]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/bluetooth/rfcomm/sock.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / net / bluetooth / rfcomm / sock.c
1 /*
2 RFCOMM implementation for Linux Bluetooth stack (BlueZ).
3 Copyright (C) 2002 Maxim Krasnyansky <maxk@qualcomm.com>
4 Copyright (C) 2002 Marcel Holtmann <marcel@holtmann.org>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
9
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
22 */
23
24 /*
25 * RFCOMM sockets.
26 */
27
28 #include <linux/export.h>
29 #include <linux/debugfs.h>
30 #include <linux/sched/signal.h>
31
32 #include <net/bluetooth/bluetooth.h>
33 #include <net/bluetooth/hci_core.h>
34 #include <net/bluetooth/l2cap.h>
35 #include <net/bluetooth/rfcomm.h>
36
37 static const struct proto_ops rfcomm_sock_ops;
38
39 static struct bt_sock_list rfcomm_sk_list = {
40 .lock = __RW_LOCK_UNLOCKED(rfcomm_sk_list.lock)
41 };
42
43 static void rfcomm_sock_close(struct sock *sk);
44 static void rfcomm_sock_kill(struct sock *sk);
45
46 /* ---- DLC callbacks ----
47 *
48 * called under rfcomm_dlc_lock()
49 */
50 static void rfcomm_sk_data_ready(struct rfcomm_dlc *d, struct sk_buff *skb)
51 {
52 struct sock *sk = d->owner;
53 if (!sk)
54 return;
55
56 atomic_add(skb->len, &sk->sk_rmem_alloc);
57 skb_queue_tail(&sk->sk_receive_queue, skb);
58 sk->sk_data_ready(sk);
59
60 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
61 rfcomm_dlc_throttle(d);
62 }
63
64 static void rfcomm_sk_state_change(struct rfcomm_dlc *d, int err)
65 {
66 struct sock *sk = d->owner, *parent;
67 unsigned long flags;
68
69 if (!sk)
70 return;
71
72 BT_DBG("dlc %p state %ld err %d", d, d->state, err);
73
74 local_irq_save(flags);
75 bh_lock_sock(sk);
76
77 if (err)
78 sk->sk_err = err;
79
80 sk->sk_state = d->state;
81
82 parent = bt_sk(sk)->parent;
83 if (parent) {
84 if (d->state == BT_CLOSED) {
85 sock_set_flag(sk, SOCK_ZAPPED);
86 bt_accept_unlink(sk);
87 }
88 parent->sk_data_ready(parent);
89 } else {
90 if (d->state == BT_CONNECTED)
91 rfcomm_session_getaddr(d->session,
92 &rfcomm_pi(sk)->src, NULL);
93 sk->sk_state_change(sk);
94 }
95
96 bh_unlock_sock(sk);
97 local_irq_restore(flags);
98
99 if (parent && sock_flag(sk, SOCK_ZAPPED)) {
100 /* We have to drop DLC lock here, otherwise
101 * rfcomm_sock_destruct() will dead lock. */
102 rfcomm_dlc_unlock(d);
103 rfcomm_sock_kill(sk);
104 rfcomm_dlc_lock(d);
105 }
106 }
107
108 /* ---- Socket functions ---- */
109 static struct sock *__rfcomm_get_listen_sock_by_addr(u8 channel, bdaddr_t *src)
110 {
111 struct sock *sk = NULL;
112
113 sk_for_each(sk, &rfcomm_sk_list.head) {
114 if (rfcomm_pi(sk)->channel != channel)
115 continue;
116
117 if (bacmp(&rfcomm_pi(sk)->src, src))
118 continue;
119
120 if (sk->sk_state == BT_BOUND || sk->sk_state == BT_LISTEN)
121 break;
122 }
123
124 return sk ? sk : NULL;
125 }
126
127 /* Find socket with channel and source bdaddr.
128 * Returns closest match.
129 */
130 static struct sock *rfcomm_get_sock_by_channel(int state, u8 channel, bdaddr_t *src)
131 {
132 struct sock *sk = NULL, *sk1 = NULL;
133
134 read_lock(&rfcomm_sk_list.lock);
135
136 sk_for_each(sk, &rfcomm_sk_list.head) {
137 if (state && sk->sk_state != state)
138 continue;
139
140 if (rfcomm_pi(sk)->channel == channel) {
141 /* Exact match. */
142 if (!bacmp(&rfcomm_pi(sk)->src, src))
143 break;
144
145 /* Closest match */
146 if (!bacmp(&rfcomm_pi(sk)->src, BDADDR_ANY))
147 sk1 = sk;
148 }
149 }
150
151 read_unlock(&rfcomm_sk_list.lock);
152
153 return sk ? sk : sk1;
154 }
155
156 static void rfcomm_sock_destruct(struct sock *sk)
157 {
158 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
159
160 BT_DBG("sk %p dlc %p", sk, d);
161
162 skb_queue_purge(&sk->sk_receive_queue);
163 skb_queue_purge(&sk->sk_write_queue);
164
165 rfcomm_dlc_lock(d);
166 rfcomm_pi(sk)->dlc = NULL;
167
168 /* Detach DLC if it's owned by this socket */
169 if (d->owner == sk)
170 d->owner = NULL;
171 rfcomm_dlc_unlock(d);
172
173 rfcomm_dlc_put(d);
174 }
175
176 static void rfcomm_sock_cleanup_listen(struct sock *parent)
177 {
178 struct sock *sk;
179
180 BT_DBG("parent %p", parent);
181
182 /* Close not yet accepted dlcs */
183 while ((sk = bt_accept_dequeue(parent, NULL))) {
184 rfcomm_sock_close(sk);
185 rfcomm_sock_kill(sk);
186 }
187
188 parent->sk_state = BT_CLOSED;
189 sock_set_flag(parent, SOCK_ZAPPED);
190 }
191
192 /* Kill socket (only if zapped and orphan)
193 * Must be called on unlocked socket.
194 */
195 static void rfcomm_sock_kill(struct sock *sk)
196 {
197 if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
198 return;
199
200 BT_DBG("sk %p state %d refcnt %d", sk, sk->sk_state, atomic_read(&sk->sk_refcnt));
201
202 /* Kill poor orphan */
203 bt_sock_unlink(&rfcomm_sk_list, sk);
204 sock_set_flag(sk, SOCK_DEAD);
205 sock_put(sk);
206 }
207
208 static void __rfcomm_sock_close(struct sock *sk)
209 {
210 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
211
212 BT_DBG("sk %p state %d socket %p", sk, sk->sk_state, sk->sk_socket);
213
214 switch (sk->sk_state) {
215 case BT_LISTEN:
216 rfcomm_sock_cleanup_listen(sk);
217 break;
218
219 case BT_CONNECT:
220 case BT_CONNECT2:
221 case BT_CONFIG:
222 case BT_CONNECTED:
223 rfcomm_dlc_close(d, 0);
224
225 default:
226 sock_set_flag(sk, SOCK_ZAPPED);
227 break;
228 }
229 }
230
231 /* Close socket.
232 * Must be called on unlocked socket.
233 */
234 static void rfcomm_sock_close(struct sock *sk)
235 {
236 lock_sock(sk);
237 __rfcomm_sock_close(sk);
238 release_sock(sk);
239 }
240
241 static void rfcomm_sock_init(struct sock *sk, struct sock *parent)
242 {
243 struct rfcomm_pinfo *pi = rfcomm_pi(sk);
244
245 BT_DBG("sk %p", sk);
246
247 if (parent) {
248 sk->sk_type = parent->sk_type;
249 pi->dlc->defer_setup = test_bit(BT_SK_DEFER_SETUP,
250 &bt_sk(parent)->flags);
251
252 pi->sec_level = rfcomm_pi(parent)->sec_level;
253 pi->role_switch = rfcomm_pi(parent)->role_switch;
254
255 security_sk_clone(parent, sk);
256 } else {
257 pi->dlc->defer_setup = 0;
258
259 pi->sec_level = BT_SECURITY_LOW;
260 pi->role_switch = 0;
261 }
262
263 pi->dlc->sec_level = pi->sec_level;
264 pi->dlc->role_switch = pi->role_switch;
265 }
266
267 static struct proto rfcomm_proto = {
268 .name = "RFCOMM",
269 .owner = THIS_MODULE,
270 .obj_size = sizeof(struct rfcomm_pinfo)
271 };
272
273 static struct sock *rfcomm_sock_alloc(struct net *net, struct socket *sock, int proto, gfp_t prio, int kern)
274 {
275 struct rfcomm_dlc *d;
276 struct sock *sk;
277
278 sk = sk_alloc(net, PF_BLUETOOTH, prio, &rfcomm_proto, kern);
279 if (!sk)
280 return NULL;
281
282 sock_init_data(sock, sk);
283 INIT_LIST_HEAD(&bt_sk(sk)->accept_q);
284
285 d = rfcomm_dlc_alloc(prio);
286 if (!d) {
287 sk_free(sk);
288 return NULL;
289 }
290
291 d->data_ready = rfcomm_sk_data_ready;
292 d->state_change = rfcomm_sk_state_change;
293
294 rfcomm_pi(sk)->dlc = d;
295 d->owner = sk;
296
297 sk->sk_destruct = rfcomm_sock_destruct;
298 sk->sk_sndtimeo = RFCOMM_CONN_TIMEOUT;
299
300 sk->sk_sndbuf = RFCOMM_MAX_CREDITS * RFCOMM_DEFAULT_MTU * 10;
301 sk->sk_rcvbuf = RFCOMM_MAX_CREDITS * RFCOMM_DEFAULT_MTU * 10;
302
303 sock_reset_flag(sk, SOCK_ZAPPED);
304
305 sk->sk_protocol = proto;
306 sk->sk_state = BT_OPEN;
307
308 bt_sock_link(&rfcomm_sk_list, sk);
309
310 BT_DBG("sk %p", sk);
311 return sk;
312 }
313
314 static int rfcomm_sock_create(struct net *net, struct socket *sock,
315 int protocol, int kern)
316 {
317 struct sock *sk;
318
319 BT_DBG("sock %p", sock);
320
321 sock->state = SS_UNCONNECTED;
322
323 if (sock->type != SOCK_STREAM && sock->type != SOCK_RAW)
324 return -ESOCKTNOSUPPORT;
325
326 sock->ops = &rfcomm_sock_ops;
327
328 sk = rfcomm_sock_alloc(net, sock, protocol, GFP_ATOMIC, kern);
329 if (!sk)
330 return -ENOMEM;
331
332 rfcomm_sock_init(sk, NULL);
333 return 0;
334 }
335
336 static int rfcomm_sock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
337 {
338 struct sockaddr_rc sa;
339 struct sock *sk = sock->sk;
340 int len, err = 0;
341
342 if (!addr || addr->sa_family != AF_BLUETOOTH)
343 return -EINVAL;
344
345 memset(&sa, 0, sizeof(sa));
346 len = min_t(unsigned int, sizeof(sa), addr_len);
347 memcpy(&sa, addr, len);
348
349 BT_DBG("sk %p %pMR", sk, &sa.rc_bdaddr);
350
351 lock_sock(sk);
352
353 if (sk->sk_state != BT_OPEN) {
354 err = -EBADFD;
355 goto done;
356 }
357
358 if (sk->sk_type != SOCK_STREAM) {
359 err = -EINVAL;
360 goto done;
361 }
362
363 write_lock(&rfcomm_sk_list.lock);
364
365 if (sa.rc_channel &&
366 __rfcomm_get_listen_sock_by_addr(sa.rc_channel, &sa.rc_bdaddr)) {
367 err = -EADDRINUSE;
368 } else {
369 /* Save source address */
370 bacpy(&rfcomm_pi(sk)->src, &sa.rc_bdaddr);
371 rfcomm_pi(sk)->channel = sa.rc_channel;
372 sk->sk_state = BT_BOUND;
373 }
374
375 write_unlock(&rfcomm_sk_list.lock);
376
377 done:
378 release_sock(sk);
379 return err;
380 }
381
382 static int rfcomm_sock_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags)
383 {
384 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr;
385 struct sock *sk = sock->sk;
386 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
387 int err = 0;
388
389 BT_DBG("sk %p", sk);
390
391 if (alen < sizeof(struct sockaddr_rc) ||
392 addr->sa_family != AF_BLUETOOTH)
393 return -EINVAL;
394
395 lock_sock(sk);
396
397 if (sk->sk_state != BT_OPEN && sk->sk_state != BT_BOUND) {
398 err = -EBADFD;
399 goto done;
400 }
401
402 if (sk->sk_type != SOCK_STREAM) {
403 err = -EINVAL;
404 goto done;
405 }
406
407 sk->sk_state = BT_CONNECT;
408 bacpy(&rfcomm_pi(sk)->dst, &sa->rc_bdaddr);
409 rfcomm_pi(sk)->channel = sa->rc_channel;
410
411 d->sec_level = rfcomm_pi(sk)->sec_level;
412 d->role_switch = rfcomm_pi(sk)->role_switch;
413
414 err = rfcomm_dlc_open(d, &rfcomm_pi(sk)->src, &sa->rc_bdaddr,
415 sa->rc_channel);
416 if (!err)
417 err = bt_sock_wait_state(sk, BT_CONNECTED,
418 sock_sndtimeo(sk, flags & O_NONBLOCK));
419
420 done:
421 release_sock(sk);
422 return err;
423 }
424
425 static int rfcomm_sock_listen(struct socket *sock, int backlog)
426 {
427 struct sock *sk = sock->sk;
428 int err = 0;
429
430 BT_DBG("sk %p backlog %d", sk, backlog);
431
432 lock_sock(sk);
433
434 if (sk->sk_state != BT_BOUND) {
435 err = -EBADFD;
436 goto done;
437 }
438
439 if (sk->sk_type != SOCK_STREAM) {
440 err = -EINVAL;
441 goto done;
442 }
443
444 if (!rfcomm_pi(sk)->channel) {
445 bdaddr_t *src = &rfcomm_pi(sk)->src;
446 u8 channel;
447
448 err = -EINVAL;
449
450 write_lock(&rfcomm_sk_list.lock);
451
452 for (channel = 1; channel < 31; channel++)
453 if (!__rfcomm_get_listen_sock_by_addr(channel, src)) {
454 rfcomm_pi(sk)->channel = channel;
455 err = 0;
456 break;
457 }
458
459 write_unlock(&rfcomm_sk_list.lock);
460
461 if (err < 0)
462 goto done;
463 }
464
465 sk->sk_max_ack_backlog = backlog;
466 sk->sk_ack_backlog = 0;
467 sk->sk_state = BT_LISTEN;
468
469 done:
470 release_sock(sk);
471 return err;
472 }
473
474 static int rfcomm_sock_accept(struct socket *sock, struct socket *newsock, int flags)
475 {
476 DEFINE_WAIT_FUNC(wait, woken_wake_function);
477 struct sock *sk = sock->sk, *nsk;
478 long timeo;
479 int err = 0;
480
481 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
482
483 if (sk->sk_type != SOCK_STREAM) {
484 err = -EINVAL;
485 goto done;
486 }
487
488 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
489
490 BT_DBG("sk %p timeo %ld", sk, timeo);
491
492 /* Wait for an incoming connection. (wake-one). */
493 add_wait_queue_exclusive(sk_sleep(sk), &wait);
494 while (1) {
495 if (sk->sk_state != BT_LISTEN) {
496 err = -EBADFD;
497 break;
498 }
499
500 nsk = bt_accept_dequeue(sk, newsock);
501 if (nsk)
502 break;
503
504 if (!timeo) {
505 err = -EAGAIN;
506 break;
507 }
508
509 if (signal_pending(current)) {
510 err = sock_intr_errno(timeo);
511 break;
512 }
513
514 release_sock(sk);
515
516 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo);
517
518 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
519 }
520 remove_wait_queue(sk_sleep(sk), &wait);
521
522 if (err)
523 goto done;
524
525 newsock->state = SS_CONNECTED;
526
527 BT_DBG("new socket %p", nsk);
528
529 done:
530 release_sock(sk);
531 return err;
532 }
533
534 static int rfcomm_sock_getname(struct socket *sock, struct sockaddr *addr, int *len, int peer)
535 {
536 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr;
537 struct sock *sk = sock->sk;
538
539 BT_DBG("sock %p, sk %p", sock, sk);
540
541 if (peer && sk->sk_state != BT_CONNECTED &&
542 sk->sk_state != BT_CONNECT && sk->sk_state != BT_CONNECT2)
543 return -ENOTCONN;
544
545 memset(sa, 0, sizeof(*sa));
546 sa->rc_family = AF_BLUETOOTH;
547 sa->rc_channel = rfcomm_pi(sk)->channel;
548 if (peer)
549 bacpy(&sa->rc_bdaddr, &rfcomm_pi(sk)->dst);
550 else
551 bacpy(&sa->rc_bdaddr, &rfcomm_pi(sk)->src);
552
553 *len = sizeof(struct sockaddr_rc);
554 return 0;
555 }
556
557 static int rfcomm_sock_sendmsg(struct socket *sock, struct msghdr *msg,
558 size_t len)
559 {
560 struct sock *sk = sock->sk;
561 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
562 struct sk_buff *skb;
563 int sent;
564
565 if (test_bit(RFCOMM_DEFER_SETUP, &d->flags))
566 return -ENOTCONN;
567
568 if (msg->msg_flags & MSG_OOB)
569 return -EOPNOTSUPP;
570
571 if (sk->sk_shutdown & SEND_SHUTDOWN)
572 return -EPIPE;
573
574 BT_DBG("sock %p, sk %p", sock, sk);
575
576 lock_sock(sk);
577
578 sent = bt_sock_wait_ready(sk, msg->msg_flags);
579 if (sent)
580 goto done;
581
582 while (len) {
583 size_t size = min_t(size_t, len, d->mtu);
584 int err;
585
586 skb = sock_alloc_send_skb(sk, size + RFCOMM_SKB_RESERVE,
587 msg->msg_flags & MSG_DONTWAIT, &err);
588 if (!skb) {
589 if (sent == 0)
590 sent = err;
591 break;
592 }
593 skb_reserve(skb, RFCOMM_SKB_HEAD_RESERVE);
594
595 err = memcpy_from_msg(skb_put(skb, size), msg, size);
596 if (err) {
597 kfree_skb(skb);
598 if (sent == 0)
599 sent = err;
600 break;
601 }
602
603 skb->priority = sk->sk_priority;
604
605 err = rfcomm_dlc_send(d, skb);
606 if (err < 0) {
607 kfree_skb(skb);
608 if (sent == 0)
609 sent = err;
610 break;
611 }
612
613 sent += size;
614 len -= size;
615 }
616
617 done:
618 release_sock(sk);
619
620 return sent;
621 }
622
623 static int rfcomm_sock_recvmsg(struct socket *sock, struct msghdr *msg,
624 size_t size, int flags)
625 {
626 struct sock *sk = sock->sk;
627 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
628 int len;
629
630 if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) {
631 rfcomm_dlc_accept(d);
632 return 0;
633 }
634
635 len = bt_sock_stream_recvmsg(sock, msg, size, flags);
636
637 lock_sock(sk);
638 if (!(flags & MSG_PEEK) && len > 0)
639 atomic_sub(len, &sk->sk_rmem_alloc);
640
641 if (atomic_read(&sk->sk_rmem_alloc) <= (sk->sk_rcvbuf >> 2))
642 rfcomm_dlc_unthrottle(rfcomm_pi(sk)->dlc);
643 release_sock(sk);
644
645 return len;
646 }
647
648 static int rfcomm_sock_setsockopt_old(struct socket *sock, int optname, char __user *optval, unsigned int optlen)
649 {
650 struct sock *sk = sock->sk;
651 int err = 0;
652 u32 opt;
653
654 BT_DBG("sk %p", sk);
655
656 lock_sock(sk);
657
658 switch (optname) {
659 case RFCOMM_LM:
660 if (get_user(opt, (u32 __user *) optval)) {
661 err = -EFAULT;
662 break;
663 }
664
665 if (opt & RFCOMM_LM_FIPS) {
666 err = -EINVAL;
667 break;
668 }
669
670 if (opt & RFCOMM_LM_AUTH)
671 rfcomm_pi(sk)->sec_level = BT_SECURITY_LOW;
672 if (opt & RFCOMM_LM_ENCRYPT)
673 rfcomm_pi(sk)->sec_level = BT_SECURITY_MEDIUM;
674 if (opt & RFCOMM_LM_SECURE)
675 rfcomm_pi(sk)->sec_level = BT_SECURITY_HIGH;
676
677 rfcomm_pi(sk)->role_switch = (opt & RFCOMM_LM_MASTER);
678 break;
679
680 default:
681 err = -ENOPROTOOPT;
682 break;
683 }
684
685 release_sock(sk);
686 return err;
687 }
688
689 static int rfcomm_sock_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
690 {
691 struct sock *sk = sock->sk;
692 struct bt_security sec;
693 int err = 0;
694 size_t len;
695 u32 opt;
696
697 BT_DBG("sk %p", sk);
698
699 if (level == SOL_RFCOMM)
700 return rfcomm_sock_setsockopt_old(sock, optname, optval, optlen);
701
702 if (level != SOL_BLUETOOTH)
703 return -ENOPROTOOPT;
704
705 lock_sock(sk);
706
707 switch (optname) {
708 case BT_SECURITY:
709 if (sk->sk_type != SOCK_STREAM) {
710 err = -EINVAL;
711 break;
712 }
713
714 sec.level = BT_SECURITY_LOW;
715
716 len = min_t(unsigned int, sizeof(sec), optlen);
717 if (copy_from_user((char *) &sec, optval, len)) {
718 err = -EFAULT;
719 break;
720 }
721
722 if (sec.level > BT_SECURITY_HIGH) {
723 err = -EINVAL;
724 break;
725 }
726
727 rfcomm_pi(sk)->sec_level = sec.level;
728 break;
729
730 case BT_DEFER_SETUP:
731 if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) {
732 err = -EINVAL;
733 break;
734 }
735
736 if (get_user(opt, (u32 __user *) optval)) {
737 err = -EFAULT;
738 break;
739 }
740
741 if (opt)
742 set_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags);
743 else
744 clear_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags);
745
746 break;
747
748 default:
749 err = -ENOPROTOOPT;
750 break;
751 }
752
753 release_sock(sk);
754 return err;
755 }
756
757 static int rfcomm_sock_getsockopt_old(struct socket *sock, int optname, char __user *optval, int __user *optlen)
758 {
759 struct sock *sk = sock->sk;
760 struct sock *l2cap_sk;
761 struct l2cap_conn *conn;
762 struct rfcomm_conninfo cinfo;
763 int len, err = 0;
764 u32 opt;
765
766 BT_DBG("sk %p", sk);
767
768 if (get_user(len, optlen))
769 return -EFAULT;
770
771 lock_sock(sk);
772
773 switch (optname) {
774 case RFCOMM_LM:
775 switch (rfcomm_pi(sk)->sec_level) {
776 case BT_SECURITY_LOW:
777 opt = RFCOMM_LM_AUTH;
778 break;
779 case BT_SECURITY_MEDIUM:
780 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT;
781 break;
782 case BT_SECURITY_HIGH:
783 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT |
784 RFCOMM_LM_SECURE;
785 break;
786 case BT_SECURITY_FIPS:
787 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT |
788 RFCOMM_LM_SECURE | RFCOMM_LM_FIPS;
789 break;
790 default:
791 opt = 0;
792 break;
793 }
794
795 if (rfcomm_pi(sk)->role_switch)
796 opt |= RFCOMM_LM_MASTER;
797
798 if (put_user(opt, (u32 __user *) optval))
799 err = -EFAULT;
800
801 break;
802
803 case RFCOMM_CONNINFO:
804 if (sk->sk_state != BT_CONNECTED &&
805 !rfcomm_pi(sk)->dlc->defer_setup) {
806 err = -ENOTCONN;
807 break;
808 }
809
810 l2cap_sk = rfcomm_pi(sk)->dlc->session->sock->sk;
811 conn = l2cap_pi(l2cap_sk)->chan->conn;
812
813 memset(&cinfo, 0, sizeof(cinfo));
814 cinfo.hci_handle = conn->hcon->handle;
815 memcpy(cinfo.dev_class, conn->hcon->dev_class, 3);
816
817 len = min_t(unsigned int, len, sizeof(cinfo));
818 if (copy_to_user(optval, (char *) &cinfo, len))
819 err = -EFAULT;
820
821 break;
822
823 default:
824 err = -ENOPROTOOPT;
825 break;
826 }
827
828 release_sock(sk);
829 return err;
830 }
831
832 static int rfcomm_sock_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen)
833 {
834 struct sock *sk = sock->sk;
835 struct bt_security sec;
836 int len, err = 0;
837
838 BT_DBG("sk %p", sk);
839
840 if (level == SOL_RFCOMM)
841 return rfcomm_sock_getsockopt_old(sock, optname, optval, optlen);
842
843 if (level != SOL_BLUETOOTH)
844 return -ENOPROTOOPT;
845
846 if (get_user(len, optlen))
847 return -EFAULT;
848
849 lock_sock(sk);
850
851 switch (optname) {
852 case BT_SECURITY:
853 if (sk->sk_type != SOCK_STREAM) {
854 err = -EINVAL;
855 break;
856 }
857
858 sec.level = rfcomm_pi(sk)->sec_level;
859 sec.key_size = 0;
860
861 len = min_t(unsigned int, len, sizeof(sec));
862 if (copy_to_user(optval, (char *) &sec, len))
863 err = -EFAULT;
864
865 break;
866
867 case BT_DEFER_SETUP:
868 if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) {
869 err = -EINVAL;
870 break;
871 }
872
873 if (put_user(test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags),
874 (u32 __user *) optval))
875 err = -EFAULT;
876
877 break;
878
879 default:
880 err = -ENOPROTOOPT;
881 break;
882 }
883
884 release_sock(sk);
885 return err;
886 }
887
888 static int rfcomm_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
889 {
890 struct sock *sk __maybe_unused = sock->sk;
891 int err;
892
893 BT_DBG("sk %p cmd %x arg %lx", sk, cmd, arg);
894
895 err = bt_sock_ioctl(sock, cmd, arg);
896
897 if (err == -ENOIOCTLCMD) {
898 #ifdef CONFIG_BT_RFCOMM_TTY
899 lock_sock(sk);
900 err = rfcomm_dev_ioctl(sk, cmd, (void __user *) arg);
901 release_sock(sk);
902 #else
903 err = -EOPNOTSUPP;
904 #endif
905 }
906
907 return err;
908 }
909
910 static int rfcomm_sock_shutdown(struct socket *sock, int how)
911 {
912 struct sock *sk = sock->sk;
913 int err = 0;
914
915 BT_DBG("sock %p, sk %p", sock, sk);
916
917 if (!sk)
918 return 0;
919
920 lock_sock(sk);
921 if (!sk->sk_shutdown) {
922 sk->sk_shutdown = SHUTDOWN_MASK;
923 __rfcomm_sock_close(sk);
924
925 if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime &&
926 !(current->flags & PF_EXITING))
927 err = bt_sock_wait_state(sk, BT_CLOSED, sk->sk_lingertime);
928 }
929 release_sock(sk);
930 return err;
931 }
932
933 static int rfcomm_sock_release(struct socket *sock)
934 {
935 struct sock *sk = sock->sk;
936 int err;
937
938 BT_DBG("sock %p, sk %p", sock, sk);
939
940 if (!sk)
941 return 0;
942
943 err = rfcomm_sock_shutdown(sock, 2);
944
945 sock_orphan(sk);
946 rfcomm_sock_kill(sk);
947 return err;
948 }
949
950 /* ---- RFCOMM core layer callbacks ----
951 *
952 * called under rfcomm_lock()
953 */
954 int rfcomm_connect_ind(struct rfcomm_session *s, u8 channel, struct rfcomm_dlc **d)
955 {
956 struct sock *sk, *parent;
957 bdaddr_t src, dst;
958 int result = 0;
959
960 BT_DBG("session %p channel %d", s, channel);
961
962 rfcomm_session_getaddr(s, &src, &dst);
963
964 /* Check if we have socket listening on channel */
965 parent = rfcomm_get_sock_by_channel(BT_LISTEN, channel, &src);
966 if (!parent)
967 return 0;
968
969 bh_lock_sock(parent);
970
971 /* Check for backlog size */
972 if (sk_acceptq_is_full(parent)) {
973 BT_DBG("backlog full %d", parent->sk_ack_backlog);
974 goto done;
975 }
976
977 sk = rfcomm_sock_alloc(sock_net(parent), NULL, BTPROTO_RFCOMM, GFP_ATOMIC, 0);
978 if (!sk)
979 goto done;
980
981 bt_sock_reclassify_lock(sk, BTPROTO_RFCOMM);
982
983 rfcomm_sock_init(sk, parent);
984 bacpy(&rfcomm_pi(sk)->src, &src);
985 bacpy(&rfcomm_pi(sk)->dst, &dst);
986 rfcomm_pi(sk)->channel = channel;
987
988 sk->sk_state = BT_CONFIG;
989 bt_accept_enqueue(parent, sk);
990
991 /* Accept connection and return socket DLC */
992 *d = rfcomm_pi(sk)->dlc;
993 result = 1;
994
995 done:
996 bh_unlock_sock(parent);
997
998 if (test_bit(BT_SK_DEFER_SETUP, &bt_sk(parent)->flags))
999 parent->sk_state_change(parent);
1000
1001 return result;
1002 }
1003
1004 static int rfcomm_sock_debugfs_show(struct seq_file *f, void *p)
1005 {
1006 struct sock *sk;
1007
1008 read_lock(&rfcomm_sk_list.lock);
1009
1010 sk_for_each(sk, &rfcomm_sk_list.head) {
1011 seq_printf(f, "%pMR %pMR %d %d\n",
1012 &rfcomm_pi(sk)->src, &rfcomm_pi(sk)->dst,
1013 sk->sk_state, rfcomm_pi(sk)->channel);
1014 }
1015
1016 read_unlock(&rfcomm_sk_list.lock);
1017
1018 return 0;
1019 }
1020
1021 static int rfcomm_sock_debugfs_open(struct inode *inode, struct file *file)
1022 {
1023 return single_open(file, rfcomm_sock_debugfs_show, inode->i_private);
1024 }
1025
1026 static const struct file_operations rfcomm_sock_debugfs_fops = {
1027 .open = rfcomm_sock_debugfs_open,
1028 .read = seq_read,
1029 .llseek = seq_lseek,
1030 .release = single_release,
1031 };
1032
1033 static struct dentry *rfcomm_sock_debugfs;
1034
1035 static const struct proto_ops rfcomm_sock_ops = {
1036 .family = PF_BLUETOOTH,
1037 .owner = THIS_MODULE,
1038 .release = rfcomm_sock_release,
1039 .bind = rfcomm_sock_bind,
1040 .connect = rfcomm_sock_connect,
1041 .listen = rfcomm_sock_listen,
1042 .accept = rfcomm_sock_accept,
1043 .getname = rfcomm_sock_getname,
1044 .sendmsg = rfcomm_sock_sendmsg,
1045 .recvmsg = rfcomm_sock_recvmsg,
1046 .shutdown = rfcomm_sock_shutdown,
1047 .setsockopt = rfcomm_sock_setsockopt,
1048 .getsockopt = rfcomm_sock_getsockopt,
1049 .ioctl = rfcomm_sock_ioctl,
1050 .poll = bt_sock_poll,
1051 .socketpair = sock_no_socketpair,
1052 .mmap = sock_no_mmap
1053 };
1054
1055 static const struct net_proto_family rfcomm_sock_family_ops = {
1056 .family = PF_BLUETOOTH,
1057 .owner = THIS_MODULE,
1058 .create = rfcomm_sock_create
1059 };
1060
1061 int __init rfcomm_init_sockets(void)
1062 {
1063 int err;
1064
1065 BUILD_BUG_ON(sizeof(struct sockaddr_rc) > sizeof(struct sockaddr));
1066
1067 err = proto_register(&rfcomm_proto, 0);
1068 if (err < 0)
1069 return err;
1070
1071 err = bt_sock_register(BTPROTO_RFCOMM, &rfcomm_sock_family_ops);
1072 if (err < 0) {
1073 BT_ERR("RFCOMM socket layer registration failed");
1074 goto error;
1075 }
1076
1077 err = bt_procfs_init(&init_net, "rfcomm", &rfcomm_sk_list, NULL);
1078 if (err < 0) {
1079 BT_ERR("Failed to create RFCOMM proc file");
1080 bt_sock_unregister(BTPROTO_RFCOMM);
1081 goto error;
1082 }
1083
1084 BT_INFO("RFCOMM socket layer initialized");
1085
1086 if (IS_ERR_OR_NULL(bt_debugfs))
1087 return 0;
1088
1089 rfcomm_sock_debugfs = debugfs_create_file("rfcomm", 0444,
1090 bt_debugfs, NULL,
1091 &rfcomm_sock_debugfs_fops);
1092
1093 return 0;
1094
1095 error:
1096 proto_unregister(&rfcomm_proto);
1097 return err;
1098 }
1099
1100 void __exit rfcomm_cleanup_sockets(void)
1101 {
1102 bt_procfs_cleanup(&init_net, "rfcomm");
1103
1104 debugfs_remove(rfcomm_sock_debugfs);
1105
1106 bt_sock_unregister(BTPROTO_RFCOMM);
1107
1108 proto_unregister(&rfcomm_proto);
1109 }