]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/bluetooth/hci_core.c
Bluetooth: Fix calculation of SCO handle for packet processing
[mirror_ubuntu-jammy-kernel.git] / net / bluetooth / hci_core.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <linux/property.h>
34 #include <asm/unaligned.h>
35
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38 #include <net/bluetooth/l2cap.h>
39 #include <net/bluetooth/mgmt.h>
40
41 #include "hci_request.h"
42 #include "hci_debugfs.h"
43 #include "smp.h"
44 #include "leds.h"
45
46 static void hci_rx_work(struct work_struct *work);
47 static void hci_cmd_work(struct work_struct *work);
48 static void hci_tx_work(struct work_struct *work);
49
50 /* HCI device list */
51 LIST_HEAD(hci_dev_list);
52 DEFINE_RWLOCK(hci_dev_list_lock);
53
54 /* HCI callback list */
55 LIST_HEAD(hci_cb_list);
56 DEFINE_MUTEX(hci_cb_list_lock);
57
58 /* HCI ID Numbering */
59 static DEFINE_IDA(hci_index_ida);
60
61 /* ---- HCI debugfs entries ---- */
62
63 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
64 size_t count, loff_t *ppos)
65 {
66 struct hci_dev *hdev = file->private_data;
67 char buf[3];
68
69 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
70 buf[1] = '\n';
71 buf[2] = '\0';
72 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
73 }
74
75 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
76 size_t count, loff_t *ppos)
77 {
78 struct hci_dev *hdev = file->private_data;
79 struct sk_buff *skb;
80 bool enable;
81 int err;
82
83 if (!test_bit(HCI_UP, &hdev->flags))
84 return -ENETDOWN;
85
86 err = kstrtobool_from_user(user_buf, count, &enable);
87 if (err)
88 return err;
89
90 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
91 return -EALREADY;
92
93 hci_req_sync_lock(hdev);
94 if (enable)
95 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
96 HCI_CMD_TIMEOUT);
97 else
98 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
99 HCI_CMD_TIMEOUT);
100 hci_req_sync_unlock(hdev);
101
102 if (IS_ERR(skb))
103 return PTR_ERR(skb);
104
105 kfree_skb(skb);
106
107 hci_dev_change_flag(hdev, HCI_DUT_MODE);
108
109 return count;
110 }
111
112 static const struct file_operations dut_mode_fops = {
113 .open = simple_open,
114 .read = dut_mode_read,
115 .write = dut_mode_write,
116 .llseek = default_llseek,
117 };
118
119 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
120 size_t count, loff_t *ppos)
121 {
122 struct hci_dev *hdev = file->private_data;
123 char buf[3];
124
125 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
126 buf[1] = '\n';
127 buf[2] = '\0';
128 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
129 }
130
131 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
132 size_t count, loff_t *ppos)
133 {
134 struct hci_dev *hdev = file->private_data;
135 bool enable;
136 int err;
137
138 err = kstrtobool_from_user(user_buf, count, &enable);
139 if (err)
140 return err;
141
142 /* When the diagnostic flags are not persistent and the transport
143 * is not active or in user channel operation, then there is no need
144 * for the vendor callback. Instead just store the desired value and
145 * the setting will be programmed when the controller gets powered on.
146 */
147 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
148 (!test_bit(HCI_RUNNING, &hdev->flags) ||
149 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
150 goto done;
151
152 hci_req_sync_lock(hdev);
153 err = hdev->set_diag(hdev, enable);
154 hci_req_sync_unlock(hdev);
155
156 if (err < 0)
157 return err;
158
159 done:
160 if (enable)
161 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
162 else
163 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
164
165 return count;
166 }
167
168 static const struct file_operations vendor_diag_fops = {
169 .open = simple_open,
170 .read = vendor_diag_read,
171 .write = vendor_diag_write,
172 .llseek = default_llseek,
173 };
174
175 static void hci_debugfs_create_basic(struct hci_dev *hdev)
176 {
177 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
178 &dut_mode_fops);
179
180 if (hdev->set_diag)
181 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
182 &vendor_diag_fops);
183 }
184
185 static int hci_reset_req(struct hci_request *req, unsigned long opt)
186 {
187 BT_DBG("%s %ld", req->hdev->name, opt);
188
189 /* Reset device */
190 set_bit(HCI_RESET, &req->hdev->flags);
191 hci_req_add(req, HCI_OP_RESET, 0, NULL);
192 return 0;
193 }
194
195 static void bredr_init(struct hci_request *req)
196 {
197 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
198
199 /* Read Local Supported Features */
200 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
201
202 /* Read Local Version */
203 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
204
205 /* Read BD Address */
206 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
207 }
208
209 static void amp_init1(struct hci_request *req)
210 {
211 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
212
213 /* Read Local Version */
214 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
215
216 /* Read Local Supported Commands */
217 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
218
219 /* Read Local AMP Info */
220 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
221
222 /* Read Data Blk size */
223 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
224
225 /* Read Flow Control Mode */
226 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
227
228 /* Read Location Data */
229 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
230 }
231
232 static int amp_init2(struct hci_request *req)
233 {
234 /* Read Local Supported Features. Not all AMP controllers
235 * support this so it's placed conditionally in the second
236 * stage init.
237 */
238 if (req->hdev->commands[14] & 0x20)
239 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
240
241 return 0;
242 }
243
244 static int hci_init1_req(struct hci_request *req, unsigned long opt)
245 {
246 struct hci_dev *hdev = req->hdev;
247
248 BT_DBG("%s %ld", hdev->name, opt);
249
250 /* Reset */
251 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
252 hci_reset_req(req, 0);
253
254 switch (hdev->dev_type) {
255 case HCI_PRIMARY:
256 bredr_init(req);
257 break;
258 case HCI_AMP:
259 amp_init1(req);
260 break;
261 default:
262 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
263 break;
264 }
265
266 return 0;
267 }
268
269 static void bredr_setup(struct hci_request *req)
270 {
271 __le16 param;
272 __u8 flt_type;
273
274 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
275 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
276
277 /* Read Class of Device */
278 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
279
280 /* Read Local Name */
281 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
282
283 /* Read Voice Setting */
284 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
285
286 /* Read Number of Supported IAC */
287 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
288
289 /* Read Current IAC LAP */
290 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
291
292 /* Clear Event Filters */
293 flt_type = HCI_FLT_CLEAR_ALL;
294 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
295
296 /* Connection accept timeout ~20 secs */
297 param = cpu_to_le16(0x7d00);
298 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
299 }
300
301 static void le_setup(struct hci_request *req)
302 {
303 struct hci_dev *hdev = req->hdev;
304
305 /* Read LE Buffer Size */
306 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
307
308 /* Read LE Local Supported Features */
309 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
310
311 /* Read LE Supported States */
312 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
313
314 /* LE-only controllers have LE implicitly enabled */
315 if (!lmp_bredr_capable(hdev))
316 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
317 }
318
319 static void hci_setup_event_mask(struct hci_request *req)
320 {
321 struct hci_dev *hdev = req->hdev;
322
323 /* The second byte is 0xff instead of 0x9f (two reserved bits
324 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
325 * command otherwise.
326 */
327 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
328
329 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
330 * any event mask for pre 1.2 devices.
331 */
332 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
333 return;
334
335 if (lmp_bredr_capable(hdev)) {
336 events[4] |= 0x01; /* Flow Specification Complete */
337 } else {
338 /* Use a different default for LE-only devices */
339 memset(events, 0, sizeof(events));
340 events[1] |= 0x20; /* Command Complete */
341 events[1] |= 0x40; /* Command Status */
342 events[1] |= 0x80; /* Hardware Error */
343
344 /* If the controller supports the Disconnect command, enable
345 * the corresponding event. In addition enable packet flow
346 * control related events.
347 */
348 if (hdev->commands[0] & 0x20) {
349 events[0] |= 0x10; /* Disconnection Complete */
350 events[2] |= 0x04; /* Number of Completed Packets */
351 events[3] |= 0x02; /* Data Buffer Overflow */
352 }
353
354 /* If the controller supports the Read Remote Version
355 * Information command, enable the corresponding event.
356 */
357 if (hdev->commands[2] & 0x80)
358 events[1] |= 0x08; /* Read Remote Version Information
359 * Complete
360 */
361
362 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
363 events[0] |= 0x80; /* Encryption Change */
364 events[5] |= 0x80; /* Encryption Key Refresh Complete */
365 }
366 }
367
368 if (lmp_inq_rssi_capable(hdev) ||
369 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
370 events[4] |= 0x02; /* Inquiry Result with RSSI */
371
372 if (lmp_ext_feat_capable(hdev))
373 events[4] |= 0x04; /* Read Remote Extended Features Complete */
374
375 if (lmp_esco_capable(hdev)) {
376 events[5] |= 0x08; /* Synchronous Connection Complete */
377 events[5] |= 0x10; /* Synchronous Connection Changed */
378 }
379
380 if (lmp_sniffsubr_capable(hdev))
381 events[5] |= 0x20; /* Sniff Subrating */
382
383 if (lmp_pause_enc_capable(hdev))
384 events[5] |= 0x80; /* Encryption Key Refresh Complete */
385
386 if (lmp_ext_inq_capable(hdev))
387 events[5] |= 0x40; /* Extended Inquiry Result */
388
389 if (lmp_no_flush_capable(hdev))
390 events[7] |= 0x01; /* Enhanced Flush Complete */
391
392 if (lmp_lsto_capable(hdev))
393 events[6] |= 0x80; /* Link Supervision Timeout Changed */
394
395 if (lmp_ssp_capable(hdev)) {
396 events[6] |= 0x01; /* IO Capability Request */
397 events[6] |= 0x02; /* IO Capability Response */
398 events[6] |= 0x04; /* User Confirmation Request */
399 events[6] |= 0x08; /* User Passkey Request */
400 events[6] |= 0x10; /* Remote OOB Data Request */
401 events[6] |= 0x20; /* Simple Pairing Complete */
402 events[7] |= 0x04; /* User Passkey Notification */
403 events[7] |= 0x08; /* Keypress Notification */
404 events[7] |= 0x10; /* Remote Host Supported
405 * Features Notification
406 */
407 }
408
409 if (lmp_le_capable(hdev))
410 events[7] |= 0x20; /* LE Meta-Event */
411
412 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
413 }
414
415 static int hci_init2_req(struct hci_request *req, unsigned long opt)
416 {
417 struct hci_dev *hdev = req->hdev;
418
419 if (hdev->dev_type == HCI_AMP)
420 return amp_init2(req);
421
422 if (lmp_bredr_capable(hdev))
423 bredr_setup(req);
424 else
425 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
426
427 if (lmp_le_capable(hdev))
428 le_setup(req);
429
430 /* All Bluetooth 1.2 and later controllers should support the
431 * HCI command for reading the local supported commands.
432 *
433 * Unfortunately some controllers indicate Bluetooth 1.2 support,
434 * but do not have support for this command. If that is the case,
435 * the driver can quirk the behavior and skip reading the local
436 * supported commands.
437 */
438 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
439 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
440 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
441
442 if (lmp_ssp_capable(hdev)) {
443 /* When SSP is available, then the host features page
444 * should also be available as well. However some
445 * controllers list the max_page as 0 as long as SSP
446 * has not been enabled. To achieve proper debugging
447 * output, force the minimum max_page to 1 at least.
448 */
449 hdev->max_page = 0x01;
450
451 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
452 u8 mode = 0x01;
453
454 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
455 sizeof(mode), &mode);
456 } else {
457 struct hci_cp_write_eir cp;
458
459 memset(hdev->eir, 0, sizeof(hdev->eir));
460 memset(&cp, 0, sizeof(cp));
461
462 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
463 }
464 }
465
466 if (lmp_inq_rssi_capable(hdev) ||
467 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
468 u8 mode;
469
470 /* If Extended Inquiry Result events are supported, then
471 * they are clearly preferred over Inquiry Result with RSSI
472 * events.
473 */
474 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
475
476 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
477 }
478
479 if (lmp_inq_tx_pwr_capable(hdev))
480 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
481
482 if (lmp_ext_feat_capable(hdev)) {
483 struct hci_cp_read_local_ext_features cp;
484
485 cp.page = 0x01;
486 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
487 sizeof(cp), &cp);
488 }
489
490 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
491 u8 enable = 1;
492 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
493 &enable);
494 }
495
496 return 0;
497 }
498
499 static void hci_setup_link_policy(struct hci_request *req)
500 {
501 struct hci_dev *hdev = req->hdev;
502 struct hci_cp_write_def_link_policy cp;
503 u16 link_policy = 0;
504
505 if (lmp_rswitch_capable(hdev))
506 link_policy |= HCI_LP_RSWITCH;
507 if (lmp_hold_capable(hdev))
508 link_policy |= HCI_LP_HOLD;
509 if (lmp_sniff_capable(hdev))
510 link_policy |= HCI_LP_SNIFF;
511 if (lmp_park_capable(hdev))
512 link_policy |= HCI_LP_PARK;
513
514 cp.policy = cpu_to_le16(link_policy);
515 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
516 }
517
518 static void hci_set_le_support(struct hci_request *req)
519 {
520 struct hci_dev *hdev = req->hdev;
521 struct hci_cp_write_le_host_supported cp;
522
523 /* LE-only devices do not support explicit enablement */
524 if (!lmp_bredr_capable(hdev))
525 return;
526
527 memset(&cp, 0, sizeof(cp));
528
529 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
530 cp.le = 0x01;
531 cp.simul = 0x00;
532 }
533
534 if (cp.le != lmp_host_le_capable(hdev))
535 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
536 &cp);
537 }
538
539 static void hci_set_event_mask_page_2(struct hci_request *req)
540 {
541 struct hci_dev *hdev = req->hdev;
542 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
543 bool changed = false;
544
545 /* If Connectionless Slave Broadcast master role is supported
546 * enable all necessary events for it.
547 */
548 if (lmp_csb_master_capable(hdev)) {
549 events[1] |= 0x40; /* Triggered Clock Capture */
550 events[1] |= 0x80; /* Synchronization Train Complete */
551 events[2] |= 0x10; /* Slave Page Response Timeout */
552 events[2] |= 0x20; /* CSB Channel Map Change */
553 changed = true;
554 }
555
556 /* If Connectionless Slave Broadcast slave role is supported
557 * enable all necessary events for it.
558 */
559 if (lmp_csb_slave_capable(hdev)) {
560 events[2] |= 0x01; /* Synchronization Train Received */
561 events[2] |= 0x02; /* CSB Receive */
562 events[2] |= 0x04; /* CSB Timeout */
563 events[2] |= 0x08; /* Truncated Page Complete */
564 changed = true;
565 }
566
567 /* Enable Authenticated Payload Timeout Expired event if supported */
568 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
569 events[2] |= 0x80;
570 changed = true;
571 }
572
573 /* Some Broadcom based controllers indicate support for Set Event
574 * Mask Page 2 command, but then actually do not support it. Since
575 * the default value is all bits set to zero, the command is only
576 * required if the event mask has to be changed. In case no change
577 * to the event mask is needed, skip this command.
578 */
579 if (changed)
580 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
581 sizeof(events), events);
582 }
583
584 static int hci_init3_req(struct hci_request *req, unsigned long opt)
585 {
586 struct hci_dev *hdev = req->hdev;
587 u8 p;
588
589 hci_setup_event_mask(req);
590
591 if (hdev->commands[6] & 0x20 &&
592 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
593 struct hci_cp_read_stored_link_key cp;
594
595 bacpy(&cp.bdaddr, BDADDR_ANY);
596 cp.read_all = 0x01;
597 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
598 }
599
600 if (hdev->commands[5] & 0x10)
601 hci_setup_link_policy(req);
602
603 if (hdev->commands[8] & 0x01)
604 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
605
606 /* Some older Broadcom based Bluetooth 1.2 controllers do not
607 * support the Read Page Scan Type command. Check support for
608 * this command in the bit mask of supported commands.
609 */
610 if (hdev->commands[13] & 0x01)
611 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
612
613 if (lmp_le_capable(hdev)) {
614 u8 events[8];
615
616 memset(events, 0, sizeof(events));
617
618 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
619 events[0] |= 0x10; /* LE Long Term Key Request */
620
621 /* If controller supports the Connection Parameters Request
622 * Link Layer Procedure, enable the corresponding event.
623 */
624 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
625 events[0] |= 0x20; /* LE Remote Connection
626 * Parameter Request
627 */
628
629 /* If the controller supports the Data Length Extension
630 * feature, enable the corresponding event.
631 */
632 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
633 events[0] |= 0x40; /* LE Data Length Change */
634
635 /* If the controller supports Extended Scanner Filter
636 * Policies, enable the correspondig event.
637 */
638 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
639 events[1] |= 0x04; /* LE Direct Advertising
640 * Report
641 */
642
643 /* If the controller supports Channel Selection Algorithm #2
644 * feature, enable the corresponding event.
645 */
646 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
647 events[2] |= 0x08; /* LE Channel Selection
648 * Algorithm
649 */
650
651 /* If the controller supports the LE Set Scan Enable command,
652 * enable the corresponding advertising report event.
653 */
654 if (hdev->commands[26] & 0x08)
655 events[0] |= 0x02; /* LE Advertising Report */
656
657 /* If the controller supports the LE Create Connection
658 * command, enable the corresponding event.
659 */
660 if (hdev->commands[26] & 0x10)
661 events[0] |= 0x01; /* LE Connection Complete */
662
663 /* If the controller supports the LE Connection Update
664 * command, enable the corresponding event.
665 */
666 if (hdev->commands[27] & 0x04)
667 events[0] |= 0x04; /* LE Connection Update
668 * Complete
669 */
670
671 /* If the controller supports the LE Read Remote Used Features
672 * command, enable the corresponding event.
673 */
674 if (hdev->commands[27] & 0x20)
675 events[0] |= 0x08; /* LE Read Remote Used
676 * Features Complete
677 */
678
679 /* If the controller supports the LE Read Local P-256
680 * Public Key command, enable the corresponding event.
681 */
682 if (hdev->commands[34] & 0x02)
683 events[0] |= 0x80; /* LE Read Local P-256
684 * Public Key Complete
685 */
686
687 /* If the controller supports the LE Generate DHKey
688 * command, enable the corresponding event.
689 */
690 if (hdev->commands[34] & 0x04)
691 events[1] |= 0x01; /* LE Generate DHKey Complete */
692
693 /* If the controller supports the LE Set Default PHY or
694 * LE Set PHY commands, enable the corresponding event.
695 */
696 if (hdev->commands[35] & (0x20 | 0x40))
697 events[1] |= 0x08; /* LE PHY Update Complete */
698
699 /* If the controller supports LE Set Extended Scan Parameters
700 * and LE Set Extended Scan Enable commands, enable the
701 * corresponding event.
702 */
703 if (use_ext_scan(hdev))
704 events[1] |= 0x10; /* LE Extended Advertising
705 * Report
706 */
707
708 /* If the controller supports the LE Extended Create Connection
709 * command, enable the corresponding event.
710 */
711 if (use_ext_conn(hdev))
712 events[1] |= 0x02; /* LE Enhanced Connection
713 * Complete
714 */
715
716 /* If the controller supports the LE Extended Advertising
717 * command, enable the corresponding event.
718 */
719 if (ext_adv_capable(hdev))
720 events[2] |= 0x02; /* LE Advertising Set
721 * Terminated
722 */
723
724 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
725 events);
726
727 /* Read LE Advertising Channel TX Power */
728 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
729 /* HCI TS spec forbids mixing of legacy and extended
730 * advertising commands wherein READ_ADV_TX_POWER is
731 * also included. So do not call it if extended adv
732 * is supported otherwise controller will return
733 * COMMAND_DISALLOWED for extended commands.
734 */
735 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
736 }
737
738 if (hdev->commands[26] & 0x40) {
739 /* Read LE White List Size */
740 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
741 0, NULL);
742 }
743
744 if (hdev->commands[26] & 0x80) {
745 /* Clear LE White List */
746 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
747 }
748
749 if (hdev->commands[34] & 0x40) {
750 /* Read LE Resolving List Size */
751 hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
752 0, NULL);
753 }
754
755 if (hdev->commands[34] & 0x20) {
756 /* Clear LE Resolving List */
757 hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
758 }
759
760 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
761 /* Read LE Maximum Data Length */
762 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
763
764 /* Read LE Suggested Default Data Length */
765 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
766 }
767
768 if (ext_adv_capable(hdev)) {
769 /* Read LE Number of Supported Advertising Sets */
770 hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
771 0, NULL);
772 }
773
774 hci_set_le_support(req);
775 }
776
777 /* Read features beyond page 1 if available */
778 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
779 struct hci_cp_read_local_ext_features cp;
780
781 cp.page = p;
782 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
783 sizeof(cp), &cp);
784 }
785
786 return 0;
787 }
788
789 static int hci_init4_req(struct hci_request *req, unsigned long opt)
790 {
791 struct hci_dev *hdev = req->hdev;
792
793 /* Some Broadcom based Bluetooth controllers do not support the
794 * Delete Stored Link Key command. They are clearly indicating its
795 * absence in the bit mask of supported commands.
796 *
797 * Check the supported commands and only if the the command is marked
798 * as supported send it. If not supported assume that the controller
799 * does not have actual support for stored link keys which makes this
800 * command redundant anyway.
801 *
802 * Some controllers indicate that they support handling deleting
803 * stored link keys, but they don't. The quirk lets a driver
804 * just disable this command.
805 */
806 if (hdev->commands[6] & 0x80 &&
807 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
808 struct hci_cp_delete_stored_link_key cp;
809
810 bacpy(&cp.bdaddr, BDADDR_ANY);
811 cp.delete_all = 0x01;
812 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
813 sizeof(cp), &cp);
814 }
815
816 /* Set event mask page 2 if the HCI command for it is supported */
817 if (hdev->commands[22] & 0x04)
818 hci_set_event_mask_page_2(req);
819
820 /* Read local codec list if the HCI command is supported */
821 if (hdev->commands[29] & 0x20)
822 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
823
824 /* Get MWS transport configuration if the HCI command is supported */
825 if (hdev->commands[30] & 0x08)
826 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
827
828 /* Check for Synchronization Train support */
829 if (lmp_sync_train_capable(hdev))
830 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
831
832 /* Enable Secure Connections if supported and configured */
833 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
834 bredr_sc_enabled(hdev)) {
835 u8 support = 0x01;
836
837 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
838 sizeof(support), &support);
839 }
840
841 /* Set Suggested Default Data Length to maximum if supported */
842 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
843 struct hci_cp_le_write_def_data_len cp;
844
845 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
846 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
847 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
848 }
849
850 /* Set Default PHY parameters if command is supported */
851 if (hdev->commands[35] & 0x20) {
852 struct hci_cp_le_set_default_phy cp;
853
854 cp.all_phys = 0x00;
855 cp.tx_phys = hdev->le_tx_def_phys;
856 cp.rx_phys = hdev->le_rx_def_phys;
857
858 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
859 }
860
861 return 0;
862 }
863
864 static int __hci_init(struct hci_dev *hdev)
865 {
866 int err;
867
868 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
869 if (err < 0)
870 return err;
871
872 if (hci_dev_test_flag(hdev, HCI_SETUP))
873 hci_debugfs_create_basic(hdev);
874
875 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
876 if (err < 0)
877 return err;
878
879 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
880 * BR/EDR/LE type controllers. AMP controllers only need the
881 * first two stages of init.
882 */
883 if (hdev->dev_type != HCI_PRIMARY)
884 return 0;
885
886 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
887 if (err < 0)
888 return err;
889
890 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
891 if (err < 0)
892 return err;
893
894 /* This function is only called when the controller is actually in
895 * configured state. When the controller is marked as unconfigured,
896 * this initialization procedure is not run.
897 *
898 * It means that it is possible that a controller runs through its
899 * setup phase and then discovers missing settings. If that is the
900 * case, then this function will not be called. It then will only
901 * be called during the config phase.
902 *
903 * So only when in setup phase or config phase, create the debugfs
904 * entries and register the SMP channels.
905 */
906 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
907 !hci_dev_test_flag(hdev, HCI_CONFIG))
908 return 0;
909
910 hci_debugfs_create_common(hdev);
911
912 if (lmp_bredr_capable(hdev))
913 hci_debugfs_create_bredr(hdev);
914
915 if (lmp_le_capable(hdev))
916 hci_debugfs_create_le(hdev);
917
918 return 0;
919 }
920
921 static int hci_init0_req(struct hci_request *req, unsigned long opt)
922 {
923 struct hci_dev *hdev = req->hdev;
924
925 BT_DBG("%s %ld", hdev->name, opt);
926
927 /* Reset */
928 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
929 hci_reset_req(req, 0);
930
931 /* Read Local Version */
932 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
933
934 /* Read BD Address */
935 if (hdev->set_bdaddr)
936 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
937
938 return 0;
939 }
940
941 static int __hci_unconf_init(struct hci_dev *hdev)
942 {
943 int err;
944
945 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
946 return 0;
947
948 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
949 if (err < 0)
950 return err;
951
952 if (hci_dev_test_flag(hdev, HCI_SETUP))
953 hci_debugfs_create_basic(hdev);
954
955 return 0;
956 }
957
958 static int hci_scan_req(struct hci_request *req, unsigned long opt)
959 {
960 __u8 scan = opt;
961
962 BT_DBG("%s %x", req->hdev->name, scan);
963
964 /* Inquiry and Page scans */
965 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
966 return 0;
967 }
968
969 static int hci_auth_req(struct hci_request *req, unsigned long opt)
970 {
971 __u8 auth = opt;
972
973 BT_DBG("%s %x", req->hdev->name, auth);
974
975 /* Authentication */
976 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
977 return 0;
978 }
979
980 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
981 {
982 __u8 encrypt = opt;
983
984 BT_DBG("%s %x", req->hdev->name, encrypt);
985
986 /* Encryption */
987 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
988 return 0;
989 }
990
991 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
992 {
993 __le16 policy = cpu_to_le16(opt);
994
995 BT_DBG("%s %x", req->hdev->name, policy);
996
997 /* Default link policy */
998 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
999 return 0;
1000 }
1001
1002 /* Get HCI device by index.
1003 * Device is held on return. */
1004 struct hci_dev *hci_dev_get(int index)
1005 {
1006 struct hci_dev *hdev = NULL, *d;
1007
1008 BT_DBG("%d", index);
1009
1010 if (index < 0)
1011 return NULL;
1012
1013 read_lock(&hci_dev_list_lock);
1014 list_for_each_entry(d, &hci_dev_list, list) {
1015 if (d->id == index) {
1016 hdev = hci_dev_hold(d);
1017 break;
1018 }
1019 }
1020 read_unlock(&hci_dev_list_lock);
1021 return hdev;
1022 }
1023
1024 /* ---- Inquiry support ---- */
1025
1026 bool hci_discovery_active(struct hci_dev *hdev)
1027 {
1028 struct discovery_state *discov = &hdev->discovery;
1029
1030 switch (discov->state) {
1031 case DISCOVERY_FINDING:
1032 case DISCOVERY_RESOLVING:
1033 return true;
1034
1035 default:
1036 return false;
1037 }
1038 }
1039
1040 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1041 {
1042 int old_state = hdev->discovery.state;
1043
1044 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1045
1046 if (old_state == state)
1047 return;
1048
1049 hdev->discovery.state = state;
1050
1051 switch (state) {
1052 case DISCOVERY_STOPPED:
1053 hci_update_background_scan(hdev);
1054
1055 if (old_state != DISCOVERY_STARTING)
1056 mgmt_discovering(hdev, 0);
1057 break;
1058 case DISCOVERY_STARTING:
1059 break;
1060 case DISCOVERY_FINDING:
1061 mgmt_discovering(hdev, 1);
1062 break;
1063 case DISCOVERY_RESOLVING:
1064 break;
1065 case DISCOVERY_STOPPING:
1066 break;
1067 }
1068 }
1069
1070 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1071 {
1072 struct discovery_state *cache = &hdev->discovery;
1073 struct inquiry_entry *p, *n;
1074
1075 list_for_each_entry_safe(p, n, &cache->all, all) {
1076 list_del(&p->all);
1077 kfree(p);
1078 }
1079
1080 INIT_LIST_HEAD(&cache->unknown);
1081 INIT_LIST_HEAD(&cache->resolve);
1082 }
1083
1084 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1085 bdaddr_t *bdaddr)
1086 {
1087 struct discovery_state *cache = &hdev->discovery;
1088 struct inquiry_entry *e;
1089
1090 BT_DBG("cache %p, %pMR", cache, bdaddr);
1091
1092 list_for_each_entry(e, &cache->all, all) {
1093 if (!bacmp(&e->data.bdaddr, bdaddr))
1094 return e;
1095 }
1096
1097 return NULL;
1098 }
1099
1100 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1101 bdaddr_t *bdaddr)
1102 {
1103 struct discovery_state *cache = &hdev->discovery;
1104 struct inquiry_entry *e;
1105
1106 BT_DBG("cache %p, %pMR", cache, bdaddr);
1107
1108 list_for_each_entry(e, &cache->unknown, list) {
1109 if (!bacmp(&e->data.bdaddr, bdaddr))
1110 return e;
1111 }
1112
1113 return NULL;
1114 }
1115
1116 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1117 bdaddr_t *bdaddr,
1118 int state)
1119 {
1120 struct discovery_state *cache = &hdev->discovery;
1121 struct inquiry_entry *e;
1122
1123 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1124
1125 list_for_each_entry(e, &cache->resolve, list) {
1126 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1127 return e;
1128 if (!bacmp(&e->data.bdaddr, bdaddr))
1129 return e;
1130 }
1131
1132 return NULL;
1133 }
1134
1135 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1136 struct inquiry_entry *ie)
1137 {
1138 struct discovery_state *cache = &hdev->discovery;
1139 struct list_head *pos = &cache->resolve;
1140 struct inquiry_entry *p;
1141
1142 list_del(&ie->list);
1143
1144 list_for_each_entry(p, &cache->resolve, list) {
1145 if (p->name_state != NAME_PENDING &&
1146 abs(p->data.rssi) >= abs(ie->data.rssi))
1147 break;
1148 pos = &p->list;
1149 }
1150
1151 list_add(&ie->list, pos);
1152 }
1153
1154 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1155 bool name_known)
1156 {
1157 struct discovery_state *cache = &hdev->discovery;
1158 struct inquiry_entry *ie;
1159 u32 flags = 0;
1160
1161 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1162
1163 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1164
1165 if (!data->ssp_mode)
1166 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1167
1168 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1169 if (ie) {
1170 if (!ie->data.ssp_mode)
1171 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1172
1173 if (ie->name_state == NAME_NEEDED &&
1174 data->rssi != ie->data.rssi) {
1175 ie->data.rssi = data->rssi;
1176 hci_inquiry_cache_update_resolve(hdev, ie);
1177 }
1178
1179 goto update;
1180 }
1181
1182 /* Entry not in the cache. Add new one. */
1183 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1184 if (!ie) {
1185 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1186 goto done;
1187 }
1188
1189 list_add(&ie->all, &cache->all);
1190
1191 if (name_known) {
1192 ie->name_state = NAME_KNOWN;
1193 } else {
1194 ie->name_state = NAME_NOT_KNOWN;
1195 list_add(&ie->list, &cache->unknown);
1196 }
1197
1198 update:
1199 if (name_known && ie->name_state != NAME_KNOWN &&
1200 ie->name_state != NAME_PENDING) {
1201 ie->name_state = NAME_KNOWN;
1202 list_del(&ie->list);
1203 }
1204
1205 memcpy(&ie->data, data, sizeof(*data));
1206 ie->timestamp = jiffies;
1207 cache->timestamp = jiffies;
1208
1209 if (ie->name_state == NAME_NOT_KNOWN)
1210 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1211
1212 done:
1213 return flags;
1214 }
1215
1216 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1217 {
1218 struct discovery_state *cache = &hdev->discovery;
1219 struct inquiry_info *info = (struct inquiry_info *) buf;
1220 struct inquiry_entry *e;
1221 int copied = 0;
1222
1223 list_for_each_entry(e, &cache->all, all) {
1224 struct inquiry_data *data = &e->data;
1225
1226 if (copied >= num)
1227 break;
1228
1229 bacpy(&info->bdaddr, &data->bdaddr);
1230 info->pscan_rep_mode = data->pscan_rep_mode;
1231 info->pscan_period_mode = data->pscan_period_mode;
1232 info->pscan_mode = data->pscan_mode;
1233 memcpy(info->dev_class, data->dev_class, 3);
1234 info->clock_offset = data->clock_offset;
1235
1236 info++;
1237 copied++;
1238 }
1239
1240 BT_DBG("cache %p, copied %d", cache, copied);
1241 return copied;
1242 }
1243
1244 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1245 {
1246 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1247 struct hci_dev *hdev = req->hdev;
1248 struct hci_cp_inquiry cp;
1249
1250 BT_DBG("%s", hdev->name);
1251
1252 if (test_bit(HCI_INQUIRY, &hdev->flags))
1253 return 0;
1254
1255 /* Start Inquiry */
1256 memcpy(&cp.lap, &ir->lap, 3);
1257 cp.length = ir->length;
1258 cp.num_rsp = ir->num_rsp;
1259 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1260
1261 return 0;
1262 }
1263
1264 int hci_inquiry(void __user *arg)
1265 {
1266 __u8 __user *ptr = arg;
1267 struct hci_inquiry_req ir;
1268 struct hci_dev *hdev;
1269 int err = 0, do_inquiry = 0, max_rsp;
1270 long timeo;
1271 __u8 *buf;
1272
1273 if (copy_from_user(&ir, ptr, sizeof(ir)))
1274 return -EFAULT;
1275
1276 hdev = hci_dev_get(ir.dev_id);
1277 if (!hdev)
1278 return -ENODEV;
1279
1280 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1281 err = -EBUSY;
1282 goto done;
1283 }
1284
1285 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1286 err = -EOPNOTSUPP;
1287 goto done;
1288 }
1289
1290 if (hdev->dev_type != HCI_PRIMARY) {
1291 err = -EOPNOTSUPP;
1292 goto done;
1293 }
1294
1295 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1296 err = -EOPNOTSUPP;
1297 goto done;
1298 }
1299
1300 hci_dev_lock(hdev);
1301 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1302 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1303 hci_inquiry_cache_flush(hdev);
1304 do_inquiry = 1;
1305 }
1306 hci_dev_unlock(hdev);
1307
1308 timeo = ir.length * msecs_to_jiffies(2000);
1309
1310 if (do_inquiry) {
1311 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1312 timeo, NULL);
1313 if (err < 0)
1314 goto done;
1315
1316 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1317 * cleared). If it is interrupted by a signal, return -EINTR.
1318 */
1319 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1320 TASK_INTERRUPTIBLE))
1321 return -EINTR;
1322 }
1323
1324 /* for unlimited number of responses we will use buffer with
1325 * 255 entries
1326 */
1327 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1328
1329 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1330 * copy it to the user space.
1331 */
1332 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1333 if (!buf) {
1334 err = -ENOMEM;
1335 goto done;
1336 }
1337
1338 hci_dev_lock(hdev);
1339 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1340 hci_dev_unlock(hdev);
1341
1342 BT_DBG("num_rsp %d", ir.num_rsp);
1343
1344 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1345 ptr += sizeof(ir);
1346 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1347 ir.num_rsp))
1348 err = -EFAULT;
1349 } else
1350 err = -EFAULT;
1351
1352 kfree(buf);
1353
1354 done:
1355 hci_dev_put(hdev);
1356 return err;
1357 }
1358
1359 /**
1360 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1361 * (BD_ADDR) for a HCI device from
1362 * a firmware node property.
1363 * @hdev: The HCI device
1364 *
1365 * Search the firmware node for 'local-bd-address'.
1366 *
1367 * All-zero BD addresses are rejected, because those could be properties
1368 * that exist in the firmware tables, but were not updated by the firmware. For
1369 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1370 */
1371 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1372 {
1373 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1374 bdaddr_t ba;
1375 int ret;
1376
1377 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1378 (u8 *)&ba, sizeof(ba));
1379 if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1380 return;
1381
1382 bacpy(&hdev->public_addr, &ba);
1383 }
1384
1385 static int hci_dev_do_open(struct hci_dev *hdev)
1386 {
1387 int ret = 0;
1388
1389 BT_DBG("%s %p", hdev->name, hdev);
1390
1391 hci_req_sync_lock(hdev);
1392
1393 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1394 ret = -ENODEV;
1395 goto done;
1396 }
1397
1398 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1399 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1400 /* Check for rfkill but allow the HCI setup stage to
1401 * proceed (which in itself doesn't cause any RF activity).
1402 */
1403 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1404 ret = -ERFKILL;
1405 goto done;
1406 }
1407
1408 /* Check for valid public address or a configured static
1409 * random adddress, but let the HCI setup proceed to
1410 * be able to determine if there is a public address
1411 * or not.
1412 *
1413 * In case of user channel usage, it is not important
1414 * if a public address or static random address is
1415 * available.
1416 *
1417 * This check is only valid for BR/EDR controllers
1418 * since AMP controllers do not have an address.
1419 */
1420 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1421 hdev->dev_type == HCI_PRIMARY &&
1422 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1423 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1424 ret = -EADDRNOTAVAIL;
1425 goto done;
1426 }
1427 }
1428
1429 if (test_bit(HCI_UP, &hdev->flags)) {
1430 ret = -EALREADY;
1431 goto done;
1432 }
1433
1434 if (hdev->open(hdev)) {
1435 ret = -EIO;
1436 goto done;
1437 }
1438
1439 set_bit(HCI_RUNNING, &hdev->flags);
1440 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1441
1442 atomic_set(&hdev->cmd_cnt, 1);
1443 set_bit(HCI_INIT, &hdev->flags);
1444
1445 if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1446 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1447 bool invalid_bdaddr;
1448
1449 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1450
1451 if (hdev->setup)
1452 ret = hdev->setup(hdev);
1453
1454 /* The transport driver can set the quirk to mark the
1455 * BD_ADDR invalid before creating the HCI device or in
1456 * its setup callback.
1457 */
1458 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1459 &hdev->quirks);
1460
1461 if (ret)
1462 goto setup_failed;
1463
1464 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1465 if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1466 hci_dev_get_bd_addr_from_property(hdev);
1467
1468 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1469 hdev->set_bdaddr) {
1470 ret = hdev->set_bdaddr(hdev,
1471 &hdev->public_addr);
1472
1473 /* If setting of the BD_ADDR from the device
1474 * property succeeds, then treat the address
1475 * as valid even if the invalid BD_ADDR
1476 * quirk indicates otherwise.
1477 */
1478 if (!ret)
1479 invalid_bdaddr = false;
1480 }
1481 }
1482
1483 setup_failed:
1484 /* The transport driver can set these quirks before
1485 * creating the HCI device or in its setup callback.
1486 *
1487 * For the invalid BD_ADDR quirk it is possible that
1488 * it becomes a valid address if the bootloader does
1489 * provide it (see above).
1490 *
1491 * In case any of them is set, the controller has to
1492 * start up as unconfigured.
1493 */
1494 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1495 invalid_bdaddr)
1496 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1497
1498 /* For an unconfigured controller it is required to
1499 * read at least the version information provided by
1500 * the Read Local Version Information command.
1501 *
1502 * If the set_bdaddr driver callback is provided, then
1503 * also the original Bluetooth public device address
1504 * will be read using the Read BD Address command.
1505 */
1506 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1507 ret = __hci_unconf_init(hdev);
1508 }
1509
1510 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1511 /* If public address change is configured, ensure that
1512 * the address gets programmed. If the driver does not
1513 * support changing the public address, fail the power
1514 * on procedure.
1515 */
1516 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1517 hdev->set_bdaddr)
1518 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1519 else
1520 ret = -EADDRNOTAVAIL;
1521 }
1522
1523 if (!ret) {
1524 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1525 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1526 ret = __hci_init(hdev);
1527 if (!ret && hdev->post_init)
1528 ret = hdev->post_init(hdev);
1529 }
1530 }
1531
1532 /* If the HCI Reset command is clearing all diagnostic settings,
1533 * then they need to be reprogrammed after the init procedure
1534 * completed.
1535 */
1536 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1537 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1538 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1539 ret = hdev->set_diag(hdev, true);
1540
1541 clear_bit(HCI_INIT, &hdev->flags);
1542
1543 if (!ret) {
1544 hci_dev_hold(hdev);
1545 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1546 hci_adv_instances_set_rpa_expired(hdev, true);
1547 set_bit(HCI_UP, &hdev->flags);
1548 hci_sock_dev_event(hdev, HCI_DEV_UP);
1549 hci_leds_update_powered(hdev, true);
1550 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1551 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1552 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1553 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1554 hci_dev_test_flag(hdev, HCI_MGMT) &&
1555 hdev->dev_type == HCI_PRIMARY) {
1556 ret = __hci_req_hci_power_on(hdev);
1557 mgmt_power_on(hdev, ret);
1558 }
1559 } else {
1560 /* Init failed, cleanup */
1561 flush_work(&hdev->tx_work);
1562 flush_work(&hdev->cmd_work);
1563 flush_work(&hdev->rx_work);
1564
1565 skb_queue_purge(&hdev->cmd_q);
1566 skb_queue_purge(&hdev->rx_q);
1567
1568 if (hdev->flush)
1569 hdev->flush(hdev);
1570
1571 if (hdev->sent_cmd) {
1572 kfree_skb(hdev->sent_cmd);
1573 hdev->sent_cmd = NULL;
1574 }
1575
1576 clear_bit(HCI_RUNNING, &hdev->flags);
1577 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1578
1579 hdev->close(hdev);
1580 hdev->flags &= BIT(HCI_RAW);
1581 }
1582
1583 done:
1584 hci_req_sync_unlock(hdev);
1585 return ret;
1586 }
1587
1588 /* ---- HCI ioctl helpers ---- */
1589
1590 int hci_dev_open(__u16 dev)
1591 {
1592 struct hci_dev *hdev;
1593 int err;
1594
1595 hdev = hci_dev_get(dev);
1596 if (!hdev)
1597 return -ENODEV;
1598
1599 /* Devices that are marked as unconfigured can only be powered
1600 * up as user channel. Trying to bring them up as normal devices
1601 * will result into a failure. Only user channel operation is
1602 * possible.
1603 *
1604 * When this function is called for a user channel, the flag
1605 * HCI_USER_CHANNEL will be set first before attempting to
1606 * open the device.
1607 */
1608 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1609 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1610 err = -EOPNOTSUPP;
1611 goto done;
1612 }
1613
1614 /* We need to ensure that no other power on/off work is pending
1615 * before proceeding to call hci_dev_do_open. This is
1616 * particularly important if the setup procedure has not yet
1617 * completed.
1618 */
1619 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1620 cancel_delayed_work(&hdev->power_off);
1621
1622 /* After this call it is guaranteed that the setup procedure
1623 * has finished. This means that error conditions like RFKILL
1624 * or no valid public or static random address apply.
1625 */
1626 flush_workqueue(hdev->req_workqueue);
1627
1628 /* For controllers not using the management interface and that
1629 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1630 * so that pairing works for them. Once the management interface
1631 * is in use this bit will be cleared again and userspace has
1632 * to explicitly enable it.
1633 */
1634 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1635 !hci_dev_test_flag(hdev, HCI_MGMT))
1636 hci_dev_set_flag(hdev, HCI_BONDABLE);
1637
1638 err = hci_dev_do_open(hdev);
1639
1640 done:
1641 hci_dev_put(hdev);
1642 return err;
1643 }
1644
1645 /* This function requires the caller holds hdev->lock */
1646 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1647 {
1648 struct hci_conn_params *p;
1649
1650 list_for_each_entry(p, &hdev->le_conn_params, list) {
1651 if (p->conn) {
1652 hci_conn_drop(p->conn);
1653 hci_conn_put(p->conn);
1654 p->conn = NULL;
1655 }
1656 list_del_init(&p->action);
1657 }
1658
1659 BT_DBG("All LE pending actions cleared");
1660 }
1661
1662 int hci_dev_do_close(struct hci_dev *hdev)
1663 {
1664 bool auto_off;
1665
1666 BT_DBG("%s %p", hdev->name, hdev);
1667
1668 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1669 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1670 test_bit(HCI_UP, &hdev->flags)) {
1671 /* Execute vendor specific shutdown routine */
1672 if (hdev->shutdown)
1673 hdev->shutdown(hdev);
1674 }
1675
1676 cancel_delayed_work(&hdev->power_off);
1677
1678 hci_request_cancel_all(hdev);
1679 hci_req_sync_lock(hdev);
1680
1681 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1682 cancel_delayed_work_sync(&hdev->cmd_timer);
1683 hci_req_sync_unlock(hdev);
1684 return 0;
1685 }
1686
1687 hci_leds_update_powered(hdev, false);
1688
1689 /* Flush RX and TX works */
1690 flush_work(&hdev->tx_work);
1691 flush_work(&hdev->rx_work);
1692
1693 if (hdev->discov_timeout > 0) {
1694 hdev->discov_timeout = 0;
1695 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1696 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1697 }
1698
1699 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1700 cancel_delayed_work(&hdev->service_cache);
1701
1702 if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1703 struct adv_info *adv_instance;
1704
1705 cancel_delayed_work_sync(&hdev->rpa_expired);
1706
1707 list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1708 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1709 }
1710
1711 /* Avoid potential lockdep warnings from the *_flush() calls by
1712 * ensuring the workqueue is empty up front.
1713 */
1714 drain_workqueue(hdev->workqueue);
1715
1716 hci_dev_lock(hdev);
1717
1718 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1719
1720 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1721
1722 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1723 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1724 hci_dev_test_flag(hdev, HCI_MGMT))
1725 __mgmt_power_off(hdev);
1726
1727 hci_inquiry_cache_flush(hdev);
1728 hci_pend_le_actions_clear(hdev);
1729 hci_conn_hash_flush(hdev);
1730 hci_dev_unlock(hdev);
1731
1732 smp_unregister(hdev);
1733
1734 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1735
1736 if (hdev->flush)
1737 hdev->flush(hdev);
1738
1739 /* Reset device */
1740 skb_queue_purge(&hdev->cmd_q);
1741 atomic_set(&hdev->cmd_cnt, 1);
1742 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1743 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1744 set_bit(HCI_INIT, &hdev->flags);
1745 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1746 clear_bit(HCI_INIT, &hdev->flags);
1747 }
1748
1749 /* flush cmd work */
1750 flush_work(&hdev->cmd_work);
1751
1752 /* Drop queues */
1753 skb_queue_purge(&hdev->rx_q);
1754 skb_queue_purge(&hdev->cmd_q);
1755 skb_queue_purge(&hdev->raw_q);
1756
1757 /* Drop last sent command */
1758 if (hdev->sent_cmd) {
1759 cancel_delayed_work_sync(&hdev->cmd_timer);
1760 kfree_skb(hdev->sent_cmd);
1761 hdev->sent_cmd = NULL;
1762 }
1763
1764 clear_bit(HCI_RUNNING, &hdev->flags);
1765 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1766
1767 /* After this point our queues are empty
1768 * and no tasks are scheduled. */
1769 hdev->close(hdev);
1770
1771 /* Clear flags */
1772 hdev->flags &= BIT(HCI_RAW);
1773 hci_dev_clear_volatile_flags(hdev);
1774
1775 /* Controller radio is available but is currently powered down */
1776 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1777
1778 memset(hdev->eir, 0, sizeof(hdev->eir));
1779 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1780 bacpy(&hdev->random_addr, BDADDR_ANY);
1781
1782 hci_req_sync_unlock(hdev);
1783
1784 hci_dev_put(hdev);
1785 return 0;
1786 }
1787
1788 int hci_dev_close(__u16 dev)
1789 {
1790 struct hci_dev *hdev;
1791 int err;
1792
1793 hdev = hci_dev_get(dev);
1794 if (!hdev)
1795 return -ENODEV;
1796
1797 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1798 err = -EBUSY;
1799 goto done;
1800 }
1801
1802 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1803 cancel_delayed_work(&hdev->power_off);
1804
1805 err = hci_dev_do_close(hdev);
1806
1807 done:
1808 hci_dev_put(hdev);
1809 return err;
1810 }
1811
1812 static int hci_dev_do_reset(struct hci_dev *hdev)
1813 {
1814 int ret;
1815
1816 BT_DBG("%s %p", hdev->name, hdev);
1817
1818 hci_req_sync_lock(hdev);
1819
1820 /* Drop queues */
1821 skb_queue_purge(&hdev->rx_q);
1822 skb_queue_purge(&hdev->cmd_q);
1823
1824 /* Avoid potential lockdep warnings from the *_flush() calls by
1825 * ensuring the workqueue is empty up front.
1826 */
1827 drain_workqueue(hdev->workqueue);
1828
1829 hci_dev_lock(hdev);
1830 hci_inquiry_cache_flush(hdev);
1831 hci_conn_hash_flush(hdev);
1832 hci_dev_unlock(hdev);
1833
1834 if (hdev->flush)
1835 hdev->flush(hdev);
1836
1837 atomic_set(&hdev->cmd_cnt, 1);
1838 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1839
1840 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1841
1842 hci_req_sync_unlock(hdev);
1843 return ret;
1844 }
1845
1846 int hci_dev_reset(__u16 dev)
1847 {
1848 struct hci_dev *hdev;
1849 int err;
1850
1851 hdev = hci_dev_get(dev);
1852 if (!hdev)
1853 return -ENODEV;
1854
1855 if (!test_bit(HCI_UP, &hdev->flags)) {
1856 err = -ENETDOWN;
1857 goto done;
1858 }
1859
1860 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1861 err = -EBUSY;
1862 goto done;
1863 }
1864
1865 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1866 err = -EOPNOTSUPP;
1867 goto done;
1868 }
1869
1870 err = hci_dev_do_reset(hdev);
1871
1872 done:
1873 hci_dev_put(hdev);
1874 return err;
1875 }
1876
1877 int hci_dev_reset_stat(__u16 dev)
1878 {
1879 struct hci_dev *hdev;
1880 int ret = 0;
1881
1882 hdev = hci_dev_get(dev);
1883 if (!hdev)
1884 return -ENODEV;
1885
1886 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1887 ret = -EBUSY;
1888 goto done;
1889 }
1890
1891 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1892 ret = -EOPNOTSUPP;
1893 goto done;
1894 }
1895
1896 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1897
1898 done:
1899 hci_dev_put(hdev);
1900 return ret;
1901 }
1902
1903 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1904 {
1905 bool conn_changed, discov_changed;
1906
1907 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1908
1909 if ((scan & SCAN_PAGE))
1910 conn_changed = !hci_dev_test_and_set_flag(hdev,
1911 HCI_CONNECTABLE);
1912 else
1913 conn_changed = hci_dev_test_and_clear_flag(hdev,
1914 HCI_CONNECTABLE);
1915
1916 if ((scan & SCAN_INQUIRY)) {
1917 discov_changed = !hci_dev_test_and_set_flag(hdev,
1918 HCI_DISCOVERABLE);
1919 } else {
1920 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1921 discov_changed = hci_dev_test_and_clear_flag(hdev,
1922 HCI_DISCOVERABLE);
1923 }
1924
1925 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1926 return;
1927
1928 if (conn_changed || discov_changed) {
1929 /* In case this was disabled through mgmt */
1930 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1931
1932 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1933 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1934
1935 mgmt_new_settings(hdev);
1936 }
1937 }
1938
1939 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1940 {
1941 struct hci_dev *hdev;
1942 struct hci_dev_req dr;
1943 int err = 0;
1944
1945 if (copy_from_user(&dr, arg, sizeof(dr)))
1946 return -EFAULT;
1947
1948 hdev = hci_dev_get(dr.dev_id);
1949 if (!hdev)
1950 return -ENODEV;
1951
1952 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1953 err = -EBUSY;
1954 goto done;
1955 }
1956
1957 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1958 err = -EOPNOTSUPP;
1959 goto done;
1960 }
1961
1962 if (hdev->dev_type != HCI_PRIMARY) {
1963 err = -EOPNOTSUPP;
1964 goto done;
1965 }
1966
1967 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1968 err = -EOPNOTSUPP;
1969 goto done;
1970 }
1971
1972 switch (cmd) {
1973 case HCISETAUTH:
1974 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1975 HCI_INIT_TIMEOUT, NULL);
1976 break;
1977
1978 case HCISETENCRYPT:
1979 if (!lmp_encrypt_capable(hdev)) {
1980 err = -EOPNOTSUPP;
1981 break;
1982 }
1983
1984 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1985 /* Auth must be enabled first */
1986 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1987 HCI_INIT_TIMEOUT, NULL);
1988 if (err)
1989 break;
1990 }
1991
1992 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1993 HCI_INIT_TIMEOUT, NULL);
1994 break;
1995
1996 case HCISETSCAN:
1997 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1998 HCI_INIT_TIMEOUT, NULL);
1999
2000 /* Ensure that the connectable and discoverable states
2001 * get correctly modified as this was a non-mgmt change.
2002 */
2003 if (!err)
2004 hci_update_scan_state(hdev, dr.dev_opt);
2005 break;
2006
2007 case HCISETLINKPOL:
2008 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2009 HCI_INIT_TIMEOUT, NULL);
2010 break;
2011
2012 case HCISETLINKMODE:
2013 hdev->link_mode = ((__u16) dr.dev_opt) &
2014 (HCI_LM_MASTER | HCI_LM_ACCEPT);
2015 break;
2016
2017 case HCISETPTYPE:
2018 if (hdev->pkt_type == (__u16) dr.dev_opt)
2019 break;
2020
2021 hdev->pkt_type = (__u16) dr.dev_opt;
2022 mgmt_phy_configuration_changed(hdev, NULL);
2023 break;
2024
2025 case HCISETACLMTU:
2026 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
2027 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2028 break;
2029
2030 case HCISETSCOMTU:
2031 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
2032 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2033 break;
2034
2035 default:
2036 err = -EINVAL;
2037 break;
2038 }
2039
2040 done:
2041 hci_dev_put(hdev);
2042 return err;
2043 }
2044
2045 int hci_get_dev_list(void __user *arg)
2046 {
2047 struct hci_dev *hdev;
2048 struct hci_dev_list_req *dl;
2049 struct hci_dev_req *dr;
2050 int n = 0, size, err;
2051 __u16 dev_num;
2052
2053 if (get_user(dev_num, (__u16 __user *) arg))
2054 return -EFAULT;
2055
2056 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2057 return -EINVAL;
2058
2059 size = sizeof(*dl) + dev_num * sizeof(*dr);
2060
2061 dl = kzalloc(size, GFP_KERNEL);
2062 if (!dl)
2063 return -ENOMEM;
2064
2065 dr = dl->dev_req;
2066
2067 read_lock(&hci_dev_list_lock);
2068 list_for_each_entry(hdev, &hci_dev_list, list) {
2069 unsigned long flags = hdev->flags;
2070
2071 /* When the auto-off is configured it means the transport
2072 * is running, but in that case still indicate that the
2073 * device is actually down.
2074 */
2075 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2076 flags &= ~BIT(HCI_UP);
2077
2078 (dr + n)->dev_id = hdev->id;
2079 (dr + n)->dev_opt = flags;
2080
2081 if (++n >= dev_num)
2082 break;
2083 }
2084 read_unlock(&hci_dev_list_lock);
2085
2086 dl->dev_num = n;
2087 size = sizeof(*dl) + n * sizeof(*dr);
2088
2089 err = copy_to_user(arg, dl, size);
2090 kfree(dl);
2091
2092 return err ? -EFAULT : 0;
2093 }
2094
2095 int hci_get_dev_info(void __user *arg)
2096 {
2097 struct hci_dev *hdev;
2098 struct hci_dev_info di;
2099 unsigned long flags;
2100 int err = 0;
2101
2102 if (copy_from_user(&di, arg, sizeof(di)))
2103 return -EFAULT;
2104
2105 hdev = hci_dev_get(di.dev_id);
2106 if (!hdev)
2107 return -ENODEV;
2108
2109 /* When the auto-off is configured it means the transport
2110 * is running, but in that case still indicate that the
2111 * device is actually down.
2112 */
2113 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2114 flags = hdev->flags & ~BIT(HCI_UP);
2115 else
2116 flags = hdev->flags;
2117
2118 strcpy(di.name, hdev->name);
2119 di.bdaddr = hdev->bdaddr;
2120 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2121 di.flags = flags;
2122 di.pkt_type = hdev->pkt_type;
2123 if (lmp_bredr_capable(hdev)) {
2124 di.acl_mtu = hdev->acl_mtu;
2125 di.acl_pkts = hdev->acl_pkts;
2126 di.sco_mtu = hdev->sco_mtu;
2127 di.sco_pkts = hdev->sco_pkts;
2128 } else {
2129 di.acl_mtu = hdev->le_mtu;
2130 di.acl_pkts = hdev->le_pkts;
2131 di.sco_mtu = 0;
2132 di.sco_pkts = 0;
2133 }
2134 di.link_policy = hdev->link_policy;
2135 di.link_mode = hdev->link_mode;
2136
2137 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2138 memcpy(&di.features, &hdev->features, sizeof(di.features));
2139
2140 if (copy_to_user(arg, &di, sizeof(di)))
2141 err = -EFAULT;
2142
2143 hci_dev_put(hdev);
2144
2145 return err;
2146 }
2147
2148 /* ---- Interface to HCI drivers ---- */
2149
2150 static int hci_rfkill_set_block(void *data, bool blocked)
2151 {
2152 struct hci_dev *hdev = data;
2153
2154 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2155
2156 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2157 return -EBUSY;
2158
2159 if (blocked) {
2160 hci_dev_set_flag(hdev, HCI_RFKILLED);
2161 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2162 !hci_dev_test_flag(hdev, HCI_CONFIG))
2163 hci_dev_do_close(hdev);
2164 } else {
2165 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2166 }
2167
2168 return 0;
2169 }
2170
2171 static const struct rfkill_ops hci_rfkill_ops = {
2172 .set_block = hci_rfkill_set_block,
2173 };
2174
2175 static void hci_power_on(struct work_struct *work)
2176 {
2177 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2178 int err;
2179
2180 BT_DBG("%s", hdev->name);
2181
2182 if (test_bit(HCI_UP, &hdev->flags) &&
2183 hci_dev_test_flag(hdev, HCI_MGMT) &&
2184 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2185 cancel_delayed_work(&hdev->power_off);
2186 hci_req_sync_lock(hdev);
2187 err = __hci_req_hci_power_on(hdev);
2188 hci_req_sync_unlock(hdev);
2189 mgmt_power_on(hdev, err);
2190 return;
2191 }
2192
2193 err = hci_dev_do_open(hdev);
2194 if (err < 0) {
2195 hci_dev_lock(hdev);
2196 mgmt_set_powered_failed(hdev, err);
2197 hci_dev_unlock(hdev);
2198 return;
2199 }
2200
2201 /* During the HCI setup phase, a few error conditions are
2202 * ignored and they need to be checked now. If they are still
2203 * valid, it is important to turn the device back off.
2204 */
2205 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2206 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2207 (hdev->dev_type == HCI_PRIMARY &&
2208 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2209 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2210 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2211 hci_dev_do_close(hdev);
2212 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2213 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2214 HCI_AUTO_OFF_TIMEOUT);
2215 }
2216
2217 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2218 /* For unconfigured devices, set the HCI_RAW flag
2219 * so that userspace can easily identify them.
2220 */
2221 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2222 set_bit(HCI_RAW, &hdev->flags);
2223
2224 /* For fully configured devices, this will send
2225 * the Index Added event. For unconfigured devices,
2226 * it will send Unconfigued Index Added event.
2227 *
2228 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2229 * and no event will be send.
2230 */
2231 mgmt_index_added(hdev);
2232 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2233 /* When the controller is now configured, then it
2234 * is important to clear the HCI_RAW flag.
2235 */
2236 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2237 clear_bit(HCI_RAW, &hdev->flags);
2238
2239 /* Powering on the controller with HCI_CONFIG set only
2240 * happens with the transition from unconfigured to
2241 * configured. This will send the Index Added event.
2242 */
2243 mgmt_index_added(hdev);
2244 }
2245 }
2246
2247 static void hci_power_off(struct work_struct *work)
2248 {
2249 struct hci_dev *hdev = container_of(work, struct hci_dev,
2250 power_off.work);
2251
2252 BT_DBG("%s", hdev->name);
2253
2254 hci_dev_do_close(hdev);
2255 }
2256
2257 static void hci_error_reset(struct work_struct *work)
2258 {
2259 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2260
2261 BT_DBG("%s", hdev->name);
2262
2263 if (hdev->hw_error)
2264 hdev->hw_error(hdev, hdev->hw_error_code);
2265 else
2266 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2267
2268 if (hci_dev_do_close(hdev))
2269 return;
2270
2271 hci_dev_do_open(hdev);
2272 }
2273
2274 void hci_uuids_clear(struct hci_dev *hdev)
2275 {
2276 struct bt_uuid *uuid, *tmp;
2277
2278 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2279 list_del(&uuid->list);
2280 kfree(uuid);
2281 }
2282 }
2283
2284 void hci_link_keys_clear(struct hci_dev *hdev)
2285 {
2286 struct link_key *key;
2287
2288 list_for_each_entry(key, &hdev->link_keys, list) {
2289 list_del_rcu(&key->list);
2290 kfree_rcu(key, rcu);
2291 }
2292 }
2293
2294 void hci_smp_ltks_clear(struct hci_dev *hdev)
2295 {
2296 struct smp_ltk *k;
2297
2298 list_for_each_entry(k, &hdev->long_term_keys, list) {
2299 list_del_rcu(&k->list);
2300 kfree_rcu(k, rcu);
2301 }
2302 }
2303
2304 void hci_smp_irks_clear(struct hci_dev *hdev)
2305 {
2306 struct smp_irk *k;
2307
2308 list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
2309 list_del_rcu(&k->list);
2310 kfree_rcu(k, rcu);
2311 }
2312 }
2313
2314 void hci_blocked_keys_clear(struct hci_dev *hdev)
2315 {
2316 struct blocked_key *b;
2317
2318 list_for_each_entry(b, &hdev->blocked_keys, list) {
2319 list_del_rcu(&b->list);
2320 kfree_rcu(b, rcu);
2321 }
2322 }
2323
2324 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2325 {
2326 bool blocked = false;
2327 struct blocked_key *b;
2328
2329 rcu_read_lock();
2330 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2331 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2332 blocked = true;
2333 break;
2334 }
2335 }
2336
2337 rcu_read_unlock();
2338 return blocked;
2339 }
2340
2341 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2342 {
2343 struct link_key *k;
2344
2345 rcu_read_lock();
2346 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2347 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2348 rcu_read_unlock();
2349
2350 if (hci_is_blocked_key(hdev,
2351 HCI_BLOCKED_KEY_TYPE_LINKKEY,
2352 k->val)) {
2353 bt_dev_warn_ratelimited(hdev,
2354 "Link key blocked for %pMR",
2355 &k->bdaddr);
2356 return NULL;
2357 }
2358
2359 return k;
2360 }
2361 }
2362 rcu_read_unlock();
2363
2364 return NULL;
2365 }
2366
2367 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2368 u8 key_type, u8 old_key_type)
2369 {
2370 /* Legacy key */
2371 if (key_type < 0x03)
2372 return true;
2373
2374 /* Debug keys are insecure so don't store them persistently */
2375 if (key_type == HCI_LK_DEBUG_COMBINATION)
2376 return false;
2377
2378 /* Changed combination key and there's no previous one */
2379 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2380 return false;
2381
2382 /* Security mode 3 case */
2383 if (!conn)
2384 return true;
2385
2386 /* BR/EDR key derived using SC from an LE link */
2387 if (conn->type == LE_LINK)
2388 return true;
2389
2390 /* Neither local nor remote side had no-bonding as requirement */
2391 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2392 return true;
2393
2394 /* Local side had dedicated bonding as requirement */
2395 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2396 return true;
2397
2398 /* Remote side had dedicated bonding as requirement */
2399 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2400 return true;
2401
2402 /* If none of the above criteria match, then don't store the key
2403 * persistently */
2404 return false;
2405 }
2406
2407 static u8 ltk_role(u8 type)
2408 {
2409 if (type == SMP_LTK)
2410 return HCI_ROLE_MASTER;
2411
2412 return HCI_ROLE_SLAVE;
2413 }
2414
2415 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2416 u8 addr_type, u8 role)
2417 {
2418 struct smp_ltk *k;
2419
2420 rcu_read_lock();
2421 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2422 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2423 continue;
2424
2425 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2426 rcu_read_unlock();
2427
2428 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2429 k->val)) {
2430 bt_dev_warn_ratelimited(hdev,
2431 "LTK blocked for %pMR",
2432 &k->bdaddr);
2433 return NULL;
2434 }
2435
2436 return k;
2437 }
2438 }
2439 rcu_read_unlock();
2440
2441 return NULL;
2442 }
2443
2444 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2445 {
2446 struct smp_irk *irk_to_return = NULL;
2447 struct smp_irk *irk;
2448
2449 rcu_read_lock();
2450 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2451 if (!bacmp(&irk->rpa, rpa)) {
2452 irk_to_return = irk;
2453 goto done;
2454 }
2455 }
2456
2457 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2458 if (smp_irk_matches(hdev, irk->val, rpa)) {
2459 bacpy(&irk->rpa, rpa);
2460 irk_to_return = irk;
2461 goto done;
2462 }
2463 }
2464
2465 done:
2466 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2467 irk_to_return->val)) {
2468 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2469 &irk_to_return->bdaddr);
2470 irk_to_return = NULL;
2471 }
2472
2473 rcu_read_unlock();
2474
2475 return irk_to_return;
2476 }
2477
2478 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2479 u8 addr_type)
2480 {
2481 struct smp_irk *irk_to_return = NULL;
2482 struct smp_irk *irk;
2483
2484 /* Identity Address must be public or static random */
2485 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2486 return NULL;
2487
2488 rcu_read_lock();
2489 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2490 if (addr_type == irk->addr_type &&
2491 bacmp(bdaddr, &irk->bdaddr) == 0) {
2492 irk_to_return = irk;
2493 goto done;
2494 }
2495 }
2496
2497 done:
2498
2499 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2500 irk_to_return->val)) {
2501 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2502 &irk_to_return->bdaddr);
2503 irk_to_return = NULL;
2504 }
2505
2506 rcu_read_unlock();
2507
2508 return irk_to_return;
2509 }
2510
2511 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2512 bdaddr_t *bdaddr, u8 *val, u8 type,
2513 u8 pin_len, bool *persistent)
2514 {
2515 struct link_key *key, *old_key;
2516 u8 old_key_type;
2517
2518 old_key = hci_find_link_key(hdev, bdaddr);
2519 if (old_key) {
2520 old_key_type = old_key->type;
2521 key = old_key;
2522 } else {
2523 old_key_type = conn ? conn->key_type : 0xff;
2524 key = kzalloc(sizeof(*key), GFP_KERNEL);
2525 if (!key)
2526 return NULL;
2527 list_add_rcu(&key->list, &hdev->link_keys);
2528 }
2529
2530 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2531
2532 /* Some buggy controller combinations generate a changed
2533 * combination key for legacy pairing even when there's no
2534 * previous key */
2535 if (type == HCI_LK_CHANGED_COMBINATION &&
2536 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2537 type = HCI_LK_COMBINATION;
2538 if (conn)
2539 conn->key_type = type;
2540 }
2541
2542 bacpy(&key->bdaddr, bdaddr);
2543 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2544 key->pin_len = pin_len;
2545
2546 if (type == HCI_LK_CHANGED_COMBINATION)
2547 key->type = old_key_type;
2548 else
2549 key->type = type;
2550
2551 if (persistent)
2552 *persistent = hci_persistent_key(hdev, conn, type,
2553 old_key_type);
2554
2555 return key;
2556 }
2557
2558 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2559 u8 addr_type, u8 type, u8 authenticated,
2560 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2561 {
2562 struct smp_ltk *key, *old_key;
2563 u8 role = ltk_role(type);
2564
2565 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2566 if (old_key)
2567 key = old_key;
2568 else {
2569 key = kzalloc(sizeof(*key), GFP_KERNEL);
2570 if (!key)
2571 return NULL;
2572 list_add_rcu(&key->list, &hdev->long_term_keys);
2573 }
2574
2575 bacpy(&key->bdaddr, bdaddr);
2576 key->bdaddr_type = addr_type;
2577 memcpy(key->val, tk, sizeof(key->val));
2578 key->authenticated = authenticated;
2579 key->ediv = ediv;
2580 key->rand = rand;
2581 key->enc_size = enc_size;
2582 key->type = type;
2583
2584 return key;
2585 }
2586
2587 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2588 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2589 {
2590 struct smp_irk *irk;
2591
2592 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2593 if (!irk) {
2594 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2595 if (!irk)
2596 return NULL;
2597
2598 bacpy(&irk->bdaddr, bdaddr);
2599 irk->addr_type = addr_type;
2600
2601 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2602 }
2603
2604 memcpy(irk->val, val, 16);
2605 bacpy(&irk->rpa, rpa);
2606
2607 return irk;
2608 }
2609
2610 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2611 {
2612 struct link_key *key;
2613
2614 key = hci_find_link_key(hdev, bdaddr);
2615 if (!key)
2616 return -ENOENT;
2617
2618 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2619
2620 list_del_rcu(&key->list);
2621 kfree_rcu(key, rcu);
2622
2623 return 0;
2624 }
2625
2626 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2627 {
2628 struct smp_ltk *k;
2629 int removed = 0;
2630
2631 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2632 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2633 continue;
2634
2635 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2636
2637 list_del_rcu(&k->list);
2638 kfree_rcu(k, rcu);
2639 removed++;
2640 }
2641
2642 return removed ? 0 : -ENOENT;
2643 }
2644
2645 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2646 {
2647 struct smp_irk *k;
2648
2649 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2650 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2651 continue;
2652
2653 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2654
2655 list_del_rcu(&k->list);
2656 kfree_rcu(k, rcu);
2657 }
2658 }
2659
2660 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2661 {
2662 struct smp_ltk *k;
2663 struct smp_irk *irk;
2664 u8 addr_type;
2665
2666 if (type == BDADDR_BREDR) {
2667 if (hci_find_link_key(hdev, bdaddr))
2668 return true;
2669 return false;
2670 }
2671
2672 /* Convert to HCI addr type which struct smp_ltk uses */
2673 if (type == BDADDR_LE_PUBLIC)
2674 addr_type = ADDR_LE_DEV_PUBLIC;
2675 else
2676 addr_type = ADDR_LE_DEV_RANDOM;
2677
2678 irk = hci_get_irk(hdev, bdaddr, addr_type);
2679 if (irk) {
2680 bdaddr = &irk->bdaddr;
2681 addr_type = irk->addr_type;
2682 }
2683
2684 rcu_read_lock();
2685 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2686 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2687 rcu_read_unlock();
2688 return true;
2689 }
2690 }
2691 rcu_read_unlock();
2692
2693 return false;
2694 }
2695
2696 /* HCI command timer function */
2697 static void hci_cmd_timeout(struct work_struct *work)
2698 {
2699 struct hci_dev *hdev = container_of(work, struct hci_dev,
2700 cmd_timer.work);
2701
2702 if (hdev->sent_cmd) {
2703 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2704 u16 opcode = __le16_to_cpu(sent->opcode);
2705
2706 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2707 } else {
2708 bt_dev_err(hdev, "command tx timeout");
2709 }
2710
2711 if (hdev->cmd_timeout)
2712 hdev->cmd_timeout(hdev);
2713
2714 atomic_set(&hdev->cmd_cnt, 1);
2715 queue_work(hdev->workqueue, &hdev->cmd_work);
2716 }
2717
2718 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2719 bdaddr_t *bdaddr, u8 bdaddr_type)
2720 {
2721 struct oob_data *data;
2722
2723 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2724 if (bacmp(bdaddr, &data->bdaddr) != 0)
2725 continue;
2726 if (data->bdaddr_type != bdaddr_type)
2727 continue;
2728 return data;
2729 }
2730
2731 return NULL;
2732 }
2733
2734 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2735 u8 bdaddr_type)
2736 {
2737 struct oob_data *data;
2738
2739 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2740 if (!data)
2741 return -ENOENT;
2742
2743 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2744
2745 list_del(&data->list);
2746 kfree(data);
2747
2748 return 0;
2749 }
2750
2751 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2752 {
2753 struct oob_data *data, *n;
2754
2755 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2756 list_del(&data->list);
2757 kfree(data);
2758 }
2759 }
2760
2761 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2762 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2763 u8 *hash256, u8 *rand256)
2764 {
2765 struct oob_data *data;
2766
2767 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2768 if (!data) {
2769 data = kmalloc(sizeof(*data), GFP_KERNEL);
2770 if (!data)
2771 return -ENOMEM;
2772
2773 bacpy(&data->bdaddr, bdaddr);
2774 data->bdaddr_type = bdaddr_type;
2775 list_add(&data->list, &hdev->remote_oob_data);
2776 }
2777
2778 if (hash192 && rand192) {
2779 memcpy(data->hash192, hash192, sizeof(data->hash192));
2780 memcpy(data->rand192, rand192, sizeof(data->rand192));
2781 if (hash256 && rand256)
2782 data->present = 0x03;
2783 } else {
2784 memset(data->hash192, 0, sizeof(data->hash192));
2785 memset(data->rand192, 0, sizeof(data->rand192));
2786 if (hash256 && rand256)
2787 data->present = 0x02;
2788 else
2789 data->present = 0x00;
2790 }
2791
2792 if (hash256 && rand256) {
2793 memcpy(data->hash256, hash256, sizeof(data->hash256));
2794 memcpy(data->rand256, rand256, sizeof(data->rand256));
2795 } else {
2796 memset(data->hash256, 0, sizeof(data->hash256));
2797 memset(data->rand256, 0, sizeof(data->rand256));
2798 if (hash192 && rand192)
2799 data->present = 0x01;
2800 }
2801
2802 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2803
2804 return 0;
2805 }
2806
2807 /* This function requires the caller holds hdev->lock */
2808 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2809 {
2810 struct adv_info *adv_instance;
2811
2812 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2813 if (adv_instance->instance == instance)
2814 return adv_instance;
2815 }
2816
2817 return NULL;
2818 }
2819
2820 /* This function requires the caller holds hdev->lock */
2821 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2822 {
2823 struct adv_info *cur_instance;
2824
2825 cur_instance = hci_find_adv_instance(hdev, instance);
2826 if (!cur_instance)
2827 return NULL;
2828
2829 if (cur_instance == list_last_entry(&hdev->adv_instances,
2830 struct adv_info, list))
2831 return list_first_entry(&hdev->adv_instances,
2832 struct adv_info, list);
2833 else
2834 return list_next_entry(cur_instance, list);
2835 }
2836
2837 /* This function requires the caller holds hdev->lock */
2838 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2839 {
2840 struct adv_info *adv_instance;
2841
2842 adv_instance = hci_find_adv_instance(hdev, instance);
2843 if (!adv_instance)
2844 return -ENOENT;
2845
2846 BT_DBG("%s removing %dMR", hdev->name, instance);
2847
2848 if (hdev->cur_adv_instance == instance) {
2849 if (hdev->adv_instance_timeout) {
2850 cancel_delayed_work(&hdev->adv_instance_expire);
2851 hdev->adv_instance_timeout = 0;
2852 }
2853 hdev->cur_adv_instance = 0x00;
2854 }
2855
2856 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2857
2858 list_del(&adv_instance->list);
2859 kfree(adv_instance);
2860
2861 hdev->adv_instance_cnt--;
2862
2863 return 0;
2864 }
2865
2866 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2867 {
2868 struct adv_info *adv_instance, *n;
2869
2870 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2871 adv_instance->rpa_expired = rpa_expired;
2872 }
2873
2874 /* This function requires the caller holds hdev->lock */
2875 void hci_adv_instances_clear(struct hci_dev *hdev)
2876 {
2877 struct adv_info *adv_instance, *n;
2878
2879 if (hdev->adv_instance_timeout) {
2880 cancel_delayed_work(&hdev->adv_instance_expire);
2881 hdev->adv_instance_timeout = 0;
2882 }
2883
2884 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2885 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2886 list_del(&adv_instance->list);
2887 kfree(adv_instance);
2888 }
2889
2890 hdev->adv_instance_cnt = 0;
2891 hdev->cur_adv_instance = 0x00;
2892 }
2893
2894 static void adv_instance_rpa_expired(struct work_struct *work)
2895 {
2896 struct adv_info *adv_instance = container_of(work, struct adv_info,
2897 rpa_expired_cb.work);
2898
2899 BT_DBG("");
2900
2901 adv_instance->rpa_expired = true;
2902 }
2903
2904 /* This function requires the caller holds hdev->lock */
2905 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2906 u16 adv_data_len, u8 *adv_data,
2907 u16 scan_rsp_len, u8 *scan_rsp_data,
2908 u16 timeout, u16 duration)
2909 {
2910 struct adv_info *adv_instance;
2911
2912 adv_instance = hci_find_adv_instance(hdev, instance);
2913 if (adv_instance) {
2914 memset(adv_instance->adv_data, 0,
2915 sizeof(adv_instance->adv_data));
2916 memset(adv_instance->scan_rsp_data, 0,
2917 sizeof(adv_instance->scan_rsp_data));
2918 } else {
2919 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2920 instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2921 return -EOVERFLOW;
2922
2923 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2924 if (!adv_instance)
2925 return -ENOMEM;
2926
2927 adv_instance->pending = true;
2928 adv_instance->instance = instance;
2929 list_add(&adv_instance->list, &hdev->adv_instances);
2930 hdev->adv_instance_cnt++;
2931 }
2932
2933 adv_instance->flags = flags;
2934 adv_instance->adv_data_len = adv_data_len;
2935 adv_instance->scan_rsp_len = scan_rsp_len;
2936
2937 if (adv_data_len)
2938 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2939
2940 if (scan_rsp_len)
2941 memcpy(adv_instance->scan_rsp_data,
2942 scan_rsp_data, scan_rsp_len);
2943
2944 adv_instance->timeout = timeout;
2945 adv_instance->remaining_time = timeout;
2946
2947 if (duration == 0)
2948 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2949 else
2950 adv_instance->duration = duration;
2951
2952 adv_instance->tx_power = HCI_TX_POWER_INVALID;
2953
2954 INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
2955 adv_instance_rpa_expired);
2956
2957 BT_DBG("%s for %dMR", hdev->name, instance);
2958
2959 return 0;
2960 }
2961
2962 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2963 bdaddr_t *bdaddr, u8 type)
2964 {
2965 struct bdaddr_list *b;
2966
2967 list_for_each_entry(b, bdaddr_list, list) {
2968 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2969 return b;
2970 }
2971
2972 return NULL;
2973 }
2974
2975 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2976 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2977 u8 type)
2978 {
2979 struct bdaddr_list_with_irk *b;
2980
2981 list_for_each_entry(b, bdaddr_list, list) {
2982 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2983 return b;
2984 }
2985
2986 return NULL;
2987 }
2988
2989 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2990 {
2991 struct bdaddr_list *b, *n;
2992
2993 list_for_each_entry_safe(b, n, bdaddr_list, list) {
2994 list_del(&b->list);
2995 kfree(b);
2996 }
2997 }
2998
2999 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3000 {
3001 struct bdaddr_list *entry;
3002
3003 if (!bacmp(bdaddr, BDADDR_ANY))
3004 return -EBADF;
3005
3006 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3007 return -EEXIST;
3008
3009 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3010 if (!entry)
3011 return -ENOMEM;
3012
3013 bacpy(&entry->bdaddr, bdaddr);
3014 entry->bdaddr_type = type;
3015
3016 list_add(&entry->list, list);
3017
3018 return 0;
3019 }
3020
3021 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3022 u8 type, u8 *peer_irk, u8 *local_irk)
3023 {
3024 struct bdaddr_list_with_irk *entry;
3025
3026 if (!bacmp(bdaddr, BDADDR_ANY))
3027 return -EBADF;
3028
3029 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3030 return -EEXIST;
3031
3032 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3033 if (!entry)
3034 return -ENOMEM;
3035
3036 bacpy(&entry->bdaddr, bdaddr);
3037 entry->bdaddr_type = type;
3038
3039 if (peer_irk)
3040 memcpy(entry->peer_irk, peer_irk, 16);
3041
3042 if (local_irk)
3043 memcpy(entry->local_irk, local_irk, 16);
3044
3045 list_add(&entry->list, list);
3046
3047 return 0;
3048 }
3049
3050 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3051 {
3052 struct bdaddr_list *entry;
3053
3054 if (!bacmp(bdaddr, BDADDR_ANY)) {
3055 hci_bdaddr_list_clear(list);
3056 return 0;
3057 }
3058
3059 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3060 if (!entry)
3061 return -ENOENT;
3062
3063 list_del(&entry->list);
3064 kfree(entry);
3065
3066 return 0;
3067 }
3068
3069 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3070 u8 type)
3071 {
3072 struct bdaddr_list_with_irk *entry;
3073
3074 if (!bacmp(bdaddr, BDADDR_ANY)) {
3075 hci_bdaddr_list_clear(list);
3076 return 0;
3077 }
3078
3079 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3080 if (!entry)
3081 return -ENOENT;
3082
3083 list_del(&entry->list);
3084 kfree(entry);
3085
3086 return 0;
3087 }
3088
3089 /* This function requires the caller holds hdev->lock */
3090 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3091 bdaddr_t *addr, u8 addr_type)
3092 {
3093 struct hci_conn_params *params;
3094
3095 list_for_each_entry(params, &hdev->le_conn_params, list) {
3096 if (bacmp(&params->addr, addr) == 0 &&
3097 params->addr_type == addr_type) {
3098 return params;
3099 }
3100 }
3101
3102 return NULL;
3103 }
3104
3105 /* This function requires the caller holds hdev->lock */
3106 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3107 bdaddr_t *addr, u8 addr_type)
3108 {
3109 struct hci_conn_params *param;
3110
3111 list_for_each_entry(param, list, action) {
3112 if (bacmp(&param->addr, addr) == 0 &&
3113 param->addr_type == addr_type)
3114 return param;
3115 }
3116
3117 return NULL;
3118 }
3119
3120 /* This function requires the caller holds hdev->lock */
3121 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3122 bdaddr_t *addr, u8 addr_type)
3123 {
3124 struct hci_conn_params *params;
3125
3126 params = hci_conn_params_lookup(hdev, addr, addr_type);
3127 if (params)
3128 return params;
3129
3130 params = kzalloc(sizeof(*params), GFP_KERNEL);
3131 if (!params) {
3132 bt_dev_err(hdev, "out of memory");
3133 return NULL;
3134 }
3135
3136 bacpy(&params->addr, addr);
3137 params->addr_type = addr_type;
3138
3139 list_add(&params->list, &hdev->le_conn_params);
3140 INIT_LIST_HEAD(&params->action);
3141
3142 params->conn_min_interval = hdev->le_conn_min_interval;
3143 params->conn_max_interval = hdev->le_conn_max_interval;
3144 params->conn_latency = hdev->le_conn_latency;
3145 params->supervision_timeout = hdev->le_supv_timeout;
3146 params->auto_connect = HCI_AUTO_CONN_DISABLED;
3147
3148 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3149
3150 return params;
3151 }
3152
3153 static void hci_conn_params_free(struct hci_conn_params *params)
3154 {
3155 if (params->conn) {
3156 hci_conn_drop(params->conn);
3157 hci_conn_put(params->conn);
3158 }
3159
3160 list_del(&params->action);
3161 list_del(&params->list);
3162 kfree(params);
3163 }
3164
3165 /* This function requires the caller holds hdev->lock */
3166 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3167 {
3168 struct hci_conn_params *params;
3169
3170 params = hci_conn_params_lookup(hdev, addr, addr_type);
3171 if (!params)
3172 return;
3173
3174 hci_conn_params_free(params);
3175
3176 hci_update_background_scan(hdev);
3177
3178 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3179 }
3180
3181 /* This function requires the caller holds hdev->lock */
3182 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3183 {
3184 struct hci_conn_params *params, *tmp;
3185
3186 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3187 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3188 continue;
3189
3190 /* If trying to estabilish one time connection to disabled
3191 * device, leave the params, but mark them as just once.
3192 */
3193 if (params->explicit_connect) {
3194 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3195 continue;
3196 }
3197
3198 list_del(&params->list);
3199 kfree(params);
3200 }
3201
3202 BT_DBG("All LE disabled connection parameters were removed");
3203 }
3204
3205 /* This function requires the caller holds hdev->lock */
3206 static void hci_conn_params_clear_all(struct hci_dev *hdev)
3207 {
3208 struct hci_conn_params *params, *tmp;
3209
3210 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3211 hci_conn_params_free(params);
3212
3213 BT_DBG("All LE connection parameters were removed");
3214 }
3215
3216 /* Copy the Identity Address of the controller.
3217 *
3218 * If the controller has a public BD_ADDR, then by default use that one.
3219 * If this is a LE only controller without a public address, default to
3220 * the static random address.
3221 *
3222 * For debugging purposes it is possible to force controllers with a
3223 * public address to use the static random address instead.
3224 *
3225 * In case BR/EDR has been disabled on a dual-mode controller and
3226 * userspace has configured a static address, then that address
3227 * becomes the identity address instead of the public BR/EDR address.
3228 */
3229 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3230 u8 *bdaddr_type)
3231 {
3232 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3233 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3234 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3235 bacmp(&hdev->static_addr, BDADDR_ANY))) {
3236 bacpy(bdaddr, &hdev->static_addr);
3237 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3238 } else {
3239 bacpy(bdaddr, &hdev->bdaddr);
3240 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3241 }
3242 }
3243
3244 /* Alloc HCI device */
3245 struct hci_dev *hci_alloc_dev(void)
3246 {
3247 struct hci_dev *hdev;
3248
3249 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3250 if (!hdev)
3251 return NULL;
3252
3253 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3254 hdev->esco_type = (ESCO_HV1);
3255 hdev->link_mode = (HCI_LM_ACCEPT);
3256 hdev->num_iac = 0x01; /* One IAC support is mandatory */
3257 hdev->io_capability = 0x03; /* No Input No Output */
3258 hdev->manufacturer = 0xffff; /* Default to internal use */
3259 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3260 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3261 hdev->adv_instance_cnt = 0;
3262 hdev->cur_adv_instance = 0x00;
3263 hdev->adv_instance_timeout = 0;
3264
3265 hdev->sniff_max_interval = 800;
3266 hdev->sniff_min_interval = 80;
3267
3268 hdev->le_adv_channel_map = 0x07;
3269 hdev->le_adv_min_interval = 0x0800;
3270 hdev->le_adv_max_interval = 0x0800;
3271 hdev->le_scan_interval = 0x0060;
3272 hdev->le_scan_window = 0x0030;
3273 hdev->le_conn_min_interval = 0x0018;
3274 hdev->le_conn_max_interval = 0x0028;
3275 hdev->le_conn_latency = 0x0000;
3276 hdev->le_supv_timeout = 0x002a;
3277 hdev->le_def_tx_len = 0x001b;
3278 hdev->le_def_tx_time = 0x0148;
3279 hdev->le_max_tx_len = 0x001b;
3280 hdev->le_max_tx_time = 0x0148;
3281 hdev->le_max_rx_len = 0x001b;
3282 hdev->le_max_rx_time = 0x0148;
3283 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3284 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3285 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3286 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3287 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3288
3289 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3290 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3291 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3292 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3293 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3294 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3295
3296 mutex_init(&hdev->lock);
3297 mutex_init(&hdev->req_lock);
3298
3299 INIT_LIST_HEAD(&hdev->mgmt_pending);
3300 INIT_LIST_HEAD(&hdev->blacklist);
3301 INIT_LIST_HEAD(&hdev->whitelist);
3302 INIT_LIST_HEAD(&hdev->uuids);
3303 INIT_LIST_HEAD(&hdev->link_keys);
3304 INIT_LIST_HEAD(&hdev->long_term_keys);
3305 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3306 INIT_LIST_HEAD(&hdev->remote_oob_data);
3307 INIT_LIST_HEAD(&hdev->le_white_list);
3308 INIT_LIST_HEAD(&hdev->le_resolv_list);
3309 INIT_LIST_HEAD(&hdev->le_conn_params);
3310 INIT_LIST_HEAD(&hdev->pend_le_conns);
3311 INIT_LIST_HEAD(&hdev->pend_le_reports);
3312 INIT_LIST_HEAD(&hdev->conn_hash.list);
3313 INIT_LIST_HEAD(&hdev->adv_instances);
3314 INIT_LIST_HEAD(&hdev->blocked_keys);
3315
3316 INIT_WORK(&hdev->rx_work, hci_rx_work);
3317 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3318 INIT_WORK(&hdev->tx_work, hci_tx_work);
3319 INIT_WORK(&hdev->power_on, hci_power_on);
3320 INIT_WORK(&hdev->error_reset, hci_error_reset);
3321
3322 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3323
3324 skb_queue_head_init(&hdev->rx_q);
3325 skb_queue_head_init(&hdev->cmd_q);
3326 skb_queue_head_init(&hdev->raw_q);
3327
3328 init_waitqueue_head(&hdev->req_wait_q);
3329
3330 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3331
3332 hci_request_setup(hdev);
3333
3334 hci_init_sysfs(hdev);
3335 discovery_init(hdev);
3336
3337 return hdev;
3338 }
3339 EXPORT_SYMBOL(hci_alloc_dev);
3340
3341 /* Free HCI device */
3342 void hci_free_dev(struct hci_dev *hdev)
3343 {
3344 /* will free via device release */
3345 put_device(&hdev->dev);
3346 }
3347 EXPORT_SYMBOL(hci_free_dev);
3348
3349 /* Register HCI device */
3350 int hci_register_dev(struct hci_dev *hdev)
3351 {
3352 int id, error;
3353
3354 if (!hdev->open || !hdev->close || !hdev->send)
3355 return -EINVAL;
3356
3357 /* Do not allow HCI_AMP devices to register at index 0,
3358 * so the index can be used as the AMP controller ID.
3359 */
3360 switch (hdev->dev_type) {
3361 case HCI_PRIMARY:
3362 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3363 break;
3364 case HCI_AMP:
3365 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3366 break;
3367 default:
3368 return -EINVAL;
3369 }
3370
3371 if (id < 0)
3372 return id;
3373
3374 sprintf(hdev->name, "hci%d", id);
3375 hdev->id = id;
3376
3377 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3378
3379 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3380 if (!hdev->workqueue) {
3381 error = -ENOMEM;
3382 goto err;
3383 }
3384
3385 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3386 hdev->name);
3387 if (!hdev->req_workqueue) {
3388 destroy_workqueue(hdev->workqueue);
3389 error = -ENOMEM;
3390 goto err;
3391 }
3392
3393 if (!IS_ERR_OR_NULL(bt_debugfs))
3394 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3395
3396 dev_set_name(&hdev->dev, "%s", hdev->name);
3397
3398 error = device_add(&hdev->dev);
3399 if (error < 0)
3400 goto err_wqueue;
3401
3402 hci_leds_init(hdev);
3403
3404 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3405 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3406 hdev);
3407 if (hdev->rfkill) {
3408 if (rfkill_register(hdev->rfkill) < 0) {
3409 rfkill_destroy(hdev->rfkill);
3410 hdev->rfkill = NULL;
3411 }
3412 }
3413
3414 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3415 hci_dev_set_flag(hdev, HCI_RFKILLED);
3416
3417 hci_dev_set_flag(hdev, HCI_SETUP);
3418 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3419
3420 if (hdev->dev_type == HCI_PRIMARY) {
3421 /* Assume BR/EDR support until proven otherwise (such as
3422 * through reading supported features during init.
3423 */
3424 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3425 }
3426
3427 write_lock(&hci_dev_list_lock);
3428 list_add(&hdev->list, &hci_dev_list);
3429 write_unlock(&hci_dev_list_lock);
3430
3431 /* Devices that are marked for raw-only usage are unconfigured
3432 * and should not be included in normal operation.
3433 */
3434 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3435 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3436
3437 hci_sock_dev_event(hdev, HCI_DEV_REG);
3438 hci_dev_hold(hdev);
3439
3440 queue_work(hdev->req_workqueue, &hdev->power_on);
3441
3442 return id;
3443
3444 err_wqueue:
3445 destroy_workqueue(hdev->workqueue);
3446 destroy_workqueue(hdev->req_workqueue);
3447 err:
3448 ida_simple_remove(&hci_index_ida, hdev->id);
3449
3450 return error;
3451 }
3452 EXPORT_SYMBOL(hci_register_dev);
3453
3454 /* Unregister HCI device */
3455 void hci_unregister_dev(struct hci_dev *hdev)
3456 {
3457 int id;
3458
3459 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3460
3461 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3462
3463 id = hdev->id;
3464
3465 write_lock(&hci_dev_list_lock);
3466 list_del(&hdev->list);
3467 write_unlock(&hci_dev_list_lock);
3468
3469 cancel_work_sync(&hdev->power_on);
3470
3471 hci_dev_do_close(hdev);
3472
3473 if (!test_bit(HCI_INIT, &hdev->flags) &&
3474 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3475 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3476 hci_dev_lock(hdev);
3477 mgmt_index_removed(hdev);
3478 hci_dev_unlock(hdev);
3479 }
3480
3481 /* mgmt_index_removed should take care of emptying the
3482 * pending list */
3483 BUG_ON(!list_empty(&hdev->mgmt_pending));
3484
3485 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3486
3487 if (hdev->rfkill) {
3488 rfkill_unregister(hdev->rfkill);
3489 rfkill_destroy(hdev->rfkill);
3490 }
3491
3492 device_del(&hdev->dev);
3493
3494 debugfs_remove_recursive(hdev->debugfs);
3495 kfree_const(hdev->hw_info);
3496 kfree_const(hdev->fw_info);
3497
3498 destroy_workqueue(hdev->workqueue);
3499 destroy_workqueue(hdev->req_workqueue);
3500
3501 hci_dev_lock(hdev);
3502 hci_bdaddr_list_clear(&hdev->blacklist);
3503 hci_bdaddr_list_clear(&hdev->whitelist);
3504 hci_uuids_clear(hdev);
3505 hci_link_keys_clear(hdev);
3506 hci_smp_ltks_clear(hdev);
3507 hci_smp_irks_clear(hdev);
3508 hci_remote_oob_data_clear(hdev);
3509 hci_adv_instances_clear(hdev);
3510 hci_bdaddr_list_clear(&hdev->le_white_list);
3511 hci_bdaddr_list_clear(&hdev->le_resolv_list);
3512 hci_conn_params_clear_all(hdev);
3513 hci_discovery_filter_clear(hdev);
3514 hci_blocked_keys_clear(hdev);
3515 hci_dev_unlock(hdev);
3516
3517 hci_dev_put(hdev);
3518
3519 ida_simple_remove(&hci_index_ida, id);
3520 }
3521 EXPORT_SYMBOL(hci_unregister_dev);
3522
3523 /* Suspend HCI device */
3524 int hci_suspend_dev(struct hci_dev *hdev)
3525 {
3526 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3527 return 0;
3528 }
3529 EXPORT_SYMBOL(hci_suspend_dev);
3530
3531 /* Resume HCI device */
3532 int hci_resume_dev(struct hci_dev *hdev)
3533 {
3534 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3535 return 0;
3536 }
3537 EXPORT_SYMBOL(hci_resume_dev);
3538
3539 /* Reset HCI device */
3540 int hci_reset_dev(struct hci_dev *hdev)
3541 {
3542 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3543 struct sk_buff *skb;
3544
3545 skb = bt_skb_alloc(3, GFP_ATOMIC);
3546 if (!skb)
3547 return -ENOMEM;
3548
3549 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3550 skb_put_data(skb, hw_err, 3);
3551
3552 /* Send Hardware Error to upper stack */
3553 return hci_recv_frame(hdev, skb);
3554 }
3555 EXPORT_SYMBOL(hci_reset_dev);
3556
3557 /* Receive frame from HCI drivers */
3558 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3559 {
3560 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3561 && !test_bit(HCI_INIT, &hdev->flags))) {
3562 kfree_skb(skb);
3563 return -ENXIO;
3564 }
3565
3566 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3567 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3568 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
3569 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
3570 kfree_skb(skb);
3571 return -EINVAL;
3572 }
3573
3574 /* Incoming skb */
3575 bt_cb(skb)->incoming = 1;
3576
3577 /* Time stamp */
3578 __net_timestamp(skb);
3579
3580 skb_queue_tail(&hdev->rx_q, skb);
3581 queue_work(hdev->workqueue, &hdev->rx_work);
3582
3583 return 0;
3584 }
3585 EXPORT_SYMBOL(hci_recv_frame);
3586
3587 /* Receive diagnostic message from HCI drivers */
3588 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3589 {
3590 /* Mark as diagnostic packet */
3591 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3592
3593 /* Time stamp */
3594 __net_timestamp(skb);
3595
3596 skb_queue_tail(&hdev->rx_q, skb);
3597 queue_work(hdev->workqueue, &hdev->rx_work);
3598
3599 return 0;
3600 }
3601 EXPORT_SYMBOL(hci_recv_diag);
3602
3603 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3604 {
3605 va_list vargs;
3606
3607 va_start(vargs, fmt);
3608 kfree_const(hdev->hw_info);
3609 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3610 va_end(vargs);
3611 }
3612 EXPORT_SYMBOL(hci_set_hw_info);
3613
3614 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3615 {
3616 va_list vargs;
3617
3618 va_start(vargs, fmt);
3619 kfree_const(hdev->fw_info);
3620 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3621 va_end(vargs);
3622 }
3623 EXPORT_SYMBOL(hci_set_fw_info);
3624
3625 /* ---- Interface to upper protocols ---- */
3626
3627 int hci_register_cb(struct hci_cb *cb)
3628 {
3629 BT_DBG("%p name %s", cb, cb->name);
3630
3631 mutex_lock(&hci_cb_list_lock);
3632 list_add_tail(&cb->list, &hci_cb_list);
3633 mutex_unlock(&hci_cb_list_lock);
3634
3635 return 0;
3636 }
3637 EXPORT_SYMBOL(hci_register_cb);
3638
3639 int hci_unregister_cb(struct hci_cb *cb)
3640 {
3641 BT_DBG("%p name %s", cb, cb->name);
3642
3643 mutex_lock(&hci_cb_list_lock);
3644 list_del(&cb->list);
3645 mutex_unlock(&hci_cb_list_lock);
3646
3647 return 0;
3648 }
3649 EXPORT_SYMBOL(hci_unregister_cb);
3650
3651 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3652 {
3653 int err;
3654
3655 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3656 skb->len);
3657
3658 /* Time stamp */
3659 __net_timestamp(skb);
3660
3661 /* Send copy to monitor */
3662 hci_send_to_monitor(hdev, skb);
3663
3664 if (atomic_read(&hdev->promisc)) {
3665 /* Send copy to the sockets */
3666 hci_send_to_sock(hdev, skb);
3667 }
3668
3669 /* Get rid of skb owner, prior to sending to the driver. */
3670 skb_orphan(skb);
3671
3672 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3673 kfree_skb(skb);
3674 return;
3675 }
3676
3677 err = hdev->send(hdev, skb);
3678 if (err < 0) {
3679 bt_dev_err(hdev, "sending frame failed (%d)", err);
3680 kfree_skb(skb);
3681 }
3682 }
3683
3684 /* Send HCI command */
3685 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3686 const void *param)
3687 {
3688 struct sk_buff *skb;
3689
3690 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3691
3692 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3693 if (!skb) {
3694 bt_dev_err(hdev, "no memory for command");
3695 return -ENOMEM;
3696 }
3697
3698 /* Stand-alone HCI commands must be flagged as
3699 * single-command requests.
3700 */
3701 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3702
3703 skb_queue_tail(&hdev->cmd_q, skb);
3704 queue_work(hdev->workqueue, &hdev->cmd_work);
3705
3706 return 0;
3707 }
3708
3709 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3710 const void *param)
3711 {
3712 struct sk_buff *skb;
3713
3714 if (hci_opcode_ogf(opcode) != 0x3f) {
3715 /* A controller receiving a command shall respond with either
3716 * a Command Status Event or a Command Complete Event.
3717 * Therefore, all standard HCI commands must be sent via the
3718 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3719 * Some vendors do not comply with this rule for vendor-specific
3720 * commands and do not return any event. We want to support
3721 * unresponded commands for such cases only.
3722 */
3723 bt_dev_err(hdev, "unresponded command not supported");
3724 return -EINVAL;
3725 }
3726
3727 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3728 if (!skb) {
3729 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3730 opcode);
3731 return -ENOMEM;
3732 }
3733
3734 hci_send_frame(hdev, skb);
3735
3736 return 0;
3737 }
3738 EXPORT_SYMBOL(__hci_cmd_send);
3739
3740 /* Get data from the previously sent command */
3741 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3742 {
3743 struct hci_command_hdr *hdr;
3744
3745 if (!hdev->sent_cmd)
3746 return NULL;
3747
3748 hdr = (void *) hdev->sent_cmd->data;
3749
3750 if (hdr->opcode != cpu_to_le16(opcode))
3751 return NULL;
3752
3753 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3754
3755 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3756 }
3757
3758 /* Send HCI command and wait for command commplete event */
3759 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3760 const void *param, u32 timeout)
3761 {
3762 struct sk_buff *skb;
3763
3764 if (!test_bit(HCI_UP, &hdev->flags))
3765 return ERR_PTR(-ENETDOWN);
3766
3767 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3768
3769 hci_req_sync_lock(hdev);
3770 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3771 hci_req_sync_unlock(hdev);
3772
3773 return skb;
3774 }
3775 EXPORT_SYMBOL(hci_cmd_sync);
3776
3777 /* Send ACL data */
3778 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3779 {
3780 struct hci_acl_hdr *hdr;
3781 int len = skb->len;
3782
3783 skb_push(skb, HCI_ACL_HDR_SIZE);
3784 skb_reset_transport_header(skb);
3785 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3786 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3787 hdr->dlen = cpu_to_le16(len);
3788 }
3789
3790 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3791 struct sk_buff *skb, __u16 flags)
3792 {
3793 struct hci_conn *conn = chan->conn;
3794 struct hci_dev *hdev = conn->hdev;
3795 struct sk_buff *list;
3796
3797 skb->len = skb_headlen(skb);
3798 skb->data_len = 0;
3799
3800 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3801
3802 switch (hdev->dev_type) {
3803 case HCI_PRIMARY:
3804 hci_add_acl_hdr(skb, conn->handle, flags);
3805 break;
3806 case HCI_AMP:
3807 hci_add_acl_hdr(skb, chan->handle, flags);
3808 break;
3809 default:
3810 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3811 return;
3812 }
3813
3814 list = skb_shinfo(skb)->frag_list;
3815 if (!list) {
3816 /* Non fragmented */
3817 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3818
3819 skb_queue_tail(queue, skb);
3820 } else {
3821 /* Fragmented */
3822 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3823
3824 skb_shinfo(skb)->frag_list = NULL;
3825
3826 /* Queue all fragments atomically. We need to use spin_lock_bh
3827 * here because of 6LoWPAN links, as there this function is
3828 * called from softirq and using normal spin lock could cause
3829 * deadlocks.
3830 */
3831 spin_lock_bh(&queue->lock);
3832
3833 __skb_queue_tail(queue, skb);
3834
3835 flags &= ~ACL_START;
3836 flags |= ACL_CONT;
3837 do {
3838 skb = list; list = list->next;
3839
3840 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3841 hci_add_acl_hdr(skb, conn->handle, flags);
3842
3843 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3844
3845 __skb_queue_tail(queue, skb);
3846 } while (list);
3847
3848 spin_unlock_bh(&queue->lock);
3849 }
3850 }
3851
3852 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3853 {
3854 struct hci_dev *hdev = chan->conn->hdev;
3855
3856 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3857
3858 hci_queue_acl(chan, &chan->data_q, skb, flags);
3859
3860 queue_work(hdev->workqueue, &hdev->tx_work);
3861 }
3862
3863 /* Send SCO data */
3864 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3865 {
3866 struct hci_dev *hdev = conn->hdev;
3867 struct hci_sco_hdr hdr;
3868
3869 BT_DBG("%s len %d", hdev->name, skb->len);
3870
3871 hdr.handle = cpu_to_le16(conn->handle);
3872 hdr.dlen = skb->len;
3873
3874 skb_push(skb, HCI_SCO_HDR_SIZE);
3875 skb_reset_transport_header(skb);
3876 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3877
3878 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3879
3880 skb_queue_tail(&conn->data_q, skb);
3881 queue_work(hdev->workqueue, &hdev->tx_work);
3882 }
3883
3884 /* ---- HCI TX task (outgoing data) ---- */
3885
3886 /* HCI Connection scheduler */
3887 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3888 int *quote)
3889 {
3890 struct hci_conn_hash *h = &hdev->conn_hash;
3891 struct hci_conn *conn = NULL, *c;
3892 unsigned int num = 0, min = ~0;
3893
3894 /* We don't have to lock device here. Connections are always
3895 * added and removed with TX task disabled. */
3896
3897 rcu_read_lock();
3898
3899 list_for_each_entry_rcu(c, &h->list, list) {
3900 if (c->type != type || skb_queue_empty(&c->data_q))
3901 continue;
3902
3903 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3904 continue;
3905
3906 num++;
3907
3908 if (c->sent < min) {
3909 min = c->sent;
3910 conn = c;
3911 }
3912
3913 if (hci_conn_num(hdev, type) == num)
3914 break;
3915 }
3916
3917 rcu_read_unlock();
3918
3919 if (conn) {
3920 int cnt, q;
3921
3922 switch (conn->type) {
3923 case ACL_LINK:
3924 cnt = hdev->acl_cnt;
3925 break;
3926 case SCO_LINK:
3927 case ESCO_LINK:
3928 cnt = hdev->sco_cnt;
3929 break;
3930 case LE_LINK:
3931 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3932 break;
3933 default:
3934 cnt = 0;
3935 bt_dev_err(hdev, "unknown link type %d", conn->type);
3936 }
3937
3938 q = cnt / num;
3939 *quote = q ? q : 1;
3940 } else
3941 *quote = 0;
3942
3943 BT_DBG("conn %p quote %d", conn, *quote);
3944 return conn;
3945 }
3946
3947 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3948 {
3949 struct hci_conn_hash *h = &hdev->conn_hash;
3950 struct hci_conn *c;
3951
3952 bt_dev_err(hdev, "link tx timeout");
3953
3954 rcu_read_lock();
3955
3956 /* Kill stalled connections */
3957 list_for_each_entry_rcu(c, &h->list, list) {
3958 if (c->type == type && c->sent) {
3959 bt_dev_err(hdev, "killing stalled connection %pMR",
3960 &c->dst);
3961 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3962 }
3963 }
3964
3965 rcu_read_unlock();
3966 }
3967
3968 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3969 int *quote)
3970 {
3971 struct hci_conn_hash *h = &hdev->conn_hash;
3972 struct hci_chan *chan = NULL;
3973 unsigned int num = 0, min = ~0, cur_prio = 0;
3974 struct hci_conn *conn;
3975 int cnt, q, conn_num = 0;
3976
3977 BT_DBG("%s", hdev->name);
3978
3979 rcu_read_lock();
3980
3981 list_for_each_entry_rcu(conn, &h->list, list) {
3982 struct hci_chan *tmp;
3983
3984 if (conn->type != type)
3985 continue;
3986
3987 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3988 continue;
3989
3990 conn_num++;
3991
3992 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3993 struct sk_buff *skb;
3994
3995 if (skb_queue_empty(&tmp->data_q))
3996 continue;
3997
3998 skb = skb_peek(&tmp->data_q);
3999 if (skb->priority < cur_prio)
4000 continue;
4001
4002 if (skb->priority > cur_prio) {
4003 num = 0;
4004 min = ~0;
4005 cur_prio = skb->priority;
4006 }
4007
4008 num++;
4009
4010 if (conn->sent < min) {
4011 min = conn->sent;
4012 chan = tmp;
4013 }
4014 }
4015
4016 if (hci_conn_num(hdev, type) == conn_num)
4017 break;
4018 }
4019
4020 rcu_read_unlock();
4021
4022 if (!chan)
4023 return NULL;
4024
4025 switch (chan->conn->type) {
4026 case ACL_LINK:
4027 cnt = hdev->acl_cnt;
4028 break;
4029 case AMP_LINK:
4030 cnt = hdev->block_cnt;
4031 break;
4032 case SCO_LINK:
4033 case ESCO_LINK:
4034 cnt = hdev->sco_cnt;
4035 break;
4036 case LE_LINK:
4037 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4038 break;
4039 default:
4040 cnt = 0;
4041 bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4042 }
4043
4044 q = cnt / num;
4045 *quote = q ? q : 1;
4046 BT_DBG("chan %p quote %d", chan, *quote);
4047 return chan;
4048 }
4049
4050 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4051 {
4052 struct hci_conn_hash *h = &hdev->conn_hash;
4053 struct hci_conn *conn;
4054 int num = 0;
4055
4056 BT_DBG("%s", hdev->name);
4057
4058 rcu_read_lock();
4059
4060 list_for_each_entry_rcu(conn, &h->list, list) {
4061 struct hci_chan *chan;
4062
4063 if (conn->type != type)
4064 continue;
4065
4066 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4067 continue;
4068
4069 num++;
4070
4071 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4072 struct sk_buff *skb;
4073
4074 if (chan->sent) {
4075 chan->sent = 0;
4076 continue;
4077 }
4078
4079 if (skb_queue_empty(&chan->data_q))
4080 continue;
4081
4082 skb = skb_peek(&chan->data_q);
4083 if (skb->priority >= HCI_PRIO_MAX - 1)
4084 continue;
4085
4086 skb->priority = HCI_PRIO_MAX - 1;
4087
4088 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4089 skb->priority);
4090 }
4091
4092 if (hci_conn_num(hdev, type) == num)
4093 break;
4094 }
4095
4096 rcu_read_unlock();
4097
4098 }
4099
4100 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4101 {
4102 /* Calculate count of blocks used by this packet */
4103 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4104 }
4105
4106 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4107 {
4108 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4109 /* ACL tx timeout must be longer than maximum
4110 * link supervision timeout (40.9 seconds) */
4111 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4112 HCI_ACL_TX_TIMEOUT))
4113 hci_link_tx_to(hdev, ACL_LINK);
4114 }
4115 }
4116
4117 static void hci_sched_acl_pkt(struct hci_dev *hdev)
4118 {
4119 unsigned int cnt = hdev->acl_cnt;
4120 struct hci_chan *chan;
4121 struct sk_buff *skb;
4122 int quote;
4123
4124 __check_timeout(hdev, cnt);
4125
4126 while (hdev->acl_cnt &&
4127 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4128 u32 priority = (skb_peek(&chan->data_q))->priority;
4129 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4130 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4131 skb->len, skb->priority);
4132
4133 /* Stop if priority has changed */
4134 if (skb->priority < priority)
4135 break;
4136
4137 skb = skb_dequeue(&chan->data_q);
4138
4139 hci_conn_enter_active_mode(chan->conn,
4140 bt_cb(skb)->force_active);
4141
4142 hci_send_frame(hdev, skb);
4143 hdev->acl_last_tx = jiffies;
4144
4145 hdev->acl_cnt--;
4146 chan->sent++;
4147 chan->conn->sent++;
4148 }
4149 }
4150
4151 if (cnt != hdev->acl_cnt)
4152 hci_prio_recalculate(hdev, ACL_LINK);
4153 }
4154
4155 static void hci_sched_acl_blk(struct hci_dev *hdev)
4156 {
4157 unsigned int cnt = hdev->block_cnt;
4158 struct hci_chan *chan;
4159 struct sk_buff *skb;
4160 int quote;
4161 u8 type;
4162
4163 __check_timeout(hdev, cnt);
4164
4165 BT_DBG("%s", hdev->name);
4166
4167 if (hdev->dev_type == HCI_AMP)
4168 type = AMP_LINK;
4169 else
4170 type = ACL_LINK;
4171
4172 while (hdev->block_cnt > 0 &&
4173 (chan = hci_chan_sent(hdev, type, &quote))) {
4174 u32 priority = (skb_peek(&chan->data_q))->priority;
4175 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4176 int blocks;
4177
4178 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4179 skb->len, skb->priority);
4180
4181 /* Stop if priority has changed */
4182 if (skb->priority < priority)
4183 break;
4184
4185 skb = skb_dequeue(&chan->data_q);
4186
4187 blocks = __get_blocks(hdev, skb);
4188 if (blocks > hdev->block_cnt)
4189 return;
4190
4191 hci_conn_enter_active_mode(chan->conn,
4192 bt_cb(skb)->force_active);
4193
4194 hci_send_frame(hdev, skb);
4195 hdev->acl_last_tx = jiffies;
4196
4197 hdev->block_cnt -= blocks;
4198 quote -= blocks;
4199
4200 chan->sent += blocks;
4201 chan->conn->sent += blocks;
4202 }
4203 }
4204
4205 if (cnt != hdev->block_cnt)
4206 hci_prio_recalculate(hdev, type);
4207 }
4208
4209 static void hci_sched_acl(struct hci_dev *hdev)
4210 {
4211 BT_DBG("%s", hdev->name);
4212
4213 /* No ACL link over BR/EDR controller */
4214 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4215 return;
4216
4217 /* No AMP link over AMP controller */
4218 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4219 return;
4220
4221 switch (hdev->flow_ctl_mode) {
4222 case HCI_FLOW_CTL_MODE_PACKET_BASED:
4223 hci_sched_acl_pkt(hdev);
4224 break;
4225
4226 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4227 hci_sched_acl_blk(hdev);
4228 break;
4229 }
4230 }
4231
4232 /* Schedule SCO */
4233 static void hci_sched_sco(struct hci_dev *hdev)
4234 {
4235 struct hci_conn *conn;
4236 struct sk_buff *skb;
4237 int quote;
4238
4239 BT_DBG("%s", hdev->name);
4240
4241 if (!hci_conn_num(hdev, SCO_LINK))
4242 return;
4243
4244 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4245 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4246 BT_DBG("skb %p len %d", skb, skb->len);
4247 hci_send_frame(hdev, skb);
4248
4249 conn->sent++;
4250 if (conn->sent == ~0)
4251 conn->sent = 0;
4252 }
4253 }
4254 }
4255
4256 static void hci_sched_esco(struct hci_dev *hdev)
4257 {
4258 struct hci_conn *conn;
4259 struct sk_buff *skb;
4260 int quote;
4261
4262 BT_DBG("%s", hdev->name);
4263
4264 if (!hci_conn_num(hdev, ESCO_LINK))
4265 return;
4266
4267 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4268 &quote))) {
4269 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4270 BT_DBG("skb %p len %d", skb, skb->len);
4271 hci_send_frame(hdev, skb);
4272
4273 conn->sent++;
4274 if (conn->sent == ~0)
4275 conn->sent = 0;
4276 }
4277 }
4278 }
4279
4280 static void hci_sched_le(struct hci_dev *hdev)
4281 {
4282 struct hci_chan *chan;
4283 struct sk_buff *skb;
4284 int quote, cnt, tmp;
4285
4286 BT_DBG("%s", hdev->name);
4287
4288 if (!hci_conn_num(hdev, LE_LINK))
4289 return;
4290
4291 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4292
4293 __check_timeout(hdev, cnt);
4294
4295 tmp = cnt;
4296 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4297 u32 priority = (skb_peek(&chan->data_q))->priority;
4298 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4299 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4300 skb->len, skb->priority);
4301
4302 /* Stop if priority has changed */
4303 if (skb->priority < priority)
4304 break;
4305
4306 skb = skb_dequeue(&chan->data_q);
4307
4308 hci_send_frame(hdev, skb);
4309 hdev->le_last_tx = jiffies;
4310
4311 cnt--;
4312 chan->sent++;
4313 chan->conn->sent++;
4314 }
4315 }
4316
4317 if (hdev->le_pkts)
4318 hdev->le_cnt = cnt;
4319 else
4320 hdev->acl_cnt = cnt;
4321
4322 if (cnt != tmp)
4323 hci_prio_recalculate(hdev, LE_LINK);
4324 }
4325
4326 static void hci_tx_work(struct work_struct *work)
4327 {
4328 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4329 struct sk_buff *skb;
4330
4331 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4332 hdev->sco_cnt, hdev->le_cnt);
4333
4334 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4335 /* Schedule queues and send stuff to HCI driver */
4336 hci_sched_acl(hdev);
4337 hci_sched_sco(hdev);
4338 hci_sched_esco(hdev);
4339 hci_sched_le(hdev);
4340 }
4341
4342 /* Send next queued raw (unknown type) packet */
4343 while ((skb = skb_dequeue(&hdev->raw_q)))
4344 hci_send_frame(hdev, skb);
4345 }
4346
4347 /* ----- HCI RX task (incoming data processing) ----- */
4348
4349 /* ACL data packet */
4350 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4351 {
4352 struct hci_acl_hdr *hdr = (void *) skb->data;
4353 struct hci_conn *conn;
4354 __u16 handle, flags;
4355
4356 skb_pull(skb, HCI_ACL_HDR_SIZE);
4357
4358 handle = __le16_to_cpu(hdr->handle);
4359 flags = hci_flags(handle);
4360 handle = hci_handle(handle);
4361
4362 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4363 handle, flags);
4364
4365 hdev->stat.acl_rx++;
4366
4367 hci_dev_lock(hdev);
4368 conn = hci_conn_hash_lookup_handle(hdev, handle);
4369 hci_dev_unlock(hdev);
4370
4371 if (conn) {
4372 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4373
4374 /* Send to upper protocol */
4375 l2cap_recv_acldata(conn, skb, flags);
4376 return;
4377 } else {
4378 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4379 handle);
4380 }
4381
4382 kfree_skb(skb);
4383 }
4384
4385 /* SCO data packet */
4386 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4387 {
4388 struct hci_sco_hdr *hdr = (void *) skb->data;
4389 struct hci_conn *conn;
4390 __u16 handle, flags;
4391
4392 skb_pull(skb, HCI_SCO_HDR_SIZE);
4393
4394 handle = __le16_to_cpu(hdr->handle);
4395 flags = hci_flags(handle);
4396 handle = hci_handle(handle);
4397
4398 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4399 handle, flags);
4400
4401 hdev->stat.sco_rx++;
4402
4403 hci_dev_lock(hdev);
4404 conn = hci_conn_hash_lookup_handle(hdev, handle);
4405 hci_dev_unlock(hdev);
4406
4407 if (conn) {
4408 /* Send to upper protocol */
4409 sco_recv_scodata(conn, skb);
4410 return;
4411 } else {
4412 bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4413 handle);
4414 }
4415
4416 kfree_skb(skb);
4417 }
4418
4419 static bool hci_req_is_complete(struct hci_dev *hdev)
4420 {
4421 struct sk_buff *skb;
4422
4423 skb = skb_peek(&hdev->cmd_q);
4424 if (!skb)
4425 return true;
4426
4427 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4428 }
4429
4430 static void hci_resend_last(struct hci_dev *hdev)
4431 {
4432 struct hci_command_hdr *sent;
4433 struct sk_buff *skb;
4434 u16 opcode;
4435
4436 if (!hdev->sent_cmd)
4437 return;
4438
4439 sent = (void *) hdev->sent_cmd->data;
4440 opcode = __le16_to_cpu(sent->opcode);
4441 if (opcode == HCI_OP_RESET)
4442 return;
4443
4444 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4445 if (!skb)
4446 return;
4447
4448 skb_queue_head(&hdev->cmd_q, skb);
4449 queue_work(hdev->workqueue, &hdev->cmd_work);
4450 }
4451
4452 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4453 hci_req_complete_t *req_complete,
4454 hci_req_complete_skb_t *req_complete_skb)
4455 {
4456 struct sk_buff *skb;
4457 unsigned long flags;
4458
4459 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4460
4461 /* If the completed command doesn't match the last one that was
4462 * sent we need to do special handling of it.
4463 */
4464 if (!hci_sent_cmd_data(hdev, opcode)) {
4465 /* Some CSR based controllers generate a spontaneous
4466 * reset complete event during init and any pending
4467 * command will never be completed. In such a case we
4468 * need to resend whatever was the last sent
4469 * command.
4470 */
4471 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4472 hci_resend_last(hdev);
4473
4474 return;
4475 }
4476
4477 /* If we reach this point this event matches the last command sent */
4478 hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4479
4480 /* If the command succeeded and there's still more commands in
4481 * this request the request is not yet complete.
4482 */
4483 if (!status && !hci_req_is_complete(hdev))
4484 return;
4485
4486 /* If this was the last command in a request the complete
4487 * callback would be found in hdev->sent_cmd instead of the
4488 * command queue (hdev->cmd_q).
4489 */
4490 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4491 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4492 return;
4493 }
4494
4495 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4496 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4497 return;
4498 }
4499
4500 /* Remove all pending commands belonging to this request */
4501 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4502 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4503 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4504 __skb_queue_head(&hdev->cmd_q, skb);
4505 break;
4506 }
4507
4508 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4509 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4510 else
4511 *req_complete = bt_cb(skb)->hci.req_complete;
4512 kfree_skb(skb);
4513 }
4514 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4515 }
4516
4517 static void hci_rx_work(struct work_struct *work)
4518 {
4519 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4520 struct sk_buff *skb;
4521
4522 BT_DBG("%s", hdev->name);
4523
4524 while ((skb = skb_dequeue(&hdev->rx_q))) {
4525 /* Send copy to monitor */
4526 hci_send_to_monitor(hdev, skb);
4527
4528 if (atomic_read(&hdev->promisc)) {
4529 /* Send copy to the sockets */
4530 hci_send_to_sock(hdev, skb);
4531 }
4532
4533 /* If the device has been opened in HCI_USER_CHANNEL,
4534 * the userspace has exclusive access to device.
4535 * When device is HCI_INIT, we still need to process
4536 * the data packets to the driver in order
4537 * to complete its setup().
4538 */
4539 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4540 !test_bit(HCI_INIT, &hdev->flags)) {
4541 kfree_skb(skb);
4542 continue;
4543 }
4544
4545 if (test_bit(HCI_INIT, &hdev->flags)) {
4546 /* Don't process data packets in this states. */
4547 switch (hci_skb_pkt_type(skb)) {
4548 case HCI_ACLDATA_PKT:
4549 case HCI_SCODATA_PKT:
4550 case HCI_ISODATA_PKT:
4551 kfree_skb(skb);
4552 continue;
4553 }
4554 }
4555
4556 /* Process frame */
4557 switch (hci_skb_pkt_type(skb)) {
4558 case HCI_EVENT_PKT:
4559 BT_DBG("%s Event packet", hdev->name);
4560 hci_event_packet(hdev, skb);
4561 break;
4562
4563 case HCI_ACLDATA_PKT:
4564 BT_DBG("%s ACL data packet", hdev->name);
4565 hci_acldata_packet(hdev, skb);
4566 break;
4567
4568 case HCI_SCODATA_PKT:
4569 BT_DBG("%s SCO data packet", hdev->name);
4570 hci_scodata_packet(hdev, skb);
4571 break;
4572
4573 default:
4574 kfree_skb(skb);
4575 break;
4576 }
4577 }
4578 }
4579
4580 static void hci_cmd_work(struct work_struct *work)
4581 {
4582 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4583 struct sk_buff *skb;
4584
4585 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4586 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4587
4588 /* Send queued commands */
4589 if (atomic_read(&hdev->cmd_cnt)) {
4590 skb = skb_dequeue(&hdev->cmd_q);
4591 if (!skb)
4592 return;
4593
4594 kfree_skb(hdev->sent_cmd);
4595
4596 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4597 if (hdev->sent_cmd) {
4598 if (hci_req_status_pend(hdev))
4599 hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4600 atomic_dec(&hdev->cmd_cnt);
4601 hci_send_frame(hdev, skb);
4602 if (test_bit(HCI_RESET, &hdev->flags))
4603 cancel_delayed_work(&hdev->cmd_timer);
4604 else
4605 schedule_delayed_work(&hdev->cmd_timer,
4606 HCI_CMD_TIMEOUT);
4607 } else {
4608 skb_queue_head(&hdev->cmd_q, skb);
4609 queue_work(hdev->workqueue, &hdev->cmd_work);
4610 }
4611 }
4612 }