]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/bluetooth/rfcomm/sock.c
net: Work around lockdep limitation in sockets that use sockets
[mirror_ubuntu-bionic-kernel.git] / net / bluetooth / rfcomm / sock.c
1 /*
2 RFCOMM implementation for Linux Bluetooth stack (BlueZ).
3 Copyright (C) 2002 Maxim Krasnyansky <maxk@qualcomm.com>
4 Copyright (C) 2002 Marcel Holtmann <marcel@holtmann.org>
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
9
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
22 */
23
24 /*
25 * RFCOMM sockets.
26 */
27
28 #include <linux/export.h>
29 #include <linux/debugfs.h>
30 #include <linux/sched/signal.h>
31
32 #include <net/bluetooth/bluetooth.h>
33 #include <net/bluetooth/hci_core.h>
34 #include <net/bluetooth/l2cap.h>
35 #include <net/bluetooth/rfcomm.h>
36
37 static const struct proto_ops rfcomm_sock_ops;
38
39 static struct bt_sock_list rfcomm_sk_list = {
40 .lock = __RW_LOCK_UNLOCKED(rfcomm_sk_list.lock)
41 };
42
43 static void rfcomm_sock_close(struct sock *sk);
44 static void rfcomm_sock_kill(struct sock *sk);
45
46 /* ---- DLC callbacks ----
47 *
48 * called under rfcomm_dlc_lock()
49 */
50 static void rfcomm_sk_data_ready(struct rfcomm_dlc *d, struct sk_buff *skb)
51 {
52 struct sock *sk = d->owner;
53 if (!sk)
54 return;
55
56 atomic_add(skb->len, &sk->sk_rmem_alloc);
57 skb_queue_tail(&sk->sk_receive_queue, skb);
58 sk->sk_data_ready(sk);
59
60 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
61 rfcomm_dlc_throttle(d);
62 }
63
64 static void rfcomm_sk_state_change(struct rfcomm_dlc *d, int err)
65 {
66 struct sock *sk = d->owner, *parent;
67 unsigned long flags;
68
69 if (!sk)
70 return;
71
72 BT_DBG("dlc %p state %ld err %d", d, d->state, err);
73
74 local_irq_save(flags);
75 bh_lock_sock(sk);
76
77 if (err)
78 sk->sk_err = err;
79
80 sk->sk_state = d->state;
81
82 parent = bt_sk(sk)->parent;
83 if (parent) {
84 if (d->state == BT_CLOSED) {
85 sock_set_flag(sk, SOCK_ZAPPED);
86 bt_accept_unlink(sk);
87 }
88 parent->sk_data_ready(parent);
89 } else {
90 if (d->state == BT_CONNECTED)
91 rfcomm_session_getaddr(d->session,
92 &rfcomm_pi(sk)->src, NULL);
93 sk->sk_state_change(sk);
94 }
95
96 bh_unlock_sock(sk);
97 local_irq_restore(flags);
98
99 if (parent && sock_flag(sk, SOCK_ZAPPED)) {
100 /* We have to drop DLC lock here, otherwise
101 * rfcomm_sock_destruct() will dead lock. */
102 rfcomm_dlc_unlock(d);
103 rfcomm_sock_kill(sk);
104 rfcomm_dlc_lock(d);
105 }
106 }
107
108 /* ---- Socket functions ---- */
109 static struct sock *__rfcomm_get_listen_sock_by_addr(u8 channel, bdaddr_t *src)
110 {
111 struct sock *sk = NULL;
112
113 sk_for_each(sk, &rfcomm_sk_list.head) {
114 if (rfcomm_pi(sk)->channel != channel)
115 continue;
116
117 if (bacmp(&rfcomm_pi(sk)->src, src))
118 continue;
119
120 if (sk->sk_state == BT_BOUND || sk->sk_state == BT_LISTEN)
121 break;
122 }
123
124 return sk ? sk : NULL;
125 }
126
127 /* Find socket with channel and source bdaddr.
128 * Returns closest match.
129 */
130 static struct sock *rfcomm_get_sock_by_channel(int state, u8 channel, bdaddr_t *src)
131 {
132 struct sock *sk = NULL, *sk1 = NULL;
133
134 read_lock(&rfcomm_sk_list.lock);
135
136 sk_for_each(sk, &rfcomm_sk_list.head) {
137 if (state && sk->sk_state != state)
138 continue;
139
140 if (rfcomm_pi(sk)->channel == channel) {
141 /* Exact match. */
142 if (!bacmp(&rfcomm_pi(sk)->src, src))
143 break;
144
145 /* Closest match */
146 if (!bacmp(&rfcomm_pi(sk)->src, BDADDR_ANY))
147 sk1 = sk;
148 }
149 }
150
151 read_unlock(&rfcomm_sk_list.lock);
152
153 return sk ? sk : sk1;
154 }
155
156 static void rfcomm_sock_destruct(struct sock *sk)
157 {
158 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
159
160 BT_DBG("sk %p dlc %p", sk, d);
161
162 skb_queue_purge(&sk->sk_receive_queue);
163 skb_queue_purge(&sk->sk_write_queue);
164
165 rfcomm_dlc_lock(d);
166 rfcomm_pi(sk)->dlc = NULL;
167
168 /* Detach DLC if it's owned by this socket */
169 if (d->owner == sk)
170 d->owner = NULL;
171 rfcomm_dlc_unlock(d);
172
173 rfcomm_dlc_put(d);
174 }
175
176 static void rfcomm_sock_cleanup_listen(struct sock *parent)
177 {
178 struct sock *sk;
179
180 BT_DBG("parent %p", parent);
181
182 /* Close not yet accepted dlcs */
183 while ((sk = bt_accept_dequeue(parent, NULL))) {
184 rfcomm_sock_close(sk);
185 rfcomm_sock_kill(sk);
186 }
187
188 parent->sk_state = BT_CLOSED;
189 sock_set_flag(parent, SOCK_ZAPPED);
190 }
191
192 /* Kill socket (only if zapped and orphan)
193 * Must be called on unlocked socket.
194 */
195 static void rfcomm_sock_kill(struct sock *sk)
196 {
197 if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
198 return;
199
200 BT_DBG("sk %p state %d refcnt %d", sk, sk->sk_state, atomic_read(&sk->sk_refcnt));
201
202 /* Kill poor orphan */
203 bt_sock_unlink(&rfcomm_sk_list, sk);
204 sock_set_flag(sk, SOCK_DEAD);
205 sock_put(sk);
206 }
207
208 static void __rfcomm_sock_close(struct sock *sk)
209 {
210 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
211
212 BT_DBG("sk %p state %d socket %p", sk, sk->sk_state, sk->sk_socket);
213
214 switch (sk->sk_state) {
215 case BT_LISTEN:
216 rfcomm_sock_cleanup_listen(sk);
217 break;
218
219 case BT_CONNECT:
220 case BT_CONNECT2:
221 case BT_CONFIG:
222 case BT_CONNECTED:
223 rfcomm_dlc_close(d, 0);
224
225 default:
226 sock_set_flag(sk, SOCK_ZAPPED);
227 break;
228 }
229 }
230
231 /* Close socket.
232 * Must be called on unlocked socket.
233 */
234 static void rfcomm_sock_close(struct sock *sk)
235 {
236 lock_sock(sk);
237 __rfcomm_sock_close(sk);
238 release_sock(sk);
239 }
240
241 static void rfcomm_sock_init(struct sock *sk, struct sock *parent)
242 {
243 struct rfcomm_pinfo *pi = rfcomm_pi(sk);
244
245 BT_DBG("sk %p", sk);
246
247 if (parent) {
248 sk->sk_type = parent->sk_type;
249 pi->dlc->defer_setup = test_bit(BT_SK_DEFER_SETUP,
250 &bt_sk(parent)->flags);
251
252 pi->sec_level = rfcomm_pi(parent)->sec_level;
253 pi->role_switch = rfcomm_pi(parent)->role_switch;
254
255 security_sk_clone(parent, sk);
256 } else {
257 pi->dlc->defer_setup = 0;
258
259 pi->sec_level = BT_SECURITY_LOW;
260 pi->role_switch = 0;
261 }
262
263 pi->dlc->sec_level = pi->sec_level;
264 pi->dlc->role_switch = pi->role_switch;
265 }
266
267 static struct proto rfcomm_proto = {
268 .name = "RFCOMM",
269 .owner = THIS_MODULE,
270 .obj_size = sizeof(struct rfcomm_pinfo)
271 };
272
273 static struct sock *rfcomm_sock_alloc(struct net *net, struct socket *sock, int proto, gfp_t prio, int kern)
274 {
275 struct rfcomm_dlc *d;
276 struct sock *sk;
277
278 sk = sk_alloc(net, PF_BLUETOOTH, prio, &rfcomm_proto, kern);
279 if (!sk)
280 return NULL;
281
282 sock_init_data(sock, sk);
283 INIT_LIST_HEAD(&bt_sk(sk)->accept_q);
284
285 d = rfcomm_dlc_alloc(prio);
286 if (!d) {
287 sk_free(sk);
288 return NULL;
289 }
290
291 d->data_ready = rfcomm_sk_data_ready;
292 d->state_change = rfcomm_sk_state_change;
293
294 rfcomm_pi(sk)->dlc = d;
295 d->owner = sk;
296
297 sk->sk_destruct = rfcomm_sock_destruct;
298 sk->sk_sndtimeo = RFCOMM_CONN_TIMEOUT;
299
300 sk->sk_sndbuf = RFCOMM_MAX_CREDITS * RFCOMM_DEFAULT_MTU * 10;
301 sk->sk_rcvbuf = RFCOMM_MAX_CREDITS * RFCOMM_DEFAULT_MTU * 10;
302
303 sock_reset_flag(sk, SOCK_ZAPPED);
304
305 sk->sk_protocol = proto;
306 sk->sk_state = BT_OPEN;
307
308 bt_sock_link(&rfcomm_sk_list, sk);
309
310 BT_DBG("sk %p", sk);
311 return sk;
312 }
313
314 static int rfcomm_sock_create(struct net *net, struct socket *sock,
315 int protocol, int kern)
316 {
317 struct sock *sk;
318
319 BT_DBG("sock %p", sock);
320
321 sock->state = SS_UNCONNECTED;
322
323 if (sock->type != SOCK_STREAM && sock->type != SOCK_RAW)
324 return -ESOCKTNOSUPPORT;
325
326 sock->ops = &rfcomm_sock_ops;
327
328 sk = rfcomm_sock_alloc(net, sock, protocol, GFP_ATOMIC, kern);
329 if (!sk)
330 return -ENOMEM;
331
332 rfcomm_sock_init(sk, NULL);
333 return 0;
334 }
335
336 static int rfcomm_sock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
337 {
338 struct sockaddr_rc sa;
339 struct sock *sk = sock->sk;
340 int len, err = 0;
341
342 if (!addr || addr->sa_family != AF_BLUETOOTH)
343 return -EINVAL;
344
345 memset(&sa, 0, sizeof(sa));
346 len = min_t(unsigned int, sizeof(sa), addr_len);
347 memcpy(&sa, addr, len);
348
349 BT_DBG("sk %p %pMR", sk, &sa.rc_bdaddr);
350
351 lock_sock(sk);
352
353 if (sk->sk_state != BT_OPEN) {
354 err = -EBADFD;
355 goto done;
356 }
357
358 if (sk->sk_type != SOCK_STREAM) {
359 err = -EINVAL;
360 goto done;
361 }
362
363 write_lock(&rfcomm_sk_list.lock);
364
365 if (sa.rc_channel &&
366 __rfcomm_get_listen_sock_by_addr(sa.rc_channel, &sa.rc_bdaddr)) {
367 err = -EADDRINUSE;
368 } else {
369 /* Save source address */
370 bacpy(&rfcomm_pi(sk)->src, &sa.rc_bdaddr);
371 rfcomm_pi(sk)->channel = sa.rc_channel;
372 sk->sk_state = BT_BOUND;
373 }
374
375 write_unlock(&rfcomm_sk_list.lock);
376
377 done:
378 release_sock(sk);
379 return err;
380 }
381
382 static int rfcomm_sock_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags)
383 {
384 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr;
385 struct sock *sk = sock->sk;
386 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
387 int err = 0;
388
389 BT_DBG("sk %p", sk);
390
391 if (alen < sizeof(struct sockaddr_rc) ||
392 addr->sa_family != AF_BLUETOOTH)
393 return -EINVAL;
394
395 lock_sock(sk);
396
397 if (sk->sk_state != BT_OPEN && sk->sk_state != BT_BOUND) {
398 err = -EBADFD;
399 goto done;
400 }
401
402 if (sk->sk_type != SOCK_STREAM) {
403 err = -EINVAL;
404 goto done;
405 }
406
407 sk->sk_state = BT_CONNECT;
408 bacpy(&rfcomm_pi(sk)->dst, &sa->rc_bdaddr);
409 rfcomm_pi(sk)->channel = sa->rc_channel;
410
411 d->sec_level = rfcomm_pi(sk)->sec_level;
412 d->role_switch = rfcomm_pi(sk)->role_switch;
413
414 err = rfcomm_dlc_open(d, &rfcomm_pi(sk)->src, &sa->rc_bdaddr,
415 sa->rc_channel);
416 if (!err)
417 err = bt_sock_wait_state(sk, BT_CONNECTED,
418 sock_sndtimeo(sk, flags & O_NONBLOCK));
419
420 done:
421 release_sock(sk);
422 return err;
423 }
424
425 static int rfcomm_sock_listen(struct socket *sock, int backlog)
426 {
427 struct sock *sk = sock->sk;
428 int err = 0;
429
430 BT_DBG("sk %p backlog %d", sk, backlog);
431
432 lock_sock(sk);
433
434 if (sk->sk_state != BT_BOUND) {
435 err = -EBADFD;
436 goto done;
437 }
438
439 if (sk->sk_type != SOCK_STREAM) {
440 err = -EINVAL;
441 goto done;
442 }
443
444 if (!rfcomm_pi(sk)->channel) {
445 bdaddr_t *src = &rfcomm_pi(sk)->src;
446 u8 channel;
447
448 err = -EINVAL;
449
450 write_lock(&rfcomm_sk_list.lock);
451
452 for (channel = 1; channel < 31; channel++)
453 if (!__rfcomm_get_listen_sock_by_addr(channel, src)) {
454 rfcomm_pi(sk)->channel = channel;
455 err = 0;
456 break;
457 }
458
459 write_unlock(&rfcomm_sk_list.lock);
460
461 if (err < 0)
462 goto done;
463 }
464
465 sk->sk_max_ack_backlog = backlog;
466 sk->sk_ack_backlog = 0;
467 sk->sk_state = BT_LISTEN;
468
469 done:
470 release_sock(sk);
471 return err;
472 }
473
474 static int rfcomm_sock_accept(struct socket *sock, struct socket *newsock, int flags,
475 bool kern)
476 {
477 DEFINE_WAIT_FUNC(wait, woken_wake_function);
478 struct sock *sk = sock->sk, *nsk;
479 long timeo;
480 int err = 0;
481
482 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
483
484 if (sk->sk_type != SOCK_STREAM) {
485 err = -EINVAL;
486 goto done;
487 }
488
489 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
490
491 BT_DBG("sk %p timeo %ld", sk, timeo);
492
493 /* Wait for an incoming connection. (wake-one). */
494 add_wait_queue_exclusive(sk_sleep(sk), &wait);
495 while (1) {
496 if (sk->sk_state != BT_LISTEN) {
497 err = -EBADFD;
498 break;
499 }
500
501 nsk = bt_accept_dequeue(sk, newsock);
502 if (nsk)
503 break;
504
505 if (!timeo) {
506 err = -EAGAIN;
507 break;
508 }
509
510 if (signal_pending(current)) {
511 err = sock_intr_errno(timeo);
512 break;
513 }
514
515 release_sock(sk);
516
517 timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo);
518
519 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
520 }
521 remove_wait_queue(sk_sleep(sk), &wait);
522
523 if (err)
524 goto done;
525
526 newsock->state = SS_CONNECTED;
527
528 BT_DBG("new socket %p", nsk);
529
530 done:
531 release_sock(sk);
532 return err;
533 }
534
535 static int rfcomm_sock_getname(struct socket *sock, struct sockaddr *addr, int *len, int peer)
536 {
537 struct sockaddr_rc *sa = (struct sockaddr_rc *) addr;
538 struct sock *sk = sock->sk;
539
540 BT_DBG("sock %p, sk %p", sock, sk);
541
542 if (peer && sk->sk_state != BT_CONNECTED &&
543 sk->sk_state != BT_CONNECT && sk->sk_state != BT_CONNECT2)
544 return -ENOTCONN;
545
546 memset(sa, 0, sizeof(*sa));
547 sa->rc_family = AF_BLUETOOTH;
548 sa->rc_channel = rfcomm_pi(sk)->channel;
549 if (peer)
550 bacpy(&sa->rc_bdaddr, &rfcomm_pi(sk)->dst);
551 else
552 bacpy(&sa->rc_bdaddr, &rfcomm_pi(sk)->src);
553
554 *len = sizeof(struct sockaddr_rc);
555 return 0;
556 }
557
558 static int rfcomm_sock_sendmsg(struct socket *sock, struct msghdr *msg,
559 size_t len)
560 {
561 struct sock *sk = sock->sk;
562 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
563 struct sk_buff *skb;
564 int sent;
565
566 if (test_bit(RFCOMM_DEFER_SETUP, &d->flags))
567 return -ENOTCONN;
568
569 if (msg->msg_flags & MSG_OOB)
570 return -EOPNOTSUPP;
571
572 if (sk->sk_shutdown & SEND_SHUTDOWN)
573 return -EPIPE;
574
575 BT_DBG("sock %p, sk %p", sock, sk);
576
577 lock_sock(sk);
578
579 sent = bt_sock_wait_ready(sk, msg->msg_flags);
580 if (sent)
581 goto done;
582
583 while (len) {
584 size_t size = min_t(size_t, len, d->mtu);
585 int err;
586
587 skb = sock_alloc_send_skb(sk, size + RFCOMM_SKB_RESERVE,
588 msg->msg_flags & MSG_DONTWAIT, &err);
589 if (!skb) {
590 if (sent == 0)
591 sent = err;
592 break;
593 }
594 skb_reserve(skb, RFCOMM_SKB_HEAD_RESERVE);
595
596 err = memcpy_from_msg(skb_put(skb, size), msg, size);
597 if (err) {
598 kfree_skb(skb);
599 if (sent == 0)
600 sent = err;
601 break;
602 }
603
604 skb->priority = sk->sk_priority;
605
606 err = rfcomm_dlc_send(d, skb);
607 if (err < 0) {
608 kfree_skb(skb);
609 if (sent == 0)
610 sent = err;
611 break;
612 }
613
614 sent += size;
615 len -= size;
616 }
617
618 done:
619 release_sock(sk);
620
621 return sent;
622 }
623
624 static int rfcomm_sock_recvmsg(struct socket *sock, struct msghdr *msg,
625 size_t size, int flags)
626 {
627 struct sock *sk = sock->sk;
628 struct rfcomm_dlc *d = rfcomm_pi(sk)->dlc;
629 int len;
630
631 if (test_and_clear_bit(RFCOMM_DEFER_SETUP, &d->flags)) {
632 rfcomm_dlc_accept(d);
633 return 0;
634 }
635
636 len = bt_sock_stream_recvmsg(sock, msg, size, flags);
637
638 lock_sock(sk);
639 if (!(flags & MSG_PEEK) && len > 0)
640 atomic_sub(len, &sk->sk_rmem_alloc);
641
642 if (atomic_read(&sk->sk_rmem_alloc) <= (sk->sk_rcvbuf >> 2))
643 rfcomm_dlc_unthrottle(rfcomm_pi(sk)->dlc);
644 release_sock(sk);
645
646 return len;
647 }
648
649 static int rfcomm_sock_setsockopt_old(struct socket *sock, int optname, char __user *optval, unsigned int optlen)
650 {
651 struct sock *sk = sock->sk;
652 int err = 0;
653 u32 opt;
654
655 BT_DBG("sk %p", sk);
656
657 lock_sock(sk);
658
659 switch (optname) {
660 case RFCOMM_LM:
661 if (get_user(opt, (u32 __user *) optval)) {
662 err = -EFAULT;
663 break;
664 }
665
666 if (opt & RFCOMM_LM_FIPS) {
667 err = -EINVAL;
668 break;
669 }
670
671 if (opt & RFCOMM_LM_AUTH)
672 rfcomm_pi(sk)->sec_level = BT_SECURITY_LOW;
673 if (opt & RFCOMM_LM_ENCRYPT)
674 rfcomm_pi(sk)->sec_level = BT_SECURITY_MEDIUM;
675 if (opt & RFCOMM_LM_SECURE)
676 rfcomm_pi(sk)->sec_level = BT_SECURITY_HIGH;
677
678 rfcomm_pi(sk)->role_switch = (opt & RFCOMM_LM_MASTER);
679 break;
680
681 default:
682 err = -ENOPROTOOPT;
683 break;
684 }
685
686 release_sock(sk);
687 return err;
688 }
689
690 static int rfcomm_sock_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
691 {
692 struct sock *sk = sock->sk;
693 struct bt_security sec;
694 int err = 0;
695 size_t len;
696 u32 opt;
697
698 BT_DBG("sk %p", sk);
699
700 if (level == SOL_RFCOMM)
701 return rfcomm_sock_setsockopt_old(sock, optname, optval, optlen);
702
703 if (level != SOL_BLUETOOTH)
704 return -ENOPROTOOPT;
705
706 lock_sock(sk);
707
708 switch (optname) {
709 case BT_SECURITY:
710 if (sk->sk_type != SOCK_STREAM) {
711 err = -EINVAL;
712 break;
713 }
714
715 sec.level = BT_SECURITY_LOW;
716
717 len = min_t(unsigned int, sizeof(sec), optlen);
718 if (copy_from_user((char *) &sec, optval, len)) {
719 err = -EFAULT;
720 break;
721 }
722
723 if (sec.level > BT_SECURITY_HIGH) {
724 err = -EINVAL;
725 break;
726 }
727
728 rfcomm_pi(sk)->sec_level = sec.level;
729 break;
730
731 case BT_DEFER_SETUP:
732 if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) {
733 err = -EINVAL;
734 break;
735 }
736
737 if (get_user(opt, (u32 __user *) optval)) {
738 err = -EFAULT;
739 break;
740 }
741
742 if (opt)
743 set_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags);
744 else
745 clear_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags);
746
747 break;
748
749 default:
750 err = -ENOPROTOOPT;
751 break;
752 }
753
754 release_sock(sk);
755 return err;
756 }
757
758 static int rfcomm_sock_getsockopt_old(struct socket *sock, int optname, char __user *optval, int __user *optlen)
759 {
760 struct sock *sk = sock->sk;
761 struct sock *l2cap_sk;
762 struct l2cap_conn *conn;
763 struct rfcomm_conninfo cinfo;
764 int len, err = 0;
765 u32 opt;
766
767 BT_DBG("sk %p", sk);
768
769 if (get_user(len, optlen))
770 return -EFAULT;
771
772 lock_sock(sk);
773
774 switch (optname) {
775 case RFCOMM_LM:
776 switch (rfcomm_pi(sk)->sec_level) {
777 case BT_SECURITY_LOW:
778 opt = RFCOMM_LM_AUTH;
779 break;
780 case BT_SECURITY_MEDIUM:
781 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT;
782 break;
783 case BT_SECURITY_HIGH:
784 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT |
785 RFCOMM_LM_SECURE;
786 break;
787 case BT_SECURITY_FIPS:
788 opt = RFCOMM_LM_AUTH | RFCOMM_LM_ENCRYPT |
789 RFCOMM_LM_SECURE | RFCOMM_LM_FIPS;
790 break;
791 default:
792 opt = 0;
793 break;
794 }
795
796 if (rfcomm_pi(sk)->role_switch)
797 opt |= RFCOMM_LM_MASTER;
798
799 if (put_user(opt, (u32 __user *) optval))
800 err = -EFAULT;
801
802 break;
803
804 case RFCOMM_CONNINFO:
805 if (sk->sk_state != BT_CONNECTED &&
806 !rfcomm_pi(sk)->dlc->defer_setup) {
807 err = -ENOTCONN;
808 break;
809 }
810
811 l2cap_sk = rfcomm_pi(sk)->dlc->session->sock->sk;
812 conn = l2cap_pi(l2cap_sk)->chan->conn;
813
814 memset(&cinfo, 0, sizeof(cinfo));
815 cinfo.hci_handle = conn->hcon->handle;
816 memcpy(cinfo.dev_class, conn->hcon->dev_class, 3);
817
818 len = min_t(unsigned int, len, sizeof(cinfo));
819 if (copy_to_user(optval, (char *) &cinfo, len))
820 err = -EFAULT;
821
822 break;
823
824 default:
825 err = -ENOPROTOOPT;
826 break;
827 }
828
829 release_sock(sk);
830 return err;
831 }
832
833 static int rfcomm_sock_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen)
834 {
835 struct sock *sk = sock->sk;
836 struct bt_security sec;
837 int len, err = 0;
838
839 BT_DBG("sk %p", sk);
840
841 if (level == SOL_RFCOMM)
842 return rfcomm_sock_getsockopt_old(sock, optname, optval, optlen);
843
844 if (level != SOL_BLUETOOTH)
845 return -ENOPROTOOPT;
846
847 if (get_user(len, optlen))
848 return -EFAULT;
849
850 lock_sock(sk);
851
852 switch (optname) {
853 case BT_SECURITY:
854 if (sk->sk_type != SOCK_STREAM) {
855 err = -EINVAL;
856 break;
857 }
858
859 sec.level = rfcomm_pi(sk)->sec_level;
860 sec.key_size = 0;
861
862 len = min_t(unsigned int, len, sizeof(sec));
863 if (copy_to_user(optval, (char *) &sec, len))
864 err = -EFAULT;
865
866 break;
867
868 case BT_DEFER_SETUP:
869 if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) {
870 err = -EINVAL;
871 break;
872 }
873
874 if (put_user(test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags),
875 (u32 __user *) optval))
876 err = -EFAULT;
877
878 break;
879
880 default:
881 err = -ENOPROTOOPT;
882 break;
883 }
884
885 release_sock(sk);
886 return err;
887 }
888
889 static int rfcomm_sock_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
890 {
891 struct sock *sk __maybe_unused = sock->sk;
892 int err;
893
894 BT_DBG("sk %p cmd %x arg %lx", sk, cmd, arg);
895
896 err = bt_sock_ioctl(sock, cmd, arg);
897
898 if (err == -ENOIOCTLCMD) {
899 #ifdef CONFIG_BT_RFCOMM_TTY
900 lock_sock(sk);
901 err = rfcomm_dev_ioctl(sk, cmd, (void __user *) arg);
902 release_sock(sk);
903 #else
904 err = -EOPNOTSUPP;
905 #endif
906 }
907
908 return err;
909 }
910
911 static int rfcomm_sock_shutdown(struct socket *sock, int how)
912 {
913 struct sock *sk = sock->sk;
914 int err = 0;
915
916 BT_DBG("sock %p, sk %p", sock, sk);
917
918 if (!sk)
919 return 0;
920
921 lock_sock(sk);
922 if (!sk->sk_shutdown) {
923 sk->sk_shutdown = SHUTDOWN_MASK;
924 __rfcomm_sock_close(sk);
925
926 if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime &&
927 !(current->flags & PF_EXITING))
928 err = bt_sock_wait_state(sk, BT_CLOSED, sk->sk_lingertime);
929 }
930 release_sock(sk);
931 return err;
932 }
933
934 static int rfcomm_sock_release(struct socket *sock)
935 {
936 struct sock *sk = sock->sk;
937 int err;
938
939 BT_DBG("sock %p, sk %p", sock, sk);
940
941 if (!sk)
942 return 0;
943
944 err = rfcomm_sock_shutdown(sock, 2);
945
946 sock_orphan(sk);
947 rfcomm_sock_kill(sk);
948 return err;
949 }
950
951 /* ---- RFCOMM core layer callbacks ----
952 *
953 * called under rfcomm_lock()
954 */
955 int rfcomm_connect_ind(struct rfcomm_session *s, u8 channel, struct rfcomm_dlc **d)
956 {
957 struct sock *sk, *parent;
958 bdaddr_t src, dst;
959 int result = 0;
960
961 BT_DBG("session %p channel %d", s, channel);
962
963 rfcomm_session_getaddr(s, &src, &dst);
964
965 /* Check if we have socket listening on channel */
966 parent = rfcomm_get_sock_by_channel(BT_LISTEN, channel, &src);
967 if (!parent)
968 return 0;
969
970 bh_lock_sock(parent);
971
972 /* Check for backlog size */
973 if (sk_acceptq_is_full(parent)) {
974 BT_DBG("backlog full %d", parent->sk_ack_backlog);
975 goto done;
976 }
977
978 sk = rfcomm_sock_alloc(sock_net(parent), NULL, BTPROTO_RFCOMM, GFP_ATOMIC, 0);
979 if (!sk)
980 goto done;
981
982 bt_sock_reclassify_lock(sk, BTPROTO_RFCOMM);
983
984 rfcomm_sock_init(sk, parent);
985 bacpy(&rfcomm_pi(sk)->src, &src);
986 bacpy(&rfcomm_pi(sk)->dst, &dst);
987 rfcomm_pi(sk)->channel = channel;
988
989 sk->sk_state = BT_CONFIG;
990 bt_accept_enqueue(parent, sk);
991
992 /* Accept connection and return socket DLC */
993 *d = rfcomm_pi(sk)->dlc;
994 result = 1;
995
996 done:
997 bh_unlock_sock(parent);
998
999 if (test_bit(BT_SK_DEFER_SETUP, &bt_sk(parent)->flags))
1000 parent->sk_state_change(parent);
1001
1002 return result;
1003 }
1004
1005 static int rfcomm_sock_debugfs_show(struct seq_file *f, void *p)
1006 {
1007 struct sock *sk;
1008
1009 read_lock(&rfcomm_sk_list.lock);
1010
1011 sk_for_each(sk, &rfcomm_sk_list.head) {
1012 seq_printf(f, "%pMR %pMR %d %d\n",
1013 &rfcomm_pi(sk)->src, &rfcomm_pi(sk)->dst,
1014 sk->sk_state, rfcomm_pi(sk)->channel);
1015 }
1016
1017 read_unlock(&rfcomm_sk_list.lock);
1018
1019 return 0;
1020 }
1021
1022 static int rfcomm_sock_debugfs_open(struct inode *inode, struct file *file)
1023 {
1024 return single_open(file, rfcomm_sock_debugfs_show, inode->i_private);
1025 }
1026
1027 static const struct file_operations rfcomm_sock_debugfs_fops = {
1028 .open = rfcomm_sock_debugfs_open,
1029 .read = seq_read,
1030 .llseek = seq_lseek,
1031 .release = single_release,
1032 };
1033
1034 static struct dentry *rfcomm_sock_debugfs;
1035
1036 static const struct proto_ops rfcomm_sock_ops = {
1037 .family = PF_BLUETOOTH,
1038 .owner = THIS_MODULE,
1039 .release = rfcomm_sock_release,
1040 .bind = rfcomm_sock_bind,
1041 .connect = rfcomm_sock_connect,
1042 .listen = rfcomm_sock_listen,
1043 .accept = rfcomm_sock_accept,
1044 .getname = rfcomm_sock_getname,
1045 .sendmsg = rfcomm_sock_sendmsg,
1046 .recvmsg = rfcomm_sock_recvmsg,
1047 .shutdown = rfcomm_sock_shutdown,
1048 .setsockopt = rfcomm_sock_setsockopt,
1049 .getsockopt = rfcomm_sock_getsockopt,
1050 .ioctl = rfcomm_sock_ioctl,
1051 .poll = bt_sock_poll,
1052 .socketpair = sock_no_socketpair,
1053 .mmap = sock_no_mmap
1054 };
1055
1056 static const struct net_proto_family rfcomm_sock_family_ops = {
1057 .family = PF_BLUETOOTH,
1058 .owner = THIS_MODULE,
1059 .create = rfcomm_sock_create
1060 };
1061
1062 int __init rfcomm_init_sockets(void)
1063 {
1064 int err;
1065
1066 BUILD_BUG_ON(sizeof(struct sockaddr_rc) > sizeof(struct sockaddr));
1067
1068 err = proto_register(&rfcomm_proto, 0);
1069 if (err < 0)
1070 return err;
1071
1072 err = bt_sock_register(BTPROTO_RFCOMM, &rfcomm_sock_family_ops);
1073 if (err < 0) {
1074 BT_ERR("RFCOMM socket layer registration failed");
1075 goto error;
1076 }
1077
1078 err = bt_procfs_init(&init_net, "rfcomm", &rfcomm_sk_list, NULL);
1079 if (err < 0) {
1080 BT_ERR("Failed to create RFCOMM proc file");
1081 bt_sock_unregister(BTPROTO_RFCOMM);
1082 goto error;
1083 }
1084
1085 BT_INFO("RFCOMM socket layer initialized");
1086
1087 if (IS_ERR_OR_NULL(bt_debugfs))
1088 return 0;
1089
1090 rfcomm_sock_debugfs = debugfs_create_file("rfcomm", 0444,
1091 bt_debugfs, NULL,
1092 &rfcomm_sock_debugfs_fops);
1093
1094 return 0;
1095
1096 error:
1097 proto_unregister(&rfcomm_proto);
1098 return err;
1099 }
1100
1101 void __exit rfcomm_cleanup_sockets(void)
1102 {
1103 bt_procfs_cleanup(&init_net, "rfcomm");
1104
1105 debugfs_remove(rfcomm_sock_debugfs);
1106
1107 bt_sock_unregister(BTPROTO_RFCOMM);
1108
1109 proto_unregister(&rfcomm_proto);
1110 }