]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/bluetooth/rfcomm/core.c
Merge branch 'linus' into core/softlockup
[mirror_ubuntu-artful-kernel.git] / net / bluetooth / rfcomm / core.c
1 /*
2 RFCOMM implementation for Linux Bluetooth stack (BlueZ).
3 Copyright (C) 2002 Maxim Krasnyansky <maxk@qualcomm.com>
4 Copyright (C) 2002 Marcel Holtmann <marcel@holtmann.org>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
9
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
22 */
23
24 /*
25 * Bluetooth RFCOMM core.
26 */
27
28 #include <linux/module.h>
29 #include <linux/errno.h>
30 #include <linux/kernel.h>
31 #include <linux/sched.h>
32 #include <linux/signal.h>
33 #include <linux/init.h>
34 #include <linux/wait.h>
35 #include <linux/device.h>
36 #include <linux/net.h>
37 #include <linux/mutex.h>
38 #include <linux/kthread.h>
39
40 #include <net/sock.h>
41 #include <asm/uaccess.h>
42 #include <asm/unaligned.h>
43
44 #include <net/bluetooth/bluetooth.h>
45 #include <net/bluetooth/hci_core.h>
46 #include <net/bluetooth/l2cap.h>
47 #include <net/bluetooth/rfcomm.h>
48
49 #define VERSION "1.11"
50
51 static int disable_cfc = 0;
52 static int channel_mtu = -1;
53 static unsigned int l2cap_mtu = RFCOMM_MAX_L2CAP_MTU;
54
55 static struct task_struct *rfcomm_thread;
56
57 static DEFINE_MUTEX(rfcomm_mutex);
58 #define rfcomm_lock() mutex_lock(&rfcomm_mutex)
59 #define rfcomm_unlock() mutex_unlock(&rfcomm_mutex)
60
61 static unsigned long rfcomm_event;
62
63 static LIST_HEAD(session_list);
64
65 static int rfcomm_send_frame(struct rfcomm_session *s, u8 *data, int len);
66 static int rfcomm_send_sabm(struct rfcomm_session *s, u8 dlci);
67 static int rfcomm_send_disc(struct rfcomm_session *s, u8 dlci);
68 static int rfcomm_queue_disc(struct rfcomm_dlc *d);
69 static int rfcomm_send_nsc(struct rfcomm_session *s, int cr, u8 type);
70 static int rfcomm_send_pn(struct rfcomm_session *s, int cr, struct rfcomm_dlc *d);
71 static int rfcomm_send_msc(struct rfcomm_session *s, int cr, u8 dlci, u8 v24_sig);
72 static int rfcomm_send_test(struct rfcomm_session *s, int cr, u8 *pattern, int len);
73 static int rfcomm_send_credits(struct rfcomm_session *s, u8 addr, u8 credits);
74 static void rfcomm_make_uih(struct sk_buff *skb, u8 addr);
75
76 static void rfcomm_process_connect(struct rfcomm_session *s);
77
78 static struct rfcomm_session *rfcomm_session_create(bdaddr_t *src, bdaddr_t *dst, int *err);
79 static struct rfcomm_session *rfcomm_session_get(bdaddr_t *src, bdaddr_t *dst);
80 static void rfcomm_session_del(struct rfcomm_session *s);
81
82 /* ---- RFCOMM frame parsing macros ---- */
83 #define __get_dlci(b) ((b & 0xfc) >> 2)
84 #define __get_channel(b) ((b & 0xf8) >> 3)
85 #define __get_dir(b) ((b & 0x04) >> 2)
86 #define __get_type(b) ((b & 0xef))
87
88 #define __test_ea(b) ((b & 0x01))
89 #define __test_cr(b) ((b & 0x02))
90 #define __test_pf(b) ((b & 0x10))
91
92 #define __addr(cr, dlci) (((dlci & 0x3f) << 2) | (cr << 1) | 0x01)
93 #define __ctrl(type, pf) (((type & 0xef) | (pf << 4)))
94 #define __dlci(dir, chn) (((chn & 0x1f) << 1) | dir)
95 #define __srv_channel(dlci) (dlci >> 1)
96 #define __dir(dlci) (dlci & 0x01)
97
98 #define __len8(len) (((len) << 1) | 1)
99 #define __len16(len) ((len) << 1)
100
101 /* MCC macros */
102 #define __mcc_type(cr, type) (((type << 2) | (cr << 1) | 0x01))
103 #define __get_mcc_type(b) ((b & 0xfc) >> 2)
104 #define __get_mcc_len(b) ((b & 0xfe) >> 1)
105
106 /* RPN macros */
107 #define __rpn_line_settings(data, stop, parity) ((data & 0x3) | ((stop & 0x1) << 2) | ((parity & 0x7) << 3))
108 #define __get_rpn_data_bits(line) ((line) & 0x3)
109 #define __get_rpn_stop_bits(line) (((line) >> 2) & 0x1)
110 #define __get_rpn_parity(line) (((line) >> 3) & 0x7)
111
112 static inline void rfcomm_schedule(uint event)
113 {
114 if (!rfcomm_thread)
115 return;
116 //set_bit(event, &rfcomm_event);
117 set_bit(RFCOMM_SCHED_WAKEUP, &rfcomm_event);
118 wake_up_process(rfcomm_thread);
119 }
120
121 static inline void rfcomm_session_put(struct rfcomm_session *s)
122 {
123 if (atomic_dec_and_test(&s->refcnt))
124 rfcomm_session_del(s);
125 }
126
127 /* ---- RFCOMM FCS computation ---- */
128
129 /* reversed, 8-bit, poly=0x07 */
130 static unsigned char rfcomm_crc_table[256] = {
131 0x00, 0x91, 0xe3, 0x72, 0x07, 0x96, 0xe4, 0x75,
132 0x0e, 0x9f, 0xed, 0x7c, 0x09, 0x98, 0xea, 0x7b,
133 0x1c, 0x8d, 0xff, 0x6e, 0x1b, 0x8a, 0xf8, 0x69,
134 0x12, 0x83, 0xf1, 0x60, 0x15, 0x84, 0xf6, 0x67,
135
136 0x38, 0xa9, 0xdb, 0x4a, 0x3f, 0xae, 0xdc, 0x4d,
137 0x36, 0xa7, 0xd5, 0x44, 0x31, 0xa0, 0xd2, 0x43,
138 0x24, 0xb5, 0xc7, 0x56, 0x23, 0xb2, 0xc0, 0x51,
139 0x2a, 0xbb, 0xc9, 0x58, 0x2d, 0xbc, 0xce, 0x5f,
140
141 0x70, 0xe1, 0x93, 0x02, 0x77, 0xe6, 0x94, 0x05,
142 0x7e, 0xef, 0x9d, 0x0c, 0x79, 0xe8, 0x9a, 0x0b,
143 0x6c, 0xfd, 0x8f, 0x1e, 0x6b, 0xfa, 0x88, 0x19,
144 0x62, 0xf3, 0x81, 0x10, 0x65, 0xf4, 0x86, 0x17,
145
146 0x48, 0xd9, 0xab, 0x3a, 0x4f, 0xde, 0xac, 0x3d,
147 0x46, 0xd7, 0xa5, 0x34, 0x41, 0xd0, 0xa2, 0x33,
148 0x54, 0xc5, 0xb7, 0x26, 0x53, 0xc2, 0xb0, 0x21,
149 0x5a, 0xcb, 0xb9, 0x28, 0x5d, 0xcc, 0xbe, 0x2f,
150
151 0xe0, 0x71, 0x03, 0x92, 0xe7, 0x76, 0x04, 0x95,
152 0xee, 0x7f, 0x0d, 0x9c, 0xe9, 0x78, 0x0a, 0x9b,
153 0xfc, 0x6d, 0x1f, 0x8e, 0xfb, 0x6a, 0x18, 0x89,
154 0xf2, 0x63, 0x11, 0x80, 0xf5, 0x64, 0x16, 0x87,
155
156 0xd8, 0x49, 0x3b, 0xaa, 0xdf, 0x4e, 0x3c, 0xad,
157 0xd6, 0x47, 0x35, 0xa4, 0xd1, 0x40, 0x32, 0xa3,
158 0xc4, 0x55, 0x27, 0xb6, 0xc3, 0x52, 0x20, 0xb1,
159 0xca, 0x5b, 0x29, 0xb8, 0xcd, 0x5c, 0x2e, 0xbf,
160
161 0x90, 0x01, 0x73, 0xe2, 0x97, 0x06, 0x74, 0xe5,
162 0x9e, 0x0f, 0x7d, 0xec, 0x99, 0x08, 0x7a, 0xeb,
163 0x8c, 0x1d, 0x6f, 0xfe, 0x8b, 0x1a, 0x68, 0xf9,
164 0x82, 0x13, 0x61, 0xf0, 0x85, 0x14, 0x66, 0xf7,
165
166 0xa8, 0x39, 0x4b, 0xda, 0xaf, 0x3e, 0x4c, 0xdd,
167 0xa6, 0x37, 0x45, 0xd4, 0xa1, 0x30, 0x42, 0xd3,
168 0xb4, 0x25, 0x57, 0xc6, 0xb3, 0x22, 0x50, 0xc1,
169 0xba, 0x2b, 0x59, 0xc8, 0xbd, 0x2c, 0x5e, 0xcf
170 };
171
172 /* CRC on 2 bytes */
173 #define __crc(data) (rfcomm_crc_table[rfcomm_crc_table[0xff ^ data[0]] ^ data[1]])
174
175 /* FCS on 2 bytes */
176 static inline u8 __fcs(u8 *data)
177 {
178 return (0xff - __crc(data));
179 }
180
181 /* FCS on 3 bytes */
182 static inline u8 __fcs2(u8 *data)
183 {
184 return (0xff - rfcomm_crc_table[__crc(data) ^ data[2]]);
185 }
186
187 /* Check FCS */
188 static inline int __check_fcs(u8 *data, int type, u8 fcs)
189 {
190 u8 f = __crc(data);
191
192 if (type != RFCOMM_UIH)
193 f = rfcomm_crc_table[f ^ data[2]];
194
195 return rfcomm_crc_table[f ^ fcs] != 0xcf;
196 }
197
198 /* ---- L2CAP callbacks ---- */
199 static void rfcomm_l2state_change(struct sock *sk)
200 {
201 BT_DBG("%p state %d", sk, sk->sk_state);
202 rfcomm_schedule(RFCOMM_SCHED_STATE);
203 }
204
205 static void rfcomm_l2data_ready(struct sock *sk, int bytes)
206 {
207 BT_DBG("%p bytes %d", sk, bytes);
208 rfcomm_schedule(RFCOMM_SCHED_RX);
209 }
210
211 static int rfcomm_l2sock_create(struct socket **sock)
212 {
213 int err;
214
215 BT_DBG("");
216
217 err = sock_create_kern(PF_BLUETOOTH, SOCK_SEQPACKET, BTPROTO_L2CAP, sock);
218 if (!err) {
219 struct sock *sk = (*sock)->sk;
220 sk->sk_data_ready = rfcomm_l2data_ready;
221 sk->sk_state_change = rfcomm_l2state_change;
222 }
223 return err;
224 }
225
226 static inline int rfcomm_check_security(struct rfcomm_dlc *d)
227 {
228 struct sock *sk = d->session->sock->sk;
229 __u8 auth_type;
230
231 switch (d->sec_level) {
232 case BT_SECURITY_HIGH:
233 auth_type = HCI_AT_GENERAL_BONDING_MITM;
234 break;
235 case BT_SECURITY_MEDIUM:
236 auth_type = HCI_AT_GENERAL_BONDING;
237 break;
238 default:
239 auth_type = HCI_AT_NO_BONDING;
240 break;
241 }
242
243 return hci_conn_security(l2cap_pi(sk)->conn->hcon, d->sec_level,
244 auth_type);
245 }
246
247 /* ---- RFCOMM DLCs ---- */
248 static void rfcomm_dlc_timeout(unsigned long arg)
249 {
250 struct rfcomm_dlc *d = (void *) arg;
251
252 BT_DBG("dlc %p state %ld", d, d->state);
253
254 set_bit(RFCOMM_TIMED_OUT, &d->flags);
255 rfcomm_dlc_put(d);
256 rfcomm_schedule(RFCOMM_SCHED_TIMEO);
257 }
258
259 static void rfcomm_dlc_set_timer(struct rfcomm_dlc *d, long timeout)
260 {
261 BT_DBG("dlc %p state %ld timeout %ld", d, d->state, timeout);
262
263 if (!mod_timer(&d->timer, jiffies + timeout))
264 rfcomm_dlc_hold(d);
265 }
266
267 static void rfcomm_dlc_clear_timer(struct rfcomm_dlc *d)
268 {
269 BT_DBG("dlc %p state %ld", d, d->state);
270
271 if (timer_pending(&d->timer) && del_timer(&d->timer))
272 rfcomm_dlc_put(d);
273 }
274
275 static void rfcomm_dlc_clear_state(struct rfcomm_dlc *d)
276 {
277 BT_DBG("%p", d);
278
279 d->state = BT_OPEN;
280 d->flags = 0;
281 d->mscex = 0;
282 d->mtu = RFCOMM_DEFAULT_MTU;
283 d->v24_sig = RFCOMM_V24_RTC | RFCOMM_V24_RTR | RFCOMM_V24_DV;
284
285 d->cfc = RFCOMM_CFC_DISABLED;
286 d->rx_credits = RFCOMM_DEFAULT_CREDITS;
287 }
288
289 struct rfcomm_dlc *rfcomm_dlc_alloc(gfp_t prio)
290 {
291 struct rfcomm_dlc *d = kzalloc(sizeof(*d), prio);
292
293 if (!d)
294 return NULL;
295
296 setup_timer(&d->timer, rfcomm_dlc_timeout, (unsigned long)d);
297
298 skb_queue_head_init(&d->tx_queue);
299 spin_lock_init(&d->lock);
300 atomic_set(&d->refcnt, 1);
301
302 rfcomm_dlc_clear_state(d);
303
304 BT_DBG("%p", d);
305
306 return d;
307 }
308
309 void rfcomm_dlc_free(struct rfcomm_dlc *d)
310 {
311 BT_DBG("%p", d);
312
313 skb_queue_purge(&d->tx_queue);
314 kfree(d);
315 }
316
317 static void rfcomm_dlc_link(struct rfcomm_session *s, struct rfcomm_dlc *d)
318 {
319 BT_DBG("dlc %p session %p", d, s);
320
321 rfcomm_session_hold(s);
322
323 rfcomm_dlc_hold(d);
324 list_add(&d->list, &s->dlcs);
325 d->session = s;
326 }
327
328 static void rfcomm_dlc_unlink(struct rfcomm_dlc *d)
329 {
330 struct rfcomm_session *s = d->session;
331
332 BT_DBG("dlc %p refcnt %d session %p", d, atomic_read(&d->refcnt), s);
333
334 list_del(&d->list);
335 d->session = NULL;
336 rfcomm_dlc_put(d);
337
338 rfcomm_session_put(s);
339 }
340
341 static struct rfcomm_dlc *rfcomm_dlc_get(struct rfcomm_session *s, u8 dlci)
342 {
343 struct rfcomm_dlc *d;
344 struct list_head *p;
345
346 list_for_each(p, &s->dlcs) {
347 d = list_entry(p, struct rfcomm_dlc, list);
348 if (d->dlci == dlci)
349 return d;
350 }
351 return NULL;
352 }
353
354 static int __rfcomm_dlc_open(struct rfcomm_dlc *d, bdaddr_t *src, bdaddr_t *dst, u8 channel)
355 {
356 struct rfcomm_session *s;
357 int err = 0;
358 u8 dlci;
359
360 BT_DBG("dlc %p state %ld %s %s channel %d",
361 d, d->state, batostr(src), batostr(dst), channel);
362
363 if (channel < 1 || channel > 30)
364 return -EINVAL;
365
366 if (d->state != BT_OPEN && d->state != BT_CLOSED)
367 return 0;
368
369 s = rfcomm_session_get(src, dst);
370 if (!s) {
371 s = rfcomm_session_create(src, dst, &err);
372 if (!s)
373 return err;
374 }
375
376 dlci = __dlci(!s->initiator, channel);
377
378 /* Check if DLCI already exists */
379 if (rfcomm_dlc_get(s, dlci))
380 return -EBUSY;
381
382 rfcomm_dlc_clear_state(d);
383
384 d->dlci = dlci;
385 d->addr = __addr(s->initiator, dlci);
386 d->priority = 7;
387
388 d->state = BT_CONFIG;
389 rfcomm_dlc_link(s, d);
390
391 d->out = 1;
392
393 d->mtu = s->mtu;
394 d->cfc = (s->cfc == RFCOMM_CFC_UNKNOWN) ? 0 : s->cfc;
395
396 if (s->state == BT_CONNECTED) {
397 if (rfcomm_check_security(d))
398 rfcomm_send_pn(s, 1, d);
399 else
400 set_bit(RFCOMM_AUTH_PENDING, &d->flags);
401 }
402
403 rfcomm_dlc_set_timer(d, RFCOMM_CONN_TIMEOUT);
404
405 return 0;
406 }
407
408 int rfcomm_dlc_open(struct rfcomm_dlc *d, bdaddr_t *src, bdaddr_t *dst, u8 channel)
409 {
410 int r;
411
412 rfcomm_lock();
413
414 r = __rfcomm_dlc_open(d, src, dst, channel);
415
416 rfcomm_unlock();
417 return r;
418 }
419
420 static int __rfcomm_dlc_close(struct rfcomm_dlc *d, int err)
421 {
422 struct rfcomm_session *s = d->session;
423 if (!s)
424 return 0;
425
426 BT_DBG("dlc %p state %ld dlci %d err %d session %p",
427 d, d->state, d->dlci, err, s);
428
429 switch (d->state) {
430 case BT_CONNECT:
431 case BT_CONFIG:
432 if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) {
433 set_bit(RFCOMM_AUTH_REJECT, &d->flags);
434 rfcomm_schedule(RFCOMM_SCHED_AUTH);
435 break;
436 }
437 /* Fall through */
438
439 case BT_CONNECTED:
440 d->state = BT_DISCONN;
441 if (skb_queue_empty(&d->tx_queue)) {
442 rfcomm_send_disc(s, d->dlci);
443 rfcomm_dlc_set_timer(d, RFCOMM_DISC_TIMEOUT);
444 } else {
445 rfcomm_queue_disc(d);
446 rfcomm_dlc_set_timer(d, RFCOMM_DISC_TIMEOUT * 2);
447 }
448 break;
449
450 case BT_OPEN:
451 case BT_CONNECT2:
452 if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) {
453 set_bit(RFCOMM_AUTH_REJECT, &d->flags);
454 rfcomm_schedule(RFCOMM_SCHED_AUTH);
455 break;
456 }
457 /* Fall through */
458
459 default:
460 rfcomm_dlc_clear_timer(d);
461
462 rfcomm_dlc_lock(d);
463 d->state = BT_CLOSED;
464 d->state_change(d, err);
465 rfcomm_dlc_unlock(d);
466
467 skb_queue_purge(&d->tx_queue);
468 rfcomm_dlc_unlink(d);
469 }
470
471 return 0;
472 }
473
474 int rfcomm_dlc_close(struct rfcomm_dlc *d, int err)
475 {
476 int r;
477
478 rfcomm_lock();
479
480 r = __rfcomm_dlc_close(d, err);
481
482 rfcomm_unlock();
483 return r;
484 }
485
486 int rfcomm_dlc_send(struct rfcomm_dlc *d, struct sk_buff *skb)
487 {
488 int len = skb->len;
489
490 if (d->state != BT_CONNECTED)
491 return -ENOTCONN;
492
493 BT_DBG("dlc %p mtu %d len %d", d, d->mtu, len);
494
495 if (len > d->mtu)
496 return -EINVAL;
497
498 rfcomm_make_uih(skb, d->addr);
499 skb_queue_tail(&d->tx_queue, skb);
500
501 if (!test_bit(RFCOMM_TX_THROTTLED, &d->flags))
502 rfcomm_schedule(RFCOMM_SCHED_TX);
503 return len;
504 }
505
506 void __rfcomm_dlc_throttle(struct rfcomm_dlc *d)
507 {
508 BT_DBG("dlc %p state %ld", d, d->state);
509
510 if (!d->cfc) {
511 d->v24_sig |= RFCOMM_V24_FC;
512 set_bit(RFCOMM_MSC_PENDING, &d->flags);
513 }
514 rfcomm_schedule(RFCOMM_SCHED_TX);
515 }
516
517 void __rfcomm_dlc_unthrottle(struct rfcomm_dlc *d)
518 {
519 BT_DBG("dlc %p state %ld", d, d->state);
520
521 if (!d->cfc) {
522 d->v24_sig &= ~RFCOMM_V24_FC;
523 set_bit(RFCOMM_MSC_PENDING, &d->flags);
524 }
525 rfcomm_schedule(RFCOMM_SCHED_TX);
526 }
527
528 /*
529 Set/get modem status functions use _local_ status i.e. what we report
530 to the other side.
531 Remote status is provided by dlc->modem_status() callback.
532 */
533 int rfcomm_dlc_set_modem_status(struct rfcomm_dlc *d, u8 v24_sig)
534 {
535 BT_DBG("dlc %p state %ld v24_sig 0x%x",
536 d, d->state, v24_sig);
537
538 if (test_bit(RFCOMM_RX_THROTTLED, &d->flags))
539 v24_sig |= RFCOMM_V24_FC;
540 else
541 v24_sig &= ~RFCOMM_V24_FC;
542
543 d->v24_sig = v24_sig;
544
545 if (!test_and_set_bit(RFCOMM_MSC_PENDING, &d->flags))
546 rfcomm_schedule(RFCOMM_SCHED_TX);
547
548 return 0;
549 }
550
551 int rfcomm_dlc_get_modem_status(struct rfcomm_dlc *d, u8 *v24_sig)
552 {
553 BT_DBG("dlc %p state %ld v24_sig 0x%x",
554 d, d->state, d->v24_sig);
555
556 *v24_sig = d->v24_sig;
557 return 0;
558 }
559
560 /* ---- RFCOMM sessions ---- */
561 static struct rfcomm_session *rfcomm_session_add(struct socket *sock, int state)
562 {
563 struct rfcomm_session *s = kzalloc(sizeof(*s), GFP_KERNEL);
564
565 if (!s)
566 return NULL;
567
568 BT_DBG("session %p sock %p", s, sock);
569
570 INIT_LIST_HEAD(&s->dlcs);
571 s->state = state;
572 s->sock = sock;
573
574 s->mtu = RFCOMM_DEFAULT_MTU;
575 s->cfc = disable_cfc ? RFCOMM_CFC_DISABLED : RFCOMM_CFC_UNKNOWN;
576
577 /* Do not increment module usage count for listening sessions.
578 * Otherwise we won't be able to unload the module. */
579 if (state != BT_LISTEN)
580 if (!try_module_get(THIS_MODULE)) {
581 kfree(s);
582 return NULL;
583 }
584
585 list_add(&s->list, &session_list);
586
587 return s;
588 }
589
590 static void rfcomm_session_del(struct rfcomm_session *s)
591 {
592 int state = s->state;
593
594 BT_DBG("session %p state %ld", s, s->state);
595
596 list_del(&s->list);
597
598 if (state == BT_CONNECTED)
599 rfcomm_send_disc(s, 0);
600
601 sock_release(s->sock);
602 kfree(s);
603
604 if (state != BT_LISTEN)
605 module_put(THIS_MODULE);
606 }
607
608 static struct rfcomm_session *rfcomm_session_get(bdaddr_t *src, bdaddr_t *dst)
609 {
610 struct rfcomm_session *s;
611 struct list_head *p, *n;
612 struct bt_sock *sk;
613 list_for_each_safe(p, n, &session_list) {
614 s = list_entry(p, struct rfcomm_session, list);
615 sk = bt_sk(s->sock->sk);
616
617 if ((!bacmp(src, BDADDR_ANY) || !bacmp(&sk->src, src)) &&
618 !bacmp(&sk->dst, dst))
619 return s;
620 }
621 return NULL;
622 }
623
624 static void rfcomm_session_close(struct rfcomm_session *s, int err)
625 {
626 struct rfcomm_dlc *d;
627 struct list_head *p, *n;
628
629 BT_DBG("session %p state %ld err %d", s, s->state, err);
630
631 rfcomm_session_hold(s);
632
633 s->state = BT_CLOSED;
634
635 /* Close all dlcs */
636 list_for_each_safe(p, n, &s->dlcs) {
637 d = list_entry(p, struct rfcomm_dlc, list);
638 d->state = BT_CLOSED;
639 __rfcomm_dlc_close(d, err);
640 }
641
642 rfcomm_session_put(s);
643 }
644
645 static struct rfcomm_session *rfcomm_session_create(bdaddr_t *src, bdaddr_t *dst, int *err)
646 {
647 struct rfcomm_session *s = NULL;
648 struct sockaddr_l2 addr;
649 struct socket *sock;
650 struct sock *sk;
651
652 BT_DBG("%s %s", batostr(src), batostr(dst));
653
654 *err = rfcomm_l2sock_create(&sock);
655 if (*err < 0)
656 return NULL;
657
658 bacpy(&addr.l2_bdaddr, src);
659 addr.l2_family = AF_BLUETOOTH;
660 addr.l2_psm = 0;
661 addr.l2_cid = 0;
662 *err = kernel_bind(sock, (struct sockaddr *) &addr, sizeof(addr));
663 if (*err < 0)
664 goto failed;
665
666 /* Set L2CAP options */
667 sk = sock->sk;
668 lock_sock(sk);
669 l2cap_pi(sk)->imtu = l2cap_mtu;
670 release_sock(sk);
671
672 s = rfcomm_session_add(sock, BT_BOUND);
673 if (!s) {
674 *err = -ENOMEM;
675 goto failed;
676 }
677
678 s->initiator = 1;
679
680 bacpy(&addr.l2_bdaddr, dst);
681 addr.l2_family = AF_BLUETOOTH;
682 addr.l2_psm = htobs(RFCOMM_PSM);
683 addr.l2_cid = 0;
684 *err = kernel_connect(sock, (struct sockaddr *) &addr, sizeof(addr), O_NONBLOCK);
685 if (*err == 0 || *err == -EINPROGRESS)
686 return s;
687
688 rfcomm_session_del(s);
689 return NULL;
690
691 failed:
692 sock_release(sock);
693 return NULL;
694 }
695
696 void rfcomm_session_getaddr(struct rfcomm_session *s, bdaddr_t *src, bdaddr_t *dst)
697 {
698 struct sock *sk = s->sock->sk;
699 if (src)
700 bacpy(src, &bt_sk(sk)->src);
701 if (dst)
702 bacpy(dst, &bt_sk(sk)->dst);
703 }
704
705 /* ---- RFCOMM frame sending ---- */
706 static int rfcomm_send_frame(struct rfcomm_session *s, u8 *data, int len)
707 {
708 struct socket *sock = s->sock;
709 struct kvec iv = { data, len };
710 struct msghdr msg;
711
712 BT_DBG("session %p len %d", s, len);
713
714 memset(&msg, 0, sizeof(msg));
715
716 return kernel_sendmsg(sock, &msg, &iv, 1, len);
717 }
718
719 static int rfcomm_send_sabm(struct rfcomm_session *s, u8 dlci)
720 {
721 struct rfcomm_cmd cmd;
722
723 BT_DBG("%p dlci %d", s, dlci);
724
725 cmd.addr = __addr(s->initiator, dlci);
726 cmd.ctrl = __ctrl(RFCOMM_SABM, 1);
727 cmd.len = __len8(0);
728 cmd.fcs = __fcs2((u8 *) &cmd);
729
730 return rfcomm_send_frame(s, (void *) &cmd, sizeof(cmd));
731 }
732
733 static int rfcomm_send_ua(struct rfcomm_session *s, u8 dlci)
734 {
735 struct rfcomm_cmd cmd;
736
737 BT_DBG("%p dlci %d", s, dlci);
738
739 cmd.addr = __addr(!s->initiator, dlci);
740 cmd.ctrl = __ctrl(RFCOMM_UA, 1);
741 cmd.len = __len8(0);
742 cmd.fcs = __fcs2((u8 *) &cmd);
743
744 return rfcomm_send_frame(s, (void *) &cmd, sizeof(cmd));
745 }
746
747 static int rfcomm_send_disc(struct rfcomm_session *s, u8 dlci)
748 {
749 struct rfcomm_cmd cmd;
750
751 BT_DBG("%p dlci %d", s, dlci);
752
753 cmd.addr = __addr(s->initiator, dlci);
754 cmd.ctrl = __ctrl(RFCOMM_DISC, 1);
755 cmd.len = __len8(0);
756 cmd.fcs = __fcs2((u8 *) &cmd);
757
758 return rfcomm_send_frame(s, (void *) &cmd, sizeof(cmd));
759 }
760
761 static int rfcomm_queue_disc(struct rfcomm_dlc *d)
762 {
763 struct rfcomm_cmd *cmd;
764 struct sk_buff *skb;
765
766 BT_DBG("dlc %p dlci %d", d, d->dlci);
767
768 skb = alloc_skb(sizeof(*cmd), GFP_KERNEL);
769 if (!skb)
770 return -ENOMEM;
771
772 cmd = (void *) __skb_put(skb, sizeof(*cmd));
773 cmd->addr = d->addr;
774 cmd->ctrl = __ctrl(RFCOMM_DISC, 1);
775 cmd->len = __len8(0);
776 cmd->fcs = __fcs2((u8 *) cmd);
777
778 skb_queue_tail(&d->tx_queue, skb);
779 rfcomm_schedule(RFCOMM_SCHED_TX);
780 return 0;
781 }
782
783 static int rfcomm_send_dm(struct rfcomm_session *s, u8 dlci)
784 {
785 struct rfcomm_cmd cmd;
786
787 BT_DBG("%p dlci %d", s, dlci);
788
789 cmd.addr = __addr(!s->initiator, dlci);
790 cmd.ctrl = __ctrl(RFCOMM_DM, 1);
791 cmd.len = __len8(0);
792 cmd.fcs = __fcs2((u8 *) &cmd);
793
794 return rfcomm_send_frame(s, (void *) &cmd, sizeof(cmd));
795 }
796
797 static int rfcomm_send_nsc(struct rfcomm_session *s, int cr, u8 type)
798 {
799 struct rfcomm_hdr *hdr;
800 struct rfcomm_mcc *mcc;
801 u8 buf[16], *ptr = buf;
802
803 BT_DBG("%p cr %d type %d", s, cr, type);
804
805 hdr = (void *) ptr; ptr += sizeof(*hdr);
806 hdr->addr = __addr(s->initiator, 0);
807 hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
808 hdr->len = __len8(sizeof(*mcc) + 1);
809
810 mcc = (void *) ptr; ptr += sizeof(*mcc);
811 mcc->type = __mcc_type(cr, RFCOMM_NSC);
812 mcc->len = __len8(1);
813
814 /* Type that we didn't like */
815 *ptr = __mcc_type(cr, type); ptr++;
816
817 *ptr = __fcs(buf); ptr++;
818
819 return rfcomm_send_frame(s, buf, ptr - buf);
820 }
821
822 static int rfcomm_send_pn(struct rfcomm_session *s, int cr, struct rfcomm_dlc *d)
823 {
824 struct rfcomm_hdr *hdr;
825 struct rfcomm_mcc *mcc;
826 struct rfcomm_pn *pn;
827 u8 buf[16], *ptr = buf;
828
829 BT_DBG("%p cr %d dlci %d mtu %d", s, cr, d->dlci, d->mtu);
830
831 hdr = (void *) ptr; ptr += sizeof(*hdr);
832 hdr->addr = __addr(s->initiator, 0);
833 hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
834 hdr->len = __len8(sizeof(*mcc) + sizeof(*pn));
835
836 mcc = (void *) ptr; ptr += sizeof(*mcc);
837 mcc->type = __mcc_type(cr, RFCOMM_PN);
838 mcc->len = __len8(sizeof(*pn));
839
840 pn = (void *) ptr; ptr += sizeof(*pn);
841 pn->dlci = d->dlci;
842 pn->priority = d->priority;
843 pn->ack_timer = 0;
844 pn->max_retrans = 0;
845
846 if (s->cfc) {
847 pn->flow_ctrl = cr ? 0xf0 : 0xe0;
848 pn->credits = RFCOMM_DEFAULT_CREDITS;
849 } else {
850 pn->flow_ctrl = 0;
851 pn->credits = 0;
852 }
853
854 if (cr && channel_mtu >= 0)
855 pn->mtu = htobs(channel_mtu);
856 else
857 pn->mtu = htobs(d->mtu);
858
859 *ptr = __fcs(buf); ptr++;
860
861 return rfcomm_send_frame(s, buf, ptr - buf);
862 }
863
864 int rfcomm_send_rpn(struct rfcomm_session *s, int cr, u8 dlci,
865 u8 bit_rate, u8 data_bits, u8 stop_bits,
866 u8 parity, u8 flow_ctrl_settings,
867 u8 xon_char, u8 xoff_char, u16 param_mask)
868 {
869 struct rfcomm_hdr *hdr;
870 struct rfcomm_mcc *mcc;
871 struct rfcomm_rpn *rpn;
872 u8 buf[16], *ptr = buf;
873
874 BT_DBG("%p cr %d dlci %d bit_r 0x%x data_b 0x%x stop_b 0x%x parity 0x%x"
875 " flwc_s 0x%x xon_c 0x%x xoff_c 0x%x p_mask 0x%x",
876 s, cr, dlci, bit_rate, data_bits, stop_bits, parity,
877 flow_ctrl_settings, xon_char, xoff_char, param_mask);
878
879 hdr = (void *) ptr; ptr += sizeof(*hdr);
880 hdr->addr = __addr(s->initiator, 0);
881 hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
882 hdr->len = __len8(sizeof(*mcc) + sizeof(*rpn));
883
884 mcc = (void *) ptr; ptr += sizeof(*mcc);
885 mcc->type = __mcc_type(cr, RFCOMM_RPN);
886 mcc->len = __len8(sizeof(*rpn));
887
888 rpn = (void *) ptr; ptr += sizeof(*rpn);
889 rpn->dlci = __addr(1, dlci);
890 rpn->bit_rate = bit_rate;
891 rpn->line_settings = __rpn_line_settings(data_bits, stop_bits, parity);
892 rpn->flow_ctrl = flow_ctrl_settings;
893 rpn->xon_char = xon_char;
894 rpn->xoff_char = xoff_char;
895 rpn->param_mask = cpu_to_le16(param_mask);
896
897 *ptr = __fcs(buf); ptr++;
898
899 return rfcomm_send_frame(s, buf, ptr - buf);
900 }
901
902 static int rfcomm_send_rls(struct rfcomm_session *s, int cr, u8 dlci, u8 status)
903 {
904 struct rfcomm_hdr *hdr;
905 struct rfcomm_mcc *mcc;
906 struct rfcomm_rls *rls;
907 u8 buf[16], *ptr = buf;
908
909 BT_DBG("%p cr %d status 0x%x", s, cr, status);
910
911 hdr = (void *) ptr; ptr += sizeof(*hdr);
912 hdr->addr = __addr(s->initiator, 0);
913 hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
914 hdr->len = __len8(sizeof(*mcc) + sizeof(*rls));
915
916 mcc = (void *) ptr; ptr += sizeof(*mcc);
917 mcc->type = __mcc_type(cr, RFCOMM_RLS);
918 mcc->len = __len8(sizeof(*rls));
919
920 rls = (void *) ptr; ptr += sizeof(*rls);
921 rls->dlci = __addr(1, dlci);
922 rls->status = status;
923
924 *ptr = __fcs(buf); ptr++;
925
926 return rfcomm_send_frame(s, buf, ptr - buf);
927 }
928
929 static int rfcomm_send_msc(struct rfcomm_session *s, int cr, u8 dlci, u8 v24_sig)
930 {
931 struct rfcomm_hdr *hdr;
932 struct rfcomm_mcc *mcc;
933 struct rfcomm_msc *msc;
934 u8 buf[16], *ptr = buf;
935
936 BT_DBG("%p cr %d v24 0x%x", s, cr, v24_sig);
937
938 hdr = (void *) ptr; ptr += sizeof(*hdr);
939 hdr->addr = __addr(s->initiator, 0);
940 hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
941 hdr->len = __len8(sizeof(*mcc) + sizeof(*msc));
942
943 mcc = (void *) ptr; ptr += sizeof(*mcc);
944 mcc->type = __mcc_type(cr, RFCOMM_MSC);
945 mcc->len = __len8(sizeof(*msc));
946
947 msc = (void *) ptr; ptr += sizeof(*msc);
948 msc->dlci = __addr(1, dlci);
949 msc->v24_sig = v24_sig | 0x01;
950
951 *ptr = __fcs(buf); ptr++;
952
953 return rfcomm_send_frame(s, buf, ptr - buf);
954 }
955
956 static int rfcomm_send_fcoff(struct rfcomm_session *s, int cr)
957 {
958 struct rfcomm_hdr *hdr;
959 struct rfcomm_mcc *mcc;
960 u8 buf[16], *ptr = buf;
961
962 BT_DBG("%p cr %d", s, cr);
963
964 hdr = (void *) ptr; ptr += sizeof(*hdr);
965 hdr->addr = __addr(s->initiator, 0);
966 hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
967 hdr->len = __len8(sizeof(*mcc));
968
969 mcc = (void *) ptr; ptr += sizeof(*mcc);
970 mcc->type = __mcc_type(cr, RFCOMM_FCOFF);
971 mcc->len = __len8(0);
972
973 *ptr = __fcs(buf); ptr++;
974
975 return rfcomm_send_frame(s, buf, ptr - buf);
976 }
977
978 static int rfcomm_send_fcon(struct rfcomm_session *s, int cr)
979 {
980 struct rfcomm_hdr *hdr;
981 struct rfcomm_mcc *mcc;
982 u8 buf[16], *ptr = buf;
983
984 BT_DBG("%p cr %d", s, cr);
985
986 hdr = (void *) ptr; ptr += sizeof(*hdr);
987 hdr->addr = __addr(s->initiator, 0);
988 hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
989 hdr->len = __len8(sizeof(*mcc));
990
991 mcc = (void *) ptr; ptr += sizeof(*mcc);
992 mcc->type = __mcc_type(cr, RFCOMM_FCON);
993 mcc->len = __len8(0);
994
995 *ptr = __fcs(buf); ptr++;
996
997 return rfcomm_send_frame(s, buf, ptr - buf);
998 }
999
1000 static int rfcomm_send_test(struct rfcomm_session *s, int cr, u8 *pattern, int len)
1001 {
1002 struct socket *sock = s->sock;
1003 struct kvec iv[3];
1004 struct msghdr msg;
1005 unsigned char hdr[5], crc[1];
1006
1007 if (len > 125)
1008 return -EINVAL;
1009
1010 BT_DBG("%p cr %d", s, cr);
1011
1012 hdr[0] = __addr(s->initiator, 0);
1013 hdr[1] = __ctrl(RFCOMM_UIH, 0);
1014 hdr[2] = 0x01 | ((len + 2) << 1);
1015 hdr[3] = 0x01 | ((cr & 0x01) << 1) | (RFCOMM_TEST << 2);
1016 hdr[4] = 0x01 | (len << 1);
1017
1018 crc[0] = __fcs(hdr);
1019
1020 iv[0].iov_base = hdr;
1021 iv[0].iov_len = 5;
1022 iv[1].iov_base = pattern;
1023 iv[1].iov_len = len;
1024 iv[2].iov_base = crc;
1025 iv[2].iov_len = 1;
1026
1027 memset(&msg, 0, sizeof(msg));
1028
1029 return kernel_sendmsg(sock, &msg, iv, 3, 6 + len);
1030 }
1031
1032 static int rfcomm_send_credits(struct rfcomm_session *s, u8 addr, u8 credits)
1033 {
1034 struct rfcomm_hdr *hdr;
1035 u8 buf[16], *ptr = buf;
1036
1037 BT_DBG("%p addr %d credits %d", s, addr, credits);
1038
1039 hdr = (void *) ptr; ptr += sizeof(*hdr);
1040 hdr->addr = addr;
1041 hdr->ctrl = __ctrl(RFCOMM_UIH, 1);
1042 hdr->len = __len8(0);
1043
1044 *ptr = credits; ptr++;
1045
1046 *ptr = __fcs(buf); ptr++;
1047
1048 return rfcomm_send_frame(s, buf, ptr - buf);
1049 }
1050
1051 static void rfcomm_make_uih(struct sk_buff *skb, u8 addr)
1052 {
1053 struct rfcomm_hdr *hdr;
1054 int len = skb->len;
1055 u8 *crc;
1056
1057 if (len > 127) {
1058 hdr = (void *) skb_push(skb, 4);
1059 put_unaligned(htobs(__len16(len)), (__le16 *) &hdr->len);
1060 } else {
1061 hdr = (void *) skb_push(skb, 3);
1062 hdr->len = __len8(len);
1063 }
1064 hdr->addr = addr;
1065 hdr->ctrl = __ctrl(RFCOMM_UIH, 0);
1066
1067 crc = skb_put(skb, 1);
1068 *crc = __fcs((void *) hdr);
1069 }
1070
1071 /* ---- RFCOMM frame reception ---- */
1072 static int rfcomm_recv_ua(struct rfcomm_session *s, u8 dlci)
1073 {
1074 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1075
1076 if (dlci) {
1077 /* Data channel */
1078 struct rfcomm_dlc *d = rfcomm_dlc_get(s, dlci);
1079 if (!d) {
1080 rfcomm_send_dm(s, dlci);
1081 return 0;
1082 }
1083
1084 switch (d->state) {
1085 case BT_CONNECT:
1086 rfcomm_dlc_clear_timer(d);
1087
1088 rfcomm_dlc_lock(d);
1089 d->state = BT_CONNECTED;
1090 d->state_change(d, 0);
1091 rfcomm_dlc_unlock(d);
1092
1093 rfcomm_send_msc(s, 1, dlci, d->v24_sig);
1094 break;
1095
1096 case BT_DISCONN:
1097 d->state = BT_CLOSED;
1098 __rfcomm_dlc_close(d, 0);
1099
1100 if (list_empty(&s->dlcs)) {
1101 s->state = BT_DISCONN;
1102 rfcomm_send_disc(s, 0);
1103 }
1104
1105 break;
1106 }
1107 } else {
1108 /* Control channel */
1109 switch (s->state) {
1110 case BT_CONNECT:
1111 s->state = BT_CONNECTED;
1112 rfcomm_process_connect(s);
1113 break;
1114
1115 case BT_DISCONN:
1116 rfcomm_session_put(s);
1117 break;
1118 }
1119 }
1120 return 0;
1121 }
1122
1123 static int rfcomm_recv_dm(struct rfcomm_session *s, u8 dlci)
1124 {
1125 int err = 0;
1126
1127 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1128
1129 if (dlci) {
1130 /* Data DLC */
1131 struct rfcomm_dlc *d = rfcomm_dlc_get(s, dlci);
1132 if (d) {
1133 if (d->state == BT_CONNECT || d->state == BT_CONFIG)
1134 err = ECONNREFUSED;
1135 else
1136 err = ECONNRESET;
1137
1138 d->state = BT_CLOSED;
1139 __rfcomm_dlc_close(d, err);
1140 }
1141 } else {
1142 if (s->state == BT_CONNECT)
1143 err = ECONNREFUSED;
1144 else
1145 err = ECONNRESET;
1146
1147 s->state = BT_CLOSED;
1148 rfcomm_session_close(s, err);
1149 }
1150 return 0;
1151 }
1152
1153 static int rfcomm_recv_disc(struct rfcomm_session *s, u8 dlci)
1154 {
1155 int err = 0;
1156
1157 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1158
1159 if (dlci) {
1160 struct rfcomm_dlc *d = rfcomm_dlc_get(s, dlci);
1161 if (d) {
1162 rfcomm_send_ua(s, dlci);
1163
1164 if (d->state == BT_CONNECT || d->state == BT_CONFIG)
1165 err = ECONNREFUSED;
1166 else
1167 err = ECONNRESET;
1168
1169 d->state = BT_CLOSED;
1170 __rfcomm_dlc_close(d, err);
1171 } else
1172 rfcomm_send_dm(s, dlci);
1173
1174 } else {
1175 rfcomm_send_ua(s, 0);
1176
1177 if (s->state == BT_CONNECT)
1178 err = ECONNREFUSED;
1179 else
1180 err = ECONNRESET;
1181
1182 s->state = BT_CLOSED;
1183 rfcomm_session_close(s, err);
1184 }
1185
1186 return 0;
1187 }
1188
1189 void rfcomm_dlc_accept(struct rfcomm_dlc *d)
1190 {
1191 struct sock *sk = d->session->sock->sk;
1192
1193 BT_DBG("dlc %p", d);
1194
1195 rfcomm_send_ua(d->session, d->dlci);
1196
1197 rfcomm_dlc_lock(d);
1198 d->state = BT_CONNECTED;
1199 d->state_change(d, 0);
1200 rfcomm_dlc_unlock(d);
1201
1202 if (d->role_switch)
1203 hci_conn_switch_role(l2cap_pi(sk)->conn->hcon, 0x00);
1204
1205 rfcomm_send_msc(d->session, 1, d->dlci, d->v24_sig);
1206 }
1207
1208 static void rfcomm_check_accept(struct rfcomm_dlc *d)
1209 {
1210 if (rfcomm_check_security(d)) {
1211 if (d->defer_setup) {
1212 set_bit(RFCOMM_DEFER_SETUP, &d->flags);
1213 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT);
1214
1215 rfcomm_dlc_lock(d);
1216 d->state = BT_CONNECT2;
1217 d->state_change(d, 0);
1218 rfcomm_dlc_unlock(d);
1219 } else
1220 rfcomm_dlc_accept(d);
1221 } else {
1222 set_bit(RFCOMM_AUTH_PENDING, &d->flags);
1223 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT);
1224 }
1225 }
1226
1227 static int rfcomm_recv_sabm(struct rfcomm_session *s, u8 dlci)
1228 {
1229 struct rfcomm_dlc *d;
1230 u8 channel;
1231
1232 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1233
1234 if (!dlci) {
1235 rfcomm_send_ua(s, 0);
1236
1237 if (s->state == BT_OPEN) {
1238 s->state = BT_CONNECTED;
1239 rfcomm_process_connect(s);
1240 }
1241 return 0;
1242 }
1243
1244 /* Check if DLC exists */
1245 d = rfcomm_dlc_get(s, dlci);
1246 if (d) {
1247 if (d->state == BT_OPEN) {
1248 /* DLC was previously opened by PN request */
1249 rfcomm_check_accept(d);
1250 }
1251 return 0;
1252 }
1253
1254 /* Notify socket layer about incoming connection */
1255 channel = __srv_channel(dlci);
1256 if (rfcomm_connect_ind(s, channel, &d)) {
1257 d->dlci = dlci;
1258 d->addr = __addr(s->initiator, dlci);
1259 rfcomm_dlc_link(s, d);
1260
1261 rfcomm_check_accept(d);
1262 } else {
1263 rfcomm_send_dm(s, dlci);
1264 }
1265
1266 return 0;
1267 }
1268
1269 static int rfcomm_apply_pn(struct rfcomm_dlc *d, int cr, struct rfcomm_pn *pn)
1270 {
1271 struct rfcomm_session *s = d->session;
1272
1273 BT_DBG("dlc %p state %ld dlci %d mtu %d fc 0x%x credits %d",
1274 d, d->state, d->dlci, pn->mtu, pn->flow_ctrl, pn->credits);
1275
1276 if ((pn->flow_ctrl == 0xf0 && s->cfc != RFCOMM_CFC_DISABLED) ||
1277 pn->flow_ctrl == 0xe0) {
1278 d->cfc = RFCOMM_CFC_ENABLED;
1279 d->tx_credits = pn->credits;
1280 } else {
1281 d->cfc = RFCOMM_CFC_DISABLED;
1282 set_bit(RFCOMM_TX_THROTTLED, &d->flags);
1283 }
1284
1285 if (s->cfc == RFCOMM_CFC_UNKNOWN)
1286 s->cfc = d->cfc;
1287
1288 d->priority = pn->priority;
1289
1290 d->mtu = btohs(pn->mtu);
1291
1292 if (cr && d->mtu > s->mtu)
1293 d->mtu = s->mtu;
1294
1295 return 0;
1296 }
1297
1298 static int rfcomm_recv_pn(struct rfcomm_session *s, int cr, struct sk_buff *skb)
1299 {
1300 struct rfcomm_pn *pn = (void *) skb->data;
1301 struct rfcomm_dlc *d;
1302 u8 dlci = pn->dlci;
1303
1304 BT_DBG("session %p state %ld dlci %d", s, s->state, dlci);
1305
1306 if (!dlci)
1307 return 0;
1308
1309 d = rfcomm_dlc_get(s, dlci);
1310 if (d) {
1311 if (cr) {
1312 /* PN request */
1313 rfcomm_apply_pn(d, cr, pn);
1314 rfcomm_send_pn(s, 0, d);
1315 } else {
1316 /* PN response */
1317 switch (d->state) {
1318 case BT_CONFIG:
1319 rfcomm_apply_pn(d, cr, pn);
1320
1321 d->state = BT_CONNECT;
1322 rfcomm_send_sabm(s, d->dlci);
1323 break;
1324 }
1325 }
1326 } else {
1327 u8 channel = __srv_channel(dlci);
1328
1329 if (!cr)
1330 return 0;
1331
1332 /* PN request for non existing DLC.
1333 * Assume incoming connection. */
1334 if (rfcomm_connect_ind(s, channel, &d)) {
1335 d->dlci = dlci;
1336 d->addr = __addr(s->initiator, dlci);
1337 rfcomm_dlc_link(s, d);
1338
1339 rfcomm_apply_pn(d, cr, pn);
1340
1341 d->state = BT_OPEN;
1342 rfcomm_send_pn(s, 0, d);
1343 } else {
1344 rfcomm_send_dm(s, dlci);
1345 }
1346 }
1347 return 0;
1348 }
1349
1350 static int rfcomm_recv_rpn(struct rfcomm_session *s, int cr, int len, struct sk_buff *skb)
1351 {
1352 struct rfcomm_rpn *rpn = (void *) skb->data;
1353 u8 dlci = __get_dlci(rpn->dlci);
1354
1355 u8 bit_rate = 0;
1356 u8 data_bits = 0;
1357 u8 stop_bits = 0;
1358 u8 parity = 0;
1359 u8 flow_ctrl = 0;
1360 u8 xon_char = 0;
1361 u8 xoff_char = 0;
1362 u16 rpn_mask = RFCOMM_RPN_PM_ALL;
1363
1364 BT_DBG("dlci %d cr %d len 0x%x bitr 0x%x line 0x%x flow 0x%x xonc 0x%x xoffc 0x%x pm 0x%x",
1365 dlci, cr, len, rpn->bit_rate, rpn->line_settings, rpn->flow_ctrl,
1366 rpn->xon_char, rpn->xoff_char, rpn->param_mask);
1367
1368 if (!cr)
1369 return 0;
1370
1371 if (len == 1) {
1372 /* This is a request, return default settings */
1373 bit_rate = RFCOMM_RPN_BR_115200;
1374 data_bits = RFCOMM_RPN_DATA_8;
1375 stop_bits = RFCOMM_RPN_STOP_1;
1376 parity = RFCOMM_RPN_PARITY_NONE;
1377 flow_ctrl = RFCOMM_RPN_FLOW_NONE;
1378 xon_char = RFCOMM_RPN_XON_CHAR;
1379 xoff_char = RFCOMM_RPN_XOFF_CHAR;
1380 goto rpn_out;
1381 }
1382
1383 /* Check for sane values, ignore/accept bit_rate, 8 bits, 1 stop bit,
1384 * no parity, no flow control lines, normal XON/XOFF chars */
1385
1386 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_BITRATE)) {
1387 bit_rate = rpn->bit_rate;
1388 if (bit_rate != RFCOMM_RPN_BR_115200) {
1389 BT_DBG("RPN bit rate mismatch 0x%x", bit_rate);
1390 bit_rate = RFCOMM_RPN_BR_115200;
1391 rpn_mask ^= RFCOMM_RPN_PM_BITRATE;
1392 }
1393 }
1394
1395 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_DATA)) {
1396 data_bits = __get_rpn_data_bits(rpn->line_settings);
1397 if (data_bits != RFCOMM_RPN_DATA_8) {
1398 BT_DBG("RPN data bits mismatch 0x%x", data_bits);
1399 data_bits = RFCOMM_RPN_DATA_8;
1400 rpn_mask ^= RFCOMM_RPN_PM_DATA;
1401 }
1402 }
1403
1404 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_STOP)) {
1405 stop_bits = __get_rpn_stop_bits(rpn->line_settings);
1406 if (stop_bits != RFCOMM_RPN_STOP_1) {
1407 BT_DBG("RPN stop bits mismatch 0x%x", stop_bits);
1408 stop_bits = RFCOMM_RPN_STOP_1;
1409 rpn_mask ^= RFCOMM_RPN_PM_STOP;
1410 }
1411 }
1412
1413 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_PARITY)) {
1414 parity = __get_rpn_parity(rpn->line_settings);
1415 if (parity != RFCOMM_RPN_PARITY_NONE) {
1416 BT_DBG("RPN parity mismatch 0x%x", parity);
1417 parity = RFCOMM_RPN_PARITY_NONE;
1418 rpn_mask ^= RFCOMM_RPN_PM_PARITY;
1419 }
1420 }
1421
1422 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_FLOW)) {
1423 flow_ctrl = rpn->flow_ctrl;
1424 if (flow_ctrl != RFCOMM_RPN_FLOW_NONE) {
1425 BT_DBG("RPN flow ctrl mismatch 0x%x", flow_ctrl);
1426 flow_ctrl = RFCOMM_RPN_FLOW_NONE;
1427 rpn_mask ^= RFCOMM_RPN_PM_FLOW;
1428 }
1429 }
1430
1431 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_XON)) {
1432 xon_char = rpn->xon_char;
1433 if (xon_char != RFCOMM_RPN_XON_CHAR) {
1434 BT_DBG("RPN XON char mismatch 0x%x", xon_char);
1435 xon_char = RFCOMM_RPN_XON_CHAR;
1436 rpn_mask ^= RFCOMM_RPN_PM_XON;
1437 }
1438 }
1439
1440 if (rpn->param_mask & cpu_to_le16(RFCOMM_RPN_PM_XOFF)) {
1441 xoff_char = rpn->xoff_char;
1442 if (xoff_char != RFCOMM_RPN_XOFF_CHAR) {
1443 BT_DBG("RPN XOFF char mismatch 0x%x", xoff_char);
1444 xoff_char = RFCOMM_RPN_XOFF_CHAR;
1445 rpn_mask ^= RFCOMM_RPN_PM_XOFF;
1446 }
1447 }
1448
1449 rpn_out:
1450 rfcomm_send_rpn(s, 0, dlci, bit_rate, data_bits, stop_bits,
1451 parity, flow_ctrl, xon_char, xoff_char, rpn_mask);
1452
1453 return 0;
1454 }
1455
1456 static int rfcomm_recv_rls(struct rfcomm_session *s, int cr, struct sk_buff *skb)
1457 {
1458 struct rfcomm_rls *rls = (void *) skb->data;
1459 u8 dlci = __get_dlci(rls->dlci);
1460
1461 BT_DBG("dlci %d cr %d status 0x%x", dlci, cr, rls->status);
1462
1463 if (!cr)
1464 return 0;
1465
1466 /* We should probably do something with this information here. But
1467 * for now it's sufficient just to reply -- Bluetooth 1.1 says it's
1468 * mandatory to recognise and respond to RLS */
1469
1470 rfcomm_send_rls(s, 0, dlci, rls->status);
1471
1472 return 0;
1473 }
1474
1475 static int rfcomm_recv_msc(struct rfcomm_session *s, int cr, struct sk_buff *skb)
1476 {
1477 struct rfcomm_msc *msc = (void *) skb->data;
1478 struct rfcomm_dlc *d;
1479 u8 dlci = __get_dlci(msc->dlci);
1480
1481 BT_DBG("dlci %d cr %d v24 0x%x", dlci, cr, msc->v24_sig);
1482
1483 d = rfcomm_dlc_get(s, dlci);
1484 if (!d)
1485 return 0;
1486
1487 if (cr) {
1488 if (msc->v24_sig & RFCOMM_V24_FC && !d->cfc)
1489 set_bit(RFCOMM_TX_THROTTLED, &d->flags);
1490 else
1491 clear_bit(RFCOMM_TX_THROTTLED, &d->flags);
1492
1493 rfcomm_dlc_lock(d);
1494
1495 d->remote_v24_sig = msc->v24_sig;
1496
1497 if (d->modem_status)
1498 d->modem_status(d, msc->v24_sig);
1499
1500 rfcomm_dlc_unlock(d);
1501
1502 rfcomm_send_msc(s, 0, dlci, msc->v24_sig);
1503
1504 d->mscex |= RFCOMM_MSCEX_RX;
1505 } else
1506 d->mscex |= RFCOMM_MSCEX_TX;
1507
1508 return 0;
1509 }
1510
1511 static int rfcomm_recv_mcc(struct rfcomm_session *s, struct sk_buff *skb)
1512 {
1513 struct rfcomm_mcc *mcc = (void *) skb->data;
1514 u8 type, cr, len;
1515
1516 cr = __test_cr(mcc->type);
1517 type = __get_mcc_type(mcc->type);
1518 len = __get_mcc_len(mcc->len);
1519
1520 BT_DBG("%p type 0x%x cr %d", s, type, cr);
1521
1522 skb_pull(skb, 2);
1523
1524 switch (type) {
1525 case RFCOMM_PN:
1526 rfcomm_recv_pn(s, cr, skb);
1527 break;
1528
1529 case RFCOMM_RPN:
1530 rfcomm_recv_rpn(s, cr, len, skb);
1531 break;
1532
1533 case RFCOMM_RLS:
1534 rfcomm_recv_rls(s, cr, skb);
1535 break;
1536
1537 case RFCOMM_MSC:
1538 rfcomm_recv_msc(s, cr, skb);
1539 break;
1540
1541 case RFCOMM_FCOFF:
1542 if (cr) {
1543 set_bit(RFCOMM_TX_THROTTLED, &s->flags);
1544 rfcomm_send_fcoff(s, 0);
1545 }
1546 break;
1547
1548 case RFCOMM_FCON:
1549 if (cr) {
1550 clear_bit(RFCOMM_TX_THROTTLED, &s->flags);
1551 rfcomm_send_fcon(s, 0);
1552 }
1553 break;
1554
1555 case RFCOMM_TEST:
1556 if (cr)
1557 rfcomm_send_test(s, 0, skb->data, skb->len);
1558 break;
1559
1560 case RFCOMM_NSC:
1561 break;
1562
1563 default:
1564 BT_ERR("Unknown control type 0x%02x", type);
1565 rfcomm_send_nsc(s, cr, type);
1566 break;
1567 }
1568 return 0;
1569 }
1570
1571 static int rfcomm_recv_data(struct rfcomm_session *s, u8 dlci, int pf, struct sk_buff *skb)
1572 {
1573 struct rfcomm_dlc *d;
1574
1575 BT_DBG("session %p state %ld dlci %d pf %d", s, s->state, dlci, pf);
1576
1577 d = rfcomm_dlc_get(s, dlci);
1578 if (!d) {
1579 rfcomm_send_dm(s, dlci);
1580 goto drop;
1581 }
1582
1583 if (pf && d->cfc) {
1584 u8 credits = *(u8 *) skb->data; skb_pull(skb, 1);
1585
1586 d->tx_credits += credits;
1587 if (d->tx_credits)
1588 clear_bit(RFCOMM_TX_THROTTLED, &d->flags);
1589 }
1590
1591 if (skb->len && d->state == BT_CONNECTED) {
1592 rfcomm_dlc_lock(d);
1593 d->rx_credits--;
1594 d->data_ready(d, skb);
1595 rfcomm_dlc_unlock(d);
1596 return 0;
1597 }
1598
1599 drop:
1600 kfree_skb(skb);
1601 return 0;
1602 }
1603
1604 static int rfcomm_recv_frame(struct rfcomm_session *s, struct sk_buff *skb)
1605 {
1606 struct rfcomm_hdr *hdr = (void *) skb->data;
1607 u8 type, dlci, fcs;
1608
1609 dlci = __get_dlci(hdr->addr);
1610 type = __get_type(hdr->ctrl);
1611
1612 /* Trim FCS */
1613 skb->len--; skb->tail--;
1614 fcs = *(u8 *)skb_tail_pointer(skb);
1615
1616 if (__check_fcs(skb->data, type, fcs)) {
1617 BT_ERR("bad checksum in packet");
1618 kfree_skb(skb);
1619 return -EILSEQ;
1620 }
1621
1622 if (__test_ea(hdr->len))
1623 skb_pull(skb, 3);
1624 else
1625 skb_pull(skb, 4);
1626
1627 switch (type) {
1628 case RFCOMM_SABM:
1629 if (__test_pf(hdr->ctrl))
1630 rfcomm_recv_sabm(s, dlci);
1631 break;
1632
1633 case RFCOMM_DISC:
1634 if (__test_pf(hdr->ctrl))
1635 rfcomm_recv_disc(s, dlci);
1636 break;
1637
1638 case RFCOMM_UA:
1639 if (__test_pf(hdr->ctrl))
1640 rfcomm_recv_ua(s, dlci);
1641 break;
1642
1643 case RFCOMM_DM:
1644 rfcomm_recv_dm(s, dlci);
1645 break;
1646
1647 case RFCOMM_UIH:
1648 if (dlci)
1649 return rfcomm_recv_data(s, dlci, __test_pf(hdr->ctrl), skb);
1650
1651 rfcomm_recv_mcc(s, skb);
1652 break;
1653
1654 default:
1655 BT_ERR("Unknown packet type 0x%02x\n", type);
1656 break;
1657 }
1658 kfree_skb(skb);
1659 return 0;
1660 }
1661
1662 /* ---- Connection and data processing ---- */
1663
1664 static void rfcomm_process_connect(struct rfcomm_session *s)
1665 {
1666 struct rfcomm_dlc *d;
1667 struct list_head *p, *n;
1668
1669 BT_DBG("session %p state %ld", s, s->state);
1670
1671 list_for_each_safe(p, n, &s->dlcs) {
1672 d = list_entry(p, struct rfcomm_dlc, list);
1673 if (d->state == BT_CONFIG) {
1674 d->mtu = s->mtu;
1675 if (rfcomm_check_security(d)) {
1676 rfcomm_send_pn(s, 1, d);
1677 } else {
1678 set_bit(RFCOMM_AUTH_PENDING, &d->flags);
1679 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT);
1680 }
1681 }
1682 }
1683 }
1684
1685 /* Send data queued for the DLC.
1686 * Return number of frames left in the queue.
1687 */
1688 static inline int rfcomm_process_tx(struct rfcomm_dlc *d)
1689 {
1690 struct sk_buff *skb;
1691 int err;
1692
1693 BT_DBG("dlc %p state %ld cfc %d rx_credits %d tx_credits %d",
1694 d, d->state, d->cfc, d->rx_credits, d->tx_credits);
1695
1696 /* Send pending MSC */
1697 if (test_and_clear_bit(RFCOMM_MSC_PENDING, &d->flags))
1698 rfcomm_send_msc(d->session, 1, d->dlci, d->v24_sig);
1699
1700 if (d->cfc) {
1701 /* CFC enabled.
1702 * Give them some credits */
1703 if (!test_bit(RFCOMM_RX_THROTTLED, &d->flags) &&
1704 d->rx_credits <= (d->cfc >> 2)) {
1705 rfcomm_send_credits(d->session, d->addr, d->cfc - d->rx_credits);
1706 d->rx_credits = d->cfc;
1707 }
1708 } else {
1709 /* CFC disabled.
1710 * Give ourselves some credits */
1711 d->tx_credits = 5;
1712 }
1713
1714 if (test_bit(RFCOMM_TX_THROTTLED, &d->flags))
1715 return skb_queue_len(&d->tx_queue);
1716
1717 while (d->tx_credits && (skb = skb_dequeue(&d->tx_queue))) {
1718 err = rfcomm_send_frame(d->session, skb->data, skb->len);
1719 if (err < 0) {
1720 skb_queue_head(&d->tx_queue, skb);
1721 break;
1722 }
1723 kfree_skb(skb);
1724 d->tx_credits--;
1725 }
1726
1727 if (d->cfc && !d->tx_credits) {
1728 /* We're out of TX credits.
1729 * Set TX_THROTTLED flag to avoid unnesary wakeups by dlc_send. */
1730 set_bit(RFCOMM_TX_THROTTLED, &d->flags);
1731 }
1732
1733 return skb_queue_len(&d->tx_queue);
1734 }
1735
1736 static inline void rfcomm_process_dlcs(struct rfcomm_session *s)
1737 {
1738 struct rfcomm_dlc *d;
1739 struct list_head *p, *n;
1740
1741 BT_DBG("session %p state %ld", s, s->state);
1742
1743 list_for_each_safe(p, n, &s->dlcs) {
1744 d = list_entry(p, struct rfcomm_dlc, list);
1745
1746 if (test_bit(RFCOMM_TIMED_OUT, &d->flags)) {
1747 __rfcomm_dlc_close(d, ETIMEDOUT);
1748 continue;
1749 }
1750
1751 if (test_and_clear_bit(RFCOMM_AUTH_ACCEPT, &d->flags)) {
1752 rfcomm_dlc_clear_timer(d);
1753 if (d->out) {
1754 rfcomm_send_pn(s, 1, d);
1755 rfcomm_dlc_set_timer(d, RFCOMM_CONN_TIMEOUT);
1756 } else {
1757 if (d->defer_setup) {
1758 set_bit(RFCOMM_DEFER_SETUP, &d->flags);
1759 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT);
1760
1761 rfcomm_dlc_lock(d);
1762 d->state = BT_CONNECT2;
1763 d->state_change(d, 0);
1764 rfcomm_dlc_unlock(d);
1765 } else
1766 rfcomm_dlc_accept(d);
1767 }
1768 continue;
1769 } else if (test_and_clear_bit(RFCOMM_AUTH_REJECT, &d->flags)) {
1770 rfcomm_dlc_clear_timer(d);
1771 if (!d->out)
1772 rfcomm_send_dm(s, d->dlci);
1773 else
1774 d->state = BT_CLOSED;
1775 __rfcomm_dlc_close(d, ECONNREFUSED);
1776 continue;
1777 }
1778
1779 if (test_bit(RFCOMM_SEC_PENDING, &d->flags))
1780 continue;
1781
1782 if (test_bit(RFCOMM_TX_THROTTLED, &s->flags))
1783 continue;
1784
1785 if ((d->state == BT_CONNECTED || d->state == BT_DISCONN) &&
1786 d->mscex == RFCOMM_MSCEX_OK)
1787 rfcomm_process_tx(d);
1788 }
1789 }
1790
1791 static inline void rfcomm_process_rx(struct rfcomm_session *s)
1792 {
1793 struct socket *sock = s->sock;
1794 struct sock *sk = sock->sk;
1795 struct sk_buff *skb;
1796
1797 BT_DBG("session %p state %ld qlen %d", s, s->state, skb_queue_len(&sk->sk_receive_queue));
1798
1799 /* Get data directly from socket receive queue without copying it. */
1800 while ((skb = skb_dequeue(&sk->sk_receive_queue))) {
1801 skb_orphan(skb);
1802 rfcomm_recv_frame(s, skb);
1803 }
1804
1805 if (sk->sk_state == BT_CLOSED) {
1806 if (!s->initiator)
1807 rfcomm_session_put(s);
1808
1809 rfcomm_session_close(s, sk->sk_err);
1810 }
1811 }
1812
1813 static inline void rfcomm_accept_connection(struct rfcomm_session *s)
1814 {
1815 struct socket *sock = s->sock, *nsock;
1816 int err;
1817
1818 /* Fast check for a new connection.
1819 * Avoids unnesesary socket allocations. */
1820 if (list_empty(&bt_sk(sock->sk)->accept_q))
1821 return;
1822
1823 BT_DBG("session %p", s);
1824
1825 err = kernel_accept(sock, &nsock, O_NONBLOCK);
1826 if (err < 0)
1827 return;
1828
1829 /* Set our callbacks */
1830 nsock->sk->sk_data_ready = rfcomm_l2data_ready;
1831 nsock->sk->sk_state_change = rfcomm_l2state_change;
1832
1833 s = rfcomm_session_add(nsock, BT_OPEN);
1834 if (s) {
1835 rfcomm_session_hold(s);
1836
1837 /* We should adjust MTU on incoming sessions.
1838 * L2CAP MTU minus UIH header and FCS. */
1839 s->mtu = min(l2cap_pi(nsock->sk)->omtu, l2cap_pi(nsock->sk)->imtu) - 5;
1840
1841 rfcomm_schedule(RFCOMM_SCHED_RX);
1842 } else
1843 sock_release(nsock);
1844 }
1845
1846 static inline void rfcomm_check_connection(struct rfcomm_session *s)
1847 {
1848 struct sock *sk = s->sock->sk;
1849
1850 BT_DBG("%p state %ld", s, s->state);
1851
1852 switch(sk->sk_state) {
1853 case BT_CONNECTED:
1854 s->state = BT_CONNECT;
1855
1856 /* We can adjust MTU on outgoing sessions.
1857 * L2CAP MTU minus UIH header and FCS. */
1858 s->mtu = min(l2cap_pi(sk)->omtu, l2cap_pi(sk)->imtu) - 5;
1859
1860 rfcomm_send_sabm(s, 0);
1861 break;
1862
1863 case BT_CLOSED:
1864 s->state = BT_CLOSED;
1865 rfcomm_session_close(s, sk->sk_err);
1866 break;
1867 }
1868 }
1869
1870 static inline void rfcomm_process_sessions(void)
1871 {
1872 struct list_head *p, *n;
1873
1874 rfcomm_lock();
1875
1876 list_for_each_safe(p, n, &session_list) {
1877 struct rfcomm_session *s;
1878 s = list_entry(p, struct rfcomm_session, list);
1879
1880 if (s->state == BT_LISTEN) {
1881 rfcomm_accept_connection(s);
1882 continue;
1883 }
1884
1885 rfcomm_session_hold(s);
1886
1887 switch (s->state) {
1888 case BT_BOUND:
1889 rfcomm_check_connection(s);
1890 break;
1891
1892 default:
1893 rfcomm_process_rx(s);
1894 break;
1895 }
1896
1897 rfcomm_process_dlcs(s);
1898
1899 rfcomm_session_put(s);
1900 }
1901
1902 rfcomm_unlock();
1903 }
1904
1905 static int rfcomm_add_listener(bdaddr_t *ba)
1906 {
1907 struct sockaddr_l2 addr;
1908 struct socket *sock;
1909 struct sock *sk;
1910 struct rfcomm_session *s;
1911 int err = 0;
1912
1913 /* Create socket */
1914 err = rfcomm_l2sock_create(&sock);
1915 if (err < 0) {
1916 BT_ERR("Create socket failed %d", err);
1917 return err;
1918 }
1919
1920 /* Bind socket */
1921 bacpy(&addr.l2_bdaddr, ba);
1922 addr.l2_family = AF_BLUETOOTH;
1923 addr.l2_psm = htobs(RFCOMM_PSM);
1924 addr.l2_cid = 0;
1925 err = kernel_bind(sock, (struct sockaddr *) &addr, sizeof(addr));
1926 if (err < 0) {
1927 BT_ERR("Bind failed %d", err);
1928 goto failed;
1929 }
1930
1931 /* Set L2CAP options */
1932 sk = sock->sk;
1933 lock_sock(sk);
1934 l2cap_pi(sk)->imtu = l2cap_mtu;
1935 release_sock(sk);
1936
1937 /* Start listening on the socket */
1938 err = kernel_listen(sock, 10);
1939 if (err) {
1940 BT_ERR("Listen failed %d", err);
1941 goto failed;
1942 }
1943
1944 /* Add listening session */
1945 s = rfcomm_session_add(sock, BT_LISTEN);
1946 if (!s)
1947 goto failed;
1948
1949 rfcomm_session_hold(s);
1950 return 0;
1951 failed:
1952 sock_release(sock);
1953 return err;
1954 }
1955
1956 static void rfcomm_kill_listener(void)
1957 {
1958 struct rfcomm_session *s;
1959 struct list_head *p, *n;
1960
1961 BT_DBG("");
1962
1963 list_for_each_safe(p, n, &session_list) {
1964 s = list_entry(p, struct rfcomm_session, list);
1965 rfcomm_session_del(s);
1966 }
1967 }
1968
1969 static int rfcomm_run(void *unused)
1970 {
1971 BT_DBG("");
1972
1973 set_user_nice(current, -10);
1974
1975 rfcomm_add_listener(BDADDR_ANY);
1976
1977 while (!kthread_should_stop()) {
1978 set_current_state(TASK_INTERRUPTIBLE);
1979 if (!test_bit(RFCOMM_SCHED_WAKEUP, &rfcomm_event)) {
1980 /* No pending events. Let's sleep.
1981 * Incoming connections and data will wake us up. */
1982 schedule();
1983 }
1984 set_current_state(TASK_RUNNING);
1985
1986 /* Process stuff */
1987 clear_bit(RFCOMM_SCHED_WAKEUP, &rfcomm_event);
1988 rfcomm_process_sessions();
1989 }
1990
1991 rfcomm_kill_listener();
1992
1993 return 0;
1994 }
1995
1996 static void rfcomm_security_cfm(struct hci_conn *conn, u8 status, u8 encrypt)
1997 {
1998 struct rfcomm_session *s;
1999 struct rfcomm_dlc *d;
2000 struct list_head *p, *n;
2001
2002 BT_DBG("conn %p status 0x%02x encrypt 0x%02x", conn, status, encrypt);
2003
2004 s = rfcomm_session_get(&conn->hdev->bdaddr, &conn->dst);
2005 if (!s)
2006 return;
2007
2008 rfcomm_session_hold(s);
2009
2010 list_for_each_safe(p, n, &s->dlcs) {
2011 d = list_entry(p, struct rfcomm_dlc, list);
2012
2013 if (test_and_clear_bit(RFCOMM_SEC_PENDING, &d->flags)) {
2014 rfcomm_dlc_clear_timer(d);
2015 if (status || encrypt == 0x00) {
2016 __rfcomm_dlc_close(d, ECONNREFUSED);
2017 continue;
2018 }
2019 }
2020
2021 if (d->state == BT_CONNECTED && !status && encrypt == 0x00) {
2022 if (d->sec_level == BT_SECURITY_MEDIUM) {
2023 set_bit(RFCOMM_SEC_PENDING, &d->flags);
2024 rfcomm_dlc_set_timer(d, RFCOMM_AUTH_TIMEOUT);
2025 continue;
2026 } else if (d->sec_level == BT_SECURITY_HIGH) {
2027 __rfcomm_dlc_close(d, ECONNREFUSED);
2028 continue;
2029 }
2030 }
2031
2032 if (!test_and_clear_bit(RFCOMM_AUTH_PENDING, &d->flags))
2033 continue;
2034
2035 if (!status)
2036 set_bit(RFCOMM_AUTH_ACCEPT, &d->flags);
2037 else
2038 set_bit(RFCOMM_AUTH_REJECT, &d->flags);
2039 }
2040
2041 rfcomm_session_put(s);
2042
2043 rfcomm_schedule(RFCOMM_SCHED_AUTH);
2044 }
2045
2046 static struct hci_cb rfcomm_cb = {
2047 .name = "RFCOMM",
2048 .security_cfm = rfcomm_security_cfm
2049 };
2050
2051 static ssize_t rfcomm_dlc_sysfs_show(struct class *dev, char *buf)
2052 {
2053 struct rfcomm_session *s;
2054 struct list_head *pp, *p;
2055 char *str = buf;
2056
2057 rfcomm_lock();
2058
2059 list_for_each(p, &session_list) {
2060 s = list_entry(p, struct rfcomm_session, list);
2061 list_for_each(pp, &s->dlcs) {
2062 struct sock *sk = s->sock->sk;
2063 struct rfcomm_dlc *d = list_entry(pp, struct rfcomm_dlc, list);
2064
2065 str += sprintf(str, "%s %s %ld %d %d %d %d\n",
2066 batostr(&bt_sk(sk)->src), batostr(&bt_sk(sk)->dst),
2067 d->state, d->dlci, d->mtu, d->rx_credits, d->tx_credits);
2068 }
2069 }
2070
2071 rfcomm_unlock();
2072
2073 return (str - buf);
2074 }
2075
2076 static CLASS_ATTR(rfcomm_dlc, S_IRUGO, rfcomm_dlc_sysfs_show, NULL);
2077
2078 /* ---- Initialization ---- */
2079 static int __init rfcomm_init(void)
2080 {
2081 l2cap_load();
2082
2083 hci_register_cb(&rfcomm_cb);
2084
2085 rfcomm_thread = kthread_run(rfcomm_run, NULL, "krfcommd");
2086 if (IS_ERR(rfcomm_thread)) {
2087 hci_unregister_cb(&rfcomm_cb);
2088 return PTR_ERR(rfcomm_thread);
2089 }
2090
2091 if (class_create_file(bt_class, &class_attr_rfcomm_dlc) < 0)
2092 BT_ERR("Failed to create RFCOMM info file");
2093
2094 rfcomm_init_sockets();
2095
2096 #ifdef CONFIG_BT_RFCOMM_TTY
2097 rfcomm_init_ttys();
2098 #endif
2099
2100 BT_INFO("RFCOMM ver %s", VERSION);
2101
2102 return 0;
2103 }
2104
2105 static void __exit rfcomm_exit(void)
2106 {
2107 class_remove_file(bt_class, &class_attr_rfcomm_dlc);
2108
2109 hci_unregister_cb(&rfcomm_cb);
2110
2111 kthread_stop(rfcomm_thread);
2112
2113 #ifdef CONFIG_BT_RFCOMM_TTY
2114 rfcomm_cleanup_ttys();
2115 #endif
2116
2117 rfcomm_cleanup_sockets();
2118 }
2119
2120 module_init(rfcomm_init);
2121 module_exit(rfcomm_exit);
2122
2123 module_param(disable_cfc, bool, 0644);
2124 MODULE_PARM_DESC(disable_cfc, "Disable credit based flow control");
2125
2126 module_param(channel_mtu, int, 0644);
2127 MODULE_PARM_DESC(channel_mtu, "Default MTU for the RFCOMM channel");
2128
2129 module_param(l2cap_mtu, uint, 0644);
2130 MODULE_PARM_DESC(l2cap_mtu, "Default MTU for the L2CAP connection");
2131
2132 MODULE_AUTHOR("Marcel Holtmann <marcel@holtmann.org>");
2133 MODULE_DESCRIPTION("Bluetooth RFCOMM ver " VERSION);
2134 MODULE_VERSION(VERSION);
2135 MODULE_LICENSE("GPL");
2136 MODULE_ALIAS("bt-proto-3");