]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/bluetooth/hci_core.c
Bluetooth: Add support for vendor specific diagnostic channel
[mirror_ubuntu-bionic-kernel.git] / net / bluetooth / hci_core.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
34
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
39
40 #include "hci_request.h"
41 #include "hci_debugfs.h"
42 #include "smp.h"
43
44 static void hci_rx_work(struct work_struct *work);
45 static void hci_cmd_work(struct work_struct *work);
46 static void hci_tx_work(struct work_struct *work);
47
48 /* HCI device list */
49 LIST_HEAD(hci_dev_list);
50 DEFINE_RWLOCK(hci_dev_list_lock);
51
52 /* HCI callback list */
53 LIST_HEAD(hci_cb_list);
54 DEFINE_MUTEX(hci_cb_list_lock);
55
56 /* HCI ID Numbering */
57 static DEFINE_IDA(hci_index_ida);
58
59 /* ----- HCI requests ----- */
60
61 #define HCI_REQ_DONE 0
62 #define HCI_REQ_PEND 1
63 #define HCI_REQ_CANCELED 2
64
65 #define hci_req_lock(d) mutex_lock(&d->req_lock)
66 #define hci_req_unlock(d) mutex_unlock(&d->req_lock)
67
68 /* ---- HCI notifications ---- */
69
70 static void hci_notify(struct hci_dev *hdev, int event)
71 {
72 hci_sock_dev_event(hdev, event);
73 }
74
75 /* ---- HCI debugfs entries ---- */
76
77 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
78 size_t count, loff_t *ppos)
79 {
80 struct hci_dev *hdev = file->private_data;
81 char buf[3];
82
83 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y': 'N';
84 buf[1] = '\n';
85 buf[2] = '\0';
86 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
87 }
88
89 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
90 size_t count, loff_t *ppos)
91 {
92 struct hci_dev *hdev = file->private_data;
93 struct sk_buff *skb;
94 char buf[32];
95 size_t buf_size = min(count, (sizeof(buf)-1));
96 bool enable;
97
98 if (!test_bit(HCI_UP, &hdev->flags))
99 return -ENETDOWN;
100
101 if (copy_from_user(buf, user_buf, buf_size))
102 return -EFAULT;
103
104 buf[buf_size] = '\0';
105 if (strtobool(buf, &enable))
106 return -EINVAL;
107
108 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
109 return -EALREADY;
110
111 hci_req_lock(hdev);
112 if (enable)
113 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
114 HCI_CMD_TIMEOUT);
115 else
116 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
117 HCI_CMD_TIMEOUT);
118 hci_req_unlock(hdev);
119
120 if (IS_ERR(skb))
121 return PTR_ERR(skb);
122
123 kfree_skb(skb);
124
125 hci_dev_change_flag(hdev, HCI_DUT_MODE);
126
127 return count;
128 }
129
130 static const struct file_operations dut_mode_fops = {
131 .open = simple_open,
132 .read = dut_mode_read,
133 .write = dut_mode_write,
134 .llseek = default_llseek,
135 };
136
137 /* ---- HCI requests ---- */
138
139 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
140 struct sk_buff *skb)
141 {
142 BT_DBG("%s result 0x%2.2x", hdev->name, result);
143
144 if (hdev->req_status == HCI_REQ_PEND) {
145 hdev->req_result = result;
146 hdev->req_status = HCI_REQ_DONE;
147 if (skb)
148 hdev->req_skb = skb_get(skb);
149 wake_up_interruptible(&hdev->req_wait_q);
150 }
151 }
152
153 static void hci_req_cancel(struct hci_dev *hdev, int err)
154 {
155 BT_DBG("%s err 0x%2.2x", hdev->name, err);
156
157 if (hdev->req_status == HCI_REQ_PEND) {
158 hdev->req_result = err;
159 hdev->req_status = HCI_REQ_CANCELED;
160 wake_up_interruptible(&hdev->req_wait_q);
161 }
162 }
163
164 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
165 const void *param, u8 event, u32 timeout)
166 {
167 DECLARE_WAITQUEUE(wait, current);
168 struct hci_request req;
169 struct sk_buff *skb;
170 int err = 0;
171
172 BT_DBG("%s", hdev->name);
173
174 hci_req_init(&req, hdev);
175
176 hci_req_add_ev(&req, opcode, plen, param, event);
177
178 hdev->req_status = HCI_REQ_PEND;
179
180 add_wait_queue(&hdev->req_wait_q, &wait);
181 set_current_state(TASK_INTERRUPTIBLE);
182
183 err = hci_req_run_skb(&req, hci_req_sync_complete);
184 if (err < 0) {
185 remove_wait_queue(&hdev->req_wait_q, &wait);
186 set_current_state(TASK_RUNNING);
187 return ERR_PTR(err);
188 }
189
190 schedule_timeout(timeout);
191
192 remove_wait_queue(&hdev->req_wait_q, &wait);
193
194 if (signal_pending(current))
195 return ERR_PTR(-EINTR);
196
197 switch (hdev->req_status) {
198 case HCI_REQ_DONE:
199 err = -bt_to_errno(hdev->req_result);
200 break;
201
202 case HCI_REQ_CANCELED:
203 err = -hdev->req_result;
204 break;
205
206 default:
207 err = -ETIMEDOUT;
208 break;
209 }
210
211 hdev->req_status = hdev->req_result = 0;
212 skb = hdev->req_skb;
213 hdev->req_skb = NULL;
214
215 BT_DBG("%s end: err %d", hdev->name, err);
216
217 if (err < 0) {
218 kfree_skb(skb);
219 return ERR_PTR(err);
220 }
221
222 if (!skb)
223 return ERR_PTR(-ENODATA);
224
225 return skb;
226 }
227 EXPORT_SYMBOL(__hci_cmd_sync_ev);
228
229 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
230 const void *param, u32 timeout)
231 {
232 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
233 }
234 EXPORT_SYMBOL(__hci_cmd_sync);
235
236 /* Execute request and wait for completion. */
237 static int __hci_req_sync(struct hci_dev *hdev,
238 void (*func)(struct hci_request *req,
239 unsigned long opt),
240 unsigned long opt, __u32 timeout)
241 {
242 struct hci_request req;
243 DECLARE_WAITQUEUE(wait, current);
244 int err = 0;
245
246 BT_DBG("%s start", hdev->name);
247
248 hci_req_init(&req, hdev);
249
250 hdev->req_status = HCI_REQ_PEND;
251
252 func(&req, opt);
253
254 add_wait_queue(&hdev->req_wait_q, &wait);
255 set_current_state(TASK_INTERRUPTIBLE);
256
257 err = hci_req_run_skb(&req, hci_req_sync_complete);
258 if (err < 0) {
259 hdev->req_status = 0;
260
261 remove_wait_queue(&hdev->req_wait_q, &wait);
262 set_current_state(TASK_RUNNING);
263
264 /* ENODATA means the HCI request command queue is empty.
265 * This can happen when a request with conditionals doesn't
266 * trigger any commands to be sent. This is normal behavior
267 * and should not trigger an error return.
268 */
269 if (err == -ENODATA)
270 return 0;
271
272 return err;
273 }
274
275 schedule_timeout(timeout);
276
277 remove_wait_queue(&hdev->req_wait_q, &wait);
278
279 if (signal_pending(current))
280 return -EINTR;
281
282 switch (hdev->req_status) {
283 case HCI_REQ_DONE:
284 err = -bt_to_errno(hdev->req_result);
285 break;
286
287 case HCI_REQ_CANCELED:
288 err = -hdev->req_result;
289 break;
290
291 default:
292 err = -ETIMEDOUT;
293 break;
294 }
295
296 hdev->req_status = hdev->req_result = 0;
297
298 BT_DBG("%s end: err %d", hdev->name, err);
299
300 return err;
301 }
302
303 static int hci_req_sync(struct hci_dev *hdev,
304 void (*req)(struct hci_request *req,
305 unsigned long opt),
306 unsigned long opt, __u32 timeout)
307 {
308 int ret;
309
310 if (!test_bit(HCI_UP, &hdev->flags))
311 return -ENETDOWN;
312
313 /* Serialize all requests */
314 hci_req_lock(hdev);
315 ret = __hci_req_sync(hdev, req, opt, timeout);
316 hci_req_unlock(hdev);
317
318 return ret;
319 }
320
321 static void hci_reset_req(struct hci_request *req, unsigned long opt)
322 {
323 BT_DBG("%s %ld", req->hdev->name, opt);
324
325 /* Reset device */
326 set_bit(HCI_RESET, &req->hdev->flags);
327 hci_req_add(req, HCI_OP_RESET, 0, NULL);
328 }
329
330 static void bredr_init(struct hci_request *req)
331 {
332 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
333
334 /* Read Local Supported Features */
335 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
336
337 /* Read Local Version */
338 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
339
340 /* Read BD Address */
341 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
342 }
343
344 static void amp_init1(struct hci_request *req)
345 {
346 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
347
348 /* Read Local Version */
349 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
350
351 /* Read Local Supported Commands */
352 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
353
354 /* Read Local AMP Info */
355 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
356
357 /* Read Data Blk size */
358 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
359
360 /* Read Flow Control Mode */
361 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
362
363 /* Read Location Data */
364 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
365 }
366
367 static void amp_init2(struct hci_request *req)
368 {
369 /* Read Local Supported Features. Not all AMP controllers
370 * support this so it's placed conditionally in the second
371 * stage init.
372 */
373 if (req->hdev->commands[14] & 0x20)
374 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
375 }
376
377 static void hci_init1_req(struct hci_request *req, unsigned long opt)
378 {
379 struct hci_dev *hdev = req->hdev;
380
381 BT_DBG("%s %ld", hdev->name, opt);
382
383 /* Reset */
384 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
385 hci_reset_req(req, 0);
386
387 switch (hdev->dev_type) {
388 case HCI_BREDR:
389 bredr_init(req);
390 break;
391
392 case HCI_AMP:
393 amp_init1(req);
394 break;
395
396 default:
397 BT_ERR("Unknown device type %d", hdev->dev_type);
398 break;
399 }
400 }
401
402 static void bredr_setup(struct hci_request *req)
403 {
404 __le16 param;
405 __u8 flt_type;
406
407 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
408 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
409
410 /* Read Class of Device */
411 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
412
413 /* Read Local Name */
414 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
415
416 /* Read Voice Setting */
417 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
418
419 /* Read Number of Supported IAC */
420 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
421
422 /* Read Current IAC LAP */
423 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
424
425 /* Clear Event Filters */
426 flt_type = HCI_FLT_CLEAR_ALL;
427 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
428
429 /* Connection accept timeout ~20 secs */
430 param = cpu_to_le16(0x7d00);
431 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
432 }
433
434 static void le_setup(struct hci_request *req)
435 {
436 struct hci_dev *hdev = req->hdev;
437
438 /* Read LE Buffer Size */
439 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
440
441 /* Read LE Local Supported Features */
442 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
443
444 /* Read LE Supported States */
445 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
446
447 /* Read LE White List Size */
448 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 0, NULL);
449
450 /* Clear LE White List */
451 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
452
453 /* LE-only controllers have LE implicitly enabled */
454 if (!lmp_bredr_capable(hdev))
455 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
456 }
457
458 static void hci_setup_event_mask(struct hci_request *req)
459 {
460 struct hci_dev *hdev = req->hdev;
461
462 /* The second byte is 0xff instead of 0x9f (two reserved bits
463 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
464 * command otherwise.
465 */
466 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
467
468 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
469 * any event mask for pre 1.2 devices.
470 */
471 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
472 return;
473
474 if (lmp_bredr_capable(hdev)) {
475 events[4] |= 0x01; /* Flow Specification Complete */
476 events[4] |= 0x02; /* Inquiry Result with RSSI */
477 events[4] |= 0x04; /* Read Remote Extended Features Complete */
478 events[5] |= 0x08; /* Synchronous Connection Complete */
479 events[5] |= 0x10; /* Synchronous Connection Changed */
480 } else {
481 /* Use a different default for LE-only devices */
482 memset(events, 0, sizeof(events));
483 events[0] |= 0x10; /* Disconnection Complete */
484 events[1] |= 0x08; /* Read Remote Version Information Complete */
485 events[1] |= 0x20; /* Command Complete */
486 events[1] |= 0x40; /* Command Status */
487 events[1] |= 0x80; /* Hardware Error */
488 events[2] |= 0x04; /* Number of Completed Packets */
489 events[3] |= 0x02; /* Data Buffer Overflow */
490
491 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
492 events[0] |= 0x80; /* Encryption Change */
493 events[5] |= 0x80; /* Encryption Key Refresh Complete */
494 }
495 }
496
497 if (lmp_inq_rssi_capable(hdev))
498 events[4] |= 0x02; /* Inquiry Result with RSSI */
499
500 if (lmp_sniffsubr_capable(hdev))
501 events[5] |= 0x20; /* Sniff Subrating */
502
503 if (lmp_pause_enc_capable(hdev))
504 events[5] |= 0x80; /* Encryption Key Refresh Complete */
505
506 if (lmp_ext_inq_capable(hdev))
507 events[5] |= 0x40; /* Extended Inquiry Result */
508
509 if (lmp_no_flush_capable(hdev))
510 events[7] |= 0x01; /* Enhanced Flush Complete */
511
512 if (lmp_lsto_capable(hdev))
513 events[6] |= 0x80; /* Link Supervision Timeout Changed */
514
515 if (lmp_ssp_capable(hdev)) {
516 events[6] |= 0x01; /* IO Capability Request */
517 events[6] |= 0x02; /* IO Capability Response */
518 events[6] |= 0x04; /* User Confirmation Request */
519 events[6] |= 0x08; /* User Passkey Request */
520 events[6] |= 0x10; /* Remote OOB Data Request */
521 events[6] |= 0x20; /* Simple Pairing Complete */
522 events[7] |= 0x04; /* User Passkey Notification */
523 events[7] |= 0x08; /* Keypress Notification */
524 events[7] |= 0x10; /* Remote Host Supported
525 * Features Notification
526 */
527 }
528
529 if (lmp_le_capable(hdev))
530 events[7] |= 0x20; /* LE Meta-Event */
531
532 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
533 }
534
535 static void hci_init2_req(struct hci_request *req, unsigned long opt)
536 {
537 struct hci_dev *hdev = req->hdev;
538
539 if (hdev->dev_type == HCI_AMP)
540 return amp_init2(req);
541
542 if (lmp_bredr_capable(hdev))
543 bredr_setup(req);
544 else
545 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
546
547 if (lmp_le_capable(hdev))
548 le_setup(req);
549
550 /* All Bluetooth 1.2 and later controllers should support the
551 * HCI command for reading the local supported commands.
552 *
553 * Unfortunately some controllers indicate Bluetooth 1.2 support,
554 * but do not have support for this command. If that is the case,
555 * the driver can quirk the behavior and skip reading the local
556 * supported commands.
557 */
558 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
559 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
560 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
561
562 if (lmp_ssp_capable(hdev)) {
563 /* When SSP is available, then the host features page
564 * should also be available as well. However some
565 * controllers list the max_page as 0 as long as SSP
566 * has not been enabled. To achieve proper debugging
567 * output, force the minimum max_page to 1 at least.
568 */
569 hdev->max_page = 0x01;
570
571 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
572 u8 mode = 0x01;
573
574 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
575 sizeof(mode), &mode);
576 } else {
577 struct hci_cp_write_eir cp;
578
579 memset(hdev->eir, 0, sizeof(hdev->eir));
580 memset(&cp, 0, sizeof(cp));
581
582 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
583 }
584 }
585
586 if (lmp_inq_rssi_capable(hdev) ||
587 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
588 u8 mode;
589
590 /* If Extended Inquiry Result events are supported, then
591 * they are clearly preferred over Inquiry Result with RSSI
592 * events.
593 */
594 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
595
596 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
597 }
598
599 if (lmp_inq_tx_pwr_capable(hdev))
600 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
601
602 if (lmp_ext_feat_capable(hdev)) {
603 struct hci_cp_read_local_ext_features cp;
604
605 cp.page = 0x01;
606 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
607 sizeof(cp), &cp);
608 }
609
610 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
611 u8 enable = 1;
612 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
613 &enable);
614 }
615 }
616
617 static void hci_setup_link_policy(struct hci_request *req)
618 {
619 struct hci_dev *hdev = req->hdev;
620 struct hci_cp_write_def_link_policy cp;
621 u16 link_policy = 0;
622
623 if (lmp_rswitch_capable(hdev))
624 link_policy |= HCI_LP_RSWITCH;
625 if (lmp_hold_capable(hdev))
626 link_policy |= HCI_LP_HOLD;
627 if (lmp_sniff_capable(hdev))
628 link_policy |= HCI_LP_SNIFF;
629 if (lmp_park_capable(hdev))
630 link_policy |= HCI_LP_PARK;
631
632 cp.policy = cpu_to_le16(link_policy);
633 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
634 }
635
636 static void hci_set_le_support(struct hci_request *req)
637 {
638 struct hci_dev *hdev = req->hdev;
639 struct hci_cp_write_le_host_supported cp;
640
641 /* LE-only devices do not support explicit enablement */
642 if (!lmp_bredr_capable(hdev))
643 return;
644
645 memset(&cp, 0, sizeof(cp));
646
647 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
648 cp.le = 0x01;
649 cp.simul = 0x00;
650 }
651
652 if (cp.le != lmp_host_le_capable(hdev))
653 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
654 &cp);
655 }
656
657 static void hci_set_event_mask_page_2(struct hci_request *req)
658 {
659 struct hci_dev *hdev = req->hdev;
660 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
661
662 /* If Connectionless Slave Broadcast master role is supported
663 * enable all necessary events for it.
664 */
665 if (lmp_csb_master_capable(hdev)) {
666 events[1] |= 0x40; /* Triggered Clock Capture */
667 events[1] |= 0x80; /* Synchronization Train Complete */
668 events[2] |= 0x10; /* Slave Page Response Timeout */
669 events[2] |= 0x20; /* CSB Channel Map Change */
670 }
671
672 /* If Connectionless Slave Broadcast slave role is supported
673 * enable all necessary events for it.
674 */
675 if (lmp_csb_slave_capable(hdev)) {
676 events[2] |= 0x01; /* Synchronization Train Received */
677 events[2] |= 0x02; /* CSB Receive */
678 events[2] |= 0x04; /* CSB Timeout */
679 events[2] |= 0x08; /* Truncated Page Complete */
680 }
681
682 /* Enable Authenticated Payload Timeout Expired event if supported */
683 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING)
684 events[2] |= 0x80;
685
686 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events);
687 }
688
689 static void hci_init3_req(struct hci_request *req, unsigned long opt)
690 {
691 struct hci_dev *hdev = req->hdev;
692 u8 p;
693
694 hci_setup_event_mask(req);
695
696 if (hdev->commands[6] & 0x20 &&
697 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
698 struct hci_cp_read_stored_link_key cp;
699
700 bacpy(&cp.bdaddr, BDADDR_ANY);
701 cp.read_all = 0x01;
702 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
703 }
704
705 if (hdev->commands[5] & 0x10)
706 hci_setup_link_policy(req);
707
708 if (hdev->commands[8] & 0x01)
709 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
710
711 /* Some older Broadcom based Bluetooth 1.2 controllers do not
712 * support the Read Page Scan Type command. Check support for
713 * this command in the bit mask of supported commands.
714 */
715 if (hdev->commands[13] & 0x01)
716 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
717
718 if (lmp_le_capable(hdev)) {
719 u8 events[8];
720
721 memset(events, 0, sizeof(events));
722 events[0] = 0x0f;
723
724 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
725 events[0] |= 0x10; /* LE Long Term Key Request */
726
727 /* If controller supports the Connection Parameters Request
728 * Link Layer Procedure, enable the corresponding event.
729 */
730 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
731 events[0] |= 0x20; /* LE Remote Connection
732 * Parameter Request
733 */
734
735 /* If the controller supports the Data Length Extension
736 * feature, enable the corresponding event.
737 */
738 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
739 events[0] |= 0x40; /* LE Data Length Change */
740
741 /* If the controller supports Extended Scanner Filter
742 * Policies, enable the correspondig event.
743 */
744 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
745 events[1] |= 0x04; /* LE Direct Advertising
746 * Report
747 */
748
749 /* If the controller supports the LE Read Local P-256
750 * Public Key command, enable the corresponding event.
751 */
752 if (hdev->commands[34] & 0x02)
753 events[0] |= 0x80; /* LE Read Local P-256
754 * Public Key Complete
755 */
756
757 /* If the controller supports the LE Generate DHKey
758 * command, enable the corresponding event.
759 */
760 if (hdev->commands[34] & 0x04)
761 events[1] |= 0x01; /* LE Generate DHKey Complete */
762
763 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
764 events);
765
766 if (hdev->commands[25] & 0x40) {
767 /* Read LE Advertising Channel TX Power */
768 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
769 }
770
771 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
772 /* Read LE Maximum Data Length */
773 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
774
775 /* Read LE Suggested Default Data Length */
776 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
777 }
778
779 hci_set_le_support(req);
780 }
781
782 /* Read features beyond page 1 if available */
783 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
784 struct hci_cp_read_local_ext_features cp;
785
786 cp.page = p;
787 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
788 sizeof(cp), &cp);
789 }
790 }
791
792 static void hci_init4_req(struct hci_request *req, unsigned long opt)
793 {
794 struct hci_dev *hdev = req->hdev;
795
796 /* Some Broadcom based Bluetooth controllers do not support the
797 * Delete Stored Link Key command. They are clearly indicating its
798 * absence in the bit mask of supported commands.
799 *
800 * Check the supported commands and only if the the command is marked
801 * as supported send it. If not supported assume that the controller
802 * does not have actual support for stored link keys which makes this
803 * command redundant anyway.
804 *
805 * Some controllers indicate that they support handling deleting
806 * stored link keys, but they don't. The quirk lets a driver
807 * just disable this command.
808 */
809 if (hdev->commands[6] & 0x80 &&
810 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
811 struct hci_cp_delete_stored_link_key cp;
812
813 bacpy(&cp.bdaddr, BDADDR_ANY);
814 cp.delete_all = 0x01;
815 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
816 sizeof(cp), &cp);
817 }
818
819 /* Set event mask page 2 if the HCI command for it is supported */
820 if (hdev->commands[22] & 0x04)
821 hci_set_event_mask_page_2(req);
822
823 /* Read local codec list if the HCI command is supported */
824 if (hdev->commands[29] & 0x20)
825 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
826
827 /* Get MWS transport configuration if the HCI command is supported */
828 if (hdev->commands[30] & 0x08)
829 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
830
831 /* Check for Synchronization Train support */
832 if (lmp_sync_train_capable(hdev))
833 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
834
835 /* Enable Secure Connections if supported and configured */
836 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
837 bredr_sc_enabled(hdev)) {
838 u8 support = 0x01;
839
840 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
841 sizeof(support), &support);
842 }
843 }
844
845 static int __hci_init(struct hci_dev *hdev)
846 {
847 int err;
848
849 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT);
850 if (err < 0)
851 return err;
852
853 /* The Device Under Test (DUT) mode is special and available for
854 * all controller types. So just create it early on.
855 */
856 if (hci_dev_test_flag(hdev, HCI_SETUP)) {
857 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
858 &dut_mode_fops);
859 }
860
861 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT);
862 if (err < 0)
863 return err;
864
865 /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode
866 * BR/EDR/LE type controllers. AMP controllers only need the
867 * first two stages of init.
868 */
869 if (hdev->dev_type != HCI_BREDR)
870 return 0;
871
872 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT);
873 if (err < 0)
874 return err;
875
876 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT);
877 if (err < 0)
878 return err;
879
880 /* This function is only called when the controller is actually in
881 * configured state. When the controller is marked as unconfigured,
882 * this initialization procedure is not run.
883 *
884 * It means that it is possible that a controller runs through its
885 * setup phase and then discovers missing settings. If that is the
886 * case, then this function will not be called. It then will only
887 * be called during the config phase.
888 *
889 * So only when in setup phase or config phase, create the debugfs
890 * entries and register the SMP channels.
891 */
892 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
893 !hci_dev_test_flag(hdev, HCI_CONFIG))
894 return 0;
895
896 hci_debugfs_create_common(hdev);
897
898 if (lmp_bredr_capable(hdev))
899 hci_debugfs_create_bredr(hdev);
900
901 if (lmp_le_capable(hdev))
902 hci_debugfs_create_le(hdev);
903
904 return 0;
905 }
906
907 static void hci_init0_req(struct hci_request *req, unsigned long opt)
908 {
909 struct hci_dev *hdev = req->hdev;
910
911 BT_DBG("%s %ld", hdev->name, opt);
912
913 /* Reset */
914 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
915 hci_reset_req(req, 0);
916
917 /* Read Local Version */
918 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
919
920 /* Read BD Address */
921 if (hdev->set_bdaddr)
922 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
923 }
924
925 static int __hci_unconf_init(struct hci_dev *hdev)
926 {
927 int err;
928
929 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
930 return 0;
931
932 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT);
933 if (err < 0)
934 return err;
935
936 return 0;
937 }
938
939 static void hci_scan_req(struct hci_request *req, unsigned long opt)
940 {
941 __u8 scan = opt;
942
943 BT_DBG("%s %x", req->hdev->name, scan);
944
945 /* Inquiry and Page scans */
946 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
947 }
948
949 static void hci_auth_req(struct hci_request *req, unsigned long opt)
950 {
951 __u8 auth = opt;
952
953 BT_DBG("%s %x", req->hdev->name, auth);
954
955 /* Authentication */
956 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
957 }
958
959 static void hci_encrypt_req(struct hci_request *req, unsigned long opt)
960 {
961 __u8 encrypt = opt;
962
963 BT_DBG("%s %x", req->hdev->name, encrypt);
964
965 /* Encryption */
966 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
967 }
968
969 static void hci_linkpol_req(struct hci_request *req, unsigned long opt)
970 {
971 __le16 policy = cpu_to_le16(opt);
972
973 BT_DBG("%s %x", req->hdev->name, policy);
974
975 /* Default link policy */
976 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
977 }
978
979 /* Get HCI device by index.
980 * Device is held on return. */
981 struct hci_dev *hci_dev_get(int index)
982 {
983 struct hci_dev *hdev = NULL, *d;
984
985 BT_DBG("%d", index);
986
987 if (index < 0)
988 return NULL;
989
990 read_lock(&hci_dev_list_lock);
991 list_for_each_entry(d, &hci_dev_list, list) {
992 if (d->id == index) {
993 hdev = hci_dev_hold(d);
994 break;
995 }
996 }
997 read_unlock(&hci_dev_list_lock);
998 return hdev;
999 }
1000
1001 /* ---- Inquiry support ---- */
1002
1003 bool hci_discovery_active(struct hci_dev *hdev)
1004 {
1005 struct discovery_state *discov = &hdev->discovery;
1006
1007 switch (discov->state) {
1008 case DISCOVERY_FINDING:
1009 case DISCOVERY_RESOLVING:
1010 return true;
1011
1012 default:
1013 return false;
1014 }
1015 }
1016
1017 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1018 {
1019 int old_state = hdev->discovery.state;
1020
1021 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1022
1023 if (old_state == state)
1024 return;
1025
1026 hdev->discovery.state = state;
1027
1028 switch (state) {
1029 case DISCOVERY_STOPPED:
1030 hci_update_background_scan(hdev);
1031
1032 if (old_state != DISCOVERY_STARTING)
1033 mgmt_discovering(hdev, 0);
1034 break;
1035 case DISCOVERY_STARTING:
1036 break;
1037 case DISCOVERY_FINDING:
1038 mgmt_discovering(hdev, 1);
1039 break;
1040 case DISCOVERY_RESOLVING:
1041 break;
1042 case DISCOVERY_STOPPING:
1043 break;
1044 }
1045 }
1046
1047 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1048 {
1049 struct discovery_state *cache = &hdev->discovery;
1050 struct inquiry_entry *p, *n;
1051
1052 list_for_each_entry_safe(p, n, &cache->all, all) {
1053 list_del(&p->all);
1054 kfree(p);
1055 }
1056
1057 INIT_LIST_HEAD(&cache->unknown);
1058 INIT_LIST_HEAD(&cache->resolve);
1059 }
1060
1061 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1062 bdaddr_t *bdaddr)
1063 {
1064 struct discovery_state *cache = &hdev->discovery;
1065 struct inquiry_entry *e;
1066
1067 BT_DBG("cache %p, %pMR", cache, bdaddr);
1068
1069 list_for_each_entry(e, &cache->all, all) {
1070 if (!bacmp(&e->data.bdaddr, bdaddr))
1071 return e;
1072 }
1073
1074 return NULL;
1075 }
1076
1077 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1078 bdaddr_t *bdaddr)
1079 {
1080 struct discovery_state *cache = &hdev->discovery;
1081 struct inquiry_entry *e;
1082
1083 BT_DBG("cache %p, %pMR", cache, bdaddr);
1084
1085 list_for_each_entry(e, &cache->unknown, list) {
1086 if (!bacmp(&e->data.bdaddr, bdaddr))
1087 return e;
1088 }
1089
1090 return NULL;
1091 }
1092
1093 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1094 bdaddr_t *bdaddr,
1095 int state)
1096 {
1097 struct discovery_state *cache = &hdev->discovery;
1098 struct inquiry_entry *e;
1099
1100 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1101
1102 list_for_each_entry(e, &cache->resolve, list) {
1103 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1104 return e;
1105 if (!bacmp(&e->data.bdaddr, bdaddr))
1106 return e;
1107 }
1108
1109 return NULL;
1110 }
1111
1112 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1113 struct inquiry_entry *ie)
1114 {
1115 struct discovery_state *cache = &hdev->discovery;
1116 struct list_head *pos = &cache->resolve;
1117 struct inquiry_entry *p;
1118
1119 list_del(&ie->list);
1120
1121 list_for_each_entry(p, &cache->resolve, list) {
1122 if (p->name_state != NAME_PENDING &&
1123 abs(p->data.rssi) >= abs(ie->data.rssi))
1124 break;
1125 pos = &p->list;
1126 }
1127
1128 list_add(&ie->list, pos);
1129 }
1130
1131 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1132 bool name_known)
1133 {
1134 struct discovery_state *cache = &hdev->discovery;
1135 struct inquiry_entry *ie;
1136 u32 flags = 0;
1137
1138 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1139
1140 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1141
1142 if (!data->ssp_mode)
1143 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1144
1145 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1146 if (ie) {
1147 if (!ie->data.ssp_mode)
1148 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1149
1150 if (ie->name_state == NAME_NEEDED &&
1151 data->rssi != ie->data.rssi) {
1152 ie->data.rssi = data->rssi;
1153 hci_inquiry_cache_update_resolve(hdev, ie);
1154 }
1155
1156 goto update;
1157 }
1158
1159 /* Entry not in the cache. Add new one. */
1160 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1161 if (!ie) {
1162 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1163 goto done;
1164 }
1165
1166 list_add(&ie->all, &cache->all);
1167
1168 if (name_known) {
1169 ie->name_state = NAME_KNOWN;
1170 } else {
1171 ie->name_state = NAME_NOT_KNOWN;
1172 list_add(&ie->list, &cache->unknown);
1173 }
1174
1175 update:
1176 if (name_known && ie->name_state != NAME_KNOWN &&
1177 ie->name_state != NAME_PENDING) {
1178 ie->name_state = NAME_KNOWN;
1179 list_del(&ie->list);
1180 }
1181
1182 memcpy(&ie->data, data, sizeof(*data));
1183 ie->timestamp = jiffies;
1184 cache->timestamp = jiffies;
1185
1186 if (ie->name_state == NAME_NOT_KNOWN)
1187 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1188
1189 done:
1190 return flags;
1191 }
1192
1193 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1194 {
1195 struct discovery_state *cache = &hdev->discovery;
1196 struct inquiry_info *info = (struct inquiry_info *) buf;
1197 struct inquiry_entry *e;
1198 int copied = 0;
1199
1200 list_for_each_entry(e, &cache->all, all) {
1201 struct inquiry_data *data = &e->data;
1202
1203 if (copied >= num)
1204 break;
1205
1206 bacpy(&info->bdaddr, &data->bdaddr);
1207 info->pscan_rep_mode = data->pscan_rep_mode;
1208 info->pscan_period_mode = data->pscan_period_mode;
1209 info->pscan_mode = data->pscan_mode;
1210 memcpy(info->dev_class, data->dev_class, 3);
1211 info->clock_offset = data->clock_offset;
1212
1213 info++;
1214 copied++;
1215 }
1216
1217 BT_DBG("cache %p, copied %d", cache, copied);
1218 return copied;
1219 }
1220
1221 static void hci_inq_req(struct hci_request *req, unsigned long opt)
1222 {
1223 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1224 struct hci_dev *hdev = req->hdev;
1225 struct hci_cp_inquiry cp;
1226
1227 BT_DBG("%s", hdev->name);
1228
1229 if (test_bit(HCI_INQUIRY, &hdev->flags))
1230 return;
1231
1232 /* Start Inquiry */
1233 memcpy(&cp.lap, &ir->lap, 3);
1234 cp.length = ir->length;
1235 cp.num_rsp = ir->num_rsp;
1236 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1237 }
1238
1239 int hci_inquiry(void __user *arg)
1240 {
1241 __u8 __user *ptr = arg;
1242 struct hci_inquiry_req ir;
1243 struct hci_dev *hdev;
1244 int err = 0, do_inquiry = 0, max_rsp;
1245 long timeo;
1246 __u8 *buf;
1247
1248 if (copy_from_user(&ir, ptr, sizeof(ir)))
1249 return -EFAULT;
1250
1251 hdev = hci_dev_get(ir.dev_id);
1252 if (!hdev)
1253 return -ENODEV;
1254
1255 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1256 err = -EBUSY;
1257 goto done;
1258 }
1259
1260 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1261 err = -EOPNOTSUPP;
1262 goto done;
1263 }
1264
1265 if (hdev->dev_type != HCI_BREDR) {
1266 err = -EOPNOTSUPP;
1267 goto done;
1268 }
1269
1270 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1271 err = -EOPNOTSUPP;
1272 goto done;
1273 }
1274
1275 hci_dev_lock(hdev);
1276 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1277 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1278 hci_inquiry_cache_flush(hdev);
1279 do_inquiry = 1;
1280 }
1281 hci_dev_unlock(hdev);
1282
1283 timeo = ir.length * msecs_to_jiffies(2000);
1284
1285 if (do_inquiry) {
1286 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1287 timeo);
1288 if (err < 0)
1289 goto done;
1290
1291 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1292 * cleared). If it is interrupted by a signal, return -EINTR.
1293 */
1294 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1295 TASK_INTERRUPTIBLE))
1296 return -EINTR;
1297 }
1298
1299 /* for unlimited number of responses we will use buffer with
1300 * 255 entries
1301 */
1302 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1303
1304 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1305 * copy it to the user space.
1306 */
1307 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1308 if (!buf) {
1309 err = -ENOMEM;
1310 goto done;
1311 }
1312
1313 hci_dev_lock(hdev);
1314 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1315 hci_dev_unlock(hdev);
1316
1317 BT_DBG("num_rsp %d", ir.num_rsp);
1318
1319 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1320 ptr += sizeof(ir);
1321 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1322 ir.num_rsp))
1323 err = -EFAULT;
1324 } else
1325 err = -EFAULT;
1326
1327 kfree(buf);
1328
1329 done:
1330 hci_dev_put(hdev);
1331 return err;
1332 }
1333
1334 static int hci_dev_do_open(struct hci_dev *hdev)
1335 {
1336 int ret = 0;
1337
1338 BT_DBG("%s %p", hdev->name, hdev);
1339
1340 hci_req_lock(hdev);
1341
1342 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1343 ret = -ENODEV;
1344 goto done;
1345 }
1346
1347 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1348 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1349 /* Check for rfkill but allow the HCI setup stage to
1350 * proceed (which in itself doesn't cause any RF activity).
1351 */
1352 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1353 ret = -ERFKILL;
1354 goto done;
1355 }
1356
1357 /* Check for valid public address or a configured static
1358 * random adddress, but let the HCI setup proceed to
1359 * be able to determine if there is a public address
1360 * or not.
1361 *
1362 * In case of user channel usage, it is not important
1363 * if a public address or static random address is
1364 * available.
1365 *
1366 * This check is only valid for BR/EDR controllers
1367 * since AMP controllers do not have an address.
1368 */
1369 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1370 hdev->dev_type == HCI_BREDR &&
1371 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1372 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1373 ret = -EADDRNOTAVAIL;
1374 goto done;
1375 }
1376 }
1377
1378 if (test_bit(HCI_UP, &hdev->flags)) {
1379 ret = -EALREADY;
1380 goto done;
1381 }
1382
1383 if (hdev->open(hdev)) {
1384 ret = -EIO;
1385 goto done;
1386 }
1387
1388 set_bit(HCI_RUNNING, &hdev->flags);
1389 hci_notify(hdev, HCI_DEV_OPEN);
1390
1391 atomic_set(&hdev->cmd_cnt, 1);
1392 set_bit(HCI_INIT, &hdev->flags);
1393
1394 if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1395 if (hdev->setup)
1396 ret = hdev->setup(hdev);
1397
1398 /* The transport driver can set these quirks before
1399 * creating the HCI device or in its setup callback.
1400 *
1401 * In case any of them is set, the controller has to
1402 * start up as unconfigured.
1403 */
1404 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1405 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1406 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1407
1408 /* For an unconfigured controller it is required to
1409 * read at least the version information provided by
1410 * the Read Local Version Information command.
1411 *
1412 * If the set_bdaddr driver callback is provided, then
1413 * also the original Bluetooth public device address
1414 * will be read using the Read BD Address command.
1415 */
1416 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1417 ret = __hci_unconf_init(hdev);
1418 }
1419
1420 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1421 /* If public address change is configured, ensure that
1422 * the address gets programmed. If the driver does not
1423 * support changing the public address, fail the power
1424 * on procedure.
1425 */
1426 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1427 hdev->set_bdaddr)
1428 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1429 else
1430 ret = -EADDRNOTAVAIL;
1431 }
1432
1433 if (!ret) {
1434 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1435 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
1436 ret = __hci_init(hdev);
1437 }
1438
1439 clear_bit(HCI_INIT, &hdev->flags);
1440
1441 if (!ret) {
1442 hci_dev_hold(hdev);
1443 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1444 set_bit(HCI_UP, &hdev->flags);
1445 hci_notify(hdev, HCI_DEV_UP);
1446 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1447 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1448 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1449 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1450 hdev->dev_type == HCI_BREDR) {
1451 hci_dev_lock(hdev);
1452 mgmt_powered(hdev, 1);
1453 hci_dev_unlock(hdev);
1454 }
1455 } else {
1456 /* Init failed, cleanup */
1457 flush_work(&hdev->tx_work);
1458 flush_work(&hdev->cmd_work);
1459 flush_work(&hdev->rx_work);
1460
1461 skb_queue_purge(&hdev->cmd_q);
1462 skb_queue_purge(&hdev->rx_q);
1463
1464 if (hdev->flush)
1465 hdev->flush(hdev);
1466
1467 if (hdev->sent_cmd) {
1468 kfree_skb(hdev->sent_cmd);
1469 hdev->sent_cmd = NULL;
1470 }
1471
1472 clear_bit(HCI_RUNNING, &hdev->flags);
1473 hci_notify(hdev, HCI_DEV_CLOSE);
1474
1475 hdev->close(hdev);
1476 hdev->flags &= BIT(HCI_RAW);
1477 }
1478
1479 done:
1480 hci_req_unlock(hdev);
1481 return ret;
1482 }
1483
1484 /* ---- HCI ioctl helpers ---- */
1485
1486 int hci_dev_open(__u16 dev)
1487 {
1488 struct hci_dev *hdev;
1489 int err;
1490
1491 hdev = hci_dev_get(dev);
1492 if (!hdev)
1493 return -ENODEV;
1494
1495 /* Devices that are marked as unconfigured can only be powered
1496 * up as user channel. Trying to bring them up as normal devices
1497 * will result into a failure. Only user channel operation is
1498 * possible.
1499 *
1500 * When this function is called for a user channel, the flag
1501 * HCI_USER_CHANNEL will be set first before attempting to
1502 * open the device.
1503 */
1504 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1505 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1506 err = -EOPNOTSUPP;
1507 goto done;
1508 }
1509
1510 /* We need to ensure that no other power on/off work is pending
1511 * before proceeding to call hci_dev_do_open. This is
1512 * particularly important if the setup procedure has not yet
1513 * completed.
1514 */
1515 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1516 cancel_delayed_work(&hdev->power_off);
1517
1518 /* After this call it is guaranteed that the setup procedure
1519 * has finished. This means that error conditions like RFKILL
1520 * or no valid public or static random address apply.
1521 */
1522 flush_workqueue(hdev->req_workqueue);
1523
1524 /* For controllers not using the management interface and that
1525 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1526 * so that pairing works for them. Once the management interface
1527 * is in use this bit will be cleared again and userspace has
1528 * to explicitly enable it.
1529 */
1530 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1531 !hci_dev_test_flag(hdev, HCI_MGMT))
1532 hci_dev_set_flag(hdev, HCI_BONDABLE);
1533
1534 err = hci_dev_do_open(hdev);
1535
1536 done:
1537 hci_dev_put(hdev);
1538 return err;
1539 }
1540
1541 /* This function requires the caller holds hdev->lock */
1542 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1543 {
1544 struct hci_conn_params *p;
1545
1546 list_for_each_entry(p, &hdev->le_conn_params, list) {
1547 if (p->conn) {
1548 hci_conn_drop(p->conn);
1549 hci_conn_put(p->conn);
1550 p->conn = NULL;
1551 }
1552 list_del_init(&p->action);
1553 }
1554
1555 BT_DBG("All LE pending actions cleared");
1556 }
1557
1558 int hci_dev_do_close(struct hci_dev *hdev)
1559 {
1560 BT_DBG("%s %p", hdev->name, hdev);
1561
1562 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1563 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1564 test_bit(HCI_UP, &hdev->flags)) {
1565 /* Execute vendor specific shutdown routine */
1566 if (hdev->shutdown)
1567 hdev->shutdown(hdev);
1568 }
1569
1570 cancel_delayed_work(&hdev->power_off);
1571
1572 hci_req_cancel(hdev, ENODEV);
1573 hci_req_lock(hdev);
1574
1575 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1576 cancel_delayed_work_sync(&hdev->cmd_timer);
1577 hci_req_unlock(hdev);
1578 return 0;
1579 }
1580
1581 /* Flush RX and TX works */
1582 flush_work(&hdev->tx_work);
1583 flush_work(&hdev->rx_work);
1584
1585 if (hdev->discov_timeout > 0) {
1586 cancel_delayed_work(&hdev->discov_off);
1587 hdev->discov_timeout = 0;
1588 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1589 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1590 }
1591
1592 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1593 cancel_delayed_work(&hdev->service_cache);
1594
1595 cancel_delayed_work_sync(&hdev->le_scan_disable);
1596 cancel_delayed_work_sync(&hdev->le_scan_restart);
1597
1598 if (hci_dev_test_flag(hdev, HCI_MGMT))
1599 cancel_delayed_work_sync(&hdev->rpa_expired);
1600
1601 if (hdev->adv_instance_timeout) {
1602 cancel_delayed_work_sync(&hdev->adv_instance_expire);
1603 hdev->adv_instance_timeout = 0;
1604 }
1605
1606 /* Avoid potential lockdep warnings from the *_flush() calls by
1607 * ensuring the workqueue is empty up front.
1608 */
1609 drain_workqueue(hdev->workqueue);
1610
1611 hci_dev_lock(hdev);
1612
1613 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1614
1615 if (!hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
1616 if (hdev->dev_type == HCI_BREDR)
1617 mgmt_powered(hdev, 0);
1618 }
1619
1620 hci_inquiry_cache_flush(hdev);
1621 hci_pend_le_actions_clear(hdev);
1622 hci_conn_hash_flush(hdev);
1623 hci_dev_unlock(hdev);
1624
1625 smp_unregister(hdev);
1626
1627 hci_notify(hdev, HCI_DEV_DOWN);
1628
1629 if (hdev->flush)
1630 hdev->flush(hdev);
1631
1632 /* Reset device */
1633 skb_queue_purge(&hdev->cmd_q);
1634 atomic_set(&hdev->cmd_cnt, 1);
1635 if (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) &&
1636 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1637 test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
1638 set_bit(HCI_INIT, &hdev->flags);
1639 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT);
1640 clear_bit(HCI_INIT, &hdev->flags);
1641 }
1642
1643 /* flush cmd work */
1644 flush_work(&hdev->cmd_work);
1645
1646 /* Drop queues */
1647 skb_queue_purge(&hdev->rx_q);
1648 skb_queue_purge(&hdev->cmd_q);
1649 skb_queue_purge(&hdev->raw_q);
1650
1651 /* Drop last sent command */
1652 if (hdev->sent_cmd) {
1653 cancel_delayed_work_sync(&hdev->cmd_timer);
1654 kfree_skb(hdev->sent_cmd);
1655 hdev->sent_cmd = NULL;
1656 }
1657
1658 clear_bit(HCI_RUNNING, &hdev->flags);
1659 hci_notify(hdev, HCI_DEV_CLOSE);
1660
1661 /* After this point our queues are empty
1662 * and no tasks are scheduled. */
1663 hdev->close(hdev);
1664
1665 /* Clear flags */
1666 hdev->flags &= BIT(HCI_RAW);
1667 hci_dev_clear_volatile_flags(hdev);
1668
1669 /* Controller radio is available but is currently powered down */
1670 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1671
1672 memset(hdev->eir, 0, sizeof(hdev->eir));
1673 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1674 bacpy(&hdev->random_addr, BDADDR_ANY);
1675
1676 hci_req_unlock(hdev);
1677
1678 hci_dev_put(hdev);
1679 return 0;
1680 }
1681
1682 int hci_dev_close(__u16 dev)
1683 {
1684 struct hci_dev *hdev;
1685 int err;
1686
1687 hdev = hci_dev_get(dev);
1688 if (!hdev)
1689 return -ENODEV;
1690
1691 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1692 err = -EBUSY;
1693 goto done;
1694 }
1695
1696 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1697 cancel_delayed_work(&hdev->power_off);
1698
1699 err = hci_dev_do_close(hdev);
1700
1701 done:
1702 hci_dev_put(hdev);
1703 return err;
1704 }
1705
1706 static int hci_dev_do_reset(struct hci_dev *hdev)
1707 {
1708 int ret;
1709
1710 BT_DBG("%s %p", hdev->name, hdev);
1711
1712 hci_req_lock(hdev);
1713
1714 /* Drop queues */
1715 skb_queue_purge(&hdev->rx_q);
1716 skb_queue_purge(&hdev->cmd_q);
1717
1718 /* Avoid potential lockdep warnings from the *_flush() calls by
1719 * ensuring the workqueue is empty up front.
1720 */
1721 drain_workqueue(hdev->workqueue);
1722
1723 hci_dev_lock(hdev);
1724 hci_inquiry_cache_flush(hdev);
1725 hci_conn_hash_flush(hdev);
1726 hci_dev_unlock(hdev);
1727
1728 if (hdev->flush)
1729 hdev->flush(hdev);
1730
1731 atomic_set(&hdev->cmd_cnt, 1);
1732 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1733
1734 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT);
1735
1736 hci_req_unlock(hdev);
1737 return ret;
1738 }
1739
1740 int hci_dev_reset(__u16 dev)
1741 {
1742 struct hci_dev *hdev;
1743 int err;
1744
1745 hdev = hci_dev_get(dev);
1746 if (!hdev)
1747 return -ENODEV;
1748
1749 if (!test_bit(HCI_UP, &hdev->flags)) {
1750 err = -ENETDOWN;
1751 goto done;
1752 }
1753
1754 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1755 err = -EBUSY;
1756 goto done;
1757 }
1758
1759 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1760 err = -EOPNOTSUPP;
1761 goto done;
1762 }
1763
1764 err = hci_dev_do_reset(hdev);
1765
1766 done:
1767 hci_dev_put(hdev);
1768 return err;
1769 }
1770
1771 int hci_dev_reset_stat(__u16 dev)
1772 {
1773 struct hci_dev *hdev;
1774 int ret = 0;
1775
1776 hdev = hci_dev_get(dev);
1777 if (!hdev)
1778 return -ENODEV;
1779
1780 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1781 ret = -EBUSY;
1782 goto done;
1783 }
1784
1785 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1786 ret = -EOPNOTSUPP;
1787 goto done;
1788 }
1789
1790 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1791
1792 done:
1793 hci_dev_put(hdev);
1794 return ret;
1795 }
1796
1797 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1798 {
1799 bool conn_changed, discov_changed;
1800
1801 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1802
1803 if ((scan & SCAN_PAGE))
1804 conn_changed = !hci_dev_test_and_set_flag(hdev,
1805 HCI_CONNECTABLE);
1806 else
1807 conn_changed = hci_dev_test_and_clear_flag(hdev,
1808 HCI_CONNECTABLE);
1809
1810 if ((scan & SCAN_INQUIRY)) {
1811 discov_changed = !hci_dev_test_and_set_flag(hdev,
1812 HCI_DISCOVERABLE);
1813 } else {
1814 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1815 discov_changed = hci_dev_test_and_clear_flag(hdev,
1816 HCI_DISCOVERABLE);
1817 }
1818
1819 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1820 return;
1821
1822 if (conn_changed || discov_changed) {
1823 /* In case this was disabled through mgmt */
1824 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1825
1826 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1827 mgmt_update_adv_data(hdev);
1828
1829 mgmt_new_settings(hdev);
1830 }
1831 }
1832
1833 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1834 {
1835 struct hci_dev *hdev;
1836 struct hci_dev_req dr;
1837 int err = 0;
1838
1839 if (copy_from_user(&dr, arg, sizeof(dr)))
1840 return -EFAULT;
1841
1842 hdev = hci_dev_get(dr.dev_id);
1843 if (!hdev)
1844 return -ENODEV;
1845
1846 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1847 err = -EBUSY;
1848 goto done;
1849 }
1850
1851 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1852 err = -EOPNOTSUPP;
1853 goto done;
1854 }
1855
1856 if (hdev->dev_type != HCI_BREDR) {
1857 err = -EOPNOTSUPP;
1858 goto done;
1859 }
1860
1861 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1862 err = -EOPNOTSUPP;
1863 goto done;
1864 }
1865
1866 switch (cmd) {
1867 case HCISETAUTH:
1868 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1869 HCI_INIT_TIMEOUT);
1870 break;
1871
1872 case HCISETENCRYPT:
1873 if (!lmp_encrypt_capable(hdev)) {
1874 err = -EOPNOTSUPP;
1875 break;
1876 }
1877
1878 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1879 /* Auth must be enabled first */
1880 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1881 HCI_INIT_TIMEOUT);
1882 if (err)
1883 break;
1884 }
1885
1886 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1887 HCI_INIT_TIMEOUT);
1888 break;
1889
1890 case HCISETSCAN:
1891 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1892 HCI_INIT_TIMEOUT);
1893
1894 /* Ensure that the connectable and discoverable states
1895 * get correctly modified as this was a non-mgmt change.
1896 */
1897 if (!err)
1898 hci_update_scan_state(hdev, dr.dev_opt);
1899 break;
1900
1901 case HCISETLINKPOL:
1902 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1903 HCI_INIT_TIMEOUT);
1904 break;
1905
1906 case HCISETLINKMODE:
1907 hdev->link_mode = ((__u16) dr.dev_opt) &
1908 (HCI_LM_MASTER | HCI_LM_ACCEPT);
1909 break;
1910
1911 case HCISETPTYPE:
1912 hdev->pkt_type = (__u16) dr.dev_opt;
1913 break;
1914
1915 case HCISETACLMTU:
1916 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
1917 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1918 break;
1919
1920 case HCISETSCOMTU:
1921 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
1922 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1923 break;
1924
1925 default:
1926 err = -EINVAL;
1927 break;
1928 }
1929
1930 done:
1931 hci_dev_put(hdev);
1932 return err;
1933 }
1934
1935 int hci_get_dev_list(void __user *arg)
1936 {
1937 struct hci_dev *hdev;
1938 struct hci_dev_list_req *dl;
1939 struct hci_dev_req *dr;
1940 int n = 0, size, err;
1941 __u16 dev_num;
1942
1943 if (get_user(dev_num, (__u16 __user *) arg))
1944 return -EFAULT;
1945
1946 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1947 return -EINVAL;
1948
1949 size = sizeof(*dl) + dev_num * sizeof(*dr);
1950
1951 dl = kzalloc(size, GFP_KERNEL);
1952 if (!dl)
1953 return -ENOMEM;
1954
1955 dr = dl->dev_req;
1956
1957 read_lock(&hci_dev_list_lock);
1958 list_for_each_entry(hdev, &hci_dev_list, list) {
1959 unsigned long flags = hdev->flags;
1960
1961 /* When the auto-off is configured it means the transport
1962 * is running, but in that case still indicate that the
1963 * device is actually down.
1964 */
1965 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1966 flags &= ~BIT(HCI_UP);
1967
1968 (dr + n)->dev_id = hdev->id;
1969 (dr + n)->dev_opt = flags;
1970
1971 if (++n >= dev_num)
1972 break;
1973 }
1974 read_unlock(&hci_dev_list_lock);
1975
1976 dl->dev_num = n;
1977 size = sizeof(*dl) + n * sizeof(*dr);
1978
1979 err = copy_to_user(arg, dl, size);
1980 kfree(dl);
1981
1982 return err ? -EFAULT : 0;
1983 }
1984
1985 int hci_get_dev_info(void __user *arg)
1986 {
1987 struct hci_dev *hdev;
1988 struct hci_dev_info di;
1989 unsigned long flags;
1990 int err = 0;
1991
1992 if (copy_from_user(&di, arg, sizeof(di)))
1993 return -EFAULT;
1994
1995 hdev = hci_dev_get(di.dev_id);
1996 if (!hdev)
1997 return -ENODEV;
1998
1999 /* When the auto-off is configured it means the transport
2000 * is running, but in that case still indicate that the
2001 * device is actually down.
2002 */
2003 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2004 flags = hdev->flags & ~BIT(HCI_UP);
2005 else
2006 flags = hdev->flags;
2007
2008 strcpy(di.name, hdev->name);
2009 di.bdaddr = hdev->bdaddr;
2010 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2011 di.flags = flags;
2012 di.pkt_type = hdev->pkt_type;
2013 if (lmp_bredr_capable(hdev)) {
2014 di.acl_mtu = hdev->acl_mtu;
2015 di.acl_pkts = hdev->acl_pkts;
2016 di.sco_mtu = hdev->sco_mtu;
2017 di.sco_pkts = hdev->sco_pkts;
2018 } else {
2019 di.acl_mtu = hdev->le_mtu;
2020 di.acl_pkts = hdev->le_pkts;
2021 di.sco_mtu = 0;
2022 di.sco_pkts = 0;
2023 }
2024 di.link_policy = hdev->link_policy;
2025 di.link_mode = hdev->link_mode;
2026
2027 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2028 memcpy(&di.features, &hdev->features, sizeof(di.features));
2029
2030 if (copy_to_user(arg, &di, sizeof(di)))
2031 err = -EFAULT;
2032
2033 hci_dev_put(hdev);
2034
2035 return err;
2036 }
2037
2038 /* ---- Interface to HCI drivers ---- */
2039
2040 static int hci_rfkill_set_block(void *data, bool blocked)
2041 {
2042 struct hci_dev *hdev = data;
2043
2044 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2045
2046 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2047 return -EBUSY;
2048
2049 if (blocked) {
2050 hci_dev_set_flag(hdev, HCI_RFKILLED);
2051 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2052 !hci_dev_test_flag(hdev, HCI_CONFIG))
2053 hci_dev_do_close(hdev);
2054 } else {
2055 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2056 }
2057
2058 return 0;
2059 }
2060
2061 static const struct rfkill_ops hci_rfkill_ops = {
2062 .set_block = hci_rfkill_set_block,
2063 };
2064
2065 static void hci_power_on(struct work_struct *work)
2066 {
2067 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2068 int err;
2069
2070 BT_DBG("%s", hdev->name);
2071
2072 err = hci_dev_do_open(hdev);
2073 if (err < 0) {
2074 hci_dev_lock(hdev);
2075 mgmt_set_powered_failed(hdev, err);
2076 hci_dev_unlock(hdev);
2077 return;
2078 }
2079
2080 /* During the HCI setup phase, a few error conditions are
2081 * ignored and they need to be checked now. If they are still
2082 * valid, it is important to turn the device back off.
2083 */
2084 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2085 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2086 (hdev->dev_type == HCI_BREDR &&
2087 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2088 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2089 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2090 hci_dev_do_close(hdev);
2091 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2092 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2093 HCI_AUTO_OFF_TIMEOUT);
2094 }
2095
2096 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2097 /* For unconfigured devices, set the HCI_RAW flag
2098 * so that userspace can easily identify them.
2099 */
2100 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2101 set_bit(HCI_RAW, &hdev->flags);
2102
2103 /* For fully configured devices, this will send
2104 * the Index Added event. For unconfigured devices,
2105 * it will send Unconfigued Index Added event.
2106 *
2107 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2108 * and no event will be send.
2109 */
2110 mgmt_index_added(hdev);
2111 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2112 /* When the controller is now configured, then it
2113 * is important to clear the HCI_RAW flag.
2114 */
2115 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2116 clear_bit(HCI_RAW, &hdev->flags);
2117
2118 /* Powering on the controller with HCI_CONFIG set only
2119 * happens with the transition from unconfigured to
2120 * configured. This will send the Index Added event.
2121 */
2122 mgmt_index_added(hdev);
2123 }
2124 }
2125
2126 static void hci_power_off(struct work_struct *work)
2127 {
2128 struct hci_dev *hdev = container_of(work, struct hci_dev,
2129 power_off.work);
2130
2131 BT_DBG("%s", hdev->name);
2132
2133 hci_dev_do_close(hdev);
2134 }
2135
2136 static void hci_error_reset(struct work_struct *work)
2137 {
2138 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2139
2140 BT_DBG("%s", hdev->name);
2141
2142 if (hdev->hw_error)
2143 hdev->hw_error(hdev, hdev->hw_error_code);
2144 else
2145 BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2146 hdev->hw_error_code);
2147
2148 if (hci_dev_do_close(hdev))
2149 return;
2150
2151 hci_dev_do_open(hdev);
2152 }
2153
2154 static void hci_discov_off(struct work_struct *work)
2155 {
2156 struct hci_dev *hdev;
2157
2158 hdev = container_of(work, struct hci_dev, discov_off.work);
2159
2160 BT_DBG("%s", hdev->name);
2161
2162 mgmt_discoverable_timeout(hdev);
2163 }
2164
2165 static void hci_adv_timeout_expire(struct work_struct *work)
2166 {
2167 struct hci_dev *hdev;
2168
2169 hdev = container_of(work, struct hci_dev, adv_instance_expire.work);
2170
2171 BT_DBG("%s", hdev->name);
2172
2173 mgmt_adv_timeout_expired(hdev);
2174 }
2175
2176 void hci_uuids_clear(struct hci_dev *hdev)
2177 {
2178 struct bt_uuid *uuid, *tmp;
2179
2180 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2181 list_del(&uuid->list);
2182 kfree(uuid);
2183 }
2184 }
2185
2186 void hci_link_keys_clear(struct hci_dev *hdev)
2187 {
2188 struct link_key *key;
2189
2190 list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2191 list_del_rcu(&key->list);
2192 kfree_rcu(key, rcu);
2193 }
2194 }
2195
2196 void hci_smp_ltks_clear(struct hci_dev *hdev)
2197 {
2198 struct smp_ltk *k;
2199
2200 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2201 list_del_rcu(&k->list);
2202 kfree_rcu(k, rcu);
2203 }
2204 }
2205
2206 void hci_smp_irks_clear(struct hci_dev *hdev)
2207 {
2208 struct smp_irk *k;
2209
2210 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2211 list_del_rcu(&k->list);
2212 kfree_rcu(k, rcu);
2213 }
2214 }
2215
2216 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2217 {
2218 struct link_key *k;
2219
2220 rcu_read_lock();
2221 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2222 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2223 rcu_read_unlock();
2224 return k;
2225 }
2226 }
2227 rcu_read_unlock();
2228
2229 return NULL;
2230 }
2231
2232 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2233 u8 key_type, u8 old_key_type)
2234 {
2235 /* Legacy key */
2236 if (key_type < 0x03)
2237 return true;
2238
2239 /* Debug keys are insecure so don't store them persistently */
2240 if (key_type == HCI_LK_DEBUG_COMBINATION)
2241 return false;
2242
2243 /* Changed combination key and there's no previous one */
2244 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2245 return false;
2246
2247 /* Security mode 3 case */
2248 if (!conn)
2249 return true;
2250
2251 /* BR/EDR key derived using SC from an LE link */
2252 if (conn->type == LE_LINK)
2253 return true;
2254
2255 /* Neither local nor remote side had no-bonding as requirement */
2256 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2257 return true;
2258
2259 /* Local side had dedicated bonding as requirement */
2260 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2261 return true;
2262
2263 /* Remote side had dedicated bonding as requirement */
2264 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2265 return true;
2266
2267 /* If none of the above criteria match, then don't store the key
2268 * persistently */
2269 return false;
2270 }
2271
2272 static u8 ltk_role(u8 type)
2273 {
2274 if (type == SMP_LTK)
2275 return HCI_ROLE_MASTER;
2276
2277 return HCI_ROLE_SLAVE;
2278 }
2279
2280 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2281 u8 addr_type, u8 role)
2282 {
2283 struct smp_ltk *k;
2284
2285 rcu_read_lock();
2286 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2287 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2288 continue;
2289
2290 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2291 rcu_read_unlock();
2292 return k;
2293 }
2294 }
2295 rcu_read_unlock();
2296
2297 return NULL;
2298 }
2299
2300 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2301 {
2302 struct smp_irk *irk;
2303
2304 rcu_read_lock();
2305 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2306 if (!bacmp(&irk->rpa, rpa)) {
2307 rcu_read_unlock();
2308 return irk;
2309 }
2310 }
2311
2312 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2313 if (smp_irk_matches(hdev, irk->val, rpa)) {
2314 bacpy(&irk->rpa, rpa);
2315 rcu_read_unlock();
2316 return irk;
2317 }
2318 }
2319 rcu_read_unlock();
2320
2321 return NULL;
2322 }
2323
2324 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2325 u8 addr_type)
2326 {
2327 struct smp_irk *irk;
2328
2329 /* Identity Address must be public or static random */
2330 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2331 return NULL;
2332
2333 rcu_read_lock();
2334 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2335 if (addr_type == irk->addr_type &&
2336 bacmp(bdaddr, &irk->bdaddr) == 0) {
2337 rcu_read_unlock();
2338 return irk;
2339 }
2340 }
2341 rcu_read_unlock();
2342
2343 return NULL;
2344 }
2345
2346 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2347 bdaddr_t *bdaddr, u8 *val, u8 type,
2348 u8 pin_len, bool *persistent)
2349 {
2350 struct link_key *key, *old_key;
2351 u8 old_key_type;
2352
2353 old_key = hci_find_link_key(hdev, bdaddr);
2354 if (old_key) {
2355 old_key_type = old_key->type;
2356 key = old_key;
2357 } else {
2358 old_key_type = conn ? conn->key_type : 0xff;
2359 key = kzalloc(sizeof(*key), GFP_KERNEL);
2360 if (!key)
2361 return NULL;
2362 list_add_rcu(&key->list, &hdev->link_keys);
2363 }
2364
2365 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2366
2367 /* Some buggy controller combinations generate a changed
2368 * combination key for legacy pairing even when there's no
2369 * previous key */
2370 if (type == HCI_LK_CHANGED_COMBINATION &&
2371 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2372 type = HCI_LK_COMBINATION;
2373 if (conn)
2374 conn->key_type = type;
2375 }
2376
2377 bacpy(&key->bdaddr, bdaddr);
2378 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2379 key->pin_len = pin_len;
2380
2381 if (type == HCI_LK_CHANGED_COMBINATION)
2382 key->type = old_key_type;
2383 else
2384 key->type = type;
2385
2386 if (persistent)
2387 *persistent = hci_persistent_key(hdev, conn, type,
2388 old_key_type);
2389
2390 return key;
2391 }
2392
2393 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2394 u8 addr_type, u8 type, u8 authenticated,
2395 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2396 {
2397 struct smp_ltk *key, *old_key;
2398 u8 role = ltk_role(type);
2399
2400 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2401 if (old_key)
2402 key = old_key;
2403 else {
2404 key = kzalloc(sizeof(*key), GFP_KERNEL);
2405 if (!key)
2406 return NULL;
2407 list_add_rcu(&key->list, &hdev->long_term_keys);
2408 }
2409
2410 bacpy(&key->bdaddr, bdaddr);
2411 key->bdaddr_type = addr_type;
2412 memcpy(key->val, tk, sizeof(key->val));
2413 key->authenticated = authenticated;
2414 key->ediv = ediv;
2415 key->rand = rand;
2416 key->enc_size = enc_size;
2417 key->type = type;
2418
2419 return key;
2420 }
2421
2422 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2423 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2424 {
2425 struct smp_irk *irk;
2426
2427 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2428 if (!irk) {
2429 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2430 if (!irk)
2431 return NULL;
2432
2433 bacpy(&irk->bdaddr, bdaddr);
2434 irk->addr_type = addr_type;
2435
2436 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2437 }
2438
2439 memcpy(irk->val, val, 16);
2440 bacpy(&irk->rpa, rpa);
2441
2442 return irk;
2443 }
2444
2445 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2446 {
2447 struct link_key *key;
2448
2449 key = hci_find_link_key(hdev, bdaddr);
2450 if (!key)
2451 return -ENOENT;
2452
2453 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2454
2455 list_del_rcu(&key->list);
2456 kfree_rcu(key, rcu);
2457
2458 return 0;
2459 }
2460
2461 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2462 {
2463 struct smp_ltk *k;
2464 int removed = 0;
2465
2466 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2467 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2468 continue;
2469
2470 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2471
2472 list_del_rcu(&k->list);
2473 kfree_rcu(k, rcu);
2474 removed++;
2475 }
2476
2477 return removed ? 0 : -ENOENT;
2478 }
2479
2480 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2481 {
2482 struct smp_irk *k;
2483
2484 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2485 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2486 continue;
2487
2488 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2489
2490 list_del_rcu(&k->list);
2491 kfree_rcu(k, rcu);
2492 }
2493 }
2494
2495 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2496 {
2497 struct smp_ltk *k;
2498 struct smp_irk *irk;
2499 u8 addr_type;
2500
2501 if (type == BDADDR_BREDR) {
2502 if (hci_find_link_key(hdev, bdaddr))
2503 return true;
2504 return false;
2505 }
2506
2507 /* Convert to HCI addr type which struct smp_ltk uses */
2508 if (type == BDADDR_LE_PUBLIC)
2509 addr_type = ADDR_LE_DEV_PUBLIC;
2510 else
2511 addr_type = ADDR_LE_DEV_RANDOM;
2512
2513 irk = hci_get_irk(hdev, bdaddr, addr_type);
2514 if (irk) {
2515 bdaddr = &irk->bdaddr;
2516 addr_type = irk->addr_type;
2517 }
2518
2519 rcu_read_lock();
2520 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2521 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2522 rcu_read_unlock();
2523 return true;
2524 }
2525 }
2526 rcu_read_unlock();
2527
2528 return false;
2529 }
2530
2531 /* HCI command timer function */
2532 static void hci_cmd_timeout(struct work_struct *work)
2533 {
2534 struct hci_dev *hdev = container_of(work, struct hci_dev,
2535 cmd_timer.work);
2536
2537 if (hdev->sent_cmd) {
2538 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2539 u16 opcode = __le16_to_cpu(sent->opcode);
2540
2541 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2542 } else {
2543 BT_ERR("%s command tx timeout", hdev->name);
2544 }
2545
2546 atomic_set(&hdev->cmd_cnt, 1);
2547 queue_work(hdev->workqueue, &hdev->cmd_work);
2548 }
2549
2550 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2551 bdaddr_t *bdaddr, u8 bdaddr_type)
2552 {
2553 struct oob_data *data;
2554
2555 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2556 if (bacmp(bdaddr, &data->bdaddr) != 0)
2557 continue;
2558 if (data->bdaddr_type != bdaddr_type)
2559 continue;
2560 return data;
2561 }
2562
2563 return NULL;
2564 }
2565
2566 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2567 u8 bdaddr_type)
2568 {
2569 struct oob_data *data;
2570
2571 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2572 if (!data)
2573 return -ENOENT;
2574
2575 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2576
2577 list_del(&data->list);
2578 kfree(data);
2579
2580 return 0;
2581 }
2582
2583 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2584 {
2585 struct oob_data *data, *n;
2586
2587 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2588 list_del(&data->list);
2589 kfree(data);
2590 }
2591 }
2592
2593 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2594 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2595 u8 *hash256, u8 *rand256)
2596 {
2597 struct oob_data *data;
2598
2599 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2600 if (!data) {
2601 data = kmalloc(sizeof(*data), GFP_KERNEL);
2602 if (!data)
2603 return -ENOMEM;
2604
2605 bacpy(&data->bdaddr, bdaddr);
2606 data->bdaddr_type = bdaddr_type;
2607 list_add(&data->list, &hdev->remote_oob_data);
2608 }
2609
2610 if (hash192 && rand192) {
2611 memcpy(data->hash192, hash192, sizeof(data->hash192));
2612 memcpy(data->rand192, rand192, sizeof(data->rand192));
2613 if (hash256 && rand256)
2614 data->present = 0x03;
2615 } else {
2616 memset(data->hash192, 0, sizeof(data->hash192));
2617 memset(data->rand192, 0, sizeof(data->rand192));
2618 if (hash256 && rand256)
2619 data->present = 0x02;
2620 else
2621 data->present = 0x00;
2622 }
2623
2624 if (hash256 && rand256) {
2625 memcpy(data->hash256, hash256, sizeof(data->hash256));
2626 memcpy(data->rand256, rand256, sizeof(data->rand256));
2627 } else {
2628 memset(data->hash256, 0, sizeof(data->hash256));
2629 memset(data->rand256, 0, sizeof(data->rand256));
2630 if (hash192 && rand192)
2631 data->present = 0x01;
2632 }
2633
2634 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2635
2636 return 0;
2637 }
2638
2639 /* This function requires the caller holds hdev->lock */
2640 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2641 {
2642 struct adv_info *adv_instance;
2643
2644 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2645 if (adv_instance->instance == instance)
2646 return adv_instance;
2647 }
2648
2649 return NULL;
2650 }
2651
2652 /* This function requires the caller holds hdev->lock */
2653 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) {
2654 struct adv_info *cur_instance;
2655
2656 cur_instance = hci_find_adv_instance(hdev, instance);
2657 if (!cur_instance)
2658 return NULL;
2659
2660 if (cur_instance == list_last_entry(&hdev->adv_instances,
2661 struct adv_info, list))
2662 return list_first_entry(&hdev->adv_instances,
2663 struct adv_info, list);
2664 else
2665 return list_next_entry(cur_instance, list);
2666 }
2667
2668 /* This function requires the caller holds hdev->lock */
2669 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2670 {
2671 struct adv_info *adv_instance;
2672
2673 adv_instance = hci_find_adv_instance(hdev, instance);
2674 if (!adv_instance)
2675 return -ENOENT;
2676
2677 BT_DBG("%s removing %dMR", hdev->name, instance);
2678
2679 if (hdev->cur_adv_instance == instance && hdev->adv_instance_timeout) {
2680 cancel_delayed_work(&hdev->adv_instance_expire);
2681 hdev->adv_instance_timeout = 0;
2682 }
2683
2684 list_del(&adv_instance->list);
2685 kfree(adv_instance);
2686
2687 hdev->adv_instance_cnt--;
2688
2689 return 0;
2690 }
2691
2692 /* This function requires the caller holds hdev->lock */
2693 void hci_adv_instances_clear(struct hci_dev *hdev)
2694 {
2695 struct adv_info *adv_instance, *n;
2696
2697 if (hdev->adv_instance_timeout) {
2698 cancel_delayed_work(&hdev->adv_instance_expire);
2699 hdev->adv_instance_timeout = 0;
2700 }
2701
2702 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2703 list_del(&adv_instance->list);
2704 kfree(adv_instance);
2705 }
2706
2707 hdev->adv_instance_cnt = 0;
2708 }
2709
2710 /* This function requires the caller holds hdev->lock */
2711 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2712 u16 adv_data_len, u8 *adv_data,
2713 u16 scan_rsp_len, u8 *scan_rsp_data,
2714 u16 timeout, u16 duration)
2715 {
2716 struct adv_info *adv_instance;
2717
2718 adv_instance = hci_find_adv_instance(hdev, instance);
2719 if (adv_instance) {
2720 memset(adv_instance->adv_data, 0,
2721 sizeof(adv_instance->adv_data));
2722 memset(adv_instance->scan_rsp_data, 0,
2723 sizeof(adv_instance->scan_rsp_data));
2724 } else {
2725 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2726 instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2727 return -EOVERFLOW;
2728
2729 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2730 if (!adv_instance)
2731 return -ENOMEM;
2732
2733 adv_instance->pending = true;
2734 adv_instance->instance = instance;
2735 list_add(&adv_instance->list, &hdev->adv_instances);
2736 hdev->adv_instance_cnt++;
2737 }
2738
2739 adv_instance->flags = flags;
2740 adv_instance->adv_data_len = adv_data_len;
2741 adv_instance->scan_rsp_len = scan_rsp_len;
2742
2743 if (adv_data_len)
2744 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2745
2746 if (scan_rsp_len)
2747 memcpy(adv_instance->scan_rsp_data,
2748 scan_rsp_data, scan_rsp_len);
2749
2750 adv_instance->timeout = timeout;
2751 adv_instance->remaining_time = timeout;
2752
2753 if (duration == 0)
2754 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2755 else
2756 adv_instance->duration = duration;
2757
2758 BT_DBG("%s for %dMR", hdev->name, instance);
2759
2760 return 0;
2761 }
2762
2763 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2764 bdaddr_t *bdaddr, u8 type)
2765 {
2766 struct bdaddr_list *b;
2767
2768 list_for_each_entry(b, bdaddr_list, list) {
2769 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2770 return b;
2771 }
2772
2773 return NULL;
2774 }
2775
2776 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2777 {
2778 struct list_head *p, *n;
2779
2780 list_for_each_safe(p, n, bdaddr_list) {
2781 struct bdaddr_list *b = list_entry(p, struct bdaddr_list, list);
2782
2783 list_del(p);
2784 kfree(b);
2785 }
2786 }
2787
2788 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2789 {
2790 struct bdaddr_list *entry;
2791
2792 if (!bacmp(bdaddr, BDADDR_ANY))
2793 return -EBADF;
2794
2795 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2796 return -EEXIST;
2797
2798 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2799 if (!entry)
2800 return -ENOMEM;
2801
2802 bacpy(&entry->bdaddr, bdaddr);
2803 entry->bdaddr_type = type;
2804
2805 list_add(&entry->list, list);
2806
2807 return 0;
2808 }
2809
2810 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2811 {
2812 struct bdaddr_list *entry;
2813
2814 if (!bacmp(bdaddr, BDADDR_ANY)) {
2815 hci_bdaddr_list_clear(list);
2816 return 0;
2817 }
2818
2819 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2820 if (!entry)
2821 return -ENOENT;
2822
2823 list_del(&entry->list);
2824 kfree(entry);
2825
2826 return 0;
2827 }
2828
2829 /* This function requires the caller holds hdev->lock */
2830 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2831 bdaddr_t *addr, u8 addr_type)
2832 {
2833 struct hci_conn_params *params;
2834
2835 list_for_each_entry(params, &hdev->le_conn_params, list) {
2836 if (bacmp(&params->addr, addr) == 0 &&
2837 params->addr_type == addr_type) {
2838 return params;
2839 }
2840 }
2841
2842 return NULL;
2843 }
2844
2845 /* This function requires the caller holds hdev->lock */
2846 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2847 bdaddr_t *addr, u8 addr_type)
2848 {
2849 struct hci_conn_params *param;
2850
2851 list_for_each_entry(param, list, action) {
2852 if (bacmp(&param->addr, addr) == 0 &&
2853 param->addr_type == addr_type)
2854 return param;
2855 }
2856
2857 return NULL;
2858 }
2859
2860 /* This function requires the caller holds hdev->lock */
2861 struct hci_conn_params *hci_explicit_connect_lookup(struct hci_dev *hdev,
2862 bdaddr_t *addr,
2863 u8 addr_type)
2864 {
2865 struct hci_conn_params *param;
2866
2867 list_for_each_entry(param, &hdev->pend_le_conns, action) {
2868 if (bacmp(&param->addr, addr) == 0 &&
2869 param->addr_type == addr_type &&
2870 param->explicit_connect)
2871 return param;
2872 }
2873
2874 list_for_each_entry(param, &hdev->pend_le_reports, action) {
2875 if (bacmp(&param->addr, addr) == 0 &&
2876 param->addr_type == addr_type &&
2877 param->explicit_connect)
2878 return param;
2879 }
2880
2881 return NULL;
2882 }
2883
2884 /* This function requires the caller holds hdev->lock */
2885 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2886 bdaddr_t *addr, u8 addr_type)
2887 {
2888 struct hci_conn_params *params;
2889
2890 params = hci_conn_params_lookup(hdev, addr, addr_type);
2891 if (params)
2892 return params;
2893
2894 params = kzalloc(sizeof(*params), GFP_KERNEL);
2895 if (!params) {
2896 BT_ERR("Out of memory");
2897 return NULL;
2898 }
2899
2900 bacpy(&params->addr, addr);
2901 params->addr_type = addr_type;
2902
2903 list_add(&params->list, &hdev->le_conn_params);
2904 INIT_LIST_HEAD(&params->action);
2905
2906 params->conn_min_interval = hdev->le_conn_min_interval;
2907 params->conn_max_interval = hdev->le_conn_max_interval;
2908 params->conn_latency = hdev->le_conn_latency;
2909 params->supervision_timeout = hdev->le_supv_timeout;
2910 params->auto_connect = HCI_AUTO_CONN_DISABLED;
2911
2912 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2913
2914 return params;
2915 }
2916
2917 static void hci_conn_params_free(struct hci_conn_params *params)
2918 {
2919 if (params->conn) {
2920 hci_conn_drop(params->conn);
2921 hci_conn_put(params->conn);
2922 }
2923
2924 list_del(&params->action);
2925 list_del(&params->list);
2926 kfree(params);
2927 }
2928
2929 /* This function requires the caller holds hdev->lock */
2930 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2931 {
2932 struct hci_conn_params *params;
2933
2934 params = hci_conn_params_lookup(hdev, addr, addr_type);
2935 if (!params)
2936 return;
2937
2938 hci_conn_params_free(params);
2939
2940 hci_update_background_scan(hdev);
2941
2942 BT_DBG("addr %pMR (type %u)", addr, addr_type);
2943 }
2944
2945 /* This function requires the caller holds hdev->lock */
2946 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2947 {
2948 struct hci_conn_params *params, *tmp;
2949
2950 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2951 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2952 continue;
2953
2954 /* If trying to estabilish one time connection to disabled
2955 * device, leave the params, but mark them as just once.
2956 */
2957 if (params->explicit_connect) {
2958 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2959 continue;
2960 }
2961
2962 list_del(&params->list);
2963 kfree(params);
2964 }
2965
2966 BT_DBG("All LE disabled connection parameters were removed");
2967 }
2968
2969 /* This function requires the caller holds hdev->lock */
2970 void hci_conn_params_clear_all(struct hci_dev *hdev)
2971 {
2972 struct hci_conn_params *params, *tmp;
2973
2974 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2975 hci_conn_params_free(params);
2976
2977 hci_update_background_scan(hdev);
2978
2979 BT_DBG("All LE connection parameters were removed");
2980 }
2981
2982 static void inquiry_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2983 {
2984 if (status) {
2985 BT_ERR("Failed to start inquiry: status %d", status);
2986
2987 hci_dev_lock(hdev);
2988 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2989 hci_dev_unlock(hdev);
2990 return;
2991 }
2992 }
2993
2994 static void le_scan_disable_work_complete(struct hci_dev *hdev, u8 status,
2995 u16 opcode)
2996 {
2997 /* General inquiry access code (GIAC) */
2998 u8 lap[3] = { 0x33, 0x8b, 0x9e };
2999 struct hci_cp_inquiry cp;
3000 int err;
3001
3002 if (status) {
3003 BT_ERR("Failed to disable LE scanning: status %d", status);
3004 return;
3005 }
3006
3007 hdev->discovery.scan_start = 0;
3008
3009 switch (hdev->discovery.type) {
3010 case DISCOV_TYPE_LE:
3011 hci_dev_lock(hdev);
3012 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3013 hci_dev_unlock(hdev);
3014 break;
3015
3016 case DISCOV_TYPE_INTERLEAVED:
3017 hci_dev_lock(hdev);
3018
3019 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
3020 &hdev->quirks)) {
3021 /* If we were running LE only scan, change discovery
3022 * state. If we were running both LE and BR/EDR inquiry
3023 * simultaneously, and BR/EDR inquiry is already
3024 * finished, stop discovery, otherwise BR/EDR inquiry
3025 * will stop discovery when finished. If we will resolve
3026 * remote device name, do not change discovery state.
3027 */
3028 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
3029 hdev->discovery.state != DISCOVERY_RESOLVING)
3030 hci_discovery_set_state(hdev,
3031 DISCOVERY_STOPPED);
3032 } else {
3033 struct hci_request req;
3034
3035 hci_inquiry_cache_flush(hdev);
3036
3037 hci_req_init(&req, hdev);
3038
3039 memset(&cp, 0, sizeof(cp));
3040 memcpy(&cp.lap, lap, sizeof(cp.lap));
3041 cp.length = DISCOV_INTERLEAVED_INQUIRY_LEN;
3042 hci_req_add(&req, HCI_OP_INQUIRY, sizeof(cp), &cp);
3043
3044 err = hci_req_run(&req, inquiry_complete);
3045 if (err) {
3046 BT_ERR("Inquiry request failed: err %d", err);
3047 hci_discovery_set_state(hdev,
3048 DISCOVERY_STOPPED);
3049 }
3050 }
3051
3052 hci_dev_unlock(hdev);
3053 break;
3054 }
3055 }
3056
3057 static void le_scan_disable_work(struct work_struct *work)
3058 {
3059 struct hci_dev *hdev = container_of(work, struct hci_dev,
3060 le_scan_disable.work);
3061 struct hci_request req;
3062 int err;
3063
3064 BT_DBG("%s", hdev->name);
3065
3066 cancel_delayed_work_sync(&hdev->le_scan_restart);
3067
3068 hci_req_init(&req, hdev);
3069
3070 hci_req_add_le_scan_disable(&req);
3071
3072 err = hci_req_run(&req, le_scan_disable_work_complete);
3073 if (err)
3074 BT_ERR("Disable LE scanning request failed: err %d", err);
3075 }
3076
3077 static void le_scan_restart_work_complete(struct hci_dev *hdev, u8 status,
3078 u16 opcode)
3079 {
3080 unsigned long timeout, duration, scan_start, now;
3081
3082 BT_DBG("%s", hdev->name);
3083
3084 if (status) {
3085 BT_ERR("Failed to restart LE scan: status %d", status);
3086 return;
3087 }
3088
3089 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
3090 !hdev->discovery.scan_start)
3091 return;
3092
3093 /* When the scan was started, hdev->le_scan_disable has been queued
3094 * after duration from scan_start. During scan restart this job
3095 * has been canceled, and we need to queue it again after proper
3096 * timeout, to make sure that scan does not run indefinitely.
3097 */
3098 duration = hdev->discovery.scan_duration;
3099 scan_start = hdev->discovery.scan_start;
3100 now = jiffies;
3101 if (now - scan_start <= duration) {
3102 int elapsed;
3103
3104 if (now >= scan_start)
3105 elapsed = now - scan_start;
3106 else
3107 elapsed = ULONG_MAX - scan_start + now;
3108
3109 timeout = duration - elapsed;
3110 } else {
3111 timeout = 0;
3112 }
3113 queue_delayed_work(hdev->workqueue,
3114 &hdev->le_scan_disable, timeout);
3115 }
3116
3117 static void le_scan_restart_work(struct work_struct *work)
3118 {
3119 struct hci_dev *hdev = container_of(work, struct hci_dev,
3120 le_scan_restart.work);
3121 struct hci_request req;
3122 struct hci_cp_le_set_scan_enable cp;
3123 int err;
3124
3125 BT_DBG("%s", hdev->name);
3126
3127 /* If controller is not scanning we are done. */
3128 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
3129 return;
3130
3131 hci_req_init(&req, hdev);
3132
3133 hci_req_add_le_scan_disable(&req);
3134
3135 memset(&cp, 0, sizeof(cp));
3136 cp.enable = LE_SCAN_ENABLE;
3137 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
3138 hci_req_add(&req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
3139
3140 err = hci_req_run(&req, le_scan_restart_work_complete);
3141 if (err)
3142 BT_ERR("Restart LE scan request failed: err %d", err);
3143 }
3144
3145 /* Copy the Identity Address of the controller.
3146 *
3147 * If the controller has a public BD_ADDR, then by default use that one.
3148 * If this is a LE only controller without a public address, default to
3149 * the static random address.
3150 *
3151 * For debugging purposes it is possible to force controllers with a
3152 * public address to use the static random address instead.
3153 *
3154 * In case BR/EDR has been disabled on a dual-mode controller and
3155 * userspace has configured a static address, then that address
3156 * becomes the identity address instead of the public BR/EDR address.
3157 */
3158 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3159 u8 *bdaddr_type)
3160 {
3161 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3162 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3163 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3164 bacmp(&hdev->static_addr, BDADDR_ANY))) {
3165 bacpy(bdaddr, &hdev->static_addr);
3166 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3167 } else {
3168 bacpy(bdaddr, &hdev->bdaddr);
3169 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3170 }
3171 }
3172
3173 /* Alloc HCI device */
3174 struct hci_dev *hci_alloc_dev(void)
3175 {
3176 struct hci_dev *hdev;
3177
3178 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3179 if (!hdev)
3180 return NULL;
3181
3182 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3183 hdev->esco_type = (ESCO_HV1);
3184 hdev->link_mode = (HCI_LM_ACCEPT);
3185 hdev->num_iac = 0x01; /* One IAC support is mandatory */
3186 hdev->io_capability = 0x03; /* No Input No Output */
3187 hdev->manufacturer = 0xffff; /* Default to internal use */
3188 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3189 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3190 hdev->adv_instance_cnt = 0;
3191 hdev->cur_adv_instance = 0x00;
3192 hdev->adv_instance_timeout = 0;
3193
3194 hdev->sniff_max_interval = 800;
3195 hdev->sniff_min_interval = 80;
3196
3197 hdev->le_adv_channel_map = 0x07;
3198 hdev->le_adv_min_interval = 0x0800;
3199 hdev->le_adv_max_interval = 0x0800;
3200 hdev->le_scan_interval = 0x0060;
3201 hdev->le_scan_window = 0x0030;
3202 hdev->le_conn_min_interval = 0x0028;
3203 hdev->le_conn_max_interval = 0x0038;
3204 hdev->le_conn_latency = 0x0000;
3205 hdev->le_supv_timeout = 0x002a;
3206 hdev->le_def_tx_len = 0x001b;
3207 hdev->le_def_tx_time = 0x0148;
3208 hdev->le_max_tx_len = 0x001b;
3209 hdev->le_max_tx_time = 0x0148;
3210 hdev->le_max_rx_len = 0x001b;
3211 hdev->le_max_rx_time = 0x0148;
3212
3213 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3214 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3215 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3216 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3217
3218 mutex_init(&hdev->lock);
3219 mutex_init(&hdev->req_lock);
3220
3221 INIT_LIST_HEAD(&hdev->mgmt_pending);
3222 INIT_LIST_HEAD(&hdev->blacklist);
3223 INIT_LIST_HEAD(&hdev->whitelist);
3224 INIT_LIST_HEAD(&hdev->uuids);
3225 INIT_LIST_HEAD(&hdev->link_keys);
3226 INIT_LIST_HEAD(&hdev->long_term_keys);
3227 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3228 INIT_LIST_HEAD(&hdev->remote_oob_data);
3229 INIT_LIST_HEAD(&hdev->le_white_list);
3230 INIT_LIST_HEAD(&hdev->le_conn_params);
3231 INIT_LIST_HEAD(&hdev->pend_le_conns);
3232 INIT_LIST_HEAD(&hdev->pend_le_reports);
3233 INIT_LIST_HEAD(&hdev->conn_hash.list);
3234 INIT_LIST_HEAD(&hdev->adv_instances);
3235
3236 INIT_WORK(&hdev->rx_work, hci_rx_work);
3237 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3238 INIT_WORK(&hdev->tx_work, hci_tx_work);
3239 INIT_WORK(&hdev->power_on, hci_power_on);
3240 INIT_WORK(&hdev->error_reset, hci_error_reset);
3241
3242 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3243 INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off);
3244 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
3245 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
3246 INIT_DELAYED_WORK(&hdev->adv_instance_expire, hci_adv_timeout_expire);
3247
3248 skb_queue_head_init(&hdev->rx_q);
3249 skb_queue_head_init(&hdev->cmd_q);
3250 skb_queue_head_init(&hdev->raw_q);
3251
3252 init_waitqueue_head(&hdev->req_wait_q);
3253
3254 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3255
3256 hci_init_sysfs(hdev);
3257 discovery_init(hdev);
3258
3259 return hdev;
3260 }
3261 EXPORT_SYMBOL(hci_alloc_dev);
3262
3263 /* Free HCI device */
3264 void hci_free_dev(struct hci_dev *hdev)
3265 {
3266 /* will free via device release */
3267 put_device(&hdev->dev);
3268 }
3269 EXPORT_SYMBOL(hci_free_dev);
3270
3271 /* Register HCI device */
3272 int hci_register_dev(struct hci_dev *hdev)
3273 {
3274 int id, error;
3275
3276 if (!hdev->open || !hdev->close || !hdev->send)
3277 return -EINVAL;
3278
3279 /* Do not allow HCI_AMP devices to register at index 0,
3280 * so the index can be used as the AMP controller ID.
3281 */
3282 switch (hdev->dev_type) {
3283 case HCI_BREDR:
3284 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3285 break;
3286 case HCI_AMP:
3287 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3288 break;
3289 default:
3290 return -EINVAL;
3291 }
3292
3293 if (id < 0)
3294 return id;
3295
3296 sprintf(hdev->name, "hci%d", id);
3297 hdev->id = id;
3298
3299 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3300
3301 hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3302 WQ_MEM_RECLAIM, 1, hdev->name);
3303 if (!hdev->workqueue) {
3304 error = -ENOMEM;
3305 goto err;
3306 }
3307
3308 hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND |
3309 WQ_MEM_RECLAIM, 1, hdev->name);
3310 if (!hdev->req_workqueue) {
3311 destroy_workqueue(hdev->workqueue);
3312 error = -ENOMEM;
3313 goto err;
3314 }
3315
3316 if (!IS_ERR_OR_NULL(bt_debugfs))
3317 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3318
3319 dev_set_name(&hdev->dev, "%s", hdev->name);
3320
3321 error = device_add(&hdev->dev);
3322 if (error < 0)
3323 goto err_wqueue;
3324
3325 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3326 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3327 hdev);
3328 if (hdev->rfkill) {
3329 if (rfkill_register(hdev->rfkill) < 0) {
3330 rfkill_destroy(hdev->rfkill);
3331 hdev->rfkill = NULL;
3332 }
3333 }
3334
3335 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3336 hci_dev_set_flag(hdev, HCI_RFKILLED);
3337
3338 hci_dev_set_flag(hdev, HCI_SETUP);
3339 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3340
3341 if (hdev->dev_type == HCI_BREDR) {
3342 /* Assume BR/EDR support until proven otherwise (such as
3343 * through reading supported features during init.
3344 */
3345 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3346 }
3347
3348 write_lock(&hci_dev_list_lock);
3349 list_add(&hdev->list, &hci_dev_list);
3350 write_unlock(&hci_dev_list_lock);
3351
3352 /* Devices that are marked for raw-only usage are unconfigured
3353 * and should not be included in normal operation.
3354 */
3355 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3356 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3357
3358 hci_notify(hdev, HCI_DEV_REG);
3359 hci_dev_hold(hdev);
3360
3361 queue_work(hdev->req_workqueue, &hdev->power_on);
3362
3363 return id;
3364
3365 err_wqueue:
3366 destroy_workqueue(hdev->workqueue);
3367 destroy_workqueue(hdev->req_workqueue);
3368 err:
3369 ida_simple_remove(&hci_index_ida, hdev->id);
3370
3371 return error;
3372 }
3373 EXPORT_SYMBOL(hci_register_dev);
3374
3375 /* Unregister HCI device */
3376 void hci_unregister_dev(struct hci_dev *hdev)
3377 {
3378 int id;
3379
3380 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3381
3382 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3383
3384 id = hdev->id;
3385
3386 write_lock(&hci_dev_list_lock);
3387 list_del(&hdev->list);
3388 write_unlock(&hci_dev_list_lock);
3389
3390 hci_dev_do_close(hdev);
3391
3392 cancel_work_sync(&hdev->power_on);
3393
3394 if (!test_bit(HCI_INIT, &hdev->flags) &&
3395 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3396 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3397 hci_dev_lock(hdev);
3398 mgmt_index_removed(hdev);
3399 hci_dev_unlock(hdev);
3400 }
3401
3402 /* mgmt_index_removed should take care of emptying the
3403 * pending list */
3404 BUG_ON(!list_empty(&hdev->mgmt_pending));
3405
3406 hci_notify(hdev, HCI_DEV_UNREG);
3407
3408 if (hdev->rfkill) {
3409 rfkill_unregister(hdev->rfkill);
3410 rfkill_destroy(hdev->rfkill);
3411 }
3412
3413 device_del(&hdev->dev);
3414
3415 debugfs_remove_recursive(hdev->debugfs);
3416
3417 destroy_workqueue(hdev->workqueue);
3418 destroy_workqueue(hdev->req_workqueue);
3419
3420 hci_dev_lock(hdev);
3421 hci_bdaddr_list_clear(&hdev->blacklist);
3422 hci_bdaddr_list_clear(&hdev->whitelist);
3423 hci_uuids_clear(hdev);
3424 hci_link_keys_clear(hdev);
3425 hci_smp_ltks_clear(hdev);
3426 hci_smp_irks_clear(hdev);
3427 hci_remote_oob_data_clear(hdev);
3428 hci_adv_instances_clear(hdev);
3429 hci_bdaddr_list_clear(&hdev->le_white_list);
3430 hci_conn_params_clear_all(hdev);
3431 hci_discovery_filter_clear(hdev);
3432 hci_dev_unlock(hdev);
3433
3434 hci_dev_put(hdev);
3435
3436 ida_simple_remove(&hci_index_ida, id);
3437 }
3438 EXPORT_SYMBOL(hci_unregister_dev);
3439
3440 /* Suspend HCI device */
3441 int hci_suspend_dev(struct hci_dev *hdev)
3442 {
3443 hci_notify(hdev, HCI_DEV_SUSPEND);
3444 return 0;
3445 }
3446 EXPORT_SYMBOL(hci_suspend_dev);
3447
3448 /* Resume HCI device */
3449 int hci_resume_dev(struct hci_dev *hdev)
3450 {
3451 hci_notify(hdev, HCI_DEV_RESUME);
3452 return 0;
3453 }
3454 EXPORT_SYMBOL(hci_resume_dev);
3455
3456 /* Reset HCI device */
3457 int hci_reset_dev(struct hci_dev *hdev)
3458 {
3459 const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3460 struct sk_buff *skb;
3461
3462 skb = bt_skb_alloc(3, GFP_ATOMIC);
3463 if (!skb)
3464 return -ENOMEM;
3465
3466 bt_cb(skb)->pkt_type = HCI_EVENT_PKT;
3467 memcpy(skb_put(skb, 3), hw_err, 3);
3468
3469 /* Send Hardware Error to upper stack */
3470 return hci_recv_frame(hdev, skb);
3471 }
3472 EXPORT_SYMBOL(hci_reset_dev);
3473
3474 /* Receive frame from HCI drivers */
3475 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3476 {
3477 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3478 && !test_bit(HCI_INIT, &hdev->flags))) {
3479 kfree_skb(skb);
3480 return -ENXIO;
3481 }
3482
3483 /* Incoming skb */
3484 bt_cb(skb)->incoming = 1;
3485
3486 /* Time stamp */
3487 __net_timestamp(skb);
3488
3489 skb_queue_tail(&hdev->rx_q, skb);
3490 queue_work(hdev->workqueue, &hdev->rx_work);
3491
3492 return 0;
3493 }
3494 EXPORT_SYMBOL(hci_recv_frame);
3495
3496 /* Receive diagnostic message from HCI drivers */
3497 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3498 {
3499 /* Time stamp */
3500 __net_timestamp(skb);
3501
3502 /* Mark as diagnostic packet and send to monitor */
3503 bt_cb(skb)->pkt_type = HCI_DIAG_PKT;
3504 hci_send_to_monitor(hdev, skb);
3505
3506 kfree_skb(skb);
3507 return 0;
3508 }
3509 EXPORT_SYMBOL(hci_recv_diag);
3510
3511 /* ---- Interface to upper protocols ---- */
3512
3513 int hci_register_cb(struct hci_cb *cb)
3514 {
3515 BT_DBG("%p name %s", cb, cb->name);
3516
3517 mutex_lock(&hci_cb_list_lock);
3518 list_add_tail(&cb->list, &hci_cb_list);
3519 mutex_unlock(&hci_cb_list_lock);
3520
3521 return 0;
3522 }
3523 EXPORT_SYMBOL(hci_register_cb);
3524
3525 int hci_unregister_cb(struct hci_cb *cb)
3526 {
3527 BT_DBG("%p name %s", cb, cb->name);
3528
3529 mutex_lock(&hci_cb_list_lock);
3530 list_del(&cb->list);
3531 mutex_unlock(&hci_cb_list_lock);
3532
3533 return 0;
3534 }
3535 EXPORT_SYMBOL(hci_unregister_cb);
3536
3537 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3538 {
3539 int err;
3540
3541 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
3542
3543 /* Time stamp */
3544 __net_timestamp(skb);
3545
3546 /* Send copy to monitor */
3547 hci_send_to_monitor(hdev, skb);
3548
3549 if (atomic_read(&hdev->promisc)) {
3550 /* Send copy to the sockets */
3551 hci_send_to_sock(hdev, skb);
3552 }
3553
3554 /* Get rid of skb owner, prior to sending to the driver. */
3555 skb_orphan(skb);
3556
3557 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3558 kfree_skb(skb);
3559 return;
3560 }
3561
3562 err = hdev->send(hdev, skb);
3563 if (err < 0) {
3564 BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3565 kfree_skb(skb);
3566 }
3567 }
3568
3569 /* Send HCI command */
3570 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3571 const void *param)
3572 {
3573 struct sk_buff *skb;
3574
3575 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3576
3577 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3578 if (!skb) {
3579 BT_ERR("%s no memory for command", hdev->name);
3580 return -ENOMEM;
3581 }
3582
3583 /* Stand-alone HCI commands must be flagged as
3584 * single-command requests.
3585 */
3586 bt_cb(skb)->req.start = true;
3587
3588 skb_queue_tail(&hdev->cmd_q, skb);
3589 queue_work(hdev->workqueue, &hdev->cmd_work);
3590
3591 return 0;
3592 }
3593
3594 /* Get data from the previously sent command */
3595 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3596 {
3597 struct hci_command_hdr *hdr;
3598
3599 if (!hdev->sent_cmd)
3600 return NULL;
3601
3602 hdr = (void *) hdev->sent_cmd->data;
3603
3604 if (hdr->opcode != cpu_to_le16(opcode))
3605 return NULL;
3606
3607 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3608
3609 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3610 }
3611
3612 /* Send HCI command and wait for command commplete event */
3613 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3614 const void *param, u32 timeout)
3615 {
3616 struct sk_buff *skb;
3617
3618 if (!test_bit(HCI_UP, &hdev->flags))
3619 return ERR_PTR(-ENETDOWN);
3620
3621 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3622
3623 hci_req_lock(hdev);
3624 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3625 hci_req_unlock(hdev);
3626
3627 return skb;
3628 }
3629 EXPORT_SYMBOL(hci_cmd_sync);
3630
3631 /* Send ACL data */
3632 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3633 {
3634 struct hci_acl_hdr *hdr;
3635 int len = skb->len;
3636
3637 skb_push(skb, HCI_ACL_HDR_SIZE);
3638 skb_reset_transport_header(skb);
3639 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3640 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3641 hdr->dlen = cpu_to_le16(len);
3642 }
3643
3644 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3645 struct sk_buff *skb, __u16 flags)
3646 {
3647 struct hci_conn *conn = chan->conn;
3648 struct hci_dev *hdev = conn->hdev;
3649 struct sk_buff *list;
3650
3651 skb->len = skb_headlen(skb);
3652 skb->data_len = 0;
3653
3654 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
3655
3656 switch (hdev->dev_type) {
3657 case HCI_BREDR:
3658 hci_add_acl_hdr(skb, conn->handle, flags);
3659 break;
3660 case HCI_AMP:
3661 hci_add_acl_hdr(skb, chan->handle, flags);
3662 break;
3663 default:
3664 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3665 return;
3666 }
3667
3668 list = skb_shinfo(skb)->frag_list;
3669 if (!list) {
3670 /* Non fragmented */
3671 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3672
3673 skb_queue_tail(queue, skb);
3674 } else {
3675 /* Fragmented */
3676 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3677
3678 skb_shinfo(skb)->frag_list = NULL;
3679
3680 /* Queue all fragments atomically. We need to use spin_lock_bh
3681 * here because of 6LoWPAN links, as there this function is
3682 * called from softirq and using normal spin lock could cause
3683 * deadlocks.
3684 */
3685 spin_lock_bh(&queue->lock);
3686
3687 __skb_queue_tail(queue, skb);
3688
3689 flags &= ~ACL_START;
3690 flags |= ACL_CONT;
3691 do {
3692 skb = list; list = list->next;
3693
3694 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
3695 hci_add_acl_hdr(skb, conn->handle, flags);
3696
3697 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3698
3699 __skb_queue_tail(queue, skb);
3700 } while (list);
3701
3702 spin_unlock_bh(&queue->lock);
3703 }
3704 }
3705
3706 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3707 {
3708 struct hci_dev *hdev = chan->conn->hdev;
3709
3710 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3711
3712 hci_queue_acl(chan, &chan->data_q, skb, flags);
3713
3714 queue_work(hdev->workqueue, &hdev->tx_work);
3715 }
3716
3717 /* Send SCO data */
3718 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3719 {
3720 struct hci_dev *hdev = conn->hdev;
3721 struct hci_sco_hdr hdr;
3722
3723 BT_DBG("%s len %d", hdev->name, skb->len);
3724
3725 hdr.handle = cpu_to_le16(conn->handle);
3726 hdr.dlen = skb->len;
3727
3728 skb_push(skb, HCI_SCO_HDR_SIZE);
3729 skb_reset_transport_header(skb);
3730 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3731
3732 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
3733
3734 skb_queue_tail(&conn->data_q, skb);
3735 queue_work(hdev->workqueue, &hdev->tx_work);
3736 }
3737
3738 /* ---- HCI TX task (outgoing data) ---- */
3739
3740 /* HCI Connection scheduler */
3741 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3742 int *quote)
3743 {
3744 struct hci_conn_hash *h = &hdev->conn_hash;
3745 struct hci_conn *conn = NULL, *c;
3746 unsigned int num = 0, min = ~0;
3747
3748 /* We don't have to lock device here. Connections are always
3749 * added and removed with TX task disabled. */
3750
3751 rcu_read_lock();
3752
3753 list_for_each_entry_rcu(c, &h->list, list) {
3754 if (c->type != type || skb_queue_empty(&c->data_q))
3755 continue;
3756
3757 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3758 continue;
3759
3760 num++;
3761
3762 if (c->sent < min) {
3763 min = c->sent;
3764 conn = c;
3765 }
3766
3767 if (hci_conn_num(hdev, type) == num)
3768 break;
3769 }
3770
3771 rcu_read_unlock();
3772
3773 if (conn) {
3774 int cnt, q;
3775
3776 switch (conn->type) {
3777 case ACL_LINK:
3778 cnt = hdev->acl_cnt;
3779 break;
3780 case SCO_LINK:
3781 case ESCO_LINK:
3782 cnt = hdev->sco_cnt;
3783 break;
3784 case LE_LINK:
3785 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3786 break;
3787 default:
3788 cnt = 0;
3789 BT_ERR("Unknown link type");
3790 }
3791
3792 q = cnt / num;
3793 *quote = q ? q : 1;
3794 } else
3795 *quote = 0;
3796
3797 BT_DBG("conn %p quote %d", conn, *quote);
3798 return conn;
3799 }
3800
3801 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3802 {
3803 struct hci_conn_hash *h = &hdev->conn_hash;
3804 struct hci_conn *c;
3805
3806 BT_ERR("%s link tx timeout", hdev->name);
3807
3808 rcu_read_lock();
3809
3810 /* Kill stalled connections */
3811 list_for_each_entry_rcu(c, &h->list, list) {
3812 if (c->type == type && c->sent) {
3813 BT_ERR("%s killing stalled connection %pMR",
3814 hdev->name, &c->dst);
3815 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3816 }
3817 }
3818
3819 rcu_read_unlock();
3820 }
3821
3822 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3823 int *quote)
3824 {
3825 struct hci_conn_hash *h = &hdev->conn_hash;
3826 struct hci_chan *chan = NULL;
3827 unsigned int num = 0, min = ~0, cur_prio = 0;
3828 struct hci_conn *conn;
3829 int cnt, q, conn_num = 0;
3830
3831 BT_DBG("%s", hdev->name);
3832
3833 rcu_read_lock();
3834
3835 list_for_each_entry_rcu(conn, &h->list, list) {
3836 struct hci_chan *tmp;
3837
3838 if (conn->type != type)
3839 continue;
3840
3841 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3842 continue;
3843
3844 conn_num++;
3845
3846 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3847 struct sk_buff *skb;
3848
3849 if (skb_queue_empty(&tmp->data_q))
3850 continue;
3851
3852 skb = skb_peek(&tmp->data_q);
3853 if (skb->priority < cur_prio)
3854 continue;
3855
3856 if (skb->priority > cur_prio) {
3857 num = 0;
3858 min = ~0;
3859 cur_prio = skb->priority;
3860 }
3861
3862 num++;
3863
3864 if (conn->sent < min) {
3865 min = conn->sent;
3866 chan = tmp;
3867 }
3868 }
3869
3870 if (hci_conn_num(hdev, type) == conn_num)
3871 break;
3872 }
3873
3874 rcu_read_unlock();
3875
3876 if (!chan)
3877 return NULL;
3878
3879 switch (chan->conn->type) {
3880 case ACL_LINK:
3881 cnt = hdev->acl_cnt;
3882 break;
3883 case AMP_LINK:
3884 cnt = hdev->block_cnt;
3885 break;
3886 case SCO_LINK:
3887 case ESCO_LINK:
3888 cnt = hdev->sco_cnt;
3889 break;
3890 case LE_LINK:
3891 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3892 break;
3893 default:
3894 cnt = 0;
3895 BT_ERR("Unknown link type");
3896 }
3897
3898 q = cnt / num;
3899 *quote = q ? q : 1;
3900 BT_DBG("chan %p quote %d", chan, *quote);
3901 return chan;
3902 }
3903
3904 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3905 {
3906 struct hci_conn_hash *h = &hdev->conn_hash;
3907 struct hci_conn *conn;
3908 int num = 0;
3909
3910 BT_DBG("%s", hdev->name);
3911
3912 rcu_read_lock();
3913
3914 list_for_each_entry_rcu(conn, &h->list, list) {
3915 struct hci_chan *chan;
3916
3917 if (conn->type != type)
3918 continue;
3919
3920 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3921 continue;
3922
3923 num++;
3924
3925 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3926 struct sk_buff *skb;
3927
3928 if (chan->sent) {
3929 chan->sent = 0;
3930 continue;
3931 }
3932
3933 if (skb_queue_empty(&chan->data_q))
3934 continue;
3935
3936 skb = skb_peek(&chan->data_q);
3937 if (skb->priority >= HCI_PRIO_MAX - 1)
3938 continue;
3939
3940 skb->priority = HCI_PRIO_MAX - 1;
3941
3942 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3943 skb->priority);
3944 }
3945
3946 if (hci_conn_num(hdev, type) == num)
3947 break;
3948 }
3949
3950 rcu_read_unlock();
3951
3952 }
3953
3954 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3955 {
3956 /* Calculate count of blocks used by this packet */
3957 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3958 }
3959
3960 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3961 {
3962 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3963 /* ACL tx timeout must be longer than maximum
3964 * link supervision timeout (40.9 seconds) */
3965 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3966 HCI_ACL_TX_TIMEOUT))
3967 hci_link_tx_to(hdev, ACL_LINK);
3968 }
3969 }
3970
3971 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3972 {
3973 unsigned int cnt = hdev->acl_cnt;
3974 struct hci_chan *chan;
3975 struct sk_buff *skb;
3976 int quote;
3977
3978 __check_timeout(hdev, cnt);
3979
3980 while (hdev->acl_cnt &&
3981 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3982 u32 priority = (skb_peek(&chan->data_q))->priority;
3983 while (quote-- && (skb = skb_peek(&chan->data_q))) {
3984 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3985 skb->len, skb->priority);
3986
3987 /* Stop if priority has changed */
3988 if (skb->priority < priority)
3989 break;
3990
3991 skb = skb_dequeue(&chan->data_q);
3992
3993 hci_conn_enter_active_mode(chan->conn,
3994 bt_cb(skb)->force_active);
3995
3996 hci_send_frame(hdev, skb);
3997 hdev->acl_last_tx = jiffies;
3998
3999 hdev->acl_cnt--;
4000 chan->sent++;
4001 chan->conn->sent++;
4002 }
4003 }
4004
4005 if (cnt != hdev->acl_cnt)
4006 hci_prio_recalculate(hdev, ACL_LINK);
4007 }
4008
4009 static void hci_sched_acl_blk(struct hci_dev *hdev)
4010 {
4011 unsigned int cnt = hdev->block_cnt;
4012 struct hci_chan *chan;
4013 struct sk_buff *skb;
4014 int quote;
4015 u8 type;
4016
4017 __check_timeout(hdev, cnt);
4018
4019 BT_DBG("%s", hdev->name);
4020
4021 if (hdev->dev_type == HCI_AMP)
4022 type = AMP_LINK;
4023 else
4024 type = ACL_LINK;
4025
4026 while (hdev->block_cnt > 0 &&
4027 (chan = hci_chan_sent(hdev, type, &quote))) {
4028 u32 priority = (skb_peek(&chan->data_q))->priority;
4029 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4030 int blocks;
4031
4032 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4033 skb->len, skb->priority);
4034
4035 /* Stop if priority has changed */
4036 if (skb->priority < priority)
4037 break;
4038
4039 skb = skb_dequeue(&chan->data_q);
4040
4041 blocks = __get_blocks(hdev, skb);
4042 if (blocks > hdev->block_cnt)
4043 return;
4044
4045 hci_conn_enter_active_mode(chan->conn,
4046 bt_cb(skb)->force_active);
4047
4048 hci_send_frame(hdev, skb);
4049 hdev->acl_last_tx = jiffies;
4050
4051 hdev->block_cnt -= blocks;
4052 quote -= blocks;
4053
4054 chan->sent += blocks;
4055 chan->conn->sent += blocks;
4056 }
4057 }
4058
4059 if (cnt != hdev->block_cnt)
4060 hci_prio_recalculate(hdev, type);
4061 }
4062
4063 static void hci_sched_acl(struct hci_dev *hdev)
4064 {
4065 BT_DBG("%s", hdev->name);
4066
4067 /* No ACL link over BR/EDR controller */
4068 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR)
4069 return;
4070
4071 /* No AMP link over AMP controller */
4072 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4073 return;
4074
4075 switch (hdev->flow_ctl_mode) {
4076 case HCI_FLOW_CTL_MODE_PACKET_BASED:
4077 hci_sched_acl_pkt(hdev);
4078 break;
4079
4080 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4081 hci_sched_acl_blk(hdev);
4082 break;
4083 }
4084 }
4085
4086 /* Schedule SCO */
4087 static void hci_sched_sco(struct hci_dev *hdev)
4088 {
4089 struct hci_conn *conn;
4090 struct sk_buff *skb;
4091 int quote;
4092
4093 BT_DBG("%s", hdev->name);
4094
4095 if (!hci_conn_num(hdev, SCO_LINK))
4096 return;
4097
4098 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4099 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4100 BT_DBG("skb %p len %d", skb, skb->len);
4101 hci_send_frame(hdev, skb);
4102
4103 conn->sent++;
4104 if (conn->sent == ~0)
4105 conn->sent = 0;
4106 }
4107 }
4108 }
4109
4110 static void hci_sched_esco(struct hci_dev *hdev)
4111 {
4112 struct hci_conn *conn;
4113 struct sk_buff *skb;
4114 int quote;
4115
4116 BT_DBG("%s", hdev->name);
4117
4118 if (!hci_conn_num(hdev, ESCO_LINK))
4119 return;
4120
4121 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4122 &quote))) {
4123 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4124 BT_DBG("skb %p len %d", skb, skb->len);
4125 hci_send_frame(hdev, skb);
4126
4127 conn->sent++;
4128 if (conn->sent == ~0)
4129 conn->sent = 0;
4130 }
4131 }
4132 }
4133
4134 static void hci_sched_le(struct hci_dev *hdev)
4135 {
4136 struct hci_chan *chan;
4137 struct sk_buff *skb;
4138 int quote, cnt, tmp;
4139
4140 BT_DBG("%s", hdev->name);
4141
4142 if (!hci_conn_num(hdev, LE_LINK))
4143 return;
4144
4145 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4146 /* LE tx timeout must be longer than maximum
4147 * link supervision timeout (40.9 seconds) */
4148 if (!hdev->le_cnt && hdev->le_pkts &&
4149 time_after(jiffies, hdev->le_last_tx + HZ * 45))
4150 hci_link_tx_to(hdev, LE_LINK);
4151 }
4152
4153 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4154 tmp = cnt;
4155 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4156 u32 priority = (skb_peek(&chan->data_q))->priority;
4157 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4158 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4159 skb->len, skb->priority);
4160
4161 /* Stop if priority has changed */
4162 if (skb->priority < priority)
4163 break;
4164
4165 skb = skb_dequeue(&chan->data_q);
4166
4167 hci_send_frame(hdev, skb);
4168 hdev->le_last_tx = jiffies;
4169
4170 cnt--;
4171 chan->sent++;
4172 chan->conn->sent++;
4173 }
4174 }
4175
4176 if (hdev->le_pkts)
4177 hdev->le_cnt = cnt;
4178 else
4179 hdev->acl_cnt = cnt;
4180
4181 if (cnt != tmp)
4182 hci_prio_recalculate(hdev, LE_LINK);
4183 }
4184
4185 static void hci_tx_work(struct work_struct *work)
4186 {
4187 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4188 struct sk_buff *skb;
4189
4190 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4191 hdev->sco_cnt, hdev->le_cnt);
4192
4193 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4194 /* Schedule queues and send stuff to HCI driver */
4195 hci_sched_acl(hdev);
4196 hci_sched_sco(hdev);
4197 hci_sched_esco(hdev);
4198 hci_sched_le(hdev);
4199 }
4200
4201 /* Send next queued raw (unknown type) packet */
4202 while ((skb = skb_dequeue(&hdev->raw_q)))
4203 hci_send_frame(hdev, skb);
4204 }
4205
4206 /* ----- HCI RX task (incoming data processing) ----- */
4207
4208 /* ACL data packet */
4209 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4210 {
4211 struct hci_acl_hdr *hdr = (void *) skb->data;
4212 struct hci_conn *conn;
4213 __u16 handle, flags;
4214
4215 skb_pull(skb, HCI_ACL_HDR_SIZE);
4216
4217 handle = __le16_to_cpu(hdr->handle);
4218 flags = hci_flags(handle);
4219 handle = hci_handle(handle);
4220
4221 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4222 handle, flags);
4223
4224 hdev->stat.acl_rx++;
4225
4226 hci_dev_lock(hdev);
4227 conn = hci_conn_hash_lookup_handle(hdev, handle);
4228 hci_dev_unlock(hdev);
4229
4230 if (conn) {
4231 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4232
4233 /* Send to upper protocol */
4234 l2cap_recv_acldata(conn, skb, flags);
4235 return;
4236 } else {
4237 BT_ERR("%s ACL packet for unknown connection handle %d",
4238 hdev->name, handle);
4239 }
4240
4241 kfree_skb(skb);
4242 }
4243
4244 /* SCO data packet */
4245 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4246 {
4247 struct hci_sco_hdr *hdr = (void *) skb->data;
4248 struct hci_conn *conn;
4249 __u16 handle;
4250
4251 skb_pull(skb, HCI_SCO_HDR_SIZE);
4252
4253 handle = __le16_to_cpu(hdr->handle);
4254
4255 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4256
4257 hdev->stat.sco_rx++;
4258
4259 hci_dev_lock(hdev);
4260 conn = hci_conn_hash_lookup_handle(hdev, handle);
4261 hci_dev_unlock(hdev);
4262
4263 if (conn) {
4264 /* Send to upper protocol */
4265 sco_recv_scodata(conn, skb);
4266 return;
4267 } else {
4268 BT_ERR("%s SCO packet for unknown connection handle %d",
4269 hdev->name, handle);
4270 }
4271
4272 kfree_skb(skb);
4273 }
4274
4275 static bool hci_req_is_complete(struct hci_dev *hdev)
4276 {
4277 struct sk_buff *skb;
4278
4279 skb = skb_peek(&hdev->cmd_q);
4280 if (!skb)
4281 return true;
4282
4283 return bt_cb(skb)->req.start;
4284 }
4285
4286 static void hci_resend_last(struct hci_dev *hdev)
4287 {
4288 struct hci_command_hdr *sent;
4289 struct sk_buff *skb;
4290 u16 opcode;
4291
4292 if (!hdev->sent_cmd)
4293 return;
4294
4295 sent = (void *) hdev->sent_cmd->data;
4296 opcode = __le16_to_cpu(sent->opcode);
4297 if (opcode == HCI_OP_RESET)
4298 return;
4299
4300 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4301 if (!skb)
4302 return;
4303
4304 skb_queue_head(&hdev->cmd_q, skb);
4305 queue_work(hdev->workqueue, &hdev->cmd_work);
4306 }
4307
4308 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4309 hci_req_complete_t *req_complete,
4310 hci_req_complete_skb_t *req_complete_skb)
4311 {
4312 struct sk_buff *skb;
4313 unsigned long flags;
4314
4315 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4316
4317 /* If the completed command doesn't match the last one that was
4318 * sent we need to do special handling of it.
4319 */
4320 if (!hci_sent_cmd_data(hdev, opcode)) {
4321 /* Some CSR based controllers generate a spontaneous
4322 * reset complete event during init and any pending
4323 * command will never be completed. In such a case we
4324 * need to resend whatever was the last sent
4325 * command.
4326 */
4327 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4328 hci_resend_last(hdev);
4329
4330 return;
4331 }
4332
4333 /* If the command succeeded and there's still more commands in
4334 * this request the request is not yet complete.
4335 */
4336 if (!status && !hci_req_is_complete(hdev))
4337 return;
4338
4339 /* If this was the last command in a request the complete
4340 * callback would be found in hdev->sent_cmd instead of the
4341 * command queue (hdev->cmd_q).
4342 */
4343 if (bt_cb(hdev->sent_cmd)->req.complete) {
4344 *req_complete = bt_cb(hdev->sent_cmd)->req.complete;
4345 return;
4346 }
4347
4348 if (bt_cb(hdev->sent_cmd)->req.complete_skb) {
4349 *req_complete_skb = bt_cb(hdev->sent_cmd)->req.complete_skb;
4350 return;
4351 }
4352
4353 /* Remove all pending commands belonging to this request */
4354 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4355 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4356 if (bt_cb(skb)->req.start) {
4357 __skb_queue_head(&hdev->cmd_q, skb);
4358 break;
4359 }
4360
4361 *req_complete = bt_cb(skb)->req.complete;
4362 *req_complete_skb = bt_cb(skb)->req.complete_skb;
4363 kfree_skb(skb);
4364 }
4365 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4366 }
4367
4368 static void hci_rx_work(struct work_struct *work)
4369 {
4370 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4371 struct sk_buff *skb;
4372
4373 BT_DBG("%s", hdev->name);
4374
4375 while ((skb = skb_dequeue(&hdev->rx_q))) {
4376 /* Send copy to monitor */
4377 hci_send_to_monitor(hdev, skb);
4378
4379 if (atomic_read(&hdev->promisc)) {
4380 /* Send copy to the sockets */
4381 hci_send_to_sock(hdev, skb);
4382 }
4383
4384 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4385 kfree_skb(skb);
4386 continue;
4387 }
4388
4389 if (test_bit(HCI_INIT, &hdev->flags)) {
4390 /* Don't process data packets in this states. */
4391 switch (bt_cb(skb)->pkt_type) {
4392 case HCI_ACLDATA_PKT:
4393 case HCI_SCODATA_PKT:
4394 kfree_skb(skb);
4395 continue;
4396 }
4397 }
4398
4399 /* Process frame */
4400 switch (bt_cb(skb)->pkt_type) {
4401 case HCI_EVENT_PKT:
4402 BT_DBG("%s Event packet", hdev->name);
4403 hci_event_packet(hdev, skb);
4404 break;
4405
4406 case HCI_ACLDATA_PKT:
4407 BT_DBG("%s ACL data packet", hdev->name);
4408 hci_acldata_packet(hdev, skb);
4409 break;
4410
4411 case HCI_SCODATA_PKT:
4412 BT_DBG("%s SCO data packet", hdev->name);
4413 hci_scodata_packet(hdev, skb);
4414 break;
4415
4416 default:
4417 kfree_skb(skb);
4418 break;
4419 }
4420 }
4421 }
4422
4423 static void hci_cmd_work(struct work_struct *work)
4424 {
4425 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4426 struct sk_buff *skb;
4427
4428 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4429 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4430
4431 /* Send queued commands */
4432 if (atomic_read(&hdev->cmd_cnt)) {
4433 skb = skb_dequeue(&hdev->cmd_q);
4434 if (!skb)
4435 return;
4436
4437 kfree_skb(hdev->sent_cmd);
4438
4439 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4440 if (hdev->sent_cmd) {
4441 atomic_dec(&hdev->cmd_cnt);
4442 hci_send_frame(hdev, skb);
4443 if (test_bit(HCI_RESET, &hdev->flags))
4444 cancel_delayed_work(&hdev->cmd_timer);
4445 else
4446 schedule_delayed_work(&hdev->cmd_timer,
4447 HCI_CMD_TIMEOUT);
4448 } else {
4449 skb_queue_head(&hdev->cmd_q, skb);
4450 queue_work(hdev->workqueue, &hdev->cmd_work);
4451 }
4452 }
4453 }