]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/bluetooth/hci_core.c
2edaa601df13aabdca4382fa7512e213d78ee7ab
[mirror_ubuntu-focal-kernel.git] / net / bluetooth / hci_core.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <linux/property.h>
34 #include <asm/unaligned.h>
35
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38 #include <net/bluetooth/l2cap.h>
39 #include <net/bluetooth/mgmt.h>
40
41 #include "hci_request.h"
42 #include "hci_debugfs.h"
43 #include "smp.h"
44 #include "leds.h"
45
46 static void hci_rx_work(struct work_struct *work);
47 static void hci_cmd_work(struct work_struct *work);
48 static void hci_tx_work(struct work_struct *work);
49
50 /* HCI device list */
51 LIST_HEAD(hci_dev_list);
52 DEFINE_RWLOCK(hci_dev_list_lock);
53
54 /* HCI callback list */
55 LIST_HEAD(hci_cb_list);
56 DEFINE_MUTEX(hci_cb_list_lock);
57
58 /* HCI ID Numbering */
59 static DEFINE_IDA(hci_index_ida);
60
61 /* ---- HCI debugfs entries ---- */
62
63 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
64 size_t count, loff_t *ppos)
65 {
66 struct hci_dev *hdev = file->private_data;
67 char buf[3];
68
69 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
70 buf[1] = '\n';
71 buf[2] = '\0';
72 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
73 }
74
75 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
76 size_t count, loff_t *ppos)
77 {
78 struct hci_dev *hdev = file->private_data;
79 struct sk_buff *skb;
80 bool enable;
81 int err;
82
83 if (!test_bit(HCI_UP, &hdev->flags))
84 return -ENETDOWN;
85
86 err = kstrtobool_from_user(user_buf, count, &enable);
87 if (err)
88 return err;
89
90 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
91 return -EALREADY;
92
93 hci_req_sync_lock(hdev);
94 if (enable)
95 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
96 HCI_CMD_TIMEOUT);
97 else
98 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
99 HCI_CMD_TIMEOUT);
100 hci_req_sync_unlock(hdev);
101
102 if (IS_ERR(skb))
103 return PTR_ERR(skb);
104
105 kfree_skb(skb);
106
107 hci_dev_change_flag(hdev, HCI_DUT_MODE);
108
109 return count;
110 }
111
112 static const struct file_operations dut_mode_fops = {
113 .open = simple_open,
114 .read = dut_mode_read,
115 .write = dut_mode_write,
116 .llseek = default_llseek,
117 };
118
119 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
120 size_t count, loff_t *ppos)
121 {
122 struct hci_dev *hdev = file->private_data;
123 char buf[3];
124
125 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
126 buf[1] = '\n';
127 buf[2] = '\0';
128 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
129 }
130
131 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
132 size_t count, loff_t *ppos)
133 {
134 struct hci_dev *hdev = file->private_data;
135 bool enable;
136 int err;
137
138 err = kstrtobool_from_user(user_buf, count, &enable);
139 if (err)
140 return err;
141
142 /* When the diagnostic flags are not persistent and the transport
143 * is not active or in user channel operation, then there is no need
144 * for the vendor callback. Instead just store the desired value and
145 * the setting will be programmed when the controller gets powered on.
146 */
147 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
148 (!test_bit(HCI_RUNNING, &hdev->flags) ||
149 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
150 goto done;
151
152 hci_req_sync_lock(hdev);
153 err = hdev->set_diag(hdev, enable);
154 hci_req_sync_unlock(hdev);
155
156 if (err < 0)
157 return err;
158
159 done:
160 if (enable)
161 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
162 else
163 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
164
165 return count;
166 }
167
168 static const struct file_operations vendor_diag_fops = {
169 .open = simple_open,
170 .read = vendor_diag_read,
171 .write = vendor_diag_write,
172 .llseek = default_llseek,
173 };
174
175 static void hci_debugfs_create_basic(struct hci_dev *hdev)
176 {
177 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
178 &dut_mode_fops);
179
180 if (hdev->set_diag)
181 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
182 &vendor_diag_fops);
183 }
184
185 static int hci_reset_req(struct hci_request *req, unsigned long opt)
186 {
187 BT_DBG("%s %ld", req->hdev->name, opt);
188
189 /* Reset device */
190 set_bit(HCI_RESET, &req->hdev->flags);
191 hci_req_add(req, HCI_OP_RESET, 0, NULL);
192 return 0;
193 }
194
195 static void bredr_init(struct hci_request *req)
196 {
197 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
198
199 /* Read Local Supported Features */
200 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
201
202 /* Read Local Version */
203 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
204
205 /* Read BD Address */
206 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
207 }
208
209 static void amp_init1(struct hci_request *req)
210 {
211 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
212
213 /* Read Local Version */
214 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
215
216 /* Read Local Supported Commands */
217 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
218
219 /* Read Local AMP Info */
220 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
221
222 /* Read Data Blk size */
223 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
224
225 /* Read Flow Control Mode */
226 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
227
228 /* Read Location Data */
229 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
230 }
231
232 static int amp_init2(struct hci_request *req)
233 {
234 /* Read Local Supported Features. Not all AMP controllers
235 * support this so it's placed conditionally in the second
236 * stage init.
237 */
238 if (req->hdev->commands[14] & 0x20)
239 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
240
241 return 0;
242 }
243
244 static int hci_init1_req(struct hci_request *req, unsigned long opt)
245 {
246 struct hci_dev *hdev = req->hdev;
247
248 BT_DBG("%s %ld", hdev->name, opt);
249
250 /* Reset */
251 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
252 hci_reset_req(req, 0);
253
254 switch (hdev->dev_type) {
255 case HCI_PRIMARY:
256 bredr_init(req);
257 break;
258 case HCI_AMP:
259 amp_init1(req);
260 break;
261 default:
262 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
263 break;
264 }
265
266 return 0;
267 }
268
269 static void bredr_setup(struct hci_request *req)
270 {
271 __le16 param;
272 __u8 flt_type;
273
274 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
275 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
276
277 /* Read Class of Device */
278 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
279
280 /* Read Local Name */
281 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
282
283 /* Read Voice Setting */
284 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
285
286 /* Read Number of Supported IAC */
287 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
288
289 /* Read Current IAC LAP */
290 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
291
292 /* Clear Event Filters */
293 flt_type = HCI_FLT_CLEAR_ALL;
294 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
295
296 /* Connection accept timeout ~20 secs */
297 param = cpu_to_le16(0x7d00);
298 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
299 }
300
301 static void le_setup(struct hci_request *req)
302 {
303 struct hci_dev *hdev = req->hdev;
304
305 /* Read LE Buffer Size */
306 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
307
308 /* Read LE Local Supported Features */
309 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
310
311 /* Read LE Supported States */
312 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
313
314 /* LE-only controllers have LE implicitly enabled */
315 if (!lmp_bredr_capable(hdev))
316 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
317 }
318
319 static void hci_setup_event_mask(struct hci_request *req)
320 {
321 struct hci_dev *hdev = req->hdev;
322
323 /* The second byte is 0xff instead of 0x9f (two reserved bits
324 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
325 * command otherwise.
326 */
327 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
328
329 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
330 * any event mask for pre 1.2 devices.
331 */
332 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
333 return;
334
335 if (lmp_bredr_capable(hdev)) {
336 events[4] |= 0x01; /* Flow Specification Complete */
337 } else {
338 /* Use a different default for LE-only devices */
339 memset(events, 0, sizeof(events));
340 events[1] |= 0x20; /* Command Complete */
341 events[1] |= 0x40; /* Command Status */
342 events[1] |= 0x80; /* Hardware Error */
343
344 /* If the controller supports the Disconnect command, enable
345 * the corresponding event. In addition enable packet flow
346 * control related events.
347 */
348 if (hdev->commands[0] & 0x20) {
349 events[0] |= 0x10; /* Disconnection Complete */
350 events[2] |= 0x04; /* Number of Completed Packets */
351 events[3] |= 0x02; /* Data Buffer Overflow */
352 }
353
354 /* If the controller supports the Read Remote Version
355 * Information command, enable the corresponding event.
356 */
357 if (hdev->commands[2] & 0x80)
358 events[1] |= 0x08; /* Read Remote Version Information
359 * Complete
360 */
361
362 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
363 events[0] |= 0x80; /* Encryption Change */
364 events[5] |= 0x80; /* Encryption Key Refresh Complete */
365 }
366 }
367
368 if (lmp_inq_rssi_capable(hdev) ||
369 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
370 events[4] |= 0x02; /* Inquiry Result with RSSI */
371
372 if (lmp_ext_feat_capable(hdev))
373 events[4] |= 0x04; /* Read Remote Extended Features Complete */
374
375 if (lmp_esco_capable(hdev)) {
376 events[5] |= 0x08; /* Synchronous Connection Complete */
377 events[5] |= 0x10; /* Synchronous Connection Changed */
378 }
379
380 if (lmp_sniffsubr_capable(hdev))
381 events[5] |= 0x20; /* Sniff Subrating */
382
383 if (lmp_pause_enc_capable(hdev))
384 events[5] |= 0x80; /* Encryption Key Refresh Complete */
385
386 if (lmp_ext_inq_capable(hdev))
387 events[5] |= 0x40; /* Extended Inquiry Result */
388
389 if (lmp_no_flush_capable(hdev))
390 events[7] |= 0x01; /* Enhanced Flush Complete */
391
392 if (lmp_lsto_capable(hdev))
393 events[6] |= 0x80; /* Link Supervision Timeout Changed */
394
395 if (lmp_ssp_capable(hdev)) {
396 events[6] |= 0x01; /* IO Capability Request */
397 events[6] |= 0x02; /* IO Capability Response */
398 events[6] |= 0x04; /* User Confirmation Request */
399 events[6] |= 0x08; /* User Passkey Request */
400 events[6] |= 0x10; /* Remote OOB Data Request */
401 events[6] |= 0x20; /* Simple Pairing Complete */
402 events[7] |= 0x04; /* User Passkey Notification */
403 events[7] |= 0x08; /* Keypress Notification */
404 events[7] |= 0x10; /* Remote Host Supported
405 * Features Notification
406 */
407 }
408
409 if (lmp_le_capable(hdev))
410 events[7] |= 0x20; /* LE Meta-Event */
411
412 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
413 }
414
415 static int hci_init2_req(struct hci_request *req, unsigned long opt)
416 {
417 struct hci_dev *hdev = req->hdev;
418
419 if (hdev->dev_type == HCI_AMP)
420 return amp_init2(req);
421
422 if (lmp_bredr_capable(hdev))
423 bredr_setup(req);
424 else
425 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
426
427 if (lmp_le_capable(hdev))
428 le_setup(req);
429
430 /* All Bluetooth 1.2 and later controllers should support the
431 * HCI command for reading the local supported commands.
432 *
433 * Unfortunately some controllers indicate Bluetooth 1.2 support,
434 * but do not have support for this command. If that is the case,
435 * the driver can quirk the behavior and skip reading the local
436 * supported commands.
437 */
438 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
439 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
440 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
441
442 if (lmp_ssp_capable(hdev)) {
443 /* When SSP is available, then the host features page
444 * should also be available as well. However some
445 * controllers list the max_page as 0 as long as SSP
446 * has not been enabled. To achieve proper debugging
447 * output, force the minimum max_page to 1 at least.
448 */
449 hdev->max_page = 0x01;
450
451 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
452 u8 mode = 0x01;
453
454 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
455 sizeof(mode), &mode);
456 } else {
457 struct hci_cp_write_eir cp;
458
459 memset(hdev->eir, 0, sizeof(hdev->eir));
460 memset(&cp, 0, sizeof(cp));
461
462 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
463 }
464 }
465
466 if (lmp_inq_rssi_capable(hdev) ||
467 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
468 u8 mode;
469
470 /* If Extended Inquiry Result events are supported, then
471 * they are clearly preferred over Inquiry Result with RSSI
472 * events.
473 */
474 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
475
476 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
477 }
478
479 if (lmp_inq_tx_pwr_capable(hdev))
480 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
481
482 if (lmp_ext_feat_capable(hdev)) {
483 struct hci_cp_read_local_ext_features cp;
484
485 cp.page = 0x01;
486 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
487 sizeof(cp), &cp);
488 }
489
490 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
491 u8 enable = 1;
492 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
493 &enable);
494 }
495
496 return 0;
497 }
498
499 static void hci_setup_link_policy(struct hci_request *req)
500 {
501 struct hci_dev *hdev = req->hdev;
502 struct hci_cp_write_def_link_policy cp;
503 u16 link_policy = 0;
504
505 if (lmp_rswitch_capable(hdev))
506 link_policy |= HCI_LP_RSWITCH;
507 if (lmp_hold_capable(hdev))
508 link_policy |= HCI_LP_HOLD;
509 if (lmp_sniff_capable(hdev))
510 link_policy |= HCI_LP_SNIFF;
511 if (lmp_park_capable(hdev))
512 link_policy |= HCI_LP_PARK;
513
514 cp.policy = cpu_to_le16(link_policy);
515 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
516 }
517
518 static void hci_set_le_support(struct hci_request *req)
519 {
520 struct hci_dev *hdev = req->hdev;
521 struct hci_cp_write_le_host_supported cp;
522
523 /* LE-only devices do not support explicit enablement */
524 if (!lmp_bredr_capable(hdev))
525 return;
526
527 memset(&cp, 0, sizeof(cp));
528
529 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
530 cp.le = 0x01;
531 cp.simul = 0x00;
532 }
533
534 if (cp.le != lmp_host_le_capable(hdev))
535 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
536 &cp);
537 }
538
539 static void hci_set_event_mask_page_2(struct hci_request *req)
540 {
541 struct hci_dev *hdev = req->hdev;
542 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
543 bool changed = false;
544
545 /* If Connectionless Slave Broadcast master role is supported
546 * enable all necessary events for it.
547 */
548 if (lmp_csb_master_capable(hdev)) {
549 events[1] |= 0x40; /* Triggered Clock Capture */
550 events[1] |= 0x80; /* Synchronization Train Complete */
551 events[2] |= 0x10; /* Slave Page Response Timeout */
552 events[2] |= 0x20; /* CSB Channel Map Change */
553 changed = true;
554 }
555
556 /* If Connectionless Slave Broadcast slave role is supported
557 * enable all necessary events for it.
558 */
559 if (lmp_csb_slave_capable(hdev)) {
560 events[2] |= 0x01; /* Synchronization Train Received */
561 events[2] |= 0x02; /* CSB Receive */
562 events[2] |= 0x04; /* CSB Timeout */
563 events[2] |= 0x08; /* Truncated Page Complete */
564 changed = true;
565 }
566
567 /* Enable Authenticated Payload Timeout Expired event if supported */
568 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
569 events[2] |= 0x80;
570 changed = true;
571 }
572
573 /* Some Broadcom based controllers indicate support for Set Event
574 * Mask Page 2 command, but then actually do not support it. Since
575 * the default value is all bits set to zero, the command is only
576 * required if the event mask has to be changed. In case no change
577 * to the event mask is needed, skip this command.
578 */
579 if (changed)
580 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
581 sizeof(events), events);
582 }
583
584 static int hci_init3_req(struct hci_request *req, unsigned long opt)
585 {
586 struct hci_dev *hdev = req->hdev;
587 u8 p;
588
589 hci_setup_event_mask(req);
590
591 if (hdev->commands[6] & 0x20 &&
592 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
593 struct hci_cp_read_stored_link_key cp;
594
595 bacpy(&cp.bdaddr, BDADDR_ANY);
596 cp.read_all = 0x01;
597 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
598 }
599
600 if (hdev->commands[5] & 0x10)
601 hci_setup_link_policy(req);
602
603 if (hdev->commands[8] & 0x01)
604 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
605
606 /* Some older Broadcom based Bluetooth 1.2 controllers do not
607 * support the Read Page Scan Type command. Check support for
608 * this command in the bit mask of supported commands.
609 */
610 if (hdev->commands[13] & 0x01)
611 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
612
613 if (lmp_le_capable(hdev)) {
614 u8 events[8];
615
616 memset(events, 0, sizeof(events));
617
618 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
619 events[0] |= 0x10; /* LE Long Term Key Request */
620
621 /* If controller supports the Connection Parameters Request
622 * Link Layer Procedure, enable the corresponding event.
623 */
624 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
625 events[0] |= 0x20; /* LE Remote Connection
626 * Parameter Request
627 */
628
629 /* If the controller supports the Data Length Extension
630 * feature, enable the corresponding event.
631 */
632 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
633 events[0] |= 0x40; /* LE Data Length Change */
634
635 /* If the controller supports Extended Scanner Filter
636 * Policies, enable the correspondig event.
637 */
638 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
639 events[1] |= 0x04; /* LE Direct Advertising
640 * Report
641 */
642
643 /* If the controller supports Channel Selection Algorithm #2
644 * feature, enable the corresponding event.
645 */
646 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
647 events[2] |= 0x08; /* LE Channel Selection
648 * Algorithm
649 */
650
651 /* If the controller supports the LE Set Scan Enable command,
652 * enable the corresponding advertising report event.
653 */
654 if (hdev->commands[26] & 0x08)
655 events[0] |= 0x02; /* LE Advertising Report */
656
657 /* If the controller supports the LE Create Connection
658 * command, enable the corresponding event.
659 */
660 if (hdev->commands[26] & 0x10)
661 events[0] |= 0x01; /* LE Connection Complete */
662
663 /* If the controller supports the LE Connection Update
664 * command, enable the corresponding event.
665 */
666 if (hdev->commands[27] & 0x04)
667 events[0] |= 0x04; /* LE Connection Update
668 * Complete
669 */
670
671 /* If the controller supports the LE Read Remote Used Features
672 * command, enable the corresponding event.
673 */
674 if (hdev->commands[27] & 0x20)
675 events[0] |= 0x08; /* LE Read Remote Used
676 * Features Complete
677 */
678
679 /* If the controller supports the LE Read Local P-256
680 * Public Key command, enable the corresponding event.
681 */
682 if (hdev->commands[34] & 0x02)
683 events[0] |= 0x80; /* LE Read Local P-256
684 * Public Key Complete
685 */
686
687 /* If the controller supports the LE Generate DHKey
688 * command, enable the corresponding event.
689 */
690 if (hdev->commands[34] & 0x04)
691 events[1] |= 0x01; /* LE Generate DHKey Complete */
692
693 /* If the controller supports the LE Set Default PHY or
694 * LE Set PHY commands, enable the corresponding event.
695 */
696 if (hdev->commands[35] & (0x20 | 0x40))
697 events[1] |= 0x08; /* LE PHY Update Complete */
698
699 /* If the controller supports LE Set Extended Scan Parameters
700 * and LE Set Extended Scan Enable commands, enable the
701 * corresponding event.
702 */
703 if (use_ext_scan(hdev))
704 events[1] |= 0x10; /* LE Extended Advertising
705 * Report
706 */
707
708 /* If the controller supports the LE Extended Create Connection
709 * command, enable the corresponding event.
710 */
711 if (use_ext_conn(hdev))
712 events[1] |= 0x02; /* LE Enhanced Connection
713 * Complete
714 */
715
716 /* If the controller supports the LE Extended Advertising
717 * command, enable the corresponding event.
718 */
719 if (ext_adv_capable(hdev))
720 events[2] |= 0x02; /* LE Advertising Set
721 * Terminated
722 */
723
724 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
725 events);
726
727 /* Read LE Advertising Channel TX Power */
728 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
729 /* HCI TS spec forbids mixing of legacy and extended
730 * advertising commands wherein READ_ADV_TX_POWER is
731 * also included. So do not call it if extended adv
732 * is supported otherwise controller will return
733 * COMMAND_DISALLOWED for extended commands.
734 */
735 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
736 }
737
738 if (hdev->commands[26] & 0x40) {
739 /* Read LE White List Size */
740 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
741 0, NULL);
742 }
743
744 if (hdev->commands[26] & 0x80) {
745 /* Clear LE White List */
746 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
747 }
748
749 if (hdev->commands[34] & 0x40) {
750 /* Read LE Resolving List Size */
751 hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
752 0, NULL);
753 }
754
755 if (hdev->commands[34] & 0x20) {
756 /* Clear LE Resolving List */
757 hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
758 }
759
760 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
761 /* Read LE Maximum Data Length */
762 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
763
764 /* Read LE Suggested Default Data Length */
765 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
766 }
767
768 if (ext_adv_capable(hdev)) {
769 /* Read LE Number of Supported Advertising Sets */
770 hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
771 0, NULL);
772 }
773
774 hci_set_le_support(req);
775 }
776
777 /* Read features beyond page 1 if available */
778 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
779 struct hci_cp_read_local_ext_features cp;
780
781 cp.page = p;
782 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
783 sizeof(cp), &cp);
784 }
785
786 return 0;
787 }
788
789 static int hci_init4_req(struct hci_request *req, unsigned long opt)
790 {
791 struct hci_dev *hdev = req->hdev;
792
793 /* Some Broadcom based Bluetooth controllers do not support the
794 * Delete Stored Link Key command. They are clearly indicating its
795 * absence in the bit mask of supported commands.
796 *
797 * Check the supported commands and only if the the command is marked
798 * as supported send it. If not supported assume that the controller
799 * does not have actual support for stored link keys which makes this
800 * command redundant anyway.
801 *
802 * Some controllers indicate that they support handling deleting
803 * stored link keys, but they don't. The quirk lets a driver
804 * just disable this command.
805 */
806 if (hdev->commands[6] & 0x80 &&
807 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
808 struct hci_cp_delete_stored_link_key cp;
809
810 bacpy(&cp.bdaddr, BDADDR_ANY);
811 cp.delete_all = 0x01;
812 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
813 sizeof(cp), &cp);
814 }
815
816 /* Set event mask page 2 if the HCI command for it is supported */
817 if (hdev->commands[22] & 0x04)
818 hci_set_event_mask_page_2(req);
819
820 /* Read local codec list if the HCI command is supported */
821 if (hdev->commands[29] & 0x20)
822 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
823
824 /* Get MWS transport configuration if the HCI command is supported */
825 if (hdev->commands[30] & 0x08)
826 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
827
828 /* Check for Synchronization Train support */
829 if (lmp_sync_train_capable(hdev))
830 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
831
832 /* Enable Secure Connections if supported and configured */
833 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
834 bredr_sc_enabled(hdev)) {
835 u8 support = 0x01;
836
837 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
838 sizeof(support), &support);
839 }
840
841 /* Set Suggested Default Data Length to maximum if supported */
842 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
843 struct hci_cp_le_write_def_data_len cp;
844
845 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
846 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
847 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
848 }
849
850 /* Set Default PHY parameters if command is supported */
851 if (hdev->commands[35] & 0x20) {
852 struct hci_cp_le_set_default_phy cp;
853
854 cp.all_phys = 0x00;
855 cp.tx_phys = hdev->le_tx_def_phys;
856 cp.rx_phys = hdev->le_rx_def_phys;
857
858 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
859 }
860
861 return 0;
862 }
863
864 static int __hci_init(struct hci_dev *hdev)
865 {
866 int err;
867
868 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
869 if (err < 0)
870 return err;
871
872 if (hci_dev_test_flag(hdev, HCI_SETUP))
873 hci_debugfs_create_basic(hdev);
874
875 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
876 if (err < 0)
877 return err;
878
879 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
880 * BR/EDR/LE type controllers. AMP controllers only need the
881 * first two stages of init.
882 */
883 if (hdev->dev_type != HCI_PRIMARY)
884 return 0;
885
886 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
887 if (err < 0)
888 return err;
889
890 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
891 if (err < 0)
892 return err;
893
894 /* This function is only called when the controller is actually in
895 * configured state. When the controller is marked as unconfigured,
896 * this initialization procedure is not run.
897 *
898 * It means that it is possible that a controller runs through its
899 * setup phase and then discovers missing settings. If that is the
900 * case, then this function will not be called. It then will only
901 * be called during the config phase.
902 *
903 * So only when in setup phase or config phase, create the debugfs
904 * entries and register the SMP channels.
905 */
906 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
907 !hci_dev_test_flag(hdev, HCI_CONFIG))
908 return 0;
909
910 hci_debugfs_create_common(hdev);
911
912 if (lmp_bredr_capable(hdev))
913 hci_debugfs_create_bredr(hdev);
914
915 if (lmp_le_capable(hdev))
916 hci_debugfs_create_le(hdev);
917
918 return 0;
919 }
920
921 static int hci_init0_req(struct hci_request *req, unsigned long opt)
922 {
923 struct hci_dev *hdev = req->hdev;
924
925 BT_DBG("%s %ld", hdev->name, opt);
926
927 /* Reset */
928 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
929 hci_reset_req(req, 0);
930
931 /* Read Local Version */
932 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
933
934 /* Read BD Address */
935 if (hdev->set_bdaddr)
936 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
937
938 return 0;
939 }
940
941 static int __hci_unconf_init(struct hci_dev *hdev)
942 {
943 int err;
944
945 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
946 return 0;
947
948 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
949 if (err < 0)
950 return err;
951
952 if (hci_dev_test_flag(hdev, HCI_SETUP))
953 hci_debugfs_create_basic(hdev);
954
955 return 0;
956 }
957
958 static int hci_scan_req(struct hci_request *req, unsigned long opt)
959 {
960 __u8 scan = opt;
961
962 BT_DBG("%s %x", req->hdev->name, scan);
963
964 /* Inquiry and Page scans */
965 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
966 return 0;
967 }
968
969 static int hci_auth_req(struct hci_request *req, unsigned long opt)
970 {
971 __u8 auth = opt;
972
973 BT_DBG("%s %x", req->hdev->name, auth);
974
975 /* Authentication */
976 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
977 return 0;
978 }
979
980 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
981 {
982 __u8 encrypt = opt;
983
984 BT_DBG("%s %x", req->hdev->name, encrypt);
985
986 /* Encryption */
987 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
988 return 0;
989 }
990
991 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
992 {
993 __le16 policy = cpu_to_le16(opt);
994
995 BT_DBG("%s %x", req->hdev->name, policy);
996
997 /* Default link policy */
998 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
999 return 0;
1000 }
1001
1002 /* Get HCI device by index.
1003 * Device is held on return. */
1004 struct hci_dev *hci_dev_get(int index)
1005 {
1006 struct hci_dev *hdev = NULL, *d;
1007
1008 BT_DBG("%d", index);
1009
1010 if (index < 0)
1011 return NULL;
1012
1013 read_lock(&hci_dev_list_lock);
1014 list_for_each_entry(d, &hci_dev_list, list) {
1015 if (d->id == index) {
1016 hdev = hci_dev_hold(d);
1017 break;
1018 }
1019 }
1020 read_unlock(&hci_dev_list_lock);
1021 return hdev;
1022 }
1023
1024 /* ---- Inquiry support ---- */
1025
1026 bool hci_discovery_active(struct hci_dev *hdev)
1027 {
1028 struct discovery_state *discov = &hdev->discovery;
1029
1030 switch (discov->state) {
1031 case DISCOVERY_FINDING:
1032 case DISCOVERY_RESOLVING:
1033 return true;
1034
1035 default:
1036 return false;
1037 }
1038 }
1039
1040 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1041 {
1042 int old_state = hdev->discovery.state;
1043
1044 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1045
1046 if (old_state == state)
1047 return;
1048
1049 hdev->discovery.state = state;
1050
1051 switch (state) {
1052 case DISCOVERY_STOPPED:
1053 hci_update_background_scan(hdev);
1054
1055 if (old_state != DISCOVERY_STARTING)
1056 mgmt_discovering(hdev, 0);
1057 break;
1058 case DISCOVERY_STARTING:
1059 break;
1060 case DISCOVERY_FINDING:
1061 mgmt_discovering(hdev, 1);
1062 break;
1063 case DISCOVERY_RESOLVING:
1064 break;
1065 case DISCOVERY_STOPPING:
1066 break;
1067 }
1068 }
1069
1070 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1071 {
1072 struct discovery_state *cache = &hdev->discovery;
1073 struct inquiry_entry *p, *n;
1074
1075 list_for_each_entry_safe(p, n, &cache->all, all) {
1076 list_del(&p->all);
1077 kfree(p);
1078 }
1079
1080 INIT_LIST_HEAD(&cache->unknown);
1081 INIT_LIST_HEAD(&cache->resolve);
1082 }
1083
1084 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1085 bdaddr_t *bdaddr)
1086 {
1087 struct discovery_state *cache = &hdev->discovery;
1088 struct inquiry_entry *e;
1089
1090 BT_DBG("cache %p, %pMR", cache, bdaddr);
1091
1092 list_for_each_entry(e, &cache->all, all) {
1093 if (!bacmp(&e->data.bdaddr, bdaddr))
1094 return e;
1095 }
1096
1097 return NULL;
1098 }
1099
1100 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1101 bdaddr_t *bdaddr)
1102 {
1103 struct discovery_state *cache = &hdev->discovery;
1104 struct inquiry_entry *e;
1105
1106 BT_DBG("cache %p, %pMR", cache, bdaddr);
1107
1108 list_for_each_entry(e, &cache->unknown, list) {
1109 if (!bacmp(&e->data.bdaddr, bdaddr))
1110 return e;
1111 }
1112
1113 return NULL;
1114 }
1115
1116 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1117 bdaddr_t *bdaddr,
1118 int state)
1119 {
1120 struct discovery_state *cache = &hdev->discovery;
1121 struct inquiry_entry *e;
1122
1123 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1124
1125 list_for_each_entry(e, &cache->resolve, list) {
1126 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1127 return e;
1128 if (!bacmp(&e->data.bdaddr, bdaddr))
1129 return e;
1130 }
1131
1132 return NULL;
1133 }
1134
1135 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1136 struct inquiry_entry *ie)
1137 {
1138 struct discovery_state *cache = &hdev->discovery;
1139 struct list_head *pos = &cache->resolve;
1140 struct inquiry_entry *p;
1141
1142 list_del(&ie->list);
1143
1144 list_for_each_entry(p, &cache->resolve, list) {
1145 if (p->name_state != NAME_PENDING &&
1146 abs(p->data.rssi) >= abs(ie->data.rssi))
1147 break;
1148 pos = &p->list;
1149 }
1150
1151 list_add(&ie->list, pos);
1152 }
1153
1154 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1155 bool name_known)
1156 {
1157 struct discovery_state *cache = &hdev->discovery;
1158 struct inquiry_entry *ie;
1159 u32 flags = 0;
1160
1161 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1162
1163 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1164
1165 if (!data->ssp_mode)
1166 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1167
1168 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1169 if (ie) {
1170 if (!ie->data.ssp_mode)
1171 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1172
1173 if (ie->name_state == NAME_NEEDED &&
1174 data->rssi != ie->data.rssi) {
1175 ie->data.rssi = data->rssi;
1176 hci_inquiry_cache_update_resolve(hdev, ie);
1177 }
1178
1179 goto update;
1180 }
1181
1182 /* Entry not in the cache. Add new one. */
1183 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1184 if (!ie) {
1185 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1186 goto done;
1187 }
1188
1189 list_add(&ie->all, &cache->all);
1190
1191 if (name_known) {
1192 ie->name_state = NAME_KNOWN;
1193 } else {
1194 ie->name_state = NAME_NOT_KNOWN;
1195 list_add(&ie->list, &cache->unknown);
1196 }
1197
1198 update:
1199 if (name_known && ie->name_state != NAME_KNOWN &&
1200 ie->name_state != NAME_PENDING) {
1201 ie->name_state = NAME_KNOWN;
1202 list_del(&ie->list);
1203 }
1204
1205 memcpy(&ie->data, data, sizeof(*data));
1206 ie->timestamp = jiffies;
1207 cache->timestamp = jiffies;
1208
1209 if (ie->name_state == NAME_NOT_KNOWN)
1210 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1211
1212 done:
1213 return flags;
1214 }
1215
1216 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1217 {
1218 struct discovery_state *cache = &hdev->discovery;
1219 struct inquiry_info *info = (struct inquiry_info *) buf;
1220 struct inquiry_entry *e;
1221 int copied = 0;
1222
1223 list_for_each_entry(e, &cache->all, all) {
1224 struct inquiry_data *data = &e->data;
1225
1226 if (copied >= num)
1227 break;
1228
1229 bacpy(&info->bdaddr, &data->bdaddr);
1230 info->pscan_rep_mode = data->pscan_rep_mode;
1231 info->pscan_period_mode = data->pscan_period_mode;
1232 info->pscan_mode = data->pscan_mode;
1233 memcpy(info->dev_class, data->dev_class, 3);
1234 info->clock_offset = data->clock_offset;
1235
1236 info++;
1237 copied++;
1238 }
1239
1240 BT_DBG("cache %p, copied %d", cache, copied);
1241 return copied;
1242 }
1243
1244 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1245 {
1246 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1247 struct hci_dev *hdev = req->hdev;
1248 struct hci_cp_inquiry cp;
1249
1250 BT_DBG("%s", hdev->name);
1251
1252 if (test_bit(HCI_INQUIRY, &hdev->flags))
1253 return 0;
1254
1255 /* Start Inquiry */
1256 memcpy(&cp.lap, &ir->lap, 3);
1257 cp.length = ir->length;
1258 cp.num_rsp = ir->num_rsp;
1259 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1260
1261 return 0;
1262 }
1263
1264 int hci_inquiry(void __user *arg)
1265 {
1266 __u8 __user *ptr = arg;
1267 struct hci_inquiry_req ir;
1268 struct hci_dev *hdev;
1269 int err = 0, do_inquiry = 0, max_rsp;
1270 long timeo;
1271 __u8 *buf;
1272
1273 if (copy_from_user(&ir, ptr, sizeof(ir)))
1274 return -EFAULT;
1275
1276 hdev = hci_dev_get(ir.dev_id);
1277 if (!hdev)
1278 return -ENODEV;
1279
1280 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1281 err = -EBUSY;
1282 goto done;
1283 }
1284
1285 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1286 err = -EOPNOTSUPP;
1287 goto done;
1288 }
1289
1290 if (hdev->dev_type != HCI_PRIMARY) {
1291 err = -EOPNOTSUPP;
1292 goto done;
1293 }
1294
1295 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1296 err = -EOPNOTSUPP;
1297 goto done;
1298 }
1299
1300 /* Restrict maximum inquiry length to 60 seconds */
1301 if (ir.length > 60) {
1302 err = -EINVAL;
1303 goto done;
1304 }
1305
1306 hci_dev_lock(hdev);
1307 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1308 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1309 hci_inquiry_cache_flush(hdev);
1310 do_inquiry = 1;
1311 }
1312 hci_dev_unlock(hdev);
1313
1314 timeo = ir.length * msecs_to_jiffies(2000);
1315
1316 if (do_inquiry) {
1317 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1318 timeo, NULL);
1319 if (err < 0)
1320 goto done;
1321
1322 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1323 * cleared). If it is interrupted by a signal, return -EINTR.
1324 */
1325 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1326 TASK_INTERRUPTIBLE)) {
1327 err = -EINTR;
1328 goto done;
1329 }
1330 }
1331
1332 /* for unlimited number of responses we will use buffer with
1333 * 255 entries
1334 */
1335 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1336
1337 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1338 * copy it to the user space.
1339 */
1340 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1341 if (!buf) {
1342 err = -ENOMEM;
1343 goto done;
1344 }
1345
1346 hci_dev_lock(hdev);
1347 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1348 hci_dev_unlock(hdev);
1349
1350 BT_DBG("num_rsp %d", ir.num_rsp);
1351
1352 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1353 ptr += sizeof(ir);
1354 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1355 ir.num_rsp))
1356 err = -EFAULT;
1357 } else
1358 err = -EFAULT;
1359
1360 kfree(buf);
1361
1362 done:
1363 hci_dev_put(hdev);
1364 return err;
1365 }
1366
1367 /**
1368 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1369 * (BD_ADDR) for a HCI device from
1370 * a firmware node property.
1371 * @hdev: The HCI device
1372 *
1373 * Search the firmware node for 'local-bd-address'.
1374 *
1375 * All-zero BD addresses are rejected, because those could be properties
1376 * that exist in the firmware tables, but were not updated by the firmware. For
1377 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1378 */
1379 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1380 {
1381 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1382 bdaddr_t ba;
1383 int ret;
1384
1385 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1386 (u8 *)&ba, sizeof(ba));
1387 if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1388 return;
1389
1390 bacpy(&hdev->public_addr, &ba);
1391 }
1392
1393 static int hci_dev_do_open(struct hci_dev *hdev)
1394 {
1395 int ret = 0;
1396
1397 BT_DBG("%s %p", hdev->name, hdev);
1398
1399 hci_req_sync_lock(hdev);
1400
1401 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1402 ret = -ENODEV;
1403 goto done;
1404 }
1405
1406 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1407 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1408 /* Check for rfkill but allow the HCI setup stage to
1409 * proceed (which in itself doesn't cause any RF activity).
1410 */
1411 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1412 ret = -ERFKILL;
1413 goto done;
1414 }
1415
1416 /* Check for valid public address or a configured static
1417 * random adddress, but let the HCI setup proceed to
1418 * be able to determine if there is a public address
1419 * or not.
1420 *
1421 * In case of user channel usage, it is not important
1422 * if a public address or static random address is
1423 * available.
1424 *
1425 * This check is only valid for BR/EDR controllers
1426 * since AMP controllers do not have an address.
1427 */
1428 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1429 hdev->dev_type == HCI_PRIMARY &&
1430 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1431 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1432 ret = -EADDRNOTAVAIL;
1433 goto done;
1434 }
1435 }
1436
1437 if (test_bit(HCI_UP, &hdev->flags)) {
1438 ret = -EALREADY;
1439 goto done;
1440 }
1441
1442 if (hdev->open(hdev)) {
1443 ret = -EIO;
1444 goto done;
1445 }
1446
1447 set_bit(HCI_RUNNING, &hdev->flags);
1448 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1449
1450 atomic_set(&hdev->cmd_cnt, 1);
1451 set_bit(HCI_INIT, &hdev->flags);
1452
1453 if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1454 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1455 bool invalid_bdaddr;
1456
1457 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1458
1459 if (hdev->setup)
1460 ret = hdev->setup(hdev);
1461
1462 /* The transport driver can set the quirk to mark the
1463 * BD_ADDR invalid before creating the HCI device or in
1464 * its setup callback.
1465 */
1466 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1467 &hdev->quirks);
1468
1469 if (ret)
1470 goto setup_failed;
1471
1472 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1473 if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1474 hci_dev_get_bd_addr_from_property(hdev);
1475
1476 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1477 hdev->set_bdaddr) {
1478 ret = hdev->set_bdaddr(hdev,
1479 &hdev->public_addr);
1480
1481 /* If setting of the BD_ADDR from the device
1482 * property succeeds, then treat the address
1483 * as valid even if the invalid BD_ADDR
1484 * quirk indicates otherwise.
1485 */
1486 if (!ret)
1487 invalid_bdaddr = false;
1488 }
1489 }
1490
1491 setup_failed:
1492 /* The transport driver can set these quirks before
1493 * creating the HCI device or in its setup callback.
1494 *
1495 * For the invalid BD_ADDR quirk it is possible that
1496 * it becomes a valid address if the bootloader does
1497 * provide it (see above).
1498 *
1499 * In case any of them is set, the controller has to
1500 * start up as unconfigured.
1501 */
1502 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1503 invalid_bdaddr)
1504 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1505
1506 /* For an unconfigured controller it is required to
1507 * read at least the version information provided by
1508 * the Read Local Version Information command.
1509 *
1510 * If the set_bdaddr driver callback is provided, then
1511 * also the original Bluetooth public device address
1512 * will be read using the Read BD Address command.
1513 */
1514 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1515 ret = __hci_unconf_init(hdev);
1516 }
1517
1518 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1519 /* If public address change is configured, ensure that
1520 * the address gets programmed. If the driver does not
1521 * support changing the public address, fail the power
1522 * on procedure.
1523 */
1524 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1525 hdev->set_bdaddr)
1526 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1527 else
1528 ret = -EADDRNOTAVAIL;
1529 }
1530
1531 if (!ret) {
1532 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1533 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1534 ret = __hci_init(hdev);
1535 if (!ret && hdev->post_init)
1536 ret = hdev->post_init(hdev);
1537 }
1538 }
1539
1540 /* If the HCI Reset command is clearing all diagnostic settings,
1541 * then they need to be reprogrammed after the init procedure
1542 * completed.
1543 */
1544 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1545 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1546 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1547 ret = hdev->set_diag(hdev, true);
1548
1549 clear_bit(HCI_INIT, &hdev->flags);
1550
1551 if (!ret) {
1552 hci_dev_hold(hdev);
1553 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1554 hci_adv_instances_set_rpa_expired(hdev, true);
1555 set_bit(HCI_UP, &hdev->flags);
1556 hci_sock_dev_event(hdev, HCI_DEV_UP);
1557 hci_leds_update_powered(hdev, true);
1558 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1559 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1560 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1561 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1562 hci_dev_test_flag(hdev, HCI_MGMT) &&
1563 hdev->dev_type == HCI_PRIMARY) {
1564 ret = __hci_req_hci_power_on(hdev);
1565 mgmt_power_on(hdev, ret);
1566 }
1567 } else {
1568 /* Init failed, cleanup */
1569 flush_work(&hdev->tx_work);
1570
1571 /* Since hci_rx_work() is possible to awake new cmd_work
1572 * it should be flushed first to avoid unexpected call of
1573 * hci_cmd_work()
1574 */
1575 flush_work(&hdev->rx_work);
1576 flush_work(&hdev->cmd_work);
1577
1578 skb_queue_purge(&hdev->cmd_q);
1579 skb_queue_purge(&hdev->rx_q);
1580
1581 if (hdev->flush)
1582 hdev->flush(hdev);
1583
1584 if (hdev->sent_cmd) {
1585 kfree_skb(hdev->sent_cmd);
1586 hdev->sent_cmd = NULL;
1587 }
1588
1589 clear_bit(HCI_RUNNING, &hdev->flags);
1590 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1591
1592 hdev->close(hdev);
1593 hdev->flags &= BIT(HCI_RAW);
1594 }
1595
1596 done:
1597 hci_req_sync_unlock(hdev);
1598 return ret;
1599 }
1600
1601 /* ---- HCI ioctl helpers ---- */
1602
1603 int hci_dev_open(__u16 dev)
1604 {
1605 struct hci_dev *hdev;
1606 int err;
1607
1608 hdev = hci_dev_get(dev);
1609 if (!hdev)
1610 return -ENODEV;
1611
1612 /* Devices that are marked as unconfigured can only be powered
1613 * up as user channel. Trying to bring them up as normal devices
1614 * will result into a failure. Only user channel operation is
1615 * possible.
1616 *
1617 * When this function is called for a user channel, the flag
1618 * HCI_USER_CHANNEL will be set first before attempting to
1619 * open the device.
1620 */
1621 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1622 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1623 err = -EOPNOTSUPP;
1624 goto done;
1625 }
1626
1627 /* We need to ensure that no other power on/off work is pending
1628 * before proceeding to call hci_dev_do_open. This is
1629 * particularly important if the setup procedure has not yet
1630 * completed.
1631 */
1632 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1633 cancel_delayed_work(&hdev->power_off);
1634
1635 /* After this call it is guaranteed that the setup procedure
1636 * has finished. This means that error conditions like RFKILL
1637 * or no valid public or static random address apply.
1638 */
1639 flush_workqueue(hdev->req_workqueue);
1640
1641 /* For controllers not using the management interface and that
1642 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1643 * so that pairing works for them. Once the management interface
1644 * is in use this bit will be cleared again and userspace has
1645 * to explicitly enable it.
1646 */
1647 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1648 !hci_dev_test_flag(hdev, HCI_MGMT))
1649 hci_dev_set_flag(hdev, HCI_BONDABLE);
1650
1651 err = hci_dev_do_open(hdev);
1652
1653 done:
1654 hci_dev_put(hdev);
1655 return err;
1656 }
1657
1658 /* This function requires the caller holds hdev->lock */
1659 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1660 {
1661 struct hci_conn_params *p;
1662
1663 list_for_each_entry(p, &hdev->le_conn_params, list) {
1664 if (p->conn) {
1665 hci_conn_drop(p->conn);
1666 hci_conn_put(p->conn);
1667 p->conn = NULL;
1668 }
1669 list_del_init(&p->action);
1670 }
1671
1672 BT_DBG("All LE pending actions cleared");
1673 }
1674
1675 int hci_dev_do_close(struct hci_dev *hdev)
1676 {
1677 bool auto_off;
1678
1679 BT_DBG("%s %p", hdev->name, hdev);
1680
1681 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1682 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1683 test_bit(HCI_UP, &hdev->flags)) {
1684 /* Execute vendor specific shutdown routine */
1685 if (hdev->shutdown)
1686 hdev->shutdown(hdev);
1687 }
1688
1689 cancel_delayed_work(&hdev->power_off);
1690
1691 hci_request_cancel_all(hdev);
1692 hci_req_sync_lock(hdev);
1693
1694 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1695 cancel_delayed_work_sync(&hdev->cmd_timer);
1696 hci_req_sync_unlock(hdev);
1697 return 0;
1698 }
1699
1700 hci_leds_update_powered(hdev, false);
1701
1702 /* Flush RX and TX works */
1703 flush_work(&hdev->tx_work);
1704 flush_work(&hdev->rx_work);
1705
1706 if (hdev->discov_timeout > 0) {
1707 hdev->discov_timeout = 0;
1708 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1709 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1710 }
1711
1712 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1713 cancel_delayed_work(&hdev->service_cache);
1714
1715 if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1716 struct adv_info *adv_instance;
1717
1718 cancel_delayed_work_sync(&hdev->rpa_expired);
1719
1720 list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1721 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1722 }
1723
1724 /* Avoid potential lockdep warnings from the *_flush() calls by
1725 * ensuring the workqueue is empty up front.
1726 */
1727 drain_workqueue(hdev->workqueue);
1728
1729 hci_dev_lock(hdev);
1730
1731 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1732
1733 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1734
1735 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1736 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1737 hci_dev_test_flag(hdev, HCI_MGMT))
1738 __mgmt_power_off(hdev);
1739
1740 hci_inquiry_cache_flush(hdev);
1741 hci_pend_le_actions_clear(hdev);
1742 hci_conn_hash_flush(hdev);
1743 hci_dev_unlock(hdev);
1744
1745 smp_unregister(hdev);
1746
1747 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1748
1749 if (hdev->flush)
1750 hdev->flush(hdev);
1751
1752 /* Reset device */
1753 skb_queue_purge(&hdev->cmd_q);
1754 atomic_set(&hdev->cmd_cnt, 1);
1755 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1756 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1757 set_bit(HCI_INIT, &hdev->flags);
1758 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1759 clear_bit(HCI_INIT, &hdev->flags);
1760 }
1761
1762 /* flush cmd work */
1763 flush_work(&hdev->cmd_work);
1764
1765 /* Drop queues */
1766 skb_queue_purge(&hdev->rx_q);
1767 skb_queue_purge(&hdev->cmd_q);
1768 skb_queue_purge(&hdev->raw_q);
1769
1770 /* Drop last sent command */
1771 if (hdev->sent_cmd) {
1772 cancel_delayed_work_sync(&hdev->cmd_timer);
1773 kfree_skb(hdev->sent_cmd);
1774 hdev->sent_cmd = NULL;
1775 }
1776
1777 clear_bit(HCI_RUNNING, &hdev->flags);
1778 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1779
1780 /* After this point our queues are empty
1781 * and no tasks are scheduled. */
1782 hdev->close(hdev);
1783
1784 /* Clear flags */
1785 hdev->flags &= BIT(HCI_RAW);
1786 hci_dev_clear_volatile_flags(hdev);
1787
1788 /* Controller radio is available but is currently powered down */
1789 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1790
1791 memset(hdev->eir, 0, sizeof(hdev->eir));
1792 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1793 bacpy(&hdev->random_addr, BDADDR_ANY);
1794
1795 hci_req_sync_unlock(hdev);
1796
1797 hci_dev_put(hdev);
1798 return 0;
1799 }
1800
1801 int hci_dev_close(__u16 dev)
1802 {
1803 struct hci_dev *hdev;
1804 int err;
1805
1806 hdev = hci_dev_get(dev);
1807 if (!hdev)
1808 return -ENODEV;
1809
1810 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1811 err = -EBUSY;
1812 goto done;
1813 }
1814
1815 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1816 cancel_delayed_work(&hdev->power_off);
1817
1818 err = hci_dev_do_close(hdev);
1819
1820 done:
1821 hci_dev_put(hdev);
1822 return err;
1823 }
1824
1825 static int hci_dev_do_reset(struct hci_dev *hdev)
1826 {
1827 int ret;
1828
1829 BT_DBG("%s %p", hdev->name, hdev);
1830
1831 hci_req_sync_lock(hdev);
1832
1833 /* Drop queues */
1834 skb_queue_purge(&hdev->rx_q);
1835 skb_queue_purge(&hdev->cmd_q);
1836
1837 /* Avoid potential lockdep warnings from the *_flush() calls by
1838 * ensuring the workqueue is empty up front.
1839 */
1840 drain_workqueue(hdev->workqueue);
1841
1842 hci_dev_lock(hdev);
1843 hci_inquiry_cache_flush(hdev);
1844 hci_conn_hash_flush(hdev);
1845 hci_dev_unlock(hdev);
1846
1847 if (hdev->flush)
1848 hdev->flush(hdev);
1849
1850 atomic_set(&hdev->cmd_cnt, 1);
1851 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1852
1853 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1854
1855 hci_req_sync_unlock(hdev);
1856 return ret;
1857 }
1858
1859 int hci_dev_reset(__u16 dev)
1860 {
1861 struct hci_dev *hdev;
1862 int err;
1863
1864 hdev = hci_dev_get(dev);
1865 if (!hdev)
1866 return -ENODEV;
1867
1868 if (!test_bit(HCI_UP, &hdev->flags)) {
1869 err = -ENETDOWN;
1870 goto done;
1871 }
1872
1873 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1874 err = -EBUSY;
1875 goto done;
1876 }
1877
1878 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1879 err = -EOPNOTSUPP;
1880 goto done;
1881 }
1882
1883 err = hci_dev_do_reset(hdev);
1884
1885 done:
1886 hci_dev_put(hdev);
1887 return err;
1888 }
1889
1890 int hci_dev_reset_stat(__u16 dev)
1891 {
1892 struct hci_dev *hdev;
1893 int ret = 0;
1894
1895 hdev = hci_dev_get(dev);
1896 if (!hdev)
1897 return -ENODEV;
1898
1899 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1900 ret = -EBUSY;
1901 goto done;
1902 }
1903
1904 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1905 ret = -EOPNOTSUPP;
1906 goto done;
1907 }
1908
1909 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1910
1911 done:
1912 hci_dev_put(hdev);
1913 return ret;
1914 }
1915
1916 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1917 {
1918 bool conn_changed, discov_changed;
1919
1920 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1921
1922 if ((scan & SCAN_PAGE))
1923 conn_changed = !hci_dev_test_and_set_flag(hdev,
1924 HCI_CONNECTABLE);
1925 else
1926 conn_changed = hci_dev_test_and_clear_flag(hdev,
1927 HCI_CONNECTABLE);
1928
1929 if ((scan & SCAN_INQUIRY)) {
1930 discov_changed = !hci_dev_test_and_set_flag(hdev,
1931 HCI_DISCOVERABLE);
1932 } else {
1933 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1934 discov_changed = hci_dev_test_and_clear_flag(hdev,
1935 HCI_DISCOVERABLE);
1936 }
1937
1938 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1939 return;
1940
1941 if (conn_changed || discov_changed) {
1942 /* In case this was disabled through mgmt */
1943 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1944
1945 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1946 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1947
1948 mgmt_new_settings(hdev);
1949 }
1950 }
1951
1952 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1953 {
1954 struct hci_dev *hdev;
1955 struct hci_dev_req dr;
1956 int err = 0;
1957
1958 if (copy_from_user(&dr, arg, sizeof(dr)))
1959 return -EFAULT;
1960
1961 hdev = hci_dev_get(dr.dev_id);
1962 if (!hdev)
1963 return -ENODEV;
1964
1965 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1966 err = -EBUSY;
1967 goto done;
1968 }
1969
1970 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1971 err = -EOPNOTSUPP;
1972 goto done;
1973 }
1974
1975 if (hdev->dev_type != HCI_PRIMARY) {
1976 err = -EOPNOTSUPP;
1977 goto done;
1978 }
1979
1980 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1981 err = -EOPNOTSUPP;
1982 goto done;
1983 }
1984
1985 switch (cmd) {
1986 case HCISETAUTH:
1987 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1988 HCI_INIT_TIMEOUT, NULL);
1989 break;
1990
1991 case HCISETENCRYPT:
1992 if (!lmp_encrypt_capable(hdev)) {
1993 err = -EOPNOTSUPP;
1994 break;
1995 }
1996
1997 if (!test_bit(HCI_AUTH, &hdev->flags)) {
1998 /* Auth must be enabled first */
1999 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2000 HCI_INIT_TIMEOUT, NULL);
2001 if (err)
2002 break;
2003 }
2004
2005 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2006 HCI_INIT_TIMEOUT, NULL);
2007 break;
2008
2009 case HCISETSCAN:
2010 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2011 HCI_INIT_TIMEOUT, NULL);
2012
2013 /* Ensure that the connectable and discoverable states
2014 * get correctly modified as this was a non-mgmt change.
2015 */
2016 if (!err)
2017 hci_update_scan_state(hdev, dr.dev_opt);
2018 break;
2019
2020 case HCISETLINKPOL:
2021 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2022 HCI_INIT_TIMEOUT, NULL);
2023 break;
2024
2025 case HCISETLINKMODE:
2026 hdev->link_mode = ((__u16) dr.dev_opt) &
2027 (HCI_LM_MASTER | HCI_LM_ACCEPT);
2028 break;
2029
2030 case HCISETPTYPE:
2031 if (hdev->pkt_type == (__u16) dr.dev_opt)
2032 break;
2033
2034 hdev->pkt_type = (__u16) dr.dev_opt;
2035 mgmt_phy_configuration_changed(hdev, NULL);
2036 break;
2037
2038 case HCISETACLMTU:
2039 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
2040 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2041 break;
2042
2043 case HCISETSCOMTU:
2044 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
2045 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2046 break;
2047
2048 default:
2049 err = -EINVAL;
2050 break;
2051 }
2052
2053 done:
2054 hci_dev_put(hdev);
2055 return err;
2056 }
2057
2058 int hci_get_dev_list(void __user *arg)
2059 {
2060 struct hci_dev *hdev;
2061 struct hci_dev_list_req *dl;
2062 struct hci_dev_req *dr;
2063 int n = 0, size, err;
2064 __u16 dev_num;
2065
2066 if (get_user(dev_num, (__u16 __user *) arg))
2067 return -EFAULT;
2068
2069 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2070 return -EINVAL;
2071
2072 size = sizeof(*dl) + dev_num * sizeof(*dr);
2073
2074 dl = kzalloc(size, GFP_KERNEL);
2075 if (!dl)
2076 return -ENOMEM;
2077
2078 dr = dl->dev_req;
2079
2080 read_lock(&hci_dev_list_lock);
2081 list_for_each_entry(hdev, &hci_dev_list, list) {
2082 unsigned long flags = hdev->flags;
2083
2084 /* When the auto-off is configured it means the transport
2085 * is running, but in that case still indicate that the
2086 * device is actually down.
2087 */
2088 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2089 flags &= ~BIT(HCI_UP);
2090
2091 (dr + n)->dev_id = hdev->id;
2092 (dr + n)->dev_opt = flags;
2093
2094 if (++n >= dev_num)
2095 break;
2096 }
2097 read_unlock(&hci_dev_list_lock);
2098
2099 dl->dev_num = n;
2100 size = sizeof(*dl) + n * sizeof(*dr);
2101
2102 err = copy_to_user(arg, dl, size);
2103 kfree(dl);
2104
2105 return err ? -EFAULT : 0;
2106 }
2107
2108 int hci_get_dev_info(void __user *arg)
2109 {
2110 struct hci_dev *hdev;
2111 struct hci_dev_info di;
2112 unsigned long flags;
2113 int err = 0;
2114
2115 if (copy_from_user(&di, arg, sizeof(di)))
2116 return -EFAULT;
2117
2118 hdev = hci_dev_get(di.dev_id);
2119 if (!hdev)
2120 return -ENODEV;
2121
2122 /* When the auto-off is configured it means the transport
2123 * is running, but in that case still indicate that the
2124 * device is actually down.
2125 */
2126 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2127 flags = hdev->flags & ~BIT(HCI_UP);
2128 else
2129 flags = hdev->flags;
2130
2131 strcpy(di.name, hdev->name);
2132 di.bdaddr = hdev->bdaddr;
2133 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2134 di.flags = flags;
2135 di.pkt_type = hdev->pkt_type;
2136 if (lmp_bredr_capable(hdev)) {
2137 di.acl_mtu = hdev->acl_mtu;
2138 di.acl_pkts = hdev->acl_pkts;
2139 di.sco_mtu = hdev->sco_mtu;
2140 di.sco_pkts = hdev->sco_pkts;
2141 } else {
2142 di.acl_mtu = hdev->le_mtu;
2143 di.acl_pkts = hdev->le_pkts;
2144 di.sco_mtu = 0;
2145 di.sco_pkts = 0;
2146 }
2147 di.link_policy = hdev->link_policy;
2148 di.link_mode = hdev->link_mode;
2149
2150 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2151 memcpy(&di.features, &hdev->features, sizeof(di.features));
2152
2153 if (copy_to_user(arg, &di, sizeof(di)))
2154 err = -EFAULT;
2155
2156 hci_dev_put(hdev);
2157
2158 return err;
2159 }
2160
2161 /* ---- Interface to HCI drivers ---- */
2162
2163 static int hci_rfkill_set_block(void *data, bool blocked)
2164 {
2165 struct hci_dev *hdev = data;
2166
2167 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2168
2169 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2170 return -EBUSY;
2171
2172 if (blocked) {
2173 hci_dev_set_flag(hdev, HCI_RFKILLED);
2174 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2175 !hci_dev_test_flag(hdev, HCI_CONFIG))
2176 hci_dev_do_close(hdev);
2177 } else {
2178 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2179 }
2180
2181 return 0;
2182 }
2183
2184 static const struct rfkill_ops hci_rfkill_ops = {
2185 .set_block = hci_rfkill_set_block,
2186 };
2187
2188 static void hci_power_on(struct work_struct *work)
2189 {
2190 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2191 int err;
2192
2193 BT_DBG("%s", hdev->name);
2194
2195 if (test_bit(HCI_UP, &hdev->flags) &&
2196 hci_dev_test_flag(hdev, HCI_MGMT) &&
2197 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2198 cancel_delayed_work(&hdev->power_off);
2199 hci_req_sync_lock(hdev);
2200 err = __hci_req_hci_power_on(hdev);
2201 hci_req_sync_unlock(hdev);
2202 mgmt_power_on(hdev, err);
2203 return;
2204 }
2205
2206 err = hci_dev_do_open(hdev);
2207 if (err < 0) {
2208 hci_dev_lock(hdev);
2209 mgmt_set_powered_failed(hdev, err);
2210 hci_dev_unlock(hdev);
2211 return;
2212 }
2213
2214 /* During the HCI setup phase, a few error conditions are
2215 * ignored and they need to be checked now. If they are still
2216 * valid, it is important to turn the device back off.
2217 */
2218 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2219 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2220 (hdev->dev_type == HCI_PRIMARY &&
2221 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2222 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2223 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2224 hci_dev_do_close(hdev);
2225 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2226 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2227 HCI_AUTO_OFF_TIMEOUT);
2228 }
2229
2230 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2231 /* For unconfigured devices, set the HCI_RAW flag
2232 * so that userspace can easily identify them.
2233 */
2234 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2235 set_bit(HCI_RAW, &hdev->flags);
2236
2237 /* For fully configured devices, this will send
2238 * the Index Added event. For unconfigured devices,
2239 * it will send Unconfigued Index Added event.
2240 *
2241 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2242 * and no event will be send.
2243 */
2244 mgmt_index_added(hdev);
2245 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2246 /* When the controller is now configured, then it
2247 * is important to clear the HCI_RAW flag.
2248 */
2249 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2250 clear_bit(HCI_RAW, &hdev->flags);
2251
2252 /* Powering on the controller with HCI_CONFIG set only
2253 * happens with the transition from unconfigured to
2254 * configured. This will send the Index Added event.
2255 */
2256 mgmt_index_added(hdev);
2257 }
2258 }
2259
2260 static void hci_power_off(struct work_struct *work)
2261 {
2262 struct hci_dev *hdev = container_of(work, struct hci_dev,
2263 power_off.work);
2264
2265 BT_DBG("%s", hdev->name);
2266
2267 hci_dev_do_close(hdev);
2268 }
2269
2270 static void hci_error_reset(struct work_struct *work)
2271 {
2272 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2273
2274 BT_DBG("%s", hdev->name);
2275
2276 if (hdev->hw_error)
2277 hdev->hw_error(hdev, hdev->hw_error_code);
2278 else
2279 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2280
2281 if (hci_dev_do_close(hdev))
2282 return;
2283
2284 hci_dev_do_open(hdev);
2285 }
2286
2287 void hci_uuids_clear(struct hci_dev *hdev)
2288 {
2289 struct bt_uuid *uuid, *tmp;
2290
2291 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2292 list_del(&uuid->list);
2293 kfree(uuid);
2294 }
2295 }
2296
2297 void hci_link_keys_clear(struct hci_dev *hdev)
2298 {
2299 struct link_key *key;
2300
2301 list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2302 list_del_rcu(&key->list);
2303 kfree_rcu(key, rcu);
2304 }
2305 }
2306
2307 void hci_smp_ltks_clear(struct hci_dev *hdev)
2308 {
2309 struct smp_ltk *k;
2310
2311 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2312 list_del_rcu(&k->list);
2313 kfree_rcu(k, rcu);
2314 }
2315 }
2316
2317 void hci_smp_irks_clear(struct hci_dev *hdev)
2318 {
2319 struct smp_irk *k;
2320
2321 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2322 list_del_rcu(&k->list);
2323 kfree_rcu(k, rcu);
2324 }
2325 }
2326
2327 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2328 {
2329 struct link_key *k;
2330
2331 rcu_read_lock();
2332 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2333 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2334 rcu_read_unlock();
2335 return k;
2336 }
2337 }
2338 rcu_read_unlock();
2339
2340 return NULL;
2341 }
2342
2343 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2344 u8 key_type, u8 old_key_type)
2345 {
2346 /* Legacy key */
2347 if (key_type < 0x03)
2348 return true;
2349
2350 /* Debug keys are insecure so don't store them persistently */
2351 if (key_type == HCI_LK_DEBUG_COMBINATION)
2352 return false;
2353
2354 /* Changed combination key and there's no previous one */
2355 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2356 return false;
2357
2358 /* Security mode 3 case */
2359 if (!conn)
2360 return true;
2361
2362 /* BR/EDR key derived using SC from an LE link */
2363 if (conn->type == LE_LINK)
2364 return true;
2365
2366 /* Neither local nor remote side had no-bonding as requirement */
2367 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2368 return true;
2369
2370 /* Local side had dedicated bonding as requirement */
2371 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2372 return true;
2373
2374 /* Remote side had dedicated bonding as requirement */
2375 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2376 return true;
2377
2378 /* If none of the above criteria match, then don't store the key
2379 * persistently */
2380 return false;
2381 }
2382
2383 static u8 ltk_role(u8 type)
2384 {
2385 if (type == SMP_LTK)
2386 return HCI_ROLE_MASTER;
2387
2388 return HCI_ROLE_SLAVE;
2389 }
2390
2391 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2392 u8 addr_type, u8 role)
2393 {
2394 struct smp_ltk *k;
2395
2396 rcu_read_lock();
2397 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2398 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2399 continue;
2400
2401 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2402 rcu_read_unlock();
2403 return k;
2404 }
2405 }
2406 rcu_read_unlock();
2407
2408 return NULL;
2409 }
2410
2411 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2412 {
2413 struct smp_irk *irk;
2414
2415 rcu_read_lock();
2416 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2417 if (!bacmp(&irk->rpa, rpa)) {
2418 rcu_read_unlock();
2419 return irk;
2420 }
2421 }
2422
2423 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2424 if (smp_irk_matches(hdev, irk->val, rpa)) {
2425 bacpy(&irk->rpa, rpa);
2426 rcu_read_unlock();
2427 return irk;
2428 }
2429 }
2430 rcu_read_unlock();
2431
2432 return NULL;
2433 }
2434
2435 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2436 u8 addr_type)
2437 {
2438 struct smp_irk *irk;
2439
2440 /* Identity Address must be public or static random */
2441 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2442 return NULL;
2443
2444 rcu_read_lock();
2445 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2446 if (addr_type == irk->addr_type &&
2447 bacmp(bdaddr, &irk->bdaddr) == 0) {
2448 rcu_read_unlock();
2449 return irk;
2450 }
2451 }
2452 rcu_read_unlock();
2453
2454 return NULL;
2455 }
2456
2457 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2458 bdaddr_t *bdaddr, u8 *val, u8 type,
2459 u8 pin_len, bool *persistent)
2460 {
2461 struct link_key *key, *old_key;
2462 u8 old_key_type;
2463
2464 old_key = hci_find_link_key(hdev, bdaddr);
2465 if (old_key) {
2466 old_key_type = old_key->type;
2467 key = old_key;
2468 } else {
2469 old_key_type = conn ? conn->key_type : 0xff;
2470 key = kzalloc(sizeof(*key), GFP_KERNEL);
2471 if (!key)
2472 return NULL;
2473 list_add_rcu(&key->list, &hdev->link_keys);
2474 }
2475
2476 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2477
2478 /* Some buggy controller combinations generate a changed
2479 * combination key for legacy pairing even when there's no
2480 * previous key */
2481 if (type == HCI_LK_CHANGED_COMBINATION &&
2482 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2483 type = HCI_LK_COMBINATION;
2484 if (conn)
2485 conn->key_type = type;
2486 }
2487
2488 bacpy(&key->bdaddr, bdaddr);
2489 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2490 key->pin_len = pin_len;
2491
2492 if (type == HCI_LK_CHANGED_COMBINATION)
2493 key->type = old_key_type;
2494 else
2495 key->type = type;
2496
2497 if (persistent)
2498 *persistent = hci_persistent_key(hdev, conn, type,
2499 old_key_type);
2500
2501 return key;
2502 }
2503
2504 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2505 u8 addr_type, u8 type, u8 authenticated,
2506 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2507 {
2508 struct smp_ltk *key, *old_key;
2509 u8 role = ltk_role(type);
2510
2511 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2512 if (old_key)
2513 key = old_key;
2514 else {
2515 key = kzalloc(sizeof(*key), GFP_KERNEL);
2516 if (!key)
2517 return NULL;
2518 list_add_rcu(&key->list, &hdev->long_term_keys);
2519 }
2520
2521 bacpy(&key->bdaddr, bdaddr);
2522 key->bdaddr_type = addr_type;
2523 memcpy(key->val, tk, sizeof(key->val));
2524 key->authenticated = authenticated;
2525 key->ediv = ediv;
2526 key->rand = rand;
2527 key->enc_size = enc_size;
2528 key->type = type;
2529
2530 return key;
2531 }
2532
2533 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2534 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2535 {
2536 struct smp_irk *irk;
2537
2538 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2539 if (!irk) {
2540 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2541 if (!irk)
2542 return NULL;
2543
2544 bacpy(&irk->bdaddr, bdaddr);
2545 irk->addr_type = addr_type;
2546
2547 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2548 }
2549
2550 memcpy(irk->val, val, 16);
2551 bacpy(&irk->rpa, rpa);
2552
2553 return irk;
2554 }
2555
2556 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2557 {
2558 struct link_key *key;
2559
2560 key = hci_find_link_key(hdev, bdaddr);
2561 if (!key)
2562 return -ENOENT;
2563
2564 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2565
2566 list_del_rcu(&key->list);
2567 kfree_rcu(key, rcu);
2568
2569 return 0;
2570 }
2571
2572 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2573 {
2574 struct smp_ltk *k;
2575 int removed = 0;
2576
2577 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2578 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2579 continue;
2580
2581 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2582
2583 list_del_rcu(&k->list);
2584 kfree_rcu(k, rcu);
2585 removed++;
2586 }
2587
2588 return removed ? 0 : -ENOENT;
2589 }
2590
2591 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2592 {
2593 struct smp_irk *k;
2594
2595 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2596 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2597 continue;
2598
2599 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2600
2601 list_del_rcu(&k->list);
2602 kfree_rcu(k, rcu);
2603 }
2604 }
2605
2606 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2607 {
2608 struct smp_ltk *k;
2609 struct smp_irk *irk;
2610 u8 addr_type;
2611
2612 if (type == BDADDR_BREDR) {
2613 if (hci_find_link_key(hdev, bdaddr))
2614 return true;
2615 return false;
2616 }
2617
2618 /* Convert to HCI addr type which struct smp_ltk uses */
2619 if (type == BDADDR_LE_PUBLIC)
2620 addr_type = ADDR_LE_DEV_PUBLIC;
2621 else
2622 addr_type = ADDR_LE_DEV_RANDOM;
2623
2624 irk = hci_get_irk(hdev, bdaddr, addr_type);
2625 if (irk) {
2626 bdaddr = &irk->bdaddr;
2627 addr_type = irk->addr_type;
2628 }
2629
2630 rcu_read_lock();
2631 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2632 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2633 rcu_read_unlock();
2634 return true;
2635 }
2636 }
2637 rcu_read_unlock();
2638
2639 return false;
2640 }
2641
2642 /* HCI command timer function */
2643 static void hci_cmd_timeout(struct work_struct *work)
2644 {
2645 struct hci_dev *hdev = container_of(work, struct hci_dev,
2646 cmd_timer.work);
2647
2648 if (hdev->sent_cmd) {
2649 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2650 u16 opcode = __le16_to_cpu(sent->opcode);
2651
2652 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2653 } else {
2654 bt_dev_err(hdev, "command tx timeout");
2655 }
2656
2657 if (hdev->cmd_timeout)
2658 hdev->cmd_timeout(hdev);
2659
2660 atomic_set(&hdev->cmd_cnt, 1);
2661 queue_work(hdev->workqueue, &hdev->cmd_work);
2662 }
2663
2664 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2665 bdaddr_t *bdaddr, u8 bdaddr_type)
2666 {
2667 struct oob_data *data;
2668
2669 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2670 if (bacmp(bdaddr, &data->bdaddr) != 0)
2671 continue;
2672 if (data->bdaddr_type != bdaddr_type)
2673 continue;
2674 return data;
2675 }
2676
2677 return NULL;
2678 }
2679
2680 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2681 u8 bdaddr_type)
2682 {
2683 struct oob_data *data;
2684
2685 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2686 if (!data)
2687 return -ENOENT;
2688
2689 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2690
2691 list_del(&data->list);
2692 kfree(data);
2693
2694 return 0;
2695 }
2696
2697 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2698 {
2699 struct oob_data *data, *n;
2700
2701 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2702 list_del(&data->list);
2703 kfree(data);
2704 }
2705 }
2706
2707 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2708 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2709 u8 *hash256, u8 *rand256)
2710 {
2711 struct oob_data *data;
2712
2713 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2714 if (!data) {
2715 data = kmalloc(sizeof(*data), GFP_KERNEL);
2716 if (!data)
2717 return -ENOMEM;
2718
2719 bacpy(&data->bdaddr, bdaddr);
2720 data->bdaddr_type = bdaddr_type;
2721 list_add(&data->list, &hdev->remote_oob_data);
2722 }
2723
2724 if (hash192 && rand192) {
2725 memcpy(data->hash192, hash192, sizeof(data->hash192));
2726 memcpy(data->rand192, rand192, sizeof(data->rand192));
2727 if (hash256 && rand256)
2728 data->present = 0x03;
2729 } else {
2730 memset(data->hash192, 0, sizeof(data->hash192));
2731 memset(data->rand192, 0, sizeof(data->rand192));
2732 if (hash256 && rand256)
2733 data->present = 0x02;
2734 else
2735 data->present = 0x00;
2736 }
2737
2738 if (hash256 && rand256) {
2739 memcpy(data->hash256, hash256, sizeof(data->hash256));
2740 memcpy(data->rand256, rand256, sizeof(data->rand256));
2741 } else {
2742 memset(data->hash256, 0, sizeof(data->hash256));
2743 memset(data->rand256, 0, sizeof(data->rand256));
2744 if (hash192 && rand192)
2745 data->present = 0x01;
2746 }
2747
2748 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2749
2750 return 0;
2751 }
2752
2753 /* This function requires the caller holds hdev->lock */
2754 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2755 {
2756 struct adv_info *adv_instance;
2757
2758 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2759 if (adv_instance->instance == instance)
2760 return adv_instance;
2761 }
2762
2763 return NULL;
2764 }
2765
2766 /* This function requires the caller holds hdev->lock */
2767 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2768 {
2769 struct adv_info *cur_instance;
2770
2771 cur_instance = hci_find_adv_instance(hdev, instance);
2772 if (!cur_instance)
2773 return NULL;
2774
2775 if (cur_instance == list_last_entry(&hdev->adv_instances,
2776 struct adv_info, list))
2777 return list_first_entry(&hdev->adv_instances,
2778 struct adv_info, list);
2779 else
2780 return list_next_entry(cur_instance, list);
2781 }
2782
2783 /* This function requires the caller holds hdev->lock */
2784 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2785 {
2786 struct adv_info *adv_instance;
2787
2788 adv_instance = hci_find_adv_instance(hdev, instance);
2789 if (!adv_instance)
2790 return -ENOENT;
2791
2792 BT_DBG("%s removing %dMR", hdev->name, instance);
2793
2794 if (hdev->cur_adv_instance == instance) {
2795 if (hdev->adv_instance_timeout) {
2796 cancel_delayed_work(&hdev->adv_instance_expire);
2797 hdev->adv_instance_timeout = 0;
2798 }
2799 hdev->cur_adv_instance = 0x00;
2800 }
2801
2802 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2803
2804 list_del(&adv_instance->list);
2805 kfree(adv_instance);
2806
2807 hdev->adv_instance_cnt--;
2808
2809 return 0;
2810 }
2811
2812 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2813 {
2814 struct adv_info *adv_instance, *n;
2815
2816 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2817 adv_instance->rpa_expired = rpa_expired;
2818 }
2819
2820 /* This function requires the caller holds hdev->lock */
2821 void hci_adv_instances_clear(struct hci_dev *hdev)
2822 {
2823 struct adv_info *adv_instance, *n;
2824
2825 if (hdev->adv_instance_timeout) {
2826 cancel_delayed_work(&hdev->adv_instance_expire);
2827 hdev->adv_instance_timeout = 0;
2828 }
2829
2830 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2831 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2832 list_del(&adv_instance->list);
2833 kfree(adv_instance);
2834 }
2835
2836 hdev->adv_instance_cnt = 0;
2837 hdev->cur_adv_instance = 0x00;
2838 }
2839
2840 static void adv_instance_rpa_expired(struct work_struct *work)
2841 {
2842 struct adv_info *adv_instance = container_of(work, struct adv_info,
2843 rpa_expired_cb.work);
2844
2845 BT_DBG("");
2846
2847 adv_instance->rpa_expired = true;
2848 }
2849
2850 /* This function requires the caller holds hdev->lock */
2851 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2852 u16 adv_data_len, u8 *adv_data,
2853 u16 scan_rsp_len, u8 *scan_rsp_data,
2854 u16 timeout, u16 duration)
2855 {
2856 struct adv_info *adv_instance;
2857
2858 adv_instance = hci_find_adv_instance(hdev, instance);
2859 if (adv_instance) {
2860 memset(adv_instance->adv_data, 0,
2861 sizeof(adv_instance->adv_data));
2862 memset(adv_instance->scan_rsp_data, 0,
2863 sizeof(adv_instance->scan_rsp_data));
2864 } else {
2865 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2866 instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2867 return -EOVERFLOW;
2868
2869 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2870 if (!adv_instance)
2871 return -ENOMEM;
2872
2873 adv_instance->pending = true;
2874 adv_instance->instance = instance;
2875 list_add(&adv_instance->list, &hdev->adv_instances);
2876 hdev->adv_instance_cnt++;
2877 }
2878
2879 adv_instance->flags = flags;
2880 adv_instance->adv_data_len = adv_data_len;
2881 adv_instance->scan_rsp_len = scan_rsp_len;
2882
2883 if (adv_data_len)
2884 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2885
2886 if (scan_rsp_len)
2887 memcpy(adv_instance->scan_rsp_data,
2888 scan_rsp_data, scan_rsp_len);
2889
2890 adv_instance->timeout = timeout;
2891 adv_instance->remaining_time = timeout;
2892
2893 if (duration == 0)
2894 adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2895 else
2896 adv_instance->duration = duration;
2897
2898 adv_instance->tx_power = HCI_TX_POWER_INVALID;
2899
2900 INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
2901 adv_instance_rpa_expired);
2902
2903 BT_DBG("%s for %dMR", hdev->name, instance);
2904
2905 return 0;
2906 }
2907
2908 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2909 bdaddr_t *bdaddr, u8 type)
2910 {
2911 struct bdaddr_list *b;
2912
2913 list_for_each_entry(b, bdaddr_list, list) {
2914 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2915 return b;
2916 }
2917
2918 return NULL;
2919 }
2920
2921 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2922 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2923 u8 type)
2924 {
2925 struct bdaddr_list_with_irk *b;
2926
2927 list_for_each_entry(b, bdaddr_list, list) {
2928 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2929 return b;
2930 }
2931
2932 return NULL;
2933 }
2934
2935 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2936 {
2937 struct bdaddr_list *b, *n;
2938
2939 list_for_each_entry_safe(b, n, bdaddr_list, list) {
2940 list_del(&b->list);
2941 kfree(b);
2942 }
2943 }
2944
2945 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2946 {
2947 struct bdaddr_list *entry;
2948
2949 if (!bacmp(bdaddr, BDADDR_ANY))
2950 return -EBADF;
2951
2952 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2953 return -EEXIST;
2954
2955 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2956 if (!entry)
2957 return -ENOMEM;
2958
2959 bacpy(&entry->bdaddr, bdaddr);
2960 entry->bdaddr_type = type;
2961
2962 list_add(&entry->list, list);
2963
2964 return 0;
2965 }
2966
2967 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2968 u8 type, u8 *peer_irk, u8 *local_irk)
2969 {
2970 struct bdaddr_list_with_irk *entry;
2971
2972 if (!bacmp(bdaddr, BDADDR_ANY))
2973 return -EBADF;
2974
2975 if (hci_bdaddr_list_lookup(list, bdaddr, type))
2976 return -EEXIST;
2977
2978 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2979 if (!entry)
2980 return -ENOMEM;
2981
2982 bacpy(&entry->bdaddr, bdaddr);
2983 entry->bdaddr_type = type;
2984
2985 if (peer_irk)
2986 memcpy(entry->peer_irk, peer_irk, 16);
2987
2988 if (local_irk)
2989 memcpy(entry->local_irk, local_irk, 16);
2990
2991 list_add(&entry->list, list);
2992
2993 return 0;
2994 }
2995
2996 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2997 {
2998 struct bdaddr_list *entry;
2999
3000 if (!bacmp(bdaddr, BDADDR_ANY)) {
3001 hci_bdaddr_list_clear(list);
3002 return 0;
3003 }
3004
3005 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3006 if (!entry)
3007 return -ENOENT;
3008
3009 list_del(&entry->list);
3010 kfree(entry);
3011
3012 return 0;
3013 }
3014
3015 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3016 u8 type)
3017 {
3018 struct bdaddr_list_with_irk *entry;
3019
3020 if (!bacmp(bdaddr, BDADDR_ANY)) {
3021 hci_bdaddr_list_clear(list);
3022 return 0;
3023 }
3024
3025 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3026 if (!entry)
3027 return -ENOENT;
3028
3029 list_del(&entry->list);
3030 kfree(entry);
3031
3032 return 0;
3033 }
3034
3035 /* This function requires the caller holds hdev->lock */
3036 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3037 bdaddr_t *addr, u8 addr_type)
3038 {
3039 struct hci_conn_params *params;
3040
3041 list_for_each_entry(params, &hdev->le_conn_params, list) {
3042 if (bacmp(&params->addr, addr) == 0 &&
3043 params->addr_type == addr_type) {
3044 return params;
3045 }
3046 }
3047
3048 return NULL;
3049 }
3050
3051 /* This function requires the caller holds hdev->lock */
3052 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3053 bdaddr_t *addr, u8 addr_type)
3054 {
3055 struct hci_conn_params *param;
3056
3057 list_for_each_entry(param, list, action) {
3058 if (bacmp(&param->addr, addr) == 0 &&
3059 param->addr_type == addr_type)
3060 return param;
3061 }
3062
3063 return NULL;
3064 }
3065
3066 /* This function requires the caller holds hdev->lock */
3067 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3068 bdaddr_t *addr, u8 addr_type)
3069 {
3070 struct hci_conn_params *params;
3071
3072 params = hci_conn_params_lookup(hdev, addr, addr_type);
3073 if (params)
3074 return params;
3075
3076 params = kzalloc(sizeof(*params), GFP_KERNEL);
3077 if (!params) {
3078 bt_dev_err(hdev, "out of memory");
3079 return NULL;
3080 }
3081
3082 bacpy(&params->addr, addr);
3083 params->addr_type = addr_type;
3084
3085 list_add(&params->list, &hdev->le_conn_params);
3086 INIT_LIST_HEAD(&params->action);
3087
3088 params->conn_min_interval = hdev->le_conn_min_interval;
3089 params->conn_max_interval = hdev->le_conn_max_interval;
3090 params->conn_latency = hdev->le_conn_latency;
3091 params->supervision_timeout = hdev->le_supv_timeout;
3092 params->auto_connect = HCI_AUTO_CONN_DISABLED;
3093
3094 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3095
3096 return params;
3097 }
3098
3099 static void hci_conn_params_free(struct hci_conn_params *params)
3100 {
3101 if (params->conn) {
3102 hci_conn_drop(params->conn);
3103 hci_conn_put(params->conn);
3104 }
3105
3106 list_del(&params->action);
3107 list_del(&params->list);
3108 kfree(params);
3109 }
3110
3111 /* This function requires the caller holds hdev->lock */
3112 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3113 {
3114 struct hci_conn_params *params;
3115
3116 params = hci_conn_params_lookup(hdev, addr, addr_type);
3117 if (!params)
3118 return;
3119
3120 hci_conn_params_free(params);
3121
3122 hci_update_background_scan(hdev);
3123
3124 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3125 }
3126
3127 /* This function requires the caller holds hdev->lock */
3128 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3129 {
3130 struct hci_conn_params *params, *tmp;
3131
3132 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3133 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3134 continue;
3135
3136 /* If trying to estabilish one time connection to disabled
3137 * device, leave the params, but mark them as just once.
3138 */
3139 if (params->explicit_connect) {
3140 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3141 continue;
3142 }
3143
3144 list_del(&params->list);
3145 kfree(params);
3146 }
3147
3148 BT_DBG("All LE disabled connection parameters were removed");
3149 }
3150
3151 /* This function requires the caller holds hdev->lock */
3152 static void hci_conn_params_clear_all(struct hci_dev *hdev)
3153 {
3154 struct hci_conn_params *params, *tmp;
3155
3156 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3157 hci_conn_params_free(params);
3158
3159 BT_DBG("All LE connection parameters were removed");
3160 }
3161
3162 /* Copy the Identity Address of the controller.
3163 *
3164 * If the controller has a public BD_ADDR, then by default use that one.
3165 * If this is a LE only controller without a public address, default to
3166 * the static random address.
3167 *
3168 * For debugging purposes it is possible to force controllers with a
3169 * public address to use the static random address instead.
3170 *
3171 * In case BR/EDR has been disabled on a dual-mode controller and
3172 * userspace has configured a static address, then that address
3173 * becomes the identity address instead of the public BR/EDR address.
3174 */
3175 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3176 u8 *bdaddr_type)
3177 {
3178 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3179 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3180 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3181 bacmp(&hdev->static_addr, BDADDR_ANY))) {
3182 bacpy(bdaddr, &hdev->static_addr);
3183 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3184 } else {
3185 bacpy(bdaddr, &hdev->bdaddr);
3186 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3187 }
3188 }
3189
3190 /* Alloc HCI device */
3191 struct hci_dev *hci_alloc_dev(void)
3192 {
3193 struct hci_dev *hdev;
3194
3195 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3196 if (!hdev)
3197 return NULL;
3198
3199 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3200 hdev->esco_type = (ESCO_HV1);
3201 hdev->link_mode = (HCI_LM_ACCEPT);
3202 hdev->num_iac = 0x01; /* One IAC support is mandatory */
3203 hdev->io_capability = 0x03; /* No Input No Output */
3204 hdev->manufacturer = 0xffff; /* Default to internal use */
3205 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3206 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3207 hdev->adv_instance_cnt = 0;
3208 hdev->cur_adv_instance = 0x00;
3209 hdev->adv_instance_timeout = 0;
3210
3211 hdev->sniff_max_interval = 800;
3212 hdev->sniff_min_interval = 80;
3213
3214 hdev->le_adv_channel_map = 0x07;
3215 hdev->le_adv_min_interval = 0x0800;
3216 hdev->le_adv_max_interval = 0x0800;
3217 hdev->le_scan_interval = 0x0060;
3218 hdev->le_scan_window = 0x0030;
3219 hdev->le_conn_min_interval = 0x0018;
3220 hdev->le_conn_max_interval = 0x0028;
3221 hdev->le_conn_latency = 0x0000;
3222 hdev->le_supv_timeout = 0x002a;
3223 hdev->le_def_tx_len = 0x001b;
3224 hdev->le_def_tx_time = 0x0148;
3225 hdev->le_max_tx_len = 0x001b;
3226 hdev->le_max_tx_time = 0x0148;
3227 hdev->le_max_rx_len = 0x001b;
3228 hdev->le_max_rx_time = 0x0148;
3229 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3230 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3231 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3232 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3233 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3234
3235 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3236 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3237 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3238 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3239 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3240 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3241
3242 mutex_init(&hdev->lock);
3243 mutex_init(&hdev->req_lock);
3244
3245 INIT_LIST_HEAD(&hdev->mgmt_pending);
3246 INIT_LIST_HEAD(&hdev->blacklist);
3247 INIT_LIST_HEAD(&hdev->whitelist);
3248 INIT_LIST_HEAD(&hdev->uuids);
3249 INIT_LIST_HEAD(&hdev->link_keys);
3250 INIT_LIST_HEAD(&hdev->long_term_keys);
3251 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3252 INIT_LIST_HEAD(&hdev->remote_oob_data);
3253 INIT_LIST_HEAD(&hdev->le_white_list);
3254 INIT_LIST_HEAD(&hdev->le_resolv_list);
3255 INIT_LIST_HEAD(&hdev->le_conn_params);
3256 INIT_LIST_HEAD(&hdev->pend_le_conns);
3257 INIT_LIST_HEAD(&hdev->pend_le_reports);
3258 INIT_LIST_HEAD(&hdev->conn_hash.list);
3259 INIT_LIST_HEAD(&hdev->adv_instances);
3260
3261 INIT_WORK(&hdev->rx_work, hci_rx_work);
3262 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3263 INIT_WORK(&hdev->tx_work, hci_tx_work);
3264 INIT_WORK(&hdev->power_on, hci_power_on);
3265 INIT_WORK(&hdev->error_reset, hci_error_reset);
3266
3267 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3268
3269 skb_queue_head_init(&hdev->rx_q);
3270 skb_queue_head_init(&hdev->cmd_q);
3271 skb_queue_head_init(&hdev->raw_q);
3272
3273 init_waitqueue_head(&hdev->req_wait_q);
3274
3275 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3276
3277 hci_request_setup(hdev);
3278
3279 hci_init_sysfs(hdev);
3280 discovery_init(hdev);
3281
3282 return hdev;
3283 }
3284 EXPORT_SYMBOL(hci_alloc_dev);
3285
3286 /* Free HCI device */
3287 void hci_free_dev(struct hci_dev *hdev)
3288 {
3289 /* will free via device release */
3290 put_device(&hdev->dev);
3291 }
3292 EXPORT_SYMBOL(hci_free_dev);
3293
3294 /* Register HCI device */
3295 int hci_register_dev(struct hci_dev *hdev)
3296 {
3297 int id, error;
3298
3299 if (!hdev->open || !hdev->close || !hdev->send)
3300 return -EINVAL;
3301
3302 /* Do not allow HCI_AMP devices to register at index 0,
3303 * so the index can be used as the AMP controller ID.
3304 */
3305 switch (hdev->dev_type) {
3306 case HCI_PRIMARY:
3307 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3308 break;
3309 case HCI_AMP:
3310 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3311 break;
3312 default:
3313 return -EINVAL;
3314 }
3315
3316 if (id < 0)
3317 return id;
3318
3319 sprintf(hdev->name, "hci%d", id);
3320 hdev->id = id;
3321
3322 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3323
3324 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3325 if (!hdev->workqueue) {
3326 error = -ENOMEM;
3327 goto err;
3328 }
3329
3330 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3331 hdev->name);
3332 if (!hdev->req_workqueue) {
3333 destroy_workqueue(hdev->workqueue);
3334 error = -ENOMEM;
3335 goto err;
3336 }
3337
3338 if (!IS_ERR_OR_NULL(bt_debugfs))
3339 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3340
3341 dev_set_name(&hdev->dev, "%s", hdev->name);
3342
3343 error = device_add(&hdev->dev);
3344 if (error < 0)
3345 goto err_wqueue;
3346
3347 hci_leds_init(hdev);
3348
3349 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3350 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3351 hdev);
3352 if (hdev->rfkill) {
3353 if (rfkill_register(hdev->rfkill) < 0) {
3354 rfkill_destroy(hdev->rfkill);
3355 hdev->rfkill = NULL;
3356 }
3357 }
3358
3359 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3360 hci_dev_set_flag(hdev, HCI_RFKILLED);
3361
3362 hci_dev_set_flag(hdev, HCI_SETUP);
3363 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3364
3365 if (hdev->dev_type == HCI_PRIMARY) {
3366 /* Assume BR/EDR support until proven otherwise (such as
3367 * through reading supported features during init.
3368 */
3369 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3370 }
3371
3372 write_lock(&hci_dev_list_lock);
3373 list_add(&hdev->list, &hci_dev_list);
3374 write_unlock(&hci_dev_list_lock);
3375
3376 /* Devices that are marked for raw-only usage are unconfigured
3377 * and should not be included in normal operation.
3378 */
3379 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3380 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3381
3382 hci_sock_dev_event(hdev, HCI_DEV_REG);
3383 hci_dev_hold(hdev);
3384
3385 queue_work(hdev->req_workqueue, &hdev->power_on);
3386
3387 return id;
3388
3389 err_wqueue:
3390 debugfs_remove_recursive(hdev->debugfs);
3391 destroy_workqueue(hdev->workqueue);
3392 destroy_workqueue(hdev->req_workqueue);
3393 err:
3394 ida_simple_remove(&hci_index_ida, hdev->id);
3395
3396 return error;
3397 }
3398 EXPORT_SYMBOL(hci_register_dev);
3399
3400 /* Unregister HCI device */
3401 void hci_unregister_dev(struct hci_dev *hdev)
3402 {
3403 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3404
3405 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3406
3407 write_lock(&hci_dev_list_lock);
3408 list_del(&hdev->list);
3409 write_unlock(&hci_dev_list_lock);
3410
3411 cancel_work_sync(&hdev->power_on);
3412
3413 hci_dev_do_close(hdev);
3414
3415 if (!test_bit(HCI_INIT, &hdev->flags) &&
3416 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3417 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3418 hci_dev_lock(hdev);
3419 mgmt_index_removed(hdev);
3420 hci_dev_unlock(hdev);
3421 }
3422
3423 /* mgmt_index_removed should take care of emptying the
3424 * pending list */
3425 BUG_ON(!list_empty(&hdev->mgmt_pending));
3426
3427 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3428
3429 if (hdev->rfkill) {
3430 rfkill_unregister(hdev->rfkill);
3431 rfkill_destroy(hdev->rfkill);
3432 }
3433
3434 device_del(&hdev->dev);
3435 /* Actual cleanup is deferred until hci_cleanup_dev(). */
3436 hci_dev_put(hdev);
3437 }
3438 EXPORT_SYMBOL(hci_unregister_dev);
3439
3440 /* Cleanup HCI device */
3441 void hci_cleanup_dev(struct hci_dev *hdev)
3442 {
3443 debugfs_remove_recursive(hdev->debugfs);
3444 kfree_const(hdev->hw_info);
3445 kfree_const(hdev->fw_info);
3446
3447 destroy_workqueue(hdev->workqueue);
3448 destroy_workqueue(hdev->req_workqueue);
3449
3450 hci_dev_lock(hdev);
3451 hci_bdaddr_list_clear(&hdev->blacklist);
3452 hci_bdaddr_list_clear(&hdev->whitelist);
3453 hci_uuids_clear(hdev);
3454 hci_link_keys_clear(hdev);
3455 hci_smp_ltks_clear(hdev);
3456 hci_smp_irks_clear(hdev);
3457 hci_remote_oob_data_clear(hdev);
3458 hci_adv_instances_clear(hdev);
3459 hci_bdaddr_list_clear(&hdev->le_white_list);
3460 hci_bdaddr_list_clear(&hdev->le_resolv_list);
3461 hci_conn_params_clear_all(hdev);
3462 hci_discovery_filter_clear(hdev);
3463 hci_dev_unlock(hdev);
3464
3465 ida_simple_remove(&hci_index_ida, hdev->id);
3466 }
3467
3468 /* Suspend HCI device */
3469 int hci_suspend_dev(struct hci_dev *hdev)
3470 {
3471 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3472 return 0;
3473 }
3474 EXPORT_SYMBOL(hci_suspend_dev);
3475
3476 /* Resume HCI device */
3477 int hci_resume_dev(struct hci_dev *hdev)
3478 {
3479 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3480 return 0;
3481 }
3482 EXPORT_SYMBOL(hci_resume_dev);
3483
3484 /* Reset HCI device */
3485 int hci_reset_dev(struct hci_dev *hdev)
3486 {
3487 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3488 struct sk_buff *skb;
3489
3490 skb = bt_skb_alloc(3, GFP_ATOMIC);
3491 if (!skb)
3492 return -ENOMEM;
3493
3494 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3495 skb_put_data(skb, hw_err, 3);
3496
3497 /* Send Hardware Error to upper stack */
3498 return hci_recv_frame(hdev, skb);
3499 }
3500 EXPORT_SYMBOL(hci_reset_dev);
3501
3502 /* Receive frame from HCI drivers */
3503 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3504 {
3505 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3506 && !test_bit(HCI_INIT, &hdev->flags))) {
3507 kfree_skb(skb);
3508 return -ENXIO;
3509 }
3510
3511 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3512 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3513 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3514 kfree_skb(skb);
3515 return -EINVAL;
3516 }
3517
3518 /* Incoming skb */
3519 bt_cb(skb)->incoming = 1;
3520
3521 /* Time stamp */
3522 __net_timestamp(skb);
3523
3524 skb_queue_tail(&hdev->rx_q, skb);
3525 queue_work(hdev->workqueue, &hdev->rx_work);
3526
3527 return 0;
3528 }
3529 EXPORT_SYMBOL(hci_recv_frame);
3530
3531 /* Receive diagnostic message from HCI drivers */
3532 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3533 {
3534 /* Mark as diagnostic packet */
3535 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3536
3537 /* Time stamp */
3538 __net_timestamp(skb);
3539
3540 skb_queue_tail(&hdev->rx_q, skb);
3541 queue_work(hdev->workqueue, &hdev->rx_work);
3542
3543 return 0;
3544 }
3545 EXPORT_SYMBOL(hci_recv_diag);
3546
3547 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3548 {
3549 va_list vargs;
3550
3551 va_start(vargs, fmt);
3552 kfree_const(hdev->hw_info);
3553 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3554 va_end(vargs);
3555 }
3556 EXPORT_SYMBOL(hci_set_hw_info);
3557
3558 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3559 {
3560 va_list vargs;
3561
3562 va_start(vargs, fmt);
3563 kfree_const(hdev->fw_info);
3564 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3565 va_end(vargs);
3566 }
3567 EXPORT_SYMBOL(hci_set_fw_info);
3568
3569 /* ---- Interface to upper protocols ---- */
3570
3571 int hci_register_cb(struct hci_cb *cb)
3572 {
3573 BT_DBG("%p name %s", cb, cb->name);
3574
3575 mutex_lock(&hci_cb_list_lock);
3576 list_add_tail(&cb->list, &hci_cb_list);
3577 mutex_unlock(&hci_cb_list_lock);
3578
3579 return 0;
3580 }
3581 EXPORT_SYMBOL(hci_register_cb);
3582
3583 int hci_unregister_cb(struct hci_cb *cb)
3584 {
3585 BT_DBG("%p name %s", cb, cb->name);
3586
3587 mutex_lock(&hci_cb_list_lock);
3588 list_del(&cb->list);
3589 mutex_unlock(&hci_cb_list_lock);
3590
3591 return 0;
3592 }
3593 EXPORT_SYMBOL(hci_unregister_cb);
3594
3595 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3596 {
3597 int err;
3598
3599 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3600 skb->len);
3601
3602 /* Time stamp */
3603 __net_timestamp(skb);
3604
3605 /* Send copy to monitor */
3606 hci_send_to_monitor(hdev, skb);
3607
3608 if (atomic_read(&hdev->promisc)) {
3609 /* Send copy to the sockets */
3610 hci_send_to_sock(hdev, skb);
3611 }
3612
3613 /* Get rid of skb owner, prior to sending to the driver. */
3614 skb_orphan(skb);
3615
3616 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3617 kfree_skb(skb);
3618 return;
3619 }
3620
3621 err = hdev->send(hdev, skb);
3622 if (err < 0) {
3623 bt_dev_err(hdev, "sending frame failed (%d)", err);
3624 kfree_skb(skb);
3625 }
3626 }
3627
3628 /* Send HCI command */
3629 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3630 const void *param)
3631 {
3632 struct sk_buff *skb;
3633
3634 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3635
3636 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3637 if (!skb) {
3638 bt_dev_err(hdev, "no memory for command");
3639 return -ENOMEM;
3640 }
3641
3642 /* Stand-alone HCI commands must be flagged as
3643 * single-command requests.
3644 */
3645 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3646
3647 skb_queue_tail(&hdev->cmd_q, skb);
3648 queue_work(hdev->workqueue, &hdev->cmd_work);
3649
3650 return 0;
3651 }
3652
3653 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3654 const void *param)
3655 {
3656 struct sk_buff *skb;
3657
3658 if (hci_opcode_ogf(opcode) != 0x3f) {
3659 /* A controller receiving a command shall respond with either
3660 * a Command Status Event or a Command Complete Event.
3661 * Therefore, all standard HCI commands must be sent via the
3662 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3663 * Some vendors do not comply with this rule for vendor-specific
3664 * commands and do not return any event. We want to support
3665 * unresponded commands for such cases only.
3666 */
3667 bt_dev_err(hdev, "unresponded command not supported");
3668 return -EINVAL;
3669 }
3670
3671 skb = hci_prepare_cmd(hdev, opcode, plen, param);
3672 if (!skb) {
3673 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3674 opcode);
3675 return -ENOMEM;
3676 }
3677
3678 hci_send_frame(hdev, skb);
3679
3680 return 0;
3681 }
3682 EXPORT_SYMBOL(__hci_cmd_send);
3683
3684 /* Get data from the previously sent command */
3685 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3686 {
3687 struct hci_command_hdr *hdr;
3688
3689 if (!hdev->sent_cmd)
3690 return NULL;
3691
3692 hdr = (void *) hdev->sent_cmd->data;
3693
3694 if (hdr->opcode != cpu_to_le16(opcode))
3695 return NULL;
3696
3697 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3698
3699 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3700 }
3701
3702 /* Send HCI command and wait for command commplete event */
3703 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3704 const void *param, u32 timeout)
3705 {
3706 struct sk_buff *skb;
3707
3708 if (!test_bit(HCI_UP, &hdev->flags))
3709 return ERR_PTR(-ENETDOWN);
3710
3711 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3712
3713 hci_req_sync_lock(hdev);
3714 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3715 hci_req_sync_unlock(hdev);
3716
3717 return skb;
3718 }
3719 EXPORT_SYMBOL(hci_cmd_sync);
3720
3721 /* Send ACL data */
3722 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3723 {
3724 struct hci_acl_hdr *hdr;
3725 int len = skb->len;
3726
3727 skb_push(skb, HCI_ACL_HDR_SIZE);
3728 skb_reset_transport_header(skb);
3729 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3730 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3731 hdr->dlen = cpu_to_le16(len);
3732 }
3733
3734 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3735 struct sk_buff *skb, __u16 flags)
3736 {
3737 struct hci_conn *conn = chan->conn;
3738 struct hci_dev *hdev = conn->hdev;
3739 struct sk_buff *list;
3740
3741 skb->len = skb_headlen(skb);
3742 skb->data_len = 0;
3743
3744 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3745
3746 switch (hdev->dev_type) {
3747 case HCI_PRIMARY:
3748 hci_add_acl_hdr(skb, conn->handle, flags);
3749 break;
3750 case HCI_AMP:
3751 hci_add_acl_hdr(skb, chan->handle, flags);
3752 break;
3753 default:
3754 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3755 return;
3756 }
3757
3758 list = skb_shinfo(skb)->frag_list;
3759 if (!list) {
3760 /* Non fragmented */
3761 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3762
3763 skb_queue_tail(queue, skb);
3764 } else {
3765 /* Fragmented */
3766 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3767
3768 skb_shinfo(skb)->frag_list = NULL;
3769
3770 /* Queue all fragments atomically. We need to use spin_lock_bh
3771 * here because of 6LoWPAN links, as there this function is
3772 * called from softirq and using normal spin lock could cause
3773 * deadlocks.
3774 */
3775 spin_lock_bh(&queue->lock);
3776
3777 __skb_queue_tail(queue, skb);
3778
3779 flags &= ~ACL_START;
3780 flags |= ACL_CONT;
3781 do {
3782 skb = list; list = list->next;
3783
3784 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3785 hci_add_acl_hdr(skb, conn->handle, flags);
3786
3787 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3788
3789 __skb_queue_tail(queue, skb);
3790 } while (list);
3791
3792 spin_unlock_bh(&queue->lock);
3793 }
3794 }
3795
3796 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3797 {
3798 struct hci_dev *hdev = chan->conn->hdev;
3799
3800 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3801
3802 hci_queue_acl(chan, &chan->data_q, skb, flags);
3803
3804 queue_work(hdev->workqueue, &hdev->tx_work);
3805 }
3806
3807 /* Send SCO data */
3808 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3809 {
3810 struct hci_dev *hdev = conn->hdev;
3811 struct hci_sco_hdr hdr;
3812
3813 BT_DBG("%s len %d", hdev->name, skb->len);
3814
3815 hdr.handle = cpu_to_le16(conn->handle);
3816 hdr.dlen = skb->len;
3817
3818 skb_push(skb, HCI_SCO_HDR_SIZE);
3819 skb_reset_transport_header(skb);
3820 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3821
3822 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3823
3824 skb_queue_tail(&conn->data_q, skb);
3825 queue_work(hdev->workqueue, &hdev->tx_work);
3826 }
3827
3828 /* ---- HCI TX task (outgoing data) ---- */
3829
3830 /* HCI Connection scheduler */
3831 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3832 int *quote)
3833 {
3834 struct hci_conn_hash *h = &hdev->conn_hash;
3835 struct hci_conn *conn = NULL, *c;
3836 unsigned int num = 0, min = ~0;
3837
3838 /* We don't have to lock device here. Connections are always
3839 * added and removed with TX task disabled. */
3840
3841 rcu_read_lock();
3842
3843 list_for_each_entry_rcu(c, &h->list, list) {
3844 if (c->type != type || skb_queue_empty(&c->data_q))
3845 continue;
3846
3847 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3848 continue;
3849
3850 num++;
3851
3852 if (c->sent < min) {
3853 min = c->sent;
3854 conn = c;
3855 }
3856
3857 if (hci_conn_num(hdev, type) == num)
3858 break;
3859 }
3860
3861 rcu_read_unlock();
3862
3863 if (conn) {
3864 int cnt, q;
3865
3866 switch (conn->type) {
3867 case ACL_LINK:
3868 cnt = hdev->acl_cnt;
3869 break;
3870 case SCO_LINK:
3871 case ESCO_LINK:
3872 cnt = hdev->sco_cnt;
3873 break;
3874 case LE_LINK:
3875 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3876 break;
3877 default:
3878 cnt = 0;
3879 bt_dev_err(hdev, "unknown link type %d", conn->type);
3880 }
3881
3882 q = cnt / num;
3883 *quote = q ? q : 1;
3884 } else
3885 *quote = 0;
3886
3887 BT_DBG("conn %p quote %d", conn, *quote);
3888 return conn;
3889 }
3890
3891 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3892 {
3893 struct hci_conn_hash *h = &hdev->conn_hash;
3894 struct hci_conn *c;
3895
3896 bt_dev_err(hdev, "link tx timeout");
3897
3898 rcu_read_lock();
3899
3900 /* Kill stalled connections */
3901 list_for_each_entry_rcu(c, &h->list, list) {
3902 if (c->type == type && c->sent) {
3903 bt_dev_err(hdev, "killing stalled connection %pMR",
3904 &c->dst);
3905 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3906 }
3907 }
3908
3909 rcu_read_unlock();
3910 }
3911
3912 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3913 int *quote)
3914 {
3915 struct hci_conn_hash *h = &hdev->conn_hash;
3916 struct hci_chan *chan = NULL;
3917 unsigned int num = 0, min = ~0, cur_prio = 0;
3918 struct hci_conn *conn;
3919 int cnt, q, conn_num = 0;
3920
3921 BT_DBG("%s", hdev->name);
3922
3923 rcu_read_lock();
3924
3925 list_for_each_entry_rcu(conn, &h->list, list) {
3926 struct hci_chan *tmp;
3927
3928 if (conn->type != type)
3929 continue;
3930
3931 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3932 continue;
3933
3934 conn_num++;
3935
3936 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3937 struct sk_buff *skb;
3938
3939 if (skb_queue_empty(&tmp->data_q))
3940 continue;
3941
3942 skb = skb_peek(&tmp->data_q);
3943 if (skb->priority < cur_prio)
3944 continue;
3945
3946 if (skb->priority > cur_prio) {
3947 num = 0;
3948 min = ~0;
3949 cur_prio = skb->priority;
3950 }
3951
3952 num++;
3953
3954 if (conn->sent < min) {
3955 min = conn->sent;
3956 chan = tmp;
3957 }
3958 }
3959
3960 if (hci_conn_num(hdev, type) == conn_num)
3961 break;
3962 }
3963
3964 rcu_read_unlock();
3965
3966 if (!chan)
3967 return NULL;
3968
3969 switch (chan->conn->type) {
3970 case ACL_LINK:
3971 cnt = hdev->acl_cnt;
3972 break;
3973 case AMP_LINK:
3974 cnt = hdev->block_cnt;
3975 break;
3976 case SCO_LINK:
3977 case ESCO_LINK:
3978 cnt = hdev->sco_cnt;
3979 break;
3980 case LE_LINK:
3981 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3982 break;
3983 default:
3984 cnt = 0;
3985 bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
3986 }
3987
3988 q = cnt / num;
3989 *quote = q ? q : 1;
3990 BT_DBG("chan %p quote %d", chan, *quote);
3991 return chan;
3992 }
3993
3994 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3995 {
3996 struct hci_conn_hash *h = &hdev->conn_hash;
3997 struct hci_conn *conn;
3998 int num = 0;
3999
4000 BT_DBG("%s", hdev->name);
4001
4002 rcu_read_lock();
4003
4004 list_for_each_entry_rcu(conn, &h->list, list) {
4005 struct hci_chan *chan;
4006
4007 if (conn->type != type)
4008 continue;
4009
4010 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4011 continue;
4012
4013 num++;
4014
4015 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4016 struct sk_buff *skb;
4017
4018 if (chan->sent) {
4019 chan->sent = 0;
4020 continue;
4021 }
4022
4023 if (skb_queue_empty(&chan->data_q))
4024 continue;
4025
4026 skb = skb_peek(&chan->data_q);
4027 if (skb->priority >= HCI_PRIO_MAX - 1)
4028 continue;
4029
4030 skb->priority = HCI_PRIO_MAX - 1;
4031
4032 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4033 skb->priority);
4034 }
4035
4036 if (hci_conn_num(hdev, type) == num)
4037 break;
4038 }
4039
4040 rcu_read_unlock();
4041
4042 }
4043
4044 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4045 {
4046 /* Calculate count of blocks used by this packet */
4047 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4048 }
4049
4050 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4051 {
4052 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4053 /* ACL tx timeout must be longer than maximum
4054 * link supervision timeout (40.9 seconds) */
4055 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4056 HCI_ACL_TX_TIMEOUT))
4057 hci_link_tx_to(hdev, ACL_LINK);
4058 }
4059 }
4060
4061 static void hci_sched_acl_pkt(struct hci_dev *hdev)
4062 {
4063 unsigned int cnt = hdev->acl_cnt;
4064 struct hci_chan *chan;
4065 struct sk_buff *skb;
4066 int quote;
4067
4068 __check_timeout(hdev, cnt);
4069
4070 while (hdev->acl_cnt &&
4071 (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4072 u32 priority = (skb_peek(&chan->data_q))->priority;
4073 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4074 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4075 skb->len, skb->priority);
4076
4077 /* Stop if priority has changed */
4078 if (skb->priority < priority)
4079 break;
4080
4081 skb = skb_dequeue(&chan->data_q);
4082
4083 hci_conn_enter_active_mode(chan->conn,
4084 bt_cb(skb)->force_active);
4085
4086 hci_send_frame(hdev, skb);
4087 hdev->acl_last_tx = jiffies;
4088
4089 hdev->acl_cnt--;
4090 chan->sent++;
4091 chan->conn->sent++;
4092 }
4093 }
4094
4095 if (cnt != hdev->acl_cnt)
4096 hci_prio_recalculate(hdev, ACL_LINK);
4097 }
4098
4099 static void hci_sched_acl_blk(struct hci_dev *hdev)
4100 {
4101 unsigned int cnt = hdev->block_cnt;
4102 struct hci_chan *chan;
4103 struct sk_buff *skb;
4104 int quote;
4105 u8 type;
4106
4107 __check_timeout(hdev, cnt);
4108
4109 BT_DBG("%s", hdev->name);
4110
4111 if (hdev->dev_type == HCI_AMP)
4112 type = AMP_LINK;
4113 else
4114 type = ACL_LINK;
4115
4116 while (hdev->block_cnt > 0 &&
4117 (chan = hci_chan_sent(hdev, type, &quote))) {
4118 u32 priority = (skb_peek(&chan->data_q))->priority;
4119 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4120 int blocks;
4121
4122 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4123 skb->len, skb->priority);
4124
4125 /* Stop if priority has changed */
4126 if (skb->priority < priority)
4127 break;
4128
4129 skb = skb_dequeue(&chan->data_q);
4130
4131 blocks = __get_blocks(hdev, skb);
4132 if (blocks > hdev->block_cnt)
4133 return;
4134
4135 hci_conn_enter_active_mode(chan->conn,
4136 bt_cb(skb)->force_active);
4137
4138 hci_send_frame(hdev, skb);
4139 hdev->acl_last_tx = jiffies;
4140
4141 hdev->block_cnt -= blocks;
4142 quote -= blocks;
4143
4144 chan->sent += blocks;
4145 chan->conn->sent += blocks;
4146 }
4147 }
4148
4149 if (cnt != hdev->block_cnt)
4150 hci_prio_recalculate(hdev, type);
4151 }
4152
4153 static void hci_sched_acl(struct hci_dev *hdev)
4154 {
4155 BT_DBG("%s", hdev->name);
4156
4157 /* No ACL link over BR/EDR controller */
4158 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4159 return;
4160
4161 /* No AMP link over AMP controller */
4162 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4163 return;
4164
4165 switch (hdev->flow_ctl_mode) {
4166 case HCI_FLOW_CTL_MODE_PACKET_BASED:
4167 hci_sched_acl_pkt(hdev);
4168 break;
4169
4170 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4171 hci_sched_acl_blk(hdev);
4172 break;
4173 }
4174 }
4175
4176 /* Schedule SCO */
4177 static void hci_sched_sco(struct hci_dev *hdev)
4178 {
4179 struct hci_conn *conn;
4180 struct sk_buff *skb;
4181 int quote;
4182
4183 BT_DBG("%s", hdev->name);
4184
4185 if (!hci_conn_num(hdev, SCO_LINK))
4186 return;
4187
4188 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4189 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4190 BT_DBG("skb %p len %d", skb, skb->len);
4191 hci_send_frame(hdev, skb);
4192
4193 conn->sent++;
4194 if (conn->sent == ~0)
4195 conn->sent = 0;
4196 }
4197 }
4198 }
4199
4200 static void hci_sched_esco(struct hci_dev *hdev)
4201 {
4202 struct hci_conn *conn;
4203 struct sk_buff *skb;
4204 int quote;
4205
4206 BT_DBG("%s", hdev->name);
4207
4208 if (!hci_conn_num(hdev, ESCO_LINK))
4209 return;
4210
4211 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4212 &quote))) {
4213 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4214 BT_DBG("skb %p len %d", skb, skb->len);
4215 hci_send_frame(hdev, skb);
4216
4217 conn->sent++;
4218 if (conn->sent == ~0)
4219 conn->sent = 0;
4220 }
4221 }
4222 }
4223
4224 static void hci_sched_le(struct hci_dev *hdev)
4225 {
4226 struct hci_chan *chan;
4227 struct sk_buff *skb;
4228 int quote, cnt, tmp;
4229
4230 BT_DBG("%s", hdev->name);
4231
4232 if (!hci_conn_num(hdev, LE_LINK))
4233 return;
4234
4235 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4236 /* LE tx timeout must be longer than maximum
4237 * link supervision timeout (40.9 seconds) */
4238 if (!hdev->le_cnt && hdev->le_pkts &&
4239 time_after(jiffies, hdev->le_last_tx + HZ * 45))
4240 hci_link_tx_to(hdev, LE_LINK);
4241 }
4242
4243 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4244 tmp = cnt;
4245 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4246 u32 priority = (skb_peek(&chan->data_q))->priority;
4247 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4248 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4249 skb->len, skb->priority);
4250
4251 /* Stop if priority has changed */
4252 if (skb->priority < priority)
4253 break;
4254
4255 skb = skb_dequeue(&chan->data_q);
4256
4257 hci_send_frame(hdev, skb);
4258 hdev->le_last_tx = jiffies;
4259
4260 cnt--;
4261 chan->sent++;
4262 chan->conn->sent++;
4263 }
4264 }
4265
4266 if (hdev->le_pkts)
4267 hdev->le_cnt = cnt;
4268 else
4269 hdev->acl_cnt = cnt;
4270
4271 if (cnt != tmp)
4272 hci_prio_recalculate(hdev, LE_LINK);
4273 }
4274
4275 static void hci_tx_work(struct work_struct *work)
4276 {
4277 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4278 struct sk_buff *skb;
4279
4280 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4281 hdev->sco_cnt, hdev->le_cnt);
4282
4283 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4284 /* Schedule queues and send stuff to HCI driver */
4285 hci_sched_acl(hdev);
4286 hci_sched_sco(hdev);
4287 hci_sched_esco(hdev);
4288 hci_sched_le(hdev);
4289 }
4290
4291 /* Send next queued raw (unknown type) packet */
4292 while ((skb = skb_dequeue(&hdev->raw_q)))
4293 hci_send_frame(hdev, skb);
4294 }
4295
4296 /* ----- HCI RX task (incoming data processing) ----- */
4297
4298 /* ACL data packet */
4299 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4300 {
4301 struct hci_acl_hdr *hdr = (void *) skb->data;
4302 struct hci_conn *conn;
4303 __u16 handle, flags;
4304
4305 skb_pull(skb, HCI_ACL_HDR_SIZE);
4306
4307 handle = __le16_to_cpu(hdr->handle);
4308 flags = hci_flags(handle);
4309 handle = hci_handle(handle);
4310
4311 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4312 handle, flags);
4313
4314 hdev->stat.acl_rx++;
4315
4316 hci_dev_lock(hdev);
4317 conn = hci_conn_hash_lookup_handle(hdev, handle);
4318 hci_dev_unlock(hdev);
4319
4320 if (conn) {
4321 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4322
4323 /* Send to upper protocol */
4324 l2cap_recv_acldata(conn, skb, flags);
4325 return;
4326 } else {
4327 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4328 handle);
4329 }
4330
4331 kfree_skb(skb);
4332 }
4333
4334 /* SCO data packet */
4335 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4336 {
4337 struct hci_sco_hdr *hdr = (void *) skb->data;
4338 struct hci_conn *conn;
4339 __u16 handle;
4340
4341 skb_pull(skb, HCI_SCO_HDR_SIZE);
4342
4343 handle = __le16_to_cpu(hdr->handle);
4344
4345 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4346
4347 hdev->stat.sco_rx++;
4348
4349 hci_dev_lock(hdev);
4350 conn = hci_conn_hash_lookup_handle(hdev, handle);
4351 hci_dev_unlock(hdev);
4352
4353 if (conn) {
4354 /* Send to upper protocol */
4355 sco_recv_scodata(conn, skb);
4356 return;
4357 } else {
4358 bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4359 handle);
4360 }
4361
4362 kfree_skb(skb);
4363 }
4364
4365 static bool hci_req_is_complete(struct hci_dev *hdev)
4366 {
4367 struct sk_buff *skb;
4368
4369 skb = skb_peek(&hdev->cmd_q);
4370 if (!skb)
4371 return true;
4372
4373 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4374 }
4375
4376 static void hci_resend_last(struct hci_dev *hdev)
4377 {
4378 struct hci_command_hdr *sent;
4379 struct sk_buff *skb;
4380 u16 opcode;
4381
4382 if (!hdev->sent_cmd)
4383 return;
4384
4385 sent = (void *) hdev->sent_cmd->data;
4386 opcode = __le16_to_cpu(sent->opcode);
4387 if (opcode == HCI_OP_RESET)
4388 return;
4389
4390 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4391 if (!skb)
4392 return;
4393
4394 skb_queue_head(&hdev->cmd_q, skb);
4395 queue_work(hdev->workqueue, &hdev->cmd_work);
4396 }
4397
4398 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4399 hci_req_complete_t *req_complete,
4400 hci_req_complete_skb_t *req_complete_skb)
4401 {
4402 struct sk_buff *skb;
4403 unsigned long flags;
4404
4405 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4406
4407 /* If the completed command doesn't match the last one that was
4408 * sent we need to do special handling of it.
4409 */
4410 if (!hci_sent_cmd_data(hdev, opcode)) {
4411 /* Some CSR based controllers generate a spontaneous
4412 * reset complete event during init and any pending
4413 * command will never be completed. In such a case we
4414 * need to resend whatever was the last sent
4415 * command.
4416 */
4417 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4418 hci_resend_last(hdev);
4419
4420 return;
4421 }
4422
4423 /* If we reach this point this event matches the last command sent */
4424 hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4425
4426 /* If the command succeeded and there's still more commands in
4427 * this request the request is not yet complete.
4428 */
4429 if (!status && !hci_req_is_complete(hdev))
4430 return;
4431
4432 /* If this was the last command in a request the complete
4433 * callback would be found in hdev->sent_cmd instead of the
4434 * command queue (hdev->cmd_q).
4435 */
4436 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4437 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4438 return;
4439 }
4440
4441 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4442 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4443 return;
4444 }
4445
4446 /* Remove all pending commands belonging to this request */
4447 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4448 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4449 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4450 __skb_queue_head(&hdev->cmd_q, skb);
4451 break;
4452 }
4453
4454 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4455 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4456 else
4457 *req_complete = bt_cb(skb)->hci.req_complete;
4458 kfree_skb(skb);
4459 }
4460 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4461 }
4462
4463 static void hci_rx_work(struct work_struct *work)
4464 {
4465 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4466 struct sk_buff *skb;
4467
4468 BT_DBG("%s", hdev->name);
4469
4470 while ((skb = skb_dequeue(&hdev->rx_q))) {
4471 /* Send copy to monitor */
4472 hci_send_to_monitor(hdev, skb);
4473
4474 if (atomic_read(&hdev->promisc)) {
4475 /* Send copy to the sockets */
4476 hci_send_to_sock(hdev, skb);
4477 }
4478
4479 /* If the device has been opened in HCI_USER_CHANNEL,
4480 * the userspace has exclusive access to device.
4481 * When device is HCI_INIT, we still need to process
4482 * the data packets to the driver in order
4483 * to complete its setup().
4484 */
4485 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4486 !test_bit(HCI_INIT, &hdev->flags)) {
4487 kfree_skb(skb);
4488 continue;
4489 }
4490
4491 if (test_bit(HCI_INIT, &hdev->flags)) {
4492 /* Don't process data packets in this states. */
4493 switch (hci_skb_pkt_type(skb)) {
4494 case HCI_ACLDATA_PKT:
4495 case HCI_SCODATA_PKT:
4496 kfree_skb(skb);
4497 continue;
4498 }
4499 }
4500
4501 /* Process frame */
4502 switch (hci_skb_pkt_type(skb)) {
4503 case HCI_EVENT_PKT:
4504 BT_DBG("%s Event packet", hdev->name);
4505 hci_event_packet(hdev, skb);
4506 break;
4507
4508 case HCI_ACLDATA_PKT:
4509 BT_DBG("%s ACL data packet", hdev->name);
4510 hci_acldata_packet(hdev, skb);
4511 break;
4512
4513 case HCI_SCODATA_PKT:
4514 BT_DBG("%s SCO data packet", hdev->name);
4515 hci_scodata_packet(hdev, skb);
4516 break;
4517
4518 default:
4519 kfree_skb(skb);
4520 break;
4521 }
4522 }
4523 }
4524
4525 static void hci_cmd_work(struct work_struct *work)
4526 {
4527 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4528 struct sk_buff *skb;
4529
4530 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4531 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4532
4533 /* Send queued commands */
4534 if (atomic_read(&hdev->cmd_cnt)) {
4535 skb = skb_dequeue(&hdev->cmd_q);
4536 if (!skb)
4537 return;
4538
4539 kfree_skb(hdev->sent_cmd);
4540
4541 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4542 if (hdev->sent_cmd) {
4543 if (hci_req_status_pend(hdev))
4544 hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4545 atomic_dec(&hdev->cmd_cnt);
4546 hci_send_frame(hdev, skb);
4547 if (test_bit(HCI_RESET, &hdev->flags))
4548 cancel_delayed_work(&hdev->cmd_timer);
4549 else
4550 schedule_delayed_work(&hdev->cmd_timer,
4551 HCI_CMD_TIMEOUT);
4552 } else {
4553 skb_queue_head(&hdev->cmd_q, skb);
4554 queue_work(hdev->workqueue, &hdev->cmd_work);
4555 }
4556 }
4557 }