]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/bluetooth/rfcomm/core.c
d0bbc737f162789403f437c056fc534fb4538320
[mirror_ubuntu-zesty-kernel.git] / net / bluetooth / rfcomm / core.c
1 /*
2 RFCOMM implementation for Linux Bluetooth stack (BlueZ).
3 Copyright (C) 2002 Maxim Krasnyansky <maxk@qualcomm.com>
4 Copyright (C) 2002 Marcel Holtmann <marcel@holtmann.org>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
9
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
22 */
23
24 /*
25 * Bluetooth RFCOMM core.
26 */
27
28 #include <linux/module.h>
29 #include <linux/debugfs.h>
30 #include <linux/kthread.h>
31 #include <asm/unaligned.h>
32
33 #include <net/bluetooth/bluetooth.h>
34 #include <net/bluetooth/hci_core.h>
35 #include <net/bluetooth/l2cap.h>
36 #include <net/bluetooth/rfcomm.h>
37
38 #define VERSION "1.11"
39
40 static bool disable_cfc;
41 static bool l2cap_ertm;
42 static int channel_mtu = -1;
43 static unsigned int l2cap_mtu = RFCOMM_MAX_L2CAP_MTU;
44
45 static struct task_struct *rfcomm_thread;
46
47 static DEFINE_MUTEX(rfcomm_mutex);
48 #define rfcomm_lock() mutex_lock(&rfcomm_mutex)
49 #define rfcomm_unlock() mutex_unlock(&rfcomm_mutex)
50
51
52 static LIST_HEAD(session_list);
53
54 static int rfcomm_send_frame(struct rfcomm_session *s, u8 *data, int len);
55 static int rfcomm_send_sabm(struct rfcomm_session *s, u8 dlci);
56 static int rfcomm_send_disc(struct rfcomm_session *s, u8 dlci);
57 static int rfcomm_queue_disc(struct rfcomm_dlc *d);
58 static int rfcomm_send_nsc(struct rfcomm_session *s, int cr, u8 type);
59 static int rfcomm_send_pn(struct rfcomm_session *s, int cr, struct rfcomm_dlc *d);
60 static int rfcomm_send_msc(struct rfcomm_session *s, int cr, u8 dlci, u8 v24_sig);
61 static int rfcomm_send_test(struct rfcomm_session *s, int cr, u8 *pattern, int len);
62 static int rfcomm_send_credits(struct rfcomm_session *s, u8 addr, u8 credits);
63 static void rfcomm_make_uih(struct sk_buff *skb, u8 addr);
64
65 static void rfcomm_process_connect(struct rfcomm_session *s);
66
67 static struct rfcomm_session *rfcomm_session_create(bdaddr_t *src,
68 bdaddr_t *dst,
69 u8 sec_level,
70 int *err);
71 static struct rfcomm_session *rfcomm_session_get(bdaddr_t *src, bdaddr_t *dst);
72 static struct rfcomm_session *rfcomm_session_del(struct rfcomm_session *s);
73
74 /* ---- RFCOMM frame parsing macros ---- */
75 #define __get_dlci(b) ((b & 0xfc) >> 2)
76 #define __get_channel(b) ((b & 0xf8) >> 3)
77 #define __get_dir(b) ((b & 0x04) >> 2)
78 #define __get_type(b) ((b & 0xef))
79
80 #define __test_ea(b) ((b & 0x01))
81 #define __test_cr(b) (!!(b & 0x02))
82 #define __test_pf(b) ((b & 0x10))
83
84 #define __addr(cr, dlci) (((dlci & 0x3f) << 2) | (cr << 1) | 0x01)
85 #define __ctrl(type, pf) (((type & 0xef) | (pf << 4)))
86 #define __dlci(dir, chn) (((chn & 0x1f) << 1) | dir)
87 #define __srv_channel(dlci) (dlci >> 1)
88 #define __dir(dlci) (dlci & 0x01)
89
90 #define __len8(len) (((len) << 1) | 1)
91 #define __len16(len) ((len) << 1)
92
93 /* MCC macros */
94 #define __mcc_type(cr, type) (((type << 2) | (cr << 1) | 0x01))
95 #define __get_mcc_type(b) ((b & 0xfc) >> 2)
96 #define __get_mcc_len(b) ((b & 0xfe) >> 1)
97
98 /* RPN macros */
99 #define __rpn_line_settings(data, stop, parity) ((data & 0x3) | ((stop & 0x1) << 2) | ((parity & 0x7) << 3))
100 #define __get_rpn_data_bits(line) ((line) & 0x3)
101 #define __get_rpn_stop_bits(line) (((line) >> 2) & 0x1)
102 #define __get_rpn_parity(line) (((line) >> 3) & 0x7)
103
104 static void rfcomm_schedule(void)
105 {
106 if (!rfcomm_thread)
107 return;
108 wake_up_process(rfcomm_thread);
109 }
110
111 /* ---- RFCOMM FCS computation ---- */
112
113 /* reversed, 8-bit, poly=0x07 */
114 static unsigned char rfcomm_crc_table[256] = {
115 0x00, 0x91, 0xe3, 0x72, 0x07, 0x96, 0xe4, 0x75,
116 0x0e, 0x9f, 0xed, 0x7c, 0x09, 0x98, 0xea, 0x7b,
117 0x1c, 0x8d, 0xff, 0x6e, 0x1b, 0x8a, 0xf8, 0x69,
118 0x12, 0x83, 0xf1, 0x60, 0x15, 0x84, 0xf6, 0x67,
119
120 0x38, 0xa9, 0xdb, 0x4a, 0x3f, 0xae, 0xdc, 0x4d,
121 0x36, 0xa7, 0xd5, 0x44, 0x31, 0xa0, 0xd2, 0x43,
122 0x24, 0xb5, 0xc7, 0x56, 0x23, 0xb2, 0xc0, 0x51,
123 0x2a, 0xbb, 0xc9, 0x58, 0x2d, 0xbc, 0xce, 0x5f,
124
125 0x70, 0xe1, 0x93, 0x02, 0x77, 0xe6, 0x94, 0x05,
126 0x7e, 0xef, 0x9d, 0x0c, 0x79, 0xe8, 0x9a, 0x0b,
127 0x6c, 0xfd, 0x8f, 0x1e, 0x6b, 0xfa, 0x88, 0x19,
128 0x62, 0xf3, 0x81, 0x10, 0x65, 0xf4, 0x86, 0x17,
129
130 0x48, 0xd9, 0xab, 0x3a, 0x4f, 0xde, 0xac, 0x3d,
131 0x46, 0xd7, 0xa5, 0x34, 0x41, 0xd0, 0xa2, 0x33,
132 0x54, 0xc5, 0xb7, 0x26, 0x53, 0xc2, 0xb0, 0x21,
133 0x5a, 0xcb, 0xb9, 0x28, 0x5d, 0xcc, 0xbe, 0x2f,
134
135 0xe0, 0x71, 0x03, 0x92, 0xe7, 0x76, 0x04, 0x95,
136 0xee, 0x7f, 0x0d, 0x9c, 0xe9, 0x78, 0x0a, 0x9b,
137 0xfc, 0x6d, 0x1f, 0x8e, 0xfb, 0x6a, 0x18, 0x89,
138 0xf2, 0x63, 0x11, 0x80, 0xf5, 0x64, 0x16, 0x87,
139
140 0xd8, 0x49, 0x3b, 0xaa, 0xdf, 0x4e, 0x3c, 0xad,
141 0xd6, 0x47, 0x35, 0xa4, 0xd1, 0x40, 0x32, 0xa3,
142 0xc4, 0x55, 0x27, 0xb6, 0xc3, 0x52, 0x20, 0xb1,
143 0xca, 0x5b, 0x29, 0xb8, 0xcd, 0x5c, 0x2e, 0xbf,
144
145 0x90, 0x01, 0x73, 0xe2, 0x97, 0x06, 0x74, 0xe5,
146 0x9e, 0x0f, 0x7d, 0xec, 0x99, 0x08, 0x7a, 0xeb,
147 0x8c, 0x1d, 0x6f, 0xfe, 0x8b, 0x1a, 0x68, 0xf9,
148 0x82, 0x13, 0x61, 0xf0, 0x85, 0x14, 0x66, 0xf7,
149
150 0xa8, 0x39, 0x4b, 0xda, 0xaf, 0x3e, 0x4c, 0xdd,
151 0xa6, 0x37, 0x45, 0xd4, 0xa1, 0x30, 0x42, 0xd3,
152 0xb4, 0x25, 0x57, 0xc6, 0xb3, 0x22, 0x50, 0xc1,
153 0xba, 0x2b, 0x59, 0xc8, 0xbd, 0x2c, 0x5e, 0xcf
154 };
155
156 /* CRC on 2 bytes */
157 #define __crc(data) (rfcomm_crc_table[rfcomm_crc_table[0xff ^ data[0]] ^ data[1]])
158
159 /* FCS on 2 bytes */
160 static inline u8 __fcs(u8 *data)
161 {
162 return 0xff - __crc(data);
163 }
164
165 /* FCS on 3 bytes */
166 static inline u8 __fcs2(u8 *data)
167 {
168 return 0xff - rfcomm_crc_table[__crc(data) ^ data[2]];
169 }
170
171 /* Check FCS */
172 static inline int __check_fcs(u8 *data, int type, u8 fcs)
173 {
174 u8 f = __crc(data);
175
176 if (type != RFCOMM_UIH)
177 f = rfcomm_crc_table[f ^ data[2]];
178
179 return rfcomm_crc_table[f ^ fcs] != 0xcf;
180 }
181
182 /* ---- L2CAP callbacks ---- */
183 static void rfcomm_l2state_change(struct sock *sk)
184 {
185 BT_DBG("%p state %d", sk, sk->sk_state);
186 rfcomm_schedule();
187 }
188
189 static void rfcomm_l2data_ready(struct sock *sk)
190 {
191 BT_DBG("%p", sk);
192 rfcomm_schedule();
193 }
194
195 static int rfcomm_l2sock_create(struct socket **sock)
196 {
197 int err;
198
199 BT_DBG("");
200
201 err = sock_create_kern(PF_BLUETOOTH, SOCK_SEQPACKET, BTPROTO_L2CAP, sock);
202 if (!err) {
203 struct sock *sk = (*sock)->sk;
204 sk->sk_data_ready = rfcomm_l2data_ready;
205 sk->sk_state_change = rfcomm_l2state_change;
206 }
207 return err;
208 }
209
210 static int rfcomm_check_security(struct rfcomm_dlc *d)
211 {
212 struct sock *sk = d->session->sock->sk;
213 struct l2cap_conn *conn = l2cap_pi(sk)->chan->conn;
214
215 __u8 auth_type;
216
217 switch (d->sec_level) {
218 case BT_SECURITY_HIGH:
219 case BT_SECURITY_FIPS:
220 auth_type = HCI_AT_GENERAL_BONDING_MITM;
221 break;
222 case BT_SECURITY_MEDIUM:
223 auth_type = HCI_AT_GENERAL_BONDING;
224 break;
225 default:
226 auth_type = HCI_AT_NO_BONDING;
227 break;
228 }
229
230 return hci_conn_security(conn->hcon, d->sec_level, auth_type,
231 d->out);
232 }
233
234 static void rfcomm_session_timeout(unsigned long arg)
235 {
236 struct rfcomm_session *s = (void *) arg;
237
238 BT_DBG("session %p state %ld", s, s->state);
239
240 set_bit(RFCOMM_TIMED_OUT, &s->flags);
241 rfcomm_schedule();
242 }
243
244 static void rfcomm_session_set_timer(struct rfcomm_session *s, long timeout)
245 {
246 BT_DBG("session %p state %ld timeout %ld", s, s->state, timeout);
247
248 mod_timer(&s->timer, jiffies + timeout);
249 }
250
251 static void rfcomm_session_clear_timer(struct rfcomm_session *s)
252 {
253 BT_DBG("session %p state %ld", s, s->state);
254
255 del_timer_sync(&s->timer);
256 }
257
258 /* ---- RFCOMM DLCs ---- */
259 static void rfcomm_dlc_timeout(unsigned long arg)
260 {
261 struct rfcomm_dlc *d = (void *) arg;
262
263 BT_DBG("dlc %p state %ld", d, d->state);
264
265 set_bit(RFCOMM_TIMED_OUT, &d->flags);
266 rfcomm_dlc_put(d);
267 rfcomm_schedule();
268 }
269
270 static void rfcomm_dlc_set_timer(struct rfcomm_dlc *d, long timeout)
271 {
272 BT_DBG("dlc %p state %ld timeout %ld", d, d->state, timeout);
273
274 if (!mod_timer(&d->timer, jiffies + timeout))
275 rfcomm_dlc_hold(d);
276 }
277
278 static void rfcomm_dlc_clear_timer(struct rfcomm_dlc *d)
279 {
280 BT_DBG("dlc %p state %ld", d, d->state);
281
282 if (del_timer(&d->timer))
283 rfcomm_dlc_put(d);
284 }
285
286 static void rfcomm_dlc_clear_state(struct rfcomm_dlc *d)
287 {
288 BT_DBG("%p", d);
289
290 d->state = BT_OPEN;
291 d->flags = 0;
292 d->mscex = 0;
293 d->sec_level = BT_SECURITY_LOW;
294 d->mtu = RFCOMM_DEFAULT_MTU;
295 d->v24_sig = RFCOMM_V24_RTC | RFCOMM_V24_RTR | RFCOMM_V24_DV;
296
297 d->cfc = RFCOMM_CFC_DISABLED;
298 d->rx_credits = RFCOMM_DEFAULT_CREDITS;
299 }
300
301 struct rfcomm_dlc *rfcomm_dlc_alloc(gfp_t prio)
302 {
303 struct rfcomm_dlc *d = kzalloc(sizeof(*d), prio);
304
305 if (!d)
306 return NULL;
307
308 setup_timer(&d->timer, rfcomm_dlc_timeout, (unsigned long)d);
309
310 skb_queue_head_init(&d->tx_queue);
311 mutex_init(&d->lock);
312 atomic_set(&d->refcnt, 1);
313
314 rfcomm_dlc_clear_state(d);
315
316 BT_DBG("%p", d);
317
318 return d;
319 }
320
321 void rfcomm_dlc_free(struct rfcomm_dlc *d)
322 {
323 BT_DBG("%p", d);
324
325 skb_queue_purge(&d->tx_queue);
326 kfree(d);
327 }
328
329 static void rfcomm_dlc_link(struct rfcomm_session *s, struct rfcomm_dlc *d)
330 {
331 BT_DBG("dlc %p session %p", d, s);
332
333 rfcomm_session_clear_timer(s);
334 rfcomm_dlc_hold(d);
335 list_add(&d->list, &s->dlcs);
336 d->session = s;
337 }
338
339 static void rfcomm_dlc_unlink(struct rfcomm_dlc *d)
340 {
341 struct rfcomm_session *s = d->session;
342
343 BT_DBG("dlc %p refcnt %d session %p", d, atomic_read(&d->refcnt), s);
344
345 list_del(&d->list);
346 d->session = NULL;
347 rfcomm_dlc_put(d);
348
349 if (list_empty(&s->dlcs))
350 rfcomm_session_set_timer(s, RFCOMM_IDLE_TIMEOUT);
351 }
352
353 static struct rfcomm_dlc *rfcomm_dlc_get(struct rfcomm_session *s, u8 dlci)
354 {
355 struct rfcomm_dlc *d;
356
357 list_for_each_entry(d, &s->dlcs, list)
358 if (d->dlci == dlci)
359 return d;
360
361 return NULL;
362 }
363
364 static int rfcomm_check_channel(u8 channel)
365 {
366 return channel < 1 || channel > 30;
367 }
368
369 static int __rfcomm_dlc_open(struct rfcomm_dlc *d, bdaddr_t *src, bdaddr_t *dst, u8 channel)
370 {
371 struct rfcomm_session *s;
372 int err = 0;
373 u8 dlci;
374
375 BT_DBG("dlc %p state %ld %pMR -> %pMR channel %d",
376 d, d->state, src, dst, channel);
377
378 if (rfcomm_check_channel(channel))
379 return -EINVAL;
380
381 if (d->state != BT_OPEN && d->state != BT_CLOSED)
382 return 0;
383
384 s = rfcomm_session_get(src, dst);
385 if (!s) {
386 s = rfcomm_session_create(src, dst, d->sec_level, &err);
387 if (!s)
388 return err;
389 }
390
391 dlci = __dlci(!s->initiator, channel);
392
393 /* Check if DLCI already exists */
394 if (rfcomm_dlc_get(s, dlci))
395 return -EBUSY;
396
397 rfcomm_dlc_clear_state(d);
398
399 d->dlci = dlci;
400 d->addr = __addr(s->initiator, dlci);
401 d->priority = 7;
402
403 d->state = BT_CONFIG;
404 rfcomm_dlc_link(s, d);
405
406 d->out = 1;
407
408 d->mtu = s->mtu;
409 d->cfc = (s->cfc == RFCOMM_CFC_UNKNOWN) ? 0 : s->cfc;
410
411 if (s->state == BT_CONNECTED) {
412 if (rfcomm_check_security(d))
413 rfcomm_send_pn(s, 1, d);
414 else
415 set_bit(RFCOMM_AUTH_PENDING, &d->flags);
416 }
417
418 rfcomm_dlc_set_timer(d, RFCOMM_CONN_TIMEOUT);
419
420 return 0;
421 }
422
423 int rfcomm_dlc_open(struct rfcomm_dlc *d, bdaddr_t *src, bdaddr_t *dst, u8 channel)
424 {
425 int r;
426
427 rfcomm_lock();
428
429 r = __rfcomm_dlc_open(d, src, dst, channel);
430
431 rfcomm_unlock();
432 return r;
433 }
434
435 static void __rfcomm_dlc_disconn(struct rfcomm_dlc *d)
436 {
437 struct rfcomm_session *s = d->session;
438
439 d->state = BT_DISCONN;
440 if (skb_queue_empty(&d->tx_queue)) {
441 rfcomm_send_disc(s, d->dlci);
442 rfcomm_dlc_set_timer(d, RFCOMM_DISC_TIMEOUT);
443 } else {
444 rfcomm_queue_disc(d);
445 rfcomm_dlc_set_timer(d, RFCOMM_DISC_TIMEOUT * 2);
446 }
447 }
448
449 static int __rfcomm_dlc_close(struct rfcomm_dlc *d, int err)
450 {
451 struct rfcomm_session *s = d->session;
452 if (!s)
453 return 0;
454
455 BT_DBG("dlc %p state %ld dlci %d err %d session %p",
456 d, d->state, d->dlci, err, s);
457
458 switch (d->state) {
459 case BT_CONNECT:
460 case BT_CONFIG:
461 case BT_OPEN:
462 case BT_CONNECT2:
463 if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) {
464 set_bit(RFCOMM_AUTH_REJECT, &d->flags);
465 rfcomm_schedule();
466 return 0;
467 }
468 }
469
470 switch (d->state) {
471 case BT_CONNECT:
472 case BT_CONNECTED:
473 __rfcomm_dlc_disconn(d);
474 break;
475
476 case BT_CONFIG:
477 if (s->state != BT_BOUND) {
478 __rfcomm_dlc_disconn(d);
479 break;
480 }
481 /* if closing a dlc in a session that hasn't been started,
482 * just close and unlink the dlc
483 */
484
485 default:
486 rfcomm_dlc_clear_timer(d);
487
488 rfcomm_dlc_lock(d);
489 d->state = BT_CLOSED;
490 d->state_change(d, err);
491 rfcomm_dlc_unlock(d);
492
493 skb_queue_purge(&d->tx_queue);
494 rfcomm_dlc_unlink(d);
495 }
496
497 return 0;
498 }
499
500 int rfcomm_dlc_close(struct rfcomm_dlc *d, int err)
501 {
502 int r = 0;
503 struct rfcomm_dlc *d_list;
504 struct rfcomm_session *s, *s_list;
505
506 BT_DBG("dlc %p state %ld dlci %d err %d", d, d->state, d->dlci, err);
507
508 rfcomm_lock();
509
510 s = d->session;
511 if (!s)
512 goto no_session;
513
514 /* after waiting on the mutex check the session still exists
515 * then check the dlc still exists
516 */
517 list_for_each_entry(s_list, &session_list, list) {
518 if (s_list == s) {
519 list_for_each_entry(d_list, &s->dlcs, list) {
520 if (d_list == d) {
521 r = __rfcomm_dlc_close(d, err);
522 break;
523 }
524 }
525 break;
526 }
527 }
528
529 no_session:
530 rfcomm_unlock();
531 return r;
532 }
533
534 struct rfcomm_dlc *rfcomm_dlc_exists(bdaddr_t *src, bdaddr_t *dst, u8 channel)
535 {
536 struct rfcomm_session *s;
537 struct rfcomm_dlc *dlc = NULL;
538 u8 dlci;
539
540 if (rfcomm_check_channel(channel))
541 return ERR_PTR(-EINVAL);
542
543 rfcomm_lock();
544 s = rfcomm_session_get(src, dst);
545 if (s) {
546 dlci = __dlci(!s->initiator, channel);
547 dlc = rfcomm_dlc_get(s, dlci);
548 }
549 rfcomm_unlock();
550 return dlc;
551 }
552
553 int rfcomm_dlc_send(struct rfcomm_dlc *d, struct sk_buff *skb)
554 {
555 int len = skb->len;
556
557 if (d->state != BT_CONNECTED)
558 return -ENOTCONN;
559
560 BT_DBG("dlc %p mtu %d len %d", d, d->mtu, len);
561
562 if (len > d->mtu)
563 return -EINVAL;
564
565 rfcomm_make_uih(skb, d->addr);
566 skb_queue_tail(&d->tx_queue, skb);
567
568 if (!test_bit(RFCOMM_TX_THROTTLED, &d->flags))
569 rfcomm_schedule();
570 return len;
571 }
572
573 void rfcomm_dlc_send_noerror(struct rfcomm_dlc *d, struct sk_buff *skb)
574 {
575 int len = skb->len;
576
577 BT_DBG("dlc %p mtu %d len %d", d, d->mtu, len);
578
579 rfcomm_make_uih(skb, d->addr);
580 skb_queue_tail(&d->tx_queue, skb);
581
582 if (d->state == BT_CONNECTED &&
583 !test_bit(RFCOMM_TX_THROTTLED, &d->flags))
584 rfcomm_schedule();
585 }
586
587 void __rfcomm_dlc_throttle(struct rfcomm_dlc *d)
588 {
589 BT_DBG("dlc %p state %ld", d, d->state);
590
591 if (!d->cfc) {
592 d->v24_sig |= RFCOMM_V24_FC;
593 set_bit(RFCOMM_MSC_PENDING, &d->flags);
594 }
595 rfcomm_schedule();
596 }
597
598 void __rfcomm_dlc_unthrottle(struct rfcomm_dlc *d)
599 {
600 BT_DBG("dlc %p state %ld", d, d->state);
601
602 if (!d->cfc) {
603 d->v24_sig &= ~RFCOMM_V24_FC;
604 set_bit(RFCOMM_MSC_PENDING, &d->flags);
605 }
606 rfcomm_schedule();
607 }
608
609 /*
610 Set/get modem status functions use _local_ status i.e. what we report
611 to the other side.
612 Remote status is provided by dlc->modem_status() callback.
613 */
614 int rfcomm_dlc_set_modem_status(struct rfcomm_dlc *d, u8 v24_sig)
615 {
616 BT_DBG("dlc %p state %ld v24_sig 0x%x",
617 d, d->state, v24_sig);
618
619 if (test_bit(RFCOMM_RX_THROTTLED, &d->flags))
620 v24_sig |= RFCOMM_V24_FC;
621 else
622 v24_sig &= ~RFCOMM_V24_FC;
623
624 d->v24_sig = v24_sig;
625
626 if (!test_and_set_bit(RFCOMM_MSC_PENDING, &d->flags))
627 rfcomm_schedule();
628
629 return 0;
630 }
631
632 int rfcomm_dlc_get_modem_status(struct rfcomm_dlc *d, u8 *v24_sig)
633 {
634 BT_DBG("dlc %p state %ld v24_sig 0x%x",
635 d, d->state, d->v24_sig);
636
637 *v24_sig = d->v24_sig;
638 return 0;
639 }
640
641 /* ---- RFCOMM sessions ---- */
642 static struct rfcomm_session *rfcomm_session_add(struct socket *sock, int state)
643 {
644 struct rfcomm_session *s = kzalloc(sizeof(*s), GFP_KERNEL);
645
646 if (!s)
647 return NULL;
648
649 BT_DBG("session %p sock %p", s, sock);
650
651 setup_timer(&s->timer, rfcomm_session_timeout, (unsigned long) s);
652
653 INIT_LIST_HEAD(&s->dlcs);
654 s->state = state;
655 s->sock = sock;
656
657 s->mtu = RFCOMM_DEFAULT_MTU;
658 s->cfc = disable_cfc ? RFCOMM_CFC_DISABLED : RFCOMM_CFC_UNKNOWN;
659
660 /* Do not increment module usage count for listening sessions.
661 * Otherwise we won't be able to unload the module. */
662 if (state != BT_LISTEN)
663 if (!try_module_get(THIS_MODULE)) {
664 kfree(s);
665 return NULL;
666 }
667
668 list_add(&s->list, &session_list);
669
670 return s;
671 }
672
673 static struct rfcomm_session *rfcomm_session_del(struct rfcomm_session *s)
674 {
675 int state = s->state;
676
677 BT_DBG("session %p state %ld", s, s->state);
678
679 list_del(&s->list);
680
681 rfcomm_session_clear_timer(s);
682 sock_release(s->sock);
683 kfree(s);
684
685 if (state != BT_LISTEN)
686 module_put(THIS_MODULE);
687
688 return NULL;
689 }
690
691 static struct rfcomm_session *rfcomm_session_get(bdaddr_t *src, bdaddr_t *dst)
692 {
693 struct rfcomm_session *s;
694 struct list_head *p, *n;
695 struct l2cap_chan *chan;
696 list_for_each_safe(p, n, &session_list) {
697 s = list_entry(p, struct rfcomm_session, list);
698 chan = l2cap_pi(s->sock->sk)->chan;
699
700 if ((!bacmp(src, BDADDR_ANY) || !bacmp(&chan->src, src)) &&
701 !bacmp(&chan->dst, dst))
702 return s;
703 }
704 return NULL;
705 }
706
707 static struct rfcomm_session *rfcomm_session_close(struct rfcomm_session *s,
708 int err)
709 {
710 struct rfcomm_dlc *d;
711 struct list_head *p, *n;
712
713 s->state = BT_CLOSED;
714
715 BT_DBG("session %p state %ld err %d", s, s->state, err);
716
717 /* Close all dlcs */
718 list_for_each_safe(p, n, &s->dlcs) {
719 d = list_entry(p, struct rfcomm_dlc, list);
720 d->state = BT_CLOSED;
721 __rfcomm_dlc_close(d, err);
722 }
723
724 rfcomm_session_clear_timer(s);
725 return rfcomm_session_del(s);
726 }
727
728 static struct rfcomm_session *rfcomm_session_create(bdaddr_t *src,
729 bdaddr_t *dst,
730 u8 sec_level,
731 int *err)
732 {
733 struct rfcomm_session *s = NULL;
734 struct sockaddr_l2 addr;
735 struct socket *sock;
736 struct sock *sk;
737
738 BT_DBG("%pMR -> %pMR", src, dst);
739
740 *err = rfcomm_l2sock_create(&sock);
741 if (*err < 0)
742 return NULL;
743
744 bacpy(&addr.l2_bdaddr, src);
745 addr.l2_family = AF_BLUETOOTH;
746 addr.l2_psm = 0;
747 addr.l2_cid = 0;
748 addr.l2_bdaddr_type = BDADDR_BREDR;
749 *err = kernel_bind(sock, (struct sockaddr *) &addr, sizeof(addr));
750 if (*err < 0)
751 goto failed;
752
753 /* Set L2CAP options */
754 sk = sock->sk;
755 lock_sock(sk);
756 l2cap_pi(sk)->chan->imtu = l2cap_mtu;
757 l2cap_pi(sk)->chan->sec_level = sec_level;
758 if (l2cap_ertm)
759 l2cap_pi(sk)->chan->mode = L2CAP_MODE_ERTM;
760 release_sock(sk);
761
762 s = rfcomm_session_add(sock, BT_BOUND);
763 if (!s) {
764 *err = -ENOMEM;
765 goto failed;
766 }
767
768 s->initiator = 1;
769
770 bacpy(&addr.l2_bdaddr, dst);
771 addr.l2_family = AF_BLUETOOTH;
772 addr.l2_psm = cpu_to_le16(RFCOMM_PSM);
773 addr.l2_cid = 0;
774 addr.l2_bdaddr_type = BDADDR_BREDR;
775 *err = kernel_connect(sock, (struct sockaddr *) &addr, sizeof(addr), O_NONBLOCK);
776 if (*err == 0 || *err == -EINPROGRESS)
777 return s;
778
779 return rfcomm_session_del(s);
780
781 failed:
782 sock_release(sock);
783 return NULL;
784 }
785
786 void rfcomm_session_getaddr(struct rfcomm_session *s, bdaddr_t *src, bdaddr_t *dst)
787 {
788 struct l2cap_chan *chan = l2cap_pi(s->sock->sk)->chan;
789 if (src)
790 bacpy(src, &chan->src);
791 if (dst)
792 bacpy(dst, &chan->dst);
793 }
794
795 /* ---- RFCOMM frame sending ---- */
796 static int rfcomm_send_frame(struct rfcomm_session *s, u8 *data, int len)
797 {
798 struct kvec iv = { data, len };
799 struct msghdr msg;
800
801 BT_DBG("session %p len %d", s, len);
802
803 memset(&msg, 0, sizeof(msg));
804
805 return kernel_sendmsg(s->sock, &msg, &iv, 1, len);
806 }
807
808 static int rfcomm_send_cmd(struct rfcomm_session *s, struct rfcomm_cmd *cmd)
809 {
810 BT_DBG("%p cmd %u", s, cmd->ctrl);
811
812 return rfcomm_send_frame(s, (void *) cmd, sizeof(*cmd));
813 }
814
815 static int rfcomm_send_sabm(struct rfcomm_session *s, u8 dlci)
816 {
817 struct rfcomm_cmd cmd;
818
819 BT_DBG("%p dlci %d", s, dlci);
820
821 cmd.addr = __addr(s->initiator, dlci);
822 cmd.ctrl = __ctrl(RFCOMM_SABM, 1);
823 cmd.len = __len8(0);
824 cmd.fcs = __fcs2((u8 *) &cmd);
825
826 return rfcomm_send_cmd(s, &cmd);
827 }
828
829 static int rfcomm_send_ua(struct rfcomm_session *s, u8 dlci)
830 {
831 struct rfcomm_cmd cmd;
832
833 BT_DBG("%p dlci %d", s, dlci);
834
835 cmd.addr = __addr(!s->initiator, dlci);
836 cmd.ctrl = __ctrl(RFCOMM_UA, 1);
837 cmd.len = __len8(0);
838 cmd.fcs = __fcs2((u8 *) &cmd);
839
840 return rfcomm_send_cmd(s, &cmd);
841 }
842
843 static int rfcomm_send_disc(struct rfcomm_session *s, u8 dlci)
844 {
845 struct rfcomm_cmd cmd;
846
847 BT_DBG("%p dlci %d", s, dlci);
848
849 cmd.addr = __addr(s->initiator, dlci);
850 cmd.ctrl = __ctrl(RFCOMM_DISC, 1);
851 cmd.len = __len8(0);
852 cmd.fcs = __fcs2((u8 *) &cmd);
853
854 return rfcomm_send_cmd(s, &cmd);
855 }
856
857 static int rfcomm_queue_disc(struct rfcomm_dlc *d)
858 {
859 struct rfcomm_cmd *cmd;
860 struct sk_buff *skb;
861
862 BT_DBG("dlc %p dlci %d", d, d->dlci);
863
864 skb = alloc_skb(sizeof(*cmd), GFP_KERNEL);
865 if (!skb)
866 return -ENOMEM;
867
868 cmd = (void *) __skb_put(skb, sizeof(*cmd));
869 cmd->addr = d->addr;
870 cmd->ctrl = __ctrl(RFCOMM_DISC, 1);
871 cmd->len = __len8(0);
872 cmd->fcs = __fcs2((u8 *) cmd);
873
874 skb_queue_tail(&d->tx_queue, skb);
875 rfcomm_schedule();
876 return 0;
877 }
878
879 static int rfcomm_send_dm(struct rfcomm_session *s, u8 dlci)
880 {
881 struct rfcomm_cmd cmd;
882
883 BT_DBG("%p dlci %d", s, dlci);
884
885 cmd.addr = __addr(!s->initiator, dlci);
886 cmd.ctrl = __ctrl(RFCOMM_DM, 1);
887 cmd.len = __len8(0);
888 cmd.fcs = __fcs2((u8 *) &cmd);
889
890 return rfcomm_send_cmd(s, &cmd);
891 }
892
893 static int rfcomm_send_nsc(struct rfcomm_session *s, int cr, u8 type)
894 {
895 struct rfcomm_hdr *hdr;
896 struct rfcomm_mcc *mcc;
897 u8 buf[16], *ptr = buf;
898
899 BT_DBG("%p cr %d type %d", s, cr, type);
900
901 hdr = (void *) ptr; ptr += sizeof(*hdr);
902 hdr->addr = __addr(s->initiator, 0);
903 hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
904 hdr->len = __len8(sizeof(*mcc) + 1);
905
906 mcc = (void *) ptr; ptr += sizeof(*mcc);
907 mcc->type = __mcc_type(0, RFCOMM_NSC);
908 mcc->len = __len8(1);
909
910 /* Type that we didn't like */
911 *ptr = __mcc_type(cr, type); ptr++;
912
913 *ptr = __fcs(buf); ptr++;
914
915 return rfcomm_send_frame(s, buf, ptr - buf);
916 }
917
918 static int rfcomm_send_pn(struct rfcomm_session *s, int cr, struct rfcomm_dlc *d)
919 {
920 struct rfcomm_hdr *hdr;
921 struct rfcomm_mcc *mcc;
922 struct rfcomm_pn *pn;
923 u8 buf[16], *ptr = buf;
924
925 BT_DBG("%p cr %d dlci %d mtu %d", s, cr, d->dlci, d->mtu);
926
927 hdr = (void *) ptr; ptr += sizeof(*hdr);
928 hdr->addr = __addr(s->initiator, 0);
929 hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
930 hdr->len = __len8(sizeof(*mcc) + sizeof(*pn));
931
932 mcc = (void *) ptr; ptr += sizeof(*mcc);
933 mcc->type = __mcc_type(cr, RFCOMM_PN);
934 mcc->len = __len8(sizeof(*pn));
935
936 pn = (void *) ptr; ptr += sizeof(*pn);
937 pn->dlci = d->dlci;
938 pn->priority = d->priority;
939 pn->ack_timer = 0;
940 pn->max_retrans = 0;
941
942 if (s->cfc) {
943 pn->flow_ctrl = cr ? 0xf0 : 0xe0;
944 pn->credits = RFCOMM_DEFAULT_CREDITS;
945 } else {
946 pn->flow_ctrl = 0;
947 pn->credits = 0;
948 }
949
950 if (cr && channel_mtu >= 0)
951 pn->mtu = cpu_to_le16(channel_mtu);
952 else
953 pn->mtu = cpu_to_le16(d->mtu);
954
955 *ptr = __fcs(buf); ptr++;
956
957 return rfcomm_send_frame(s, buf, ptr - buf);
958 }
959
960 int rfcomm_send_rpn(struct rfcomm_session *s, int cr, u8 dlci,
961 u8 bit_rate, u8 data_bits, u8 stop_bits,
962 u8 parity, u8 flow_ctrl_settings,
963 u8 xon_char, u8 xoff_char, u16 param_mask)
964 {
965 struct rfcomm_hdr *hdr;
966 struct rfcomm_mcc *mcc;
967 struct rfcomm_rpn *rpn;
968 u8 buf[16], *ptr = buf;
969
970 BT_DBG("%p cr %d dlci %d bit_r 0x%x data_b 0x%x stop_b 0x%x parity 0x%x"
971 " flwc_s 0x%x xon_c 0x%x xoff_c 0x%x p_mask 0x%x",
972 s, cr, dlci, bit_rate, data_bits, stop_bits, parity,
973 flow_ctrl_settings, xon_char, xoff_char, param_mask);
974
975 hdr = (void *) ptr; ptr += sizeof(*hdr);
976 hdr->addr = __addr(s->initiator, 0);
977 hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
978 hdr->len = __len8(sizeof(*mcc) + sizeof(*rpn));
979
980 mcc = (void *) ptr; ptr += sizeof(*mcc);
981 mcc->type = __mcc_type(cr, RFCOMM_RPN);
982 mcc->len = __len8(sizeof(*rpn));
983
984 rpn = (void *) ptr; ptr += sizeof(*rpn);
985 rpn->dlci = __addr(1, dlci);
986 rpn->bit_rate = bit_rate;
987 rpn->line_settings = __rpn_line_settings(data_bits, stop_bits, parity);
988 rpn->flow_ctrl = flow_ctrl_settings;
989 rpn->xon_char = xon_char;
990 rpn->xoff_char = xoff_char;
991 rpn->param_mask = cpu_to_le16(param_mask);
992
993 *ptr = __fcs(buf); ptr++;
994
995 return rfcomm_send_frame(s, buf, ptr - buf);
996 }
997
998 static int rfcomm_send_rls(struct rfcomm_session *s, int cr, u8 dlci, u8 status)
999 {
1000 struct rfcomm_hdr *hdr;
1001 struct rfcomm_mcc *mcc;
1002 struct rfcomm_rls *rls;
1003 u8 buf[16], *ptr = buf;
1004
1005 BT_DBG("%p cr %d status 0x%x", s, cr, status);
1006
1007 hdr = (void *) ptr; ptr += sizeof(*hdr);
1008 hdr->addr = __addr(s->initiator, 0);
1009 hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
1010 hdr->len = __len8(sizeof(*mcc) + sizeof(*rls));
1011
1012 mcc = (void *) ptr; ptr += sizeof(*mcc);
1013 mcc->type = __mcc_type(cr, RFCOMM_RLS);
1014 mcc->len = __len8(sizeof(*rls));
1015
1016 rls = (void *) ptr; ptr += sizeof(*rls);
1017 rls->dlci = __addr(1, dlci);
1018 rls->status = status;
1019
1020 *ptr = __fcs(buf); ptr++;
1021
1022 return rfcomm_send_frame(s, buf, ptr - buf);
1023 }
1024
1025 static int rfcomm_send_msc(struct rfcomm_session *s, int cr, u8 dlci, u8 v24_sig)
1026 {
1027 struct rfcomm_hdr *hdr;
1028 struct rfcomm_mcc *mcc;
1029 struct rfcomm_msc *msc;
1030 u8 buf[16], *ptr = buf;
1031
1032 BT_DBG("%p cr %d v24 0x%x", s, cr, v24_sig);
1033
1034 hdr = (void *) ptr; ptr += sizeof(*hdr);
1035 hdr->addr = __addr(s->initiator, 0);
1036 hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
1037 hdr->len = __len8(sizeof(*mcc) + sizeof(*msc));
1038
1039 mcc = (void *) ptr; ptr += sizeof(*mcc);
1040 mcc->type = __mcc_type(cr, RFCOMM_MSC);
1041 mcc->len = __len8(sizeof(*msc));
1042
1043 msc = (void *) ptr; ptr += sizeof(*msc);
1044 msc->dlci = __addr(1, dlci);
1045 msc->v24_sig = v24_sig | 0x01;
1046
1047 *ptr = __fcs(buf); ptr++;
1048
1049 return rfcomm_send_frame(s, buf, ptr - buf);
1050 }
1051
1052 static int rfcomm_send_fcoff(struct rfcomm_session *s, int cr)
1053 {
1054 struct rfcomm_hdr *hdr;
1055 struct rfcomm_mcc *mcc;
1056 u8 buf[16], *ptr = buf;
1057
1058 BT_DBG("%p cr %d", s, cr);
1059
1060 hdr = (void *) ptr; ptr += sizeof(*hdr);
1061 hdr->addr = __addr(s->initiator, 0);
1062 hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
1063 hdr->len = __len8(sizeof(*mcc));
1064
1065 mcc = (void *) ptr; ptr += sizeof(*mcc);
1066 mcc->type = __mcc_type(cr, RFCOMM_FCOFF);
1067 mcc->len = __len8(0);
1068
1069 *ptr = __fcs(buf); ptr++;
1070
1071 return rfcomm_send_frame(s, buf, ptr - buf);
1072 }
1073
1074 static int rfcomm_send_fcon(struct rfcomm_session *s, int cr)
1075 {
1076 struct rfcomm_hdr *hdr;
1077 struct rfcomm_mcc *mcc;
1078 u8 buf[16], *ptr = buf;
1079
1080 BT_DBG("%p cr %d", s, cr);
1081
1082 hdr = (void *) ptr; ptr += sizeof(*hdr);
1083 hdr->addr = __addr(s->initiator, 0);
1084 hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
1085 hdr->len = __len8(sizeof(*mcc));
1086
1087 mcc = (void *) ptr; ptr += sizeof(*mcc);
1088 mcc->type = __mcc_type(cr, RFCOMM_FCON);
1089 mcc->len = __len8(0);
1090
1091 *ptr = __fcs(buf); ptr++;
1092
1093 return rfcomm_send_frame(s, buf, ptr - buf);
1094 }
1095
1096 static int rfcomm_send_test(struct rfcomm_session *s, int cr, u8 *pattern, int len)
1097 {
1098 struct socket *sock = s->sock;
1099 struct kvec iv[3];
1100 struct msghdr msg;
1101 unsigned char hdr[5], crc[1];
1102
1103 if (len > 125)
1104 return -EINVAL;
1105
1106 BT_DBG("%p cr %d", s, cr);
1107
1108 hdr[0] = __addr(s->initiator, 0);
1109 hdr[1] = __ctrl(RFCOMM_UIH, 0);
1110 hdr[2] = 0x01 | ((len + 2) << 1);
1111 hdr[3] = 0x01 | ((cr & 0x01) << 1) | (RFCOMM_TEST << 2);
1112 hdr[4] = 0x01 | (len << 1);
1113
1114 crc[0] = __fcs(hdr);
1115
1116 iv[0].iov_base = hdr;
1117 iv[0].iov_len = 5;
1118 iv[1].iov_base = pattern;
1119 iv[1].iov_len = len;
1120 iv[2].iov_base = crc;
1121 iv[2].iov_len = 1;
1122
1123 memset(&msg, 0, sizeof(msg));
1124
1125 return kernel_sendmsg(sock, &msg, iv, 3, 6 + len);
1126 }
1127
1128 static int rfcomm_send_credits(struct rfcomm_session *s, u8 addr, u8 credits)
1129 {
1130 struct rfcomm_hdr *hdr;
1131 u8 buf[16], *ptr = buf;
1132
1133 BT_DBG("%p addr %d credits %d", s, addr, credits);
1134
1135 hdr = (void *) ptr; ptr += sizeof(*hdr);
1136 hdr->addr = addr;
1137 hdr->ctrl = __ctrl(RFCOMM_UIH, 1);
1138 hdr->len = __len8(0);
1139
1140 *ptr = credits; ptr++;
1141
1142 *ptr = __fcs(buf); ptr++;
1143
1144 return rfcomm_send_frame(s, buf, ptr - buf);
1145 }
1146
1147 static void rfcomm_make_uih(struct sk_buff *skb, u8 addr)
1148 {
1149 struct rfcomm_hdr *hdr;
1150 int len = skb->len;
1151 u8 *crc;
1152
1153 if (len > 127) {
1154 hdr = (void *) skb_push(skb, 4);
1155 put_unaligned(cpu_to_le16(__len16(len)), (__le16 *) &hdr->len);
1156 } else {
1157 hdr = (void *) skb_push(skb, 3);
1158 hdr->len = __len8(len);
1159 }
1160 hdr->addr = addr;
1161 hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
1162
1163 crc = skb_put(skb, 1);
1164 *crc = __fcs((void *) hdr);
1165 }
1166
1167 /* ---- RFCOMM frame reception ---- */
1168 static struct rfcomm_session *rfcomm_recv_ua(struct rfcomm_session *s, u8 dlci)
1169 {
1170 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1171
1172 if (dlci) {
1173 /* Data channel */
1174 struct rfcomm_dlc *d = rfcomm_dlc_get(s, dlci);
1175 if (!d) {
1176 rfcomm_send_dm(s, dlci);
1177 return s;
1178 }
1179
1180 switch (d->state) {
1181 case BT_CONNECT:
1182 rfcomm_dlc_clear_timer(d);
1183
1184 rfcomm_dlc_lock(d);
1185 d->state = BT_CONNECTED;
1186 d->state_change(d, 0);
1187 rfcomm_dlc_unlock(d);
1188
1189 rfcomm_send_msc(s, 1, dlci, d->v24_sig);
1190 break;
1191
1192 case BT_DISCONN:
1193 d->state = BT_CLOSED;
1194 __rfcomm_dlc_close(d, 0);
1195
1196 if (list_empty(&s->dlcs)) {
1197 s->state = BT_DISCONN;
1198 rfcomm_send_disc(s, 0);
1199 rfcomm_session_clear_timer(s);
1200 }
1201
1202 break;
1203 }
1204 } else {
1205 /* Control channel */
1206 switch (s->state) {
1207 case BT_CONNECT:
1208 s->state = BT_CONNECTED;
1209 rfcomm_process_connect(s);
1210 break;
1211
1212 case BT_DISCONN:
1213 s = rfcomm_session_close(s, ECONNRESET);
1214 break;
1215 }
1216 }
1217 return s;
1218 }
1219
1220 static struct rfcomm_session *rfcomm_recv_dm(struct rfcomm_session *s, u8 dlci)
1221 {
1222 int err = 0;
1223
1224 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1225
1226 if (dlci) {
1227 /* Data DLC */
1228 struct rfcomm_dlc *d = rfcomm_dlc_get(s, dlci);
1229 if (d) {
1230 if (d->state == BT_CONNECT || d->state == BT_CONFIG)
1231 err = ECONNREFUSED;
1232 else
1233 err = ECONNRESET;
1234
1235 d->state = BT_CLOSED;
1236 __rfcomm_dlc_close(d, err);
1237 }
1238 } else {
1239 if (s->state == BT_CONNECT)
1240 err = ECONNREFUSED;
1241 else
1242 err = ECONNRESET;
1243
1244 s = rfcomm_session_close(s, err);
1245 }
1246 return s;
1247 }
1248
1249 static struct rfcomm_session *rfcomm_recv_disc(struct rfcomm_session *s,
1250 u8 dlci)
1251 {
1252 int err = 0;
1253
1254 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1255
1256 if (dlci) {
1257 struct rfcomm_dlc *d = rfcomm_dlc_get(s, dlci);
1258 if (d) {
1259 rfcomm_send_ua(s, dlci);
1260
1261 if (d->state == BT_CONNECT || d->state == BT_CONFIG)
1262 err = ECONNREFUSED;
1263 else
1264 err = ECONNRESET;
1265
1266 d->state = BT_CLOSED;
1267 __rfcomm_dlc_close(d, err);
1268 } else
1269 rfcomm_send_dm(s, dlci);
1270
1271 } else {
1272 rfcomm_send_ua(s, 0);
1273
1274 if (s->state == BT_CONNECT)
1275 err = ECONNREFUSED;
1276 else
1277 err = ECONNRESET;
1278
1279 s = rfcomm_session_close(s, err);
1280 }
1281 return s;
1282 }
1283
1284 void rfcomm_dlc_accept(struct rfcomm_dlc *d)
1285 {
1286 struct sock *sk = d->session->sock->sk;
1287 struct l2cap_conn *conn = l2cap_pi(sk)->chan->conn;
1288
1289 BT_DBG("dlc %p", d);
1290
1291 rfcomm_send_ua(d->session, d->dlci);
1292
1293 rfcomm_dlc_clear_timer(d);
1294
1295 rfcomm_dlc_lock(d);
1296 d->state = BT_CONNECTED;
1297 d->state_change(d, 0);
1298 rfcomm_dlc_unlock(d);
1299
1300 if (d->role_switch)
1301 hci_conn_switch_role(conn->hcon, 0x00);
1302
1303 rfcomm_send_msc(d->session, 1, d->dlci, d->v24_sig);
1304 }
1305
1306 static void rfcomm_check_accept(struct rfcomm_dlc *d)
1307 {
1308 if (rfcomm_check_security(d)) {
1309 if (d->defer_setup) {
1310 set_bit(RFCOMM_DEFER_SETUP, &d->flags);
1311 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT);
1312
1313 rfcomm_dlc_lock(d);
1314 d->state = BT_CONNECT2;
1315 d->state_change(d, 0);
1316 rfcomm_dlc_unlock(d);
1317 } else
1318 rfcomm_dlc_accept(d);
1319 } else {
1320 set_bit(RFCOMM_AUTH_PENDING, &d->flags);
1321 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT);
1322 }
1323 }
1324
1325 static int rfcomm_recv_sabm(struct rfcomm_session *s, u8 dlci)
1326 {
1327 struct rfcomm_dlc *d;
1328 u8 channel;
1329
1330 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1331
1332 if (!dlci) {
1333 rfcomm_send_ua(s, 0);
1334
1335 if (s->state == BT_OPEN) {
1336 s->state = BT_CONNECTED;
1337 rfcomm_process_connect(s);
1338 }
1339 return 0;
1340 }
1341
1342 /* Check if DLC exists */
1343 d = rfcomm_dlc_get(s, dlci);
1344 if (d) {
1345 if (d->state == BT_OPEN) {
1346 /* DLC was previously opened by PN request */
1347 rfcomm_check_accept(d);
1348 }
1349 return 0;
1350 }
1351
1352 /* Notify socket layer about incoming connection */
1353 channel = __srv_channel(dlci);
1354 if (rfcomm_connect_ind(s, channel, &d)) {
1355 d->dlci = dlci;
1356 d->addr = __addr(s->initiator, dlci);
1357 rfcomm_dlc_link(s, d);
1358
1359 rfcomm_check_accept(d);
1360 } else {
1361 rfcomm_send_dm(s, dlci);
1362 }
1363
1364 return 0;
1365 }
1366
1367 static int rfcomm_apply_pn(struct rfcomm_dlc *d, int cr, struct rfcomm_pn *pn)
1368 {
1369 struct rfcomm_session *s = d->session;
1370
1371 BT_DBG("dlc %p state %ld dlci %d mtu %d fc 0x%x credits %d",
1372 d, d->state, d->dlci, pn->mtu, pn->flow_ctrl, pn->credits);
1373
1374 if ((pn->flow_ctrl == 0xf0 && s->cfc != RFCOMM_CFC_DISABLED) ||
1375 pn->flow_ctrl == 0xe0) {
1376 d->cfc = RFCOMM_CFC_ENABLED;
1377 d->tx_credits = pn->credits;
1378 } else {
1379 d->cfc = RFCOMM_CFC_DISABLED;
1380 set_bit(RFCOMM_TX_THROTTLED, &d->flags);
1381 }
1382
1383 if (s->cfc == RFCOMM_CFC_UNKNOWN)
1384 s->cfc = d->cfc;
1385
1386 d->priority = pn->priority;
1387
1388 d->mtu = __le16_to_cpu(pn->mtu);
1389
1390 if (cr && d->mtu > s->mtu)
1391 d->mtu = s->mtu;
1392
1393 return 0;
1394 }
1395
1396 static int rfcomm_recv_pn(struct rfcomm_session *s, int cr, struct sk_buff *skb)
1397 {
1398 struct rfcomm_pn *pn = (void *) skb->data;
1399 struct rfcomm_dlc *d;
1400 u8 dlci = pn->dlci;
1401
1402 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1403
1404 if (!dlci)
1405 return 0;
1406
1407 d = rfcomm_dlc_get(s, dlci);
1408 if (d) {
1409 if (cr) {
1410 /* PN request */
1411 rfcomm_apply_pn(d, cr, pn);
1412 rfcomm_send_pn(s, 0, d);
1413 } else {
1414 /* PN response */
1415 switch (d->state) {
1416 case BT_CONFIG:
1417 rfcomm_apply_pn(d, cr, pn);
1418
1419 d->state = BT_CONNECT;
1420 rfcomm_send_sabm(s, d->dlci);
1421 break;
1422 }
1423 }
1424 } else {
1425 u8 channel = __srv_channel(dlci);
1426
1427 if (!cr)
1428 return 0;
1429
1430 /* PN request for non existing DLC.
1431 * Assume incoming connection. */
1432 if (rfcomm_connect_ind(s, channel, &d)) {
1433 d->dlci = dlci;
1434 d->addr = __addr(s->initiator, dlci);
1435 rfcomm_dlc_link(s, d);
1436
1437 rfcomm_apply_pn(d, cr, pn);
1438
1439 d->state = BT_OPEN;
1440 rfcomm_send_pn(s, 0, d);
1441 } else {
1442 rfcomm_send_dm(s, dlci);
1443 }
1444 }
1445 return 0;
1446 }
1447
1448 static int rfcomm_recv_rpn(struct rfcomm_session *s, int cr, int len, struct sk_buff *skb)
1449 {
1450 struct rfcomm_rpn *rpn = (void *) skb->data;
1451 u8 dlci = __get_dlci(rpn->dlci);
1452
1453 u8 bit_rate = 0;
1454 u8 data_bits = 0;
1455 u8 stop_bits = 0;
1456 u8 parity = 0;
1457 u8 flow_ctrl = 0;
1458 u8 xon_char = 0;
1459 u8 xoff_char = 0;
1460 u16 rpn_mask = RFCOMM_RPN_PM_ALL;
1461
1462 BT_DBG("dlci %d cr %d len 0x%x bitr 0x%x line 0x%x flow 0x%x xonc 0x%x xoffc 0x%x pm 0x%x",
1463 dlci, cr, len, rpn->bit_rate, rpn->line_settings, rpn->flow_ctrl,
1464 rpn->xon_char, rpn->xoff_char, rpn->param_mask);
1465
1466 if (!cr)
1467 return 0;
1468
1469 if (len == 1) {
1470 /* This is a request, return default (according to ETSI TS 07.10) settings */
1471 bit_rate = RFCOMM_RPN_BR_9600;
1472 data_bits = RFCOMM_RPN_DATA_8;
1473 stop_bits = RFCOMM_RPN_STOP_1;
1474 parity = RFCOMM_RPN_PARITY_NONE;
1475 flow_ctrl = RFCOMM_RPN_FLOW_NONE;
1476 xon_char = RFCOMM_RPN_XON_CHAR;
1477 xoff_char = RFCOMM_RPN_XOFF_CHAR;
1478 goto rpn_out;
1479 }
1480
1481 /* Check for sane values, ignore/accept bit_rate, 8 bits, 1 stop bit,
1482 * no parity, no flow control lines, normal XON/XOFF chars */
1483
1484 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_BITRATE)) {
1485 bit_rate = rpn->bit_rate;
1486 if (bit_rate > RFCOMM_RPN_BR_230400) {
1487 BT_DBG("RPN bit rate mismatch 0x%x", bit_rate);
1488 bit_rate = RFCOMM_RPN_BR_9600;
1489 rpn_mask ^= RFCOMM_RPN_PM_BITRATE;
1490 }
1491 }
1492
1493 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_DATA)) {
1494 data_bits = __get_rpn_data_bits(rpn->line_settings);
1495 if (data_bits != RFCOMM_RPN_DATA_8) {
1496 BT_DBG("RPN data bits mismatch 0x%x", data_bits);
1497 data_bits = RFCOMM_RPN_DATA_8;
1498 rpn_mask ^= RFCOMM_RPN_PM_DATA;
1499 }
1500 }
1501
1502 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_STOP)) {
1503 stop_bits = __get_rpn_stop_bits(rpn->line_settings);
1504 if (stop_bits != RFCOMM_RPN_STOP_1) {
1505 BT_DBG("RPN stop bits mismatch 0x%x", stop_bits);
1506 stop_bits = RFCOMM_RPN_STOP_1;
1507 rpn_mask ^= RFCOMM_RPN_PM_STOP;
1508 }
1509 }
1510
1511 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_PARITY)) {
1512 parity = __get_rpn_parity(rpn->line_settings);
1513 if (parity != RFCOMM_RPN_PARITY_NONE) {
1514 BT_DBG("RPN parity mismatch 0x%x", parity);
1515 parity = RFCOMM_RPN_PARITY_NONE;
1516 rpn_mask ^= RFCOMM_RPN_PM_PARITY;
1517 }
1518 }
1519
1520 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_FLOW)) {
1521 flow_ctrl = rpn->flow_ctrl;
1522 if (flow_ctrl != RFCOMM_RPN_FLOW_NONE) {
1523 BT_DBG("RPN flow ctrl mismatch 0x%x", flow_ctrl);
1524 flow_ctrl = RFCOMM_RPN_FLOW_NONE;
1525 rpn_mask ^= RFCOMM_RPN_PM_FLOW;
1526 }
1527 }
1528
1529 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_XON)) {
1530 xon_char = rpn->xon_char;
1531 if (xon_char != RFCOMM_RPN_XON_CHAR) {
1532 BT_DBG("RPN XON char mismatch 0x%x", xon_char);
1533 xon_char = RFCOMM_RPN_XON_CHAR;
1534 rpn_mask ^= RFCOMM_RPN_PM_XON;
1535 }
1536 }
1537
1538 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_XOFF)) {
1539 xoff_char = rpn->xoff_char;
1540 if (xoff_char != RFCOMM_RPN_XOFF_CHAR) {
1541 BT_DBG("RPN XOFF char mismatch 0x%x", xoff_char);
1542 xoff_char = RFCOMM_RPN_XOFF_CHAR;
1543 rpn_mask ^= RFCOMM_RPN_PM_XOFF;
1544 }
1545 }
1546
1547 rpn_out:
1548 rfcomm_send_rpn(s, 0, dlci, bit_rate, data_bits, stop_bits,
1549 parity, flow_ctrl, xon_char, xoff_char, rpn_mask);
1550
1551 return 0;
1552 }
1553
1554 static int rfcomm_recv_rls(struct rfcomm_session *s, int cr, struct sk_buff *skb)
1555 {
1556 struct rfcomm_rls *rls = (void *) skb->data;
1557 u8 dlci = __get_dlci(rls->dlci);
1558
1559 BT_DBG("dlci %d cr %d status 0x%x", dlci, cr, rls->status);
1560
1561 if (!cr)
1562 return 0;
1563
1564 /* We should probably do something with this information here. But
1565 * for now it's sufficient just to reply -- Bluetooth 1.1 says it's
1566 * mandatory to recognise and respond to RLS */
1567
1568 rfcomm_send_rls(s, 0, dlci, rls->status);
1569
1570 return 0;
1571 }
1572
1573 static int rfcomm_recv_msc(struct rfcomm_session *s, int cr, struct sk_buff *skb)
1574 {
1575 struct rfcomm_msc *msc = (void *) skb->data;
1576 struct rfcomm_dlc *d;
1577 u8 dlci = __get_dlci(msc->dlci);
1578
1579 BT_DBG("dlci %d cr %d v24 0x%x", dlci, cr, msc->v24_sig);
1580
1581 d = rfcomm_dlc_get(s, dlci);
1582 if (!d)
1583 return 0;
1584
1585 if (cr) {
1586 if (msc->v24_sig & RFCOMM_V24_FC && !d->cfc)
1587 set_bit(RFCOMM_TX_THROTTLED, &d->flags);
1588 else
1589 clear_bit(RFCOMM_TX_THROTTLED, &d->flags);
1590
1591 rfcomm_dlc_lock(d);
1592
1593 d->remote_v24_sig = msc->v24_sig;
1594
1595 if (d->modem_status)
1596 d->modem_status(d, msc->v24_sig);
1597
1598 rfcomm_dlc_unlock(d);
1599
1600 rfcomm_send_msc(s, 0, dlci, msc->v24_sig);
1601
1602 d->mscex |= RFCOMM_MSCEX_RX;
1603 } else
1604 d->mscex |= RFCOMM_MSCEX_TX;
1605
1606 return 0;
1607 }
1608
1609 static int rfcomm_recv_mcc(struct rfcomm_session *s, struct sk_buff *skb)
1610 {
1611 struct rfcomm_mcc *mcc = (void *) skb->data;
1612 u8 type, cr, len;
1613
1614 cr = __test_cr(mcc->type);
1615 type = __get_mcc_type(mcc->type);
1616 len = __get_mcc_len(mcc->len);
1617
1618 BT_DBG("%p type 0x%x cr %d", s, type, cr);
1619
1620 skb_pull(skb, 2);
1621
1622 switch (type) {
1623 case RFCOMM_PN:
1624 rfcomm_recv_pn(s, cr, skb);
1625 break;
1626
1627 case RFCOMM_RPN:
1628 rfcomm_recv_rpn(s, cr, len, skb);
1629 break;
1630
1631 case RFCOMM_RLS:
1632 rfcomm_recv_rls(s, cr, skb);
1633 break;
1634
1635 case RFCOMM_MSC:
1636 rfcomm_recv_msc(s, cr, skb);
1637 break;
1638
1639 case RFCOMM_FCOFF:
1640 if (cr) {
1641 set_bit(RFCOMM_TX_THROTTLED, &s->flags);
1642 rfcomm_send_fcoff(s, 0);
1643 }
1644 break;
1645
1646 case RFCOMM_FCON:
1647 if (cr) {
1648 clear_bit(RFCOMM_TX_THROTTLED, &s->flags);
1649 rfcomm_send_fcon(s, 0);
1650 }
1651 break;
1652
1653 case RFCOMM_TEST:
1654 if (cr)
1655 rfcomm_send_test(s, 0, skb->data, skb->len);
1656 break;
1657
1658 case RFCOMM_NSC:
1659 break;
1660
1661 default:
1662 BT_ERR("Unknown control type 0x%02x", type);
1663 rfcomm_send_nsc(s, cr, type);
1664 break;
1665 }
1666 return 0;
1667 }
1668
1669 static int rfcomm_recv_data(struct rfcomm_session *s, u8 dlci, int pf, struct sk_buff *skb)
1670 {
1671 struct rfcomm_dlc *d;
1672
1673 BT_DBG("session %p state %ld dlci %d pf %d", s, s->state, dlci, pf);
1674
1675 d = rfcomm_dlc_get(s, dlci);
1676 if (!d) {
1677 rfcomm_send_dm(s, dlci);
1678 goto drop;
1679 }
1680
1681 if (pf && d->cfc) {
1682 u8 credits = *(u8 *) skb->data; skb_pull(skb, 1);
1683
1684 d->tx_credits += credits;
1685 if (d->tx_credits)
1686 clear_bit(RFCOMM_TX_THROTTLED, &d->flags);
1687 }
1688
1689 if (skb->len && d->state == BT_CONNECTED) {
1690 rfcomm_dlc_lock(d);
1691 d->rx_credits--;
1692 d->data_ready(d, skb);
1693 rfcomm_dlc_unlock(d);
1694 return 0;
1695 }
1696
1697 drop:
1698 kfree_skb(skb);
1699 return 0;
1700 }
1701
1702 static struct rfcomm_session *rfcomm_recv_frame(struct rfcomm_session *s,
1703 struct sk_buff *skb)
1704 {
1705 struct rfcomm_hdr *hdr = (void *) skb->data;
1706 u8 type, dlci, fcs;
1707
1708 if (!s) {
1709 /* no session, so free socket data */
1710 kfree_skb(skb);
1711 return s;
1712 }
1713
1714 dlci = __get_dlci(hdr->addr);
1715 type = __get_type(hdr->ctrl);
1716
1717 /* Trim FCS */
1718 skb->len--; skb->tail--;
1719 fcs = *(u8 *)skb_tail_pointer(skb);
1720
1721 if (__check_fcs(skb->data, type, fcs)) {
1722 BT_ERR("bad checksum in packet");
1723 kfree_skb(skb);
1724 return s;
1725 }
1726
1727 if (__test_ea(hdr->len))
1728 skb_pull(skb, 3);
1729 else
1730 skb_pull(skb, 4);
1731
1732 switch (type) {
1733 case RFCOMM_SABM:
1734 if (__test_pf(hdr->ctrl))
1735 rfcomm_recv_sabm(s, dlci);
1736 break;
1737
1738 case RFCOMM_DISC:
1739 if (__test_pf(hdr->ctrl))
1740 s = rfcomm_recv_disc(s, dlci);
1741 break;
1742
1743 case RFCOMM_UA:
1744 if (__test_pf(hdr->ctrl))
1745 s = rfcomm_recv_ua(s, dlci);
1746 break;
1747
1748 case RFCOMM_DM:
1749 s = rfcomm_recv_dm(s, dlci);
1750 break;
1751
1752 case RFCOMM_UIH:
1753 if (dlci) {
1754 rfcomm_recv_data(s, dlci, __test_pf(hdr->ctrl), skb);
1755 return s;
1756 }
1757 rfcomm_recv_mcc(s, skb);
1758 break;
1759
1760 default:
1761 BT_ERR("Unknown packet type 0x%02x", type);
1762 break;
1763 }
1764 kfree_skb(skb);
1765 return s;
1766 }
1767
1768 /* ---- Connection and data processing ---- */
1769
1770 static void rfcomm_process_connect(struct rfcomm_session *s)
1771 {
1772 struct rfcomm_dlc *d;
1773 struct list_head *p, *n;
1774
1775 BT_DBG("session %p state %ld", s, s->state);
1776
1777 list_for_each_safe(p, n, &s->dlcs) {
1778 d = list_entry(p, struct rfcomm_dlc, list);
1779 if (d->state == BT_CONFIG) {
1780 d->mtu = s->mtu;
1781 if (rfcomm_check_security(d)) {
1782 rfcomm_send_pn(s, 1, d);
1783 } else {
1784 set_bit(RFCOMM_AUTH_PENDING, &d->flags);
1785 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT);
1786 }
1787 }
1788 }
1789 }
1790
1791 /* Send data queued for the DLC.
1792 * Return number of frames left in the queue.
1793 */
1794 static int rfcomm_process_tx(struct rfcomm_dlc *d)
1795 {
1796 struct sk_buff *skb;
1797 int err;
1798
1799 BT_DBG("dlc %p state %ld cfc %d rx_credits %d tx_credits %d",
1800 d, d->state, d->cfc, d->rx_credits, d->tx_credits);
1801
1802 /* Send pending MSC */
1803 if (test_and_clear_bit(RFCOMM_MSC_PENDING, &d->flags))
1804 rfcomm_send_msc(d->session, 1, d->dlci, d->v24_sig);
1805
1806 if (d->cfc) {
1807 /* CFC enabled.
1808 * Give them some credits */
1809 if (!test_bit(RFCOMM_RX_THROTTLED, &d->flags) &&
1810 d->rx_credits <= (d->cfc >> 2)) {
1811 rfcomm_send_credits(d->session, d->addr, d->cfc - d->rx_credits);
1812 d->rx_credits = d->cfc;
1813 }
1814 } else {
1815 /* CFC disabled.
1816 * Give ourselves some credits */
1817 d->tx_credits = 5;
1818 }
1819
1820 if (test_bit(RFCOMM_TX_THROTTLED, &d->flags))
1821 return skb_queue_len(&d->tx_queue);
1822
1823 while (d->tx_credits && (skb = skb_dequeue(&d->tx_queue))) {
1824 err = rfcomm_send_frame(d->session, skb->data, skb->len);
1825 if (err < 0) {
1826 skb_queue_head(&d->tx_queue, skb);
1827 break;
1828 }
1829 kfree_skb(skb);
1830 d->tx_credits--;
1831 }
1832
1833 if (d->cfc && !d->tx_credits) {
1834 /* We're out of TX credits.
1835 * Set TX_THROTTLED flag to avoid unnesary wakeups by dlc_send. */
1836 set_bit(RFCOMM_TX_THROTTLED, &d->flags);
1837 }
1838
1839 return skb_queue_len(&d->tx_queue);
1840 }
1841
1842 static void rfcomm_process_dlcs(struct rfcomm_session *s)
1843 {
1844 struct rfcomm_dlc *d;
1845 struct list_head *p, *n;
1846
1847 BT_DBG("session %p state %ld", s, s->state);
1848
1849 list_for_each_safe(p, n, &s->dlcs) {
1850 d = list_entry(p, struct rfcomm_dlc, list);
1851
1852 if (test_bit(RFCOMM_TIMED_OUT, &d->flags)) {
1853 __rfcomm_dlc_close(d, ETIMEDOUT);
1854 continue;
1855 }
1856
1857 if (test_bit(RFCOMM_ENC_DROP, &d->flags)) {
1858 __rfcomm_dlc_close(d, ECONNREFUSED);
1859 continue;
1860 }
1861
1862 if (test_and_clear_bit(RFCOMM_AUTH_ACCEPT, &d->flags)) {
1863 rfcomm_dlc_clear_timer(d);
1864 if (d->out) {
1865 rfcomm_send_pn(s, 1, d);
1866 rfcomm_dlc_set_timer(d, RFCOMM_CONN_TIMEOUT);
1867 } else {
1868 if (d->defer_setup) {
1869 set_bit(RFCOMM_DEFER_SETUP, &d->flags);
1870 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT);
1871
1872 rfcomm_dlc_lock(d);
1873 d->state = BT_CONNECT2;
1874 d->state_change(d, 0);
1875 rfcomm_dlc_unlock(d);
1876 } else
1877 rfcomm_dlc_accept(d);
1878 }
1879 continue;
1880 } else if (test_and_clear_bit(RFCOMM_AUTH_REJECT, &d->flags)) {
1881 rfcomm_dlc_clear_timer(d);
1882 if (!d->out)
1883 rfcomm_send_dm(s, d->dlci);
1884 else
1885 d->state = BT_CLOSED;
1886 __rfcomm_dlc_close(d, ECONNREFUSED);
1887 continue;
1888 }
1889
1890 if (test_bit(RFCOMM_SEC_PENDING, &d->flags))
1891 continue;
1892
1893 if (test_bit(RFCOMM_TX_THROTTLED, &s->flags))
1894 continue;
1895
1896 if ((d->state == BT_CONNECTED || d->state == BT_DISCONN) &&
1897 d->mscex == RFCOMM_MSCEX_OK)
1898 rfcomm_process_tx(d);
1899 }
1900 }
1901
1902 static struct rfcomm_session *rfcomm_process_rx(struct rfcomm_session *s)
1903 {
1904 struct socket *sock = s->sock;
1905 struct sock *sk = sock->sk;
1906 struct sk_buff *skb;
1907
1908 BT_DBG("session %p state %ld qlen %d", s, s->state, skb_queue_len(&sk->sk_receive_queue));
1909
1910 /* Get data directly from socket receive queue without copying it. */
1911 while ((skb = skb_dequeue(&sk->sk_receive_queue))) {
1912 skb_orphan(skb);
1913 if (!skb_linearize(skb)) {
1914 s = rfcomm_recv_frame(s, skb);
1915 if (!s)
1916 break;
1917 } else {
1918 kfree_skb(skb);
1919 }
1920 }
1921
1922 if (s && (sk->sk_state == BT_CLOSED))
1923 s = rfcomm_session_close(s, sk->sk_err);
1924
1925 return s;
1926 }
1927
1928 static void rfcomm_accept_connection(struct rfcomm_session *s)
1929 {
1930 struct socket *sock = s->sock, *nsock;
1931 int err;
1932
1933 /* Fast check for a new connection.
1934 * Avoids unnesesary socket allocations. */
1935 if (list_empty(&bt_sk(sock->sk)->accept_q))
1936 return;
1937
1938 BT_DBG("session %p", s);
1939
1940 err = kernel_accept(sock, &nsock, O_NONBLOCK);
1941 if (err < 0)
1942 return;
1943
1944 /* Set our callbacks */
1945 nsock->sk->sk_data_ready = rfcomm_l2data_ready;
1946 nsock->sk->sk_state_change = rfcomm_l2state_change;
1947
1948 s = rfcomm_session_add(nsock, BT_OPEN);
1949 if (s) {
1950 /* We should adjust MTU on incoming sessions.
1951 * L2CAP MTU minus UIH header and FCS. */
1952 s->mtu = min(l2cap_pi(nsock->sk)->chan->omtu,
1953 l2cap_pi(nsock->sk)->chan->imtu) - 5;
1954
1955 rfcomm_schedule();
1956 } else
1957 sock_release(nsock);
1958 }
1959
1960 static struct rfcomm_session *rfcomm_check_connection(struct rfcomm_session *s)
1961 {
1962 struct sock *sk = s->sock->sk;
1963
1964 BT_DBG("%p state %ld", s, s->state);
1965
1966 switch (sk->sk_state) {
1967 case BT_CONNECTED:
1968 s->state = BT_CONNECT;
1969
1970 /* We can adjust MTU on outgoing sessions.
1971 * L2CAP MTU minus UIH header and FCS. */
1972 s->mtu = min(l2cap_pi(sk)->chan->omtu, l2cap_pi(sk)->chan->imtu) - 5;
1973
1974 rfcomm_send_sabm(s, 0);
1975 break;
1976
1977 case BT_CLOSED:
1978 s = rfcomm_session_close(s, sk->sk_err);
1979 break;
1980 }
1981 return s;
1982 }
1983
1984 static void rfcomm_process_sessions(void)
1985 {
1986 struct list_head *p, *n;
1987
1988 rfcomm_lock();
1989
1990 list_for_each_safe(p, n, &session_list) {
1991 struct rfcomm_session *s;
1992 s = list_entry(p, struct rfcomm_session, list);
1993
1994 if (test_and_clear_bit(RFCOMM_TIMED_OUT, &s->flags)) {
1995 s->state = BT_DISCONN;
1996 rfcomm_send_disc(s, 0);
1997 continue;
1998 }
1999
2000 switch (s->state) {
2001 case BT_LISTEN:
2002 rfcomm_accept_connection(s);
2003 continue;
2004
2005 case BT_BOUND:
2006 s = rfcomm_check_connection(s);
2007 break;
2008
2009 default:
2010 s = rfcomm_process_rx(s);
2011 break;
2012 }
2013
2014 if (s)
2015 rfcomm_process_dlcs(s);
2016 }
2017
2018 rfcomm_unlock();
2019 }
2020
2021 static int rfcomm_add_listener(bdaddr_t *ba)
2022 {
2023 struct sockaddr_l2 addr;
2024 struct socket *sock;
2025 struct sock *sk;
2026 struct rfcomm_session *s;
2027 int err = 0;
2028
2029 /* Create socket */
2030 err = rfcomm_l2sock_create(&sock);
2031 if (err < 0) {
2032 BT_ERR("Create socket failed %d", err);
2033 return err;
2034 }
2035
2036 /* Bind socket */
2037 bacpy(&addr.l2_bdaddr, ba);
2038 addr.l2_family = AF_BLUETOOTH;
2039 addr.l2_psm = cpu_to_le16(RFCOMM_PSM);
2040 addr.l2_cid = 0;
2041 addr.l2_bdaddr_type = BDADDR_BREDR;
2042 err = kernel_bind(sock, (struct sockaddr *) &addr, sizeof(addr));
2043 if (err < 0) {
2044 BT_ERR("Bind failed %d", err);
2045 goto failed;
2046 }
2047
2048 /* Set L2CAP options */
2049 sk = sock->sk;
2050 lock_sock(sk);
2051 l2cap_pi(sk)->chan->imtu = l2cap_mtu;
2052 release_sock(sk);
2053
2054 /* Start listening on the socket */
2055 err = kernel_listen(sock, 10);
2056 if (err) {
2057 BT_ERR("Listen failed %d", err);
2058 goto failed;
2059 }
2060
2061 /* Add listening session */
2062 s = rfcomm_session_add(sock, BT_LISTEN);
2063 if (!s) {
2064 err = -ENOMEM;
2065 goto failed;
2066 }
2067
2068 return 0;
2069 failed:
2070 sock_release(sock);
2071 return err;
2072 }
2073
2074 static void rfcomm_kill_listener(void)
2075 {
2076 struct rfcomm_session *s;
2077 struct list_head *p, *n;
2078
2079 BT_DBG("");
2080
2081 list_for_each_safe(p, n, &session_list) {
2082 s = list_entry(p, struct rfcomm_session, list);
2083 rfcomm_session_del(s);
2084 }
2085 }
2086
2087 static int rfcomm_run(void *unused)
2088 {
2089 BT_DBG("");
2090
2091 set_user_nice(current, -10);
2092
2093 rfcomm_add_listener(BDADDR_ANY);
2094
2095 while (1) {
2096 set_current_state(TASK_INTERRUPTIBLE);
2097
2098 if (kthread_should_stop())
2099 break;
2100
2101 /* Process stuff */
2102 rfcomm_process_sessions();
2103
2104 schedule();
2105 }
2106 __set_current_state(TASK_RUNNING);
2107
2108 rfcomm_kill_listener();
2109
2110 return 0;
2111 }
2112
2113 static void rfcomm_security_cfm(struct hci_conn *conn, u8 status, u8 encrypt)
2114 {
2115 struct rfcomm_session *s;
2116 struct rfcomm_dlc *d;
2117 struct list_head *p, *n;
2118
2119 BT_DBG("conn %p status 0x%02x encrypt 0x%02x", conn, status, encrypt);
2120
2121 s = rfcomm_session_get(&conn->hdev->bdaddr, &conn->dst);
2122 if (!s)
2123 return;
2124
2125 list_for_each_safe(p, n, &s->dlcs) {
2126 d = list_entry(p, struct rfcomm_dlc, list);
2127
2128 if (test_and_clear_bit(RFCOMM_SEC_PENDING, &d->flags)) {
2129 rfcomm_dlc_clear_timer(d);
2130 if (status || encrypt == 0x00) {
2131 set_bit(RFCOMM_ENC_DROP, &d->flags);
2132 continue;
2133 }
2134 }
2135
2136 if (d->state == BT_CONNECTED && !status && encrypt == 0x00) {
2137 if (d->sec_level == BT_SECURITY_MEDIUM) {
2138 set_bit(RFCOMM_SEC_PENDING, &d->flags);
2139 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT);
2140 continue;
2141 } else if (d->sec_level == BT_SECURITY_HIGH ||
2142 d->sec_level == BT_SECURITY_FIPS) {
2143 set_bit(RFCOMM_ENC_DROP, &d->flags);
2144 continue;
2145 }
2146 }
2147
2148 if (!test_and_clear_bit(RFCOMM_AUTH_PENDING, &d->flags))
2149 continue;
2150
2151 if (!status && hci_conn_check_secure(conn, d->sec_level))
2152 set_bit(RFCOMM_AUTH_ACCEPT, &d->flags);
2153 else
2154 set_bit(RFCOMM_AUTH_REJECT, &d->flags);
2155 }
2156
2157 rfcomm_schedule();
2158 }
2159
2160 static struct hci_cb rfcomm_cb = {
2161 .name = "RFCOMM",
2162 .security_cfm = rfcomm_security_cfm
2163 };
2164
2165 static int rfcomm_dlc_debugfs_show(struct seq_file *f, void *x)
2166 {
2167 struct rfcomm_session *s;
2168
2169 rfcomm_lock();
2170
2171 list_for_each_entry(s, &session_list, list) {
2172 struct l2cap_chan *chan = l2cap_pi(s->sock->sk)->chan;
2173 struct rfcomm_dlc *d;
2174 list_for_each_entry(d, &s->dlcs, list) {
2175 seq_printf(f, "%pMR %pMR %ld %d %d %d %d\n",
2176 &chan->src, &chan->dst,
2177 d->state, d->dlci, d->mtu,
2178 d->rx_credits, d->tx_credits);
2179 }
2180 }
2181
2182 rfcomm_unlock();
2183
2184 return 0;
2185 }
2186
2187 static int rfcomm_dlc_debugfs_open(struct inode *inode, struct file *file)
2188 {
2189 return single_open(file, rfcomm_dlc_debugfs_show, inode->i_private);
2190 }
2191
2192 static const struct file_operations rfcomm_dlc_debugfs_fops = {
2193 .open = rfcomm_dlc_debugfs_open,
2194 .read = seq_read,
2195 .llseek = seq_lseek,
2196 .release = single_release,
2197 };
2198
2199 static struct dentry *rfcomm_dlc_debugfs;
2200
2201 /* ---- Initialization ---- */
2202 static int __init rfcomm_init(void)
2203 {
2204 int err;
2205
2206 hci_register_cb(&rfcomm_cb);
2207
2208 rfcomm_thread = kthread_run(rfcomm_run, NULL, "krfcommd");
2209 if (IS_ERR(rfcomm_thread)) {
2210 err = PTR_ERR(rfcomm_thread);
2211 goto unregister;
2212 }
2213
2214 err = rfcomm_init_ttys();
2215 if (err < 0)
2216 goto stop;
2217
2218 err = rfcomm_init_sockets();
2219 if (err < 0)
2220 goto cleanup;
2221
2222 BT_INFO("RFCOMM ver %s", VERSION);
2223
2224 if (IS_ERR_OR_NULL(bt_debugfs))
2225 return 0;
2226
2227 rfcomm_dlc_debugfs = debugfs_create_file("rfcomm_dlc", 0444,
2228 bt_debugfs, NULL,
2229 &rfcomm_dlc_debugfs_fops);
2230
2231 return 0;
2232
2233 cleanup:
2234 rfcomm_cleanup_ttys();
2235
2236 stop:
2237 kthread_stop(rfcomm_thread);
2238
2239 unregister:
2240 hci_unregister_cb(&rfcomm_cb);
2241
2242 return err;
2243 }
2244
2245 static void __exit rfcomm_exit(void)
2246 {
2247 debugfs_remove(rfcomm_dlc_debugfs);
2248
2249 hci_unregister_cb(&rfcomm_cb);
2250
2251 kthread_stop(rfcomm_thread);
2252
2253 rfcomm_cleanup_ttys();
2254
2255 rfcomm_cleanup_sockets();
2256 }
2257
2258 module_init(rfcomm_init);
2259 module_exit(rfcomm_exit);
2260
2261 module_param(disable_cfc, bool, 0644);
2262 MODULE_PARM_DESC(disable_cfc, "Disable credit based flow control");
2263
2264 module_param(channel_mtu, int, 0644);
2265 MODULE_PARM_DESC(channel_mtu, "Default MTU for the RFCOMM channel");
2266
2267 module_param(l2cap_mtu, uint, 0644);
2268 MODULE_PARM_DESC(l2cap_mtu, "Default MTU for the L2CAP connection");
2269
2270 module_param(l2cap_ertm, bool, 0644);
2271 MODULE_PARM_DESC(l2cap_ertm, "Use L2CAP ERTM mode for connection");
2272
2273 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
2274 MODULE_DESCRIPTION("Bluetooth RFCOMM ver " VERSION);
2275 MODULE_VERSION(VERSION);
2276 MODULE_LICENSE("GPL");
2277 MODULE_ALIAS("bt-proto-3");