]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/bridge/br_netfilter.c
Merge remote-tracking branch 'asoc/fix/omap' into asoc-linus
[mirror_ubuntu-artful-kernel.git] / net / bridge / br_netfilter.c
1 /*
2 * Handle firewalling
3 * Linux ethernet bridge
4 *
5 * Authors:
6 * Lennert Buytenhek <buytenh@gnu.org>
7 * Bart De Schuymer <bdschuym@pandora.be>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 *
14 * Lennert dedicates this file to Kerstin Wurdinger.
15 */
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/ip.h>
21 #include <linux/netdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_arp.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_pppox.h>
27 #include <linux/ppp_defs.h>
28 #include <linux/netfilter_bridge.h>
29 #include <linux/netfilter_ipv4.h>
30 #include <linux/netfilter_ipv6.h>
31 #include <linux/netfilter_arp.h>
32 #include <linux/in_route.h>
33 #include <linux/inetdevice.h>
34
35 #include <net/ip.h>
36 #include <net/ipv6.h>
37 #include <net/route.h>
38 #include <net/netfilter/br_netfilter.h>
39
40 #include <asm/uaccess.h>
41 #include "br_private.h"
42 #ifdef CONFIG_SYSCTL
43 #include <linux/sysctl.h>
44 #endif
45
46 #define skb_origaddr(skb) (((struct bridge_skb_cb *) \
47 (skb->nf_bridge->data))->daddr.ipv4)
48 #define store_orig_dstaddr(skb) (skb_origaddr(skb) = ip_hdr(skb)->daddr)
49 #define dnat_took_place(skb) (skb_origaddr(skb) != ip_hdr(skb)->daddr)
50
51 #ifdef CONFIG_SYSCTL
52 static struct ctl_table_header *brnf_sysctl_header;
53 static int brnf_call_iptables __read_mostly = 1;
54 static int brnf_call_ip6tables __read_mostly = 1;
55 static int brnf_call_arptables __read_mostly = 1;
56 static int brnf_filter_vlan_tagged __read_mostly = 0;
57 static int brnf_filter_pppoe_tagged __read_mostly = 0;
58 static int brnf_pass_vlan_indev __read_mostly = 0;
59 #else
60 #define brnf_call_iptables 1
61 #define brnf_call_ip6tables 1
62 #define brnf_call_arptables 1
63 #define brnf_filter_vlan_tagged 0
64 #define brnf_filter_pppoe_tagged 0
65 #define brnf_pass_vlan_indev 0
66 #endif
67
68 #define IS_IP(skb) \
69 (!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IP))
70
71 #define IS_IPV6(skb) \
72 (!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IPV6))
73
74 #define IS_ARP(skb) \
75 (!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_ARP))
76
77 static inline __be16 vlan_proto(const struct sk_buff *skb)
78 {
79 if (skb_vlan_tag_present(skb))
80 return skb->protocol;
81 else if (skb->protocol == htons(ETH_P_8021Q))
82 return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
83 else
84 return 0;
85 }
86
87 #define IS_VLAN_IP(skb) \
88 (vlan_proto(skb) == htons(ETH_P_IP) && \
89 brnf_filter_vlan_tagged)
90
91 #define IS_VLAN_IPV6(skb) \
92 (vlan_proto(skb) == htons(ETH_P_IPV6) && \
93 brnf_filter_vlan_tagged)
94
95 #define IS_VLAN_ARP(skb) \
96 (vlan_proto(skb) == htons(ETH_P_ARP) && \
97 brnf_filter_vlan_tagged)
98
99 static inline __be16 pppoe_proto(const struct sk_buff *skb)
100 {
101 return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN +
102 sizeof(struct pppoe_hdr)));
103 }
104
105 #define IS_PPPOE_IP(skb) \
106 (skb->protocol == htons(ETH_P_PPP_SES) && \
107 pppoe_proto(skb) == htons(PPP_IP) && \
108 brnf_filter_pppoe_tagged)
109
110 #define IS_PPPOE_IPV6(skb) \
111 (skb->protocol == htons(ETH_P_PPP_SES) && \
112 pppoe_proto(skb) == htons(PPP_IPV6) && \
113 brnf_filter_pppoe_tagged)
114
115 static inline struct rtable *bridge_parent_rtable(const struct net_device *dev)
116 {
117 struct net_bridge_port *port;
118
119 port = br_port_get_rcu(dev);
120 return port ? &port->br->fake_rtable : NULL;
121 }
122
123 static inline struct net_device *bridge_parent(const struct net_device *dev)
124 {
125 struct net_bridge_port *port;
126
127 port = br_port_get_rcu(dev);
128 return port ? port->br->dev : NULL;
129 }
130
131 static inline struct nf_bridge_info *nf_bridge_alloc(struct sk_buff *skb)
132 {
133 skb->nf_bridge = kzalloc(sizeof(struct nf_bridge_info), GFP_ATOMIC);
134 if (likely(skb->nf_bridge))
135 atomic_set(&(skb->nf_bridge->use), 1);
136
137 return skb->nf_bridge;
138 }
139
140 static inline struct nf_bridge_info *nf_bridge_unshare(struct sk_buff *skb)
141 {
142 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
143
144 if (atomic_read(&nf_bridge->use) > 1) {
145 struct nf_bridge_info *tmp = nf_bridge_alloc(skb);
146
147 if (tmp) {
148 memcpy(tmp, nf_bridge, sizeof(struct nf_bridge_info));
149 atomic_set(&tmp->use, 1);
150 }
151 nf_bridge_put(nf_bridge);
152 nf_bridge = tmp;
153 }
154 return nf_bridge;
155 }
156
157 static inline void nf_bridge_push_encap_header(struct sk_buff *skb)
158 {
159 unsigned int len = nf_bridge_encap_header_len(skb);
160
161 skb_push(skb, len);
162 skb->network_header -= len;
163 }
164
165 static inline void nf_bridge_pull_encap_header(struct sk_buff *skb)
166 {
167 unsigned int len = nf_bridge_encap_header_len(skb);
168
169 skb_pull(skb, len);
170 skb->network_header += len;
171 }
172
173 static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb)
174 {
175 unsigned int len = nf_bridge_encap_header_len(skb);
176
177 skb_pull_rcsum(skb, len);
178 skb->network_header += len;
179 }
180
181 static inline void nf_bridge_save_header(struct sk_buff *skb)
182 {
183 int header_size = ETH_HLEN + nf_bridge_encap_header_len(skb);
184
185 skb_copy_from_linear_data_offset(skb, -header_size,
186 skb->nf_bridge->data, header_size);
187 }
188
189 /* When handing a packet over to the IP layer
190 * check whether we have a skb that is in the
191 * expected format
192 */
193
194 static int br_parse_ip_options(struct sk_buff *skb)
195 {
196 const struct iphdr *iph;
197 struct net_device *dev = skb->dev;
198 u32 len;
199
200 if (!pskb_may_pull(skb, sizeof(struct iphdr)))
201 goto inhdr_error;
202
203 iph = ip_hdr(skb);
204
205 /* Basic sanity checks */
206 if (iph->ihl < 5 || iph->version != 4)
207 goto inhdr_error;
208
209 if (!pskb_may_pull(skb, iph->ihl*4))
210 goto inhdr_error;
211
212 iph = ip_hdr(skb);
213 if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
214 goto inhdr_error;
215
216 len = ntohs(iph->tot_len);
217 if (skb->len < len) {
218 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INTRUNCATEDPKTS);
219 goto drop;
220 } else if (len < (iph->ihl*4))
221 goto inhdr_error;
222
223 if (pskb_trim_rcsum(skb, len)) {
224 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INDISCARDS);
225 goto drop;
226 }
227
228 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
229 /* We should really parse IP options here but until
230 * somebody who actually uses IP options complains to
231 * us we'll just silently ignore the options because
232 * we're lazy!
233 */
234 return 0;
235
236 inhdr_error:
237 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
238 drop:
239 return -1;
240 }
241
242 /* PF_BRIDGE/PRE_ROUTING *********************************************/
243 /* Undo the changes made for ip6tables PREROUTING and continue the
244 * bridge PRE_ROUTING hook. */
245 static int br_nf_pre_routing_finish_ipv6(struct sk_buff *skb)
246 {
247 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
248 struct rtable *rt;
249
250 if (nf_bridge->mask & BRNF_PKT_TYPE) {
251 skb->pkt_type = PACKET_OTHERHOST;
252 nf_bridge->mask ^= BRNF_PKT_TYPE;
253 }
254 nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
255
256 rt = bridge_parent_rtable(nf_bridge->physindev);
257 if (!rt) {
258 kfree_skb(skb);
259 return 0;
260 }
261 skb_dst_set_noref(skb, &rt->dst);
262
263 skb->dev = nf_bridge->physindev;
264 nf_bridge_update_protocol(skb);
265 nf_bridge_push_encap_header(skb);
266 NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
267 br_handle_frame_finish, 1);
268
269 return 0;
270 }
271
272 /* Obtain the correct destination MAC address, while preserving the original
273 * source MAC address. If we already know this address, we just copy it. If we
274 * don't, we use the neighbour framework to find out. In both cases, we make
275 * sure that br_handle_frame_finish() is called afterwards.
276 */
277 static int br_nf_pre_routing_finish_bridge(struct sk_buff *skb)
278 {
279 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
280 struct neighbour *neigh;
281 struct dst_entry *dst;
282
283 skb->dev = bridge_parent(skb->dev);
284 if (!skb->dev)
285 goto free_skb;
286 dst = skb_dst(skb);
287 neigh = dst_neigh_lookup_skb(dst, skb);
288 if (neigh) {
289 int ret;
290
291 if (neigh->hh.hh_len) {
292 neigh_hh_bridge(&neigh->hh, skb);
293 skb->dev = nf_bridge->physindev;
294 ret = br_handle_frame_finish(skb);
295 } else {
296 /* the neighbour function below overwrites the complete
297 * MAC header, so we save the Ethernet source address and
298 * protocol number.
299 */
300 skb_copy_from_linear_data_offset(skb,
301 -(ETH_HLEN-ETH_ALEN),
302 skb->nf_bridge->data,
303 ETH_HLEN-ETH_ALEN);
304 /* tell br_dev_xmit to continue with forwarding */
305 nf_bridge->mask |= BRNF_BRIDGED_DNAT;
306 /* FIXME Need to refragment */
307 ret = neigh->output(neigh, skb);
308 }
309 neigh_release(neigh);
310 return ret;
311 }
312 free_skb:
313 kfree_skb(skb);
314 return 0;
315 }
316
317 /* This requires some explaining. If DNAT has taken place,
318 * we will need to fix up the destination Ethernet address.
319 *
320 * There are two cases to consider:
321 * 1. The packet was DNAT'ed to a device in the same bridge
322 * port group as it was received on. We can still bridge
323 * the packet.
324 * 2. The packet was DNAT'ed to a different device, either
325 * a non-bridged device or another bridge port group.
326 * The packet will need to be routed.
327 *
328 * The correct way of distinguishing between these two cases is to
329 * call ip_route_input() and to look at skb->dst->dev, which is
330 * changed to the destination device if ip_route_input() succeeds.
331 *
332 * Let's first consider the case that ip_route_input() succeeds:
333 *
334 * If the output device equals the logical bridge device the packet
335 * came in on, we can consider this bridging. The corresponding MAC
336 * address will be obtained in br_nf_pre_routing_finish_bridge.
337 * Otherwise, the packet is considered to be routed and we just
338 * change the destination MAC address so that the packet will
339 * later be passed up to the IP stack to be routed. For a redirected
340 * packet, ip_route_input() will give back the localhost as output device,
341 * which differs from the bridge device.
342 *
343 * Let's now consider the case that ip_route_input() fails:
344 *
345 * This can be because the destination address is martian, in which case
346 * the packet will be dropped.
347 * If IP forwarding is disabled, ip_route_input() will fail, while
348 * ip_route_output_key() can return success. The source
349 * address for ip_route_output_key() is set to zero, so ip_route_output_key()
350 * thinks we're handling a locally generated packet and won't care
351 * if IP forwarding is enabled. If the output device equals the logical bridge
352 * device, we proceed as if ip_route_input() succeeded. If it differs from the
353 * logical bridge port or if ip_route_output_key() fails we drop the packet.
354 */
355 static int br_nf_pre_routing_finish(struct sk_buff *skb)
356 {
357 struct net_device *dev = skb->dev;
358 struct iphdr *iph = ip_hdr(skb);
359 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
360 struct rtable *rt;
361 int err;
362 int frag_max_size;
363
364 frag_max_size = IPCB(skb)->frag_max_size;
365 BR_INPUT_SKB_CB(skb)->frag_max_size = frag_max_size;
366
367 if (nf_bridge->mask & BRNF_PKT_TYPE) {
368 skb->pkt_type = PACKET_OTHERHOST;
369 nf_bridge->mask ^= BRNF_PKT_TYPE;
370 }
371 nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
372 if (dnat_took_place(skb)) {
373 if ((err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))) {
374 struct in_device *in_dev = __in_dev_get_rcu(dev);
375
376 /* If err equals -EHOSTUNREACH the error is due to a
377 * martian destination or due to the fact that
378 * forwarding is disabled. For most martian packets,
379 * ip_route_output_key() will fail. It won't fail for 2 types of
380 * martian destinations: loopback destinations and destination
381 * 0.0.0.0. In both cases the packet will be dropped because the
382 * destination is the loopback device and not the bridge. */
383 if (err != -EHOSTUNREACH || !in_dev || IN_DEV_FORWARD(in_dev))
384 goto free_skb;
385
386 rt = ip_route_output(dev_net(dev), iph->daddr, 0,
387 RT_TOS(iph->tos), 0);
388 if (!IS_ERR(rt)) {
389 /* - Bridged-and-DNAT'ed traffic doesn't
390 * require ip_forwarding. */
391 if (rt->dst.dev == dev) {
392 skb_dst_set(skb, &rt->dst);
393 goto bridged_dnat;
394 }
395 ip_rt_put(rt);
396 }
397 free_skb:
398 kfree_skb(skb);
399 return 0;
400 } else {
401 if (skb_dst(skb)->dev == dev) {
402 bridged_dnat:
403 skb->dev = nf_bridge->physindev;
404 nf_bridge_update_protocol(skb);
405 nf_bridge_push_encap_header(skb);
406 NF_HOOK_THRESH(NFPROTO_BRIDGE,
407 NF_BR_PRE_ROUTING,
408 skb, skb->dev, NULL,
409 br_nf_pre_routing_finish_bridge,
410 1);
411 return 0;
412 }
413 ether_addr_copy(eth_hdr(skb)->h_dest, dev->dev_addr);
414 skb->pkt_type = PACKET_HOST;
415 }
416 } else {
417 rt = bridge_parent_rtable(nf_bridge->physindev);
418 if (!rt) {
419 kfree_skb(skb);
420 return 0;
421 }
422 skb_dst_set_noref(skb, &rt->dst);
423 }
424
425 skb->dev = nf_bridge->physindev;
426 nf_bridge_update_protocol(skb);
427 nf_bridge_push_encap_header(skb);
428 NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
429 br_handle_frame_finish, 1);
430
431 return 0;
432 }
433
434 static struct net_device *brnf_get_logical_dev(struct sk_buff *skb, const struct net_device *dev)
435 {
436 struct net_device *vlan, *br;
437
438 br = bridge_parent(dev);
439 if (brnf_pass_vlan_indev == 0 || !skb_vlan_tag_present(skb))
440 return br;
441
442 vlan = __vlan_find_dev_deep_rcu(br, skb->vlan_proto,
443 skb_vlan_tag_get(skb) & VLAN_VID_MASK);
444
445 return vlan ? vlan : br;
446 }
447
448 /* Some common code for IPv4/IPv6 */
449 static struct net_device *setup_pre_routing(struct sk_buff *skb)
450 {
451 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
452
453 if (skb->pkt_type == PACKET_OTHERHOST) {
454 skb->pkt_type = PACKET_HOST;
455 nf_bridge->mask |= BRNF_PKT_TYPE;
456 }
457
458 nf_bridge->mask |= BRNF_NF_BRIDGE_PREROUTING;
459 nf_bridge->physindev = skb->dev;
460 skb->dev = brnf_get_logical_dev(skb, skb->dev);
461 if (skb->protocol == htons(ETH_P_8021Q))
462 nf_bridge->mask |= BRNF_8021Q;
463 else if (skb->protocol == htons(ETH_P_PPP_SES))
464 nf_bridge->mask |= BRNF_PPPoE;
465
466 /* Must drop socket now because of tproxy. */
467 skb_orphan(skb);
468 return skb->dev;
469 }
470
471 /* We only check the length. A bridge shouldn't do any hop-by-hop stuff anyway */
472 static int check_hbh_len(struct sk_buff *skb)
473 {
474 unsigned char *raw = (u8 *)(ipv6_hdr(skb) + 1);
475 u32 pkt_len;
476 const unsigned char *nh = skb_network_header(skb);
477 int off = raw - nh;
478 int len = (raw[1] + 1) << 3;
479
480 if ((raw + len) - skb->data > skb_headlen(skb))
481 goto bad;
482
483 off += 2;
484 len -= 2;
485
486 while (len > 0) {
487 int optlen = nh[off + 1] + 2;
488
489 switch (nh[off]) {
490 case IPV6_TLV_PAD1:
491 optlen = 1;
492 break;
493
494 case IPV6_TLV_PADN:
495 break;
496
497 case IPV6_TLV_JUMBO:
498 if (nh[off + 1] != 4 || (off & 3) != 2)
499 goto bad;
500 pkt_len = ntohl(*(__be32 *) (nh + off + 2));
501 if (pkt_len <= IPV6_MAXPLEN ||
502 ipv6_hdr(skb)->payload_len)
503 goto bad;
504 if (pkt_len > skb->len - sizeof(struct ipv6hdr))
505 goto bad;
506 if (pskb_trim_rcsum(skb,
507 pkt_len + sizeof(struct ipv6hdr)))
508 goto bad;
509 nh = skb_network_header(skb);
510 break;
511 default:
512 if (optlen > len)
513 goto bad;
514 break;
515 }
516 off += optlen;
517 len -= optlen;
518 }
519 if (len == 0)
520 return 0;
521 bad:
522 return -1;
523
524 }
525
526 /* Replicate the checks that IPv6 does on packet reception and pass the packet
527 * to ip6tables, which doesn't support NAT, so things are fairly simple. */
528 static unsigned int br_nf_pre_routing_ipv6(const struct nf_hook_ops *ops,
529 struct sk_buff *skb,
530 const struct net_device *in,
531 const struct net_device *out,
532 int (*okfn)(struct sk_buff *))
533 {
534 const struct ipv6hdr *hdr;
535 u32 pkt_len;
536
537 if (skb->len < sizeof(struct ipv6hdr))
538 return NF_DROP;
539
540 if (!pskb_may_pull(skb, sizeof(struct ipv6hdr)))
541 return NF_DROP;
542
543 hdr = ipv6_hdr(skb);
544
545 if (hdr->version != 6)
546 return NF_DROP;
547
548 pkt_len = ntohs(hdr->payload_len);
549
550 if (pkt_len || hdr->nexthdr != NEXTHDR_HOP) {
551 if (pkt_len + sizeof(struct ipv6hdr) > skb->len)
552 return NF_DROP;
553 if (pskb_trim_rcsum(skb, pkt_len + sizeof(struct ipv6hdr)))
554 return NF_DROP;
555 }
556 if (hdr->nexthdr == NEXTHDR_HOP && check_hbh_len(skb))
557 return NF_DROP;
558
559 nf_bridge_put(skb->nf_bridge);
560 if (!nf_bridge_alloc(skb))
561 return NF_DROP;
562 if (!setup_pre_routing(skb))
563 return NF_DROP;
564
565 skb->protocol = htons(ETH_P_IPV6);
566 NF_HOOK(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, skb->dev, NULL,
567 br_nf_pre_routing_finish_ipv6);
568
569 return NF_STOLEN;
570 }
571
572 /* Direct IPv6 traffic to br_nf_pre_routing_ipv6.
573 * Replicate the checks that IPv4 does on packet reception.
574 * Set skb->dev to the bridge device (i.e. parent of the
575 * receiving device) to make netfilter happy, the REDIRECT
576 * target in particular. Save the original destination IP
577 * address to be able to detect DNAT afterwards. */
578 static unsigned int br_nf_pre_routing(const struct nf_hook_ops *ops,
579 struct sk_buff *skb,
580 const struct net_device *in,
581 const struct net_device *out,
582 int (*okfn)(struct sk_buff *))
583 {
584 struct net_bridge_port *p;
585 struct net_bridge *br;
586 __u32 len = nf_bridge_encap_header_len(skb);
587
588 if (unlikely(!pskb_may_pull(skb, len)))
589 return NF_DROP;
590
591 p = br_port_get_rcu(in);
592 if (p == NULL)
593 return NF_DROP;
594 br = p->br;
595
596 if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb)) {
597 if (!brnf_call_ip6tables && !br->nf_call_ip6tables)
598 return NF_ACCEPT;
599
600 nf_bridge_pull_encap_header_rcsum(skb);
601 return br_nf_pre_routing_ipv6(ops, skb, in, out, okfn);
602 }
603
604 if (!brnf_call_iptables && !br->nf_call_iptables)
605 return NF_ACCEPT;
606
607 if (!IS_IP(skb) && !IS_VLAN_IP(skb) && !IS_PPPOE_IP(skb))
608 return NF_ACCEPT;
609
610 nf_bridge_pull_encap_header_rcsum(skb);
611
612 if (br_parse_ip_options(skb))
613 return NF_DROP;
614
615 nf_bridge_put(skb->nf_bridge);
616 if (!nf_bridge_alloc(skb))
617 return NF_DROP;
618 if (!setup_pre_routing(skb))
619 return NF_DROP;
620 store_orig_dstaddr(skb);
621 skb->protocol = htons(ETH_P_IP);
622
623 NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, skb->dev, NULL,
624 br_nf_pre_routing_finish);
625
626 return NF_STOLEN;
627 }
628
629
630 /* PF_BRIDGE/LOCAL_IN ************************************************/
631 /* The packet is locally destined, which requires a real
632 * dst_entry, so detach the fake one. On the way up, the
633 * packet would pass through PRE_ROUTING again (which already
634 * took place when the packet entered the bridge), but we
635 * register an IPv4 PRE_ROUTING 'sabotage' hook that will
636 * prevent this from happening. */
637 static unsigned int br_nf_local_in(const struct nf_hook_ops *ops,
638 struct sk_buff *skb,
639 const struct net_device *in,
640 const struct net_device *out,
641 int (*okfn)(struct sk_buff *))
642 {
643 br_drop_fake_rtable(skb);
644 return NF_ACCEPT;
645 }
646
647 /* PF_BRIDGE/FORWARD *************************************************/
648 static int br_nf_forward_finish(struct sk_buff *skb)
649 {
650 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
651 struct net_device *in;
652
653 if (!IS_ARP(skb) && !IS_VLAN_ARP(skb)) {
654 in = nf_bridge->physindev;
655 if (nf_bridge->mask & BRNF_PKT_TYPE) {
656 skb->pkt_type = PACKET_OTHERHOST;
657 nf_bridge->mask ^= BRNF_PKT_TYPE;
658 }
659 nf_bridge_update_protocol(skb);
660 } else {
661 in = *((struct net_device **)(skb->cb));
662 }
663 nf_bridge_push_encap_header(skb);
664
665 NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_FORWARD, skb, in,
666 skb->dev, br_forward_finish, 1);
667 return 0;
668 }
669
670
671 /* This is the 'purely bridged' case. For IP, we pass the packet to
672 * netfilter with indev and outdev set to the bridge device,
673 * but we are still able to filter on the 'real' indev/outdev
674 * because of the physdev module. For ARP, indev and outdev are the
675 * bridge ports. */
676 static unsigned int br_nf_forward_ip(const struct nf_hook_ops *ops,
677 struct sk_buff *skb,
678 const struct net_device *in,
679 const struct net_device *out,
680 int (*okfn)(struct sk_buff *))
681 {
682 struct nf_bridge_info *nf_bridge;
683 struct net_device *parent;
684 u_int8_t pf;
685
686 if (!skb->nf_bridge)
687 return NF_ACCEPT;
688
689 /* Need exclusive nf_bridge_info since we might have multiple
690 * different physoutdevs. */
691 if (!nf_bridge_unshare(skb))
692 return NF_DROP;
693
694 parent = bridge_parent(out);
695 if (!parent)
696 return NF_DROP;
697
698 if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
699 pf = NFPROTO_IPV4;
700 else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
701 pf = NFPROTO_IPV6;
702 else
703 return NF_ACCEPT;
704
705 nf_bridge_pull_encap_header(skb);
706
707 nf_bridge = skb->nf_bridge;
708 if (skb->pkt_type == PACKET_OTHERHOST) {
709 skb->pkt_type = PACKET_HOST;
710 nf_bridge->mask |= BRNF_PKT_TYPE;
711 }
712
713 if (pf == NFPROTO_IPV4 && br_parse_ip_options(skb))
714 return NF_DROP;
715
716 /* The physdev module checks on this */
717 nf_bridge->mask |= BRNF_BRIDGED;
718 nf_bridge->physoutdev = skb->dev;
719 if (pf == NFPROTO_IPV4)
720 skb->protocol = htons(ETH_P_IP);
721 else
722 skb->protocol = htons(ETH_P_IPV6);
723
724 NF_HOOK(pf, NF_INET_FORWARD, skb, brnf_get_logical_dev(skb, in), parent,
725 br_nf_forward_finish);
726
727 return NF_STOLEN;
728 }
729
730 static unsigned int br_nf_forward_arp(const struct nf_hook_ops *ops,
731 struct sk_buff *skb,
732 const struct net_device *in,
733 const struct net_device *out,
734 int (*okfn)(struct sk_buff *))
735 {
736 struct net_bridge_port *p;
737 struct net_bridge *br;
738 struct net_device **d = (struct net_device **)(skb->cb);
739
740 p = br_port_get_rcu(out);
741 if (p == NULL)
742 return NF_ACCEPT;
743 br = p->br;
744
745 if (!brnf_call_arptables && !br->nf_call_arptables)
746 return NF_ACCEPT;
747
748 if (!IS_ARP(skb)) {
749 if (!IS_VLAN_ARP(skb))
750 return NF_ACCEPT;
751 nf_bridge_pull_encap_header(skb);
752 }
753
754 if (arp_hdr(skb)->ar_pln != 4) {
755 if (IS_VLAN_ARP(skb))
756 nf_bridge_push_encap_header(skb);
757 return NF_ACCEPT;
758 }
759 *d = (struct net_device *)in;
760 NF_HOOK(NFPROTO_ARP, NF_ARP_FORWARD, skb, (struct net_device *)in,
761 (struct net_device *)out, br_nf_forward_finish);
762
763 return NF_STOLEN;
764 }
765
766 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV4)
767 static int br_nf_dev_queue_xmit(struct sk_buff *skb)
768 {
769 int ret;
770 int frag_max_size;
771
772 /* This is wrong! We should preserve the original fragment
773 * boundaries by preserving frag_list rather than refragmenting.
774 */
775 if (skb->protocol == htons(ETH_P_IP) &&
776 skb->len + nf_bridge_mtu_reduction(skb) > skb->dev->mtu &&
777 !skb_is_gso(skb)) {
778 frag_max_size = BR_INPUT_SKB_CB(skb)->frag_max_size;
779 if (br_parse_ip_options(skb))
780 /* Drop invalid packet */
781 return NF_DROP;
782 IPCB(skb)->frag_max_size = frag_max_size;
783 ret = ip_fragment(skb, br_dev_queue_push_xmit);
784 } else
785 ret = br_dev_queue_push_xmit(skb);
786
787 return ret;
788 }
789 #else
790 static int br_nf_dev_queue_xmit(struct sk_buff *skb)
791 {
792 return br_dev_queue_push_xmit(skb);
793 }
794 #endif
795
796 /* PF_BRIDGE/POST_ROUTING ********************************************/
797 static unsigned int br_nf_post_routing(const struct nf_hook_ops *ops,
798 struct sk_buff *skb,
799 const struct net_device *in,
800 const struct net_device *out,
801 int (*okfn)(struct sk_buff *))
802 {
803 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
804 struct net_device *realoutdev = bridge_parent(skb->dev);
805 u_int8_t pf;
806
807 if (!nf_bridge || !(nf_bridge->mask & BRNF_BRIDGED))
808 return NF_ACCEPT;
809
810 if (!realoutdev)
811 return NF_DROP;
812
813 if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
814 pf = NFPROTO_IPV4;
815 else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
816 pf = NFPROTO_IPV6;
817 else
818 return NF_ACCEPT;
819
820 /* We assume any code from br_dev_queue_push_xmit onwards doesn't care
821 * about the value of skb->pkt_type. */
822 if (skb->pkt_type == PACKET_OTHERHOST) {
823 skb->pkt_type = PACKET_HOST;
824 nf_bridge->mask |= BRNF_PKT_TYPE;
825 }
826
827 nf_bridge_pull_encap_header(skb);
828 nf_bridge_save_header(skb);
829 if (pf == NFPROTO_IPV4)
830 skb->protocol = htons(ETH_P_IP);
831 else
832 skb->protocol = htons(ETH_P_IPV6);
833
834 NF_HOOK(pf, NF_INET_POST_ROUTING, skb, NULL, realoutdev,
835 br_nf_dev_queue_xmit);
836
837 return NF_STOLEN;
838 }
839
840 /* IP/SABOTAGE *****************************************************/
841 /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING
842 * for the second time. */
843 static unsigned int ip_sabotage_in(const struct nf_hook_ops *ops,
844 struct sk_buff *skb,
845 const struct net_device *in,
846 const struct net_device *out,
847 int (*okfn)(struct sk_buff *))
848 {
849 if (skb->nf_bridge &&
850 !(skb->nf_bridge->mask & BRNF_NF_BRIDGE_PREROUTING)) {
851 return NF_STOP;
852 }
853
854 return NF_ACCEPT;
855 }
856
857 void br_netfilter_enable(void)
858 {
859 }
860 EXPORT_SYMBOL_GPL(br_netfilter_enable);
861
862 /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because
863 * br_dev_queue_push_xmit is called afterwards */
864 static struct nf_hook_ops br_nf_ops[] __read_mostly = {
865 {
866 .hook = br_nf_pre_routing,
867 .owner = THIS_MODULE,
868 .pf = NFPROTO_BRIDGE,
869 .hooknum = NF_BR_PRE_ROUTING,
870 .priority = NF_BR_PRI_BRNF,
871 },
872 {
873 .hook = br_nf_local_in,
874 .owner = THIS_MODULE,
875 .pf = NFPROTO_BRIDGE,
876 .hooknum = NF_BR_LOCAL_IN,
877 .priority = NF_BR_PRI_BRNF,
878 },
879 {
880 .hook = br_nf_forward_ip,
881 .owner = THIS_MODULE,
882 .pf = NFPROTO_BRIDGE,
883 .hooknum = NF_BR_FORWARD,
884 .priority = NF_BR_PRI_BRNF - 1,
885 },
886 {
887 .hook = br_nf_forward_arp,
888 .owner = THIS_MODULE,
889 .pf = NFPROTO_BRIDGE,
890 .hooknum = NF_BR_FORWARD,
891 .priority = NF_BR_PRI_BRNF,
892 },
893 {
894 .hook = br_nf_post_routing,
895 .owner = THIS_MODULE,
896 .pf = NFPROTO_BRIDGE,
897 .hooknum = NF_BR_POST_ROUTING,
898 .priority = NF_BR_PRI_LAST,
899 },
900 {
901 .hook = ip_sabotage_in,
902 .owner = THIS_MODULE,
903 .pf = NFPROTO_IPV4,
904 .hooknum = NF_INET_PRE_ROUTING,
905 .priority = NF_IP_PRI_FIRST,
906 },
907 {
908 .hook = ip_sabotage_in,
909 .owner = THIS_MODULE,
910 .pf = NFPROTO_IPV6,
911 .hooknum = NF_INET_PRE_ROUTING,
912 .priority = NF_IP6_PRI_FIRST,
913 },
914 };
915
916 #ifdef CONFIG_SYSCTL
917 static
918 int brnf_sysctl_call_tables(struct ctl_table *ctl, int write,
919 void __user *buffer, size_t *lenp, loff_t *ppos)
920 {
921 int ret;
922
923 ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
924
925 if (write && *(int *)(ctl->data))
926 *(int *)(ctl->data) = 1;
927 return ret;
928 }
929
930 static struct ctl_table brnf_table[] = {
931 {
932 .procname = "bridge-nf-call-arptables",
933 .data = &brnf_call_arptables,
934 .maxlen = sizeof(int),
935 .mode = 0644,
936 .proc_handler = brnf_sysctl_call_tables,
937 },
938 {
939 .procname = "bridge-nf-call-iptables",
940 .data = &brnf_call_iptables,
941 .maxlen = sizeof(int),
942 .mode = 0644,
943 .proc_handler = brnf_sysctl_call_tables,
944 },
945 {
946 .procname = "bridge-nf-call-ip6tables",
947 .data = &brnf_call_ip6tables,
948 .maxlen = sizeof(int),
949 .mode = 0644,
950 .proc_handler = brnf_sysctl_call_tables,
951 },
952 {
953 .procname = "bridge-nf-filter-vlan-tagged",
954 .data = &brnf_filter_vlan_tagged,
955 .maxlen = sizeof(int),
956 .mode = 0644,
957 .proc_handler = brnf_sysctl_call_tables,
958 },
959 {
960 .procname = "bridge-nf-filter-pppoe-tagged",
961 .data = &brnf_filter_pppoe_tagged,
962 .maxlen = sizeof(int),
963 .mode = 0644,
964 .proc_handler = brnf_sysctl_call_tables,
965 },
966 {
967 .procname = "bridge-nf-pass-vlan-input-dev",
968 .data = &brnf_pass_vlan_indev,
969 .maxlen = sizeof(int),
970 .mode = 0644,
971 .proc_handler = brnf_sysctl_call_tables,
972 },
973 { }
974 };
975 #endif
976
977 static int __init br_netfilter_init(void)
978 {
979 int ret;
980
981 ret = nf_register_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
982 if (ret < 0)
983 return ret;
984
985 #ifdef CONFIG_SYSCTL
986 brnf_sysctl_header = register_net_sysctl(&init_net, "net/bridge", brnf_table);
987 if (brnf_sysctl_header == NULL) {
988 printk(KERN_WARNING
989 "br_netfilter: can't register to sysctl.\n");
990 nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
991 return -ENOMEM;
992 }
993 #endif
994 printk(KERN_NOTICE "Bridge firewalling registered\n");
995 return 0;
996 }
997
998 static void __exit br_netfilter_fini(void)
999 {
1000 nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1001 #ifdef CONFIG_SYSCTL
1002 unregister_net_sysctl_table(brnf_sysctl_header);
1003 #endif
1004 }
1005
1006 module_init(br_netfilter_init);
1007 module_exit(br_netfilter_fini);
1008
1009 MODULE_LICENSE("GPL");
1010 MODULE_AUTHOR("Lennert Buytenhek <buytenh@gnu.org>");
1011 MODULE_AUTHOR("Bart De Schuymer <bdschuym@pandora.be>");
1012 MODULE_DESCRIPTION("Linux ethernet netfilter firewall bridge");