa_hdl,
1681 SA_ZPL_XATTR(zfsvfs), tx);
1682 else
1683 error = sa_update(zp->z_sa_hdl,
1684 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1685 sizeof (uint64_t), tx);
1686 ASSERT3U(error, ==, 0);
1687 }
1688 mutex_enter(&zp->z_lock);
1689 mutex_enter(&vp->v_lock);
1690 vp->v_count--;
1691 ASSERT3U(vp->v_count, ==, 0);
1692 mutex_exit(&vp->v_lock);
1693 mutex_exit(&zp->z_lock);
1694 zfs_znode_delete(zp, tx);
1695 } else if (unlinked) {
1696 zfs_unlinked_add(zp, tx);
1697 }
1698
1699 txtype = TX_REMOVE;
1700 if (flags & FIGNORECASE)
1701 txtype |= TX_CI;
1702 zfs_log_remove(zilog, tx, txtype, dzp, name);
1703
1704 dmu_tx_commit(tx);
1705 out:
1706 if (realnmp)
1707 pn_free(realnmp);
1708
1709 zfs_dirent_unlock(dl);
1710
1711 if (!delete_now)
1712 VN_RELE(vp);
1713 if (xzp)
1714 VN_RELE(ZTOV(xzp));
1715
1716 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1717 zil_commit(zilog, UINT64_MAX, 0);
1718
1719 ZFS_EXIT(zfsvfs);
1720 return (error);
1721 }
1722
1723 /*
1724 * Create a new directory and insert it into dvp using the name
1725 * provided. Return a pointer to the inserted directory.
1726 *
1727 * IN: dvp - vnode of directory to add subdir to.
1728 * dirname - name of new directory.
1729 * vap - attributes of new directory.
1730 * cr - credentials of caller.
1731 * ct - caller context
1732 * vsecp - ACL to be set
1733 *
1734 * OUT: vpp - vnode of created directory.
1735 *
1736 * RETURN: 0 if success
1737 * error code if failure
1738 *
1739 * Timestamps:
1740 * dvp - ctime|mtime updated
1741 * vp - ctime|mtime|atime updated
1742 */
1743 /*ARGSUSED*/
1744 static int
1745 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1746 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1747 {
1748 znode_t *zp, *dzp = VTOZ(dvp);
1749 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1750 zilog_t *zilog;
1751 zfs_dirlock_t *dl;
1752 uint64_t txtype;
1753 dmu_tx_t *tx;
1754 int error;
1755 int zf = ZNEW;
1756 ksid_t *ksid;
1757 uid_t uid;
1758 gid_t gid = crgetgid(cr);
1759 zfs_acl_ids_t acl_ids;
1760 boolean_t fuid_dirtied;
1761
1762 ASSERT(vap->va_type == VDIR);
1763
1764 /*
1765 * If we have an ephemeral id, ACL, or XVATTR then
1766 * make sure file system is at proper version
1767 */
1768
1769 ksid = crgetsid(cr, KSID_OWNER);
1770 if (ksid)
1771 uid = ksid_getid(ksid);
1772 else
1773 uid = crgetuid(cr);
1774 if (zfsvfs->z_use_fuids == B_FALSE &&
1775 (vsecp || (vap->va_mask & AT_XVATTR) ||
1776 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1777 return (EINVAL);
1778
1779 ZFS_ENTER(zfsvfs);
1780 ZFS_VERIFY_ZP(dzp);
1781 zilog = zfsvfs->z_log;
1782
1783 if (dzp->z_pflags & ZFS_XATTR) {
1784 ZFS_EXIT(zfsvfs);
1785 return (EINVAL);
1786 }
1787
1788 if (zfsvfs->z_utf8 && u8_validate(dirname,
1789 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1790 ZFS_EXIT(zfsvfs);
1791 return (EILSEQ);
1792 }
1793 if (flags & FIGNORECASE)
1794 zf |= ZCILOOK;
1795
1796 if (vap->va_mask & AT_XVATTR) {
1797 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1798 crgetuid(cr), cr, vap->va_type)) != 0) {
1799 ZFS_EXIT(zfsvfs);
1800 return (error);
1801 }
1802 }
1803
1804 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1805 vsecp, &acl_ids)) != 0) {
1806 ZFS_EXIT(zfsvfs);
1807 return (error);
1808 }
1809 /*
1810 * First make sure the new directory doesn't exist.
1811 *
1812 * Existence is checked first to make sure we don't return
1813 * EACCES instead of EEXIST which can cause some applications
1814 * to fail.
1815 */
1816 top:
1817 *vpp = NULL;
1818
1819 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1820 NULL, NULL)) {
1821 zfs_acl_ids_free(&acl_ids);
1822 ZFS_EXIT(zfsvfs);
1823 return (error);
1824 }
1825
1826 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1827 zfs_acl_ids_free(&acl_ids);
1828 zfs_dirent_unlock(dl);
1829 ZFS_EXIT(zfsvfs);
1830 return (error);
1831 }
1832
1833 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1834 zfs_acl_ids_free(&acl_ids);
1835 zfs_dirent_unlock(dl);
1836 ZFS_EXIT(zfsvfs);
1837 return (EDQUOT);
1838 }
1839
1840 /*
1841 * Add a new entry to the directory.
1842 */
1843 tx = dmu_tx_create(zfsvfs->z_os);
1844 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1845 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1846 fuid_dirtied = zfsvfs->z_fuid_dirty;
1847 if (fuid_dirtied)
1848 zfs_fuid_txhold(zfsvfs, tx);
1849 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1850 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1851 acl_ids.z_aclp->z_acl_bytes);
1852 }
1853
1854 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1855 ZFS_SA_BASE_ATTR_SIZE);
1856
1857 error = dmu_tx_assign(tx, TXG_NOWAIT);
1858 if (error) {
1859 zfs_dirent_unlock(dl);
1860 if (error == ERESTART) {
1861 dmu_tx_wait(tx);
1862 dmu_tx_abort(tx);
1863 goto top;
1864 }
1865 zfs_acl_ids_free(&acl_ids);
1866 dmu_tx_abort(tx);
1867 ZFS_EXIT(zfsvfs);
1868 return (error);
1869 }
1870
1871 /*
1872 * Create new node.
1873 */
1874 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1875
1876 if (fuid_dirtied)
1877 zfs_fuid_sync(zfsvfs, tx);
1878
1879 /*
1880 * Now put new name in parent dir.
1881 */
1882 (void) zfs_link_create(dl, zp, tx, ZNEW);
1883
1884 *vpp = ZTOV(zp);
1885
1886 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1887 if (flags & FIGNORECASE)
1888 txtype |= TX_CI;
1889 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1890 acl_ids.z_fuidp, vap);
1891
1892 zfs_acl_ids_free(&acl_ids);
1893
1894 dmu_tx_commit(tx);
1895
1896 zfs_dirent_unlock(dl);
1897
1898 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1899 zil_commit(zilog, UINT64_MAX, 0);
1900
1901 ZFS_EXIT(zfsvfs);
1902 return (0);
1903 }
1904
1905 /*
1906 * Remove a directory subdir entry. If the current working
1907 * directory is the same as the subdir to be removed, the
1908 * remove will fail.
1909 *
1910 * IN: dvp - vnode of directory to remove from.
1911 * name - name of directory to be removed.
1912 * cwd - vnode of current working directory.
1913 * cr - credentials of caller.
1914 * ct - caller context
1915 * flags - case flags
1916 *
1917 * RETURN: 0 if success
1918 * error code if failure
1919 *
1920 * Timestamps:
1921 * dvp - ctime|mtime updated
1922 */
1923 /*ARGSUSED*/
1924 static int
1925 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1926 caller_context_t *ct, int flags)
1927 {
1928 znode_t *dzp = VTOZ(dvp);
1929 znode_t *zp;
1930 vnode_t *vp;
1931 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1932 zilog_t *zilog;
1933 zfs_dirlock_t *dl;
1934 dmu_tx_t *tx;
1935 int error;
1936 int zflg = ZEXISTS;
1937
1938 ZFS_ENTER(zfsvfs);
1939 ZFS_VERIFY_ZP(dzp);
1940 zilog = zfsvfs->z_log;
1941
1942 if (flags & FIGNORECASE)
1943 zflg |= ZCILOOK;
1944 top:
1945 zp = NULL;
1946
1947 /*
1948 * Attempt to lock directory; fail if entry doesn't exist.
1949 */
1950 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1951 NULL, NULL)) {
1952 ZFS_EXIT(zfsvfs);
1953 return (error);
1954 }
1955
1956 vp = ZTOV(zp);
1957
1958 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1959 goto out;
1960 }
1961
1962 if (vp->v_type != VDIR) {
1963 error = ENOTDIR;
1964 goto out;
1965 }
1966
1967 if (vp == cwd) {
1968 error = EINVAL;
1969 goto out;
1970 }
1971
1972 vnevent_rmdir(vp, dvp, name, ct);
1973
1974 /*
1975 * Grab a lock on the directory to make sure that noone is
1976 * trying to add (or lookup) entries while we are removing it.
1977 */
1978 rw_enter(&zp->z_name_lock, RW_WRITER);
1979
1980 /*
1981 * Grab a lock on the parent pointer to make sure we play well
1982 * with the treewalk and directory rename code.
1983 */
1984 rw_enter(&zp->z_parent_lock, RW_WRITER);
1985
1986 tx = dmu_tx_create(zfsvfs->z_os);
1987 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1988 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1989 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1990 zfs_sa_upgrade_txholds(tx, zp);
1991 zfs_sa_upgrade_txholds(tx, dzp);
1992 error = dmu_tx_assign(tx, TXG_NOWAIT);
1993 if (error) {
1994 rw_exit(&zp->z_parent_lock);
1995 rw_exit(&zp->z_name_lock);
1996 zfs_dirent_unlock(dl);
1997 VN_RELE(vp);
1998 if (error == ERESTART) {
1999 dmu_tx_wait(tx);
2000 dmu_tx_abort(tx);
2001 goto top;
2002 }
2003 dmu_tx_abort(tx);
2004 ZFS_EXIT(zfsvfs);
2005 return (error);
2006 }
2007
2008 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2009
2010 if (error == 0) {
2011 uint64_t txtype = TX_RMDIR;
2012 if (flags & FIGNORECASE)
2013 txtype |= TX_CI;
2014 zfs_log_remove(zilog, tx, txtype, dzp, name);
2015 }
2016
2017 dmu_tx_commit(tx);
2018
2019 rw_exit(&zp->z_parent_lock);
2020 rw_exit(&zp->z_name_lock);
2021 out:
2022 zfs_dirent_unlock(dl);
2023
2024 VN_RELE(vp);
2025
2026 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2027 zil_commit(zilog, UINT64_MAX, 0);
2028
2029 ZFS_EXIT(zfsvfs);
2030 return (error);
2031 }
2032
2033 /*
2034 * Read as many directory entries as will fit into the provided
2035 * buffer from the given directory cursor position (specified in
2036 * the uio structure.
2037 *
2038 * IN: vp - vnode of directory to read.
2039 * uio - structure supplying read location, range info,
2040 * and return buffer.
2041 * cr - credentials of caller.
2042 * ct - caller context
2043 * flags - case flags
2044 *
2045 * OUT: uio - updated offset and range, buffer filled.
2046 * eofp - set to true if end-of-file detected.
2047 *
2048 * RETURN: 0 if success
2049 * error code if failure
2050 *
2051 * Timestamps:
2052 * vp - atime updated
2053 *
2054 * Note that the low 4 bits of the cookie returned by zap is always zero.
2055 * This allows us to use the low range for "special" directory entries:
2056 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2057 * we use the offset 2 for the '.zfs' directory.
2058 */
2059 /* ARGSUSED */
2060 static int
2061 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2062 caller_context_t *ct, int flags)
2063 {
2064 znode_t *zp = VTOZ(vp);
2065 iovec_t *iovp;
2066 edirent_t *eodp;
2067 dirent64_t *odp;
2068 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2069 objset_t *os;
2070 caddr_t outbuf;
2071 size_t bufsize;
2072 zap_cursor_t zc;
2073 zap_attribute_t zap;
2074 uint_t bytes_wanted;
2075 uint64_t offset; /* must be unsigned; checks for < 1 */
2076 uint64_t parent;
2077 int local_eof;
2078 int outcount;
2079 int error;
2080 uint8_t prefetch;
2081 boolean_t check_sysattrs;
2082
2083 ZFS_ENTER(zfsvfs);
2084 ZFS_VERIFY_ZP(zp);
2085
2086 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2087 &parent, sizeof (parent))) != 0) {
2088 ZFS_EXIT(zfsvfs);
2089 return (error);
2090 }
2091
2092 /*
2093 * If we are not given an eof variable,
2094 * use a local one.
2095 */
2096 if (eofp == NULL)
2097 eofp = &local_eof;
2098
2099 /*
2100 * Check for valid iov_len.
2101 */
2102 if (uio->uio_iov->iov_len <= 0) {
2103 ZFS_EXIT(zfsvfs);
2104 return (EINVAL);
2105 }
2106
2107 /*
2108 * Quit if directory has been removed (posix)
2109 */
2110 if ((*eofp = zp->z_unlinked) != 0) {
2111 ZFS_EXIT(zfsvfs);
2112 return (0);
2113 }
2114
2115 error = 0;
2116 os = zfsvfs->z_os;
2117 offset = uio->uio_loffset;
2118 prefetch = zp->z_zn_prefetch;
2119
2120 /*
2121 * Initialize the iterator cursor.
2122 */
2123 if (offset <= 3) {
2124 /*
2125 * Start iteration from the beginning of the directory.
2126 */
2127 zap_cursor_init(&zc, os, zp->z_id);
2128 } else {
2129 /*
2130 * The offset is a serialized cursor.
2131 */
2132 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2133 }
2134
2135 /*
2136 * Get space to change directory entries into fs independent format.
2137 */
2138 iovp = uio->uio_iov;
2139 bytes_wanted = iovp->iov_len;
2140 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2141 bufsize = bytes_wanted;
2142 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2143 odp = (struct dirent64 *)outbuf;
2144 } else {
2145 bufsize = bytes_wanted;
2146 odp = (struct dirent64 *)iovp->iov_base;
2147 }
2148 eodp = (struct edirent *)odp;
2149
2150 /*
2151 * If this VFS supports the system attribute view interface; and
2152 * we're looking at an extended attribute directory; and we care
2153 * about normalization conflicts on this vfs; then we must check
2154 * for normalization conflicts with the sysattr name space.
2155 */
2156 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2157 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2158 (flags & V_RDDIR_ENTFLAGS);
2159
2160 /*
2161 * Transform to file-system independent format
2162 */
2163 outcount = 0;
2164 while (outcount < bytes_wanted) {
2165 ino64_t objnum;
2166 ushort_t reclen;
2167 off64_t *next;
2168
2169 /*
2170 * Special case `.', `..', and `.zfs'.
2171 */
2172 if (offset == 0) {
2173 (void) strcpy(zap.za_name, ".");
2174 zap.za_normalization_conflict = 0;
2175 objnum = zp->z_id;
2176 } else if (offset == 1) {
2177 (void) strcpy(zap.za_name, "..");
2178 zap.za_normalization_conflict = 0;
2179 objnum = parent;
2180 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2181 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2182 zap.za_normalization_conflict = 0;
2183 objnum = ZFSCTL_INO_ROOT;
2184 } else {
2185 /*
2186 * Grab next entry.
2187 */
2188 if (error = zap_cursor_retrieve(&zc, &zap)) {
2189 if ((*eofp = (error == ENOENT)) != 0)
2190 break;
2191 else
2192 goto update;
2193 }
2194
2195 if (zap.za_integer_length != 8 ||
2196 zap.za_num_integers != 1) {
2197 cmn_err(CE_WARN, "zap_readdir: bad directory "
2198 "entry, obj = %lld, offset = %lld\n",
2199 (u_longlong_t)zp->z_id,
2200 (u_longlong_t)offset);
2201 error = ENXIO;
2202 goto update;
2203 }
2204
2205 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2206 /*
2207 * MacOS X can extract the object type here such as:
2208 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2209 */
2210
2211 if (check_sysattrs && !zap.za_normalization_conflict) {
2212 zap.za_normalization_conflict =
2213 xattr_sysattr_casechk(zap.za_name);
2214 }
2215 }
2216
2217 if (flags & V_RDDIR_ACCFILTER) {
2218 /*
2219 * If we have no access at all, don't include
2220 * this entry in the returned information
2221 */
2222 znode_t *ezp;
2223 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2224 goto skip_entry;
2225 if (!zfs_has_access(ezp, cr)) {
2226 VN_RELE(ZTOV(ezp));
2227 goto skip_entry;
2228 }
2229 VN_RELE(ZTOV(ezp));
2230 }
2231
2232 if (flags & V_RDDIR_ENTFLAGS)
2233 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2234 else
2235 reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2236
2237 /*
2238 * Will this entry fit in the buffer?
2239 */
2240 if (outcount + reclen > bufsize) {
2241 /*
2242 * Did we manage to fit anything in the buffer?
2243 */
2244 if (!outcount) {
2245 error = EINVAL;
2246 goto update;
2247 }
2248 break;
2249 }
2250 if (flags & V_RDDIR_ENTFLAGS) {
2251 /*
2252 * Add extended flag entry:
2253 */
2254 eodp->ed_ino = objnum;
2255 eodp->ed_reclen = reclen;
2256 /* NOTE: ed_off is the offset for the *next* entry */
2257 next = &(eodp->ed_off);
2258 eodp->ed_eflags = zap.za_normalization_conflict ?
2259 ED_CASE_CONFLICT : 0;
2260 (void) strncpy(eodp->ed_name, zap.za_name,
2261 EDIRENT_NAMELEN(reclen));
2262 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2263 } else {
2264 /*
2265 * Add normal entry:
2266 */
2267 odp->d_ino = objnum;
2268 odp->d_reclen = reclen;
2269 /* NOTE: d_off is the offset for the *next* entry */
2270 next = &(odp->d_off);
2271 (void) strncpy(odp->d_name, zap.za_name,
2272 DIRENT64_NAMELEN(reclen));
2273 odp = (dirent64_t *)((intptr_t)odp + reclen);
2274 }
2275 outcount += reclen;
2276
2277 ASSERT(outcount <= bufsize);
2278
2279 /* Prefetch znode */
2280 if (prefetch)
2281 dmu_prefetch(os, objnum, 0, 0);
2282
2283 skip_entry:
2284 /*
2285 * Move to the next entry, fill in the previous offset.
2286 */
2287 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2288 zap_cursor_advance(&zc);
2289 offset = zap_cursor_serialize(&zc);
2290 } else {
2291 offset += 1;
2292 }
2293 *next = offset;
2294 }
2295 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2296
2297 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2298 iovp->iov_base += outcount;
2299 iovp->iov_len -= outcount;
2300 uio->uio_resid -= outcount;
2301 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2302 /*
2303 * Reset the pointer.
2304 */
2305 offset = uio->uio_loffset;
2306 }
2307
2308 update:
2309 zap_cursor_fini(&zc);
2310 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2311 kmem_free(outbuf, bufsize);
2312
2313 if (error == ENOENT)
2314 error = 0;
2315
2316 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2317
2318 uio->uio_loffset = offset;
2319 ZFS_EXIT(zfsvfs);
2320 return (error);
2321 }
2322
2323 ulong_t zfs_fsync_sync_cnt = 4;
2324
2325 static int
2326 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2327 {
2328 znode_t *zp = VTOZ(vp);
2329 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2330
2331 /*
2332 * Regardless of whether this is required for standards conformance,
2333 * this is the logical behavior when fsync() is called on a file with
2334 * dirty pages. We use B_ASYNC since the ZIL transactions are already
2335 * going to be pushed out as part of the zil_commit().
2336 */
2337 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2338 (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2339 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2340
2341 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2342
2343 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2344 ZFS_ENTER(zfsvfs);
2345 ZFS_VERIFY_ZP(zp);
2346 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
2347 ZFS_EXIT(zfsvfs);
2348 }
2349 return (0);
2350 }
2351
2352
2353 /*
2354 * Get the requested file attributes and place them in the provided
2355 * vattr structure.
2356 *
2357 * IN: vp - vnode of file.
2358 * vap - va_mask identifies requested attributes.
2359 * If AT_XVATTR set, then optional attrs are requested
2360 * flags - ATTR_NOACLCHECK (CIFS server context)
2361 * cr - credentials of caller.
2362 * ct - caller context
2363 *
2364 * OUT: vap - attribute values.
2365 *
2366 * RETURN: 0 (always succeeds)
2367 */
2368 /* ARGSUSED */
2369 static int
2370 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2371 caller_context_t *ct)
2372 {
2373 znode_t *zp = VTOZ(vp);
2374 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2375 int error = 0;
2376 uint64_t links;
2377 uint64_t mtime[2], ctime[2];
2378 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2379 xoptattr_t *xoap = NULL;
2380 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2381 sa_bulk_attr_t bulk[2];
2382 int count = 0;
2383
2384 ZFS_ENTER(zfsvfs);
2385 ZFS_VERIFY_ZP(zp);
2386
2387 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2388 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2389
2390 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2391 ZFS_EXIT(zfsvfs);
2392 return (error);
2393 }
2394
2395 /*
2396 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2397 * Also, if we are the owner don't bother, since owner should
2398 * always be allowed to read basic attributes of file.
2399 */
2400 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && (zp->z_uid != crgetuid(cr))) {
2401 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2402 skipaclchk, cr)) {
2403 ZFS_EXIT(zfsvfs);
2404 return (error);
2405 }
2406 }
2407
2408 /*
2409 * Return all attributes. It's cheaper to provide the answer
2410 * than to determine whether we were asked the question.
2411 */
2412
2413 mutex_enter(&zp->z_lock);
2414 vap->va_type = vp->v_type;
2415 vap->va_mode = zp->z_mode & MODEMASK;
2416 vap->va_uid = zp->z_uid;
2417 vap->va_gid = zp->z_gid;
2418 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2419 vap->va_nodeid = zp->z_id;
2420 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2421 links = zp->z_links + 1;
2422 else
2423 links = zp->z_links;
2424 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2425 vap->va_size = zp->z_size;
2426 vap->va_rdev = vp->v_rdev;
2427 vap->va_seq = zp->z_seq;
2428
2429 /*
2430 * Add in any requested optional attributes and the create time.
2431 * Also set the corresponding bits in the returned attribute bitmap.
2432 */
2433 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2434 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2435 xoap->xoa_archive =
2436 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2437 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2438 }
2439
2440 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2441 xoap->xoa_readonly =
2442 ((zp->z_pflags & ZFS_READONLY) != 0);
2443 XVA_SET_RTN(xvap, XAT_READONLY);
2444 }
2445
2446 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2447 xoap->xoa_system =
2448 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2449 XVA_SET_RTN(xvap, XAT_SYSTEM);
2450 }
2451
2452 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2453 xoap->xoa_hidden =
2454 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2455 XVA_SET_RTN(xvap, XAT_HIDDEN);
2456 }
2457
2458 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2459 xoap->xoa_nounlink =
2460 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2461 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2462 }
2463
2464 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2465 xoap->xoa_immutable =
2466 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2467 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2468 }
2469
2470 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2471 xoap->xoa_appendonly =
2472 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2473 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2474 }
2475
2476 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2477 xoap->xoa_nodump =
2478 ((zp->z_pflags & ZFS_NODUMP) != 0);
2479 XVA_SET_RTN(xvap, XAT_NODUMP);
2480 }
2481
2482 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2483 xoap->xoa_opaque =
2484 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2485 XVA_SET_RTN(xvap, XAT_OPAQUE);
2486 }
2487
2488 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2489 xoap->xoa_av_quarantined =
2490 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2491 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2492 }
2493
2494 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2495 xoap->xoa_av_modified =
2496 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2497 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2498 }
2499
2500 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2501 vp->v_type == VREG) {
2502 zfs_sa_get_scanstamp(zp, xvap);
2503 }
2504
2505 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2506 uint64_t times[2];
2507
2508 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2509 times, sizeof (times));
2510 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2511 XVA_SET_RTN(xvap, XAT_CREATETIME);
2512 }
2513
2514 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2515 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2516 XVA_SET_RTN(xvap, XAT_REPARSE);
2517 }
2518 }
2519
2520 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2521 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2522 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2523
2524 mutex_exit(&zp->z_lock);
2525
2526 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2527
2528 if (zp->z_blksz == 0) {
2529 /*
2530 * Block size hasn't been set; suggest maximal I/O transfers.
2531 */
2532 vap->va_blksize = zfsvfs->z_max_blksz;
2533 }
2534
2535 ZFS_EXIT(zfsvfs);
2536 return (0);
2537 }
2538
2539 /*
2540 * Set the file attributes to the values contained in the
2541 * vattr structure.
2542 *
2543 * IN: vp - vnode of file to be modified.
2544 * vap - new attribute values.
2545 * If AT_XVATTR set, then optional attrs are being set
2546 * flags - ATTR_UTIME set if non-default time values provided.
2547 * - ATTR_NOACLCHECK (CIFS context only).
2548 * cr - credentials of caller.
2549 * ct - caller context
2550 *
2551 * RETURN: 0 if success
2552 * error code if failure
2553 *
2554 * Timestamps:
2555 * vp - ctime updated, mtime updated if size changed.
2556 */
2557 /* ARGSUSED */
2558 static int
2559 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2560 caller_context_t *ct)
2561 {
2562 znode_t *zp = VTOZ(vp);
2563 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2564 zilog_t *zilog;
2565 dmu_tx_t *tx;
2566 vattr_t oldva;
2567 xvattr_t tmpxvattr;
2568 uint_t mask = vap->va_mask;
2569 uint_t saved_mask;
2570 int trim_mask = 0;
2571 uint64_t new_mode;
2572 uint64_t new_uid, new_gid;
2573 uint64_t xattr_obj = 0;
2574 uint64_t mtime[2], ctime[2];
2575 znode_t *attrzp;
2576 int need_policy = FALSE;
2577 int err, err2;
2578 zfs_fuid_info_t *fuidp = NULL;
2579 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2580 xoptattr_t *xoap;
2581 zfs_acl_t *aclp = NULL;
2582 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2583 boolean_t fuid_dirtied = B_FALSE;
2584 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2585 int count = 0, xattr_count = 0;
2586
2587 if (mask == 0)
2588 return (0);
2589
2590 if (mask & AT_NOSET)
2591 return (EINVAL);
2592
2593 ZFS_ENTER(zfsvfs);
2594 ZFS_VERIFY_ZP(zp);
2595
2596 zilog = zfsvfs->z_log;
2597
2598 /*
2599 * Make sure that if we have ephemeral uid/gid or xvattr specified
2600 * that file system is at proper version level
2601 */
2602
2603 if (zfsvfs->z_use_fuids == B_FALSE &&
2604 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2605 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2606 (mask & AT_XVATTR))) {
2607 ZFS_EXIT(zfsvfs);
2608 return (EINVAL);
2609 }
2610
2611 if (mask & AT_SIZE && vp->v_type == VDIR) {
2612 ZFS_EXIT(zfsvfs);
2613 return (EISDIR);
2614 }
2615
2616 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2617 ZFS_EXIT(zfsvfs);
2618 return (EINVAL);
2619 }
2620
2621 /*
2622 * If this is an xvattr_t, then get a pointer to the structure of
2623 * optional attributes. If this is NULL, then we have a vattr_t.
2624 */
2625 xoap = xva_getxoptattr(xvap);
2626
2627 xva_init(&tmpxvattr);
2628
2629 /*
2630 * Immutable files can only alter immutable bit and atime
2631 */
2632 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2633 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2634 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2635 ZFS_EXIT(zfsvfs);
2636 return (EPERM);
2637 }
2638
2639 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2640 ZFS_EXIT(zfsvfs);
2641 return (EPERM);
2642 }
2643
2644 /*
2645 * Verify timestamps doesn't overflow 32 bits.
2646 * ZFS can handle large timestamps, but 32bit syscalls can't
2647 * handle times greater than 2039. This check should be removed
2648 * once large timestamps are fully supported.
2649 */
2650 if (mask & (AT_ATIME | AT_MTIME)) {
2651 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2652 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2653 ZFS_EXIT(zfsvfs);
2654 return (EOVERFLOW);
2655 }
2656 }
2657
2658 top:
2659 attrzp = NULL;
2660
2661 /* Can this be moved to before the top label? */
2662 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2663 ZFS_EXIT(zfsvfs);
2664 return (EROFS);
2665 }
2666
2667 /*
2668 * First validate permissions
2669 */
2670
2671 if (mask & AT_SIZE) {
2672 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2673 if (err) {
2674 ZFS_EXIT(zfsvfs);
2675 return (err);
2676 }
2677 /*
2678 * XXX - Note, we are not providing any open
2679 * mode flags here (like FNDELAY), so we may
2680 * block if there are locks present... this
2681 * should be addressed in openat().
2682 */
2683 /* XXX - would it be OK to generate a log record here? */
2684 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2685 if (err) {
2686 ZFS_EXIT(zfsvfs);
2687 return (err);
2688 }
2689 }
2690
2691 if (mask & (AT_ATIME|AT_MTIME) ||
2692 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2693 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2694 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2695 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2696 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2697 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2698 skipaclchk, cr);
2699 }
2700
2701 if (mask & (AT_UID|AT_GID)) {
2702 int idmask = (mask & (AT_UID|AT_GID));
2703 int take_owner;
2704 int take_group;
2705
2706 /*
2707 * NOTE: even if a new mode is being set,
2708 * we may clear S_ISUID/S_ISGID bits.
2709 */
2710
2711 if (!(mask & AT_MODE))
2712 vap->va_mode = zp->z_mode;
2713
2714 /*
2715 * Take ownership or chgrp to group we are a member of
2716 */
2717
2718 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2719 take_group = (mask & AT_GID) &&
2720 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2721
2722 /*
2723 * If both AT_UID and AT_GID are set then take_owner and
2724 * take_group must both be set in order to allow taking
2725 * ownership.
2726 *
2727 * Otherwise, send the check through secpolicy_vnode_setattr()
2728 *
2729 */
2730
2731 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2732 ((idmask == AT_UID) && take_owner) ||
2733 ((idmask == AT_GID) && take_group)) {
2734 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2735 skipaclchk, cr) == 0) {
2736 /*
2737 * Remove setuid/setgid for non-privileged users
2738 */
2739 secpolicy_setid_clear(vap, cr);
2740 trim_mask = (mask & (AT_UID|AT_GID));
2741 } else {
2742 need_policy = TRUE;
2743 }
2744 } else {
2745 need_policy = TRUE;
2746 }
2747 }
2748
2749 mutex_enter(&zp->z_lock);
2750 oldva.va_mode = zp->z_mode;
2751 oldva.va_uid = zp->z_uid;
2752 oldva.va_gid = zp->z_gid;
2753 if (mask & AT_XVATTR) {
2754 /*
2755 * Update xvattr mask to include only those attributes
2756 * that are actually changing.
2757 *
2758 * the bits will be restored prior to actually setting
2759 * the attributes so the caller thinks they were set.
2760 */
2761 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2762 if (xoap->xoa_appendonly !=
2763 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2764 need_policy = TRUE;
2765 } else {
2766 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2767 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2768 }
2769 }
2770
2771 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2772 if (xoap->xoa_nounlink !=
2773 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2774 need_policy = TRUE;
2775 } else {
2776 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2777 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2778 }
2779 }
2780
2781 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2782 if (xoap->xoa_immutable !=
2783 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2784 need_policy = TRUE;
2785 } else {
2786 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2787 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2788 }
2789 }
2790
2791 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2792 if (xoap->xoa_nodump !=
2793 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2794 need_policy = TRUE;
2795 } else {
2796 XVA_CLR_REQ(xvap, XAT_NODUMP);
2797 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2798 }
2799 }
2800
2801 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2802 if (xoap->xoa_av_modified !=
2803 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2804 need_policy = TRUE;
2805 } else {
2806 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2807 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2808 }
2809 }
2810
2811 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2812 if ((vp->v_type != VREG &&
2813 xoap->xoa_av_quarantined) ||
2814 xoap->xoa_av_quarantined !=
2815 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2816 need_policy = TRUE;
2817 } else {
2818 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2819 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2820 }
2821 }
2822
2823 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2824 mutex_exit(&zp->z_lock);
2825 ZFS_EXIT(zfsvfs);
2826 return (EPERM);
2827 }
2828
2829 if (need_policy == FALSE &&
2830 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2831 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2832 need_policy = TRUE;
2833 }
2834 }
2835
2836 mutex_exit(&zp->z_lock);
2837
2838 if (mask & AT_MODE) {
2839 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2840 err = secpolicy_setid_setsticky_clear(vp, vap,
2841 &oldva, cr);
2842 if (err) {
2843 ZFS_EXIT(zfsvfs);
2844 return (err);
2845 }
2846 trim_mask |= AT_MODE;
2847 } else {
2848 need_policy = TRUE;
2849 }
2850 }
2851
2852 if (need_policy) {
2853 /*
2854 * If trim_mask is set then take ownership
2855 * has been granted or write_acl is present and user
2856 * has the ability to modify mode. In that case remove
2857 * UID|GID and or MODE from mask so that
2858 * secpolicy_vnode_setattr() doesn't revoke it.
2859 */
2860
2861 if (trim_mask) {
2862 saved_mask = vap->va_mask;
2863 vap->va_mask &= ~trim_mask;
2864 }
2865 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2866 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2867 if (err) {
2868 ZFS_EXIT(zfsvfs);
2869 return (err);
2870 }
2871
2872 if (trim_mask)
2873 vap->va_mask |= saved_mask;
2874 }
2875
2876 /*
2877 * secpolicy_vnode_setattr, or take ownership may have
2878 * changed va_mask
2879 */
2880 mask = vap->va_mask;
2881
2882 if ((mask & (AT_UID | AT_GID))) {
2883 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj,
2884 sizeof (xattr_obj));
2885
2886 if (xattr_obj) {
2887 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2888 if (err)
2889 goto out2;
2890 }
2891 if (mask & AT_UID) {
2892 new_uid = zfs_fuid_create(zfsvfs,
2893 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2894 if (vap->va_uid != zp->z_uid &&
2895 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2896 err = EDQUOT;
2897 goto out2;
2898 }
2899 }
2900
2901 if (mask & AT_GID) {
2902 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2903 cr, ZFS_GROUP, &fuidp);
2904 if (new_gid != zp->z_gid &&
2905 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
2906 err = EDQUOT;
2907 goto out2;
2908 }
2909 }
2910 }
2911 tx = dmu_tx_create(zfsvfs->z_os);
2912
2913 if (mask & AT_MODE) {
2914 uint64_t pmode = zp->z_mode;
2915 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2916
2917 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
2918 goto out;
2919
2920 if (!zp->z_is_sa && ZFS_EXTERNAL_ACL(zp)) {
2921 /*
2922 * Are we upgrading ACL from old V0 format
2923 * to V1 format?
2924 */
2925 if (zfsvfs->z_version <= ZPL_VERSION_FUID &&
2926 ZNODE_ACL_VERSION(zp) ==
2927 ZFS_ACL_VERSION_INITIAL) {
2928 dmu_tx_hold_free(tx,
2929 ZFS_EXTERNAL_ACL(zp), 0,
2930 DMU_OBJECT_END);
2931 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2932 0, aclp->z_acl_bytes);
2933 } else {
2934 dmu_tx_hold_write(tx, ZFS_EXTERNAL_ACL(zp), 0,
2935 aclp->z_acl_bytes);
2936 }
2937 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2938 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2939 0, aclp->z_acl_bytes);
2940 }
2941 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2942 } else {
2943 if ((mask & AT_XVATTR) &&
2944 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2945 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2946 else
2947 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2948 }
2949
2950 if (attrzp) {
2951 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2952 }
2953
2954 fuid_dirtied = zfsvfs->z_fuid_dirty;
2955 if (fuid_dirtied)
2956 zfs_fuid_txhold(zfsvfs, tx);
2957
2958 zfs_sa_upgrade_txholds(tx, zp);
2959
2960 err = dmu_tx_assign(tx, TXG_NOWAIT);
2961 if (err) {
2962 if (err == ERESTART)
2963 dmu_tx_wait(tx);
2964 goto out;
2965 }
2966
2967 count = 0;
2968 /*
2969 * Set each attribute requested.
2970 * We group settings according to the locks they need to acquire.
2971 *
2972 * Note: you cannot set ctime directly, although it will be
2973 * updated as a side-effect of calling this function.
2974 */
2975
2976 mutex_enter(&zp->z_lock);
2977
2978 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2979 &zp->z_pflags, sizeof (zp->z_pflags));
2980
2981 if (attrzp) {
2982 mutex_enter(&attrzp->z_lock);
2983 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2984 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2985 sizeof (attrzp->z_pflags));
2986 }
2987
2988 if (mask & (AT_UID|AT_GID)) {
2989
2990 if (mask & AT_UID) {
2991 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2992 &new_uid, sizeof (new_uid));
2993 zp->z_uid = zfs_fuid_map_id(zfsvfs, new_uid,
2994 cr, ZFS_OWNER);
2995 if (attrzp) {
2996 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2997 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2998 sizeof (new_uid));
2999 attrzp->z_uid = zp->z_uid;
3000 }
3001 }
3002
3003 if (mask & AT_GID) {
3004 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3005 NULL, &new_gid, sizeof (new_gid));
3006 zp->z_gid = zfs_fuid_map_id(zfsvfs, new_gid, cr,
3007 ZFS_GROUP);
3008 if (attrzp) {
3009 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3010 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3011 sizeof (new_gid));
3012 attrzp->z_gid = zp->z_gid;
3013 }
3014 }
3015 if (!(mask & AT_MODE)) {
3016 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3017 NULL, &new_mode, sizeof (new_mode));
3018 new_mode = zp->z_mode;
3019 }
3020 err = zfs_acl_chown_setattr(zp);
3021 ASSERT(err == 0);
3022 if (attrzp) {
3023 err = zfs_acl_chown_setattr(attrzp);
3024 ASSERT(err == 0);
3025 }
3026 }
3027
3028 if (mask & AT_MODE) {
3029 mutex_enter(&zp->z_acl_lock);
3030 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3031 &new_mode, sizeof (new_mode));
3032 zp->z_mode = new_mode;
3033 ASSERT3U((uintptr_t)aclp, !=, NULL);
3034 err = zfs_aclset_common(zp, aclp, cr, tx);
3035 ASSERT3U(err, ==, 0);
3036 zp->z_acl_cached = aclp;
3037 aclp = NULL;
3038 mutex_exit(&zp->z_acl_lock);
3039 }
3040
3041 if (attrzp)
3042 mutex_exit(&attrzp->z_lock);
3043
3044 if (mask & AT_ATIME) {
3045 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3046 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3047 &zp->z_atime, sizeof (zp->z_atime));
3048 }
3049
3050 if (mask & AT_MTIME) {
3051 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3052 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3053 mtime, sizeof (mtime));
3054 }
3055
3056 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3057 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3058 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3059 NULL, mtime, sizeof (mtime));
3060 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3061 &ctime, sizeof (ctime));
3062 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3063 B_TRUE);
3064 } else if (mask != 0) {
3065 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3066 &ctime, sizeof (ctime));
3067 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3068 B_TRUE);
3069 if (attrzp) {
3070 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3071 SA_ZPL_CTIME(zfsvfs), NULL,
3072 &ctime, sizeof (ctime));
3073 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3074 mtime, ctime, B_TRUE);
3075 }
3076 }
3077 /*
3078 * Do this after setting timestamps to prevent timestamp
3079 * update from toggling bit
3080 */
3081
3082 if (xoap && (mask & AT_XVATTR)) {
3083
3084 /*
3085 * restore trimmed off masks
3086 * so that return masks can be set for caller.
3087 */
3088
3089 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3090 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3091 }
3092 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3093 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3094 }
3095 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3096 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3097 }
3098 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3099 XVA_SET_REQ(xvap, XAT_NODUMP);
3100 }
3101 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3102 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3103 }
3104 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3105 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3106 }
3107
3108 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3109 ASSERT(vp->v_type == VREG);
3110
3111 zfs_xvattr_set(zp, xvap, tx);
3112 }
3113
3114 if (fuid_dirtied)
3115 zfs_fuid_sync(zfsvfs, tx);
3116
3117 if (mask != 0)
3118 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3119
3120 mutex_exit(&zp->z_lock);
3121
3122 out:
3123 if (err == 0 && attrzp) {
3124 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3125 xattr_count, tx);
3126 ASSERT(err2 == 0);
3127 }
3128
3129 if (attrzp)
3130 VN_RELE(ZTOV(attrzp));
3131 if (aclp)
3132 zfs_acl_free(aclp);
3133
3134 if (fuidp) {
3135 zfs_fuid_info_free(fuidp);
3136 fuidp = NULL;
3137 }
3138
3139 if (err) {
3140 dmu_tx_abort(tx);
3141 if (err == ERESTART)
3142 goto top;
3143 } else {
3144 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3145 dmu_tx_commit(tx);
3146 }
3147
3148
3149 out2:
3150 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3151 zil_commit(zilog, UINT64_MAX, 0);
3152
3153 ZFS_EXIT(zfsvfs);
3154 return (err);
3155 }
3156
3157 typedef struct zfs_zlock {
3158 krwlock_t *zl_rwlock; /* lock we acquired */
3159 znode_t *zl_znode; /* znode we held */
3160 struct zfs_zlock *zl_next; /* next in list */
3161 } zfs_zlock_t;
3162
3163 /*
3164 * Drop locks and release vnodes that were held by zfs_rename_lock().
3165 */
3166 static void
3167 zfs_rename_unlock(zfs_zlock_t **zlpp)
3168 {
3169 zfs_zlock_t *zl;
3170
3171 while ((zl = *zlpp) != NULL) {
3172 if (zl->zl_znode != NULL)
3173 VN_RELE(ZTOV(zl->zl_znode));
3174 rw_exit(zl->zl_rwlock);
3175 *zlpp = zl->zl_next;
3176 kmem_free(zl, sizeof (*zl));
3177 }
3178 }
3179
3180 /*
3181 * Search back through the directory tree, using the ".." entries.
3182 * Lock each directory in the chain to prevent concurrent renames.
3183 * Fail any attempt to move a directory into one of its own descendants.
3184 * XXX - z_parent_lock can overlap with map or grow locks
3185 */
3186 static int
3187 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3188 {
3189 zfs_zlock_t *zl;
3190 znode_t *zp = tdzp;
3191 uint64_t rootid = zp->z_zfsvfs->z_root;
3192 uint64_t oidp = zp->z_id;
3193 krwlock_t *rwlp = &szp->z_parent_lock;
3194 krw_t rw = RW_WRITER;
3195
3196 /*
3197 * First pass write-locks szp and compares to zp->z_id.
3198 * Later passes read-lock zp and compare to zp->z_parent.
3199 */
3200 do {
3201 if (!rw_tryenter(rwlp, rw)) {
3202 /*
3203 * Another thread is renaming in this path.
3204 * Note that if we are a WRITER, we don't have any
3205 * parent_locks held yet.
3206 */
3207 if (rw == RW_READER && zp->z_id > szp->z_id) {
3208 /*
3209 * Drop our locks and restart
3210 */
3211 zfs_rename_unlock(&zl);
3212 *zlpp = NULL;
3213 zp = tdzp;
3214 oidp = zp->z_id;
3215 rwlp = &szp->z_parent_lock;
3216 rw = RW_WRITER;
3217 continue;
3218 } else {
3219 /*
3220 * Wait for other thread to drop its locks
3221 */
3222 rw_enter(rwlp, rw);
3223 }
3224 }
3225
3226 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3227 zl->zl_rwlock = rwlp;
3228 zl->zl_znode = NULL;
3229 zl->zl_next = *zlpp;
3230 *zlpp = zl;
3231
3232 if (oidp == szp->z_id) /* We're a descendant of szp */
3233 return (EINVAL);
3234
3235 if (oidp == rootid) /* We've hit the top */
3236 return (0);
3237
3238 if (rw == RW_READER) { /* i.e. not the first pass */
3239 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3240 if (error)
3241 return (error);
3242 zl->zl_znode = zp;
3243 }
3244 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3245 &oidp, sizeof (oidp));
3246 rwlp = &zp->z_parent_lock;
3247 rw = RW_READER;
3248
3249 } while (zp->z_id != sdzp->z_id);
3250
3251 return (0);
3252 }
3253
3254 /*
3255 * Move an entry from the provided source directory to the target
3256 * directory. Change the entry name as indicated.
3257 *
3258 * IN: sdvp - Source directory containing the "old entry".
3259 * snm - Old entry name.
3260 * tdvp - Target directory to contain the "new entry".
3261 * tnm - New entry name.
3262 * cr - credentials of caller.
3263 * ct - caller context
3264 * flags - case flags
3265 *
3266 * RETURN: 0 if success
3267 * error code if failure
3268 *
3269 * Timestamps:
3270 * sdvp,tdvp - ctime|mtime updated
3271 */
3272 /*ARGSUSED*/
3273 static int
3274 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3275 caller_context_t *ct, int flags)
3276 {
3277 znode_t *tdzp, *szp, *tzp;
3278 znode_t *sdzp = VTOZ(sdvp);
3279 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3280 zilog_t *zilog;
3281 vnode_t *realvp;
3282 zfs_dirlock_t *sdl, *tdl;
3283 dmu_tx_t *tx;
3284 zfs_zlock_t *zl;
3285 int cmp, serr, terr;
3286 int error = 0;
3287 int zflg = 0;
3288
3289 ZFS_ENTER(zfsvfs);
3290 ZFS_VERIFY_ZP(sdzp);
3291 zilog = zfsvfs->z_log;
3292
3293 /*
3294 * Make sure we have the real vp for the target directory.
3295 */
3296 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3297 tdvp = realvp;
3298
3299 if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) {
3300 ZFS_EXIT(zfsvfs);
3301 return (EXDEV);
3302 }
3303
3304 tdzp = VTOZ(tdvp);
3305 ZFS_VERIFY_ZP(tdzp);
3306 if (zfsvfs->z_utf8 && u8_validate(tnm,
3307 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3308 ZFS_EXIT(zfsvfs);
3309 return (EILSEQ);
3310 }
3311
3312 if (flags & FIGNORECASE)
3313 zflg |= ZCILOOK;
3314
3315 top:
3316 szp = NULL;
3317 tzp = NULL;
3318 zl = NULL;
3319
3320 /*
3321 * This is to prevent the creation of links into attribute space
3322 * by renaming a linked file into/outof an attribute directory.
3323 * See the comment in zfs_link() for why this is considered bad.
3324 */
3325 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3326 ZFS_EXIT(zfsvfs);
3327 return (EINVAL);
3328 }
3329
3330 /*
3331 * Lock source and target directory entries. To prevent deadlock,
3332 * a lock ordering must be defined. We lock the directory with
3333 * the smallest object id first, or if it's a tie, the one with
3334 * the lexically first name.
3335 */
3336 if (sdzp->z_id < tdzp->z_id) {
3337 cmp = -1;
3338 } else if (sdzp->z_id > tdzp->z_id) {
3339 cmp = 1;
3340 } else {
3341 /*
3342 * First compare the two name arguments without
3343 * considering any case folding.
3344 */
3345 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3346
3347 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3348 ASSERT(error == 0 || !zfsvfs->z_utf8);
3349 if (cmp == 0) {
3350 /*
3351 * POSIX: "If the old argument and the new argument
3352 * both refer to links to the same existing file,
3353 * the rename() function shall return successfully
3354 * and perform no other action."
3355 */
3356 ZFS_EXIT(zfsvfs);
3357 return (0);
3358 }
3359 /*
3360 * If the file system is case-folding, then we may
3361 * have some more checking to do. A case-folding file
3362 * system is either supporting mixed case sensitivity
3363 * access or is completely case-insensitive. Note
3364 * that the file system is always case preserving.
3365 *
3366 * In mixed sensitivity mode case sensitive behavior
3367 * is the default. FIGNORECASE must be used to
3368 * explicitly request case insensitive behavior.
3369 *
3370 * If the source and target names provided differ only
3371 * by case (e.g., a request to rename 'tim' to 'Tim'),
3372 * we will treat this as a special case in the
3373 * case-insensitive mode: as long as the source name
3374 * is an exact match, we will allow this to proceed as
3375 * a name-change request.
3376 */
3377 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3378 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3379 flags & FIGNORECASE)) &&
3380 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3381 &error) == 0) {
3382 /*
3383 * case preserving rename request, require exact
3384 * name matches
3385 */
3386 zflg |= ZCIEXACT;
3387 zflg &= ~ZCILOOK;
3388 }
3389 }
3390
3391 /*
3392 * If the source and destination directories are the same, we should
3393 * grab the z_name_lock of that directory only once.
3394 */
3395 if (sdzp == tdzp) {
3396 zflg |= ZHAVELOCK;
3397 rw_enter(&sdzp->z_name_lock, RW_READER);
3398 }
3399
3400 if (cmp < 0) {
3401 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3402 ZEXISTS | zflg, NULL, NULL);
3403 terr = zfs_dirent_lock(&tdl,
3404 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3405 } else {
3406 terr = zfs_dirent_lock(&tdl,
3407 tdzp, tnm, &tzp, zflg, NULL, NULL);
3408 serr = zfs_dirent_lock(&sdl,
3409 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3410 NULL, NULL);
3411 }
3412
3413 if (serr) {
3414 /*
3415 * Source entry invalid or not there.
3416 */
3417 if (!terr) {
3418 zfs_dirent_unlock(tdl);
3419 if (tzp)
3420 VN_RELE(ZTOV(tzp));
3421 }
3422
3423 if (sdzp == tdzp)
3424 rw_exit(&sdzp->z_name_lock);
3425
3426 if (strcmp(snm, "..") == 0)
3427 serr = EINVAL;
3428 ZFS_EXIT(zfsvfs);
3429 return (serr);
3430 }
3431 if (terr) {
3432 zfs_dirent_unlock(sdl);
3433 VN_RELE(ZTOV(szp));
3434
3435 if (sdzp == tdzp)
3436 rw_exit(&sdzp->z_name_lock);
3437
3438 if (strcmp(tnm, "..") == 0)
3439 terr = EINVAL;
3440 ZFS_EXIT(zfsvfs);
3441 return (terr);
3442 }
3443
3444 /*
3445 * Must have write access at the source to remove the old entry
3446 * and write access at the target to create the new entry.
3447 * Note that if target and source are the same, this can be
3448 * done in a single check.
3449 */
3450
3451 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3452 goto out;
3453
3454 if (ZTOV(szp)->v_type == VDIR) {
3455 /*
3456 * Check to make sure rename is valid.
3457 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3458 */
3459 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3460 goto out;
3461 }
3462
3463 /*
3464 * Does target exist?
3465 */
3466 if (tzp) {
3467 /*
3468 * Source and target must be the same type.
3469 */
3470 if (ZTOV(szp)->v_type == VDIR) {
3471 if (ZTOV(tzp)->v_type != VDIR) {
3472 error = ENOTDIR;
3473 goto out;
3474 }
3475 } else {
3476 if (ZTOV(tzp)->v_type == VDIR) {
3477 error = EISDIR;
3478 goto out;
3479 }
3480 }
3481 /*
3482 * POSIX dictates that when the source and target
3483 * entries refer to the same file object, rename
3484 * must do nothing and exit without error.
3485 */
3486 if (szp->z_id == tzp->z_id) {
3487 error = 0;
3488 goto out;
3489 }
3490 }
3491
3492 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3493 if (tzp)
3494 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3495
3496 /*
3497 * notify the target directory if it is not the same
3498 * as source directory.
3499 */
3500 if (tdvp != sdvp) {
3501 vnevent_rename_dest_dir(tdvp, ct);
3502 }
3503
3504 tx = dmu_tx_create(zfsvfs->z_os);
3505 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3506 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3507 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3508 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3509 if (sdzp != tdzp) {
3510 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3511 zfs_sa_upgrade_txholds(tx, tdzp);
3512 }
3513 if (tzp) {
3514 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3515 zfs_sa_upgrade_txholds(tx, tzp);
3516 }
3517
3518 zfs_sa_upgrade_txholds(tx, szp);
3519 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3520 error = dmu_tx_assign(tx, TXG_NOWAIT);
3521 if (error) {
3522 if (zl != NULL)
3523 zfs_rename_unlock(&zl);
3524 zfs_dirent_unlock(sdl);
3525 zfs_dirent_unlock(tdl);
3526
3527 if (sdzp == tdzp)
3528 rw_exit(&sdzp->z_name_lock);
3529
3530 VN_RELE(ZTOV(szp));
3531 if (tzp)
3532 VN_RELE(ZTOV(tzp));
3533 if (error == ERESTART) {
3534 dmu_tx_wait(tx);
3535 dmu_tx_abort(tx);
3536 goto top;
3537 }
3538 dmu_tx_abort(tx);
3539 ZFS_EXIT(zfsvfs);
3540 return (error);
3541 }
3542
3543 if (tzp) /* Attempt to remove the existing target */
3544 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3545
3546 if (error == 0) {
3547 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3548 if (error == 0) {
3549 szp->z_pflags |= ZFS_AV_MODIFIED;
3550
3551 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3552 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3553 ASSERT3U(error, ==, 0);
3554
3555 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3556 if (error == 0) {
3557 zfs_log_rename(zilog, tx, TX_RENAME |
3558 (flags & FIGNORECASE ? TX_CI : 0),
3559 sdzp, sdl->dl_name, tdzp, tdl->dl_name,
3560 szp);
3561
3562 /*
3563 * Update path information for the target vnode
3564 */
3565 vn_renamepath(tdvp, ZTOV(szp), tnm,
3566 strlen(tnm));
3567 } else {
3568 /*
3569 * At this point, we have successfully created
3570 * the target name, but have failed to remove
3571 * the source name. Since the create was done
3572 * with the ZRENAMING flag, there are
3573 * complications; for one, the link count is
3574 * wrong. The easiest way to deal with this
3575 * is to remove the newly created target, and
3576 * return the original error. This must
3577 * succeed; fortunately, it is very unlikely to
3578 * fail, since we just created it.
3579 */
3580 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3581 ZRENAMING, NULL), ==, 0);
3582 }
3583 }
3584 }
3585
3586 dmu_tx_commit(tx);
3587 out:
3588 if (zl != NULL)
3589 zfs_rename_unlock(&zl);
3590
3591 zfs_dirent_unlock(sdl);
3592 zfs_dirent_unlock(tdl);
3593
3594 if (sdzp == tdzp)
3595 rw_exit(&sdzp->z_name_lock);
3596
3597
3598 VN_RELE(ZTOV(szp));
3599 if (tzp)
3600 VN_RELE(ZTOV(tzp));
3601
3602 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3603 zil_commit(zilog, UINT64_MAX, 0);
3604
3605 ZFS_EXIT(zfsvfs);
3606 return (error);
3607 }
3608
3609 /*
3610 * Insert the indicated symbolic reference entry into the directory.
3611 *
3612 * IN: dvp - Directory to contain new symbolic link.
3613 * link - Name for new symlink entry.
3614 * vap - Attributes of new entry.
3615 * target - Target path of new symlink.
3616 * cr - credentials of caller.
3617 * ct - caller context
3618 * flags - case flags
3619 *
3620 * RETURN: 0 if success
3621 * error code if failure
3622 *
3623 * Timestamps:
3624 * dvp - ctime|mtime updated
3625 */
3626 /*ARGSUSED*/
3627 static int
3628 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3629 caller_context_t *ct, int flags)
3630 {
3631 znode_t *zp, *dzp = VTOZ(dvp);
3632 zfs_dirlock_t *dl;
3633 dmu_tx_t *tx;
3634 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3635 zilog_t *zilog;
3636 uint64_t len = strlen(link);
3637 int error;
3638 int zflg = ZNEW;
3639 zfs_acl_ids_t acl_ids;
3640 boolean_t fuid_dirtied;
3641 uint64_t txtype = TX_SYMLINK;
3642
3643 ASSERT(vap->va_type == VLNK);
3644
3645 ZFS_ENTER(zfsvfs);
3646 ZFS_VERIFY_ZP(dzp);
3647 zilog = zfsvfs->z_log;
3648
3649 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3650 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3651 ZFS_EXIT(zfsvfs);
3652 return (EILSEQ);
3653 }
3654 if (flags & FIGNORECASE)
3655 zflg |= ZCILOOK;
3656
3657 if (len > MAXPATHLEN) {
3658 ZFS_EXIT(zfsvfs);
3659 return (ENAMETOOLONG);
3660 }
3661
3662 if ((error = zfs_acl_ids_create(dzp, 0,
3663 vap, cr, NULL, &acl_ids)) != 0) {
3664 ZFS_EXIT(zfsvfs);
3665 return (error);
3666 }
3667 top:
3668 /*
3669 * Attempt to lock directory; fail if entry already exists.
3670 */
3671 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3672 if (error) {
3673 zfs_acl_ids_free(&acl_ids);
3674 ZFS_EXIT(zfsvfs);
3675 return (error);
3676 }
3677
3678 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3679 zfs_acl_ids_free(&acl_ids);
3680 zfs_dirent_unlock(dl);
3681 ZFS_EXIT(zfsvfs);
3682 return (error);
3683 }
3684
3685 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3686 zfs_acl_ids_free(&acl_ids);
3687 zfs_dirent_unlock(dl);
3688 ZFS_EXIT(zfsvfs);
3689 return (EDQUOT);
3690 }
3691 tx = dmu_tx_create(zfsvfs->z_os);
3692 fuid_dirtied = zfsvfs->z_fuid_dirty;
3693 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3694 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3695 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3696 ZFS_SA_BASE_ATTR_SIZE + len);
3697 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3698 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3699 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3700 acl_ids.z_aclp->z_acl_bytes);
3701 }
3702 if (fuid_dirtied)
3703 zfs_fuid_txhold(zfsvfs, tx);
3704 error = dmu_tx_assign(tx, TXG_NOWAIT);
3705 if (error) {
3706 zfs_dirent_unlock(dl);
3707 if (error == ERESTART) {
3708 dmu_tx_wait(tx);
3709 dmu_tx_abort(tx);
3710 goto top;
3711 }
3712 zfs_acl_ids_free(&acl_ids);
3713 dmu_tx_abort(tx);
3714 ZFS_EXIT(zfsvfs);
3715 return (error);
3716 }
3717
3718 /*
3719 * Create a new object for the symlink.
3720 * for version 4 ZPL datsets the symlink will be an SA attribute
3721 */
3722 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3723
3724 if (fuid_dirtied)
3725 zfs_fuid_sync(zfsvfs, tx);
3726
3727 if (zp->z_is_sa)
3728 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3729 link, len, tx);
3730 else
3731 zfs_sa_symlink(zp, link, len, tx);
3732
3733 zp->z_size = len;
3734 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3735 &zp->z_size, sizeof (zp->z_size), tx);
3736 /*
3737 * Insert the new object into the directory.
3738 */
3739 (void) zfs_link_create(dl, zp, tx, ZNEW);
3740
3741 if (flags & FIGNORECASE)
3742 txtype |= TX_CI;
3743 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3744
3745 zfs_acl_ids_free(&acl_ids);
3746
3747 dmu_tx_commit(tx);
3748
3749 zfs_dirent_unlock(dl);
3750
3751 VN_RELE(ZTOV(zp));
3752
3753 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3754 zil_commit(zilog, UINT64_MAX, 0);
3755
3756 ZFS_EXIT(zfsvfs);
3757 return (error);
3758 }
3759
3760 /*
3761 * Return, in the buffer contained in the provided uio structure,
3762 * the symbolic path referred to by vp.
3763 *
3764 * IN: vp - vnode of symbolic link.
3765 * uoip - structure to contain the link path.
3766 * cr - credentials of caller.
3767 * ct - caller context
3768 *
3769 * OUT: uio - structure to contain the link path.
3770 *
3771 * RETURN: 0 if success
3772 * error code if failure
3773 *
3774 * Timestamps:
3775 * vp - atime updated
3776 */
3777 /* ARGSUSED */
3778 static int
3779 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3780 {
3781 znode_t *zp = VTOZ(vp);
3782 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3783 int error;
3784
3785 ZFS_ENTER(zfsvfs);
3786 ZFS_VERIFY_ZP(zp);
3787
3788 if (zp->z_is_sa)
3789 error = sa_lookup_uio(zp->z_sa_hdl,
3790 SA_ZPL_SYMLINK(zfsvfs), uio);
3791 else
3792 error = zfs_sa_readlink(zp, uio);
3793
3794 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3795
3796 ZFS_EXIT(zfsvfs);
3797 return (error);
3798 }
3799
3800 /*
3801 * Insert a new entry into directory tdvp referencing svp.
3802 *
3803 * IN: tdvp - Directory to contain new entry.
3804 * svp - vnode of new entry.
3805 * name - name of new entry.
3806 * cr - credentials of caller.
3807 * ct - caller context
3808 *
3809 * RETURN: 0 if success
3810 * error code if failure
3811 *
3812 * Timestamps:
3813 * tdvp - ctime|mtime updated
3814 * svp - ctime updated
3815 */
3816 /* ARGSUSED */
3817 static int
3818 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3819 caller_context_t *ct, int flags)
3820 {
3821 znode_t *dzp = VTOZ(tdvp);
3822 znode_t *tzp, *szp;
3823 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3824 zilog_t *zilog;
3825 zfs_dirlock_t *dl;
3826 dmu_tx_t *tx;
3827 vnode_t *realvp;
3828 int error;
3829 int zf = ZNEW;
3830 uint64_t parent;
3831
3832 ASSERT(tdvp->v_type == VDIR);
3833
3834 ZFS_ENTER(zfsvfs);
3835 ZFS_VERIFY_ZP(dzp);
3836 zilog = zfsvfs->z_log;
3837
3838 if (VOP_REALVP(svp, &realvp, ct) == 0)
3839 svp = realvp;
3840
3841 /*
3842 * POSIX dictates that we return EPERM here.
3843 * Better choices include ENOTSUP or EISDIR.
3844 */
3845 if (svp->v_type == VDIR) {
3846 ZFS_EXIT(zfsvfs);
3847 return (EPERM);
3848 }
3849
3850 if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) {
3851 ZFS_EXIT(zfsvfs);
3852 return (EXDEV);
3853 }
3854
3855 szp = VTOZ(svp);
3856 ZFS_VERIFY_ZP(szp);
3857
3858 /* Prevent links to .zfs/shares files */
3859
3860 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3861 &parent, sizeof (uint64_t))) != 0) {
3862 ZFS_EXIT(zfsvfs);
3863 return (error);
3864 }
3865 if (parent == zfsvfs->z_shares_dir) {
3866 ZFS_EXIT(zfsvfs);
3867 return (EPERM);
3868 }
3869
3870 if (zfsvfs->z_utf8 && u8_validate(name,
3871 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3872 ZFS_EXIT(zfsvfs);
3873 return (EILSEQ);
3874 }
3875 if (flags & FIGNORECASE)
3876 zf |= ZCILOOK;
3877
3878 /*
3879 * We do not support links between attributes and non-attributes
3880 * because of the potential security risk of creating links
3881 * into "normal" file space in order to circumvent restrictions
3882 * imposed in attribute space.
3883 */
3884 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
3885 ZFS_EXIT(zfsvfs);
3886 return (EINVAL);
3887 }
3888
3889
3890 if (szp->z_uid != crgetuid(cr) &&
3891 secpolicy_basic_link(cr) != 0) {
3892 ZFS_EXIT(zfsvfs);
3893 return (EPERM);
3894 }
3895
3896 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3897 ZFS_EXIT(zfsvfs);
3898 return (error);
3899 }
3900
3901 top:
3902 /*
3903 * Attempt to lock directory; fail if entry already exists.
3904 */
3905 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3906 if (error) {
3907 ZFS_EXIT(zfsvfs);
3908 return (error);
3909 }
3910
3911 tx = dmu_tx_create(zfsvfs->z_os);
3912 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3913 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3914 zfs_sa_upgrade_txholds(tx, szp);
3915 zfs_sa_upgrade_txholds(tx, dzp);
3916 error = dmu_tx_assign(tx, TXG_NOWAIT);
3917 if (error) {
3918 zfs_dirent_unlock(dl);
3919 if (error == ERESTART) {
3920 dmu_tx_wait(tx);
3921 dmu_tx_abort(tx);
3922 goto top;
3923 }
3924 dmu_tx_abort(tx);
3925 ZFS_EXIT(zfsvfs);
3926 return (error);
3927 }
3928
3929 error = zfs_link_create(dl, szp, tx, 0);
3930
3931 if (error == 0) {
3932 uint64_t txtype = TX_LINK;
3933 if (flags & FIGNORECASE)
3934 txtype |= TX_CI;
3935 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
3936 }
3937
3938 dmu_tx_commit(tx);
3939
3940 zfs_dirent_unlock(dl);
3941
3942 if (error == 0) {
3943 vnevent_link(svp, ct);
3944 }
3945
3946 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3947 zil_commit(zilog, UINT64_MAX, 0);
3948
3949 ZFS_EXIT(zfsvfs);
3950 return (error);
3951 }
3952
3953 /*
3954 * zfs_null_putapage() is used when the file system has been force
3955 * unmounted. It just drops the pages.
3956 */
3957 /* ARGSUSED */
3958 static int
3959 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3960 size_t *lenp, int flags, cred_t *cr)
3961 {
3962 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
3963 return (0);
3964 }
3965
3966 /*
3967 * Push a page out to disk, klustering if possible.
3968 *
3969 * IN: vp - file to push page to.
3970 * pp - page to push.
3971 * flags - additional flags.
3972 * cr - credentials of caller.
3973 *
3974 * OUT: offp - start of range pushed.
3975 * lenp - len of range pushed.
3976 *
3977 * RETURN: 0 if success
3978 * error code if failure
3979 *
3980 * NOTE: callers must have locked the page to be pushed. On
3981 * exit, the page (and all other pages in the kluster) must be
3982 * unlocked.
3983 */
3984 /* ARGSUSED */
3985 static int
3986 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3987 size_t *lenp, int flags, cred_t *cr)
3988 {
3989 znode_t *zp = VTOZ(vp);
3990 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3991 dmu_tx_t *tx;
3992 u_offset_t off, koff;
3993 size_t len, klen;
3994 int err;
3995
3996 off = pp->p_offset;
3997 len = PAGESIZE;
3998 /*
3999 * If our blocksize is bigger than the page size, try to kluster
4000 * multiple pages so that we write a full block (thus avoiding
4001 * a read-modify-write).
4002 */
4003 if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4004 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4005 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4006 ASSERT(koff <= zp->z_size);
4007 if (koff + klen > zp->z_size)
4008 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4009 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4010 }
4011 ASSERT3U(btop(len), ==, btopr(len));
4012
4013 /*
4014 * Can't push pages past end-of-file.
4015 */
4016 if (off >= zp->z_size) {
4017 /* ignore all pages */
4018 err = 0;
4019 goto out;
4020 } else if (off + len > zp->z_size) {
4021 int npages = btopr(zp->z_size - off);
4022 page_t *trunc;
4023
4024 page_list_break(&pp, &trunc, npages);
4025 /* ignore pages past end of file */
4026 if (trunc)
4027 pvn_write_done(trunc, flags);
4028 len = zp->z_size - off;
4029 }
4030
4031 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4032 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4033 err = EDQUOT;
4034 goto out;
4035 }
4036 top:
4037 tx = dmu_tx_create(zfsvfs->z_os);
4038 dmu_tx_hold_write(tx, zp->z_id, off, len);
4039
4040 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4041 zfs_sa_upgrade_txholds(tx, zp);
4042 err = dmu_tx_assign(tx, TXG_NOWAIT);
4043 if (err != 0) {
4044 if (err == ERESTART) {
4045 dmu_tx_wait(tx);
4046 dmu_tx_abort(tx);
4047 goto top;
4048 }
4049 dmu_tx_abort(tx);
4050 goto out;
4051 }
4052
4053 if (zp->z_blksz <= PAGESIZE) {
4054 caddr_t va = zfs_map_page(pp, S_READ);
4055 ASSERT3U(len, <=, PAGESIZE);
4056 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4057 zfs_unmap_page(pp, va);
4058 } else {
4059 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4060 }
4061
4062 if (err == 0) {
4063 uint64_t mtime[2], ctime[2];
4064 sa_bulk_attr_t bulk[3];
4065 int count = 0;
4066
4067 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4068 &mtime, 16);
4069 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4070 &ctime, 16);
4071 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4072 &zp->z_pflags, 8);
4073 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4074 B_TRUE);
4075 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4076 }
4077 dmu_tx_commit(tx);
4078
4079 out:
4080 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4081 if (offp)
4082 *offp = off;
4083 if (lenp)
4084 *lenp = len;
4085
4086 return (err);
4087 }
4088
4089 /*
4090 * Copy the portion of the file indicated from pages into the file.
4091 * The pages are stored in a page list attached to the files vnode.
4092 *
4093 * IN: vp - vnode of file to push page data to.
4094 * off - position in file to put data.
4095 * len - amount of data to write.
4096 * flags - flags to control the operation.
4097 * cr - credentials of caller.
4098 * ct - caller context.
4099 *
4100 * RETURN: 0 if success
4101 * error code if failure
4102 *
4103 * Timestamps:
4104 * vp - ctime|mtime updated
4105 */
4106 /*ARGSUSED*/
4107 static int
4108 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4109 caller_context_t *ct)
4110 {
4111 znode_t *zp = VTOZ(vp);
4112 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4113 page_t *pp;
4114 size_t io_len;
4115 u_offset_t io_off;
4116 uint_t blksz;
4117 rl_t *rl;
4118 int error = 0;
4119
4120 ZFS_ENTER(zfsvfs);
4121 ZFS_VERIFY_ZP(zp);
4122
4123 /*
4124 * Align this request to the file block size in case we kluster.
4125 * XXX - this can result in pretty aggresive locking, which can
4126 * impact simultanious read/write access. One option might be
4127 * to break up long requests (len == 0) into block-by-block
4128 * operations to get narrower locking.
4129 */
4130 blksz = zp->z_blksz;
4131 if (ISP2(blksz))
4132 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4133 else
4134 io_off = 0;
4135 if (len > 0 && ISP2(blksz))
4136 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4137 else
4138 io_len = 0;
4139
4140 if (io_len == 0) {
4141 /*
4142 * Search the entire vp list for pages >= io_off.
4143 */
4144 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4145 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4146 goto out;
4147 }
4148 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4149
4150 if (off > zp->z_size) {
4151 /* past end of file */
4152 zfs_range_unlock(rl);
4153 ZFS_EXIT(zfsvfs);
4154 return (0);
4155 }
4156
4157 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4158
4159 for (off = io_off; io_off < off + len; io_off += io_len) {
4160 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4161 pp = page_lookup(vp, io_off,
4162 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4163 } else {
4164 pp = page_lookup_nowait(vp, io_off,
4165 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4166 }
4167
4168 if (pp != NULL && pvn_getdirty(pp, flags)) {
4169 int err;
4170
4171 /*
4172 * Found a dirty page to push
4173 */
4174 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4175 if (err)
4176 error = err;
4177 } else {
4178 io_len = PAGESIZE;
4179 }
4180 }
4181 out:
4182 zfs_range_unlock(rl);
4183 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4184 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id);
4185 ZFS_EXIT(zfsvfs);
4186 return (error);
4187 }
4188
4189 /*ARGSUSED*/
4190 void
4191 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4192 {
4193 znode_t *zp = VTOZ(vp);
4194 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4195 int error;
4196
4197 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4198 if (zp->z_sa_hdl == NULL) {
4199 /*
4200 * The fs has been unmounted, or we did a
4201 * suspend/resume and this file no longer exists.
4202 */
4203 if (vn_has_cached_data(vp)) {
4204 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4205 B_INVAL, cr);
4206 }
4207
4208 mutex_enter(&zp->z_lock);
4209 mutex_enter(&vp->v_lock);
4210 ASSERT(vp->v_count == 1);
4211 vp->v_count = 0;
4212 mutex_exit(&vp->v_lock);
4213 mutex_exit(&zp->z_lock);
4214 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4215 zfs_znode_free(zp);
4216 return;
4217 }
4218
4219 /*
4220 * Attempt to push any data in the page cache. If this fails
4221 * we will get kicked out later in zfs_zinactive().
4222 */
4223 if (vn_has_cached_data(vp)) {
4224 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4225 cr);
4226 }
4227
4228 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4229 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4230
4231 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4232 zfs_sa_upgrade_txholds(tx, zp);
4233 error = dmu_tx_assign(tx, TXG_WAIT);
4234 if (error) {
4235 dmu_tx_abort(tx);
4236 } else {
4237 mutex_enter(&zp->z_lock);
4238 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4239 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4240 zp->z_atime_dirty = 0;
4241 mutex_exit(&zp->z_lock);
4242 dmu_tx_commit(tx);
4243 }
4244 }
4245
4246 zfs_zinactive(zp);
4247 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4248 }
4249
4250 /*
4251 * Bounds-check the seek operation.
4252 *
4253 * IN: vp - vnode seeking within
4254 * ooff - old file offset
4255 * noffp - pointer to new file offset
4256 * ct - caller context
4257 *
4258 * RETURN: 0 if success
4259 * EINVAL if new offset invalid
4260 */
4261 /* ARGSUSED */
4262 static int
4263 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4264 caller_context_t *ct)
4265 {
4266 if (vp->v_type == VDIR)
4267 return (0);
4268 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4269 }
4270
4271 /*
4272 * Pre-filter the generic locking function to trap attempts to place
4273 * a mandatory lock on a memory mapped file.
4274 */
4275 static int
4276 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4277 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4278 {
4279 znode_t *zp = VTOZ(vp);
4280 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4281
4282 ZFS_ENTER(zfsvfs);
4283 ZFS_VERIFY_ZP(zp);
4284
4285 /*
4286 * We are following the UFS semantics with respect to mapcnt
4287 * here: If we see that the file is mapped already, then we will
4288 * return an error, but we don't worry about races between this
4289 * function and zfs_map().
4290 */
4291 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4292 ZFS_EXIT(zfsvfs);
4293 return (EAGAIN);
4294 }
4295 ZFS_EXIT(zfsvfs);
4296 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4297 }
4298
4299 /*
4300 * If we can't find a page in the cache, we will create a new page
4301 * and fill it with file data. For efficiency, we may try to fill
4302 * multiple pages at once (klustering) to fill up the supplied page
4303 * list. Note that the pages to be filled are held with an exclusive
4304 * lock to prevent access by other threads while they are being filled.
4305 */
4306 static int
4307 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4308 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4309 {
4310 znode_t *zp = VTOZ(vp);
4311 page_t *pp, *cur_pp;
4312 objset_t *os = zp->z_zfsvfs->z_os;
4313 u_offset_t io_off, total;
4314 size_t io_len;
4315 int err;
4316
4317 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4318 /*
4319 * We only have a single page, don't bother klustering
4320 */
4321 io_off = off;
4322 io_len = PAGESIZE;
4323 pp = page_create_va(vp, io_off, io_len,
4324 PG_EXCL | PG_WAIT, seg, addr);
4325 } else {
4326 /*
4327 * Try to find enough pages to fill the page list
4328 */
4329 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4330 &io_len, off, plsz, 0);
4331 }
4332 if (pp == NULL) {
4333 /*
4334 * The page already exists, nothing to do here.
4335 */
4336 *pl = NULL;
4337 return (0);
4338 }
4339
4340 /*
4341 * Fill the pages in the kluster.
4342 */
4343 cur_pp = pp;
4344 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4345 caddr_t va;
4346
4347 ASSERT3U(io_off, ==, cur_pp->p_offset);
4348 va = zfs_map_page(cur_pp, S_WRITE);
4349 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4350 DMU_READ_PREFETCH);
4351 zfs_unmap_page(cur_pp, va);
4352 if (err) {
4353 /* On error, toss the entire kluster */
4354 pvn_read_done(pp, B_ERROR);
4355 /* convert checksum errors into IO errors */
4356 if (err == ECKSUM)
4357 err = EIO;
4358 return (err);
4359 }
4360 cur_pp = cur_pp->p_next;
4361 }
4362
4363 /*
4364 * Fill in the page list array from the kluster starting
4365 * from the desired offset `off'.
4366 * NOTE: the page list will always be null terminated.
4367 */
4368 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4369 ASSERT(pl == NULL || (*pl)->p_offset == off);
4370
4371 return (0);
4372 }
4373
4374 /*
4375 * Return pointers to the pages for the file region [off, off + len]
4376 * in the pl array. If plsz is greater than len, this function may
4377 * also return page pointers from after the specified region
4378 * (i.e. the region [off, off + plsz]). These additional pages are
4379 * only returned if they are already in the cache, or were created as
4380 * part of a klustered read.
4381 *
4382 * IN: vp - vnode of file to get data from.
4383 * off - position in file to get data from.
4384 * len - amount of data to retrieve.
4385 * plsz - length of provided page list.
4386 * seg - segment to obtain pages for.
4387 * addr - virtual address of fault.
4388 * rw - mode of created pages.
4389 * cr - credentials of caller.
4390 * ct - caller context.
4391 *
4392 * OUT: protp - protection mode of created pages.
4393 * pl - list of pages created.
4394 *
4395 * RETURN: 0 if success
4396 * error code if failure
4397 *
4398 * Timestamps:
4399 * vp - atime updated
4400 */
4401 /* ARGSUSED */
4402 static int
4403 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4404 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4405 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4406 {
4407 znode_t *zp = VTOZ(vp);
4408 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4409 page_t **pl0 = pl;
4410 int err = 0;
4411
4412 /* we do our own caching, faultahead is unnecessary */
4413 if (pl == NULL)
4414 return (0);
4415 else if (len > plsz)
4416 len = plsz;
4417 else
4418 len = P2ROUNDUP(len, PAGESIZE);
4419 ASSERT(plsz >= len);
4420
4421 ZFS_ENTER(zfsvfs);
4422 ZFS_VERIFY_ZP(zp);
4423
4424 if (protp)
4425 *protp = PROT_ALL;
4426
4427 /*
4428 * Loop through the requested range [off, off + len) looking
4429 * for pages. If we don't find a page, we will need to create
4430 * a new page and fill it with data from the file.
4431 */
4432 while (len > 0) {
4433 if (*pl = page_lookup(vp, off, SE_SHARED))
4434 *(pl+1) = NULL;
4435 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4436 goto out;
4437 while (*pl) {
4438 ASSERT3U((*pl)->p_offset, ==, off);
4439 off += PAGESIZE;
4440 addr += PAGESIZE;
4441 if (len > 0) {
4442 ASSERT3U(len, >=, PAGESIZE);
4443 len -= PAGESIZE;
4444 }
4445 ASSERT3U(plsz, >=, PAGESIZE);
4446 plsz -= PAGESIZE;
4447 pl++;
4448 }
4449 }
4450
4451 /*
4452 * Fill out the page array with any pages already in the cache.
4453 */
4454 while (plsz > 0 &&
4455 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4456 off += PAGESIZE;
4457 plsz -= PAGESIZE;
4458 }
4459 out:
4460 if (err) {
4461 /*
4462 * Release any pages we have previously locked.
4463 */
4464 while (pl > pl0)
4465 page_unlock(*--pl);
4466 } else {
4467 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4468 }
4469
4470 *pl = NULL;
4471
4472 ZFS_EXIT(zfsvfs);
4473 return (err);
4474 }
4475
4476 /*
4477 * Request a memory map for a section of a file. This code interacts
4478 * with common code and the VM system as follows:
4479 *
4480 * common code calls mmap(), which ends up in smmap_common()
4481 *
4482 * this calls VOP_MAP(), which takes you into (say) zfs
4483 *
4484 * zfs_map() calls as_map(), passing segvn_create() as the callback
4485 *
4486 * segvn_create() creates the new segment and calls VOP_ADDMAP()
4487 *
4488 * zfs_addmap() updates z_mapcnt
4489 */
4490 /*ARGSUSED*/
4491 static int
4492 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4493 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4494 caller_context_t *ct)
4495 {
4496 znode_t *zp = VTOZ(vp);
4497 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4498 segvn_crargs_t vn_a;
4499 int error;
4500
4501 ZFS_ENTER(zfsvfs);
4502 ZFS_VERIFY_ZP(zp);
4503
4504 if ((prot & PROT_WRITE) && (zp->z_pflags &
4505 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4506 ZFS_EXIT(zfsvfs);
4507 return (EPERM);
4508 }
4509
4510 if ((prot & (PROT_READ | PROT_EXEC)) &&
4511 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4512 ZFS_EXIT(zfsvfs);
4513 return (EACCES);
4514 }
4515
4516 if (vp->v_flag & VNOMAP) {
4517 ZFS_EXIT(zfsvfs);
4518 return (ENOSYS);
4519 }
4520
4521 if (off < 0 || len > MAXOFFSET_T - off) {
4522 ZFS_EXIT(zfsvfs);
4523 return (ENXIO);
4524 }
4525
4526 if (vp->v_type != VREG) {
4527 ZFS_EXIT(zfsvfs);
4528 return (ENODEV);
4529 }
4530
4531 /*
4532 * If file is locked, disallow mapping.
4533 */
4534 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4535 ZFS_EXIT(zfsvfs);
4536 return (EAGAIN);
4537 }
4538
4539 as_rangelock(as);
4540 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4541 if (error != 0) {
4542 as_rangeunlock(as);
4543 ZFS_EXIT(zfsvfs);
4544 return (error);
4545 }
4546
4547 vn_a.vp = vp;
4548 vn_a.offset = (u_offset_t)off;
4549 vn_a.type = flags & MAP_TYPE;
4550 vn_a.prot = prot;
4551 vn_a.maxprot = maxprot;
4552 vn_a.cred = cr;
4553 vn_a.amp = NULL;
4554 vn_a.flags = flags & ~MAP_TYPE;
4555 vn_a.szc = 0;
4556 vn_a.lgrp_mem_policy_flags = 0;
4557
4558 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4559
4560 as_rangeunlock(as);
4561 ZFS_EXIT(zfsvfs);
4562 return (error);
4563 }
4564
4565 /* ARGSUSED */
4566 static int
4567 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4568 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4569 caller_context_t *ct)
4570 {
4571 uint64_t pages = btopr(len);
4572
4573 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4574 return (0);
4575 }
4576
4577 /*
4578 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4579 * more accurate mtime for the associated file. Since we don't have a way of
4580 * detecting when the data was actually modified, we have to resort to
4581 * heuristics. If an explicit msync() is done, then we mark the mtime when the
4582 * last page is pushed. The problem occurs when the msync() call is omitted,
4583 * which by far the most common case:
4584 *
4585 * open()
4586 * mmap()
4587 * <modify memory>
4588 * munmap()
4589 * close()
4590 * <time lapse>
4591 * putpage() via fsflush
4592 *
4593 * If we wait until fsflush to come along, we can have a modification time that
4594 * is some arbitrary point in the future. In order to prevent this in the
4595 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4596 * torn down.
4597 */
4598 /* ARGSUSED */
4599 static int
4600 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4601 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4602 caller_context_t *ct)
4603 {
4604 uint64_t pages = btopr(len);
4605
4606 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4607 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4608
4609 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4610 vn_has_cached_data(vp))
4611 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4612
4613 return (0);
4614 }
4615
4616 /*
4617 * Free or allocate space in a file. Currently, this function only
4618 * supports the `F_FREESP' command. However, this command is somewhat
4619 * misnamed, as its functionality includes the ability to allocate as
4620 * well as free space.
4621 *
4622 * IN: vp - vnode of file to free data in.
4623 * cmd - action to take (only F_FREESP supported).
4624 * bfp - section of file to free/alloc.
4625 * flag - current file open mode flags.
4626 * offset - current file offset.
4627 * cr - credentials of caller [UNUSED].
4628 * ct - caller context.
4629 *
4630 * RETURN: 0 if success
4631 * error code if failure
4632 *
4633 * Timestamps:
4634 * vp - ctime|mtime updated
4635 */
4636 /* ARGSUSED */
4637 static int
4638 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4639 offset_t offset, cred_t *cr, caller_context_t *ct)
4640 {
4641 znode_t *zp = VTOZ(vp);
4642 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4643 uint64_t off, len;
4644 int error;
4645
4646 ZFS_ENTER(zfsvfs);
4647 ZFS_VERIFY_ZP(zp);
4648
4649 if (cmd != F_FREESP) {
4650 ZFS_EXIT(zfsvfs);
4651 return (EINVAL);
4652 }
4653
4654 if (error = convoff(vp, bfp, 0, offset)) {
4655 ZFS_EXIT(zfsvfs);
4656 return (error);
4657 }
4658
4659 if (bfp->l_len < 0) {
4660 ZFS_EXIT(zfsvfs);
4661 return (EINVAL);
4662 }
4663
4664 off = bfp->l_start;
4665 len = bfp->l_len; /* 0 means from off to end of file */
4666
4667 error = zfs_freesp(zp, off, len, flag, TRUE);
4668
4669 ZFS_EXIT(zfsvfs);
4670 return (error);
4671 }
4672
4673 /*ARGSUSED*/
4674 static int
4675 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4676 {
4677 znode_t *zp = VTOZ(vp);
4678 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4679 uint32_t gen;
4680 uint64_t gen64;
4681 uint64_t object = zp->z_id;
4682 zfid_short_t *zfid;
4683 int size, i, error;
4684
4685 ZFS_ENTER(zfsvfs);
4686 ZFS_VERIFY_ZP(zp);
4687
4688 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4689 &gen64, sizeof (uint64_t))) != 0) {
4690 ZFS_EXIT(zfsvfs);
4691 return (error);
4692 }
4693
4694 gen = (uint32_t)gen64;
4695
4696 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4697 if (fidp->fid_len < size) {
4698 fidp->fid_len = size;
4699 ZFS_EXIT(zfsvfs);
4700 return (ENOSPC);
4701 }
4702
4703 zfid = (zfid_short_t *)fidp;
4704
4705 zfid->zf_len = size;
4706
4707 for (i = 0; i < sizeof (zfid->zf_object); i++)
4708 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4709
4710 /* Must have a non-zero generation number to distinguish from .zfs */
4711 if (gen == 0)
4712 gen = 1;
4713 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4714 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4715
4716 if (size == LONG_FID_LEN) {
4717 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4718 zfid_long_t *zlfid;
4719
4720 zlfid = (zfid_long_t *)fidp;
4721
4722 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4723 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4724
4725 /* XXX - this should be the generation number for the objset */
4726 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4727 zlfid->zf_setgen[i] = 0;
4728 }
4729
4730 ZFS_EXIT(zfsvfs);
4731 return (0);
4732 }
4733
4734 static int
4735 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4736 caller_context_t *ct)
4737 {
4738 znode_t *zp, *xzp;
4739 zfsvfs_t *zfsvfs;
4740 zfs_dirlock_t *dl;
4741 int error;
4742
4743 switch (cmd) {
4744 case _PC_LINK_MAX:
4745 *valp = ULONG_MAX;
4746 return (0);
4747
4748 case _PC_FILESIZEBITS:
4749 *valp = 64;
4750 return (0);
4751
4752 case _PC_XATTR_EXISTS:
4753 zp = VTOZ(vp);
4754 zfsvfs = zp->z_zfsvfs;
4755 ZFS_ENTER(zfsvfs);
4756 ZFS_VERIFY_ZP(zp);
4757 *valp = 0;
4758 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4759 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4760 if (error == 0) {
4761 zfs_dirent_unlock(dl);
4762 if (!zfs_dirempty(xzp))
4763 *valp = 1;
4764 VN_RELE(ZTOV(xzp));
4765 } else if (error == ENOENT) {
4766 /*
4767 * If there aren't extended attributes, it's the
4768 * same as having zero of them.
4769 */
4770 error = 0;
4771 }
4772 ZFS_EXIT(zfsvfs);
4773 return (error);
4774
4775 case _PC_SATTR_ENABLED:
4776 case _PC_SATTR_EXISTS:
4777 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4778 (vp->v_type == VREG || vp->v_type == VDIR);
4779 return (0);
4780
4781 case _PC_ACCESS_FILTERING:
4782 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4783 vp->v_type == VDIR;
4784 return (0);
4785
4786 case _PC_ACL_ENABLED:
4787 *valp = _ACL_ACE_ENABLED;
4788 return (0);
4789
4790 case _PC_MIN_HOLE_SIZE:
4791 *valp = (ulong_t)SPA_MINBLOCKSIZE;
4792 return (0);
4793
4794 case _PC_TIMESTAMP_RESOLUTION:
4795 /* nanosecond timestamp resolution */
4796 *valp = 1L;
4797 return (0);
4798
4799 default:
4800 return (fs_pathconf(vp, cmd, valp, cr, ct));
4801 }
4802 }
4803
4804 /*ARGSUSED*/
4805 static int
4806 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4807 caller_context_t *ct)
4808 {
4809 znode_t *zp = VTOZ(vp);
4810 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4811 int error;
4812 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4813
4814 ZFS_ENTER(zfsvfs);
4815 ZFS_VERIFY_ZP(zp);
4816 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4817 ZFS_EXIT(zfsvfs);
4818
4819 return (error);
4820 }
4821
4822 /*ARGSUSED*/
4823 static int
4824 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4825 caller_context_t *ct)
4826 {
4827 znode_t *zp = VTOZ(vp);
4828 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4829 int error;
4830 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4831 zilog_t *zilog = zfsvfs->z_log;
4832
4833 ZFS_ENTER(zfsvfs);
4834 ZFS_VERIFY_ZP(zp);
4835
4836 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4837
4838 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4839 zil_commit(zilog, UINT64_MAX, 0);
4840
4841 ZFS_EXIT(zfsvfs);
4842 return (error);
4843 }
4844
4845 /*
4846 * Tunable, both must be a power of 2.
4847 *
4848 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
4849 * zcr_blksz_max: if set to less than the file block size, allow loaning out of
4850 * an arcbuf for a partial block read
4851 */
4852 int zcr_blksz_min = (1 << 10); /* 1K */
4853 int zcr_blksz_max = (1 << 17); /* 128K */
4854
4855 /*ARGSUSED*/
4856 static int
4857 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4858 caller_context_t *ct)
4859 {
4860 znode_t *zp = VTOZ(vp);
4861 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4862 int max_blksz = zfsvfs->z_max_blksz;
4863 uio_t *uio = &xuio->xu_uio;
4864 ssize_t size = uio->uio_resid;
4865 offset_t offset = uio->uio_loffset;
4866 int blksz;
4867 int fullblk, i;
4868 arc_buf_t *abuf;
4869 ssize_t maxsize;
4870 int preamble, postamble;
4871
4872 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4873 return (EINVAL);
4874
4875 ZFS_ENTER(zfsvfs);
4876 ZFS_VERIFY_ZP(zp);
4877 switch (ioflag) {
4878 case UIO_WRITE:
4879 /*
4880 * Loan out an arc_buf for write if write size is bigger than
4881 * max_blksz, and the file's block size is also max_blksz.
4882 */
4883 blksz = max_blksz;
4884 if (size < blksz || zp->z_blksz != blksz) {
4885 ZFS_EXIT(zfsvfs);
4886 return (EINVAL);
4887 }
4888 /*
4889 * Caller requests buffers for write before knowing where the
4890 * write offset might be (e.g. NFS TCP write).
4891 */
4892 if (offset == -1) {
4893 preamble = 0;
4894 } else {
4895 preamble = P2PHASE(offset, blksz);
4896 if (preamble) {
4897 preamble = blksz - preamble;
4898 size -= preamble;
4899 }
4900 }
4901
4902 postamble = P2PHASE(size, blksz);
4903 size -= postamble;
4904
4905 fullblk = size / blksz;
4906 (void) dmu_xuio_init(xuio,
4907 (preamble != 0) + fullblk + (postamble != 0));
4908 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
4909 int, postamble, int,
4910 (preamble != 0) + fullblk + (postamble != 0));
4911
4912 /*
4913 * Have to fix iov base/len for partial buffers. They
4914 * currently represent full arc_buf's.
4915 */
4916 if (preamble) {
4917 /* data begins in the middle of the arc_buf */
4918 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4919 blksz);
4920 ASSERT(abuf);
4921 (void) dmu_xuio_add(xuio, abuf,
4922 blksz - preamble, preamble);
4923 }
4924
4925 for (i = 0; i < fullblk; i++) {
4926 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4927 blksz);
4928 ASSERT(abuf);
4929 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
4930 }
4931
4932 if (postamble) {
4933 /* data ends in the middle of the arc_buf */
4934 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4935 blksz);
4936 ASSERT(abuf);
4937 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
4938 }
4939 break;
4940 case UIO_READ:
4941 /*
4942 * Loan out an arc_buf for read if the read size is larger than
4943 * the current file block size. Block alignment is not
4944 * considered. Partial arc_buf will be loaned out for read.
4945 */
4946 blksz = zp->z_blksz;
4947 if (blksz < zcr_blksz_min)
4948 blksz = zcr_blksz_min;
4949 if (blksz > zcr_blksz_max)
4950 blksz = zcr_blksz_max;
4951 /* avoid potential complexity of dealing with it */
4952 if (blksz > max_blksz) {
4953 ZFS_EXIT(zfsvfs);
4954 return (EINVAL);
4955 }
4956
4957 maxsize = zp->z_size - uio->uio_loffset;
4958 if (size > maxsize)
4959 size = maxsize;
4960
4961 if (size < blksz || vn_has_cached_data(vp)) {
4962 ZFS_EXIT(zfsvfs);
4963 return (EINVAL);
4964 }
4965 break;
4966 default:
4967 ZFS_EXIT(zfsvfs);
4968 return (EINVAL);
4969 }
4970
4971 uio->uio_extflg = UIO_XUIO;
4972 XUIO_XUZC_RW(xuio) = ioflag;
4973 ZFS_EXIT(zfsvfs);
4974 return (0);
4975 }
4976
4977 /*ARGSUSED*/
4978 static int
4979 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
4980 {
4981 int i;
4982 arc_buf_t *abuf;
4983 int ioflag = XUIO_XUZC_RW(xuio);
4984
4985 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
4986
4987 i = dmu_xuio_cnt(xuio);
4988 while (i-- > 0) {
4989 abuf = dmu_xuio_arcbuf(xuio, i);
4990 /*
4991 * if abuf == NULL, it must be a write buffer
4992 * that has been returned in zfs_write().
4993 */
4994 if (abuf)
4995 dmu_return_arcbuf(abuf);
4996 ASSERT(abuf || ioflag == UIO_WRITE);
4997 }
4998
4999 dmu_xuio_fini(xuio);
5000 return (0);
5001 }
5002
5003 /*
5004 * Predeclare these here so that the compiler assumes that
5005 * this is an "old style" function declaration that does
5006 * not include arguments => we won't get type mismatch errors
5007 * in the initializations that follow.
5008 */
5009 static int zfs_inval();
5010 static int zfs_isdir();
5011
5012 static int
5013 zfs_inval()
5014 {
5015 return (EINVAL);
5016 }
5017
5018 static int
5019 zfs_isdir()
5020 {
5021 return (EISDIR);
5022 }
5023 /*
5024 * Directory vnode operations template
5025 */
5026 vnodeops_t *zfs_dvnodeops;
5027 const fs_operation_def_t zfs_dvnodeops_template[] = {
5028 VOPNAME_OPEN, { .vop_open = zfs_open },
5029 VOPNAME_CLOSE, { .vop_close = zfs_close },
5030 VOPNAME_READ, { .error = zfs_isdir },
5031 VOPNAME_WRITE, { .error = zfs_isdir },
5032 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5033 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5034 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5035 VOPNAME_ACCESS, { .vop_access = zfs_access },
5036 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5037 VOPNAME_CREATE, { .vop_create = zfs_create },
5038 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5039 VOPNAME_LINK, { .vop_link = zfs_link },
5040 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5041 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir },
5042 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5043 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5044 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink },
5045 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5046 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5047 VOPNAME_FID, { .vop_fid = zfs_fid },
5048 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5049 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5050 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5051 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5052 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5053 NULL, NULL
5054 };
5055
5056 /*
5057 * Regular file vnode operations template
5058 */
5059 vnodeops_t *zfs_fvnodeops;
5060 const fs_operation_def_t zfs_fvnodeops_template[] = {
5061 VOPNAME_OPEN, { .vop_open = zfs_open },
5062 VOPNAME_CLOSE, { .vop_close = zfs_close },
5063 VOPNAME_READ, { .vop_read = zfs_read },
5064 VOPNAME_WRITE, { .vop_write = zfs_write },
5065 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5066 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5067 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5068 VOPNAME_ACCESS, { .vop_access = zfs_access },
5069 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5070 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5071 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5072 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5073 VOPNAME_FID, { .vop_fid = zfs_fid },
5074 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5075 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock },
5076 VOPNAME_SPACE, { .vop_space = zfs_space },
5077 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage },
5078 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage },
5079 VOPNAME_MAP, { .vop_map = zfs_map },
5080 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap },
5081 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap },
5082 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5083 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5084 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5085 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5086 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf },
5087 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf },
5088 NULL, NULL
5089 };
5090
5091 /*
5092 * Symbolic link vnode operations template
5093 */
5094 vnodeops_t *zfs_symvnodeops;
5095 const fs_operation_def_t zfs_symvnodeops_template[] = {
5096 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5097 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5098 VOPNAME_ACCESS, { .vop_access = zfs_access },
5099 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5100 VOPNAME_READLINK, { .vop_readlink = zfs_readlink },
5101 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5102 VOPNAME_FID, { .vop_fid = zfs_fid },
5103 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5104 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5105 NULL, NULL
5106 };
5107
5108 /*
5109 * special share hidden files vnode operations template
5110 */
5111 vnodeops_t *zfs_sharevnodeops;
5112 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5113 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5114 VOPNAME_ACCESS, { .vop_access = zfs_access },
5115 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5116 VOPNAME_FID, { .vop_fid = zfs_fid },
5117 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5118 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5119 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5120 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5121 NULL, NULL
5122 };
5123
5124 /*
5125 * Extended attribute directory vnode operations template
5126 * This template is identical to the directory vnodes
5127 * operation template except for restricted operations:
5128 * VOP_MKDIR()
5129 * VOP_SYMLINK()
5130 * Note that there are other restrictions embedded in:
5131 * zfs_create() - restrict type to VREG
5132 * zfs_link() - no links into/out of attribute space
5133 * zfs_rename() - no moves into/out of attribute space
5134 */
5135 vnodeops_t *zfs_xdvnodeops;
5136 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5137 VOPNAME_OPEN, { .vop_open = zfs_open },
5138 VOPNAME_CLOSE, { .vop_close = zfs_close },
5139 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5140 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5141 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5142 VOPNAME_ACCESS, { .vop_access = zfs_access },
5143 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5144 VOPNAME_CREATE, { .vop_create = zfs_create },
5145 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5146 VOPNAME_LINK, { .vop_link = zfs_link },
5147 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5148 VOPNAME_MKDIR, { .error = zfs_inval },
5149 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5150 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5151 VOPNAME_SYMLINK, { .error = zfs_inval },
5152 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5153 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5154 VOPNAME_FID, { .vop_fid = zfs_fid },
5155 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5156 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5157 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5158 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5159 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5160 NULL, NULL
5161 };
5162
5163 /*
5164 * Error vnode operations template
5165 */
5166 vnodeops_t *zfs_evnodeops;
5167 const fs_operation_def_t zfs_evnodeops_template[] = {
5168 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5169 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5170 NULL, NULL
5171 };