]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/bluetooth/hci_core.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-bionic-kernel.git] / net / bluetooth / hci_core.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
34
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
39
40 #include "hci_request.h"
41 #include "hci_debugfs.h"
42 #include "smp.h"
43
44 static void hci_rx_work(struct work_struct *work);
45 static void hci_cmd_work(struct work_struct *work);
46 static void hci_tx_work(struct work_struct *work);
47
48 /* HCI device list */
49 LIST_HEAD(hci_dev_list);
50 DEFINE_RWLOCK(hci_dev_list_lock);
51
52 /* HCI callback list */
53 LIST_HEAD(hci_cb_list);
54 DEFINE_MUTEX(hci_cb_list_lock);
55
56 /* HCI ID Numbering */
57 static DEFINE_IDA(hci_index_ida);
58
59 /* ----- HCI requests ----- */
60
61 #define HCI_REQ_DONE 0
62 #define HCI_REQ_PEND 1
63 #define HCI_REQ_CANCELED 2
64
65 #define hci_req_lock(d) mutex_lock(&d->req_lock)
66 #define hci_req_unlock(d) mutex_unlock(&d->req_lock)
67
68 /* ---- HCI notifications ---- */
69
70 static void hci_notify(struct hci_dev *hdev, int event)
71 {
72 hci_sock_dev_event(hdev, event);
73 }
74
75 /* ---- HCI debugfs entries ---- */
76
77 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
78 size_t count, loff_t *ppos)
79 {
80 struct hci_dev *hdev = file->private_data;
81 char buf[3];
82
83 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y': 'N';
84 buf[1] = '\n';
85 buf[2] = '\0';
86 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
87 }
88
89 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
90 size_t count, loff_t *ppos)
91 {
92 struct hci_dev *hdev = file->private_data;
93 struct sk_buff *skb;
94 char buf[32];
95 size_t buf_size = min(count, (sizeof(buf)-1));
96 bool enable;
97
98 if (!test_bit(HCI_UP, &hdev->flags))
99 return -ENETDOWN;
100
101 if (copy_from_user(buf, user_buf, buf_size))
102 return -EFAULT;
103
104 buf[buf_size] = '\0';
105 if (strtobool(buf, &enable))
106 return -EINVAL;
107
108 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
109 return -EALREADY;
110
111 hci_req_lock(hdev);
112 if (enable)
113 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
114 HCI_CMD_TIMEOUT);
115 else
116 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
117 HCI_CMD_TIMEOUT);
118 hci_req_unlock(hdev);
119
120 if (IS_ERR(skb))
121 return PTR_ERR(skb);
122
123 kfree_skb(skb);
124
125 hci_dev_change_flag(hdev, HCI_DUT_MODE);
126
127 return count;
128 }
129
130 static const struct file_operations dut_mode_fops = {
131 .open = simple_open,
132 .read = dut_mode_read,
133 .write = dut_mode_write,
134 .llseek = default_llseek,
135 };
136
137 /* ---- HCI requests ---- */
138
139 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
140 struct sk_buff *skb)
141 {
142 BT_DBG("%s result 0x%2.2x", hdev->name, result);
143
144 if (hdev->req_status == HCI_REQ_PEND) {
145 hdev->req_result = result;
146 hdev->req_status = HCI_REQ_DONE;
147 if (skb)
148 hdev->req_skb = skb_get(skb);
149 wake_up_interruptible(&hdev->req_wait_q);
150 }
151 }
152
153 static void hci_req_cancel(struct hci_dev *hdev, int err)
154 {
155 BT_DBG("%s err 0x%2.2x", hdev->name, err);
156
157 if (hdev->req_status == HCI_REQ_PEND) {
158 hdev->req_result = err;
159 hdev->req_status = HCI_REQ_CANCELED;
160 wake_up_interruptible(&hdev->req_wait_q);
161 }
162 }
163
164 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
165 const void *param, u8 event, u32 timeout)
166 {
167 DECLARE_WAITQUEUE(wait, current);
168 struct hci_request req;
169 struct sk_buff *skb;
170 int err = 0;
171
172 BT_DBG("%s", hdev->name);
173
174 hci_req_init(&req, hdev);
175
176 hci_req_add_ev(&req, opcode, plen, param, event);
177
178 hdev->req_status = HCI_REQ_PEND;
179
180 add_wait_queue(&hdev->req_wait_q, &wait);
181 set_current_state(TASK_INTERRUPTIBLE);
182
183 err = hci_req_run_skb(&req, hci_req_sync_complete);
184 if (err < 0) {
185 remove_wait_queue(&hdev->req_wait_q, &wait);
186 set_current_state(TASK_RUNNING);
187 return ERR_PTR(err);
188 }
189
190 schedule_timeout(timeout);
191
192 remove_wait_queue(&hdev->req_wait_q, &wait);
193
194 if (signal_pending(current))
195 return ERR_PTR(-EINTR);
196
197 switch (hdev->req_status) {
198 case HCI_REQ_DONE:
199 err = -bt_to_errno(hdev->req_result);
200 break;
201
202 case HCI_REQ_CANCELED:
203 err = -hdev->req_result;
204 break;
205
206 default:
207 err = -ETIMEDOUT;
208 break;
209 }
210
211 hdev->req_status = hdev->req_result = 0;
212 skb = hdev->req_skb;
213 hdev->req_skb = NULL;
214
215 BT_DBG("%s end: err %d", hdev->name, err);
216
217 if (err < 0) {
218 kfree_skb(skb);
219 return ERR_PTR(err);
220 }
221
222 if (!skb)
223 return ERR_PTR(-ENODATA);
224
225 return skb;
226 }
227 EXPORT_SYMBOL(__hci_cmd_sync_ev);
228
229 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
230 const void *param, u32 timeout)
231 {
232 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
233 }
234 EXPORT_SYMBOL(__hci_cmd_sync);
235
236 /* Execute request and wait for completion. */
237 static int __hci_req_sync(struct hci_dev *hdev,
238 void (*func)(struct hci_request *req,
239 unsigned long opt),
240 unsigned long opt, __u32 timeout)
241 {
242 struct hci_request req;
243 DECLARE_WAITQUEUE(wait, current);
244 int err = 0;
245
246 BT_DBG("%s start", hdev->name);
247
248 hci_req_init(&req, hdev);
249
250 hdev->req_status = HCI_REQ_PEND;
251
252 func(&req, opt);
253
254 add_wait_queue(&hdev->req_wait_q, &wait);
255 set_current_state(TASK_INTERRUPTIBLE);
256
257 err = hci_req_run_skb(&req, hci_req_sync_complete);
258 if (err < 0) {
259 hdev->req_status = 0;
260
261 remove_wait_queue(&hdev->req_wait_q, &wait);
262 set_current_state(TASK_RUNNING);
263
264 /* ENODATA means the HCI request command queue is empty.
265 * This can happen when a request with conditionals doesn't
266 * trigger any commands to be sent. This is normal behavior
267 * and should not trigger an error return.
268 */
269 if (err == -ENODATA)
270 return 0;
271
272 return err;
273 }
274
275 schedule_timeout(timeout);
276
277 remove_wait_queue(&hdev->req_wait_q, &wait);
278
279 if (signal_pending(current))
280 return -EINTR;
281
282 switch (hdev->req_status) {
283 case HCI_REQ_DONE:
284 err = -bt_to_errno(hdev->req_result);
285 break;
286
287 case HCI_REQ_CANCELED:
288 err = -hdev->req_result;
289 break;
290
291 default:
292 err = -ETIMEDOUT;
293 break;
294 }
295
296 hdev->req_status = hdev->req_result = 0;
297
298 BT_DBG("%s end: err %d", hdev->name, err);
299
300 return err;
301 }
302
303 static int hci_req_sync(struct hci_dev *hdev,
304 void (*req)(struct hci_request *req,
305 unsigned long opt),
306 unsigned long opt, __u32 timeout)
307 {
308 int ret;
309
310 if (!test_bit(HCI_UP, &hdev->flags))
311 return -ENETDOWN;
312
313 /* Serialize all requests */
314 hci_req_lock(hdev);
315 ret = __hci_req_sync(hdev, req, opt, timeout);
316 hci_req_unlock(hdev);
317
318 return ret;
319 }
320
321 static void hci_reset_req(struct hci_request *req, unsigned long opt)
322 {
323 BT_DBG("%s %ld", req->hdev->name, opt);
324
325 /* Reset device */
326 set_bit(HCI_RESET, &req->hdev->flags);
327 hci_req_add(req, HCI_OP_RESET, 0, NULL);
328 }
329
330 static void bredr_init(struct hci_request *req)
331 {
332 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
333
334 /* Read Local Supported Features */
335 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
336
337 /* Read Local Version */
338 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
339
340 /* Read BD Address */
341 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
342 }
343
344 static void amp_init1(struct hci_request *req)
345 {
346 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
347
348 /* Read Local Version */
349 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
350
351 /* Read Local Supported Commands */
352 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
353
354 /* Read Local AMP Info */
355 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
356
357 /* Read Data Blk size */
358 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
359
360 /* Read Flow Control Mode */
361 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
362
363 /* Read Location Data */
364 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
365 }
366
367 static void amp_init2(struct hci_request *req)
368 {
369 /* Read Local Supported Features. Not all AMP controllers
370 * support this so it's placed conditionally in the second
371 * stage init.
372 */
373 if (req->hdev->commands[14] & 0x20)
374 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
375 }
376
377 static void hci_init1_req(struct hci_request *req, unsigned long opt)
378 {
379 struct hci_dev *hdev = req->hdev;
380
381 BT_DBG("%s %ld", hdev->name, opt);
382
383 /* Reset */
384 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
385 hci_reset_req(req, 0);
386
387 switch (hdev->dev_type) {
388 case HCI_BREDR:
389 bredr_init(req);
390 break;
391
392 case HCI_AMP:
393 amp_init1(req);
394 break;
395
396 default:
397 BT_ERR("Unknown device type %d", hdev->dev_type);
398 break;
399 }
400 }
401
402 static void bredr_setup(struct hci_request *req)
403 {
404 __le16 param;
405 __u8 flt_type;
406
407 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
408 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
409
410 /* Read Class of Device */
411 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
412
413 /* Read Local Name */
414 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
415
416 /* Read Voice Setting */
417 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
418
419 /* Read Number of Supported IAC */
420 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
421
422 /* Read Current IAC LAP */
423 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
424
425 /* Clear Event Filters */
426 flt_type = HCI_FLT_CLEAR_ALL;
427 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
428
429 /* Connection accept timeout ~20 secs */
430 param = cpu_to_le16(0x7d00);
431 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
432 }
433
434 static void le_setup(struct hci_request *req)
435 {
436 struct hci_dev *hdev = req->hdev;
437
438 /* Read LE Buffer Size */
439 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
440
441 /* Read LE Local Supported Features */
442 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
443
444 /* Read LE Supported States */
445 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
446
447 /* Read LE White List Size */
448 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 0, NULL);
449
450 /* Clear LE White List */
451 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
452
453 /* LE-only controllers have LE implicitly enabled */
454 if (!lmp_bredr_capable(hdev))
455 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
456 }
457
458 static void hci_setup_event_mask(struct hci_request *req)
459 {
460 struct hci_dev *hdev = req->hdev;
461
462 /* The second byte is 0xff instead of 0x9f (two reserved bits
463 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
464 * command otherwise.
465 */
466 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
467
468 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
469 * any event mask for pre 1.2 devices.
470 */
471 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
472 return;
473
474 if (lmp_bredr_capable(hdev)) {
475 events[4] |= 0x01; /* Flow Specification Complete */
476 events[4] |= 0x02; /* Inquiry Result with RSSI */
477 events[4] |= 0x04; /* Read Remote Extended Features Complete */
478 events[5] |= 0x08; /* Synchronous Connection Complete */
479 events[5] |= 0x10; /* Synchronous Connection Changed */
480 } else {
481 /* Use a different default for LE-only devices */
482 memset(events, 0, sizeof(events));
483 events[0] |= 0x10; /* Disconnection Complete */
484 events[1] |= 0x08; /* Read Remote Version Information Complete */
485 events[1] |= 0x20; /* Command Complete */
486 events[1] |= 0x40; /* Command Status */
487 events[1] |= 0x80; /* Hardware Error */
488 events[2] |= 0x04; /* Number of Completed Packets */
489 events[3] |= 0x02; /* Data Buffer Overflow */
490
491 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
492 events[0] |= 0x80; /* Encryption Change */
493 events[5] |= 0x80; /* Encryption Key Refresh Complete */
494 }
495 }
496
497 if (lmp_inq_rssi_capable(hdev))
498 events[4] |= 0x02; /* Inquiry Result with RSSI */
499
500 if (lmp_sniffsubr_capable(hdev))
501 events[5] |= 0x20; /* Sniff Subrating */
502
503 if (lmp_pause_enc_capable(hdev))
504 events[5] |= 0x80; /* Encryption Key Refresh Complete */
505
506 if (lmp_ext_inq_capable(hdev))
507 events[5] |= 0x40; /* Extended Inquiry Result */
508
509 if (lmp_no_flush_capable(hdev))
510 events[7] |= 0x01; /* Enhanced Flush Complete */
511
512 if (lmp_lsto_capable(hdev))
513 events[6] |= 0x80; /* Link Supervision Timeout Changed */
514
515 if (lmp_ssp_capable(hdev)) {
516 events[6] |= 0x01; /* IO Capability Request */
517 events[6] |= 0x02; /* IO Capability Response */
518 events[6] |= 0x04; /* User Confirmation Request */
519 events[6] |= 0x08; /* User Passkey Request */
520 events[6] |= 0x10; /* Remote OOB Data Request */
521 events[6] |= 0x20; /* Simple Pairing Complete */
522 events[7] |= 0x04; /* User Passkey Notification */
523 events[7] |= 0x08; /* Keypress Notification */
524 events[7] |= 0x10; /* Remote Host Supported
525 * Features Notification
526 */
527 }
528
529 if (lmp_le_capable(hdev))
530 events[7] |= 0x20; /* LE Meta-Event */
531
532 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
533 }
534
535 static void hci_init2_req(struct hci_request *req, unsigned long opt)
536 {
537 struct hci_dev *hdev = req->hdev;
538
539 if (hdev->dev_type == HCI_AMP)
540 return amp_init2(req);
541
542 if (lmp_bredr_capable(hdev))
543 bredr_setup(req);
544 else
545 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
546
547 if (lmp_le_capable(hdev))
548 le_setup(req);
549
550 /* All Bluetooth 1.2 and later controllers should support the
551 * HCI command for reading the local supported commands.
552 *
553 * Unfortunately some controllers indicate Bluetooth 1.2 support,
554 * but do not have support for this command. If that is the case,
555 * the driver can quirk the behavior and skip reading the local
556 * supported commands.
557 */
558 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
559 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
560 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
561
562 if (lmp_ssp_capable(hdev)) {
563 /* When SSP is available, then the host features page
564 * should also be available as well. However some
565 * controllers list the max_page as 0 as long as SSP
566 * has not been enabled. To achieve proper debugging
567 * output, force the minimum max_page to 1 at least.
568 */
569 hdev->max_page = 0x01;
570
571 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
572 u8 mode = 0x01;
573
574 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
575 sizeof(mode), &mode);
576 } else {
577 struct hci_cp_write_eir cp;
578
579 memset(hdev->eir, 0, sizeof(hdev->eir));
580 memset(&cp, 0, sizeof(cp));
581
582 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
583 }
584 }
585
586 if (lmp_inq_rssi_capable(hdev) ||
587 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
588 u8 mode;
589
590 /* If Extended Inquiry Result events are supported, then
591 * they are clearly preferred over Inquiry Result with RSSI
592 * events.
593 */
594 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
595
596 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
597 }
598
599 if (lmp_inq_tx_pwr_capable(hdev))
600 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
601
602 if (lmp_ext_feat_capable(hdev)) {
603 struct hci_cp_read_local_ext_features cp;
604
605 cp.page = 0x01;
606 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
607 sizeof(cp), &cp);
608 }
609
610 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
611 u8 enable = 1;
612 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
613 &enable);
614 }
615 }
616
617 static void hci_setup_link_policy(struct hci_request *req)
618 {
619 struct hci_dev *hdev = req->hdev;
620 struct hci_cp_write_def_link_policy cp;
621 u16 link_policy = 0;
622
623 if (lmp_rswitch_capable(hdev))
624 link_policy |= HCI_LP_RSWITCH;
625 if (lmp_hold_capable(hdev))
626 link_policy |= HCI_LP_HOLD;
627 if (lmp_sniff_capable(hdev))
628 link_policy |= HCI_LP_SNIFF;
629 if (lmp_park_capable(hdev))
630 link_policy |= HCI_LP_PARK;
631
632 cp.policy = cpu_to_le16(link_policy);
633 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
634 }
635
636 static void hci_set_le_support(struct hci_request *req)
637 {
638 struct hci_dev *hdev = req->hdev;
639 struct hci_cp_write_le_host_supported cp;
640
641 /* LE-only devices do not support explicit enablement */
642 if (!lmp_bredr_capable(hdev))
643 return;
644
645 memset(&cp, 0, sizeof(cp));
646
647 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
648 cp.le = 0x01;
649 cp.simul = 0x00;
650 }
651
652 if (cp.le != lmp_host_le_capable(hdev))
653 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
654 &cp);
655 }
656
657 static void hci_set_event_mask_page_2(struct hci_request *req)
658 {
659 struct hci_dev *hdev = req->hdev;
660 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
661
662 /* If Connectionless Slave Broadcast master role is supported
663 * enable all necessary events for it.
664 */
665 if (lmp_csb_master_capable(hdev)) {
666 events[1] |= 0x40; /* Triggered Clock Capture */
667 events[1] |= 0x80; /* Synchronization Train Complete */
668 events[2] |= 0x10; /* Slave Page Response Timeout */
669 events[2] |= 0x20; /* CSB Channel Map Change */
670 }
671
672 /* If Connectionless Slave Broadcast slave role is supported
673 * enable all necessary events for it.
674 */
675 if (lmp_csb_slave_capable(hdev)) {
676 events[2] |= 0x01; /* Synchronization Train Received */
677 events[2] |= 0x02; /* CSB Receive */
678 events[2] |= 0x04; /* CSB Timeout */
679 events[2] |= 0x08; /* Truncated Page Complete */
680 }
681
682 /* Enable Authenticated Payload Timeout Expired event if supported */
683 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
684 events[2] |= 0x80;
685
686 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
687 }
688
689 static void hci_init3_req(struct hci_request *req, unsigned long opt)
690 {
691 struct hci_dev *hdev = req->hdev;
692 u8 p;
693
694 hci_setup_event_mask(req);
695
696 if (hdev->commands[6] & 0x20) {
697 struct hci_cp_read_stored_link_key cp;
698
699 bacpy(&cp.bdaddr, BDADDR_ANY);
700 cp.read_all = 0x01;
701 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
702 }
703
704 if (hdev->commands[5] & 0x10)
705 hci_setup_link_policy(req);
706
707 if (hdev->commands[8] & 0x01)
708 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
709
710 /* Some older Broadcom based Bluetooth 1.2 controllers do not
711 * support the Read Page Scan Type command. Check support for
712 * this command in the bit mask of supported commands.
713 */
714 if (hdev->commands[13] & 0x01)
715 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
716
717 if (lmp_le_capable(hdev)) {
718 u8 events[8];
719
720 memset(events, 0, sizeof(events));
721 events[0] = 0x0f;
722
723 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
724 events[0] |= 0x10; /* LE Long Term Key Request */
725
726 /* If controller supports the Connection Parameters Request
727 * Link Layer Procedure, enable the corresponding event.
728 */
729 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
730 events[0] |= 0x20; /* LE Remote Connection
731 * Parameter Request
732 */
733
734 /* If the controller supports the Data Length Extension
735 * feature, enable the corresponding event.
736 */
737 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
738 events[0] |= 0x40; /* LE Data Length Change */
739
740 /* If the controller supports Extended Scanner Filter
741 * Policies, enable the correspondig event.
742 */
743 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
744 events[1] |= 0x04; /* LE Direct Advertising
745 * Report
746 */
747
748 /* If the controller supports the LE Read Local P-256
749 * Public Key command, enable the corresponding event.
750 */
751 if (hdev->commands[34] & 0x02)
752 events[0] |= 0x80; /* LE Read Local P-256
753 * Public Key Complete
754 */
755
756 /* If the controller supports the LE Generate DHKey
757 * command, enable the corresponding event.
758 */
759 if (hdev->commands[34] & 0x04)
760 events[1] |= 0x01; /* LE Generate DHKey Complete */
761
762 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
763 events);
764
765 if (hdev->commands[25] & 0x40) {
766 /* Read LE Advertising Channel TX Power */
767 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
768 }
769
770 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
771 /* Read LE Maximum Data Length */
772 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
773
774 /* Read LE Suggested Default Data Length */
775 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
776 }
777
778 hci_set_le_support(req);
779 }
780
781 /* Read features beyond page 1 if available */
782 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
783 struct hci_cp_read_local_ext_features cp;
784
785 cp.page = p;
786 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
787 sizeof(cp), &cp);
788 }
789 }
790
791 static void hci_init4_req(struct hci_request *req, unsigned long opt)
792 {
793 struct hci_dev *hdev = req->hdev;
794
795 /* Some Broadcom based Bluetooth controllers do not support the
796 * Delete Stored Link Key command. They are clearly indicating its
797 * absence in the bit mask of supported commands.
798 *
799 * Check the supported commands and only if the the command is marked
800 * as supported send it. If not supported assume that the controller
801 * does not have actual support for stored link keys which makes this
802 * command redundant anyway.
803 *
804 * Some controllers indicate that they support handling deleting
805 * stored link keys, but they don't. The quirk lets a driver
806 * just disable this command.
807 */
808 if (hdev->commands[6] & 0x80 &&
809 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
810 struct hci_cp_delete_stored_link_key cp;
811
812 bacpy(&cp.bdaddr, BDADDR_ANY);
813 cp.delete_all = 0x01;
814 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
815 sizeof(cp), &cp);
816 }
817
818 /* Set event mask page 2 if the HCI command for it is supported */
819 if (hdev->commands[22] & 0x04)
820 hci_set_event_mask_page_2(req);
821
822 /* Read local codec list if the HCI command is supported */
823 if (hdev->commands[29] & 0x20)
824 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
825
826 /* Get MWS transport configuration if the HCI command is supported */
827 if (hdev->commands[30] & 0x08)
828 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
829
830 /* Check for Synchronization Train support */
831 if (lmp_sync_train_capable(hdev))
832 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
833
834 /* Enable Secure Connections if supported and configured */
835 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
836 bredr_sc_enabled(hdev)) {
837 u8 support = 0x01;
838
839 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
840 sizeof(support), &support);
841 }
842 }
843
844 static int __hci_init(struct hci_dev *hdev)
845 {
846 int err;
847
848 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT);
849 if (err < 0)
850 return err;
851
852 /* The Device Under Test (DUT) mode is special and available for
853 * all controller types. So just create it early on.
854 */
855 if (hci_dev_test_flag(hdev, HCI_SETUP)) {
856 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
857 &dut_mode_fops);
858 }
859
860 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT);
861 if (err < 0)
862 return err;
863
864 /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
865 * BR/EDR/LE type controllers. AMP controllers only need the
866 * first two stages of init.
867 */
868 if (hdev->dev_type != HCI_BREDR)
869 return 0;
870
871 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT);
872 if (err < 0)
873 return err;
874
875 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT);
876 if (err < 0)
877 return err;
878
879 /* This function is only called when the controller is actually in
880 * configured state. When the controller is marked as unconfigured,
881 * this initialization procedure is not run.
882 *
883 * It means that it is possible that a controller runs through its
884 * setup phase and then discovers missing settings. If that is the
885 * case, then this function will not be called. It then will only
886 * be called during the config phase.
887 *
888 * So only when in setup phase or config phase, create the debugfs
889 * entries and register the SMP channels.
890 */
891 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
892 !hci_dev_test_flag(hdev, HCI_CONFIG))
893 return 0;
894
895 hci_debugfs_create_common(hdev);
896
897 if (lmp_bredr_capable(hdev))
898 hci_debugfs_create_bredr(hdev);
899
900 if (lmp_le_capable(hdev))
901 hci_debugfs_create_le(hdev);
902
903 return 0;
904 }
905
906 static void hci_init0_req(struct hci_request *req, unsigned long opt)
907 {
908 struct hci_dev *hdev = req->hdev;
909
910 BT_DBG("%s %ld", hdev->name, opt);
911
912 /* Reset */
913 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
914 hci_reset_req(req, 0);
915
916 /* Read Local Version */
917 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
918
919 /* Read BD Address */
920 if (hdev->set_bdaddr)
921 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
922 }
923
924 static int __hci_unconf_init(struct hci_dev *hdev)
925 {
926 int err;
927
928 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
929 return 0;
930
931 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT);
932 if (err < 0)
933 return err;
934
935 return 0;
936 }
937
938 static void hci_scan_req(struct hci_request *req, unsigned long opt)
939 {
940 __u8 scan = opt;
941
942 BT_DBG("%s %x", req->hdev->name, scan);
943
944 /* Inquiry and Page scans */
945 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
946 }
947
948 static void hci_auth_req(struct hci_request *req, unsigned long opt)
949 {
950 __u8 auth = opt;
951
952 BT_DBG("%s %x", req->hdev->name, auth);
953
954 /* Authentication */
955 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
956 }
957
958 static void hci_encrypt_req(struct hci_request *req, unsigned long opt)
959 {
960 __u8 encrypt = opt;
961
962 BT_DBG("%s %x", req->hdev->name, encrypt);
963
964 /* Encryption */
965 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
966 }
967
968 static void hci_linkpol_req(struct hci_request *req, unsigned long opt)
969 {
970 __le16 policy = cpu_to_le16(opt);
971
972 BT_DBG("%s %x", req->hdev->name, policy);
973
974 /* Default link policy */
975 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
976 }
977
978 /* Get HCI device by index.
979 * Device is held on return. */
980 struct hci_dev *hci_dev_get(int index)
981 {
982 struct hci_dev *hdev = NULL, *d;
983
984 BT_DBG("%d", index);
985
986 if (index < 0)
987 return NULL;
988
989 read_lock(&hci_dev_list_lock);
990 list_for_each_entry(d, &hci_dev_list, list) {
991 if (d->id == index) {
992 hdev = hci_dev_hold(d);
993 break;
994 }
995 }
996 read_unlock(&hci_dev_list_lock);
997 return hdev;
998 }
999
1000 /* ---- Inquiry support ---- */
1001
1002 bool hci_discovery_active(struct hci_dev *hdev)
1003 {
1004 struct discovery_state *discov = &hdev->discovery;
1005
1006 switch (discov->state) {
1007 case DISCOVERY_FINDING:
1008 case DISCOVERY_RESOLVING:
1009 return true;
1010
1011 default:
1012 return false;
1013 }
1014 }
1015
1016 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1017 {
1018 int old_state = hdev->discovery.state;
1019
1020 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1021
1022 if (old_state == state)
1023 return;
1024
1025 hdev->discovery.state = state;
1026
1027 switch (state) {
1028 case DISCOVERY_STOPPED:
1029 hci_update_background_scan(hdev);
1030
1031 if (old_state != DISCOVERY_STARTING)
1032 mgmt_discovering(hdev, 0);
1033 break;
1034 case DISCOVERY_STARTING:
1035 break;
1036 case DISCOVERY_FINDING:
1037 mgmt_discovering(hdev, 1);
1038 break;
1039 case DISCOVERY_RESOLVING:
1040 break;
1041 case DISCOVERY_STOPPING:
1042 break;
1043 }
1044 }
1045
1046 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1047 {
1048 struct discovery_state *cache = &hdev->discovery;
1049 struct inquiry_entry *p, *n;
1050
1051 list_for_each_entry_safe(p, n, &cache->all, all) {
1052 list_del(&p->all);
1053 kfree(p);
1054 }
1055
1056 INIT_LIST_HEAD(&cache->unknown);
1057 INIT_LIST_HEAD(&cache->resolve);
1058 }
1059
1060 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1061 bdaddr_t *bdaddr)
1062 {
1063 struct discovery_state *cache = &hdev->discovery;
1064 struct inquiry_entry *e;
1065
1066 BT_DBG("cache %p, %pMR", cache, bdaddr);
1067
1068 list_for_each_entry(e, &cache->all, all) {
1069 if (!bacmp(&e->data.bdaddr, bdaddr))
1070 return e;
1071 }
1072
1073 return NULL;
1074 }
1075
1076 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1077 bdaddr_t *bdaddr)
1078 {
1079 struct discovery_state *cache = &hdev->discovery;
1080 struct inquiry_entry *e;
1081
1082 BT_DBG("cache %p, %pMR", cache, bdaddr);
1083
1084 list_for_each_entry(e, &cache->unknown, list) {
1085 if (!bacmp(&e->data.bdaddr, bdaddr))
1086 return e;
1087 }
1088
1089 return NULL;
1090 }
1091
1092 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1093 bdaddr_t *bdaddr,
1094 int state)
1095 {
1096 struct discovery_state *cache = &hdev->discovery;
1097 struct inquiry_entry *e;
1098
1099 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1100
1101 list_for_each_entry(e, &cache->resolve, list) {
1102 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1103 return e;
1104 if (!bacmp(&e->data.bdaddr, bdaddr))
1105 return e;
1106 }
1107
1108 return NULL;
1109 }
1110
1111 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1112 struct inquiry_entry *ie)
1113 {
1114 struct discovery_state *cache = &hdev->discovery;
1115 struct list_head *pos = &cache->resolve;
1116 struct inquiry_entry *p;
1117
1118 list_del(&ie->list);
1119
1120 list_for_each_entry(p, &cache->resolve, list) {
1121 if (p->name_state != NAME_PENDING &&
1122 abs(p->data.rssi) >= abs(ie->data.rssi))
1123 break;
1124 pos = &p->list;
1125 }
1126
1127 list_add(&ie->list, pos);
1128 }
1129
1130 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1131 bool name_known)
1132 {
1133 struct discovery_state *cache = &hdev->discovery;
1134 struct inquiry_entry *ie;
1135 u32 flags = 0;
1136
1137 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1138
1139 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1140
1141 if (!data->ssp_mode)
1142 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1143
1144 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1145 if (ie) {
1146 if (!ie->data.ssp_mode)
1147 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1148
1149 if (ie->name_state == NAME_NEEDED &&
1150 data->rssi != ie->data.rssi) {
1151 ie->data.rssi = data->rssi;
1152 hci_inquiry_cache_update_resolve(hdev, ie);
1153 }
1154
1155 goto update;
1156 }
1157
1158 /* Entry not in the cache. Add new one. */
1159 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1160 if (!ie) {
1161 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1162 goto done;
1163 }
1164
1165 list_add(&ie->all, &cache->all);
1166
1167 if (name_known) {
1168 ie->name_state = NAME_KNOWN;
1169 } else {
1170 ie->name_state = NAME_NOT_KNOWN;
1171 list_add(&ie->list, &cache->unknown);
1172 }
1173
1174 update:
1175 if (name_known && ie->name_state != NAME_KNOWN &&
1176 ie->name_state != NAME_PENDING) {
1177 ie->name_state = NAME_KNOWN;
1178 list_del(&ie->list);
1179 }
1180
1181 memcpy(&ie->data, data, sizeof(*data));
1182 ie->timestamp = jiffies;
1183 cache->timestamp = jiffies;
1184
1185 if (ie->name_state == NAME_NOT_KNOWN)
1186 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1187
1188 done:
1189 return flags;
1190 }
1191
1192 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1193 {
1194 struct discovery_state *cache = &hdev->discovery;
1195 struct inquiry_info *info = (struct inquiry_info *) buf;
1196 struct inquiry_entry *e;
1197 int copied = 0;
1198
1199 list_for_each_entry(e, &cache->all, all) {
1200 struct inquiry_data *data = &e->data;
1201
1202 if (copied >= num)
1203 break;
1204
1205 bacpy(&info->bdaddr, &data->bdaddr);
1206 info->pscan_rep_mode = data->pscan_rep_mode;
1207 info->pscan_period_mode = data->pscan_period_mode;
1208 info->pscan_mode = data->pscan_mode;
1209 memcpy(info->dev_class, data->dev_class, 3);
1210 info->clock_offset = data->clock_offset;
1211
1212 info++;
1213 copied++;
1214 }
1215
1216 BT_DBG("cache %p, copied %d", cache, copied);
1217 return copied;
1218 }
1219
1220 static void hci_inq_req(struct hci_request *req, unsigned long opt)
1221 {
1222 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1223 struct hci_dev *hdev = req->hdev;
1224 struct hci_cp_inquiry cp;
1225
1226 BT_DBG("%s", hdev->name);
1227
1228 if (test_bit(HCI_INQUIRY, &hdev->flags))
1229 return;
1230
1231 /* Start Inquiry */
1232 memcpy(&cp.lap, &ir->lap, 3);
1233 cp.length = ir->length;
1234 cp.num_rsp = ir->num_rsp;
1235 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1236 }
1237
1238 int hci_inquiry(void __user *arg)
1239 {
1240 __u8 __user *ptr = arg;
1241 struct hci_inquiry_req ir;
1242 struct hci_dev *hdev;
1243 int err = 0, do_inquiry = 0, max_rsp;
1244 long timeo;
1245 __u8 *buf;
1246
1247 if (copy_from_user(&ir, ptr, sizeof(ir)))
1248 return -EFAULT;
1249
1250 hdev = hci_dev_get(ir.dev_id);
1251 if (!hdev)
1252 return -ENODEV;
1253
1254 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1255 err = -EBUSY;
1256 goto done;
1257 }
1258
1259 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1260 err = -EOPNOTSUPP;
1261 goto done;
1262 }
1263
1264 if (hdev->dev_type != HCI_BREDR) {
1265 err = -EOPNOTSUPP;
1266 goto done;
1267 }
1268
1269 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1270 err = -EOPNOTSUPP;
1271 goto done;
1272 }
1273
1274 hci_dev_lock(hdev);
1275 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1276 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1277 hci_inquiry_cache_flush(hdev);
1278 do_inquiry = 1;
1279 }
1280 hci_dev_unlock(hdev);
1281
1282 timeo = ir.length * msecs_to_jiffies(2000);
1283
1284 if (do_inquiry) {
1285 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1286 timeo);
1287 if (err < 0)
1288 goto done;
1289
1290 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1291 * cleared). If it is interrupted by a signal, return -EINTR.
1292 */
1293 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1294 TASK_INTERRUPTIBLE))
1295 return -EINTR;
1296 }
1297
1298 /* for unlimited number of responses we will use buffer with
1299 * 255 entries
1300 */
1301 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1302
1303 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1304 * copy it to the user space.
1305 */
1306 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1307 if (!buf) {
1308 err = -ENOMEM;
1309 goto done;
1310 }
1311
1312 hci_dev_lock(hdev);
1313 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1314 hci_dev_unlock(hdev);
1315
1316 BT_DBG("num_rsp %d", ir.num_rsp);
1317
1318 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1319 ptr += sizeof(ir);
1320 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1321 ir.num_rsp))
1322 err = -EFAULT;
1323 } else
1324 err = -EFAULT;
1325
1326 kfree(buf);
1327
1328 done:
1329 hci_dev_put(hdev);
1330 return err;
1331 }
1332
1333 static int hci_dev_do_open(struct hci_dev *hdev)
1334 {
1335 int ret = 0;
1336
1337 BT_DBG("%s %p", hdev->name, hdev);
1338
1339 hci_req_lock(hdev);
1340
1341 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1342 ret = -ENODEV;
1343 goto done;
1344 }
1345
1346 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1347 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1348 /* Check for rfkill but allow the HCI setup stage to
1349 * proceed (which in itself doesn't cause any RF activity).
1350 */
1351 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1352 ret = -ERFKILL;
1353 goto done;
1354 }
1355
1356 /* Check for valid public address or a configured static
1357 * random adddress, but let the HCI setup proceed to
1358 * be able to determine if there is a public address
1359 * or not.
1360 *
1361 * In case of user channel usage, it is not important
1362 * if a public address or static random address is
1363 * available.
1364 *
1365 * This check is only valid for BR/EDR controllers
1366 * since AMP controllers do not have an address.
1367 */
1368 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1369 hdev->dev_type == HCI_BREDR &&
1370 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1371 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1372 ret = -EADDRNOTAVAIL;
1373 goto done;
1374 }
1375 }
1376
1377 if (test_bit(HCI_UP, &hdev->flags)) {
1378 ret = -EALREADY;
1379 goto done;
1380 }
1381
1382 if (hdev->open(hdev)) {
1383 ret = -EIO;
1384 goto done;
1385 }
1386
1387 atomic_set(&hdev->cmd_cnt, 1);
1388 set_bit(HCI_INIT, &hdev->flags);
1389
1390 if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1391 if (hdev->setup)
1392 ret = hdev->setup(hdev);
1393
1394 /* The transport driver can set these quirks before
1395 * creating the HCI device or in its setup callback.
1396 *
1397 * In case any of them is set, the controller has to
1398 * start up as unconfigured.
1399 */
1400 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1401 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1402 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1403
1404 /* For an unconfigured controller it is required to
1405 * read at least the version information provided by
1406 * the Read Local Version Information command.
1407 *
1408 * If the set_bdaddr driver callback is provided, then
1409 * also the original Bluetooth public device address
1410 * will be read using the Read BD Address command.
1411 */
1412 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1413 ret = __hci_unconf_init(hdev);
1414 }
1415
1416 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1417 /* If public address change is configured, ensure that
1418 * the address gets programmed. If the driver does not
1419 * support changing the public address, fail the power
1420 * on procedure.
1421 */
1422 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1423 hdev->set_bdaddr)
1424 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1425 else
1426 ret = -EADDRNOTAVAIL;
1427 }
1428
1429 if (!ret) {
1430 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1431 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1432 ret = __hci_init(hdev);
1433 }
1434
1435 clear_bit(HCI_INIT, &hdev->flags);
1436
1437 if (!ret) {
1438 hci_dev_hold(hdev);
1439 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1440 set_bit(HCI_UP, &hdev->flags);
1441 hci_notify(hdev, HCI_DEV_UP);
1442 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1443 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1444 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1445 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1446 hdev->dev_type == HCI_BREDR) {
1447 hci_dev_lock(hdev);
1448 mgmt_powered(hdev, 1);
1449 hci_dev_unlock(hdev);
1450 }
1451 } else {
1452 /* Init failed, cleanup */
1453 flush_work(&hdev->tx_work);
1454 flush_work(&hdev->cmd_work);
1455 flush_work(&hdev->rx_work);
1456
1457 skb_queue_purge(&hdev->cmd_q);
1458 skb_queue_purge(&hdev->rx_q);
1459
1460 if (hdev->flush)
1461 hdev->flush(hdev);
1462
1463 if (hdev->sent_cmd) {
1464 kfree_skb(hdev->sent_cmd);
1465 hdev->sent_cmd = NULL;
1466 }
1467
1468 hdev->close(hdev);
1469 hdev->flags &= BIT(HCI_RAW);
1470 }
1471
1472 done:
1473 hci_req_unlock(hdev);
1474 return ret;
1475 }
1476
1477 /* ---- HCI ioctl helpers ---- */
1478
1479 int hci_dev_open(__u16 dev)
1480 {
1481 struct hci_dev *hdev;
1482 int err;
1483
1484 hdev = hci_dev_get(dev);
1485 if (!hdev)
1486 return -ENODEV;
1487
1488 /* Devices that are marked as unconfigured can only be powered
1489 * up as user channel. Trying to bring them up as normal devices
1490 * will result into a failure. Only user channel operation is
1491 * possible.
1492 *
1493 * When this function is called for a user channel, the flag
1494 * HCI_USER_CHANNEL will be set first before attempting to
1495 * open the device.
1496 */
1497 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1498 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1499 err = -EOPNOTSUPP;
1500 goto done;
1501 }
1502
1503 /* We need to ensure that no other power on/off work is pending
1504 * before proceeding to call hci_dev_do_open. This is
1505 * particularly important if the setup procedure has not yet
1506 * completed.
1507 */
1508 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1509 cancel_delayed_work(&hdev->power_off);
1510
1511 /* After this call it is guaranteed that the setup procedure
1512 * has finished. This means that error conditions like RFKILL
1513 * or no valid public or static random address apply.
1514 */
1515 flush_workqueue(hdev->req_workqueue);
1516
1517 /* For controllers not using the management interface and that
1518 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1519 * so that pairing works for them. Once the management interface
1520 * is in use this bit will be cleared again and userspace has
1521 * to explicitly enable it.
1522 */
1523 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1524 !hci_dev_test_flag(hdev, HCI_MGMT))
1525 hci_dev_set_flag(hdev, HCI_BONDABLE);
1526
1527 err = hci_dev_do_open(hdev);
1528
1529 done:
1530 hci_dev_put(hdev);
1531 return err;
1532 }
1533
1534 /* This function requires the caller holds hdev->lock */
1535 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1536 {
1537 struct hci_conn_params *p;
1538
1539 list_for_each_entry(p, &hdev->le_conn_params, list) {
1540 if (p->conn) {
1541 hci_conn_drop(p->conn);
1542 hci_conn_put(p->conn);
1543 p->conn = NULL;
1544 }
1545 list_del_init(&p->action);
1546 }
1547
1548 BT_DBG("All LE pending actions cleared");
1549 }
1550
1551 static int hci_dev_do_close(struct hci_dev *hdev)
1552 {
1553 BT_DBG("%s %p", hdev->name, hdev);
1554
1555 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1556 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1557 test_bit(HCI_UP, &hdev->flags)) {
1558 /* Execute vendor specific shutdown routine */
1559 if (hdev->shutdown)
1560 hdev->shutdown(hdev);
1561 }
1562
1563 cancel_delayed_work(&hdev->power_off);
1564
1565 hci_req_cancel(hdev, ENODEV);
1566 hci_req_lock(hdev);
1567
1568 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1569 cancel_delayed_work_sync(&hdev->cmd_timer);
1570 hci_req_unlock(hdev);
1571 return 0;
1572 }
1573
1574 /* Flush RX and TX works */
1575 flush_work(&hdev->tx_work);
1576 flush_work(&hdev->rx_work);
1577
1578 if (hdev->discov_timeout > 0) {
1579 cancel_delayed_work(&hdev->discov_off);
1580 hdev->discov_timeout = 0;
1581 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1582 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1583 }
1584
1585 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1586 cancel_delayed_work(&hdev->service_cache);
1587
1588 cancel_delayed_work_sync(&hdev->le_scan_disable);
1589 cancel_delayed_work_sync(&hdev->le_scan_restart);
1590
1591 if (hci_dev_test_flag(hdev, HCI_MGMT))
1592 cancel_delayed_work_sync(&hdev->rpa_expired);
1593
1594 if (hdev->adv_instance_timeout) {
1595 cancel_delayed_work_sync(&hdev->adv_instance_expire);
1596 hdev->adv_instance_timeout = 0;
1597 }
1598
1599 /* Avoid potential lockdep warnings from the *_flush() calls by
1600 * ensuring the workqueue is empty up front.
1601 */
1602 drain_workqueue(hdev->workqueue);
1603
1604 hci_dev_lock(hdev);
1605
1606 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1607
1608 if (!hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
1609 if (hdev->dev_type == HCI_BREDR)
1610 mgmt_powered(hdev, 0);
1611 }
1612
1613 hci_inquiry_cache_flush(hdev);
1614 hci_pend_le_actions_clear(hdev);
1615 hci_conn_hash_flush(hdev);
1616 hci_dev_unlock(hdev);
1617
1618 smp_unregister(hdev);
1619
1620 hci_notify(hdev, HCI_DEV_DOWN);
1621
1622 if (hdev->flush)
1623 hdev->flush(hdev);
1624
1625 /* Reset device */
1626 skb_queue_purge(&hdev->cmd_q);
1627 atomic_set(&hdev->cmd_cnt, 1);
1628 if (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) &&
1629 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1630 test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
1631 set_bit(HCI_INIT, &hdev->flags);
1632 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT);
1633 clear_bit(HCI_INIT, &hdev->flags);
1634 }
1635
1636 /* flush cmd work */
1637 flush_work(&hdev->cmd_work);
1638
1639 /* Drop queues */
1640 skb_queue_purge(&hdev->rx_q);
1641 skb_queue_purge(&hdev->cmd_q);
1642 skb_queue_purge(&hdev->raw_q);
1643
1644 /* Drop last sent command */
1645 if (hdev->sent_cmd) {
1646 cancel_delayed_work_sync(&hdev->cmd_timer);
1647 kfree_skb(hdev->sent_cmd);
1648 hdev->sent_cmd = NULL;
1649 }
1650
1651 /* After this point our queues are empty
1652 * and no tasks are scheduled. */
1653 hdev->close(hdev);
1654
1655 /* Clear flags */
1656 hdev->flags &= BIT(HCI_RAW);
1657 hci_dev_clear_volatile_flags(hdev);
1658
1659 /* Controller radio is available but is currently powered down */
1660 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1661
1662 memset(hdev->eir, 0, sizeof(hdev->eir));
1663 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1664 bacpy(&hdev->random_addr, BDADDR_ANY);
1665
1666 hci_req_unlock(hdev);
1667
1668 hci_dev_put(hdev);
1669 return 0;
1670 }
1671
1672 int hci_dev_close(__u16 dev)
1673 {
1674 struct hci_dev *hdev;
1675 int err;
1676
1677 hdev = hci_dev_get(dev);
1678 if (!hdev)
1679 return -ENODEV;
1680
1681 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1682 err = -EBUSY;
1683 goto done;
1684 }
1685
1686 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1687 cancel_delayed_work(&hdev->power_off);
1688
1689 err = hci_dev_do_close(hdev);
1690
1691 done:
1692 hci_dev_put(hdev);
1693 return err;
1694 }
1695
1696 static int hci_dev_do_reset(struct hci_dev *hdev)
1697 {
1698 int ret;
1699
1700 BT_DBG("%s %p", hdev->name, hdev);
1701
1702 hci_req_lock(hdev);
1703
1704 /* Drop queues */
1705 skb_queue_purge(&hdev->rx_q);
1706 skb_queue_purge(&hdev->cmd_q);
1707
1708 /* Avoid potential lockdep warnings from the *_flush() calls by
1709 * ensuring the workqueue is empty up front.
1710 */
1711 drain_workqueue(hdev->workqueue);
1712
1713 hci_dev_lock(hdev);
1714 hci_inquiry_cache_flush(hdev);
1715 hci_conn_hash_flush(hdev);
1716 hci_dev_unlock(hdev);
1717
1718 if (hdev->flush)
1719 hdev->flush(hdev);
1720
1721 atomic_set(&hdev->cmd_cnt, 1);
1722 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1723
1724 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT);
1725
1726 hci_req_unlock(hdev);
1727 return ret;
1728 }
1729
1730 int hci_dev_reset(__u16 dev)
1731 {
1732 struct hci_dev *hdev;
1733 int err;
1734
1735 hdev = hci_dev_get(dev);
1736 if (!hdev)
1737 return -ENODEV;
1738
1739 if (!test_bit(HCI_UP, &hdev->flags)) {
1740 err = -ENETDOWN;
1741 goto done;
1742 }
1743
1744 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1745 err = -EBUSY;
1746 goto done;
1747 }
1748
1749 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1750 err = -EOPNOTSUPP;
1751 goto done;
1752 }
1753
1754 err = hci_dev_do_reset(hdev);
1755
1756 done:
1757 hci_dev_put(hdev);
1758 return err;
1759 }
1760
1761 int hci_dev_reset_stat(__u16 dev)
1762 {
1763 struct hci_dev *hdev;
1764 int ret = 0;
1765
1766 hdev = hci_dev_get(dev);
1767 if (!hdev)
1768 return -ENODEV;
1769
1770 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1771 ret = -EBUSY;
1772 goto done;
1773 }
1774
1775 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1776 ret = -EOPNOTSUPP;
1777 goto done;
1778 }
1779
1780 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1781
1782 done:
1783 hci_dev_put(hdev);
1784 return ret;
1785 }
1786
1787 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1788 {
1789 bool conn_changed, discov_changed;
1790
1791 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1792
1793 if ((scan & SCAN_PAGE))
1794 conn_changed = !hci_dev_test_and_set_flag(hdev,
1795 HCI_CONNECTABLE);
1796 else
1797 conn_changed = hci_dev_test_and_clear_flag(hdev,
1798 HCI_CONNECTABLE);
1799
1800 if ((scan & SCAN_INQUIRY)) {
1801 discov_changed = !hci_dev_test_and_set_flag(hdev,
1802 HCI_DISCOVERABLE);
1803 } else {
1804 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1805 discov_changed = hci_dev_test_and_clear_flag(hdev,
1806 HCI_DISCOVERABLE);
1807 }
1808
1809 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1810 return;
1811
1812 if (conn_changed || discov_changed) {
1813 /* In case this was disabled through mgmt */
1814 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1815
1816 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1817 mgmt_update_adv_data(hdev);
1818
1819 mgmt_new_settings(hdev);
1820 }
1821 }
1822
1823 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1824 {
1825 struct hci_dev *hdev;
1826 struct hci_dev_req dr;
1827 int err = 0;
1828
1829 if (copy_from_user(&dr, arg, sizeof(dr)))
1830 return -EFAULT;
1831
1832 hdev = hci_dev_get(dr.dev_id);
1833 if (!hdev)
1834 return -ENODEV;
1835
1836 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1837 err = -EBUSY;
1838 goto done;
1839 }
1840
1841 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1842 err = -EOPNOTSUPP;
1843 goto done;
1844 }
1845
1846 if (hdev->dev_type != HCI_BREDR) {
1847 err = -EOPNOTSUPP;
1848 goto done;
1849 }
1850
1851 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1852 err = -EOPNOTSUPP;
1853 goto done;
1854 }
1855
1856 switch (cmd) {
1857 case HCISETAUTH:
1858 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1859 HCI_INIT_TIMEOUT);
1860 break;
1861
1862 case HCISETENCRYPT:
1863 if (!lmp_encrypt_capable(hdev)) {
1864 err = -EOPNOTSUPP;
1865 break;
1866 }
1867
1868 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1869 /* Auth must be enabled first */
1870 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1871 HCI_INIT_TIMEOUT);
1872 if (err)
1873 break;
1874 }
1875
1876 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1877 HCI_INIT_TIMEOUT);
1878 break;
1879
1880 case HCISETSCAN:
1881 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1882 HCI_INIT_TIMEOUT);
1883
1884 /* Ensure that the connectable and discoverable states
1885 * get correctly modified as this was a non-mgmt change.
1886 */
1887 if (!err)
1888 hci_update_scan_state(hdev, dr.dev_opt);
1889 break;
1890
1891 case HCISETLINKPOL:
1892 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1893 HCI_INIT_TIMEOUT);
1894 break;
1895
1896 case HCISETLINKMODE:
1897 hdev->link_mode = ((__u16) dr.dev_opt) &
1898 (HCI_LM_MASTER | HCI_LM_ACCEPT);
1899 break;
1900
1901 case HCISETPTYPE:
1902 hdev->pkt_type = (__u16) dr.dev_opt;
1903 break;
1904
1905 case HCISETACLMTU:
1906 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
1907 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1908 break;
1909
1910 case HCISETSCOMTU:
1911 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
1912 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1913 break;
1914
1915 default:
1916 err = -EINVAL;
1917 break;
1918 }
1919
1920 done:
1921 hci_dev_put(hdev);
1922 return err;
1923 }
1924
1925 int hci_get_dev_list(void __user *arg)
1926 {
1927 struct hci_dev *hdev;
1928 struct hci_dev_list_req *dl;
1929 struct hci_dev_req *dr;
1930 int n = 0, size, err;
1931 __u16 dev_num;
1932
1933 if (get_user(dev_num, (__u16 __user *) arg))
1934 return -EFAULT;
1935
1936 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1937 return -EINVAL;
1938
1939 size = sizeof(*dl) + dev_num * sizeof(*dr);
1940
1941 dl = kzalloc(size, GFP_KERNEL);
1942 if (!dl)
1943 return -ENOMEM;
1944
1945 dr = dl->dev_req;
1946
1947 read_lock(&hci_dev_list_lock);
1948 list_for_each_entry(hdev, &hci_dev_list, list) {
1949 unsigned long flags = hdev->flags;
1950
1951 /* When the auto-off is configured it means the transport
1952 * is running, but in that case still indicate that the
1953 * device is actually down.
1954 */
1955 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1956 flags &= ~BIT(HCI_UP);
1957
1958 (dr + n)->dev_id = hdev->id;
1959 (dr + n)->dev_opt = flags;
1960
1961 if (++n >= dev_num)
1962 break;
1963 }
1964 read_unlock(&hci_dev_list_lock);
1965
1966 dl->dev_num = n;
1967 size = sizeof(*dl) + n * sizeof(*dr);
1968
1969 err = copy_to_user(arg, dl, size);
1970 kfree(dl);
1971
1972 return err ? -EFAULT : 0;
1973 }
1974
1975 int hci_get_dev_info(void __user *arg)
1976 {
1977 struct hci_dev *hdev;
1978 struct hci_dev_info di;
1979 unsigned long flags;
1980 int err = 0;
1981
1982 if (copy_from_user(&di, arg, sizeof(di)))
1983 return -EFAULT;
1984
1985 hdev = hci_dev_get(di.dev_id);
1986 if (!hdev)
1987 return -ENODEV;
1988
1989 /* When the auto-off is configured it means the transport
1990 * is running, but in that case still indicate that the
1991 * device is actually down.
1992 */
1993 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1994 flags = hdev->flags & ~BIT(HCI_UP);
1995 else
1996 flags = hdev->flags;
1997
1998 strcpy(di.name, hdev->name);
1999 di.bdaddr = hdev->bdaddr;
2000 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2001 di.flags = flags;
2002 di.pkt_type = hdev->pkt_type;
2003 if (lmp_bredr_capable(hdev)) {
2004 di.acl_mtu = hdev->acl_mtu;
2005 di.acl_pkts = hdev->acl_pkts;
2006 di.sco_mtu = hdev->sco_mtu;
2007 di.sco_pkts = hdev->sco_pkts;
2008 } else {
2009 di.acl_mtu = hdev->le_mtu;
2010 di.acl_pkts = hdev->le_pkts;
2011 di.sco_mtu = 0;
2012 di.sco_pkts = 0;
2013 }
2014 di.link_policy = hdev->link_policy;
2015 di.link_mode = hdev->link_mode;
2016
2017 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2018 memcpy(&di.features, &hdev->features, sizeof(di.features));
2019
2020 if (copy_to_user(arg, &di, sizeof(di)))
2021 err = -EFAULT;
2022
2023 hci_dev_put(hdev);
2024
2025 return err;
2026 }
2027
2028 /* ---- Interface to HCI drivers ---- */
2029
2030 static int hci_rfkill_set_block(void *data, bool blocked)
2031 {
2032 struct hci_dev *hdev = data;
2033
2034 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2035
2036 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2037 return -EBUSY;
2038
2039 if (blocked) {
2040 hci_dev_set_flag(hdev, HCI_RFKILLED);
2041 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2042 !hci_dev_test_flag(hdev, HCI_CONFIG))
2043 hci_dev_do_close(hdev);
2044 } else {
2045 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2046 }
2047
2048 return 0;
2049 }
2050
2051 static const struct rfkill_ops hci_rfkill_ops = {
2052 .set_block = hci_rfkill_set_block,
2053 };
2054
2055 static void hci_power_on(struct work_struct *work)
2056 {
2057 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2058 int err;
2059
2060 BT_DBG("%s", hdev->name);
2061
2062 err = hci_dev_do_open(hdev);
2063 if (err < 0) {
2064 hci_dev_lock(hdev);
2065 mgmt_set_powered_failed(hdev, err);
2066 hci_dev_unlock(hdev);
2067 return;
2068 }
2069
2070 /* During the HCI setup phase, a few error conditions are
2071 * ignored and they need to be checked now. If they are still
2072 * valid, it is important to turn the device back off.
2073 */
2074 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2075 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2076 (hdev->dev_type == HCI_BREDR &&
2077 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2078 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2079 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2080 hci_dev_do_close(hdev);
2081 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2082 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2083 HCI_AUTO_OFF_TIMEOUT);
2084 }
2085
2086 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2087 /* For unconfigured devices, set the HCI_RAW flag
2088 * so that userspace can easily identify them.
2089 */
2090 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2091 set_bit(HCI_RAW, &hdev->flags);
2092
2093 /* For fully configured devices, this will send
2094 * the Index Added event. For unconfigured devices,
2095 * it will send Unconfigued Index Added event.
2096 *
2097 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2098 * and no event will be send.
2099 */
2100 mgmt_index_added(hdev);
2101 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2102 /* When the controller is now configured, then it
2103 * is important to clear the HCI_RAW flag.
2104 */
2105 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2106 clear_bit(HCI_RAW, &hdev->flags);
2107
2108 /* Powering on the controller with HCI_CONFIG set only
2109 * happens with the transition from unconfigured to
2110 * configured. This will send the Index Added event.
2111 */
2112 mgmt_index_added(hdev);
2113 }
2114 }
2115
2116 static void hci_power_off(struct work_struct *work)
2117 {
2118 struct hci_dev *hdev = container_of(work, struct hci_dev,
2119 power_off.work);
2120
2121 BT_DBG("%s", hdev->name);
2122
2123 hci_dev_do_close(hdev);
2124 }
2125
2126 static void hci_error_reset(struct work_struct *work)
2127 {
2128 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2129
2130 BT_DBG("%s", hdev->name);
2131
2132 if (hdev->hw_error)
2133 hdev->hw_error(hdev, hdev->hw_error_code);
2134 else
2135 BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2136 hdev->hw_error_code);
2137
2138 if (hci_dev_do_close(hdev))
2139 return;
2140
2141 hci_dev_do_open(hdev);
2142 }
2143
2144 static void hci_discov_off(struct work_struct *work)
2145 {
2146 struct hci_dev *hdev;
2147
2148 hdev = container_of(work, struct hci_dev, discov_off.work);
2149
2150 BT_DBG("%s", hdev->name);
2151
2152 mgmt_discoverable_timeout(hdev);
2153 }
2154
2155 static void hci_adv_timeout_expire(struct work_struct *work)
2156 {
2157 struct hci_dev *hdev;
2158
2159 hdev = container_of(work, struct hci_dev, adv_instance_expire.work);
2160
2161 BT_DBG("%s", hdev->name);
2162
2163 mgmt_adv_timeout_expired(hdev);
2164 }
2165
2166 void hci_uuids_clear(struct hci_dev *hdev)
2167 {
2168 struct bt_uuid *uuid, *tmp;
2169
2170 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2171 list_del(&uuid->list);
2172 kfree(uuid);
2173 }
2174 }
2175
2176 void hci_link_keys_clear(struct hci_dev *hdev)
2177 {
2178 struct link_key *key;
2179
2180 list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2181 list_del_rcu(&key->list);
2182 kfree_rcu(key, rcu);
2183 }
2184 }
2185
2186 void hci_smp_ltks_clear(struct hci_dev *hdev)
2187 {
2188 struct smp_ltk *k;
2189
2190 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2191 list_del_rcu(&k->list);
2192 kfree_rcu(k, rcu);
2193 }
2194 }
2195
2196 void hci_smp_irks_clear(struct hci_dev *hdev)
2197 {
2198 struct smp_irk *k;
2199
2200 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2201 list_del_rcu(&k->list);
2202 kfree_rcu(k, rcu);
2203 }
2204 }
2205
2206 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2207 {
2208 struct link_key *k;
2209
2210 rcu_read_lock();
2211 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2212 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2213 rcu_read_unlock();
2214 return k;
2215 }
2216 }
2217 rcu_read_unlock();
2218
2219 return NULL;
2220 }
2221
2222 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2223 u8 key_type, u8 old_key_type)
2224 {
2225 /* Legacy key */
2226 if (key_type < 0x03)
2227 return true;
2228
2229 /* Debug keys are insecure so don't store them persistently */
2230 if (key_type == HCI_LK_DEBUG_COMBINATION)
2231 return false;
2232
2233 /* Changed combination key and there's no previous one */
2234 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2235 return false;
2236
2237 /* Security mode 3 case */
2238 if (!conn)
2239 return true;
2240
2241 /* BR/EDR key derived using SC from an LE link */
2242 if (conn->type == LE_LINK)
2243 return true;
2244
2245 /* Neither local nor remote side had no-bonding as requirement */
2246 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2247 return true;
2248
2249 /* Local side had dedicated bonding as requirement */
2250 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2251 return true;
2252
2253 /* Remote side had dedicated bonding as requirement */
2254 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2255 return true;
2256
2257 /* If none of the above criteria match, then don't store the key
2258 * persistently */
2259 return false;
2260 }
2261
2262 static u8 ltk_role(u8 type)
2263 {
2264 if (type == SMP_LTK)
2265 return HCI_ROLE_MASTER;
2266
2267 return HCI_ROLE_SLAVE;
2268 }
2269
2270 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2271 u8 addr_type, u8 role)
2272 {
2273 struct smp_ltk *k;
2274
2275 rcu_read_lock();
2276 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2277 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2278 continue;
2279
2280 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2281 rcu_read_unlock();
2282 return k;
2283 }
2284 }
2285 rcu_read_unlock();
2286
2287 return NULL;
2288 }
2289
2290 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2291 {
2292 struct smp_irk *irk;
2293
2294 rcu_read_lock();
2295 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2296 if (!bacmp(&irk->rpa, rpa)) {
2297 rcu_read_unlock();
2298 return irk;
2299 }
2300 }
2301
2302 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2303 if (smp_irk_matches(hdev, irk->val, rpa)) {
2304 bacpy(&irk->rpa, rpa);
2305 rcu_read_unlock();
2306 return irk;
2307 }
2308 }
2309 rcu_read_unlock();
2310
2311 return NULL;
2312 }
2313
2314 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2315 u8 addr_type)
2316 {
2317 struct smp_irk *irk;
2318
2319 /* Identity Address must be public or static random */
2320 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2321 return NULL;
2322
2323 rcu_read_lock();
2324 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2325 if (addr_type == irk->addr_type &&
2326 bacmp(bdaddr, &irk->bdaddr) == 0) {
2327 rcu_read_unlock();
2328 return irk;
2329 }
2330 }
2331 rcu_read_unlock();
2332
2333 return NULL;
2334 }
2335
2336 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2337 bdaddr_t *bdaddr, u8 *val, u8 type,
2338 u8 pin_len, bool *persistent)
2339 {
2340 struct link_key *key, *old_key;
2341 u8 old_key_type;
2342
2343 old_key = hci_find_link_key(hdev, bdaddr);
2344 if (old_key) {
2345 old_key_type = old_key->type;
2346 key = old_key;
2347 } else {
2348 old_key_type = conn ? conn->key_type : 0xff;
2349 key = kzalloc(sizeof(*key), GFP_KERNEL);
2350 if (!key)
2351 return NULL;
2352 list_add_rcu(&key->list, &hdev->link_keys);
2353 }
2354
2355 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2356
2357 /* Some buggy controller combinations generate a changed
2358 * combination key for legacy pairing even when there's no
2359 * previous key */
2360 if (type == HCI_LK_CHANGED_COMBINATION &&
2361 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2362 type = HCI_LK_COMBINATION;
2363 if (conn)
2364 conn->key_type = type;
2365 }
2366
2367 bacpy(&key->bdaddr, bdaddr);
2368 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2369 key->pin_len = pin_len;
2370
2371 if (type == HCI_LK_CHANGED_COMBINATION)
2372 key->type = old_key_type;
2373 else
2374 key->type = type;
2375
2376 if (persistent)
2377 *persistent = hci_persistent_key(hdev, conn, type,
2378 old_key_type);
2379
2380 return key;
2381 }
2382
2383 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2384 u8 addr_type, u8 type, u8 authenticated,
2385 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2386 {
2387 struct smp_ltk *key, *old_key;
2388 u8 role = ltk_role(type);
2389
2390 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2391 if (old_key)
2392 key = old_key;
2393 else {
2394 key = kzalloc(sizeof(*key), GFP_KERNEL);
2395 if (!key)
2396 return NULL;
2397 list_add_rcu(&key->list, &hdev->long_term_keys);
2398 }
2399
2400 bacpy(&key->bdaddr, bdaddr);
2401 key->bdaddr_type = addr_type;
2402 memcpy(key->val, tk, sizeof(key->val));
2403 key->authenticated = authenticated;
2404 key->ediv = ediv;
2405 key->rand = rand;
2406 key->enc_size = enc_size;
2407 key->type = type;
2408
2409 return key;
2410 }
2411
2412 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2413 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2414 {
2415 struct smp_irk *irk;
2416
2417 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2418 if (!irk) {
2419 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2420 if (!irk)
2421 return NULL;
2422
2423 bacpy(&irk->bdaddr, bdaddr);
2424 irk->addr_type = addr_type;
2425
2426 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2427 }
2428
2429 memcpy(irk->val, val, 16);
2430 bacpy(&irk->rpa, rpa);
2431
2432 return irk;
2433 }
2434
2435 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2436 {
2437 struct link_key *key;
2438
2439 key = hci_find_link_key(hdev, bdaddr);
2440 if (!key)
2441 return -ENOENT;
2442
2443 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2444
2445 list_del_rcu(&key->list);
2446 kfree_rcu(key, rcu);
2447
2448 return 0;
2449 }
2450
2451 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2452 {
2453 struct smp_ltk *k;
2454 int removed = 0;
2455
2456 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2457 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2458 continue;
2459
2460 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2461
2462 list_del_rcu(&k->list);
2463 kfree_rcu(k, rcu);
2464 removed++;
2465 }
2466
2467 return removed ? 0 : -ENOENT;
2468 }
2469
2470 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2471 {
2472 struct smp_irk *k;
2473
2474 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2475 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2476 continue;
2477
2478 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2479
2480 list_del_rcu(&k->list);
2481 kfree_rcu(k, rcu);
2482 }
2483 }
2484
2485 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2486 {
2487 struct smp_ltk *k;
2488 struct smp_irk *irk;
2489 u8 addr_type;
2490
2491 if (type == BDADDR_BREDR) {
2492 if (hci_find_link_key(hdev, bdaddr))
2493 return true;
2494 return false;
2495 }
2496
2497 /* Convert to HCI addr type which struct smp_ltk uses */
2498 if (type == BDADDR_LE_PUBLIC)
2499 addr_type = ADDR_LE_DEV_PUBLIC;
2500 else
2501 addr_type = ADDR_LE_DEV_RANDOM;
2502
2503 irk = hci_get_irk(hdev, bdaddr, addr_type);
2504 if (irk) {
2505 bdaddr = &irk->bdaddr;
2506 addr_type = irk->addr_type;
2507 }
2508
2509 rcu_read_lock();
2510 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2511 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2512 rcu_read_unlock();
2513 return true;
2514 }
2515 }
2516 rcu_read_unlock();
2517
2518 return false;
2519 }
2520
2521 /* HCI command timer function */
2522 static void hci_cmd_timeout(struct work_struct *work)
2523 {
2524 struct hci_dev *hdev = container_of(work, struct hci_dev,
2525 cmd_timer.work);
2526
2527 if (hdev->sent_cmd) {
2528 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2529 u16 opcode = __le16_to_cpu(sent->opcode);
2530
2531 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2532 } else {
2533 BT_ERR("%s command tx timeout", hdev->name);
2534 }
2535
2536 atomic_set(&hdev->cmd_cnt, 1);
2537 queue_work(hdev->workqueue, &hdev->cmd_work);
2538 }
2539
2540 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2541 bdaddr_t *bdaddr, u8 bdaddr_type)
2542 {
2543 struct oob_data *data;
2544
2545 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2546 if (bacmp(bdaddr, &data->bdaddr) != 0)
2547 continue;
2548 if (data->bdaddr_type != bdaddr_type)
2549 continue;
2550 return data;
2551 }
2552
2553 return NULL;
2554 }
2555
2556 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2557 u8 bdaddr_type)
2558 {
2559 struct oob_data *data;
2560
2561 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2562 if (!data)
2563 return -ENOENT;
2564
2565 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2566
2567 list_del(&data->list);
2568 kfree(data);
2569
2570 return 0;
2571 }
2572
2573 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2574 {
2575 struct oob_data *data, *n;
2576
2577 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2578 list_del(&data->list);
2579 kfree(data);
2580 }
2581 }
2582
2583 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2584 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2585 u8 *hash256, u8 *rand256)
2586 {
2587 struct oob_data *data;
2588
2589 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2590 if (!data) {
2591 data = kmalloc(sizeof(*data), GFP_KERNEL);
2592 if (!data)
2593 return -ENOMEM;
2594
2595 bacpy(&data->bdaddr, bdaddr);
2596 data->bdaddr_type = bdaddr_type;
2597 list_add(&data->list, &hdev->remote_oob_data);
2598 }
2599
2600 if (hash192 && rand192) {
2601 memcpy(data->hash192, hash192, sizeof(data->hash192));
2602 memcpy(data->rand192, rand192, sizeof(data->rand192));
2603 if (hash256 && rand256)
2604 data->present = 0x03;
2605 } else {
2606 memset(data->hash192, 0, sizeof(data->hash192));
2607 memset(data->rand192, 0, sizeof(data->rand192));
2608 if (hash256 && rand256)
2609 data->present = 0x02;
2610 else
2611 data->present = 0x00;
2612 }
2613
2614 if (hash256 && rand256) {
2615 memcpy(data->hash256, hash256, sizeof(data->hash256));
2616 memcpy(data->rand256, rand256, sizeof(data->rand256));
2617 } else {
2618 memset(data->hash256, 0, sizeof(data->hash256));
2619 memset(data->rand256, 0, sizeof(data->rand256));
2620 if (hash192 && rand192)
2621 data->present = 0x01;
2622 }
2623
2624 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2625
2626 return 0;
2627 }
2628
2629 /* This function requires the caller holds hdev->lock */
2630 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2631 {
2632 struct adv_info *adv_instance;
2633
2634 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2635 if (adv_instance->instance == instance)
2636 return adv_instance;
2637 }
2638
2639 return NULL;
2640 }
2641
2642 /* This function requires the caller holds hdev->lock */
2643 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) {
2644 struct adv_info *cur_instance;
2645
2646 cur_instance = hci_find_adv_instance(hdev, instance);
2647 if (!cur_instance)
2648 return NULL;
2649
2650 if (cur_instance == list_last_entry(&hdev->adv_instances,
2651 struct adv_info, list))
2652 return list_first_entry(&hdev->adv_instances,
2653 struct adv_info, list);
2654 else
2655 return list_next_entry(cur_instance, list);
2656 }
2657
2658 /* This function requires the caller holds hdev->lock */
2659 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2660 {
2661 struct adv_info *adv_instance;
2662
2663 adv_instance = hci_find_adv_instance(hdev, instance);
2664 if (!adv_instance)
2665 return -ENOENT;
2666
2667 BT_DBG("%s removing %dMR", hdev->name, instance);
2668
2669 if (hdev->cur_adv_instance == instance && hdev->adv_instance_timeout) {
2670 cancel_delayed_work(&hdev->adv_instance_expire);
2671 hdev->adv_instance_timeout = 0;
2672 }
2673
2674 list_del(&adv_instance->list);
2675 kfree(adv_instance);
2676
2677 hdev->adv_instance_cnt--;
2678
2679 return 0;
2680 }
2681
2682 /* This function requires the caller holds hdev->lock */
2683 void hci_adv_instances_clear(struct hci_dev *hdev)
2684 {
2685 struct adv_info *adv_instance, *n;
2686
2687 if (hdev->adv_instance_timeout) {
2688 cancel_delayed_work(&hdev->adv_instance_expire);
2689 hdev->adv_instance_timeout = 0;
2690 }
2691
2692 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2693 list_del(&adv_instance->list);
2694 kfree(adv_instance);
2695 }
2696
2697 hdev->adv_instance_cnt = 0;
2698 }
2699
2700 /* This function requires the caller holds hdev->lock */
2701 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2702 u16 adv_data_len, u8 *adv_data,
2703 u16 scan_rsp_len, u8 *scan_rsp_data,
2704 u16 timeout, u16 duration)
2705 {
2706 struct adv_info *adv_instance;
2707
2708 adv_instance = hci_find_adv_instance(hdev, instance);
2709 if (adv_instance) {
2710 memset(adv_instance->adv_data, 0,
2711 sizeof(adv_instance->adv_data));
2712 memset(adv_instance->scan_rsp_data, 0,
2713 sizeof(adv_instance->scan_rsp_data));
2714 } else {
2715 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2716 instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2717 return -EOVERFLOW;
2718
2719 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2720 if (!adv_instance)
2721 return -ENOMEM;
2722
2723 adv_instance->pending = true;
2724 adv_instance->instance = instance;
2725 list_add(&adv_instance->list, &hdev->adv_instances);
2726 hdev->adv_instance_cnt++;
2727 }
2728
2729 adv_instance->flags = flags;
2730 adv_instance->adv_data_len = adv_data_len;
2731 adv_instance->scan_rsp_len = scan_rsp_len;
2732
2733 if (adv_data_len)
2734 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2735
2736 if (scan_rsp_len)
2737 memcpy(adv_instance->scan_rsp_data,
2738 scan_rsp_data, scan_rsp_len);
2739
2740 adv_instance->timeout = timeout;
2741 adv_instance->remaining_time = timeout;
2742
2743 if (duration == 0)
2744 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2745 else
2746 adv_instance->duration = duration;
2747
2748 BT_DBG("%s for %dMR", hdev->name, instance);
2749
2750 return 0;
2751 }
2752
2753 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2754 bdaddr_t *bdaddr, u8 type)
2755 {
2756 struct bdaddr_list *b;
2757
2758 list_for_each_entry(b, bdaddr_list, list) {
2759 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2760 return b;
2761 }
2762
2763 return NULL;
2764 }
2765
2766 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2767 {
2768 struct list_head *p, *n;
2769
2770 list_for_each_safe(p, n, bdaddr_list) {
2771 struct bdaddr_list *b = list_entry(p, struct bdaddr_list, list);
2772
2773 list_del(p);
2774 kfree(b);
2775 }
2776 }
2777
2778 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2779 {
2780 struct bdaddr_list *entry;
2781
2782 if (!bacmp(bdaddr, BDADDR_ANY))
2783 return -EBADF;
2784
2785 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2786 return -EEXIST;
2787
2788 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2789 if (!entry)
2790 return -ENOMEM;
2791
2792 bacpy(&entry->bdaddr, bdaddr);
2793 entry->bdaddr_type = type;
2794
2795 list_add(&entry->list, list);
2796
2797 return 0;
2798 }
2799
2800 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2801 {
2802 struct bdaddr_list *entry;
2803
2804 if (!bacmp(bdaddr, BDADDR_ANY)) {
2805 hci_bdaddr_list_clear(list);
2806 return 0;
2807 }
2808
2809 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2810 if (!entry)
2811 return -ENOENT;
2812
2813 list_del(&entry->list);
2814 kfree(entry);
2815
2816 return 0;
2817 }
2818
2819 /* This function requires the caller holds hdev->lock */
2820 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2821 bdaddr_t *addr, u8 addr_type)
2822 {
2823 struct hci_conn_params *params;
2824
2825 list_for_each_entry(params, &hdev->le_conn_params, list) {
2826 if (bacmp(&params->addr, addr) == 0 &&
2827 params->addr_type == addr_type) {
2828 return params;
2829 }
2830 }
2831
2832 return NULL;
2833 }
2834
2835 /* This function requires the caller holds hdev->lock */
2836 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2837 bdaddr_t *addr, u8 addr_type)
2838 {
2839 struct hci_conn_params *param;
2840
2841 list_for_each_entry(param, list, action) {
2842 if (bacmp(&param->addr, addr) == 0 &&
2843 param->addr_type == addr_type)
2844 return param;
2845 }
2846
2847 return NULL;
2848 }
2849
2850 /* This function requires the caller holds hdev->lock */
2851 struct hci_conn_params *hci_explicit_connect_lookup(struct hci_dev *hdev,
2852 bdaddr_t *addr,
2853 u8 addr_type)
2854 {
2855 struct hci_conn_params *param;
2856
2857 list_for_each_entry(param, &hdev->pend_le_conns, action) {
2858 if (bacmp(&param->addr, addr) == 0 &&
2859 param->addr_type == addr_type &&
2860 param->explicit_connect)
2861 return param;
2862 }
2863
2864 list_for_each_entry(param, &hdev->pend_le_reports, action) {
2865 if (bacmp(&param->addr, addr) == 0 &&
2866 param->addr_type == addr_type &&
2867 param->explicit_connect)
2868 return param;
2869 }
2870
2871 return NULL;
2872 }
2873
2874 /* This function requires the caller holds hdev->lock */
2875 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2876 bdaddr_t *addr, u8 addr_type)
2877 {
2878 struct hci_conn_params *params;
2879
2880 params = hci_conn_params_lookup(hdev, addr, addr_type);
2881 if (params)
2882 return params;
2883
2884 params = kzalloc(sizeof(*params), GFP_KERNEL);
2885 if (!params) {
2886 BT_ERR("Out of memory");
2887 return NULL;
2888 }
2889
2890 bacpy(&params->addr, addr);
2891 params->addr_type = addr_type;
2892
2893 list_add(&params->list, &hdev->le_conn_params);
2894 INIT_LIST_HEAD(&params->action);
2895
2896 params->conn_min_interval = hdev->le_conn_min_interval;
2897 params->conn_max_interval = hdev->le_conn_max_interval;
2898 params->conn_latency = hdev->le_conn_latency;
2899 params->supervision_timeout = hdev->le_supv_timeout;
2900 params->auto_connect = HCI_AUTO_CONN_DISABLED;
2901
2902 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2903
2904 return params;
2905 }
2906
2907 static void hci_conn_params_free(struct hci_conn_params *params)
2908 {
2909 if (params->conn) {
2910 hci_conn_drop(params->conn);
2911 hci_conn_put(params->conn);
2912 }
2913
2914 list_del(&params->action);
2915 list_del(&params->list);
2916 kfree(params);
2917 }
2918
2919 /* This function requires the caller holds hdev->lock */
2920 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2921 {
2922 struct hci_conn_params *params;
2923
2924 params = hci_conn_params_lookup(hdev, addr, addr_type);
2925 if (!params)
2926 return;
2927
2928 hci_conn_params_free(params);
2929
2930 hci_update_background_scan(hdev);
2931
2932 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2933 }
2934
2935 /* This function requires the caller holds hdev->lock */
2936 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2937 {
2938 struct hci_conn_params *params, *tmp;
2939
2940 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2941 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2942 continue;
2943
2944 /* If trying to estabilish one time connection to disabled
2945 * device, leave the params, but mark them as just once.
2946 */
2947 if (params->explicit_connect) {
2948 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2949 continue;
2950 }
2951
2952 list_del(&params->list);
2953 kfree(params);
2954 }
2955
2956 BT_DBG("All LE disabled connection parameters were removed");
2957 }
2958
2959 /* This function requires the caller holds hdev->lock */
2960 void hci_conn_params_clear_all(struct hci_dev *hdev)
2961 {
2962 struct hci_conn_params *params, *tmp;
2963
2964 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2965 hci_conn_params_free(params);
2966
2967 hci_update_background_scan(hdev);
2968
2969 BT_DBG("All LE connection parameters were removed");
2970 }
2971
2972 static void inquiry_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2973 {
2974 if (status) {
2975 BT_ERR("Failed to start inquiry: status %d", status);
2976
2977 hci_dev_lock(hdev);
2978 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2979 hci_dev_unlock(hdev);
2980 return;
2981 }
2982 }
2983
2984 static void le_scan_disable_work_complete(struct hci_dev *hdev, u8 status,
2985 u16 opcode)
2986 {
2987 /* General inquiry access code (GIAC) */
2988 u8 lap[3] = { 0x33, 0x8b, 0x9e };
2989 struct hci_cp_inquiry cp;
2990 int err;
2991
2992 if (status) {
2993 BT_ERR("Failed to disable LE scanning: status %d", status);
2994 return;
2995 }
2996
2997 hdev->discovery.scan_start = 0;
2998
2999 switch (hdev->discovery.type) {
3000 case DISCOV_TYPE_LE:
3001 hci_dev_lock(hdev);
3002 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3003 hci_dev_unlock(hdev);
3004 break;
3005
3006 case DISCOV_TYPE_INTERLEAVED:
3007 hci_dev_lock(hdev);
3008
3009 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
3010 &hdev->quirks)) {
3011 /* If we were running LE only scan, change discovery
3012 * state. If we were running both LE and BR/EDR inquiry
3013 * simultaneously, and BR/EDR inquiry is already
3014 * finished, stop discovery, otherwise BR/EDR inquiry
3015 * will stop discovery when finished. If we will resolve
3016 * remote device name, do not change discovery state.
3017 */
3018 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
3019 hdev->discovery.state != DISCOVERY_RESOLVING)
3020 hci_discovery_set_state(hdev,
3021 DISCOVERY_STOPPED);
3022 } else {
3023 struct hci_request req;
3024
3025 hci_inquiry_cache_flush(hdev);
3026
3027 hci_req_init(&req, hdev);
3028
3029 memset(&cp, 0, sizeof(cp));
3030 memcpy(&cp.lap, lap, sizeof(cp.lap));
3031 cp.length = DISCOV_INTERLEAVED_INQUIRY_LEN;
3032 hci_req_add(&req, HCI_OP_INQUIRY, sizeof(cp), &cp);
3033
3034 err = hci_req_run(&req, inquiry_complete);
3035 if (err) {
3036 BT_ERR("Inquiry request failed: err %d", err);
3037 hci_discovery_set_state(hdev,
3038 DISCOVERY_STOPPED);
3039 }
3040 }
3041
3042 hci_dev_unlock(hdev);
3043 break;
3044 }
3045 }
3046
3047 static void le_scan_disable_work(struct work_struct *work)
3048 {
3049 struct hci_dev *hdev = container_of(work, struct hci_dev,
3050 le_scan_disable.work);
3051 struct hci_request req;
3052 int err;
3053
3054 BT_DBG("%s", hdev->name);
3055
3056 cancel_delayed_work_sync(&hdev->le_scan_restart);
3057
3058 hci_req_init(&req, hdev);
3059
3060 hci_req_add_le_scan_disable(&req);
3061
3062 err = hci_req_run(&req, le_scan_disable_work_complete);
3063 if (err)
3064 BT_ERR("Disable LE scanning request failed: err %d", err);
3065 }
3066
3067 static void le_scan_restart_work_complete(struct hci_dev *hdev, u8 status,
3068 u16 opcode)
3069 {
3070 unsigned long timeout, duration, scan_start, now;
3071
3072 BT_DBG("%s", hdev->name);
3073
3074 if (status) {
3075 BT_ERR("Failed to restart LE scan: status %d", status);
3076 return;
3077 }
3078
3079 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
3080 !hdev->discovery.scan_start)
3081 return;
3082
3083 /* When the scan was started, hdev->le_scan_disable has been queued
3084 * after duration from scan_start. During scan restart this job
3085 * has been canceled, and we need to queue it again after proper
3086 * timeout, to make sure that scan does not run indefinitely.
3087 */
3088 duration = hdev->discovery.scan_duration;
3089 scan_start = hdev->discovery.scan_start;
3090 now = jiffies;
3091 if (now - scan_start <= duration) {
3092 int elapsed;
3093
3094 if (now >= scan_start)
3095 elapsed = now - scan_start;
3096 else
3097 elapsed = ULONG_MAX - scan_start + now;
3098
3099 timeout = duration - elapsed;
3100 } else {
3101 timeout = 0;
3102 }
3103 queue_delayed_work(hdev->workqueue,
3104 &hdev->le_scan_disable, timeout);
3105 }
3106
3107 static void le_scan_restart_work(struct work_struct *work)
3108 {
3109 struct hci_dev *hdev = container_of(work, struct hci_dev,
3110 le_scan_restart.work);
3111 struct hci_request req;
3112 struct hci_cp_le_set_scan_enable cp;
3113 int err;
3114
3115 BT_DBG("%s", hdev->name);
3116
3117 /* If controller is not scanning we are done. */
3118 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
3119 return;
3120
3121 hci_req_init(&req, hdev);
3122
3123 hci_req_add_le_scan_disable(&req);
3124
3125 memset(&cp, 0, sizeof(cp));
3126 cp.enable = LE_SCAN_ENABLE;
3127 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
3128 hci_req_add(&req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
3129
3130 err = hci_req_run(&req, le_scan_restart_work_complete);
3131 if (err)
3132 BT_ERR("Restart LE scan request failed: err %d", err);
3133 }
3134
3135 /* Copy the Identity Address of the controller.
3136 *
3137 * If the controller has a public BD_ADDR, then by default use that one.
3138 * If this is a LE only controller without a public address, default to
3139 * the static random address.
3140 *
3141 * For debugging purposes it is possible to force controllers with a
3142 * public address to use the static random address instead.
3143 *
3144 * In case BR/EDR has been disabled on a dual-mode controller and
3145 * userspace has configured a static address, then that address
3146 * becomes the identity address instead of the public BR/EDR address.
3147 */
3148 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3149 u8 *bdaddr_type)
3150 {
3151 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3152 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3153 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3154 bacmp(&hdev->static_addr, BDADDR_ANY))) {
3155 bacpy(bdaddr, &hdev->static_addr);
3156 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3157 } else {
3158 bacpy(bdaddr, &hdev->bdaddr);
3159 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3160 }
3161 }
3162
3163 /* Alloc HCI device */
3164 struct hci_dev *hci_alloc_dev(void)
3165 {
3166 struct hci_dev *hdev;
3167
3168 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3169 if (!hdev)
3170 return NULL;
3171
3172 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3173 hdev->esco_type = (ESCO_HV1);
3174 hdev->link_mode = (HCI_LM_ACCEPT);
3175 hdev->num_iac = 0x01; /* One IAC support is mandatory */
3176 hdev->io_capability = 0x03; /* No Input No Output */
3177 hdev->manufacturer = 0xffff; /* Default to internal use */
3178 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3179 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3180 hdev->adv_instance_cnt = 0;
3181 hdev->cur_adv_instance = 0x00;
3182 hdev->adv_instance_timeout = 0;
3183
3184 hdev->sniff_max_interval = 800;
3185 hdev->sniff_min_interval = 80;
3186
3187 hdev->le_adv_channel_map = 0x07;
3188 hdev->le_adv_min_interval = 0x0800;
3189 hdev->le_adv_max_interval = 0x0800;
3190 hdev->le_scan_interval = 0x0060;
3191 hdev->le_scan_window = 0x0030;
3192 hdev->le_conn_min_interval = 0x0028;
3193 hdev->le_conn_max_interval = 0x0038;
3194 hdev->le_conn_latency = 0x0000;
3195 hdev->le_supv_timeout = 0x002a;
3196 hdev->le_def_tx_len = 0x001b;
3197 hdev->le_def_tx_time = 0x0148;
3198 hdev->le_max_tx_len = 0x001b;
3199 hdev->le_max_tx_time = 0x0148;
3200 hdev->le_max_rx_len = 0x001b;
3201 hdev->le_max_rx_time = 0x0148;
3202
3203 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3204 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3205 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3206 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3207
3208 mutex_init(&hdev->lock);
3209 mutex_init(&hdev->req_lock);
3210
3211 INIT_LIST_HEAD(&hdev->mgmt_pending);
3212 INIT_LIST_HEAD(&hdev->blacklist);
3213 INIT_LIST_HEAD(&hdev->whitelist);
3214 INIT_LIST_HEAD(&hdev->uuids);
3215 INIT_LIST_HEAD(&hdev->link_keys);
3216 INIT_LIST_HEAD(&hdev->long_term_keys);
3217 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3218 INIT_LIST_HEAD(&hdev->remote_oob_data);
3219 INIT_LIST_HEAD(&hdev->le_white_list);
3220 INIT_LIST_HEAD(&hdev->le_conn_params);
3221 INIT_LIST_HEAD(&hdev->pend_le_conns);
3222 INIT_LIST_HEAD(&hdev->pend_le_reports);
3223 INIT_LIST_HEAD(&hdev->conn_hash.list);
3224 INIT_LIST_HEAD(&hdev->adv_instances);
3225
3226 INIT_WORK(&hdev->rx_work, hci_rx_work);
3227 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3228 INIT_WORK(&hdev->tx_work, hci_tx_work);
3229 INIT_WORK(&hdev->power_on, hci_power_on);
3230 INIT_WORK(&hdev->error_reset, hci_error_reset);
3231
3232 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3233 INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
3234 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
3235 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
3236 INIT_DELAYED_WORK(&hdev->adv_instance_expire, hci_adv_timeout_expire);
3237
3238 skb_queue_head_init(&hdev->rx_q);
3239 skb_queue_head_init(&hdev->cmd_q);
3240 skb_queue_head_init(&hdev->raw_q);
3241
3242 init_waitqueue_head(&hdev->req_wait_q);
3243
3244 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3245
3246 hci_init_sysfs(hdev);
3247 discovery_init(hdev);
3248
3249 return hdev;
3250 }
3251 EXPORT_SYMBOL(hci_alloc_dev);
3252
3253 /* Free HCI device */
3254 void hci_free_dev(struct hci_dev *hdev)
3255 {
3256 /* will free via device release */
3257 put_device(&hdev->dev);
3258 }
3259 EXPORT_SYMBOL(hci_free_dev);
3260
3261 /* Register HCI device */
3262 int hci_register_dev(struct hci_dev *hdev)
3263 {
3264 int id, error;
3265
3266 if (!hdev->open || !hdev->close || !hdev->send)
3267 return -EINVAL;
3268
3269 /* Do not allow HCI_AMP devices to register at index 0,
3270 * so the index can be used as the AMP controller ID.
3271 */
3272 switch (hdev->dev_type) {
3273 case HCI_BREDR:
3274 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3275 break;
3276 case HCI_AMP:
3277 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3278 break;
3279 default:
3280 return -EINVAL;
3281 }
3282
3283 if (id < 0)
3284 return id;
3285
3286 sprintf(hdev->name, "hci%d", id);
3287 hdev->id = id;
3288
3289 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3290
3291 hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3292 WQ_MEM_RECLAIM, 1, hdev->name);
3293 if (!hdev->workqueue) {
3294 error = -ENOMEM;
3295 goto err;
3296 }
3297
3298 hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3299 WQ_MEM_RECLAIM, 1, hdev->name);
3300 if (!hdev->req_workqueue) {
3301 destroy_workqueue(hdev->workqueue);
3302 error = -ENOMEM;
3303 goto err;
3304 }
3305
3306 if (!IS_ERR_OR_NULL(bt_debugfs))
3307 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3308
3309 dev_set_name(&hdev->dev, "%s", hdev->name);
3310
3311 error = device_add(&hdev->dev);
3312 if (error < 0)
3313 goto err_wqueue;
3314
3315 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3316 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3317 hdev);
3318 if (hdev->rfkill) {
3319 if (rfkill_register(hdev->rfkill) < 0) {
3320 rfkill_destroy(hdev->rfkill);
3321 hdev->rfkill = NULL;
3322 }
3323 }
3324
3325 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3326 hci_dev_set_flag(hdev, HCI_RFKILLED);
3327
3328 hci_dev_set_flag(hdev, HCI_SETUP);
3329 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3330
3331 if (hdev->dev_type == HCI_BREDR) {
3332 /* Assume BR/EDR support until proven otherwise (such as
3333 * through reading supported features during init.
3334 */
3335 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3336 }
3337
3338 write_lock(&hci_dev_list_lock);
3339 list_add(&hdev->list, &hci_dev_list);
3340 write_unlock(&hci_dev_list_lock);
3341
3342 /* Devices that are marked for raw-only usage are unconfigured
3343 * and should not be included in normal operation.
3344 */
3345 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3346 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3347
3348 hci_notify(hdev, HCI_DEV_REG);
3349 hci_dev_hold(hdev);
3350
3351 queue_work(hdev->req_workqueue, &hdev->power_on);
3352
3353 return id;
3354
3355 err_wqueue:
3356 destroy_workqueue(hdev->workqueue);
3357 destroy_workqueue(hdev->req_workqueue);
3358 err:
3359 ida_simple_remove(&hci_index_ida, hdev->id);
3360
3361 return error;
3362 }
3363 EXPORT_SYMBOL(hci_register_dev);
3364
3365 /* Unregister HCI device */
3366 void hci_unregister_dev(struct hci_dev *hdev)
3367 {
3368 int id;
3369
3370 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3371
3372 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3373
3374 id = hdev->id;
3375
3376 write_lock(&hci_dev_list_lock);
3377 list_del(&hdev->list);
3378 write_unlock(&hci_dev_list_lock);
3379
3380 hci_dev_do_close(hdev);
3381
3382 cancel_work_sync(&hdev->power_on);
3383
3384 if (!test_bit(HCI_INIT, &hdev->flags) &&
3385 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3386 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3387 hci_dev_lock(hdev);
3388 mgmt_index_removed(hdev);
3389 hci_dev_unlock(hdev);
3390 }
3391
3392 /* mgmt_index_removed should take care of emptying the
3393 * pending list */
3394 BUG_ON(!list_empty(&hdev->mgmt_pending));
3395
3396 hci_notify(hdev, HCI_DEV_UNREG);
3397
3398 if (hdev->rfkill) {
3399 rfkill_unregister(hdev->rfkill);
3400 rfkill_destroy(hdev->rfkill);
3401 }
3402
3403 device_del(&hdev->dev);
3404
3405 debugfs_remove_recursive(hdev->debugfs);
3406
3407 destroy_workqueue(hdev->workqueue);
3408 destroy_workqueue(hdev->req_workqueue);
3409
3410 hci_dev_lock(hdev);
3411 hci_bdaddr_list_clear(&hdev->blacklist);
3412 hci_bdaddr_list_clear(&hdev->whitelist);
3413 hci_uuids_clear(hdev);
3414 hci_link_keys_clear(hdev);
3415 hci_smp_ltks_clear(hdev);
3416 hci_smp_irks_clear(hdev);
3417 hci_remote_oob_data_clear(hdev);
3418 hci_adv_instances_clear(hdev);
3419 hci_bdaddr_list_clear(&hdev->le_white_list);
3420 hci_conn_params_clear_all(hdev);
3421 hci_discovery_filter_clear(hdev);
3422 hci_dev_unlock(hdev);
3423
3424 hci_dev_put(hdev);
3425
3426 ida_simple_remove(&hci_index_ida, id);
3427 }
3428 EXPORT_SYMBOL(hci_unregister_dev);
3429
3430 /* Suspend HCI device */
3431 int hci_suspend_dev(struct hci_dev *hdev)
3432 {
3433 hci_notify(hdev, HCI_DEV_SUSPEND);
3434 return 0;
3435 }
3436 EXPORT_SYMBOL(hci_suspend_dev);
3437
3438 /* Resume HCI device */
3439 int hci_resume_dev(struct hci_dev *hdev)
3440 {
3441 hci_notify(hdev, HCI_DEV_RESUME);
3442 return 0;
3443 }
3444 EXPORT_SYMBOL(hci_resume_dev);
3445
3446 /* Reset HCI device */
3447 int hci_reset_dev(struct hci_dev *hdev)
3448 {
3449 const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3450 struct sk_buff *skb;
3451
3452 skb = bt_skb_alloc(3, GFP_ATOMIC);
3453 if (!skb)
3454 return -ENOMEM;
3455
3456 bt_cb(skb)->pkt_type = HCI_EVENT_PKT;
3457 memcpy(skb_put(skb, 3), hw_err, 3);
3458
3459 /* Send Hardware Error to upper stack */
3460 return hci_recv_frame(hdev, skb);
3461 }
3462 EXPORT_SYMBOL(hci_reset_dev);
3463
3464 /* Receive frame from HCI drivers */
3465 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3466 {
3467 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3468 && !test_bit(HCI_INIT, &hdev->flags))) {
3469 kfree_skb(skb);
3470 return -ENXIO;
3471 }
3472
3473 /* Incoming skb */
3474 bt_cb(skb)->incoming = 1;
3475
3476 /* Time stamp */
3477 __net_timestamp(skb);
3478
3479 skb_queue_tail(&hdev->rx_q, skb);
3480 queue_work(hdev->workqueue, &hdev->rx_work);
3481
3482 return 0;
3483 }
3484 EXPORT_SYMBOL(hci_recv_frame);
3485
3486 /* ---- Interface to upper protocols ---- */
3487
3488 int hci_register_cb(struct hci_cb *cb)
3489 {
3490 BT_DBG("%p name %s", cb, cb->name);
3491
3492 mutex_lock(&hci_cb_list_lock);
3493 list_add_tail(&cb->list, &hci_cb_list);
3494 mutex_unlock(&hci_cb_list_lock);
3495
3496 return 0;
3497 }
3498 EXPORT_SYMBOL(hci_register_cb);
3499
3500 int hci_unregister_cb(struct hci_cb *cb)
3501 {
3502 BT_DBG("%p name %s", cb, cb->name);
3503
3504 mutex_lock(&hci_cb_list_lock);
3505 list_del(&cb->list);
3506 mutex_unlock(&hci_cb_list_lock);
3507
3508 return 0;
3509 }
3510 EXPORT_SYMBOL(hci_unregister_cb);
3511
3512 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3513 {
3514 int err;
3515
3516 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
3517
3518 /* Time stamp */
3519 __net_timestamp(skb);
3520
3521 /* Send copy to monitor */
3522 hci_send_to_monitor(hdev, skb);
3523
3524 if (atomic_read(&hdev->promisc)) {
3525 /* Send copy to the sockets */
3526 hci_send_to_sock(hdev, skb);
3527 }
3528
3529 /* Get rid of skb owner, prior to sending to the driver. */
3530 skb_orphan(skb);
3531
3532 err = hdev->send(hdev, skb);
3533 if (err < 0) {
3534 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3535 kfree_skb(skb);
3536 }
3537 }
3538
3539 /* Send HCI command */
3540 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3541 const void *param)
3542 {
3543 struct sk_buff *skb;
3544
3545 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3546
3547 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3548 if (!skb) {
3549 BT_ERR("%s no memory for command", hdev->name);
3550 return -ENOMEM;
3551 }
3552
3553 /* Stand-alone HCI commands must be flagged as
3554 * single-command requests.
3555 */
3556 bt_cb(skb)->req.start = true;
3557
3558 skb_queue_tail(&hdev->cmd_q, skb);
3559 queue_work(hdev->workqueue, &hdev->cmd_work);
3560
3561 return 0;
3562 }
3563
3564 /* Get data from the previously sent command */
3565 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3566 {
3567 struct hci_command_hdr *hdr;
3568
3569 if (!hdev->sent_cmd)
3570 return NULL;
3571
3572 hdr = (void *) hdev->sent_cmd->data;
3573
3574 if (hdr->opcode != cpu_to_le16(opcode))
3575 return NULL;
3576
3577 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3578
3579 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3580 }
3581
3582 /* Send ACL data */
3583 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3584 {
3585 struct hci_acl_hdr *hdr;
3586 int len = skb->len;
3587
3588 skb_push(skb, HCI_ACL_HDR_SIZE);
3589 skb_reset_transport_header(skb);
3590 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3591 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3592 hdr->dlen = cpu_to_le16(len);
3593 }
3594
3595 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3596 struct sk_buff *skb, __u16 flags)
3597 {
3598 struct hci_conn *conn = chan->conn;
3599 struct hci_dev *hdev = conn->hdev;
3600 struct sk_buff *list;
3601
3602 skb->len = skb_headlen(skb);
3603 skb->data_len = 0;
3604
3605 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
3606
3607 switch (hdev->dev_type) {
3608 case HCI_BREDR:
3609 hci_add_acl_hdr(skb, conn->handle, flags);
3610 break;
3611 case HCI_AMP:
3612 hci_add_acl_hdr(skb, chan->handle, flags);
3613 break;
3614 default:
3615 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3616 return;
3617 }
3618
3619 list = skb_shinfo(skb)->frag_list;
3620 if (!list) {
3621 /* Non fragmented */
3622 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3623
3624 skb_queue_tail(queue, skb);
3625 } else {
3626 /* Fragmented */
3627 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3628
3629 skb_shinfo(skb)->frag_list = NULL;
3630
3631 /* Queue all fragments atomically. We need to use spin_lock_bh
3632 * here because of 6LoWPAN links, as there this function is
3633 * called from softirq and using normal spin lock could cause
3634 * deadlocks.
3635 */
3636 spin_lock_bh(&queue->lock);
3637
3638 __skb_queue_tail(queue, skb);
3639
3640 flags &= ~ACL_START;
3641 flags |= ACL_CONT;
3642 do {
3643 skb = list; list = list->next;
3644
3645 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
3646 hci_add_acl_hdr(skb, conn->handle, flags);
3647
3648 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3649
3650 __skb_queue_tail(queue, skb);
3651 } while (list);
3652
3653 spin_unlock_bh(&queue->lock);
3654 }
3655 }
3656
3657 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3658 {
3659 struct hci_dev *hdev = chan->conn->hdev;
3660
3661 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3662
3663 hci_queue_acl(chan, &chan->data_q, skb, flags);
3664
3665 queue_work(hdev->workqueue, &hdev->tx_work);
3666 }
3667
3668 /* Send SCO data */
3669 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3670 {
3671 struct hci_dev *hdev = conn->hdev;
3672 struct hci_sco_hdr hdr;
3673
3674 BT_DBG("%s len %d", hdev->name, skb->len);
3675
3676 hdr.handle = cpu_to_le16(conn->handle);
3677 hdr.dlen = skb->len;
3678
3679 skb_push(skb, HCI_SCO_HDR_SIZE);
3680 skb_reset_transport_header(skb);
3681 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3682
3683 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
3684
3685 skb_queue_tail(&conn->data_q, skb);
3686 queue_work(hdev->workqueue, &hdev->tx_work);
3687 }
3688
3689 /* ---- HCI TX task (outgoing data) ---- */
3690
3691 /* HCI Connection scheduler */
3692 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3693 int *quote)
3694 {
3695 struct hci_conn_hash *h = &hdev->conn_hash;
3696 struct hci_conn *conn = NULL, *c;
3697 unsigned int num = 0, min = ~0;
3698
3699 /* We don't have to lock device here. Connections are always
3700 * added and removed with TX task disabled. */
3701
3702 rcu_read_lock();
3703
3704 list_for_each_entry_rcu(c, &h->list, list) {
3705 if (c->type != type || skb_queue_empty(&c->data_q))
3706 continue;
3707
3708 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3709 continue;
3710
3711 num++;
3712
3713 if (c->sent < min) {
3714 min = c->sent;
3715 conn = c;
3716 }
3717
3718 if (hci_conn_num(hdev, type) == num)
3719 break;
3720 }
3721
3722 rcu_read_unlock();
3723
3724 if (conn) {
3725 int cnt, q;
3726
3727 switch (conn->type) {
3728 case ACL_LINK:
3729 cnt = hdev->acl_cnt;
3730 break;
3731 case SCO_LINK:
3732 case ESCO_LINK:
3733 cnt = hdev->sco_cnt;
3734 break;
3735 case LE_LINK:
3736 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3737 break;
3738 default:
3739 cnt = 0;
3740 BT_ERR("Unknown link type");
3741 }
3742
3743 q = cnt / num;
3744 *quote = q ? q : 1;
3745 } else
3746 *quote = 0;
3747
3748 BT_DBG("conn %p quote %d", conn, *quote);
3749 return conn;
3750 }
3751
3752 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3753 {
3754 struct hci_conn_hash *h = &hdev->conn_hash;
3755 struct hci_conn *c;
3756
3757 BT_ERR("%s link tx timeout", hdev->name);
3758
3759 rcu_read_lock();
3760
3761 /* Kill stalled connections */
3762 list_for_each_entry_rcu(c, &h->list, list) {
3763 if (c->type == type && c->sent) {
3764 BT_ERR("%s killing stalled connection %pMR",
3765 hdev->name, &c->dst);
3766 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3767 }
3768 }
3769
3770 rcu_read_unlock();
3771 }
3772
3773 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3774 int *quote)
3775 {
3776 struct hci_conn_hash *h = &hdev->conn_hash;
3777 struct hci_chan *chan = NULL;
3778 unsigned int num = 0, min = ~0, cur_prio = 0;
3779 struct hci_conn *conn;
3780 int cnt, q, conn_num = 0;
3781
3782 BT_DBG("%s", hdev->name);
3783
3784 rcu_read_lock();
3785
3786 list_for_each_entry_rcu(conn, &h->list, list) {
3787 struct hci_chan *tmp;
3788
3789 if (conn->type != type)
3790 continue;
3791
3792 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3793 continue;
3794
3795 conn_num++;
3796
3797 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3798 struct sk_buff *skb;
3799
3800 if (skb_queue_empty(&tmp->data_q))
3801 continue;
3802
3803 skb = skb_peek(&tmp->data_q);
3804 if (skb->priority < cur_prio)
3805 continue;
3806
3807 if (skb->priority > cur_prio) {
3808 num = 0;
3809 min = ~0;
3810 cur_prio = skb->priority;
3811 }
3812
3813 num++;
3814
3815 if (conn->sent < min) {
3816 min = conn->sent;
3817 chan = tmp;
3818 }
3819 }
3820
3821 if (hci_conn_num(hdev, type) == conn_num)
3822 break;
3823 }
3824
3825 rcu_read_unlock();
3826
3827 if (!chan)
3828 return NULL;
3829
3830 switch (chan->conn->type) {
3831 case ACL_LINK:
3832 cnt = hdev->acl_cnt;
3833 break;
3834 case AMP_LINK:
3835 cnt = hdev->block_cnt;
3836 break;
3837 case SCO_LINK:
3838 case ESCO_LINK:
3839 cnt = hdev->sco_cnt;
3840 break;
3841 case LE_LINK:
3842 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3843 break;
3844 default:
3845 cnt = 0;
3846 BT_ERR("Unknown link type");
3847 }
3848
3849 q = cnt / num;
3850 *quote = q ? q : 1;
3851 BT_DBG("chan %p quote %d", chan, *quote);
3852 return chan;
3853 }
3854
3855 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3856 {
3857 struct hci_conn_hash *h = &hdev->conn_hash;
3858 struct hci_conn *conn;
3859 int num = 0;
3860
3861 BT_DBG("%s", hdev->name);
3862
3863 rcu_read_lock();
3864
3865 list_for_each_entry_rcu(conn, &h->list, list) {
3866 struct hci_chan *chan;
3867
3868 if (conn->type != type)
3869 continue;
3870
3871 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3872 continue;
3873
3874 num++;
3875
3876 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3877 struct sk_buff *skb;
3878
3879 if (chan->sent) {
3880 chan->sent = 0;
3881 continue;
3882 }
3883
3884 if (skb_queue_empty(&chan->data_q))
3885 continue;
3886
3887 skb = skb_peek(&chan->data_q);
3888 if (skb->priority >= HCI_PRIO_MAX - 1)
3889 continue;
3890
3891 skb->priority = HCI_PRIO_MAX - 1;
3892
3893 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3894 skb->priority);
3895 }
3896
3897 if (hci_conn_num(hdev, type) == num)
3898 break;
3899 }
3900
3901 rcu_read_unlock();
3902
3903 }
3904
3905 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3906 {
3907 /* Calculate count of blocks used by this packet */
3908 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3909 }
3910
3911 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3912 {
3913 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3914 /* ACL tx timeout must be longer than maximum
3915 * link supervision timeout (40.9 seconds) */
3916 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3917 HCI_ACL_TX_TIMEOUT))
3918 hci_link_tx_to(hdev, ACL_LINK);
3919 }
3920 }
3921
3922 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3923 {
3924 unsigned int cnt = hdev->acl_cnt;
3925 struct hci_chan *chan;
3926 struct sk_buff *skb;
3927 int quote;
3928
3929 __check_timeout(hdev, cnt);
3930
3931 while (hdev->acl_cnt &&
3932 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3933 u32 priority = (skb_peek(&chan->data_q))->priority;
3934 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3935 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3936 skb->len, skb->priority);
3937
3938 /* Stop if priority has changed */
3939 if (skb->priority < priority)
3940 break;
3941
3942 skb = skb_dequeue(&chan->data_q);
3943
3944 hci_conn_enter_active_mode(chan->conn,
3945 bt_cb(skb)->force_active);
3946
3947 hci_send_frame(hdev, skb);
3948 hdev->acl_last_tx = jiffies;
3949
3950 hdev->acl_cnt--;
3951 chan->sent++;
3952 chan->conn->sent++;
3953 }
3954 }
3955
3956 if (cnt != hdev->acl_cnt)
3957 hci_prio_recalculate(hdev, ACL_LINK);
3958 }
3959
3960 static void hci_sched_acl_blk(struct hci_dev *hdev)
3961 {
3962 unsigned int cnt = hdev->block_cnt;
3963 struct hci_chan *chan;
3964 struct sk_buff *skb;
3965 int quote;
3966 u8 type;
3967
3968 __check_timeout(hdev, cnt);
3969
3970 BT_DBG("%s", hdev->name);
3971
3972 if (hdev->dev_type == HCI_AMP)
3973 type = AMP_LINK;
3974 else
3975 type = ACL_LINK;
3976
3977 while (hdev->block_cnt > 0 &&
3978 (chan = hci_chan_sent(hdev, type, &quote))) {
3979 u32 priority = (skb_peek(&chan->data_q))->priority;
3980 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3981 int blocks;
3982
3983 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3984 skb->len, skb->priority);
3985
3986 /* Stop if priority has changed */
3987 if (skb->priority < priority)
3988 break;
3989
3990 skb = skb_dequeue(&chan->data_q);
3991
3992 blocks = __get_blocks(hdev, skb);
3993 if (blocks > hdev->block_cnt)
3994 return;
3995
3996 hci_conn_enter_active_mode(chan->conn,
3997 bt_cb(skb)->force_active);
3998
3999 hci_send_frame(hdev, skb);
4000 hdev->acl_last_tx = jiffies;
4001
4002 hdev->block_cnt -= blocks;
4003 quote -= blocks;
4004
4005 chan->sent += blocks;
4006 chan->conn->sent += blocks;
4007 }
4008 }
4009
4010 if (cnt != hdev->block_cnt)
4011 hci_prio_recalculate(hdev, type);
4012 }
4013
4014 static void hci_sched_acl(struct hci_dev *hdev)
4015 {
4016 BT_DBG("%s", hdev->name);
4017
4018 /* No ACL link over BR/EDR controller */
4019 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
4020 return;
4021
4022 /* No AMP link over AMP controller */
4023 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4024 return;
4025
4026 switch (hdev->flow_ctl_mode) {
4027 case HCI_FLOW_CTL_MODE_PACKET_BASED:
4028 hci_sched_acl_pkt(hdev);
4029 break;
4030
4031 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4032 hci_sched_acl_blk(hdev);
4033 break;
4034 }
4035 }
4036
4037 /* Schedule SCO */
4038 static void hci_sched_sco(struct hci_dev *hdev)
4039 {
4040 struct hci_conn *conn;
4041 struct sk_buff *skb;
4042 int quote;
4043
4044 BT_DBG("%s", hdev->name);
4045
4046 if (!hci_conn_num(hdev, SCO_LINK))
4047 return;
4048
4049 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4050 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4051 BT_DBG("skb %p len %d", skb, skb->len);
4052 hci_send_frame(hdev, skb);
4053
4054 conn->sent++;
4055 if (conn->sent == ~0)
4056 conn->sent = 0;
4057 }
4058 }
4059 }
4060
4061 static void hci_sched_esco(struct hci_dev *hdev)
4062 {
4063 struct hci_conn *conn;
4064 struct sk_buff *skb;
4065 int quote;
4066
4067 BT_DBG("%s", hdev->name);
4068
4069 if (!hci_conn_num(hdev, ESCO_LINK))
4070 return;
4071
4072 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4073 &quote))) {
4074 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4075 BT_DBG("skb %p len %d", skb, skb->len);
4076 hci_send_frame(hdev, skb);
4077
4078 conn->sent++;
4079 if (conn->sent == ~0)
4080 conn->sent = 0;
4081 }
4082 }
4083 }
4084
4085 static void hci_sched_le(struct hci_dev *hdev)
4086 {
4087 struct hci_chan *chan;
4088 struct sk_buff *skb;
4089 int quote, cnt, tmp;
4090
4091 BT_DBG("%s", hdev->name);
4092
4093 if (!hci_conn_num(hdev, LE_LINK))
4094 return;
4095
4096 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4097 /* LE tx timeout must be longer than maximum
4098 * link supervision timeout (40.9 seconds) */
4099 if (!hdev->le_cnt && hdev->le_pkts &&
4100 time_after(jiffies, hdev->le_last_tx + HZ * 45))
4101 hci_link_tx_to(hdev, LE_LINK);
4102 }
4103
4104 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4105 tmp = cnt;
4106 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4107 u32 priority = (skb_peek(&chan->data_q))->priority;
4108 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4109 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4110 skb->len, skb->priority);
4111
4112 /* Stop if priority has changed */
4113 if (skb->priority < priority)
4114 break;
4115
4116 skb = skb_dequeue(&chan->data_q);
4117
4118 hci_send_frame(hdev, skb);
4119 hdev->le_last_tx = jiffies;
4120
4121 cnt--;
4122 chan->sent++;
4123 chan->conn->sent++;
4124 }
4125 }
4126
4127 if (hdev->le_pkts)
4128 hdev->le_cnt = cnt;
4129 else
4130 hdev->acl_cnt = cnt;
4131
4132 if (cnt != tmp)
4133 hci_prio_recalculate(hdev, LE_LINK);
4134 }
4135
4136 static void hci_tx_work(struct work_struct *work)
4137 {
4138 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4139 struct sk_buff *skb;
4140
4141 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4142 hdev->sco_cnt, hdev->le_cnt);
4143
4144 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4145 /* Schedule queues and send stuff to HCI driver */
4146 hci_sched_acl(hdev);
4147 hci_sched_sco(hdev);
4148 hci_sched_esco(hdev);
4149 hci_sched_le(hdev);
4150 }
4151
4152 /* Send next queued raw (unknown type) packet */
4153 while ((skb = skb_dequeue(&hdev->raw_q)))
4154 hci_send_frame(hdev, skb);
4155 }
4156
4157 /* ----- HCI RX task (incoming data processing) ----- */
4158
4159 /* ACL data packet */
4160 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4161 {
4162 struct hci_acl_hdr *hdr = (void *) skb->data;
4163 struct hci_conn *conn;
4164 __u16 handle, flags;
4165
4166 skb_pull(skb, HCI_ACL_HDR_SIZE);
4167
4168 handle = __le16_to_cpu(hdr->handle);
4169 flags = hci_flags(handle);
4170 handle = hci_handle(handle);
4171
4172 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4173 handle, flags);
4174
4175 hdev->stat.acl_rx++;
4176
4177 hci_dev_lock(hdev);
4178 conn = hci_conn_hash_lookup_handle(hdev, handle);
4179 hci_dev_unlock(hdev);
4180
4181 if (conn) {
4182 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4183
4184 /* Send to upper protocol */
4185 l2cap_recv_acldata(conn, skb, flags);
4186 return;
4187 } else {
4188 BT_ERR("%s ACL packet for unknown connection handle %d",
4189 hdev->name, handle);
4190 }
4191
4192 kfree_skb(skb);
4193 }
4194
4195 /* SCO data packet */
4196 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4197 {
4198 struct hci_sco_hdr *hdr = (void *) skb->data;
4199 struct hci_conn *conn;
4200 __u16 handle;
4201
4202 skb_pull(skb, HCI_SCO_HDR_SIZE);
4203
4204 handle = __le16_to_cpu(hdr->handle);
4205
4206 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4207
4208 hdev->stat.sco_rx++;
4209
4210 hci_dev_lock(hdev);
4211 conn = hci_conn_hash_lookup_handle(hdev, handle);
4212 hci_dev_unlock(hdev);
4213
4214 if (conn) {
4215 /* Send to upper protocol */
4216 sco_recv_scodata(conn, skb);
4217 return;
4218 } else {
4219 BT_ERR("%s SCO packet for unknown connection handle %d",
4220 hdev->name, handle);
4221 }
4222
4223 kfree_skb(skb);
4224 }
4225
4226 static bool hci_req_is_complete(struct hci_dev *hdev)
4227 {
4228 struct sk_buff *skb;
4229
4230 skb = skb_peek(&hdev->cmd_q);
4231 if (!skb)
4232 return true;
4233
4234 return bt_cb(skb)->req.start;
4235 }
4236
4237 static void hci_resend_last(struct hci_dev *hdev)
4238 {
4239 struct hci_command_hdr *sent;
4240 struct sk_buff *skb;
4241 u16 opcode;
4242
4243 if (!hdev->sent_cmd)
4244 return;
4245
4246 sent = (void *) hdev->sent_cmd->data;
4247 opcode = __le16_to_cpu(sent->opcode);
4248 if (opcode == HCI_OP_RESET)
4249 return;
4250
4251 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4252 if (!skb)
4253 return;
4254
4255 skb_queue_head(&hdev->cmd_q, skb);
4256 queue_work(hdev->workqueue, &hdev->cmd_work);
4257 }
4258
4259 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4260 hci_req_complete_t *req_complete,
4261 hci_req_complete_skb_t *req_complete_skb)
4262 {
4263 struct sk_buff *skb;
4264 unsigned long flags;
4265
4266 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4267
4268 /* If the completed command doesn't match the last one that was
4269 * sent we need to do special handling of it.
4270 */
4271 if (!hci_sent_cmd_data(hdev, opcode)) {
4272 /* Some CSR based controllers generate a spontaneous
4273 * reset complete event during init and any pending
4274 * command will never be completed. In such a case we
4275 * need to resend whatever was the last sent
4276 * command.
4277 */
4278 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4279 hci_resend_last(hdev);
4280
4281 return;
4282 }
4283
4284 /* If the command succeeded and there's still more commands in
4285 * this request the request is not yet complete.
4286 */
4287 if (!status && !hci_req_is_complete(hdev))
4288 return;
4289
4290 /* If this was the last command in a request the complete
4291 * callback would be found in hdev->sent_cmd instead of the
4292 * command queue (hdev->cmd_q).
4293 */
4294 if (bt_cb(hdev->sent_cmd)->req.complete) {
4295 *req_complete = bt_cb(hdev->sent_cmd)->req.complete;
4296 return;
4297 }
4298
4299 if (bt_cb(hdev->sent_cmd)->req.complete_skb) {
4300 *req_complete_skb = bt_cb(hdev->sent_cmd)->req.complete_skb;
4301 return;
4302 }
4303
4304 /* Remove all pending commands belonging to this request */
4305 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4306 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4307 if (bt_cb(skb)->req.start) {
4308 __skb_queue_head(&hdev->cmd_q, skb);
4309 break;
4310 }
4311
4312 *req_complete = bt_cb(skb)->req.complete;
4313 *req_complete_skb = bt_cb(skb)->req.complete_skb;
4314 kfree_skb(skb);
4315 }
4316 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4317 }
4318
4319 static void hci_rx_work(struct work_struct *work)
4320 {
4321 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4322 struct sk_buff *skb;
4323
4324 BT_DBG("%s", hdev->name);
4325
4326 while ((skb = skb_dequeue(&hdev->rx_q))) {
4327 /* Send copy to monitor */
4328 hci_send_to_monitor(hdev, skb);
4329
4330 if (atomic_read(&hdev->promisc)) {
4331 /* Send copy to the sockets */
4332 hci_send_to_sock(hdev, skb);
4333 }
4334
4335 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4336 kfree_skb(skb);
4337 continue;
4338 }
4339
4340 if (test_bit(HCI_INIT, &hdev->flags)) {
4341 /* Don't process data packets in this states. */
4342 switch (bt_cb(skb)->pkt_type) {
4343 case HCI_ACLDATA_PKT:
4344 case HCI_SCODATA_PKT:
4345 kfree_skb(skb);
4346 continue;
4347 }
4348 }
4349
4350 /* Process frame */
4351 switch (bt_cb(skb)->pkt_type) {
4352 case HCI_EVENT_PKT:
4353 BT_DBG("%s Event packet", hdev->name);
4354 hci_event_packet(hdev, skb);
4355 break;
4356
4357 case HCI_ACLDATA_PKT:
4358 BT_DBG("%s ACL data packet", hdev->name);
4359 hci_acldata_packet(hdev, skb);
4360 break;
4361
4362 case HCI_SCODATA_PKT:
4363 BT_DBG("%s SCO data packet", hdev->name);
4364 hci_scodata_packet(hdev, skb);
4365 break;
4366
4367 default:
4368 kfree_skb(skb);
4369 break;
4370 }
4371 }
4372 }
4373
4374 static void hci_cmd_work(struct work_struct *work)
4375 {
4376 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4377 struct sk_buff *skb;
4378
4379 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4380 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4381
4382 /* Send queued commands */
4383 if (atomic_read(&hdev->cmd_cnt)) {
4384 skb = skb_dequeue(&hdev->cmd_q);
4385 if (!skb)
4386 return;
4387
4388 kfree_skb(hdev->sent_cmd);
4389
4390 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4391 if (hdev->sent_cmd) {
4392 atomic_dec(&hdev->cmd_cnt);
4393 hci_send_frame(hdev, skb);
4394 if (test_bit(HCI_RESET, &hdev->flags))
4395 cancel_delayed_work(&hdev->cmd_timer);
4396 else
4397 schedule_delayed_work(&hdev->cmd_timer,
4398 HCI_CMD_TIMEOUT);
4399 } else {
4400 skb_queue_head(&hdev->cmd_q, skb);
4401 queue_work(hdev->workqueue, &hdev->cmd_work);
4402 }
4403 }
4404 }