]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/bluetooth/hci_request.c
Merge branch 'next' into for-linus
[mirror_ubuntu-artful-kernel.git] / net / bluetooth / hci_request.c
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3
4 Copyright (C) 2014 Intel Corporation
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
9
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
22 */
23
24 #include <asm/unaligned.h>
25
26 #include <net/bluetooth/bluetooth.h>
27 #include <net/bluetooth/hci_core.h>
28 #include <net/bluetooth/mgmt.h>
29
30 #include "smp.h"
31 #include "hci_request.h"
32
33 #define HCI_REQ_DONE 0
34 #define HCI_REQ_PEND 1
35 #define HCI_REQ_CANCELED 2
36
37 void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
38 {
39 skb_queue_head_init(&req->cmd_q);
40 req->hdev = hdev;
41 req->err = 0;
42 }
43
44 static int req_run(struct hci_request *req, hci_req_complete_t complete,
45 hci_req_complete_skb_t complete_skb)
46 {
47 struct hci_dev *hdev = req->hdev;
48 struct sk_buff *skb;
49 unsigned long flags;
50
51 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
52
53 /* If an error occurred during request building, remove all HCI
54 * commands queued on the HCI request queue.
55 */
56 if (req->err) {
57 skb_queue_purge(&req->cmd_q);
58 return req->err;
59 }
60
61 /* Do not allow empty requests */
62 if (skb_queue_empty(&req->cmd_q))
63 return -ENODATA;
64
65 skb = skb_peek_tail(&req->cmd_q);
66 if (complete) {
67 bt_cb(skb)->hci.req_complete = complete;
68 } else if (complete_skb) {
69 bt_cb(skb)->hci.req_complete_skb = complete_skb;
70 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
71 }
72
73 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
74 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
75 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
76
77 queue_work(hdev->workqueue, &hdev->cmd_work);
78
79 return 0;
80 }
81
82 int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
83 {
84 return req_run(req, complete, NULL);
85 }
86
87 int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
88 {
89 return req_run(req, NULL, complete);
90 }
91
92 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
93 struct sk_buff *skb)
94 {
95 BT_DBG("%s result 0x%2.2x", hdev->name, result);
96
97 if (hdev->req_status == HCI_REQ_PEND) {
98 hdev->req_result = result;
99 hdev->req_status = HCI_REQ_DONE;
100 if (skb)
101 hdev->req_skb = skb_get(skb);
102 wake_up_interruptible(&hdev->req_wait_q);
103 }
104 }
105
106 void hci_req_sync_cancel(struct hci_dev *hdev, int err)
107 {
108 BT_DBG("%s err 0x%2.2x", hdev->name, err);
109
110 if (hdev->req_status == HCI_REQ_PEND) {
111 hdev->req_result = err;
112 hdev->req_status = HCI_REQ_CANCELED;
113 wake_up_interruptible(&hdev->req_wait_q);
114 }
115 }
116
117 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
118 const void *param, u8 event, u32 timeout)
119 {
120 DECLARE_WAITQUEUE(wait, current);
121 struct hci_request req;
122 struct sk_buff *skb;
123 int err = 0;
124
125 BT_DBG("%s", hdev->name);
126
127 hci_req_init(&req, hdev);
128
129 hci_req_add_ev(&req, opcode, plen, param, event);
130
131 hdev->req_status = HCI_REQ_PEND;
132
133 add_wait_queue(&hdev->req_wait_q, &wait);
134 set_current_state(TASK_INTERRUPTIBLE);
135
136 err = hci_req_run_skb(&req, hci_req_sync_complete);
137 if (err < 0) {
138 remove_wait_queue(&hdev->req_wait_q, &wait);
139 set_current_state(TASK_RUNNING);
140 return ERR_PTR(err);
141 }
142
143 schedule_timeout(timeout);
144
145 remove_wait_queue(&hdev->req_wait_q, &wait);
146
147 if (signal_pending(current))
148 return ERR_PTR(-EINTR);
149
150 switch (hdev->req_status) {
151 case HCI_REQ_DONE:
152 err = -bt_to_errno(hdev->req_result);
153 break;
154
155 case HCI_REQ_CANCELED:
156 err = -hdev->req_result;
157 break;
158
159 default:
160 err = -ETIMEDOUT;
161 break;
162 }
163
164 hdev->req_status = hdev->req_result = 0;
165 skb = hdev->req_skb;
166 hdev->req_skb = NULL;
167
168 BT_DBG("%s end: err %d", hdev->name, err);
169
170 if (err < 0) {
171 kfree_skb(skb);
172 return ERR_PTR(err);
173 }
174
175 if (!skb)
176 return ERR_PTR(-ENODATA);
177
178 return skb;
179 }
180 EXPORT_SYMBOL(__hci_cmd_sync_ev);
181
182 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
183 const void *param, u32 timeout)
184 {
185 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
186 }
187 EXPORT_SYMBOL(__hci_cmd_sync);
188
189 /* Execute request and wait for completion. */
190 int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
191 unsigned long opt),
192 unsigned long opt, u32 timeout, u8 *hci_status)
193 {
194 struct hci_request req;
195 DECLARE_WAITQUEUE(wait, current);
196 int err = 0;
197
198 BT_DBG("%s start", hdev->name);
199
200 hci_req_init(&req, hdev);
201
202 hdev->req_status = HCI_REQ_PEND;
203
204 err = func(&req, opt);
205 if (err) {
206 if (hci_status)
207 *hci_status = HCI_ERROR_UNSPECIFIED;
208 return err;
209 }
210
211 add_wait_queue(&hdev->req_wait_q, &wait);
212 set_current_state(TASK_INTERRUPTIBLE);
213
214 err = hci_req_run_skb(&req, hci_req_sync_complete);
215 if (err < 0) {
216 hdev->req_status = 0;
217
218 remove_wait_queue(&hdev->req_wait_q, &wait);
219 set_current_state(TASK_RUNNING);
220
221 /* ENODATA means the HCI request command queue is empty.
222 * This can happen when a request with conditionals doesn't
223 * trigger any commands to be sent. This is normal behavior
224 * and should not trigger an error return.
225 */
226 if (err == -ENODATA) {
227 if (hci_status)
228 *hci_status = 0;
229 return 0;
230 }
231
232 if (hci_status)
233 *hci_status = HCI_ERROR_UNSPECIFIED;
234
235 return err;
236 }
237
238 schedule_timeout(timeout);
239
240 remove_wait_queue(&hdev->req_wait_q, &wait);
241
242 if (signal_pending(current))
243 return -EINTR;
244
245 switch (hdev->req_status) {
246 case HCI_REQ_DONE:
247 err = -bt_to_errno(hdev->req_result);
248 if (hci_status)
249 *hci_status = hdev->req_result;
250 break;
251
252 case HCI_REQ_CANCELED:
253 err = -hdev->req_result;
254 if (hci_status)
255 *hci_status = HCI_ERROR_UNSPECIFIED;
256 break;
257
258 default:
259 err = -ETIMEDOUT;
260 if (hci_status)
261 *hci_status = HCI_ERROR_UNSPECIFIED;
262 break;
263 }
264
265 kfree_skb(hdev->req_skb);
266 hdev->req_skb = NULL;
267 hdev->req_status = hdev->req_result = 0;
268
269 BT_DBG("%s end: err %d", hdev->name, err);
270
271 return err;
272 }
273
274 int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
275 unsigned long opt),
276 unsigned long opt, u32 timeout, u8 *hci_status)
277 {
278 int ret;
279
280 if (!test_bit(HCI_UP, &hdev->flags))
281 return -ENETDOWN;
282
283 /* Serialize all requests */
284 hci_req_sync_lock(hdev);
285 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
286 hci_req_sync_unlock(hdev);
287
288 return ret;
289 }
290
291 struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
292 const void *param)
293 {
294 int len = HCI_COMMAND_HDR_SIZE + plen;
295 struct hci_command_hdr *hdr;
296 struct sk_buff *skb;
297
298 skb = bt_skb_alloc(len, GFP_ATOMIC);
299 if (!skb)
300 return NULL;
301
302 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
303 hdr->opcode = cpu_to_le16(opcode);
304 hdr->plen = plen;
305
306 if (plen)
307 memcpy(skb_put(skb, plen), param, plen);
308
309 BT_DBG("skb len %d", skb->len);
310
311 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
312 hci_skb_opcode(skb) = opcode;
313
314 return skb;
315 }
316
317 /* Queue a command to an asynchronous HCI request */
318 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
319 const void *param, u8 event)
320 {
321 struct hci_dev *hdev = req->hdev;
322 struct sk_buff *skb;
323
324 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
325
326 /* If an error occurred during request building, there is no point in
327 * queueing the HCI command. We can simply return.
328 */
329 if (req->err)
330 return;
331
332 skb = hci_prepare_cmd(hdev, opcode, plen, param);
333 if (!skb) {
334 BT_ERR("%s no memory for command (opcode 0x%4.4x)",
335 hdev->name, opcode);
336 req->err = -ENOMEM;
337 return;
338 }
339
340 if (skb_queue_empty(&req->cmd_q))
341 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
342
343 bt_cb(skb)->hci.req_event = event;
344
345 skb_queue_tail(&req->cmd_q, skb);
346 }
347
348 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
349 const void *param)
350 {
351 hci_req_add_ev(req, opcode, plen, param, 0);
352 }
353
354 void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
355 {
356 struct hci_dev *hdev = req->hdev;
357 struct hci_cp_write_page_scan_activity acp;
358 u8 type;
359
360 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
361 return;
362
363 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
364 return;
365
366 if (enable) {
367 type = PAGE_SCAN_TYPE_INTERLACED;
368
369 /* 160 msec page scan interval */
370 acp.interval = cpu_to_le16(0x0100);
371 } else {
372 type = PAGE_SCAN_TYPE_STANDARD; /* default */
373
374 /* default 1.28 sec page scan */
375 acp.interval = cpu_to_le16(0x0800);
376 }
377
378 acp.window = cpu_to_le16(0x0012);
379
380 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
381 __cpu_to_le16(hdev->page_scan_window) != acp.window)
382 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
383 sizeof(acp), &acp);
384
385 if (hdev->page_scan_type != type)
386 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
387 }
388
389 /* This function controls the background scanning based on hdev->pend_le_conns
390 * list. If there are pending LE connection we start the background scanning,
391 * otherwise we stop it.
392 *
393 * This function requires the caller holds hdev->lock.
394 */
395 static void __hci_update_background_scan(struct hci_request *req)
396 {
397 struct hci_dev *hdev = req->hdev;
398
399 if (!test_bit(HCI_UP, &hdev->flags) ||
400 test_bit(HCI_INIT, &hdev->flags) ||
401 hci_dev_test_flag(hdev, HCI_SETUP) ||
402 hci_dev_test_flag(hdev, HCI_CONFIG) ||
403 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
404 hci_dev_test_flag(hdev, HCI_UNREGISTER))
405 return;
406
407 /* No point in doing scanning if LE support hasn't been enabled */
408 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
409 return;
410
411 /* If discovery is active don't interfere with it */
412 if (hdev->discovery.state != DISCOVERY_STOPPED)
413 return;
414
415 /* Reset RSSI and UUID filters when starting background scanning
416 * since these filters are meant for service discovery only.
417 *
418 * The Start Discovery and Start Service Discovery operations
419 * ensure to set proper values for RSSI threshold and UUID
420 * filter list. So it is safe to just reset them here.
421 */
422 hci_discovery_filter_clear(hdev);
423
424 if (list_empty(&hdev->pend_le_conns) &&
425 list_empty(&hdev->pend_le_reports)) {
426 /* If there is no pending LE connections or devices
427 * to be scanned for, we should stop the background
428 * scanning.
429 */
430
431 /* If controller is not scanning we are done. */
432 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
433 return;
434
435 hci_req_add_le_scan_disable(req);
436
437 BT_DBG("%s stopping background scanning", hdev->name);
438 } else {
439 /* If there is at least one pending LE connection, we should
440 * keep the background scan running.
441 */
442
443 /* If controller is connecting, we should not start scanning
444 * since some controllers are not able to scan and connect at
445 * the same time.
446 */
447 if (hci_lookup_le_connect(hdev))
448 return;
449
450 /* If controller is currently scanning, we stop it to ensure we
451 * don't miss any advertising (due to duplicates filter).
452 */
453 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
454 hci_req_add_le_scan_disable(req);
455
456 hci_req_add_le_passive_scan(req);
457
458 BT_DBG("%s starting background scanning", hdev->name);
459 }
460 }
461
462 void __hci_req_update_name(struct hci_request *req)
463 {
464 struct hci_dev *hdev = req->hdev;
465 struct hci_cp_write_local_name cp;
466
467 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
468
469 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
470 }
471
472 #define PNP_INFO_SVCLASS_ID 0x1200
473
474 static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
475 {
476 u8 *ptr = data, *uuids_start = NULL;
477 struct bt_uuid *uuid;
478
479 if (len < 4)
480 return ptr;
481
482 list_for_each_entry(uuid, &hdev->uuids, list) {
483 u16 uuid16;
484
485 if (uuid->size != 16)
486 continue;
487
488 uuid16 = get_unaligned_le16(&uuid->uuid[12]);
489 if (uuid16 < 0x1100)
490 continue;
491
492 if (uuid16 == PNP_INFO_SVCLASS_ID)
493 continue;
494
495 if (!uuids_start) {
496 uuids_start = ptr;
497 uuids_start[0] = 1;
498 uuids_start[1] = EIR_UUID16_ALL;
499 ptr += 2;
500 }
501
502 /* Stop if not enough space to put next UUID */
503 if ((ptr - data) + sizeof(u16) > len) {
504 uuids_start[1] = EIR_UUID16_SOME;
505 break;
506 }
507
508 *ptr++ = (uuid16 & 0x00ff);
509 *ptr++ = (uuid16 & 0xff00) >> 8;
510 uuids_start[0] += sizeof(uuid16);
511 }
512
513 return ptr;
514 }
515
516 static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
517 {
518 u8 *ptr = data, *uuids_start = NULL;
519 struct bt_uuid *uuid;
520
521 if (len < 6)
522 return ptr;
523
524 list_for_each_entry(uuid, &hdev->uuids, list) {
525 if (uuid->size != 32)
526 continue;
527
528 if (!uuids_start) {
529 uuids_start = ptr;
530 uuids_start[0] = 1;
531 uuids_start[1] = EIR_UUID32_ALL;
532 ptr += 2;
533 }
534
535 /* Stop if not enough space to put next UUID */
536 if ((ptr - data) + sizeof(u32) > len) {
537 uuids_start[1] = EIR_UUID32_SOME;
538 break;
539 }
540
541 memcpy(ptr, &uuid->uuid[12], sizeof(u32));
542 ptr += sizeof(u32);
543 uuids_start[0] += sizeof(u32);
544 }
545
546 return ptr;
547 }
548
549 static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
550 {
551 u8 *ptr = data, *uuids_start = NULL;
552 struct bt_uuid *uuid;
553
554 if (len < 18)
555 return ptr;
556
557 list_for_each_entry(uuid, &hdev->uuids, list) {
558 if (uuid->size != 128)
559 continue;
560
561 if (!uuids_start) {
562 uuids_start = ptr;
563 uuids_start[0] = 1;
564 uuids_start[1] = EIR_UUID128_ALL;
565 ptr += 2;
566 }
567
568 /* Stop if not enough space to put next UUID */
569 if ((ptr - data) + 16 > len) {
570 uuids_start[1] = EIR_UUID128_SOME;
571 break;
572 }
573
574 memcpy(ptr, uuid->uuid, 16);
575 ptr += 16;
576 uuids_start[0] += 16;
577 }
578
579 return ptr;
580 }
581
582 static void create_eir(struct hci_dev *hdev, u8 *data)
583 {
584 u8 *ptr = data;
585 size_t name_len;
586
587 name_len = strlen(hdev->dev_name);
588
589 if (name_len > 0) {
590 /* EIR Data type */
591 if (name_len > 48) {
592 name_len = 48;
593 ptr[1] = EIR_NAME_SHORT;
594 } else
595 ptr[1] = EIR_NAME_COMPLETE;
596
597 /* EIR Data length */
598 ptr[0] = name_len + 1;
599
600 memcpy(ptr + 2, hdev->dev_name, name_len);
601
602 ptr += (name_len + 2);
603 }
604
605 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
606 ptr[0] = 2;
607 ptr[1] = EIR_TX_POWER;
608 ptr[2] = (u8) hdev->inq_tx_power;
609
610 ptr += 3;
611 }
612
613 if (hdev->devid_source > 0) {
614 ptr[0] = 9;
615 ptr[1] = EIR_DEVICE_ID;
616
617 put_unaligned_le16(hdev->devid_source, ptr + 2);
618 put_unaligned_le16(hdev->devid_vendor, ptr + 4);
619 put_unaligned_le16(hdev->devid_product, ptr + 6);
620 put_unaligned_le16(hdev->devid_version, ptr + 8);
621
622 ptr += 10;
623 }
624
625 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
626 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
627 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
628 }
629
630 void __hci_req_update_eir(struct hci_request *req)
631 {
632 struct hci_dev *hdev = req->hdev;
633 struct hci_cp_write_eir cp;
634
635 if (!hdev_is_powered(hdev))
636 return;
637
638 if (!lmp_ext_inq_capable(hdev))
639 return;
640
641 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
642 return;
643
644 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
645 return;
646
647 memset(&cp, 0, sizeof(cp));
648
649 create_eir(hdev, cp.data);
650
651 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
652 return;
653
654 memcpy(hdev->eir, cp.data, sizeof(cp.data));
655
656 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
657 }
658
659 void hci_req_add_le_scan_disable(struct hci_request *req)
660 {
661 struct hci_cp_le_set_scan_enable cp;
662
663 memset(&cp, 0, sizeof(cp));
664 cp.enable = LE_SCAN_DISABLE;
665 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
666 }
667
668 static void add_to_white_list(struct hci_request *req,
669 struct hci_conn_params *params)
670 {
671 struct hci_cp_le_add_to_white_list cp;
672
673 cp.bdaddr_type = params->addr_type;
674 bacpy(&cp.bdaddr, &params->addr);
675
676 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
677 }
678
679 static u8 update_white_list(struct hci_request *req)
680 {
681 struct hci_dev *hdev = req->hdev;
682 struct hci_conn_params *params;
683 struct bdaddr_list *b;
684 uint8_t white_list_entries = 0;
685
686 /* Go through the current white list programmed into the
687 * controller one by one and check if that address is still
688 * in the list of pending connections or list of devices to
689 * report. If not present in either list, then queue the
690 * command to remove it from the controller.
691 */
692 list_for_each_entry(b, &hdev->le_white_list, list) {
693 /* If the device is neither in pend_le_conns nor
694 * pend_le_reports then remove it from the whitelist.
695 */
696 if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
697 &b->bdaddr, b->bdaddr_type) &&
698 !hci_pend_le_action_lookup(&hdev->pend_le_reports,
699 &b->bdaddr, b->bdaddr_type)) {
700 struct hci_cp_le_del_from_white_list cp;
701
702 cp.bdaddr_type = b->bdaddr_type;
703 bacpy(&cp.bdaddr, &b->bdaddr);
704
705 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
706 sizeof(cp), &cp);
707 continue;
708 }
709
710 if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
711 /* White list can not be used with RPAs */
712 return 0x00;
713 }
714
715 white_list_entries++;
716 }
717
718 /* Since all no longer valid white list entries have been
719 * removed, walk through the list of pending connections
720 * and ensure that any new device gets programmed into
721 * the controller.
722 *
723 * If the list of the devices is larger than the list of
724 * available white list entries in the controller, then
725 * just abort and return filer policy value to not use the
726 * white list.
727 */
728 list_for_each_entry(params, &hdev->pend_le_conns, action) {
729 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
730 &params->addr, params->addr_type))
731 continue;
732
733 if (white_list_entries >= hdev->le_white_list_size) {
734 /* Select filter policy to accept all advertising */
735 return 0x00;
736 }
737
738 if (hci_find_irk_by_addr(hdev, &params->addr,
739 params->addr_type)) {
740 /* White list can not be used with RPAs */
741 return 0x00;
742 }
743
744 white_list_entries++;
745 add_to_white_list(req, params);
746 }
747
748 /* After adding all new pending connections, walk through
749 * the list of pending reports and also add these to the
750 * white list if there is still space.
751 */
752 list_for_each_entry(params, &hdev->pend_le_reports, action) {
753 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
754 &params->addr, params->addr_type))
755 continue;
756
757 if (white_list_entries >= hdev->le_white_list_size) {
758 /* Select filter policy to accept all advertising */
759 return 0x00;
760 }
761
762 if (hci_find_irk_by_addr(hdev, &params->addr,
763 params->addr_type)) {
764 /* White list can not be used with RPAs */
765 return 0x00;
766 }
767
768 white_list_entries++;
769 add_to_white_list(req, params);
770 }
771
772 /* Select filter policy to use white list */
773 return 0x01;
774 }
775
776 static bool scan_use_rpa(struct hci_dev *hdev)
777 {
778 return hci_dev_test_flag(hdev, HCI_PRIVACY);
779 }
780
781 void hci_req_add_le_passive_scan(struct hci_request *req)
782 {
783 struct hci_cp_le_set_scan_param param_cp;
784 struct hci_cp_le_set_scan_enable enable_cp;
785 struct hci_dev *hdev = req->hdev;
786 u8 own_addr_type;
787 u8 filter_policy;
788
789 /* Set require_privacy to false since no SCAN_REQ are send
790 * during passive scanning. Not using an non-resolvable address
791 * here is important so that peer devices using direct
792 * advertising with our address will be correctly reported
793 * by the controller.
794 */
795 if (hci_update_random_address(req, false, scan_use_rpa(hdev),
796 &own_addr_type))
797 return;
798
799 /* Adding or removing entries from the white list must
800 * happen before enabling scanning. The controller does
801 * not allow white list modification while scanning.
802 */
803 filter_policy = update_white_list(req);
804
805 /* When the controller is using random resolvable addresses and
806 * with that having LE privacy enabled, then controllers with
807 * Extended Scanner Filter Policies support can now enable support
808 * for handling directed advertising.
809 *
810 * So instead of using filter polices 0x00 (no whitelist)
811 * and 0x01 (whitelist enabled) use the new filter policies
812 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
813 */
814 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
815 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
816 filter_policy |= 0x02;
817
818 memset(&param_cp, 0, sizeof(param_cp));
819 param_cp.type = LE_SCAN_PASSIVE;
820 param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
821 param_cp.window = cpu_to_le16(hdev->le_scan_window);
822 param_cp.own_address_type = own_addr_type;
823 param_cp.filter_policy = filter_policy;
824 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
825 &param_cp);
826
827 memset(&enable_cp, 0, sizeof(enable_cp));
828 enable_cp.enable = LE_SCAN_ENABLE;
829 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
830 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
831 &enable_cp);
832 }
833
834 static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
835 {
836 u8 instance = hdev->cur_adv_instance;
837 struct adv_info *adv_instance;
838
839 /* Ignore instance 0 */
840 if (instance == 0x00)
841 return 0;
842
843 adv_instance = hci_find_adv_instance(hdev, instance);
844 if (!adv_instance)
845 return 0;
846
847 /* TODO: Take into account the "appearance" and "local-name" flags here.
848 * These are currently being ignored as they are not supported.
849 */
850 return adv_instance->scan_rsp_len;
851 }
852
853 void __hci_req_disable_advertising(struct hci_request *req)
854 {
855 u8 enable = 0x00;
856
857 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
858 }
859
860 static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
861 {
862 u32 flags;
863 struct adv_info *adv_instance;
864
865 if (instance == 0x00) {
866 /* Instance 0 always manages the "Tx Power" and "Flags"
867 * fields
868 */
869 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
870
871 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
872 * corresponds to the "connectable" instance flag.
873 */
874 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
875 flags |= MGMT_ADV_FLAG_CONNECTABLE;
876
877 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
878 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
879 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
880 flags |= MGMT_ADV_FLAG_DISCOV;
881
882 return flags;
883 }
884
885 adv_instance = hci_find_adv_instance(hdev, instance);
886
887 /* Return 0 when we got an invalid instance identifier. */
888 if (!adv_instance)
889 return 0;
890
891 return adv_instance->flags;
892 }
893
894 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
895 {
896 /* If privacy is not enabled don't use RPA */
897 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
898 return false;
899
900 /* If basic privacy mode is enabled use RPA */
901 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
902 return true;
903
904 /* If limited privacy mode is enabled don't use RPA if we're
905 * both discoverable and bondable.
906 */
907 if ((flags & MGMT_ADV_FLAG_DISCOV) &&
908 hci_dev_test_flag(hdev, HCI_BONDABLE))
909 return false;
910
911 /* We're neither bondable nor discoverable in the limited
912 * privacy mode, therefore use RPA.
913 */
914 return true;
915 }
916
917 void __hci_req_enable_advertising(struct hci_request *req)
918 {
919 struct hci_dev *hdev = req->hdev;
920 struct hci_cp_le_set_adv_param cp;
921 u8 own_addr_type, enable = 0x01;
922 bool connectable;
923 u32 flags;
924
925 if (hci_conn_num(hdev, LE_LINK) > 0)
926 return;
927
928 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
929 __hci_req_disable_advertising(req);
930
931 /* Clear the HCI_LE_ADV bit temporarily so that the
932 * hci_update_random_address knows that it's safe to go ahead
933 * and write a new random address. The flag will be set back on
934 * as soon as the SET_ADV_ENABLE HCI command completes.
935 */
936 hci_dev_clear_flag(hdev, HCI_LE_ADV);
937
938 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
939
940 /* If the "connectable" instance flag was not set, then choose between
941 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
942 */
943 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
944 mgmt_get_connectable(hdev);
945
946 /* Set require_privacy to true only when non-connectable
947 * advertising is used. In that case it is fine to use a
948 * non-resolvable private address.
949 */
950 if (hci_update_random_address(req, !connectable,
951 adv_use_rpa(hdev, flags),
952 &own_addr_type) < 0)
953 return;
954
955 memset(&cp, 0, sizeof(cp));
956 cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval);
957 cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval);
958
959 if (connectable)
960 cp.type = LE_ADV_IND;
961 else if (get_cur_adv_instance_scan_rsp_len(hdev))
962 cp.type = LE_ADV_SCAN_IND;
963 else
964 cp.type = LE_ADV_NONCONN_IND;
965
966 cp.own_address_type = own_addr_type;
967 cp.channel_map = hdev->le_adv_channel_map;
968
969 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
970
971 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
972 }
973
974 static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
975 {
976 u8 ad_len = 0;
977 size_t name_len;
978
979 name_len = strlen(hdev->dev_name);
980 if (name_len > 0) {
981 size_t max_len = HCI_MAX_AD_LENGTH - ad_len - 2;
982
983 if (name_len > max_len) {
984 name_len = max_len;
985 ptr[1] = EIR_NAME_SHORT;
986 } else
987 ptr[1] = EIR_NAME_COMPLETE;
988
989 ptr[0] = name_len + 1;
990
991 memcpy(ptr + 2, hdev->dev_name, name_len);
992
993 ad_len += (name_len + 2);
994 ptr += (name_len + 2);
995 }
996
997 return ad_len;
998 }
999
1000 static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1001 u8 *ptr)
1002 {
1003 struct adv_info *adv_instance;
1004
1005 adv_instance = hci_find_adv_instance(hdev, instance);
1006 if (!adv_instance)
1007 return 0;
1008
1009 /* TODO: Set the appropriate entries based on advertising instance flags
1010 * here once flags other than 0 are supported.
1011 */
1012 memcpy(ptr, adv_instance->scan_rsp_data,
1013 adv_instance->scan_rsp_len);
1014
1015 return adv_instance->scan_rsp_len;
1016 }
1017
1018 void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1019 {
1020 struct hci_dev *hdev = req->hdev;
1021 struct hci_cp_le_set_scan_rsp_data cp;
1022 u8 len;
1023
1024 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1025 return;
1026
1027 memset(&cp, 0, sizeof(cp));
1028
1029 if (instance)
1030 len = create_instance_scan_rsp_data(hdev, instance, cp.data);
1031 else
1032 len = create_default_scan_rsp_data(hdev, cp.data);
1033
1034 if (hdev->scan_rsp_data_len == len &&
1035 !memcmp(cp.data, hdev->scan_rsp_data, len))
1036 return;
1037
1038 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1039 hdev->scan_rsp_data_len = len;
1040
1041 cp.length = len;
1042
1043 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1044 }
1045
1046 static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1047 {
1048 struct adv_info *adv_instance = NULL;
1049 u8 ad_len = 0, flags = 0;
1050 u32 instance_flags;
1051
1052 /* Return 0 when the current instance identifier is invalid. */
1053 if (instance) {
1054 adv_instance = hci_find_adv_instance(hdev, instance);
1055 if (!adv_instance)
1056 return 0;
1057 }
1058
1059 instance_flags = get_adv_instance_flags(hdev, instance);
1060
1061 /* The Add Advertising command allows userspace to set both the general
1062 * and limited discoverable flags.
1063 */
1064 if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1065 flags |= LE_AD_GENERAL;
1066
1067 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1068 flags |= LE_AD_LIMITED;
1069
1070 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1071 flags |= LE_AD_NO_BREDR;
1072
1073 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1074 /* If a discovery flag wasn't provided, simply use the global
1075 * settings.
1076 */
1077 if (!flags)
1078 flags |= mgmt_get_adv_discov_flags(hdev);
1079
1080 /* If flags would still be empty, then there is no need to
1081 * include the "Flags" AD field".
1082 */
1083 if (flags) {
1084 ptr[0] = 0x02;
1085 ptr[1] = EIR_FLAGS;
1086 ptr[2] = flags;
1087
1088 ad_len += 3;
1089 ptr += 3;
1090 }
1091 }
1092
1093 if (adv_instance) {
1094 memcpy(ptr, adv_instance->adv_data,
1095 adv_instance->adv_data_len);
1096 ad_len += adv_instance->adv_data_len;
1097 ptr += adv_instance->adv_data_len;
1098 }
1099
1100 /* Provide Tx Power only if we can provide a valid value for it */
1101 if (hdev->adv_tx_power != HCI_TX_POWER_INVALID &&
1102 (instance_flags & MGMT_ADV_FLAG_TX_POWER)) {
1103 ptr[0] = 0x02;
1104 ptr[1] = EIR_TX_POWER;
1105 ptr[2] = (u8)hdev->adv_tx_power;
1106
1107 ad_len += 3;
1108 ptr += 3;
1109 }
1110
1111 return ad_len;
1112 }
1113
1114 void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1115 {
1116 struct hci_dev *hdev = req->hdev;
1117 struct hci_cp_le_set_adv_data cp;
1118 u8 len;
1119
1120 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1121 return;
1122
1123 memset(&cp, 0, sizeof(cp));
1124
1125 len = create_instance_adv_data(hdev, instance, cp.data);
1126
1127 /* There's nothing to do if the data hasn't changed */
1128 if (hdev->adv_data_len == len &&
1129 memcmp(cp.data, hdev->adv_data, len) == 0)
1130 return;
1131
1132 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1133 hdev->adv_data_len = len;
1134
1135 cp.length = len;
1136
1137 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1138 }
1139
1140 int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1141 {
1142 struct hci_request req;
1143
1144 hci_req_init(&req, hdev);
1145 __hci_req_update_adv_data(&req, instance);
1146
1147 return hci_req_run(&req, NULL);
1148 }
1149
1150 static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1151 {
1152 BT_DBG("%s status %u", hdev->name, status);
1153 }
1154
1155 void hci_req_reenable_advertising(struct hci_dev *hdev)
1156 {
1157 struct hci_request req;
1158
1159 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1160 list_empty(&hdev->adv_instances))
1161 return;
1162
1163 hci_req_init(&req, hdev);
1164
1165 if (hdev->cur_adv_instance) {
1166 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1167 true);
1168 } else {
1169 __hci_req_update_adv_data(&req, 0x00);
1170 __hci_req_update_scan_rsp_data(&req, 0x00);
1171 __hci_req_enable_advertising(&req);
1172 }
1173
1174 hci_req_run(&req, adv_enable_complete);
1175 }
1176
1177 static void adv_timeout_expire(struct work_struct *work)
1178 {
1179 struct hci_dev *hdev = container_of(work, struct hci_dev,
1180 adv_instance_expire.work);
1181
1182 struct hci_request req;
1183 u8 instance;
1184
1185 BT_DBG("%s", hdev->name);
1186
1187 hci_dev_lock(hdev);
1188
1189 hdev->adv_instance_timeout = 0;
1190
1191 instance = hdev->cur_adv_instance;
1192 if (instance == 0x00)
1193 goto unlock;
1194
1195 hci_req_init(&req, hdev);
1196
1197 hci_req_clear_adv_instance(hdev, &req, instance, false);
1198
1199 if (list_empty(&hdev->adv_instances))
1200 __hci_req_disable_advertising(&req);
1201
1202 hci_req_run(&req, NULL);
1203
1204 unlock:
1205 hci_dev_unlock(hdev);
1206 }
1207
1208 int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1209 bool force)
1210 {
1211 struct hci_dev *hdev = req->hdev;
1212 struct adv_info *adv_instance = NULL;
1213 u16 timeout;
1214
1215 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1216 list_empty(&hdev->adv_instances))
1217 return -EPERM;
1218
1219 if (hdev->adv_instance_timeout)
1220 return -EBUSY;
1221
1222 adv_instance = hci_find_adv_instance(hdev, instance);
1223 if (!adv_instance)
1224 return -ENOENT;
1225
1226 /* A zero timeout means unlimited advertising. As long as there is
1227 * only one instance, duration should be ignored. We still set a timeout
1228 * in case further instances are being added later on.
1229 *
1230 * If the remaining lifetime of the instance is more than the duration
1231 * then the timeout corresponds to the duration, otherwise it will be
1232 * reduced to the remaining instance lifetime.
1233 */
1234 if (adv_instance->timeout == 0 ||
1235 adv_instance->duration <= adv_instance->remaining_time)
1236 timeout = adv_instance->duration;
1237 else
1238 timeout = adv_instance->remaining_time;
1239
1240 /* The remaining time is being reduced unless the instance is being
1241 * advertised without time limit.
1242 */
1243 if (adv_instance->timeout)
1244 adv_instance->remaining_time =
1245 adv_instance->remaining_time - timeout;
1246
1247 hdev->adv_instance_timeout = timeout;
1248 queue_delayed_work(hdev->req_workqueue,
1249 &hdev->adv_instance_expire,
1250 msecs_to_jiffies(timeout * 1000));
1251
1252 /* If we're just re-scheduling the same instance again then do not
1253 * execute any HCI commands. This happens when a single instance is
1254 * being advertised.
1255 */
1256 if (!force && hdev->cur_adv_instance == instance &&
1257 hci_dev_test_flag(hdev, HCI_LE_ADV))
1258 return 0;
1259
1260 hdev->cur_adv_instance = instance;
1261 __hci_req_update_adv_data(req, instance);
1262 __hci_req_update_scan_rsp_data(req, instance);
1263 __hci_req_enable_advertising(req);
1264
1265 return 0;
1266 }
1267
1268 static void cancel_adv_timeout(struct hci_dev *hdev)
1269 {
1270 if (hdev->adv_instance_timeout) {
1271 hdev->adv_instance_timeout = 0;
1272 cancel_delayed_work(&hdev->adv_instance_expire);
1273 }
1274 }
1275
1276 /* For a single instance:
1277 * - force == true: The instance will be removed even when its remaining
1278 * lifetime is not zero.
1279 * - force == false: the instance will be deactivated but kept stored unless
1280 * the remaining lifetime is zero.
1281 *
1282 * For instance == 0x00:
1283 * - force == true: All instances will be removed regardless of their timeout
1284 * setting.
1285 * - force == false: Only instances that have a timeout will be removed.
1286 */
1287 void hci_req_clear_adv_instance(struct hci_dev *hdev, struct hci_request *req,
1288 u8 instance, bool force)
1289 {
1290 struct adv_info *adv_instance, *n, *next_instance = NULL;
1291 int err;
1292 u8 rem_inst;
1293
1294 /* Cancel any timeout concerning the removed instance(s). */
1295 if (!instance || hdev->cur_adv_instance == instance)
1296 cancel_adv_timeout(hdev);
1297
1298 /* Get the next instance to advertise BEFORE we remove
1299 * the current one. This can be the same instance again
1300 * if there is only one instance.
1301 */
1302 if (instance && hdev->cur_adv_instance == instance)
1303 next_instance = hci_get_next_instance(hdev, instance);
1304
1305 if (instance == 0x00) {
1306 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1307 list) {
1308 if (!(force || adv_instance->timeout))
1309 continue;
1310
1311 rem_inst = adv_instance->instance;
1312 err = hci_remove_adv_instance(hdev, rem_inst);
1313 if (!err)
1314 mgmt_advertising_removed(NULL, hdev, rem_inst);
1315 }
1316 } else {
1317 adv_instance = hci_find_adv_instance(hdev, instance);
1318
1319 if (force || (adv_instance && adv_instance->timeout &&
1320 !adv_instance->remaining_time)) {
1321 /* Don't advertise a removed instance. */
1322 if (next_instance &&
1323 next_instance->instance == instance)
1324 next_instance = NULL;
1325
1326 err = hci_remove_adv_instance(hdev, instance);
1327 if (!err)
1328 mgmt_advertising_removed(NULL, hdev, instance);
1329 }
1330 }
1331
1332 if (!req || !hdev_is_powered(hdev) ||
1333 hci_dev_test_flag(hdev, HCI_ADVERTISING))
1334 return;
1335
1336 if (next_instance)
1337 __hci_req_schedule_adv_instance(req, next_instance->instance,
1338 false);
1339 }
1340
1341 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1342 {
1343 struct hci_dev *hdev = req->hdev;
1344
1345 /* If we're advertising or initiating an LE connection we can't
1346 * go ahead and change the random address at this time. This is
1347 * because the eventual initiator address used for the
1348 * subsequently created connection will be undefined (some
1349 * controllers use the new address and others the one we had
1350 * when the operation started).
1351 *
1352 * In this kind of scenario skip the update and let the random
1353 * address be updated at the next cycle.
1354 */
1355 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1356 hci_lookup_le_connect(hdev)) {
1357 BT_DBG("Deferring random address update");
1358 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1359 return;
1360 }
1361
1362 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1363 }
1364
1365 int hci_update_random_address(struct hci_request *req, bool require_privacy,
1366 bool use_rpa, u8 *own_addr_type)
1367 {
1368 struct hci_dev *hdev = req->hdev;
1369 int err;
1370
1371 /* If privacy is enabled use a resolvable private address. If
1372 * current RPA has expired or there is something else than
1373 * the current RPA in use, then generate a new one.
1374 */
1375 if (use_rpa) {
1376 int to;
1377
1378 *own_addr_type = ADDR_LE_DEV_RANDOM;
1379
1380 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1381 !bacmp(&hdev->random_addr, &hdev->rpa))
1382 return 0;
1383
1384 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1385 if (err < 0) {
1386 BT_ERR("%s failed to generate new RPA", hdev->name);
1387 return err;
1388 }
1389
1390 set_random_addr(req, &hdev->rpa);
1391
1392 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1393 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1394
1395 return 0;
1396 }
1397
1398 /* In case of required privacy without resolvable private address,
1399 * use an non-resolvable private address. This is useful for active
1400 * scanning and non-connectable advertising.
1401 */
1402 if (require_privacy) {
1403 bdaddr_t nrpa;
1404
1405 while (true) {
1406 /* The non-resolvable private address is generated
1407 * from random six bytes with the two most significant
1408 * bits cleared.
1409 */
1410 get_random_bytes(&nrpa, 6);
1411 nrpa.b[5] &= 0x3f;
1412
1413 /* The non-resolvable private address shall not be
1414 * equal to the public address.
1415 */
1416 if (bacmp(&hdev->bdaddr, &nrpa))
1417 break;
1418 }
1419
1420 *own_addr_type = ADDR_LE_DEV_RANDOM;
1421 set_random_addr(req, &nrpa);
1422 return 0;
1423 }
1424
1425 /* If forcing static address is in use or there is no public
1426 * address use the static address as random address (but skip
1427 * the HCI command if the current random address is already the
1428 * static one.
1429 *
1430 * In case BR/EDR has been disabled on a dual-mode controller
1431 * and a static address has been configured, then use that
1432 * address instead of the public BR/EDR address.
1433 */
1434 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1435 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1436 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1437 bacmp(&hdev->static_addr, BDADDR_ANY))) {
1438 *own_addr_type = ADDR_LE_DEV_RANDOM;
1439 if (bacmp(&hdev->static_addr, &hdev->random_addr))
1440 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1441 &hdev->static_addr);
1442 return 0;
1443 }
1444
1445 /* Neither privacy nor static address is being used so use a
1446 * public address.
1447 */
1448 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1449
1450 return 0;
1451 }
1452
1453 static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1454 {
1455 struct bdaddr_list *b;
1456
1457 list_for_each_entry(b, &hdev->whitelist, list) {
1458 struct hci_conn *conn;
1459
1460 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1461 if (!conn)
1462 return true;
1463
1464 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1465 return true;
1466 }
1467
1468 return false;
1469 }
1470
1471 void __hci_req_update_scan(struct hci_request *req)
1472 {
1473 struct hci_dev *hdev = req->hdev;
1474 u8 scan;
1475
1476 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1477 return;
1478
1479 if (!hdev_is_powered(hdev))
1480 return;
1481
1482 if (mgmt_powering_down(hdev))
1483 return;
1484
1485 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
1486 disconnected_whitelist_entries(hdev))
1487 scan = SCAN_PAGE;
1488 else
1489 scan = SCAN_DISABLED;
1490
1491 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1492 scan |= SCAN_INQUIRY;
1493
1494 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
1495 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
1496 return;
1497
1498 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1499 }
1500
1501 static int update_scan(struct hci_request *req, unsigned long opt)
1502 {
1503 hci_dev_lock(req->hdev);
1504 __hci_req_update_scan(req);
1505 hci_dev_unlock(req->hdev);
1506 return 0;
1507 }
1508
1509 static void scan_update_work(struct work_struct *work)
1510 {
1511 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
1512
1513 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
1514 }
1515
1516 static int connectable_update(struct hci_request *req, unsigned long opt)
1517 {
1518 struct hci_dev *hdev = req->hdev;
1519
1520 hci_dev_lock(hdev);
1521
1522 __hci_req_update_scan(req);
1523
1524 /* If BR/EDR is not enabled and we disable advertising as a
1525 * by-product of disabling connectable, we need to update the
1526 * advertising flags.
1527 */
1528 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1529 __hci_req_update_adv_data(req, hdev->cur_adv_instance);
1530
1531 /* Update the advertising parameters if necessary */
1532 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1533 !list_empty(&hdev->adv_instances))
1534 __hci_req_enable_advertising(req);
1535
1536 __hci_update_background_scan(req);
1537
1538 hci_dev_unlock(hdev);
1539
1540 return 0;
1541 }
1542
1543 static void connectable_update_work(struct work_struct *work)
1544 {
1545 struct hci_dev *hdev = container_of(work, struct hci_dev,
1546 connectable_update);
1547 u8 status;
1548
1549 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
1550 mgmt_set_connectable_complete(hdev, status);
1551 }
1552
1553 static u8 get_service_classes(struct hci_dev *hdev)
1554 {
1555 struct bt_uuid *uuid;
1556 u8 val = 0;
1557
1558 list_for_each_entry(uuid, &hdev->uuids, list)
1559 val |= uuid->svc_hint;
1560
1561 return val;
1562 }
1563
1564 void __hci_req_update_class(struct hci_request *req)
1565 {
1566 struct hci_dev *hdev = req->hdev;
1567 u8 cod[3];
1568
1569 BT_DBG("%s", hdev->name);
1570
1571 if (!hdev_is_powered(hdev))
1572 return;
1573
1574 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1575 return;
1576
1577 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
1578 return;
1579
1580 cod[0] = hdev->minor_class;
1581 cod[1] = hdev->major_class;
1582 cod[2] = get_service_classes(hdev);
1583
1584 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1585 cod[1] |= 0x20;
1586
1587 if (memcmp(cod, hdev->dev_class, 3) == 0)
1588 return;
1589
1590 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
1591 }
1592
1593 static void write_iac(struct hci_request *req)
1594 {
1595 struct hci_dev *hdev = req->hdev;
1596 struct hci_cp_write_current_iac_lap cp;
1597
1598 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1599 return;
1600
1601 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1602 /* Limited discoverable mode */
1603 cp.num_iac = min_t(u8, hdev->num_iac, 2);
1604 cp.iac_lap[0] = 0x00; /* LIAC */
1605 cp.iac_lap[1] = 0x8b;
1606 cp.iac_lap[2] = 0x9e;
1607 cp.iac_lap[3] = 0x33; /* GIAC */
1608 cp.iac_lap[4] = 0x8b;
1609 cp.iac_lap[5] = 0x9e;
1610 } else {
1611 /* General discoverable mode */
1612 cp.num_iac = 1;
1613 cp.iac_lap[0] = 0x33; /* GIAC */
1614 cp.iac_lap[1] = 0x8b;
1615 cp.iac_lap[2] = 0x9e;
1616 }
1617
1618 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
1619 (cp.num_iac * 3) + 1, &cp);
1620 }
1621
1622 static int discoverable_update(struct hci_request *req, unsigned long opt)
1623 {
1624 struct hci_dev *hdev = req->hdev;
1625
1626 hci_dev_lock(hdev);
1627
1628 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1629 write_iac(req);
1630 __hci_req_update_scan(req);
1631 __hci_req_update_class(req);
1632 }
1633
1634 /* Advertising instances don't use the global discoverable setting, so
1635 * only update AD if advertising was enabled using Set Advertising.
1636 */
1637 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
1638 __hci_req_update_adv_data(req, 0x00);
1639
1640 /* Discoverable mode affects the local advertising
1641 * address in limited privacy mode.
1642 */
1643 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1644 __hci_req_enable_advertising(req);
1645 }
1646
1647 hci_dev_unlock(hdev);
1648
1649 return 0;
1650 }
1651
1652 static void discoverable_update_work(struct work_struct *work)
1653 {
1654 struct hci_dev *hdev = container_of(work, struct hci_dev,
1655 discoverable_update);
1656 u8 status;
1657
1658 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
1659 mgmt_set_discoverable_complete(hdev, status);
1660 }
1661
1662 void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
1663 u8 reason)
1664 {
1665 switch (conn->state) {
1666 case BT_CONNECTED:
1667 case BT_CONFIG:
1668 if (conn->type == AMP_LINK) {
1669 struct hci_cp_disconn_phy_link cp;
1670
1671 cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
1672 cp.reason = reason;
1673 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
1674 &cp);
1675 } else {
1676 struct hci_cp_disconnect dc;
1677
1678 dc.handle = cpu_to_le16(conn->handle);
1679 dc.reason = reason;
1680 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
1681 }
1682
1683 conn->state = BT_DISCONN;
1684
1685 break;
1686 case BT_CONNECT:
1687 if (conn->type == LE_LINK) {
1688 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
1689 break;
1690 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
1691 0, NULL);
1692 } else if (conn->type == ACL_LINK) {
1693 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
1694 break;
1695 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
1696 6, &conn->dst);
1697 }
1698 break;
1699 case BT_CONNECT2:
1700 if (conn->type == ACL_LINK) {
1701 struct hci_cp_reject_conn_req rej;
1702
1703 bacpy(&rej.bdaddr, &conn->dst);
1704 rej.reason = reason;
1705
1706 hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
1707 sizeof(rej), &rej);
1708 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
1709 struct hci_cp_reject_sync_conn_req rej;
1710
1711 bacpy(&rej.bdaddr, &conn->dst);
1712
1713 /* SCO rejection has its own limited set of
1714 * allowed error values (0x0D-0x0F) which isn't
1715 * compatible with most values passed to this
1716 * function. To be safe hard-code one of the
1717 * values that's suitable for SCO.
1718 */
1719 rej.reason = HCI_ERROR_REMOTE_LOW_RESOURCES;
1720
1721 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
1722 sizeof(rej), &rej);
1723 }
1724 break;
1725 default:
1726 conn->state = BT_CLOSED;
1727 break;
1728 }
1729 }
1730
1731 static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1732 {
1733 if (status)
1734 BT_DBG("Failed to abort connection: status 0x%2.2x", status);
1735 }
1736
1737 int hci_abort_conn(struct hci_conn *conn, u8 reason)
1738 {
1739 struct hci_request req;
1740 int err;
1741
1742 hci_req_init(&req, conn->hdev);
1743
1744 __hci_abort_conn(&req, conn, reason);
1745
1746 err = hci_req_run(&req, abort_conn_complete);
1747 if (err && err != -ENODATA) {
1748 BT_ERR("Failed to run HCI request: err %d", err);
1749 return err;
1750 }
1751
1752 return 0;
1753 }
1754
1755 static int update_bg_scan(struct hci_request *req, unsigned long opt)
1756 {
1757 hci_dev_lock(req->hdev);
1758 __hci_update_background_scan(req);
1759 hci_dev_unlock(req->hdev);
1760 return 0;
1761 }
1762
1763 static void bg_scan_update(struct work_struct *work)
1764 {
1765 struct hci_dev *hdev = container_of(work, struct hci_dev,
1766 bg_scan_update);
1767 struct hci_conn *conn;
1768 u8 status;
1769 int err;
1770
1771 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
1772 if (!err)
1773 return;
1774
1775 hci_dev_lock(hdev);
1776
1777 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
1778 if (conn)
1779 hci_le_conn_failed(conn, status);
1780
1781 hci_dev_unlock(hdev);
1782 }
1783
1784 static int le_scan_disable(struct hci_request *req, unsigned long opt)
1785 {
1786 hci_req_add_le_scan_disable(req);
1787 return 0;
1788 }
1789
1790 static int bredr_inquiry(struct hci_request *req, unsigned long opt)
1791 {
1792 u8 length = opt;
1793 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
1794 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
1795 struct hci_cp_inquiry cp;
1796
1797 BT_DBG("%s", req->hdev->name);
1798
1799 hci_dev_lock(req->hdev);
1800 hci_inquiry_cache_flush(req->hdev);
1801 hci_dev_unlock(req->hdev);
1802
1803 memset(&cp, 0, sizeof(cp));
1804
1805 if (req->hdev->discovery.limited)
1806 memcpy(&cp.lap, liac, sizeof(cp.lap));
1807 else
1808 memcpy(&cp.lap, giac, sizeof(cp.lap));
1809
1810 cp.length = length;
1811
1812 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1813
1814 return 0;
1815 }
1816
1817 static void le_scan_disable_work(struct work_struct *work)
1818 {
1819 struct hci_dev *hdev = container_of(work, struct hci_dev,
1820 le_scan_disable.work);
1821 u8 status;
1822
1823 BT_DBG("%s", hdev->name);
1824
1825 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1826 return;
1827
1828 cancel_delayed_work(&hdev->le_scan_restart);
1829
1830 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
1831 if (status) {
1832 BT_ERR("Failed to disable LE scan: status 0x%02x", status);
1833 return;
1834 }
1835
1836 hdev->discovery.scan_start = 0;
1837
1838 /* If we were running LE only scan, change discovery state. If
1839 * we were running both LE and BR/EDR inquiry simultaneously,
1840 * and BR/EDR inquiry is already finished, stop discovery,
1841 * otherwise BR/EDR inquiry will stop discovery when finished.
1842 * If we will resolve remote device name, do not change
1843 * discovery state.
1844 */
1845
1846 if (hdev->discovery.type == DISCOV_TYPE_LE)
1847 goto discov_stopped;
1848
1849 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
1850 return;
1851
1852 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
1853 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
1854 hdev->discovery.state != DISCOVERY_RESOLVING)
1855 goto discov_stopped;
1856
1857 return;
1858 }
1859
1860 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
1861 HCI_CMD_TIMEOUT, &status);
1862 if (status) {
1863 BT_ERR("Inquiry failed: status 0x%02x", status);
1864 goto discov_stopped;
1865 }
1866
1867 return;
1868
1869 discov_stopped:
1870 hci_dev_lock(hdev);
1871 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1872 hci_dev_unlock(hdev);
1873 }
1874
1875 static int le_scan_restart(struct hci_request *req, unsigned long opt)
1876 {
1877 struct hci_dev *hdev = req->hdev;
1878 struct hci_cp_le_set_scan_enable cp;
1879
1880 /* If controller is not scanning we are done. */
1881 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
1882 return 0;
1883
1884 hci_req_add_le_scan_disable(req);
1885
1886 memset(&cp, 0, sizeof(cp));
1887 cp.enable = LE_SCAN_ENABLE;
1888 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
1889 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
1890
1891 return 0;
1892 }
1893
1894 static void le_scan_restart_work(struct work_struct *work)
1895 {
1896 struct hci_dev *hdev = container_of(work, struct hci_dev,
1897 le_scan_restart.work);
1898 unsigned long timeout, duration, scan_start, now;
1899 u8 status;
1900
1901 BT_DBG("%s", hdev->name);
1902
1903 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
1904 if (status) {
1905 BT_ERR("Failed to restart LE scan: status %d", status);
1906 return;
1907 }
1908
1909 hci_dev_lock(hdev);
1910
1911 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
1912 !hdev->discovery.scan_start)
1913 goto unlock;
1914
1915 /* When the scan was started, hdev->le_scan_disable has been queued
1916 * after duration from scan_start. During scan restart this job
1917 * has been canceled, and we need to queue it again after proper
1918 * timeout, to make sure that scan does not run indefinitely.
1919 */
1920 duration = hdev->discovery.scan_duration;
1921 scan_start = hdev->discovery.scan_start;
1922 now = jiffies;
1923 if (now - scan_start <= duration) {
1924 int elapsed;
1925
1926 if (now >= scan_start)
1927 elapsed = now - scan_start;
1928 else
1929 elapsed = ULONG_MAX - scan_start + now;
1930
1931 timeout = duration - elapsed;
1932 } else {
1933 timeout = 0;
1934 }
1935
1936 queue_delayed_work(hdev->req_workqueue,
1937 &hdev->le_scan_disable, timeout);
1938
1939 unlock:
1940 hci_dev_unlock(hdev);
1941 }
1942
1943 static void disable_advertising(struct hci_request *req)
1944 {
1945 u8 enable = 0x00;
1946
1947 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1948 }
1949
1950 static int active_scan(struct hci_request *req, unsigned long opt)
1951 {
1952 uint16_t interval = opt;
1953 struct hci_dev *hdev = req->hdev;
1954 struct hci_cp_le_set_scan_param param_cp;
1955 struct hci_cp_le_set_scan_enable enable_cp;
1956 u8 own_addr_type;
1957 int err;
1958
1959 BT_DBG("%s", hdev->name);
1960
1961 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
1962 hci_dev_lock(hdev);
1963
1964 /* Don't let discovery abort an outgoing connection attempt
1965 * that's using directed advertising.
1966 */
1967 if (hci_lookup_le_connect(hdev)) {
1968 hci_dev_unlock(hdev);
1969 return -EBUSY;
1970 }
1971
1972 cancel_adv_timeout(hdev);
1973 hci_dev_unlock(hdev);
1974
1975 disable_advertising(req);
1976 }
1977
1978 /* If controller is scanning, it means the background scanning is
1979 * running. Thus, we should temporarily stop it in order to set the
1980 * discovery scanning parameters.
1981 */
1982 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
1983 hci_req_add_le_scan_disable(req);
1984
1985 /* All active scans will be done with either a resolvable private
1986 * address (when privacy feature has been enabled) or non-resolvable
1987 * private address.
1988 */
1989 err = hci_update_random_address(req, true, scan_use_rpa(hdev),
1990 &own_addr_type);
1991 if (err < 0)
1992 own_addr_type = ADDR_LE_DEV_PUBLIC;
1993
1994 memset(&param_cp, 0, sizeof(param_cp));
1995 param_cp.type = LE_SCAN_ACTIVE;
1996 param_cp.interval = cpu_to_le16(interval);
1997 param_cp.window = cpu_to_le16(DISCOV_LE_SCAN_WIN);
1998 param_cp.own_address_type = own_addr_type;
1999
2000 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
2001 &param_cp);
2002
2003 memset(&enable_cp, 0, sizeof(enable_cp));
2004 enable_cp.enable = LE_SCAN_ENABLE;
2005 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2006
2007 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
2008 &enable_cp);
2009
2010 return 0;
2011 }
2012
2013 static int interleaved_discov(struct hci_request *req, unsigned long opt)
2014 {
2015 int err;
2016
2017 BT_DBG("%s", req->hdev->name);
2018
2019 err = active_scan(req, opt);
2020 if (err)
2021 return err;
2022
2023 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2024 }
2025
2026 static void start_discovery(struct hci_dev *hdev, u8 *status)
2027 {
2028 unsigned long timeout;
2029
2030 BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2031
2032 switch (hdev->discovery.type) {
2033 case DISCOV_TYPE_BREDR:
2034 if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2035 hci_req_sync(hdev, bredr_inquiry,
2036 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2037 status);
2038 return;
2039 case DISCOV_TYPE_INTERLEAVED:
2040 /* When running simultaneous discovery, the LE scanning time
2041 * should occupy the whole discovery time sine BR/EDR inquiry
2042 * and LE scanning are scheduled by the controller.
2043 *
2044 * For interleaving discovery in comparison, BR/EDR inquiry
2045 * and LE scanning are done sequentially with separate
2046 * timeouts.
2047 */
2048 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2049 &hdev->quirks)) {
2050 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2051 /* During simultaneous discovery, we double LE scan
2052 * interval. We must leave some time for the controller
2053 * to do BR/EDR inquiry.
2054 */
2055 hci_req_sync(hdev, interleaved_discov,
2056 DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2057 status);
2058 break;
2059 }
2060
2061 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2062 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2063 HCI_CMD_TIMEOUT, status);
2064 break;
2065 case DISCOV_TYPE_LE:
2066 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2067 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2068 HCI_CMD_TIMEOUT, status);
2069 break;
2070 default:
2071 *status = HCI_ERROR_UNSPECIFIED;
2072 return;
2073 }
2074
2075 if (*status)
2076 return;
2077
2078 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2079
2080 /* When service discovery is used and the controller has a
2081 * strict duplicate filter, it is important to remember the
2082 * start and duration of the scan. This is required for
2083 * restarting scanning during the discovery phase.
2084 */
2085 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2086 hdev->discovery.result_filtering) {
2087 hdev->discovery.scan_start = jiffies;
2088 hdev->discovery.scan_duration = timeout;
2089 }
2090
2091 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2092 timeout);
2093 }
2094
2095 bool hci_req_stop_discovery(struct hci_request *req)
2096 {
2097 struct hci_dev *hdev = req->hdev;
2098 struct discovery_state *d = &hdev->discovery;
2099 struct hci_cp_remote_name_req_cancel cp;
2100 struct inquiry_entry *e;
2101 bool ret = false;
2102
2103 BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2104
2105 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2106 if (test_bit(HCI_INQUIRY, &hdev->flags))
2107 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2108
2109 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2110 cancel_delayed_work(&hdev->le_scan_disable);
2111 hci_req_add_le_scan_disable(req);
2112 }
2113
2114 ret = true;
2115 } else {
2116 /* Passive scanning */
2117 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2118 hci_req_add_le_scan_disable(req);
2119 ret = true;
2120 }
2121 }
2122
2123 /* No further actions needed for LE-only discovery */
2124 if (d->type == DISCOV_TYPE_LE)
2125 return ret;
2126
2127 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2128 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2129 NAME_PENDING);
2130 if (!e)
2131 return ret;
2132
2133 bacpy(&cp.bdaddr, &e->data.bdaddr);
2134 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2135 &cp);
2136 ret = true;
2137 }
2138
2139 return ret;
2140 }
2141
2142 static int stop_discovery(struct hci_request *req, unsigned long opt)
2143 {
2144 hci_dev_lock(req->hdev);
2145 hci_req_stop_discovery(req);
2146 hci_dev_unlock(req->hdev);
2147
2148 return 0;
2149 }
2150
2151 static void discov_update(struct work_struct *work)
2152 {
2153 struct hci_dev *hdev = container_of(work, struct hci_dev,
2154 discov_update);
2155 u8 status = 0;
2156
2157 switch (hdev->discovery.state) {
2158 case DISCOVERY_STARTING:
2159 start_discovery(hdev, &status);
2160 mgmt_start_discovery_complete(hdev, status);
2161 if (status)
2162 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2163 else
2164 hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2165 break;
2166 case DISCOVERY_STOPPING:
2167 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2168 mgmt_stop_discovery_complete(hdev, status);
2169 if (!status)
2170 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2171 break;
2172 case DISCOVERY_STOPPED:
2173 default:
2174 return;
2175 }
2176 }
2177
2178 static void discov_off(struct work_struct *work)
2179 {
2180 struct hci_dev *hdev = container_of(work, struct hci_dev,
2181 discov_off.work);
2182
2183 BT_DBG("%s", hdev->name);
2184
2185 hci_dev_lock(hdev);
2186
2187 /* When discoverable timeout triggers, then just make sure
2188 * the limited discoverable flag is cleared. Even in the case
2189 * of a timeout triggered from general discoverable, it is
2190 * safe to unconditionally clear the flag.
2191 */
2192 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2193 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2194 hdev->discov_timeout = 0;
2195
2196 hci_dev_unlock(hdev);
2197
2198 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2199 mgmt_new_settings(hdev);
2200 }
2201
2202 static int powered_update_hci(struct hci_request *req, unsigned long opt)
2203 {
2204 struct hci_dev *hdev = req->hdev;
2205 u8 link_sec;
2206
2207 hci_dev_lock(hdev);
2208
2209 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2210 !lmp_host_ssp_capable(hdev)) {
2211 u8 mode = 0x01;
2212
2213 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2214
2215 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2216 u8 support = 0x01;
2217
2218 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2219 sizeof(support), &support);
2220 }
2221 }
2222
2223 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2224 lmp_bredr_capable(hdev)) {
2225 struct hci_cp_write_le_host_supported cp;
2226
2227 cp.le = 0x01;
2228 cp.simul = 0x00;
2229
2230 /* Check first if we already have the right
2231 * host state (host features set)
2232 */
2233 if (cp.le != lmp_host_le_capable(hdev) ||
2234 cp.simul != lmp_host_le_br_capable(hdev))
2235 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2236 sizeof(cp), &cp);
2237 }
2238
2239 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2240 /* Make sure the controller has a good default for
2241 * advertising data. This also applies to the case
2242 * where BR/EDR was toggled during the AUTO_OFF phase.
2243 */
2244 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2245 list_empty(&hdev->adv_instances)) {
2246 __hci_req_update_adv_data(req, 0x00);
2247 __hci_req_update_scan_rsp_data(req, 0x00);
2248
2249 if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
2250 __hci_req_enable_advertising(req);
2251 } else if (!list_empty(&hdev->adv_instances)) {
2252 struct adv_info *adv_instance;
2253
2254 adv_instance = list_first_entry(&hdev->adv_instances,
2255 struct adv_info, list);
2256 __hci_req_schedule_adv_instance(req,
2257 adv_instance->instance,
2258 true);
2259 }
2260 }
2261
2262 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2263 if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2264 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2265 sizeof(link_sec), &link_sec);
2266
2267 if (lmp_bredr_capable(hdev)) {
2268 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2269 __hci_req_write_fast_connectable(req, true);
2270 else
2271 __hci_req_write_fast_connectable(req, false);
2272 __hci_req_update_scan(req);
2273 __hci_req_update_class(req);
2274 __hci_req_update_name(req);
2275 __hci_req_update_eir(req);
2276 }
2277
2278 hci_dev_unlock(hdev);
2279 return 0;
2280 }
2281
2282 int __hci_req_hci_power_on(struct hci_dev *hdev)
2283 {
2284 /* Register the available SMP channels (BR/EDR and LE) only when
2285 * successfully powering on the controller. This late
2286 * registration is required so that LE SMP can clearly decide if
2287 * the public address or static address is used.
2288 */
2289 smp_register(hdev);
2290
2291 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2292 NULL);
2293 }
2294
2295 void hci_request_setup(struct hci_dev *hdev)
2296 {
2297 INIT_WORK(&hdev->discov_update, discov_update);
2298 INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2299 INIT_WORK(&hdev->scan_update, scan_update_work);
2300 INIT_WORK(&hdev->connectable_update, connectable_update_work);
2301 INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2302 INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2303 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2304 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2305 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2306 }
2307
2308 void hci_request_cancel_all(struct hci_dev *hdev)
2309 {
2310 hci_req_sync_cancel(hdev, ENODEV);
2311
2312 cancel_work_sync(&hdev->discov_update);
2313 cancel_work_sync(&hdev->bg_scan_update);
2314 cancel_work_sync(&hdev->scan_update);
2315 cancel_work_sync(&hdev->connectable_update);
2316 cancel_work_sync(&hdev->discoverable_update);
2317 cancel_delayed_work_sync(&hdev->discov_off);
2318 cancel_delayed_work_sync(&hdev->le_scan_disable);
2319 cancel_delayed_work_sync(&hdev->le_scan_restart);
2320
2321 if (hdev->adv_instance_timeout) {
2322 cancel_delayed_work_sync(&hdev->adv_instance_expire);
2323 hdev->adv_instance_timeout = 0;
2324 }
2325 }