]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/bluetooth/hci_request.c
Merge tag 'libnvdimm-for-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[mirror_ubuntu-jammy-kernel.git] / net / bluetooth / hci_request.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3
4 Copyright (C) 2014 Intel Corporation
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
9
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
22 */
23
24 #include <linux/sched/signal.h>
25
26 #include <net/bluetooth/bluetooth.h>
27 #include <net/bluetooth/hci_core.h>
28 #include <net/bluetooth/mgmt.h>
29
30 #include "smp.h"
31 #include "hci_request.h"
32 #include "msft.h"
33
34 #define HCI_REQ_DONE 0
35 #define HCI_REQ_PEND 1
36 #define HCI_REQ_CANCELED 2
37
38 void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
39 {
40 skb_queue_head_init(&req->cmd_q);
41 req->hdev = hdev;
42 req->err = 0;
43 }
44
45 void hci_req_purge(struct hci_request *req)
46 {
47 skb_queue_purge(&req->cmd_q);
48 }
49
50 bool hci_req_status_pend(struct hci_dev *hdev)
51 {
52 return hdev->req_status == HCI_REQ_PEND;
53 }
54
55 static int req_run(struct hci_request *req, hci_req_complete_t complete,
56 hci_req_complete_skb_t complete_skb)
57 {
58 struct hci_dev *hdev = req->hdev;
59 struct sk_buff *skb;
60 unsigned long flags;
61
62 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
63
64 /* If an error occurred during request building, remove all HCI
65 * commands queued on the HCI request queue.
66 */
67 if (req->err) {
68 skb_queue_purge(&req->cmd_q);
69 return req->err;
70 }
71
72 /* Do not allow empty requests */
73 if (skb_queue_empty(&req->cmd_q))
74 return -ENODATA;
75
76 skb = skb_peek_tail(&req->cmd_q);
77 if (complete) {
78 bt_cb(skb)->hci.req_complete = complete;
79 } else if (complete_skb) {
80 bt_cb(skb)->hci.req_complete_skb = complete_skb;
81 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
82 }
83
84 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
85 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
86 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
87
88 queue_work(hdev->workqueue, &hdev->cmd_work);
89
90 return 0;
91 }
92
93 int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
94 {
95 return req_run(req, complete, NULL);
96 }
97
98 int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
99 {
100 return req_run(req, NULL, complete);
101 }
102
103 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
104 struct sk_buff *skb)
105 {
106 bt_dev_dbg(hdev, "result 0x%2.2x", result);
107
108 if (hdev->req_status == HCI_REQ_PEND) {
109 hdev->req_result = result;
110 hdev->req_status = HCI_REQ_DONE;
111 if (skb)
112 hdev->req_skb = skb_get(skb);
113 wake_up_interruptible(&hdev->req_wait_q);
114 }
115 }
116
117 void hci_req_sync_cancel(struct hci_dev *hdev, int err)
118 {
119 bt_dev_dbg(hdev, "err 0x%2.2x", err);
120
121 if (hdev->req_status == HCI_REQ_PEND) {
122 hdev->req_result = err;
123 hdev->req_status = HCI_REQ_CANCELED;
124 wake_up_interruptible(&hdev->req_wait_q);
125 }
126 }
127
128 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
129 const void *param, u8 event, u32 timeout)
130 {
131 struct hci_request req;
132 struct sk_buff *skb;
133 int err = 0;
134
135 bt_dev_dbg(hdev, "");
136
137 hci_req_init(&req, hdev);
138
139 hci_req_add_ev(&req, opcode, plen, param, event);
140
141 hdev->req_status = HCI_REQ_PEND;
142
143 err = hci_req_run_skb(&req, hci_req_sync_complete);
144 if (err < 0)
145 return ERR_PTR(err);
146
147 err = wait_event_interruptible_timeout(hdev->req_wait_q,
148 hdev->req_status != HCI_REQ_PEND, timeout);
149
150 if (err == -ERESTARTSYS)
151 return ERR_PTR(-EINTR);
152
153 switch (hdev->req_status) {
154 case HCI_REQ_DONE:
155 err = -bt_to_errno(hdev->req_result);
156 break;
157
158 case HCI_REQ_CANCELED:
159 err = -hdev->req_result;
160 break;
161
162 default:
163 err = -ETIMEDOUT;
164 break;
165 }
166
167 hdev->req_status = hdev->req_result = 0;
168 skb = hdev->req_skb;
169 hdev->req_skb = NULL;
170
171 bt_dev_dbg(hdev, "end: err %d", err);
172
173 if (err < 0) {
174 kfree_skb(skb);
175 return ERR_PTR(err);
176 }
177
178 if (!skb)
179 return ERR_PTR(-ENODATA);
180
181 return skb;
182 }
183 EXPORT_SYMBOL(__hci_cmd_sync_ev);
184
185 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
186 const void *param, u32 timeout)
187 {
188 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
189 }
190 EXPORT_SYMBOL(__hci_cmd_sync);
191
192 /* Execute request and wait for completion. */
193 int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
194 unsigned long opt),
195 unsigned long opt, u32 timeout, u8 *hci_status)
196 {
197 struct hci_request req;
198 int err = 0;
199
200 bt_dev_dbg(hdev, "start");
201
202 hci_req_init(&req, hdev);
203
204 hdev->req_status = HCI_REQ_PEND;
205
206 err = func(&req, opt);
207 if (err) {
208 if (hci_status)
209 *hci_status = HCI_ERROR_UNSPECIFIED;
210 return err;
211 }
212
213 err = hci_req_run_skb(&req, hci_req_sync_complete);
214 if (err < 0) {
215 hdev->req_status = 0;
216
217 /* ENODATA means the HCI request command queue is empty.
218 * This can happen when a request with conditionals doesn't
219 * trigger any commands to be sent. This is normal behavior
220 * and should not trigger an error return.
221 */
222 if (err == -ENODATA) {
223 if (hci_status)
224 *hci_status = 0;
225 return 0;
226 }
227
228 if (hci_status)
229 *hci_status = HCI_ERROR_UNSPECIFIED;
230
231 return err;
232 }
233
234 err = wait_event_interruptible_timeout(hdev->req_wait_q,
235 hdev->req_status != HCI_REQ_PEND, timeout);
236
237 if (err == -ERESTARTSYS)
238 return -EINTR;
239
240 switch (hdev->req_status) {
241 case HCI_REQ_DONE:
242 err = -bt_to_errno(hdev->req_result);
243 if (hci_status)
244 *hci_status = hdev->req_result;
245 break;
246
247 case HCI_REQ_CANCELED:
248 err = -hdev->req_result;
249 if (hci_status)
250 *hci_status = HCI_ERROR_UNSPECIFIED;
251 break;
252
253 default:
254 err = -ETIMEDOUT;
255 if (hci_status)
256 *hci_status = HCI_ERROR_UNSPECIFIED;
257 break;
258 }
259
260 kfree_skb(hdev->req_skb);
261 hdev->req_skb = NULL;
262 hdev->req_status = hdev->req_result = 0;
263
264 bt_dev_dbg(hdev, "end: err %d", err);
265
266 return err;
267 }
268
269 int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
270 unsigned long opt),
271 unsigned long opt, u32 timeout, u8 *hci_status)
272 {
273 int ret;
274
275 /* Serialize all requests */
276 hci_req_sync_lock(hdev);
277 /* check the state after obtaing the lock to protect the HCI_UP
278 * against any races from hci_dev_do_close when the controller
279 * gets removed.
280 */
281 if (test_bit(HCI_UP, &hdev->flags))
282 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
283 else
284 ret = -ENETDOWN;
285 hci_req_sync_unlock(hdev);
286
287 return ret;
288 }
289
290 struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
291 const void *param)
292 {
293 int len = HCI_COMMAND_HDR_SIZE + plen;
294 struct hci_command_hdr *hdr;
295 struct sk_buff *skb;
296
297 skb = bt_skb_alloc(len, GFP_ATOMIC);
298 if (!skb)
299 return NULL;
300
301 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
302 hdr->opcode = cpu_to_le16(opcode);
303 hdr->plen = plen;
304
305 if (plen)
306 skb_put_data(skb, param, plen);
307
308 bt_dev_dbg(hdev, "skb len %d", skb->len);
309
310 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
311 hci_skb_opcode(skb) = opcode;
312
313 return skb;
314 }
315
316 /* Queue a command to an asynchronous HCI request */
317 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
318 const void *param, u8 event)
319 {
320 struct hci_dev *hdev = req->hdev;
321 struct sk_buff *skb;
322
323 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
324
325 /* If an error occurred during request building, there is no point in
326 * queueing the HCI command. We can simply return.
327 */
328 if (req->err)
329 return;
330
331 skb = hci_prepare_cmd(hdev, opcode, plen, param);
332 if (!skb) {
333 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
334 opcode);
335 req->err = -ENOMEM;
336 return;
337 }
338
339 if (skb_queue_empty(&req->cmd_q))
340 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
341
342 bt_cb(skb)->hci.req_event = event;
343
344 skb_queue_tail(&req->cmd_q, skb);
345 }
346
347 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
348 const void *param)
349 {
350 hci_req_add_ev(req, opcode, plen, param, 0);
351 }
352
353 void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
354 {
355 struct hci_dev *hdev = req->hdev;
356 struct hci_cp_write_page_scan_activity acp;
357 u8 type;
358
359 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
360 return;
361
362 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
363 return;
364
365 if (enable) {
366 type = PAGE_SCAN_TYPE_INTERLACED;
367
368 /* 160 msec page scan interval */
369 acp.interval = cpu_to_le16(0x0100);
370 } else {
371 type = hdev->def_page_scan_type;
372 acp.interval = cpu_to_le16(hdev->def_page_scan_int);
373 }
374
375 acp.window = cpu_to_le16(hdev->def_page_scan_window);
376
377 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
378 __cpu_to_le16(hdev->page_scan_window) != acp.window)
379 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
380 sizeof(acp), &acp);
381
382 if (hdev->page_scan_type != type)
383 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
384 }
385
386 static void start_interleave_scan(struct hci_dev *hdev)
387 {
388 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
389 queue_delayed_work(hdev->req_workqueue,
390 &hdev->interleave_scan, 0);
391 }
392
393 static bool is_interleave_scanning(struct hci_dev *hdev)
394 {
395 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
396 }
397
398 static void cancel_interleave_scan(struct hci_dev *hdev)
399 {
400 bt_dev_dbg(hdev, "cancelling interleave scan");
401
402 cancel_delayed_work_sync(&hdev->interleave_scan);
403
404 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
405 }
406
407 /* Return true if interleave_scan wasn't started until exiting this function,
408 * otherwise, return false
409 */
410 static bool __hci_update_interleaved_scan(struct hci_dev *hdev)
411 {
412 /* Do interleaved scan only if all of the following are true:
413 * - There is at least one ADV monitor
414 * - At least one pending LE connection or one device to be scanned for
415 * - Monitor offloading is not supported
416 * If so, we should alternate between allowlist scan and one without
417 * any filters to save power.
418 */
419 bool use_interleaving = hci_is_adv_monitoring(hdev) &&
420 !(list_empty(&hdev->pend_le_conns) &&
421 list_empty(&hdev->pend_le_reports)) &&
422 hci_get_adv_monitor_offload_ext(hdev) ==
423 HCI_ADV_MONITOR_EXT_NONE;
424 bool is_interleaving = is_interleave_scanning(hdev);
425
426 if (use_interleaving && !is_interleaving) {
427 start_interleave_scan(hdev);
428 bt_dev_dbg(hdev, "starting interleave scan");
429 return true;
430 }
431
432 if (!use_interleaving && is_interleaving)
433 cancel_interleave_scan(hdev);
434
435 return false;
436 }
437
438 /* This function controls the background scanning based on hdev->pend_le_conns
439 * list. If there are pending LE connection we start the background scanning,
440 * otherwise we stop it.
441 *
442 * This function requires the caller holds hdev->lock.
443 */
444 static void __hci_update_background_scan(struct hci_request *req)
445 {
446 struct hci_dev *hdev = req->hdev;
447
448 if (!test_bit(HCI_UP, &hdev->flags) ||
449 test_bit(HCI_INIT, &hdev->flags) ||
450 hci_dev_test_flag(hdev, HCI_SETUP) ||
451 hci_dev_test_flag(hdev, HCI_CONFIG) ||
452 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
453 hci_dev_test_flag(hdev, HCI_UNREGISTER))
454 return;
455
456 /* No point in doing scanning if LE support hasn't been enabled */
457 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
458 return;
459
460 /* If discovery is active don't interfere with it */
461 if (hdev->discovery.state != DISCOVERY_STOPPED)
462 return;
463
464 /* Reset RSSI and UUID filters when starting background scanning
465 * since these filters are meant for service discovery only.
466 *
467 * The Start Discovery and Start Service Discovery operations
468 * ensure to set proper values for RSSI threshold and UUID
469 * filter list. So it is safe to just reset them here.
470 */
471 hci_discovery_filter_clear(hdev);
472
473 bt_dev_dbg(hdev, "ADV monitoring is %s",
474 hci_is_adv_monitoring(hdev) ? "on" : "off");
475
476 if (list_empty(&hdev->pend_le_conns) &&
477 list_empty(&hdev->pend_le_reports) &&
478 !hci_is_adv_monitoring(hdev)) {
479 /* If there is no pending LE connections or devices
480 * to be scanned for or no ADV monitors, we should stop the
481 * background scanning.
482 */
483
484 /* If controller is not scanning we are done. */
485 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
486 return;
487
488 hci_req_add_le_scan_disable(req, false);
489
490 bt_dev_dbg(hdev, "stopping background scanning");
491 } else {
492 /* If there is at least one pending LE connection, we should
493 * keep the background scan running.
494 */
495
496 /* If controller is connecting, we should not start scanning
497 * since some controllers are not able to scan and connect at
498 * the same time.
499 */
500 if (hci_lookup_le_connect(hdev))
501 return;
502
503 /* If controller is currently scanning, we stop it to ensure we
504 * don't miss any advertising (due to duplicates filter).
505 */
506 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
507 hci_req_add_le_scan_disable(req, false);
508
509 hci_req_add_le_passive_scan(req);
510 bt_dev_dbg(hdev, "starting background scanning");
511 }
512 }
513
514 void __hci_req_update_name(struct hci_request *req)
515 {
516 struct hci_dev *hdev = req->hdev;
517 struct hci_cp_write_local_name cp;
518
519 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
520
521 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
522 }
523
524 #define PNP_INFO_SVCLASS_ID 0x1200
525
526 static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
527 {
528 u8 *ptr = data, *uuids_start = NULL;
529 struct bt_uuid *uuid;
530
531 if (len < 4)
532 return ptr;
533
534 list_for_each_entry(uuid, &hdev->uuids, list) {
535 u16 uuid16;
536
537 if (uuid->size != 16)
538 continue;
539
540 uuid16 = get_unaligned_le16(&uuid->uuid[12]);
541 if (uuid16 < 0x1100)
542 continue;
543
544 if (uuid16 == PNP_INFO_SVCLASS_ID)
545 continue;
546
547 if (!uuids_start) {
548 uuids_start = ptr;
549 uuids_start[0] = 1;
550 uuids_start[1] = EIR_UUID16_ALL;
551 ptr += 2;
552 }
553
554 /* Stop if not enough space to put next UUID */
555 if ((ptr - data) + sizeof(u16) > len) {
556 uuids_start[1] = EIR_UUID16_SOME;
557 break;
558 }
559
560 *ptr++ = (uuid16 & 0x00ff);
561 *ptr++ = (uuid16 & 0xff00) >> 8;
562 uuids_start[0] += sizeof(uuid16);
563 }
564
565 return ptr;
566 }
567
568 static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
569 {
570 u8 *ptr = data, *uuids_start = NULL;
571 struct bt_uuid *uuid;
572
573 if (len < 6)
574 return ptr;
575
576 list_for_each_entry(uuid, &hdev->uuids, list) {
577 if (uuid->size != 32)
578 continue;
579
580 if (!uuids_start) {
581 uuids_start = ptr;
582 uuids_start[0] = 1;
583 uuids_start[1] = EIR_UUID32_ALL;
584 ptr += 2;
585 }
586
587 /* Stop if not enough space to put next UUID */
588 if ((ptr - data) + sizeof(u32) > len) {
589 uuids_start[1] = EIR_UUID32_SOME;
590 break;
591 }
592
593 memcpy(ptr, &uuid->uuid[12], sizeof(u32));
594 ptr += sizeof(u32);
595 uuids_start[0] += sizeof(u32);
596 }
597
598 return ptr;
599 }
600
601 static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
602 {
603 u8 *ptr = data, *uuids_start = NULL;
604 struct bt_uuid *uuid;
605
606 if (len < 18)
607 return ptr;
608
609 list_for_each_entry(uuid, &hdev->uuids, list) {
610 if (uuid->size != 128)
611 continue;
612
613 if (!uuids_start) {
614 uuids_start = ptr;
615 uuids_start[0] = 1;
616 uuids_start[1] = EIR_UUID128_ALL;
617 ptr += 2;
618 }
619
620 /* Stop if not enough space to put next UUID */
621 if ((ptr - data) + 16 > len) {
622 uuids_start[1] = EIR_UUID128_SOME;
623 break;
624 }
625
626 memcpy(ptr, uuid->uuid, 16);
627 ptr += 16;
628 uuids_start[0] += 16;
629 }
630
631 return ptr;
632 }
633
634 static void create_eir(struct hci_dev *hdev, u8 *data)
635 {
636 u8 *ptr = data;
637 size_t name_len;
638
639 name_len = strlen(hdev->dev_name);
640
641 if (name_len > 0) {
642 /* EIR Data type */
643 if (name_len > 48) {
644 name_len = 48;
645 ptr[1] = EIR_NAME_SHORT;
646 } else
647 ptr[1] = EIR_NAME_COMPLETE;
648
649 /* EIR Data length */
650 ptr[0] = name_len + 1;
651
652 memcpy(ptr + 2, hdev->dev_name, name_len);
653
654 ptr += (name_len + 2);
655 }
656
657 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
658 ptr[0] = 2;
659 ptr[1] = EIR_TX_POWER;
660 ptr[2] = (u8) hdev->inq_tx_power;
661
662 ptr += 3;
663 }
664
665 if (hdev->devid_source > 0) {
666 ptr[0] = 9;
667 ptr[1] = EIR_DEVICE_ID;
668
669 put_unaligned_le16(hdev->devid_source, ptr + 2);
670 put_unaligned_le16(hdev->devid_vendor, ptr + 4);
671 put_unaligned_le16(hdev->devid_product, ptr + 6);
672 put_unaligned_le16(hdev->devid_version, ptr + 8);
673
674 ptr += 10;
675 }
676
677 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
678 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
679 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
680 }
681
682 void __hci_req_update_eir(struct hci_request *req)
683 {
684 struct hci_dev *hdev = req->hdev;
685 struct hci_cp_write_eir cp;
686
687 if (!hdev_is_powered(hdev))
688 return;
689
690 if (!lmp_ext_inq_capable(hdev))
691 return;
692
693 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
694 return;
695
696 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
697 return;
698
699 memset(&cp, 0, sizeof(cp));
700
701 create_eir(hdev, cp.data);
702
703 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
704 return;
705
706 memcpy(hdev->eir, cp.data, sizeof(cp.data));
707
708 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
709 }
710
711 void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn)
712 {
713 struct hci_dev *hdev = req->hdev;
714
715 if (hdev->scanning_paused) {
716 bt_dev_dbg(hdev, "Scanning is paused for suspend");
717 return;
718 }
719
720 if (hdev->suspended)
721 set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
722
723 if (use_ext_scan(hdev)) {
724 struct hci_cp_le_set_ext_scan_enable cp;
725
726 memset(&cp, 0, sizeof(cp));
727 cp.enable = LE_SCAN_DISABLE;
728 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
729 &cp);
730 } else {
731 struct hci_cp_le_set_scan_enable cp;
732
733 memset(&cp, 0, sizeof(cp));
734 cp.enable = LE_SCAN_DISABLE;
735 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
736 }
737
738 /* Disable address resolution */
739 if (use_ll_privacy(hdev) &&
740 hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
741 hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) {
742 __u8 enable = 0x00;
743
744 hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
745 }
746 }
747
748 static void del_from_accept_list(struct hci_request *req, bdaddr_t *bdaddr,
749 u8 bdaddr_type)
750 {
751 struct hci_cp_le_del_from_accept_list cp;
752
753 cp.bdaddr_type = bdaddr_type;
754 bacpy(&cp.bdaddr, bdaddr);
755
756 bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from accept list", &cp.bdaddr,
757 cp.bdaddr_type);
758 hci_req_add(req, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, sizeof(cp), &cp);
759
760 if (use_ll_privacy(req->hdev) &&
761 hci_dev_test_flag(req->hdev, HCI_ENABLE_LL_PRIVACY)) {
762 struct smp_irk *irk;
763
764 irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type);
765 if (irk) {
766 struct hci_cp_le_del_from_resolv_list cp;
767
768 cp.bdaddr_type = bdaddr_type;
769 bacpy(&cp.bdaddr, bdaddr);
770
771 hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
772 sizeof(cp), &cp);
773 }
774 }
775 }
776
777 /* Adds connection to accept list if needed. On error, returns -1. */
778 static int add_to_accept_list(struct hci_request *req,
779 struct hci_conn_params *params, u8 *num_entries,
780 bool allow_rpa)
781 {
782 struct hci_cp_le_add_to_accept_list cp;
783 struct hci_dev *hdev = req->hdev;
784
785 /* Already in accept list */
786 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
787 params->addr_type))
788 return 0;
789
790 /* Select filter policy to accept all advertising */
791 if (*num_entries >= hdev->le_accept_list_size)
792 return -1;
793
794 /* Accept list can not be used with RPAs */
795 if (!allow_rpa &&
796 !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
797 hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) {
798 return -1;
799 }
800
801 /* During suspend, only wakeable devices can be in accept list */
802 if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
803 params->current_flags))
804 return 0;
805
806 *num_entries += 1;
807 cp.bdaddr_type = params->addr_type;
808 bacpy(&cp.bdaddr, &params->addr);
809
810 bt_dev_dbg(hdev, "Add %pMR (0x%x) to accept list", &cp.bdaddr,
811 cp.bdaddr_type);
812 hci_req_add(req, HCI_OP_LE_ADD_TO_ACCEPT_LIST, sizeof(cp), &cp);
813
814 if (use_ll_privacy(hdev) &&
815 hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY)) {
816 struct smp_irk *irk;
817
818 irk = hci_find_irk_by_addr(hdev, &params->addr,
819 params->addr_type);
820 if (irk) {
821 struct hci_cp_le_add_to_resolv_list cp;
822
823 cp.bdaddr_type = params->addr_type;
824 bacpy(&cp.bdaddr, &params->addr);
825 memcpy(cp.peer_irk, irk->val, 16);
826
827 if (hci_dev_test_flag(hdev, HCI_PRIVACY))
828 memcpy(cp.local_irk, hdev->irk, 16);
829 else
830 memset(cp.local_irk, 0, 16);
831
832 hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST,
833 sizeof(cp), &cp);
834 }
835 }
836
837 return 0;
838 }
839
840 static u8 update_accept_list(struct hci_request *req)
841 {
842 struct hci_dev *hdev = req->hdev;
843 struct hci_conn_params *params;
844 struct bdaddr_list *b;
845 u8 num_entries = 0;
846 bool pend_conn, pend_report;
847 /* We allow usage of accept list even with RPAs in suspend. In the worst
848 * case, we won't be able to wake from devices that use the privacy1.2
849 * features. Additionally, once we support privacy1.2 and IRK
850 * offloading, we can update this to also check for those conditions.
851 */
852 bool allow_rpa = hdev->suspended;
853
854 if (use_ll_privacy(hdev) &&
855 hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY))
856 allow_rpa = true;
857
858 /* Go through the current accept list programmed into the
859 * controller one by one and check if that address is still
860 * in the list of pending connections or list of devices to
861 * report. If not present in either list, then queue the
862 * command to remove it from the controller.
863 */
864 list_for_each_entry(b, &hdev->le_accept_list, list) {
865 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
866 &b->bdaddr,
867 b->bdaddr_type);
868 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
869 &b->bdaddr,
870 b->bdaddr_type);
871
872 /* If the device is not likely to connect or report,
873 * remove it from the accept list.
874 */
875 if (!pend_conn && !pend_report) {
876 del_from_accept_list(req, &b->bdaddr, b->bdaddr_type);
877 continue;
878 }
879
880 /* Accept list can not be used with RPAs */
881 if (!allow_rpa &&
882 !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
883 hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
884 return 0x00;
885 }
886
887 num_entries++;
888 }
889
890 /* Since all no longer valid accept list entries have been
891 * removed, walk through the list of pending connections
892 * and ensure that any new device gets programmed into
893 * the controller.
894 *
895 * If the list of the devices is larger than the list of
896 * available accept list entries in the controller, then
897 * just abort and return filer policy value to not use the
898 * accept list.
899 */
900 list_for_each_entry(params, &hdev->pend_le_conns, action) {
901 if (add_to_accept_list(req, params, &num_entries, allow_rpa))
902 return 0x00;
903 }
904
905 /* After adding all new pending connections, walk through
906 * the list of pending reports and also add these to the
907 * accept list if there is still space. Abort if space runs out.
908 */
909 list_for_each_entry(params, &hdev->pend_le_reports, action) {
910 if (add_to_accept_list(req, params, &num_entries, allow_rpa))
911 return 0x00;
912 }
913
914 /* Use the allowlist unless the following conditions are all true:
915 * - We are not currently suspending
916 * - There are 1 or more ADV monitors registered and it's not offloaded
917 * - Interleaved scanning is not currently using the allowlist
918 */
919 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
920 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
921 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
922 return 0x00;
923
924 /* Select filter policy to use accept list */
925 return 0x01;
926 }
927
928 static bool scan_use_rpa(struct hci_dev *hdev)
929 {
930 return hci_dev_test_flag(hdev, HCI_PRIVACY);
931 }
932
933 static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
934 u16 window, u8 own_addr_type, u8 filter_policy,
935 bool filter_dup, bool addr_resolv)
936 {
937 struct hci_dev *hdev = req->hdev;
938
939 if (hdev->scanning_paused) {
940 bt_dev_dbg(hdev, "Scanning is paused for suspend");
941 return;
942 }
943
944 if (use_ll_privacy(hdev) &&
945 hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
946 addr_resolv) {
947 u8 enable = 0x01;
948
949 hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
950 }
951
952 /* Use ext scanning if set ext scan param and ext scan enable is
953 * supported
954 */
955 if (use_ext_scan(hdev)) {
956 struct hci_cp_le_set_ext_scan_params *ext_param_cp;
957 struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
958 struct hci_cp_le_scan_phy_params *phy_params;
959 u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
960 u32 plen;
961
962 ext_param_cp = (void *)data;
963 phy_params = (void *)ext_param_cp->data;
964
965 memset(ext_param_cp, 0, sizeof(*ext_param_cp));
966 ext_param_cp->own_addr_type = own_addr_type;
967 ext_param_cp->filter_policy = filter_policy;
968
969 plen = sizeof(*ext_param_cp);
970
971 if (scan_1m(hdev) || scan_2m(hdev)) {
972 ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;
973
974 memset(phy_params, 0, sizeof(*phy_params));
975 phy_params->type = type;
976 phy_params->interval = cpu_to_le16(interval);
977 phy_params->window = cpu_to_le16(window);
978
979 plen += sizeof(*phy_params);
980 phy_params++;
981 }
982
983 if (scan_coded(hdev)) {
984 ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;
985
986 memset(phy_params, 0, sizeof(*phy_params));
987 phy_params->type = type;
988 phy_params->interval = cpu_to_le16(interval);
989 phy_params->window = cpu_to_le16(window);
990
991 plen += sizeof(*phy_params);
992 phy_params++;
993 }
994
995 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
996 plen, ext_param_cp);
997
998 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
999 ext_enable_cp.enable = LE_SCAN_ENABLE;
1000 ext_enable_cp.filter_dup = filter_dup;
1001
1002 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
1003 sizeof(ext_enable_cp), &ext_enable_cp);
1004 } else {
1005 struct hci_cp_le_set_scan_param param_cp;
1006 struct hci_cp_le_set_scan_enable enable_cp;
1007
1008 memset(&param_cp, 0, sizeof(param_cp));
1009 param_cp.type = type;
1010 param_cp.interval = cpu_to_le16(interval);
1011 param_cp.window = cpu_to_le16(window);
1012 param_cp.own_address_type = own_addr_type;
1013 param_cp.filter_policy = filter_policy;
1014 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
1015 &param_cp);
1016
1017 memset(&enable_cp, 0, sizeof(enable_cp));
1018 enable_cp.enable = LE_SCAN_ENABLE;
1019 enable_cp.filter_dup = filter_dup;
1020 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
1021 &enable_cp);
1022 }
1023 }
1024
1025 /* Returns true if an le connection is in the scanning state */
1026 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
1027 {
1028 struct hci_conn_hash *h = &hdev->conn_hash;
1029 struct hci_conn *c;
1030
1031 rcu_read_lock();
1032
1033 list_for_each_entry_rcu(c, &h->list, list) {
1034 if (c->type == LE_LINK && c->state == BT_CONNECT &&
1035 test_bit(HCI_CONN_SCANNING, &c->flags)) {
1036 rcu_read_unlock();
1037 return true;
1038 }
1039 }
1040
1041 rcu_read_unlock();
1042
1043 return false;
1044 }
1045
1046 /* Ensure to call hci_req_add_le_scan_disable() first to disable the
1047 * controller based address resolution to be able to reconfigure
1048 * resolving list.
1049 */
1050 void hci_req_add_le_passive_scan(struct hci_request *req)
1051 {
1052 struct hci_dev *hdev = req->hdev;
1053 u8 own_addr_type;
1054 u8 filter_policy;
1055 u16 window, interval;
1056 /* Default is to enable duplicates filter */
1057 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
1058 /* Background scanning should run with address resolution */
1059 bool addr_resolv = true;
1060
1061 if (hdev->scanning_paused) {
1062 bt_dev_dbg(hdev, "Scanning is paused for suspend");
1063 return;
1064 }
1065
1066 /* Set require_privacy to false since no SCAN_REQ are send
1067 * during passive scanning. Not using an non-resolvable address
1068 * here is important so that peer devices using direct
1069 * advertising with our address will be correctly reported
1070 * by the controller.
1071 */
1072 if (hci_update_random_address(req, false, scan_use_rpa(hdev),
1073 &own_addr_type))
1074 return;
1075
1076 if (hdev->enable_advmon_interleave_scan &&
1077 __hci_update_interleaved_scan(hdev))
1078 return;
1079
1080 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
1081 /* Adding or removing entries from the accept list must
1082 * happen before enabling scanning. The controller does
1083 * not allow accept list modification while scanning.
1084 */
1085 filter_policy = update_accept_list(req);
1086
1087 /* When the controller is using random resolvable addresses and
1088 * with that having LE privacy enabled, then controllers with
1089 * Extended Scanner Filter Policies support can now enable support
1090 * for handling directed advertising.
1091 *
1092 * So instead of using filter polices 0x00 (no accept list)
1093 * and 0x01 (accept list enabled) use the new filter policies
1094 * 0x02 (no accept list) and 0x03 (accept list enabled).
1095 */
1096 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
1097 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
1098 filter_policy |= 0x02;
1099
1100 if (hdev->suspended) {
1101 window = hdev->le_scan_window_suspend;
1102 interval = hdev->le_scan_int_suspend;
1103
1104 set_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks);
1105 } else if (hci_is_le_conn_scanning(hdev)) {
1106 window = hdev->le_scan_window_connect;
1107 interval = hdev->le_scan_int_connect;
1108 } else if (hci_is_adv_monitoring(hdev)) {
1109 window = hdev->le_scan_window_adv_monitor;
1110 interval = hdev->le_scan_int_adv_monitor;
1111
1112 /* Disable duplicates filter when scanning for advertisement
1113 * monitor for the following reasons.
1114 *
1115 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm
1116 * controllers ignore RSSI_Sampling_Period when the duplicates
1117 * filter is enabled.
1118 *
1119 * For SW pattern filtering, when we're not doing interleaved
1120 * scanning, it is necessary to disable duplicates filter,
1121 * otherwise hosts can only receive one advertisement and it's
1122 * impossible to know if a peer is still in range.
1123 */
1124 filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
1125 } else {
1126 window = hdev->le_scan_window;
1127 interval = hdev->le_scan_interval;
1128 }
1129
1130 bt_dev_dbg(hdev, "LE passive scan with accept list = %d",
1131 filter_policy);
1132 hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
1133 own_addr_type, filter_policy, filter_dup,
1134 addr_resolv);
1135 }
1136
1137 static bool adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1138 {
1139 struct adv_info *adv_instance;
1140
1141 /* Instance 0x00 always set local name */
1142 if (instance == 0x00)
1143 return true;
1144
1145 adv_instance = hci_find_adv_instance(hdev, instance);
1146 if (!adv_instance)
1147 return false;
1148
1149 if (adv_instance->flags & MGMT_ADV_FLAG_APPEARANCE ||
1150 adv_instance->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1151 return true;
1152
1153 return adv_instance->scan_rsp_len ? true : false;
1154 }
1155
1156 static void hci_req_clear_event_filter(struct hci_request *req)
1157 {
1158 struct hci_cp_set_event_filter f;
1159
1160 if (!hci_dev_test_flag(req->hdev, HCI_BREDR_ENABLED))
1161 return;
1162
1163 if (hci_dev_test_flag(req->hdev, HCI_EVENT_FILTER_CONFIGURED)) {
1164 memset(&f, 0, sizeof(f));
1165 f.flt_type = HCI_FLT_CLEAR_ALL;
1166 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &f);
1167 }
1168 }
1169
1170 static void hci_req_set_event_filter(struct hci_request *req)
1171 {
1172 struct bdaddr_list_with_flags *b;
1173 struct hci_cp_set_event_filter f;
1174 struct hci_dev *hdev = req->hdev;
1175 u8 scan = SCAN_DISABLED;
1176 bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
1177
1178 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1179 return;
1180
1181 /* Always clear event filter when starting */
1182 hci_req_clear_event_filter(req);
1183
1184 list_for_each_entry(b, &hdev->accept_list, list) {
1185 if (!hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
1186 b->current_flags))
1187 continue;
1188
1189 memset(&f, 0, sizeof(f));
1190 bacpy(&f.addr_conn_flt.bdaddr, &b->bdaddr);
1191 f.flt_type = HCI_FLT_CONN_SETUP;
1192 f.cond_type = HCI_CONN_SETUP_ALLOW_BDADDR;
1193 f.addr_conn_flt.auto_accept = HCI_CONN_SETUP_AUTO_ON;
1194
1195 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
1196 hci_req_add(req, HCI_OP_SET_EVENT_FLT, sizeof(f), &f);
1197 scan = SCAN_PAGE;
1198 }
1199
1200 if (scan && !scanning) {
1201 set_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks);
1202 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1203 } else if (!scan && scanning) {
1204 set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
1205 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1206 }
1207 }
1208
1209 static void cancel_adv_timeout(struct hci_dev *hdev)
1210 {
1211 if (hdev->adv_instance_timeout) {
1212 hdev->adv_instance_timeout = 0;
1213 cancel_delayed_work(&hdev->adv_instance_expire);
1214 }
1215 }
1216
1217 /* This function requires the caller holds hdev->lock */
1218 void __hci_req_pause_adv_instances(struct hci_request *req)
1219 {
1220 bt_dev_dbg(req->hdev, "Pausing advertising instances");
1221
1222 /* Call to disable any advertisements active on the controller.
1223 * This will succeed even if no advertisements are configured.
1224 */
1225 __hci_req_disable_advertising(req);
1226
1227 /* If we are using software rotation, pause the loop */
1228 if (!ext_adv_capable(req->hdev))
1229 cancel_adv_timeout(req->hdev);
1230 }
1231
1232 /* This function requires the caller holds hdev->lock */
1233 static void __hci_req_resume_adv_instances(struct hci_request *req)
1234 {
1235 struct adv_info *adv;
1236
1237 bt_dev_dbg(req->hdev, "Resuming advertising instances");
1238
1239 if (ext_adv_capable(req->hdev)) {
1240 /* Call for each tracked instance to be re-enabled */
1241 list_for_each_entry(adv, &req->hdev->adv_instances, list) {
1242 __hci_req_enable_ext_advertising(req,
1243 adv->instance);
1244 }
1245
1246 } else {
1247 /* Schedule for most recent instance to be restarted and begin
1248 * the software rotation loop
1249 */
1250 __hci_req_schedule_adv_instance(req,
1251 req->hdev->cur_adv_instance,
1252 true);
1253 }
1254 }
1255
1256 /* This function requires the caller holds hdev->lock */
1257 int hci_req_resume_adv_instances(struct hci_dev *hdev)
1258 {
1259 struct hci_request req;
1260
1261 hci_req_init(&req, hdev);
1262 __hci_req_resume_adv_instances(&req);
1263
1264 return hci_req_run(&req, NULL);
1265 }
1266
1267 static void suspend_req_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1268 {
1269 bt_dev_dbg(hdev, "Request complete opcode=0x%x, status=0x%x", opcode,
1270 status);
1271 if (test_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks) ||
1272 test_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks)) {
1273 clear_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks);
1274 clear_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
1275 wake_up(&hdev->suspend_wait_q);
1276 }
1277
1278 if (test_bit(SUSPEND_SET_ADV_FILTER, hdev->suspend_tasks)) {
1279 clear_bit(SUSPEND_SET_ADV_FILTER, hdev->suspend_tasks);
1280 wake_up(&hdev->suspend_wait_q);
1281 }
1282 }
1283
1284 static void hci_req_add_set_adv_filter_enable(struct hci_request *req,
1285 bool enable)
1286 {
1287 struct hci_dev *hdev = req->hdev;
1288
1289 switch (hci_get_adv_monitor_offload_ext(hdev)) {
1290 case HCI_ADV_MONITOR_EXT_MSFT:
1291 msft_req_add_set_filter_enable(req, enable);
1292 break;
1293 default:
1294 return;
1295 }
1296
1297 /* No need to block when enabling since it's on resume path */
1298 if (hdev->suspended && !enable)
1299 set_bit(SUSPEND_SET_ADV_FILTER, hdev->suspend_tasks);
1300 }
1301
1302 /* Call with hci_dev_lock */
1303 void hci_req_prepare_suspend(struct hci_dev *hdev, enum suspended_state next)
1304 {
1305 int old_state;
1306 struct hci_conn *conn;
1307 struct hci_request req;
1308 u8 page_scan;
1309 int disconnect_counter;
1310
1311 if (next == hdev->suspend_state) {
1312 bt_dev_dbg(hdev, "Same state before and after: %d", next);
1313 goto done;
1314 }
1315
1316 hdev->suspend_state = next;
1317 hci_req_init(&req, hdev);
1318
1319 if (next == BT_SUSPEND_DISCONNECT) {
1320 /* Mark device as suspended */
1321 hdev->suspended = true;
1322
1323 /* Pause discovery if not already stopped */
1324 old_state = hdev->discovery.state;
1325 if (old_state != DISCOVERY_STOPPED) {
1326 set_bit(SUSPEND_PAUSE_DISCOVERY, hdev->suspend_tasks);
1327 hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
1328 queue_work(hdev->req_workqueue, &hdev->discov_update);
1329 }
1330
1331 hdev->discovery_paused = true;
1332 hdev->discovery_old_state = old_state;
1333
1334 /* Stop directed advertising */
1335 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
1336 if (old_state) {
1337 set_bit(SUSPEND_PAUSE_ADVERTISING, hdev->suspend_tasks);
1338 cancel_delayed_work(&hdev->discov_off);
1339 queue_delayed_work(hdev->req_workqueue,
1340 &hdev->discov_off, 0);
1341 }
1342
1343 /* Pause other advertisements */
1344 if (hdev->adv_instance_cnt)
1345 __hci_req_pause_adv_instances(&req);
1346
1347 hdev->advertising_paused = true;
1348 hdev->advertising_old_state = old_state;
1349
1350 /* Disable page scan if enabled */
1351 if (test_bit(HCI_PSCAN, &hdev->flags)) {
1352 page_scan = SCAN_DISABLED;
1353 hci_req_add(&req, HCI_OP_WRITE_SCAN_ENABLE, 1,
1354 &page_scan);
1355 set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
1356 }
1357
1358 /* Disable LE passive scan if enabled */
1359 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
1360 cancel_interleave_scan(hdev);
1361 hci_req_add_le_scan_disable(&req, false);
1362 }
1363
1364 /* Disable advertisement filters */
1365 hci_req_add_set_adv_filter_enable(&req, false);
1366
1367 /* Prevent disconnects from causing scanning to be re-enabled */
1368 hdev->scanning_paused = true;
1369
1370 /* Run commands before disconnecting */
1371 hci_req_run(&req, suspend_req_complete);
1372
1373 disconnect_counter = 0;
1374 /* Soft disconnect everything (power off) */
1375 list_for_each_entry(conn, &hdev->conn_hash.list, list) {
1376 hci_disconnect(conn, HCI_ERROR_REMOTE_POWER_OFF);
1377 disconnect_counter++;
1378 }
1379
1380 if (disconnect_counter > 0) {
1381 bt_dev_dbg(hdev,
1382 "Had %d disconnects. Will wait on them",
1383 disconnect_counter);
1384 set_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks);
1385 }
1386 } else if (next == BT_SUSPEND_CONFIGURE_WAKE) {
1387 /* Unpause to take care of updating scanning params */
1388 hdev->scanning_paused = false;
1389 /* Enable event filter for paired devices */
1390 hci_req_set_event_filter(&req);
1391 /* Enable passive scan at lower duty cycle */
1392 __hci_update_background_scan(&req);
1393 /* Pause scan changes again. */
1394 hdev->scanning_paused = true;
1395 hci_req_run(&req, suspend_req_complete);
1396 } else {
1397 hdev->suspended = false;
1398 hdev->scanning_paused = false;
1399
1400 /* Clear any event filters and restore scan state */
1401 hci_req_clear_event_filter(&req);
1402 __hci_req_update_scan(&req);
1403
1404 /* Reset passive/background scanning to normal */
1405 __hci_update_background_scan(&req);
1406 /* Enable all of the advertisement filters */
1407 hci_req_add_set_adv_filter_enable(&req, true);
1408
1409 /* Unpause directed advertising */
1410 hdev->advertising_paused = false;
1411 if (hdev->advertising_old_state) {
1412 set_bit(SUSPEND_UNPAUSE_ADVERTISING,
1413 hdev->suspend_tasks);
1414 hci_dev_set_flag(hdev, HCI_ADVERTISING);
1415 queue_work(hdev->req_workqueue,
1416 &hdev->discoverable_update);
1417 hdev->advertising_old_state = 0;
1418 }
1419
1420 /* Resume other advertisements */
1421 if (hdev->adv_instance_cnt)
1422 __hci_req_resume_adv_instances(&req);
1423
1424 /* Unpause discovery */
1425 hdev->discovery_paused = false;
1426 if (hdev->discovery_old_state != DISCOVERY_STOPPED &&
1427 hdev->discovery_old_state != DISCOVERY_STOPPING) {
1428 set_bit(SUSPEND_UNPAUSE_DISCOVERY, hdev->suspend_tasks);
1429 hci_discovery_set_state(hdev, DISCOVERY_STARTING);
1430 queue_work(hdev->req_workqueue, &hdev->discov_update);
1431 }
1432
1433 hci_req_run(&req, suspend_req_complete);
1434 }
1435
1436 hdev->suspend_state = next;
1437
1438 done:
1439 clear_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
1440 wake_up(&hdev->suspend_wait_q);
1441 }
1442
1443 static bool adv_cur_instance_is_scannable(struct hci_dev *hdev)
1444 {
1445 return adv_instance_is_scannable(hdev, hdev->cur_adv_instance);
1446 }
1447
1448 void __hci_req_disable_advertising(struct hci_request *req)
1449 {
1450 if (ext_adv_capable(req->hdev)) {
1451 __hci_req_disable_ext_adv_instance(req, 0x00);
1452
1453 } else {
1454 u8 enable = 0x00;
1455
1456 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1457 }
1458 }
1459
1460 static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1461 {
1462 u32 flags;
1463 struct adv_info *adv_instance;
1464
1465 if (instance == 0x00) {
1466 /* Instance 0 always manages the "Tx Power" and "Flags"
1467 * fields
1468 */
1469 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1470
1471 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1472 * corresponds to the "connectable" instance flag.
1473 */
1474 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1475 flags |= MGMT_ADV_FLAG_CONNECTABLE;
1476
1477 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1478 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1479 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1480 flags |= MGMT_ADV_FLAG_DISCOV;
1481
1482 return flags;
1483 }
1484
1485 adv_instance = hci_find_adv_instance(hdev, instance);
1486
1487 /* Return 0 when we got an invalid instance identifier. */
1488 if (!adv_instance)
1489 return 0;
1490
1491 return adv_instance->flags;
1492 }
1493
1494 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
1495 {
1496 /* If privacy is not enabled don't use RPA */
1497 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
1498 return false;
1499
1500 /* If basic privacy mode is enabled use RPA */
1501 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1502 return true;
1503
1504 /* If limited privacy mode is enabled don't use RPA if we're
1505 * both discoverable and bondable.
1506 */
1507 if ((flags & MGMT_ADV_FLAG_DISCOV) &&
1508 hci_dev_test_flag(hdev, HCI_BONDABLE))
1509 return false;
1510
1511 /* We're neither bondable nor discoverable in the limited
1512 * privacy mode, therefore use RPA.
1513 */
1514 return true;
1515 }
1516
1517 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
1518 {
1519 /* If there is no connection we are OK to advertise. */
1520 if (hci_conn_num(hdev, LE_LINK) == 0)
1521 return true;
1522
1523 /* Check le_states if there is any connection in peripheral role. */
1524 if (hdev->conn_hash.le_num_peripheral > 0) {
1525 /* Peripheral connection state and non connectable mode bit 20.
1526 */
1527 if (!connectable && !(hdev->le_states[2] & 0x10))
1528 return false;
1529
1530 /* Peripheral connection state and connectable mode bit 38
1531 * and scannable bit 21.
1532 */
1533 if (connectable && (!(hdev->le_states[4] & 0x40) ||
1534 !(hdev->le_states[2] & 0x20)))
1535 return false;
1536 }
1537
1538 /* Check le_states if there is any connection in central role. */
1539 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
1540 /* Central connection state and non connectable mode bit 18. */
1541 if (!connectable && !(hdev->le_states[2] & 0x02))
1542 return false;
1543
1544 /* Central connection state and connectable mode bit 35 and
1545 * scannable 19.
1546 */
1547 if (connectable && (!(hdev->le_states[4] & 0x08) ||
1548 !(hdev->le_states[2] & 0x08)))
1549 return false;
1550 }
1551
1552 return true;
1553 }
1554
1555 void __hci_req_enable_advertising(struct hci_request *req)
1556 {
1557 struct hci_dev *hdev = req->hdev;
1558 struct adv_info *adv_instance;
1559 struct hci_cp_le_set_adv_param cp;
1560 u8 own_addr_type, enable = 0x01;
1561 bool connectable;
1562 u16 adv_min_interval, adv_max_interval;
1563 u32 flags;
1564
1565 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
1566 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1567
1568 /* If the "connectable" instance flag was not set, then choose between
1569 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1570 */
1571 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1572 mgmt_get_connectable(hdev);
1573
1574 if (!is_advertising_allowed(hdev, connectable))
1575 return;
1576
1577 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1578 __hci_req_disable_advertising(req);
1579
1580 /* Clear the HCI_LE_ADV bit temporarily so that the
1581 * hci_update_random_address knows that it's safe to go ahead
1582 * and write a new random address. The flag will be set back on
1583 * as soon as the SET_ADV_ENABLE HCI command completes.
1584 */
1585 hci_dev_clear_flag(hdev, HCI_LE_ADV);
1586
1587 /* Set require_privacy to true only when non-connectable
1588 * advertising is used. In that case it is fine to use a
1589 * non-resolvable private address.
1590 */
1591 if (hci_update_random_address(req, !connectable,
1592 adv_use_rpa(hdev, flags),
1593 &own_addr_type) < 0)
1594 return;
1595
1596 memset(&cp, 0, sizeof(cp));
1597
1598 if (adv_instance) {
1599 adv_min_interval = adv_instance->min_interval;
1600 adv_max_interval = adv_instance->max_interval;
1601 } else {
1602 adv_min_interval = hdev->le_adv_min_interval;
1603 adv_max_interval = hdev->le_adv_max_interval;
1604 }
1605
1606 if (connectable) {
1607 cp.type = LE_ADV_IND;
1608 } else {
1609 if (adv_cur_instance_is_scannable(hdev))
1610 cp.type = LE_ADV_SCAN_IND;
1611 else
1612 cp.type = LE_ADV_NONCONN_IND;
1613
1614 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1615 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1616 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1617 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1618 }
1619 }
1620
1621 cp.min_interval = cpu_to_le16(adv_min_interval);
1622 cp.max_interval = cpu_to_le16(adv_max_interval);
1623 cp.own_address_type = own_addr_type;
1624 cp.channel_map = hdev->le_adv_channel_map;
1625
1626 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1627
1628 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1629 }
1630
1631 u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1632 {
1633 size_t short_len;
1634 size_t complete_len;
1635
1636 /* no space left for name (+ NULL + type + len) */
1637 if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1638 return ad_len;
1639
1640 /* use complete name if present and fits */
1641 complete_len = strlen(hdev->dev_name);
1642 if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1643 return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1644 hdev->dev_name, complete_len + 1);
1645
1646 /* use short name if present */
1647 short_len = strlen(hdev->short_name);
1648 if (short_len)
1649 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1650 hdev->short_name, short_len + 1);
1651
1652 /* use shortened full name if present, we already know that name
1653 * is longer then HCI_MAX_SHORT_NAME_LENGTH
1654 */
1655 if (complete_len) {
1656 u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1657
1658 memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1659 name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1660
1661 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1662 sizeof(name));
1663 }
1664
1665 return ad_len;
1666 }
1667
1668 static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1669 {
1670 return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1671 }
1672
1673 static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1674 {
1675 u8 scan_rsp_len = 0;
1676
1677 if (hdev->appearance)
1678 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1679
1680 return append_local_name(hdev, ptr, scan_rsp_len);
1681 }
1682
1683 static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1684 u8 *ptr)
1685 {
1686 struct adv_info *adv_instance;
1687 u32 instance_flags;
1688 u8 scan_rsp_len = 0;
1689
1690 adv_instance = hci_find_adv_instance(hdev, instance);
1691 if (!adv_instance)
1692 return 0;
1693
1694 instance_flags = adv_instance->flags;
1695
1696 if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance)
1697 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1698
1699 memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1700 adv_instance->scan_rsp_len);
1701
1702 scan_rsp_len += adv_instance->scan_rsp_len;
1703
1704 if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1705 scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1706
1707 return scan_rsp_len;
1708 }
1709
1710 void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1711 {
1712 struct hci_dev *hdev = req->hdev;
1713 u8 len;
1714
1715 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1716 return;
1717
1718 if (ext_adv_capable(hdev)) {
1719 struct {
1720 struct hci_cp_le_set_ext_scan_rsp_data cp;
1721 u8 data[HCI_MAX_EXT_AD_LENGTH];
1722 } pdu;
1723
1724 memset(&pdu, 0, sizeof(pdu));
1725
1726 if (instance)
1727 len = create_instance_scan_rsp_data(hdev, instance,
1728 pdu.data);
1729 else
1730 len = create_default_scan_rsp_data(hdev, pdu.data);
1731
1732 if (hdev->scan_rsp_data_len == len &&
1733 !memcmp(pdu.data, hdev->scan_rsp_data, len))
1734 return;
1735
1736 memcpy(hdev->scan_rsp_data, pdu.data, len);
1737 hdev->scan_rsp_data_len = len;
1738
1739 pdu.cp.handle = instance;
1740 pdu.cp.length = len;
1741 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1742 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1743
1744 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
1745 sizeof(pdu.cp) + len, &pdu.cp);
1746 } else {
1747 struct hci_cp_le_set_scan_rsp_data cp;
1748
1749 memset(&cp, 0, sizeof(cp));
1750
1751 if (instance)
1752 len = create_instance_scan_rsp_data(hdev, instance,
1753 cp.data);
1754 else
1755 len = create_default_scan_rsp_data(hdev, cp.data);
1756
1757 if (hdev->scan_rsp_data_len == len &&
1758 !memcmp(cp.data, hdev->scan_rsp_data, len))
1759 return;
1760
1761 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1762 hdev->scan_rsp_data_len = len;
1763
1764 cp.length = len;
1765
1766 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1767 }
1768 }
1769
1770 static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1771 {
1772 struct adv_info *adv_instance = NULL;
1773 u8 ad_len = 0, flags = 0;
1774 u32 instance_flags;
1775
1776 /* Return 0 when the current instance identifier is invalid. */
1777 if (instance) {
1778 adv_instance = hci_find_adv_instance(hdev, instance);
1779 if (!adv_instance)
1780 return 0;
1781 }
1782
1783 instance_flags = get_adv_instance_flags(hdev, instance);
1784
1785 /* If instance already has the flags set skip adding it once
1786 * again.
1787 */
1788 if (adv_instance && eir_get_data(adv_instance->adv_data,
1789 adv_instance->adv_data_len, EIR_FLAGS,
1790 NULL))
1791 goto skip_flags;
1792
1793 /* The Add Advertising command allows userspace to set both the general
1794 * and limited discoverable flags.
1795 */
1796 if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1797 flags |= LE_AD_GENERAL;
1798
1799 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1800 flags |= LE_AD_LIMITED;
1801
1802 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1803 flags |= LE_AD_NO_BREDR;
1804
1805 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1806 /* If a discovery flag wasn't provided, simply use the global
1807 * settings.
1808 */
1809 if (!flags)
1810 flags |= mgmt_get_adv_discov_flags(hdev);
1811
1812 /* If flags would still be empty, then there is no need to
1813 * include the "Flags" AD field".
1814 */
1815 if (flags) {
1816 ptr[0] = 0x02;
1817 ptr[1] = EIR_FLAGS;
1818 ptr[2] = flags;
1819
1820 ad_len += 3;
1821 ptr += 3;
1822 }
1823 }
1824
1825 skip_flags:
1826 if (adv_instance) {
1827 memcpy(ptr, adv_instance->adv_data,
1828 adv_instance->adv_data_len);
1829 ad_len += adv_instance->adv_data_len;
1830 ptr += adv_instance->adv_data_len;
1831 }
1832
1833 if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
1834 s8 adv_tx_power;
1835
1836 if (ext_adv_capable(hdev)) {
1837 if (adv_instance)
1838 adv_tx_power = adv_instance->tx_power;
1839 else
1840 adv_tx_power = hdev->adv_tx_power;
1841 } else {
1842 adv_tx_power = hdev->adv_tx_power;
1843 }
1844
1845 /* Provide Tx Power only if we can provide a valid value for it */
1846 if (adv_tx_power != HCI_TX_POWER_INVALID) {
1847 ptr[0] = 0x02;
1848 ptr[1] = EIR_TX_POWER;
1849 ptr[2] = (u8)adv_tx_power;
1850
1851 ad_len += 3;
1852 ptr += 3;
1853 }
1854 }
1855
1856 return ad_len;
1857 }
1858
1859 void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1860 {
1861 struct hci_dev *hdev = req->hdev;
1862 u8 len;
1863
1864 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1865 return;
1866
1867 if (ext_adv_capable(hdev)) {
1868 struct {
1869 struct hci_cp_le_set_ext_adv_data cp;
1870 u8 data[HCI_MAX_EXT_AD_LENGTH];
1871 } pdu;
1872
1873 memset(&pdu, 0, sizeof(pdu));
1874
1875 len = create_instance_adv_data(hdev, instance, pdu.data);
1876
1877 /* There's nothing to do if the data hasn't changed */
1878 if (hdev->adv_data_len == len &&
1879 memcmp(pdu.data, hdev->adv_data, len) == 0)
1880 return;
1881
1882 memcpy(hdev->adv_data, pdu.data, len);
1883 hdev->adv_data_len = len;
1884
1885 pdu.cp.length = len;
1886 pdu.cp.handle = instance;
1887 pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1888 pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1889
1890 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA,
1891 sizeof(pdu.cp) + len, &pdu.cp);
1892 } else {
1893 struct hci_cp_le_set_adv_data cp;
1894
1895 memset(&cp, 0, sizeof(cp));
1896
1897 len = create_instance_adv_data(hdev, instance, cp.data);
1898
1899 /* There's nothing to do if the data hasn't changed */
1900 if (hdev->adv_data_len == len &&
1901 memcmp(cp.data, hdev->adv_data, len) == 0)
1902 return;
1903
1904 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1905 hdev->adv_data_len = len;
1906
1907 cp.length = len;
1908
1909 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1910 }
1911 }
1912
1913 int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1914 {
1915 struct hci_request req;
1916
1917 hci_req_init(&req, hdev);
1918 __hci_req_update_adv_data(&req, instance);
1919
1920 return hci_req_run(&req, NULL);
1921 }
1922
1923 static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status,
1924 u16 opcode)
1925 {
1926 BT_DBG("%s status %u", hdev->name, status);
1927 }
1928
1929 void hci_req_disable_address_resolution(struct hci_dev *hdev)
1930 {
1931 struct hci_request req;
1932 __u8 enable = 0x00;
1933
1934 if (!use_ll_privacy(hdev) &&
1935 !hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1936 return;
1937
1938 hci_req_init(&req, hdev);
1939
1940 hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
1941
1942 hci_req_run(&req, enable_addr_resolution_complete);
1943 }
1944
1945 static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1946 {
1947 bt_dev_dbg(hdev, "status %u", status);
1948 }
1949
1950 void hci_req_reenable_advertising(struct hci_dev *hdev)
1951 {
1952 struct hci_request req;
1953
1954 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1955 list_empty(&hdev->adv_instances))
1956 return;
1957
1958 hci_req_init(&req, hdev);
1959
1960 if (hdev->cur_adv_instance) {
1961 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1962 true);
1963 } else {
1964 if (ext_adv_capable(hdev)) {
1965 __hci_req_start_ext_adv(&req, 0x00);
1966 } else {
1967 __hci_req_update_adv_data(&req, 0x00);
1968 __hci_req_update_scan_rsp_data(&req, 0x00);
1969 __hci_req_enable_advertising(&req);
1970 }
1971 }
1972
1973 hci_req_run(&req, adv_enable_complete);
1974 }
1975
1976 static void adv_timeout_expire(struct work_struct *work)
1977 {
1978 struct hci_dev *hdev = container_of(work, struct hci_dev,
1979 adv_instance_expire.work);
1980
1981 struct hci_request req;
1982 u8 instance;
1983
1984 bt_dev_dbg(hdev, "");
1985
1986 hci_dev_lock(hdev);
1987
1988 hdev->adv_instance_timeout = 0;
1989
1990 instance = hdev->cur_adv_instance;
1991 if (instance == 0x00)
1992 goto unlock;
1993
1994 hci_req_init(&req, hdev);
1995
1996 hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1997
1998 if (list_empty(&hdev->adv_instances))
1999 __hci_req_disable_advertising(&req);
2000
2001 hci_req_run(&req, NULL);
2002
2003 unlock:
2004 hci_dev_unlock(hdev);
2005 }
2006
2007 static int hci_req_add_le_interleaved_scan(struct hci_request *req,
2008 unsigned long opt)
2009 {
2010 struct hci_dev *hdev = req->hdev;
2011 int ret = 0;
2012
2013 hci_dev_lock(hdev);
2014
2015 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2016 hci_req_add_le_scan_disable(req, false);
2017 hci_req_add_le_passive_scan(req);
2018
2019 switch (hdev->interleave_scan_state) {
2020 case INTERLEAVE_SCAN_ALLOWLIST:
2021 bt_dev_dbg(hdev, "next state: allowlist");
2022 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
2023 break;
2024 case INTERLEAVE_SCAN_NO_FILTER:
2025 bt_dev_dbg(hdev, "next state: no filter");
2026 hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST;
2027 break;
2028 case INTERLEAVE_SCAN_NONE:
2029 BT_ERR("unexpected error");
2030 ret = -1;
2031 }
2032
2033 hci_dev_unlock(hdev);
2034
2035 return ret;
2036 }
2037
2038 static void interleave_scan_work(struct work_struct *work)
2039 {
2040 struct hci_dev *hdev = container_of(work, struct hci_dev,
2041 interleave_scan.work);
2042 u8 status;
2043 unsigned long timeout;
2044
2045 if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) {
2046 timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration);
2047 } else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) {
2048 timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration);
2049 } else {
2050 bt_dev_err(hdev, "unexpected error");
2051 return;
2052 }
2053
2054 hci_req_sync(hdev, hci_req_add_le_interleaved_scan, 0,
2055 HCI_CMD_TIMEOUT, &status);
2056
2057 /* Don't continue interleaving if it was canceled */
2058 if (is_interleave_scanning(hdev))
2059 queue_delayed_work(hdev->req_workqueue,
2060 &hdev->interleave_scan, timeout);
2061 }
2062
2063 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
2064 bool use_rpa, struct adv_info *adv_instance,
2065 u8 *own_addr_type, bdaddr_t *rand_addr)
2066 {
2067 int err;
2068
2069 bacpy(rand_addr, BDADDR_ANY);
2070
2071 /* If privacy is enabled use a resolvable private address. If
2072 * current RPA has expired then generate a new one.
2073 */
2074 if (use_rpa) {
2075 /* If Controller supports LL Privacy use own address type is
2076 * 0x03
2077 */
2078 if (use_ll_privacy(hdev) &&
2079 hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY))
2080 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
2081 else
2082 *own_addr_type = ADDR_LE_DEV_RANDOM;
2083
2084 if (adv_instance) {
2085 if (adv_rpa_valid(adv_instance))
2086 return 0;
2087 } else {
2088 if (rpa_valid(hdev))
2089 return 0;
2090 }
2091
2092 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
2093 if (err < 0) {
2094 bt_dev_err(hdev, "failed to generate new RPA");
2095 return err;
2096 }
2097
2098 bacpy(rand_addr, &hdev->rpa);
2099
2100 return 0;
2101 }
2102
2103 /* In case of required privacy without resolvable private address,
2104 * use an non-resolvable private address. This is useful for
2105 * non-connectable advertising.
2106 */
2107 if (require_privacy) {
2108 bdaddr_t nrpa;
2109
2110 while (true) {
2111 /* The non-resolvable private address is generated
2112 * from random six bytes with the two most significant
2113 * bits cleared.
2114 */
2115 get_random_bytes(&nrpa, 6);
2116 nrpa.b[5] &= 0x3f;
2117
2118 /* The non-resolvable private address shall not be
2119 * equal to the public address.
2120 */
2121 if (bacmp(&hdev->bdaddr, &nrpa))
2122 break;
2123 }
2124
2125 *own_addr_type = ADDR_LE_DEV_RANDOM;
2126 bacpy(rand_addr, &nrpa);
2127
2128 return 0;
2129 }
2130
2131 /* No privacy so use a public address. */
2132 *own_addr_type = ADDR_LE_DEV_PUBLIC;
2133
2134 return 0;
2135 }
2136
2137 void __hci_req_clear_ext_adv_sets(struct hci_request *req)
2138 {
2139 hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
2140 }
2141
2142 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
2143 {
2144 struct hci_dev *hdev = req->hdev;
2145
2146 /* If we're advertising or initiating an LE connection we can't
2147 * go ahead and change the random address at this time. This is
2148 * because the eventual initiator address used for the
2149 * subsequently created connection will be undefined (some
2150 * controllers use the new address and others the one we had
2151 * when the operation started).
2152 *
2153 * In this kind of scenario skip the update and let the random
2154 * address be updated at the next cycle.
2155 */
2156 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
2157 hci_lookup_le_connect(hdev)) {
2158 bt_dev_dbg(hdev, "Deferring random address update");
2159 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
2160 return;
2161 }
2162
2163 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
2164 }
2165
2166 int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
2167 {
2168 struct hci_cp_le_set_ext_adv_params cp;
2169 struct hci_dev *hdev = req->hdev;
2170 bool connectable;
2171 u32 flags;
2172 bdaddr_t random_addr;
2173 u8 own_addr_type;
2174 int err;
2175 struct adv_info *adv_instance;
2176 bool secondary_adv;
2177
2178 if (instance > 0) {
2179 adv_instance = hci_find_adv_instance(hdev, instance);
2180 if (!adv_instance)
2181 return -EINVAL;
2182 } else {
2183 adv_instance = NULL;
2184 }
2185
2186 flags = get_adv_instance_flags(hdev, instance);
2187
2188 /* If the "connectable" instance flag was not set, then choose between
2189 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
2190 */
2191 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
2192 mgmt_get_connectable(hdev);
2193
2194 if (!is_advertising_allowed(hdev, connectable))
2195 return -EPERM;
2196
2197 /* Set require_privacy to true only when non-connectable
2198 * advertising is used. In that case it is fine to use a
2199 * non-resolvable private address.
2200 */
2201 err = hci_get_random_address(hdev, !connectable,
2202 adv_use_rpa(hdev, flags), adv_instance,
2203 &own_addr_type, &random_addr);
2204 if (err < 0)
2205 return err;
2206
2207 memset(&cp, 0, sizeof(cp));
2208
2209 if (adv_instance) {
2210 hci_cpu_to_le24(adv_instance->min_interval, cp.min_interval);
2211 hci_cpu_to_le24(adv_instance->max_interval, cp.max_interval);
2212 cp.tx_power = adv_instance->tx_power;
2213 } else {
2214 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
2215 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
2216 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
2217 }
2218
2219 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
2220
2221 if (connectable) {
2222 if (secondary_adv)
2223 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
2224 else
2225 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
2226 } else if (adv_instance_is_scannable(hdev, instance) ||
2227 (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
2228 if (secondary_adv)
2229 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
2230 else
2231 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
2232 } else {
2233 if (secondary_adv)
2234 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
2235 else
2236 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
2237 }
2238
2239 cp.own_addr_type = own_addr_type;
2240 cp.channel_map = hdev->le_adv_channel_map;
2241 cp.handle = instance;
2242
2243 if (flags & MGMT_ADV_FLAG_SEC_2M) {
2244 cp.primary_phy = HCI_ADV_PHY_1M;
2245 cp.secondary_phy = HCI_ADV_PHY_2M;
2246 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
2247 cp.primary_phy = HCI_ADV_PHY_CODED;
2248 cp.secondary_phy = HCI_ADV_PHY_CODED;
2249 } else {
2250 /* In all other cases use 1M */
2251 cp.primary_phy = HCI_ADV_PHY_1M;
2252 cp.secondary_phy = HCI_ADV_PHY_1M;
2253 }
2254
2255 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
2256
2257 if (own_addr_type == ADDR_LE_DEV_RANDOM &&
2258 bacmp(&random_addr, BDADDR_ANY)) {
2259 struct hci_cp_le_set_adv_set_rand_addr cp;
2260
2261 /* Check if random address need to be updated */
2262 if (adv_instance) {
2263 if (!bacmp(&random_addr, &adv_instance->random_addr))
2264 return 0;
2265 } else {
2266 if (!bacmp(&random_addr, &hdev->random_addr))
2267 return 0;
2268 /* Instance 0x00 doesn't have an adv_info, instead it
2269 * uses hdev->random_addr to track its address so
2270 * whenever it needs to be updated this also set the
2271 * random address since hdev->random_addr is shared with
2272 * scan state machine.
2273 */
2274 set_random_addr(req, &random_addr);
2275 }
2276
2277 memset(&cp, 0, sizeof(cp));
2278
2279 cp.handle = instance;
2280 bacpy(&cp.bdaddr, &random_addr);
2281
2282 hci_req_add(req,
2283 HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
2284 sizeof(cp), &cp);
2285 }
2286
2287 return 0;
2288 }
2289
2290 int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
2291 {
2292 struct hci_dev *hdev = req->hdev;
2293 struct hci_cp_le_set_ext_adv_enable *cp;
2294 struct hci_cp_ext_adv_set *adv_set;
2295 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
2296 struct adv_info *adv_instance;
2297
2298 if (instance > 0) {
2299 adv_instance = hci_find_adv_instance(hdev, instance);
2300 if (!adv_instance)
2301 return -EINVAL;
2302 } else {
2303 adv_instance = NULL;
2304 }
2305
2306 cp = (void *) data;
2307 adv_set = (void *) cp->data;
2308
2309 memset(cp, 0, sizeof(*cp));
2310
2311 cp->enable = 0x01;
2312 cp->num_of_sets = 0x01;
2313
2314 memset(adv_set, 0, sizeof(*adv_set));
2315
2316 adv_set->handle = instance;
2317
2318 /* Set duration per instance since controller is responsible for
2319 * scheduling it.
2320 */
2321 if (adv_instance && adv_instance->duration) {
2322 u16 duration = adv_instance->timeout * MSEC_PER_SEC;
2323
2324 /* Time = N * 10 ms */
2325 adv_set->duration = cpu_to_le16(duration / 10);
2326 }
2327
2328 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
2329 sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
2330 data);
2331
2332 return 0;
2333 }
2334
2335 int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance)
2336 {
2337 struct hci_dev *hdev = req->hdev;
2338 struct hci_cp_le_set_ext_adv_enable *cp;
2339 struct hci_cp_ext_adv_set *adv_set;
2340 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
2341 u8 req_size;
2342
2343 /* If request specifies an instance that doesn't exist, fail */
2344 if (instance > 0 && !hci_find_adv_instance(hdev, instance))
2345 return -EINVAL;
2346
2347 memset(data, 0, sizeof(data));
2348
2349 cp = (void *)data;
2350 adv_set = (void *)cp->data;
2351
2352 /* Instance 0x00 indicates all advertising instances will be disabled */
2353 cp->num_of_sets = !!instance;
2354 cp->enable = 0x00;
2355
2356 adv_set->handle = instance;
2357
2358 req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets;
2359 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data);
2360
2361 return 0;
2362 }
2363
2364 int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance)
2365 {
2366 struct hci_dev *hdev = req->hdev;
2367
2368 /* If request specifies an instance that doesn't exist, fail */
2369 if (instance > 0 && !hci_find_adv_instance(hdev, instance))
2370 return -EINVAL;
2371
2372 hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance);
2373
2374 return 0;
2375 }
2376
2377 int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
2378 {
2379 struct hci_dev *hdev = req->hdev;
2380 struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance);
2381 int err;
2382
2383 /* If instance isn't pending, the chip knows about it, and it's safe to
2384 * disable
2385 */
2386 if (adv_instance && !adv_instance->pending)
2387 __hci_req_disable_ext_adv_instance(req, instance);
2388
2389 err = __hci_req_setup_ext_adv_instance(req, instance);
2390 if (err < 0)
2391 return err;
2392
2393 __hci_req_update_scan_rsp_data(req, instance);
2394 __hci_req_enable_ext_advertising(req, instance);
2395
2396 return 0;
2397 }
2398
2399 int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
2400 bool force)
2401 {
2402 struct hci_dev *hdev = req->hdev;
2403 struct adv_info *adv_instance = NULL;
2404 u16 timeout;
2405
2406 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2407 list_empty(&hdev->adv_instances))
2408 return -EPERM;
2409
2410 if (hdev->adv_instance_timeout)
2411 return -EBUSY;
2412
2413 adv_instance = hci_find_adv_instance(hdev, instance);
2414 if (!adv_instance)
2415 return -ENOENT;
2416
2417 /* A zero timeout means unlimited advertising. As long as there is
2418 * only one instance, duration should be ignored. We still set a timeout
2419 * in case further instances are being added later on.
2420 *
2421 * If the remaining lifetime of the instance is more than the duration
2422 * then the timeout corresponds to the duration, otherwise it will be
2423 * reduced to the remaining instance lifetime.
2424 */
2425 if (adv_instance->timeout == 0 ||
2426 adv_instance->duration <= adv_instance->remaining_time)
2427 timeout = adv_instance->duration;
2428 else
2429 timeout = adv_instance->remaining_time;
2430
2431 /* The remaining time is being reduced unless the instance is being
2432 * advertised without time limit.
2433 */
2434 if (adv_instance->timeout)
2435 adv_instance->remaining_time =
2436 adv_instance->remaining_time - timeout;
2437
2438 /* Only use work for scheduling instances with legacy advertising */
2439 if (!ext_adv_capable(hdev)) {
2440 hdev->adv_instance_timeout = timeout;
2441 queue_delayed_work(hdev->req_workqueue,
2442 &hdev->adv_instance_expire,
2443 msecs_to_jiffies(timeout * 1000));
2444 }
2445
2446 /* If we're just re-scheduling the same instance again then do not
2447 * execute any HCI commands. This happens when a single instance is
2448 * being advertised.
2449 */
2450 if (!force && hdev->cur_adv_instance == instance &&
2451 hci_dev_test_flag(hdev, HCI_LE_ADV))
2452 return 0;
2453
2454 hdev->cur_adv_instance = instance;
2455 if (ext_adv_capable(hdev)) {
2456 __hci_req_start_ext_adv(req, instance);
2457 } else {
2458 __hci_req_update_adv_data(req, instance);
2459 __hci_req_update_scan_rsp_data(req, instance);
2460 __hci_req_enable_advertising(req);
2461 }
2462
2463 return 0;
2464 }
2465
2466 /* For a single instance:
2467 * - force == true: The instance will be removed even when its remaining
2468 * lifetime is not zero.
2469 * - force == false: the instance will be deactivated but kept stored unless
2470 * the remaining lifetime is zero.
2471 *
2472 * For instance == 0x00:
2473 * - force == true: All instances will be removed regardless of their timeout
2474 * setting.
2475 * - force == false: Only instances that have a timeout will be removed.
2476 */
2477 void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
2478 struct hci_request *req, u8 instance,
2479 bool force)
2480 {
2481 struct adv_info *adv_instance, *n, *next_instance = NULL;
2482 int err;
2483 u8 rem_inst;
2484
2485 /* Cancel any timeout concerning the removed instance(s). */
2486 if (!instance || hdev->cur_adv_instance == instance)
2487 cancel_adv_timeout(hdev);
2488
2489 /* Get the next instance to advertise BEFORE we remove
2490 * the current one. This can be the same instance again
2491 * if there is only one instance.
2492 */
2493 if (instance && hdev->cur_adv_instance == instance)
2494 next_instance = hci_get_next_instance(hdev, instance);
2495
2496 if (instance == 0x00) {
2497 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
2498 list) {
2499 if (!(force || adv_instance->timeout))
2500 continue;
2501
2502 rem_inst = adv_instance->instance;
2503 err = hci_remove_adv_instance(hdev, rem_inst);
2504 if (!err)
2505 mgmt_advertising_removed(sk, hdev, rem_inst);
2506 }
2507 } else {
2508 adv_instance = hci_find_adv_instance(hdev, instance);
2509
2510 if (force || (adv_instance && adv_instance->timeout &&
2511 !adv_instance->remaining_time)) {
2512 /* Don't advertise a removed instance. */
2513 if (next_instance &&
2514 next_instance->instance == instance)
2515 next_instance = NULL;
2516
2517 err = hci_remove_adv_instance(hdev, instance);
2518 if (!err)
2519 mgmt_advertising_removed(sk, hdev, instance);
2520 }
2521 }
2522
2523 if (!req || !hdev_is_powered(hdev) ||
2524 hci_dev_test_flag(hdev, HCI_ADVERTISING))
2525 return;
2526
2527 if (next_instance && !ext_adv_capable(hdev))
2528 __hci_req_schedule_adv_instance(req, next_instance->instance,
2529 false);
2530 }
2531
2532 int hci_update_random_address(struct hci_request *req, bool require_privacy,
2533 bool use_rpa, u8 *own_addr_type)
2534 {
2535 struct hci_dev *hdev = req->hdev;
2536 int err;
2537
2538 /* If privacy is enabled use a resolvable private address. If
2539 * current RPA has expired or there is something else than
2540 * the current RPA in use, then generate a new one.
2541 */
2542 if (use_rpa) {
2543 /* If Controller supports LL Privacy use own address type is
2544 * 0x03
2545 */
2546 if (use_ll_privacy(hdev) &&
2547 hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY))
2548 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
2549 else
2550 *own_addr_type = ADDR_LE_DEV_RANDOM;
2551
2552 if (rpa_valid(hdev))
2553 return 0;
2554
2555 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
2556 if (err < 0) {
2557 bt_dev_err(hdev, "failed to generate new RPA");
2558 return err;
2559 }
2560
2561 set_random_addr(req, &hdev->rpa);
2562
2563 return 0;
2564 }
2565
2566 /* In case of required privacy without resolvable private address,
2567 * use an non-resolvable private address. This is useful for active
2568 * scanning and non-connectable advertising.
2569 */
2570 if (require_privacy) {
2571 bdaddr_t nrpa;
2572
2573 while (true) {
2574 /* The non-resolvable private address is generated
2575 * from random six bytes with the two most significant
2576 * bits cleared.
2577 */
2578 get_random_bytes(&nrpa, 6);
2579 nrpa.b[5] &= 0x3f;
2580
2581 /* The non-resolvable private address shall not be
2582 * equal to the public address.
2583 */
2584 if (bacmp(&hdev->bdaddr, &nrpa))
2585 break;
2586 }
2587
2588 *own_addr_type = ADDR_LE_DEV_RANDOM;
2589 set_random_addr(req, &nrpa);
2590 return 0;
2591 }
2592
2593 /* If forcing static address is in use or there is no public
2594 * address use the static address as random address (but skip
2595 * the HCI command if the current random address is already the
2596 * static one.
2597 *
2598 * In case BR/EDR has been disabled on a dual-mode controller
2599 * and a static address has been configured, then use that
2600 * address instead of the public BR/EDR address.
2601 */
2602 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2603 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2604 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2605 bacmp(&hdev->static_addr, BDADDR_ANY))) {
2606 *own_addr_type = ADDR_LE_DEV_RANDOM;
2607 if (bacmp(&hdev->static_addr, &hdev->random_addr))
2608 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
2609 &hdev->static_addr);
2610 return 0;
2611 }
2612
2613 /* Neither privacy nor static address is being used so use a
2614 * public address.
2615 */
2616 *own_addr_type = ADDR_LE_DEV_PUBLIC;
2617
2618 return 0;
2619 }
2620
2621 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
2622 {
2623 struct bdaddr_list *b;
2624
2625 list_for_each_entry(b, &hdev->accept_list, list) {
2626 struct hci_conn *conn;
2627
2628 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
2629 if (!conn)
2630 return true;
2631
2632 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
2633 return true;
2634 }
2635
2636 return false;
2637 }
2638
2639 void __hci_req_update_scan(struct hci_request *req)
2640 {
2641 struct hci_dev *hdev = req->hdev;
2642 u8 scan;
2643
2644 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2645 return;
2646
2647 if (!hdev_is_powered(hdev))
2648 return;
2649
2650 if (mgmt_powering_down(hdev))
2651 return;
2652
2653 if (hdev->scanning_paused)
2654 return;
2655
2656 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2657 disconnected_accept_list_entries(hdev))
2658 scan = SCAN_PAGE;
2659 else
2660 scan = SCAN_DISABLED;
2661
2662 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2663 scan |= SCAN_INQUIRY;
2664
2665 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
2666 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
2667 return;
2668
2669 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
2670 }
2671
2672 static int update_scan(struct hci_request *req, unsigned long opt)
2673 {
2674 hci_dev_lock(req->hdev);
2675 __hci_req_update_scan(req);
2676 hci_dev_unlock(req->hdev);
2677 return 0;
2678 }
2679
2680 static void scan_update_work(struct work_struct *work)
2681 {
2682 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
2683
2684 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2685 }
2686
2687 static int connectable_update(struct hci_request *req, unsigned long opt)
2688 {
2689 struct hci_dev *hdev = req->hdev;
2690
2691 hci_dev_lock(hdev);
2692
2693 __hci_req_update_scan(req);
2694
2695 /* If BR/EDR is not enabled and we disable advertising as a
2696 * by-product of disabling connectable, we need to update the
2697 * advertising flags.
2698 */
2699 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2700 __hci_req_update_adv_data(req, hdev->cur_adv_instance);
2701
2702 /* Update the advertising parameters if necessary */
2703 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2704 !list_empty(&hdev->adv_instances)) {
2705 if (ext_adv_capable(hdev))
2706 __hci_req_start_ext_adv(req, hdev->cur_adv_instance);
2707 else
2708 __hci_req_enable_advertising(req);
2709 }
2710
2711 __hci_update_background_scan(req);
2712
2713 hci_dev_unlock(hdev);
2714
2715 return 0;
2716 }
2717
2718 static void connectable_update_work(struct work_struct *work)
2719 {
2720 struct hci_dev *hdev = container_of(work, struct hci_dev,
2721 connectable_update);
2722 u8 status;
2723
2724 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
2725 mgmt_set_connectable_complete(hdev, status);
2726 }
2727
2728 static u8 get_service_classes(struct hci_dev *hdev)
2729 {
2730 struct bt_uuid *uuid;
2731 u8 val = 0;
2732
2733 list_for_each_entry(uuid, &hdev->uuids, list)
2734 val |= uuid->svc_hint;
2735
2736 return val;
2737 }
2738
2739 void __hci_req_update_class(struct hci_request *req)
2740 {
2741 struct hci_dev *hdev = req->hdev;
2742 u8 cod[3];
2743
2744 bt_dev_dbg(hdev, "");
2745
2746 if (!hdev_is_powered(hdev))
2747 return;
2748
2749 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2750 return;
2751
2752 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
2753 return;
2754
2755 cod[0] = hdev->minor_class;
2756 cod[1] = hdev->major_class;
2757 cod[2] = get_service_classes(hdev);
2758
2759 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
2760 cod[1] |= 0x20;
2761
2762 if (memcmp(cod, hdev->dev_class, 3) == 0)
2763 return;
2764
2765 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
2766 }
2767
2768 static void write_iac(struct hci_request *req)
2769 {
2770 struct hci_dev *hdev = req->hdev;
2771 struct hci_cp_write_current_iac_lap cp;
2772
2773 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2774 return;
2775
2776 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
2777 /* Limited discoverable mode */
2778 cp.num_iac = min_t(u8, hdev->num_iac, 2);
2779 cp.iac_lap[0] = 0x00; /* LIAC */
2780 cp.iac_lap[1] = 0x8b;
2781 cp.iac_lap[2] = 0x9e;
2782 cp.iac_lap[3] = 0x33; /* GIAC */
2783 cp.iac_lap[4] = 0x8b;
2784 cp.iac_lap[5] = 0x9e;
2785 } else {
2786 /* General discoverable mode */
2787 cp.num_iac = 1;
2788 cp.iac_lap[0] = 0x33; /* GIAC */
2789 cp.iac_lap[1] = 0x8b;
2790 cp.iac_lap[2] = 0x9e;
2791 }
2792
2793 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
2794 (cp.num_iac * 3) + 1, &cp);
2795 }
2796
2797 static int discoverable_update(struct hci_request *req, unsigned long opt)
2798 {
2799 struct hci_dev *hdev = req->hdev;
2800
2801 hci_dev_lock(hdev);
2802
2803 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2804 write_iac(req);
2805 __hci_req_update_scan(req);
2806 __hci_req_update_class(req);
2807 }
2808
2809 /* Advertising instances don't use the global discoverable setting, so
2810 * only update AD if advertising was enabled using Set Advertising.
2811 */
2812 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2813 __hci_req_update_adv_data(req, 0x00);
2814
2815 /* Discoverable mode affects the local advertising
2816 * address in limited privacy mode.
2817 */
2818 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
2819 if (ext_adv_capable(hdev))
2820 __hci_req_start_ext_adv(req, 0x00);
2821 else
2822 __hci_req_enable_advertising(req);
2823 }
2824 }
2825
2826 hci_dev_unlock(hdev);
2827
2828 return 0;
2829 }
2830
2831 static void discoverable_update_work(struct work_struct *work)
2832 {
2833 struct hci_dev *hdev = container_of(work, struct hci_dev,
2834 discoverable_update);
2835 u8 status;
2836
2837 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
2838 mgmt_set_discoverable_complete(hdev, status);
2839 }
2840
2841 void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
2842 u8 reason)
2843 {
2844 switch (conn->state) {
2845 case BT_CONNECTED:
2846 case BT_CONFIG:
2847 if (conn->type == AMP_LINK) {
2848 struct hci_cp_disconn_phy_link cp;
2849
2850 cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
2851 cp.reason = reason;
2852 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
2853 &cp);
2854 } else {
2855 struct hci_cp_disconnect dc;
2856
2857 dc.handle = cpu_to_le16(conn->handle);
2858 dc.reason = reason;
2859 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
2860 }
2861
2862 conn->state = BT_DISCONN;
2863
2864 break;
2865 case BT_CONNECT:
2866 if (conn->type == LE_LINK) {
2867 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
2868 break;
2869 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
2870 0, NULL);
2871 } else if (conn->type == ACL_LINK) {
2872 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
2873 break;
2874 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
2875 6, &conn->dst);
2876 }
2877 break;
2878 case BT_CONNECT2:
2879 if (conn->type == ACL_LINK) {
2880 struct hci_cp_reject_conn_req rej;
2881
2882 bacpy(&rej.bdaddr, &conn->dst);
2883 rej.reason = reason;
2884
2885 hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
2886 sizeof(rej), &rej);
2887 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
2888 struct hci_cp_reject_sync_conn_req rej;
2889
2890 bacpy(&rej.bdaddr, &conn->dst);
2891
2892 /* SCO rejection has its own limited set of
2893 * allowed error values (0x0D-0x0F) which isn't
2894 * compatible with most values passed to this
2895 * function. To be safe hard-code one of the
2896 * values that's suitable for SCO.
2897 */
2898 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2899
2900 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
2901 sizeof(rej), &rej);
2902 }
2903 break;
2904 default:
2905 conn->state = BT_CLOSED;
2906 break;
2907 }
2908 }
2909
2910 static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2911 {
2912 if (status)
2913 bt_dev_dbg(hdev, "Failed to abort connection: status 0x%2.2x", status);
2914 }
2915
2916 int hci_abort_conn(struct hci_conn *conn, u8 reason)
2917 {
2918 struct hci_request req;
2919 int err;
2920
2921 hci_req_init(&req, conn->hdev);
2922
2923 __hci_abort_conn(&req, conn, reason);
2924
2925 err = hci_req_run(&req, abort_conn_complete);
2926 if (err && err != -ENODATA) {
2927 bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2928 return err;
2929 }
2930
2931 return 0;
2932 }
2933
2934 static int update_bg_scan(struct hci_request *req, unsigned long opt)
2935 {
2936 hci_dev_lock(req->hdev);
2937 __hci_update_background_scan(req);
2938 hci_dev_unlock(req->hdev);
2939 return 0;
2940 }
2941
2942 static void bg_scan_update(struct work_struct *work)
2943 {
2944 struct hci_dev *hdev = container_of(work, struct hci_dev,
2945 bg_scan_update);
2946 struct hci_conn *conn;
2947 u8 status;
2948 int err;
2949
2950 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
2951 if (!err)
2952 return;
2953
2954 hci_dev_lock(hdev);
2955
2956 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
2957 if (conn)
2958 hci_le_conn_failed(conn, status);
2959
2960 hci_dev_unlock(hdev);
2961 }
2962
2963 static int le_scan_disable(struct hci_request *req, unsigned long opt)
2964 {
2965 hci_req_add_le_scan_disable(req, false);
2966 return 0;
2967 }
2968
2969 static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2970 {
2971 u8 length = opt;
2972 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
2973 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2974 struct hci_cp_inquiry cp;
2975
2976 if (test_bit(HCI_INQUIRY, &req->hdev->flags))
2977 return 0;
2978
2979 bt_dev_dbg(req->hdev, "");
2980
2981 hci_dev_lock(req->hdev);
2982 hci_inquiry_cache_flush(req->hdev);
2983 hci_dev_unlock(req->hdev);
2984
2985 memset(&cp, 0, sizeof(cp));
2986
2987 if (req->hdev->discovery.limited)
2988 memcpy(&cp.lap, liac, sizeof(cp.lap));
2989 else
2990 memcpy(&cp.lap, giac, sizeof(cp.lap));
2991
2992 cp.length = length;
2993
2994 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2995
2996 return 0;
2997 }
2998
2999 static void le_scan_disable_work(struct work_struct *work)
3000 {
3001 struct hci_dev *hdev = container_of(work, struct hci_dev,
3002 le_scan_disable.work);
3003 u8 status;
3004
3005 bt_dev_dbg(hdev, "");
3006
3007 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
3008 return;
3009
3010 cancel_delayed_work(&hdev->le_scan_restart);
3011
3012 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
3013 if (status) {
3014 bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
3015 status);
3016 return;
3017 }
3018
3019 hdev->discovery.scan_start = 0;
3020
3021 /* If we were running LE only scan, change discovery state. If
3022 * we were running both LE and BR/EDR inquiry simultaneously,
3023 * and BR/EDR inquiry is already finished, stop discovery,
3024 * otherwise BR/EDR inquiry will stop discovery when finished.
3025 * If we will resolve remote device name, do not change
3026 * discovery state.
3027 */
3028
3029 if (hdev->discovery.type == DISCOV_TYPE_LE)
3030 goto discov_stopped;
3031
3032 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
3033 return;
3034
3035 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
3036 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
3037 hdev->discovery.state != DISCOVERY_RESOLVING)
3038 goto discov_stopped;
3039
3040 return;
3041 }
3042
3043 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
3044 HCI_CMD_TIMEOUT, &status);
3045 if (status) {
3046 bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
3047 goto discov_stopped;
3048 }
3049
3050 return;
3051
3052 discov_stopped:
3053 hci_dev_lock(hdev);
3054 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3055 hci_dev_unlock(hdev);
3056 }
3057
3058 static int le_scan_restart(struct hci_request *req, unsigned long opt)
3059 {
3060 struct hci_dev *hdev = req->hdev;
3061
3062 /* If controller is not scanning we are done. */
3063 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
3064 return 0;
3065
3066 if (hdev->scanning_paused) {
3067 bt_dev_dbg(hdev, "Scanning is paused for suspend");
3068 return 0;
3069 }
3070
3071 hci_req_add_le_scan_disable(req, false);
3072
3073 if (use_ext_scan(hdev)) {
3074 struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
3075
3076 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
3077 ext_enable_cp.enable = LE_SCAN_ENABLE;
3078 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
3079
3080 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
3081 sizeof(ext_enable_cp), &ext_enable_cp);
3082 } else {
3083 struct hci_cp_le_set_scan_enable cp;
3084
3085 memset(&cp, 0, sizeof(cp));
3086 cp.enable = LE_SCAN_ENABLE;
3087 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
3088 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
3089 }
3090
3091 return 0;
3092 }
3093
3094 static void le_scan_restart_work(struct work_struct *work)
3095 {
3096 struct hci_dev *hdev = container_of(work, struct hci_dev,
3097 le_scan_restart.work);
3098 unsigned long timeout, duration, scan_start, now;
3099 u8 status;
3100
3101 bt_dev_dbg(hdev, "");
3102
3103 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
3104 if (status) {
3105 bt_dev_err(hdev, "failed to restart LE scan: status %d",
3106 status);
3107 return;
3108 }
3109
3110 hci_dev_lock(hdev);
3111
3112 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
3113 !hdev->discovery.scan_start)
3114 goto unlock;
3115
3116 /* When the scan was started, hdev->le_scan_disable has been queued
3117 * after duration from scan_start. During scan restart this job
3118 * has been canceled, and we need to queue it again after proper
3119 * timeout, to make sure that scan does not run indefinitely.
3120 */
3121 duration = hdev->discovery.scan_duration;
3122 scan_start = hdev->discovery.scan_start;
3123 now = jiffies;
3124 if (now - scan_start <= duration) {
3125 int elapsed;
3126
3127 if (now >= scan_start)
3128 elapsed = now - scan_start;
3129 else
3130 elapsed = ULONG_MAX - scan_start + now;
3131
3132 timeout = duration - elapsed;
3133 } else {
3134 timeout = 0;
3135 }
3136
3137 queue_delayed_work(hdev->req_workqueue,
3138 &hdev->le_scan_disable, timeout);
3139
3140 unlock:
3141 hci_dev_unlock(hdev);
3142 }
3143
3144 static int active_scan(struct hci_request *req, unsigned long opt)
3145 {
3146 uint16_t interval = opt;
3147 struct hci_dev *hdev = req->hdev;
3148 u8 own_addr_type;
3149 /* Accept list is not used for discovery */
3150 u8 filter_policy = 0x00;
3151 /* Default is to enable duplicates filter */
3152 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
3153 /* Discovery doesn't require controller address resolution */
3154 bool addr_resolv = false;
3155 int err;
3156
3157 bt_dev_dbg(hdev, "");
3158
3159 /* If controller is scanning, it means the background scanning is
3160 * running. Thus, we should temporarily stop it in order to set the
3161 * discovery scanning parameters.
3162 */
3163 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
3164 hci_req_add_le_scan_disable(req, false);
3165 cancel_interleave_scan(hdev);
3166 }
3167
3168 /* All active scans will be done with either a resolvable private
3169 * address (when privacy feature has been enabled) or non-resolvable
3170 * private address.
3171 */
3172 err = hci_update_random_address(req, true, scan_use_rpa(hdev),
3173 &own_addr_type);
3174 if (err < 0)
3175 own_addr_type = ADDR_LE_DEV_PUBLIC;
3176
3177 if (hci_is_adv_monitoring(hdev)) {
3178 /* Duplicate filter should be disabled when some advertisement
3179 * monitor is activated, otherwise AdvMon can only receive one
3180 * advertisement for one peer(*) during active scanning, and
3181 * might report loss to these peers.
3182 *
3183 * Note that different controllers have different meanings of
3184 * |duplicate|. Some of them consider packets with the same
3185 * address as duplicate, and others consider packets with the
3186 * same address and the same RSSI as duplicate. Although in the
3187 * latter case we don't need to disable duplicate filter, but
3188 * it is common to have active scanning for a short period of
3189 * time, the power impact should be neglectable.
3190 */
3191 filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
3192 }
3193
3194 hci_req_start_scan(req, LE_SCAN_ACTIVE, interval,
3195 hdev->le_scan_window_discovery, own_addr_type,
3196 filter_policy, filter_dup, addr_resolv);
3197 return 0;
3198 }
3199
3200 static int interleaved_discov(struct hci_request *req, unsigned long opt)
3201 {
3202 int err;
3203
3204 bt_dev_dbg(req->hdev, "");
3205
3206 err = active_scan(req, opt);
3207 if (err)
3208 return err;
3209
3210 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
3211 }
3212
3213 static void start_discovery(struct hci_dev *hdev, u8 *status)
3214 {
3215 unsigned long timeout;
3216
3217 bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
3218
3219 switch (hdev->discovery.type) {
3220 case DISCOV_TYPE_BREDR:
3221 if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
3222 hci_req_sync(hdev, bredr_inquiry,
3223 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
3224 status);
3225 return;
3226 case DISCOV_TYPE_INTERLEAVED:
3227 /* When running simultaneous discovery, the LE scanning time
3228 * should occupy the whole discovery time sine BR/EDR inquiry
3229 * and LE scanning are scheduled by the controller.
3230 *
3231 * For interleaving discovery in comparison, BR/EDR inquiry
3232 * and LE scanning are done sequentially with separate
3233 * timeouts.
3234 */
3235 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
3236 &hdev->quirks)) {
3237 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
3238 /* During simultaneous discovery, we double LE scan
3239 * interval. We must leave some time for the controller
3240 * to do BR/EDR inquiry.
3241 */
3242 hci_req_sync(hdev, interleaved_discov,
3243 hdev->le_scan_int_discovery * 2, HCI_CMD_TIMEOUT,
3244 status);
3245 break;
3246 }
3247
3248 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
3249 hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
3250 HCI_CMD_TIMEOUT, status);
3251 break;
3252 case DISCOV_TYPE_LE:
3253 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
3254 hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
3255 HCI_CMD_TIMEOUT, status);
3256 break;
3257 default:
3258 *status = HCI_ERROR_UNSPECIFIED;
3259 return;
3260 }
3261
3262 if (*status)
3263 return;
3264
3265 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
3266
3267 /* When service discovery is used and the controller has a
3268 * strict duplicate filter, it is important to remember the
3269 * start and duration of the scan. This is required for
3270 * restarting scanning during the discovery phase.
3271 */
3272 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
3273 hdev->discovery.result_filtering) {
3274 hdev->discovery.scan_start = jiffies;
3275 hdev->discovery.scan_duration = timeout;
3276 }
3277
3278 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
3279 timeout);
3280 }
3281
3282 bool hci_req_stop_discovery(struct hci_request *req)
3283 {
3284 struct hci_dev *hdev = req->hdev;
3285 struct discovery_state *d = &hdev->discovery;
3286 struct hci_cp_remote_name_req_cancel cp;
3287 struct inquiry_entry *e;
3288 bool ret = false;
3289
3290 bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
3291
3292 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
3293 if (test_bit(HCI_INQUIRY, &hdev->flags))
3294 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
3295
3296 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
3297 cancel_delayed_work(&hdev->le_scan_disable);
3298 cancel_delayed_work(&hdev->le_scan_restart);
3299 hci_req_add_le_scan_disable(req, false);
3300 }
3301
3302 ret = true;
3303 } else {
3304 /* Passive scanning */
3305 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
3306 hci_req_add_le_scan_disable(req, false);
3307 ret = true;
3308 }
3309 }
3310
3311 /* No further actions needed for LE-only discovery */
3312 if (d->type == DISCOV_TYPE_LE)
3313 return ret;
3314
3315 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
3316 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
3317 NAME_PENDING);
3318 if (!e)
3319 return ret;
3320
3321 bacpy(&cp.bdaddr, &e->data.bdaddr);
3322 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
3323 &cp);
3324 ret = true;
3325 }
3326
3327 return ret;
3328 }
3329
3330 static int stop_discovery(struct hci_request *req, unsigned long opt)
3331 {
3332 hci_dev_lock(req->hdev);
3333 hci_req_stop_discovery(req);
3334 hci_dev_unlock(req->hdev);
3335
3336 return 0;
3337 }
3338
3339 static void discov_update(struct work_struct *work)
3340 {
3341 struct hci_dev *hdev = container_of(work, struct hci_dev,
3342 discov_update);
3343 u8 status = 0;
3344
3345 switch (hdev->discovery.state) {
3346 case DISCOVERY_STARTING:
3347 start_discovery(hdev, &status);
3348 mgmt_start_discovery_complete(hdev, status);
3349 if (status)
3350 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3351 else
3352 hci_discovery_set_state(hdev, DISCOVERY_FINDING);
3353 break;
3354 case DISCOVERY_STOPPING:
3355 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
3356 mgmt_stop_discovery_complete(hdev, status);
3357 if (!status)
3358 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
3359 break;
3360 case DISCOVERY_STOPPED:
3361 default:
3362 return;
3363 }
3364 }
3365
3366 static void discov_off(struct work_struct *work)
3367 {
3368 struct hci_dev *hdev = container_of(work, struct hci_dev,
3369 discov_off.work);
3370
3371 bt_dev_dbg(hdev, "");
3372
3373 hci_dev_lock(hdev);
3374
3375 /* When discoverable timeout triggers, then just make sure
3376 * the limited discoverable flag is cleared. Even in the case
3377 * of a timeout triggered from general discoverable, it is
3378 * safe to unconditionally clear the flag.
3379 */
3380 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
3381 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
3382 hdev->discov_timeout = 0;
3383
3384 hci_dev_unlock(hdev);
3385
3386 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
3387 mgmt_new_settings(hdev);
3388 }
3389
3390 static int powered_update_hci(struct hci_request *req, unsigned long opt)
3391 {
3392 struct hci_dev *hdev = req->hdev;
3393 u8 link_sec;
3394
3395 hci_dev_lock(hdev);
3396
3397 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
3398 !lmp_host_ssp_capable(hdev)) {
3399 u8 mode = 0x01;
3400
3401 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
3402
3403 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
3404 u8 support = 0x01;
3405
3406 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
3407 sizeof(support), &support);
3408 }
3409 }
3410
3411 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
3412 lmp_bredr_capable(hdev)) {
3413 struct hci_cp_write_le_host_supported cp;
3414
3415 cp.le = 0x01;
3416 cp.simul = 0x00;
3417
3418 /* Check first if we already have the right
3419 * host state (host features set)
3420 */
3421 if (cp.le != lmp_host_le_capable(hdev) ||
3422 cp.simul != lmp_host_le_br_capable(hdev))
3423 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3424 sizeof(cp), &cp);
3425 }
3426
3427 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
3428 /* Make sure the controller has a good default for
3429 * advertising data. This also applies to the case
3430 * where BR/EDR was toggled during the AUTO_OFF phase.
3431 */
3432 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
3433 list_empty(&hdev->adv_instances)) {
3434 int err;
3435
3436 if (ext_adv_capable(hdev)) {
3437 err = __hci_req_setup_ext_adv_instance(req,
3438 0x00);
3439 if (!err)
3440 __hci_req_update_scan_rsp_data(req,
3441 0x00);
3442 } else {
3443 err = 0;
3444 __hci_req_update_adv_data(req, 0x00);
3445 __hci_req_update_scan_rsp_data(req, 0x00);
3446 }
3447
3448 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
3449 if (!ext_adv_capable(hdev))
3450 __hci_req_enable_advertising(req);
3451 else if (!err)
3452 __hci_req_enable_ext_advertising(req,
3453 0x00);
3454 }
3455 } else if (!list_empty(&hdev->adv_instances)) {
3456 struct adv_info *adv_instance;
3457
3458 adv_instance = list_first_entry(&hdev->adv_instances,
3459 struct adv_info, list);
3460 __hci_req_schedule_adv_instance(req,
3461 adv_instance->instance,
3462 true);
3463 }
3464 }
3465
3466 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
3467 if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
3468 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
3469 sizeof(link_sec), &link_sec);
3470
3471 if (lmp_bredr_capable(hdev)) {
3472 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3473 __hci_req_write_fast_connectable(req, true);
3474 else
3475 __hci_req_write_fast_connectable(req, false);
3476 __hci_req_update_scan(req);
3477 __hci_req_update_class(req);
3478 __hci_req_update_name(req);
3479 __hci_req_update_eir(req);
3480 }
3481
3482 hci_dev_unlock(hdev);
3483 return 0;
3484 }
3485
3486 int __hci_req_hci_power_on(struct hci_dev *hdev)
3487 {
3488 /* Register the available SMP channels (BR/EDR and LE) only when
3489 * successfully powering on the controller. This late
3490 * registration is required so that LE SMP can clearly decide if
3491 * the public address or static address is used.
3492 */
3493 smp_register(hdev);
3494
3495 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
3496 NULL);
3497 }
3498
3499 void hci_request_setup(struct hci_dev *hdev)
3500 {
3501 INIT_WORK(&hdev->discov_update, discov_update);
3502 INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
3503 INIT_WORK(&hdev->scan_update, scan_update_work);
3504 INIT_WORK(&hdev->connectable_update, connectable_update_work);
3505 INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
3506 INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
3507 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
3508 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
3509 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
3510 INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work);
3511 }
3512
3513 void hci_request_cancel_all(struct hci_dev *hdev)
3514 {
3515 hci_req_sync_cancel(hdev, ENODEV);
3516
3517 cancel_work_sync(&hdev->discov_update);
3518 cancel_work_sync(&hdev->bg_scan_update);
3519 cancel_work_sync(&hdev->scan_update);
3520 cancel_work_sync(&hdev->connectable_update);
3521 cancel_work_sync(&hdev->discoverable_update);
3522 cancel_delayed_work_sync(&hdev->discov_off);
3523 cancel_delayed_work_sync(&hdev->le_scan_disable);
3524 cancel_delayed_work_sync(&hdev->le_scan_restart);
3525
3526 if (hdev->adv_instance_timeout) {
3527 cancel_delayed_work_sync(&hdev->adv_instance_expire);
3528 hdev->adv_instance_timeout = 0;
3529 }
3530
3531 cancel_interleave_scan(hdev);
3532 }