]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/bridge/br_netfilter.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-2.6-nmw
[mirror_ubuntu-artful-kernel.git] / net / bridge / br_netfilter.c
1 /*
2 * Handle firewalling
3 * Linux ethernet bridge
4 *
5 * Authors:
6 * Lennert Buytenhek <buytenh@gnu.org>
7 * Bart De Schuymer (maintainer) <bdschuym@pandora.be>
8 *
9 * Changes:
10 * Apr 29 2003: physdev module support (bdschuym)
11 * Jun 19 2003: let arptables see bridged ARP traffic (bdschuym)
12 * Oct 06 2003: filter encapsulated IP/ARP VLAN traffic on untagged bridge
13 * (bdschuym)
14 * Sep 01 2004: add IPv6 filtering (bdschuym)
15 *
16 * This program is free software; you can redistribute it and/or
17 * modify it under the terms of the GNU General Public License
18 * as published by the Free Software Foundation; either version
19 * 2 of the License, or (at your option) any later version.
20 *
21 * Lennert dedicates this file to Kerstin Wurdinger.
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ip.h>
27 #include <linux/netdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/if_arp.h>
30 #include <linux/if_ether.h>
31 #include <linux/if_vlan.h>
32 #include <linux/if_pppox.h>
33 #include <linux/ppp_defs.h>
34 #include <linux/netfilter_bridge.h>
35 #include <linux/netfilter_ipv4.h>
36 #include <linux/netfilter_ipv6.h>
37 #include <linux/netfilter_arp.h>
38 #include <linux/in_route.h>
39 #include <linux/inetdevice.h>
40
41 #include <net/ip.h>
42 #include <net/ipv6.h>
43 #include <net/route.h>
44
45 #include <asm/uaccess.h>
46 #include "br_private.h"
47 #ifdef CONFIG_SYSCTL
48 #include <linux/sysctl.h>
49 #endif
50
51 #define skb_origaddr(skb) (((struct bridge_skb_cb *) \
52 (skb->nf_bridge->data))->daddr.ipv4)
53 #define store_orig_dstaddr(skb) (skb_origaddr(skb) = ip_hdr(skb)->daddr)
54 #define dnat_took_place(skb) (skb_origaddr(skb) != ip_hdr(skb)->daddr)
55
56 #ifdef CONFIG_SYSCTL
57 static struct ctl_table_header *brnf_sysctl_header;
58 static int brnf_call_iptables __read_mostly = 1;
59 static int brnf_call_ip6tables __read_mostly = 1;
60 static int brnf_call_arptables __read_mostly = 1;
61 static int brnf_filter_vlan_tagged __read_mostly = 1;
62 static int brnf_filter_pppoe_tagged __read_mostly = 1;
63 #else
64 #define brnf_filter_vlan_tagged 1
65 #define brnf_filter_pppoe_tagged 1
66 #endif
67
68 static inline __be16 vlan_proto(const struct sk_buff *skb)
69 {
70 return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
71 }
72
73 #define IS_VLAN_IP(skb) \
74 (skb->protocol == htons(ETH_P_8021Q) && \
75 vlan_proto(skb) == htons(ETH_P_IP) && \
76 brnf_filter_vlan_tagged)
77
78 #define IS_VLAN_IPV6(skb) \
79 (skb->protocol == htons(ETH_P_8021Q) && \
80 vlan_proto(skb) == htons(ETH_P_IPV6) &&\
81 brnf_filter_vlan_tagged)
82
83 #define IS_VLAN_ARP(skb) \
84 (skb->protocol == htons(ETH_P_8021Q) && \
85 vlan_proto(skb) == htons(ETH_P_ARP) && \
86 brnf_filter_vlan_tagged)
87
88 static inline __be16 pppoe_proto(const struct sk_buff *skb)
89 {
90 return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN +
91 sizeof(struct pppoe_hdr)));
92 }
93
94 #define IS_PPPOE_IP(skb) \
95 (skb->protocol == htons(ETH_P_PPP_SES) && \
96 pppoe_proto(skb) == htons(PPP_IP) && \
97 brnf_filter_pppoe_tagged)
98
99 #define IS_PPPOE_IPV6(skb) \
100 (skb->protocol == htons(ETH_P_PPP_SES) && \
101 pppoe_proto(skb) == htons(PPP_IPV6) && \
102 brnf_filter_pppoe_tagged)
103
104 /* We need these fake structures to make netfilter happy --
105 * lots of places assume that skb->dst != NULL, which isn't
106 * all that unreasonable.
107 *
108 * Currently, we fill in the PMTU entry because netfilter
109 * refragmentation needs it, and the rt_flags entry because
110 * ipt_REJECT needs it. Future netfilter modules might
111 * require us to fill additional fields. */
112 static struct net_device __fake_net_device = {
113 .hard_header_len = ETH_HLEN
114 };
115
116 static struct rtable __fake_rtable = {
117 .u = {
118 .dst = {
119 .__refcnt = ATOMIC_INIT(1),
120 .dev = &__fake_net_device,
121 .path = &__fake_rtable.u.dst,
122 .metrics = {[RTAX_MTU - 1] = 1500},
123 .flags = DST_NOXFRM,
124 }
125 },
126 .rt_flags = 0,
127 };
128
129 static inline struct net_device *bridge_parent(const struct net_device *dev)
130 {
131 struct net_bridge_port *port = rcu_dereference(dev->br_port);
132
133 return port ? port->br->dev : NULL;
134 }
135
136 static inline struct nf_bridge_info *nf_bridge_alloc(struct sk_buff *skb)
137 {
138 skb->nf_bridge = kzalloc(sizeof(struct nf_bridge_info), GFP_ATOMIC);
139 if (likely(skb->nf_bridge))
140 atomic_set(&(skb->nf_bridge->use), 1);
141
142 return skb->nf_bridge;
143 }
144
145 static inline void nf_bridge_push_encap_header(struct sk_buff *skb)
146 {
147 unsigned int len = nf_bridge_encap_header_len(skb);
148
149 skb_push(skb, len);
150 skb->network_header -= len;
151 }
152
153 static inline void nf_bridge_pull_encap_header(struct sk_buff *skb)
154 {
155 unsigned int len = nf_bridge_encap_header_len(skb);
156
157 skb_pull(skb, len);
158 skb->network_header += len;
159 }
160
161 static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb)
162 {
163 unsigned int len = nf_bridge_encap_header_len(skb);
164
165 skb_pull_rcsum(skb, len);
166 skb->network_header += len;
167 }
168
169 static inline void nf_bridge_save_header(struct sk_buff *skb)
170 {
171 int header_size = ETH_HLEN + nf_bridge_encap_header_len(skb);
172
173 skb_copy_from_linear_data_offset(skb, -header_size,
174 skb->nf_bridge->data, header_size);
175 }
176
177 /*
178 * When forwarding bridge frames, we save a copy of the original
179 * header before processing.
180 */
181 int nf_bridge_copy_header(struct sk_buff *skb)
182 {
183 int err;
184 int header_size = ETH_HLEN + nf_bridge_encap_header_len(skb);
185
186 err = skb_cow_head(skb, header_size);
187 if (err)
188 return err;
189
190 skb_copy_to_linear_data_offset(skb, -header_size,
191 skb->nf_bridge->data, header_size);
192 __skb_push(skb, nf_bridge_encap_header_len(skb));
193 return 0;
194 }
195
196 /* PF_BRIDGE/PRE_ROUTING *********************************************/
197 /* Undo the changes made for ip6tables PREROUTING and continue the
198 * bridge PRE_ROUTING hook. */
199 static int br_nf_pre_routing_finish_ipv6(struct sk_buff *skb)
200 {
201 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
202
203 if (nf_bridge->mask & BRNF_PKT_TYPE) {
204 skb->pkt_type = PACKET_OTHERHOST;
205 nf_bridge->mask ^= BRNF_PKT_TYPE;
206 }
207 nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
208
209 skb->dst = (struct dst_entry *)&__fake_rtable;
210 dst_hold(skb->dst);
211
212 skb->dev = nf_bridge->physindev;
213 nf_bridge_push_encap_header(skb);
214 NF_HOOK_THRESH(PF_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
215 br_handle_frame_finish, 1);
216
217 return 0;
218 }
219
220 static void __br_dnat_complain(void)
221 {
222 static unsigned long last_complaint;
223
224 if (jiffies - last_complaint >= 5 * HZ) {
225 printk(KERN_WARNING "Performing cross-bridge DNAT requires IP "
226 "forwarding to be enabled\n");
227 last_complaint = jiffies;
228 }
229 }
230
231 /* This requires some explaining. If DNAT has taken place,
232 * we will need to fix up the destination Ethernet address,
233 * and this is a tricky process.
234 *
235 * There are two cases to consider:
236 * 1. The packet was DNAT'ed to a device in the same bridge
237 * port group as it was received on. We can still bridge
238 * the packet.
239 * 2. The packet was DNAT'ed to a different device, either
240 * a non-bridged device or another bridge port group.
241 * The packet will need to be routed.
242 *
243 * The correct way of distinguishing between these two cases is to
244 * call ip_route_input() and to look at skb->dst->dev, which is
245 * changed to the destination device if ip_route_input() succeeds.
246 *
247 * Let us first consider the case that ip_route_input() succeeds:
248 *
249 * If skb->dst->dev equals the logical bridge device the packet
250 * came in on, we can consider this bridging. We then call
251 * skb->dst->output() which will make the packet enter br_nf_local_out()
252 * not much later. In that function it is assured that the iptables
253 * FORWARD chain is traversed for the packet.
254 *
255 * Otherwise, the packet is considered to be routed and we just
256 * change the destination MAC address so that the packet will
257 * later be passed up to the IP stack to be routed. For a redirected
258 * packet, ip_route_input() will give back the localhost as output device,
259 * which differs from the bridge device.
260 *
261 * Let us now consider the case that ip_route_input() fails:
262 *
263 * This can be because the destination address is martian, in which case
264 * the packet will be dropped.
265 * After a "echo '0' > /proc/sys/net/ipv4/ip_forward" ip_route_input()
266 * will fail, while __ip_route_output_key() will return success. The source
267 * address for __ip_route_output_key() is set to zero, so __ip_route_output_key
268 * thinks we're handling a locally generated packet and won't care
269 * if IP forwarding is allowed. We send a warning message to the users's
270 * log telling her to put IP forwarding on.
271 *
272 * ip_route_input() will also fail if there is no route available.
273 * In that case we just drop the packet.
274 *
275 * --Lennert, 20020411
276 * --Bart, 20020416 (updated)
277 * --Bart, 20021007 (updated)
278 * --Bart, 20062711 (updated) */
279 static int br_nf_pre_routing_finish_bridge(struct sk_buff *skb)
280 {
281 if (skb->pkt_type == PACKET_OTHERHOST) {
282 skb->pkt_type = PACKET_HOST;
283 skb->nf_bridge->mask |= BRNF_PKT_TYPE;
284 }
285 skb->nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
286
287 skb->dev = bridge_parent(skb->dev);
288 if (!skb->dev)
289 kfree_skb(skb);
290 else {
291 nf_bridge_pull_encap_header(skb);
292 skb->dst->output(skb);
293 }
294 return 0;
295 }
296
297 static int br_nf_pre_routing_finish(struct sk_buff *skb)
298 {
299 struct net_device *dev = skb->dev;
300 struct iphdr *iph = ip_hdr(skb);
301 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
302 int err;
303
304 if (nf_bridge->mask & BRNF_PKT_TYPE) {
305 skb->pkt_type = PACKET_OTHERHOST;
306 nf_bridge->mask ^= BRNF_PKT_TYPE;
307 }
308 nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING;
309 if (dnat_took_place(skb)) {
310 if ((err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))) {
311 struct rtable *rt;
312 struct flowi fl = {
313 .nl_u = {
314 .ip4_u = {
315 .daddr = iph->daddr,
316 .saddr = 0,
317 .tos = RT_TOS(iph->tos) },
318 },
319 .proto = 0,
320 };
321 struct in_device *in_dev = in_dev_get(dev);
322
323 /* If err equals -EHOSTUNREACH the error is due to a
324 * martian destination or due to the fact that
325 * forwarding is disabled. For most martian packets,
326 * ip_route_output_key() will fail. It won't fail for 2 types of
327 * martian destinations: loopback destinations and destination
328 * 0.0.0.0. In both cases the packet will be dropped because the
329 * destination is the loopback device and not the bridge. */
330 if (err != -EHOSTUNREACH || !in_dev || IN_DEV_FORWARD(in_dev))
331 goto free_skb;
332
333 if (!ip_route_output_key(&rt, &fl)) {
334 /* - Bridged-and-DNAT'ed traffic doesn't
335 * require ip_forwarding. */
336 if (((struct dst_entry *)rt)->dev == dev) {
337 skb->dst = (struct dst_entry *)rt;
338 goto bridged_dnat;
339 }
340 /* we are sure that forwarding is disabled, so printing
341 * this message is no problem. Note that the packet could
342 * still have a martian destination address, in which case
343 * the packet could be dropped even if forwarding were enabled */
344 __br_dnat_complain();
345 dst_release((struct dst_entry *)rt);
346 }
347 free_skb:
348 kfree_skb(skb);
349 return 0;
350 } else {
351 if (skb->dst->dev == dev) {
352 bridged_dnat:
353 /* Tell br_nf_local_out this is a
354 * bridged frame */
355 nf_bridge->mask |= BRNF_BRIDGED_DNAT;
356 skb->dev = nf_bridge->physindev;
357 nf_bridge_push_encap_header(skb);
358 NF_HOOK_THRESH(PF_BRIDGE, NF_BR_PRE_ROUTING,
359 skb, skb->dev, NULL,
360 br_nf_pre_routing_finish_bridge,
361 1);
362 return 0;
363 }
364 memcpy(eth_hdr(skb)->h_dest, dev->dev_addr, ETH_ALEN);
365 skb->pkt_type = PACKET_HOST;
366 }
367 } else {
368 skb->dst = (struct dst_entry *)&__fake_rtable;
369 dst_hold(skb->dst);
370 }
371
372 skb->dev = nf_bridge->physindev;
373 nf_bridge_push_encap_header(skb);
374 NF_HOOK_THRESH(PF_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL,
375 br_handle_frame_finish, 1);
376
377 return 0;
378 }
379
380 /* Some common code for IPv4/IPv6 */
381 static struct net_device *setup_pre_routing(struct sk_buff *skb)
382 {
383 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
384
385 if (skb->pkt_type == PACKET_OTHERHOST) {
386 skb->pkt_type = PACKET_HOST;
387 nf_bridge->mask |= BRNF_PKT_TYPE;
388 }
389
390 nf_bridge->mask |= BRNF_NF_BRIDGE_PREROUTING;
391 nf_bridge->physindev = skb->dev;
392 skb->dev = bridge_parent(skb->dev);
393
394 return skb->dev;
395 }
396
397 /* We only check the length. A bridge shouldn't do any hop-by-hop stuff anyway */
398 static int check_hbh_len(struct sk_buff *skb)
399 {
400 unsigned char *raw = (u8 *)(ipv6_hdr(skb) + 1);
401 u32 pkt_len;
402 const unsigned char *nh = skb_network_header(skb);
403 int off = raw - nh;
404 int len = (raw[1] + 1) << 3;
405
406 if ((raw + len) - skb->data > skb_headlen(skb))
407 goto bad;
408
409 off += 2;
410 len -= 2;
411
412 while (len > 0) {
413 int optlen = nh[off + 1] + 2;
414
415 switch (nh[off]) {
416 case IPV6_TLV_PAD0:
417 optlen = 1;
418 break;
419
420 case IPV6_TLV_PADN:
421 break;
422
423 case IPV6_TLV_JUMBO:
424 if (nh[off + 1] != 4 || (off & 3) != 2)
425 goto bad;
426 pkt_len = ntohl(*(__be32 *) (nh + off + 2));
427 if (pkt_len <= IPV6_MAXPLEN ||
428 ipv6_hdr(skb)->payload_len)
429 goto bad;
430 if (pkt_len > skb->len - sizeof(struct ipv6hdr))
431 goto bad;
432 if (pskb_trim_rcsum(skb,
433 pkt_len + sizeof(struct ipv6hdr)))
434 goto bad;
435 nh = skb_network_header(skb);
436 break;
437 default:
438 if (optlen > len)
439 goto bad;
440 break;
441 }
442 off += optlen;
443 len -= optlen;
444 }
445 if (len == 0)
446 return 0;
447 bad:
448 return -1;
449
450 }
451
452 /* Replicate the checks that IPv6 does on packet reception and pass the packet
453 * to ip6tables, which doesn't support NAT, so things are fairly simple. */
454 static unsigned int br_nf_pre_routing_ipv6(unsigned int hook,
455 struct sk_buff *skb,
456 const struct net_device *in,
457 const struct net_device *out,
458 int (*okfn)(struct sk_buff *))
459 {
460 struct ipv6hdr *hdr;
461 u32 pkt_len;
462
463 if (skb->len < sizeof(struct ipv6hdr))
464 goto inhdr_error;
465
466 if (!pskb_may_pull(skb, sizeof(struct ipv6hdr)))
467 goto inhdr_error;
468
469 hdr = ipv6_hdr(skb);
470
471 if (hdr->version != 6)
472 goto inhdr_error;
473
474 pkt_len = ntohs(hdr->payload_len);
475
476 if (pkt_len || hdr->nexthdr != NEXTHDR_HOP) {
477 if (pkt_len + sizeof(struct ipv6hdr) > skb->len)
478 goto inhdr_error;
479 if (pskb_trim_rcsum(skb, pkt_len + sizeof(struct ipv6hdr)))
480 goto inhdr_error;
481 }
482 if (hdr->nexthdr == NEXTHDR_HOP && check_hbh_len(skb))
483 goto inhdr_error;
484
485 nf_bridge_put(skb->nf_bridge);
486 if (!nf_bridge_alloc(skb))
487 return NF_DROP;
488 if (!setup_pre_routing(skb))
489 return NF_DROP;
490
491 NF_HOOK(PF_INET6, NF_IP6_PRE_ROUTING, skb, skb->dev, NULL,
492 br_nf_pre_routing_finish_ipv6);
493
494 return NF_STOLEN;
495
496 inhdr_error:
497 return NF_DROP;
498 }
499
500 /* Direct IPv6 traffic to br_nf_pre_routing_ipv6.
501 * Replicate the checks that IPv4 does on packet reception.
502 * Set skb->dev to the bridge device (i.e. parent of the
503 * receiving device) to make netfilter happy, the REDIRECT
504 * target in particular. Save the original destination IP
505 * address to be able to detect DNAT afterwards. */
506 static unsigned int br_nf_pre_routing(unsigned int hook, struct sk_buff **pskb,
507 const struct net_device *in,
508 const struct net_device *out,
509 int (*okfn)(struct sk_buff *))
510 {
511 struct iphdr *iph;
512 struct sk_buff *skb = *pskb;
513 __u32 len = nf_bridge_encap_header_len(skb);
514
515 if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
516 return NF_STOLEN;
517
518 if (unlikely(!pskb_may_pull(skb, len)))
519 goto out;
520
521 if (skb->protocol == htons(ETH_P_IPV6) || IS_VLAN_IPV6(skb) ||
522 IS_PPPOE_IPV6(skb)) {
523 #ifdef CONFIG_SYSCTL
524 if (!brnf_call_ip6tables)
525 return NF_ACCEPT;
526 #endif
527 nf_bridge_pull_encap_header_rcsum(skb);
528 return br_nf_pre_routing_ipv6(hook, skb, in, out, okfn);
529 }
530 #ifdef CONFIG_SYSCTL
531 if (!brnf_call_iptables)
532 return NF_ACCEPT;
533 #endif
534
535 if (skb->protocol != htons(ETH_P_IP) && !IS_VLAN_IP(skb) &&
536 !IS_PPPOE_IP(skb))
537 return NF_ACCEPT;
538
539 nf_bridge_pull_encap_header_rcsum(skb);
540
541 if (!pskb_may_pull(skb, sizeof(struct iphdr)))
542 goto inhdr_error;
543
544 iph = ip_hdr(skb);
545 if (iph->ihl < 5 || iph->version != 4)
546 goto inhdr_error;
547
548 if (!pskb_may_pull(skb, 4 * iph->ihl))
549 goto inhdr_error;
550
551 iph = ip_hdr(skb);
552 if (ip_fast_csum((__u8 *) iph, iph->ihl) != 0)
553 goto inhdr_error;
554
555 len = ntohs(iph->tot_len);
556 if (skb->len < len || len < 4 * iph->ihl)
557 goto inhdr_error;
558
559 pskb_trim_rcsum(skb, len);
560
561 nf_bridge_put(skb->nf_bridge);
562 if (!nf_bridge_alloc(skb))
563 return NF_DROP;
564 if (!setup_pre_routing(skb))
565 return NF_DROP;
566 store_orig_dstaddr(skb);
567
568 NF_HOOK(PF_INET, NF_IP_PRE_ROUTING, skb, skb->dev, NULL,
569 br_nf_pre_routing_finish);
570
571 return NF_STOLEN;
572
573 inhdr_error:
574 // IP_INC_STATS_BH(IpInHdrErrors);
575 out:
576 return NF_DROP;
577 }
578
579
580 /* PF_BRIDGE/LOCAL_IN ************************************************/
581 /* The packet is locally destined, which requires a real
582 * dst_entry, so detach the fake one. On the way up, the
583 * packet would pass through PRE_ROUTING again (which already
584 * took place when the packet entered the bridge), but we
585 * register an IPv4 PRE_ROUTING 'sabotage' hook that will
586 * prevent this from happening. */
587 static unsigned int br_nf_local_in(unsigned int hook, struct sk_buff **pskb,
588 const struct net_device *in,
589 const struct net_device *out,
590 int (*okfn)(struct sk_buff *))
591 {
592 struct sk_buff *skb = *pskb;
593
594 if (skb->dst == (struct dst_entry *)&__fake_rtable) {
595 dst_release(skb->dst);
596 skb->dst = NULL;
597 }
598
599 return NF_ACCEPT;
600 }
601
602 /* PF_BRIDGE/FORWARD *************************************************/
603 static int br_nf_forward_finish(struct sk_buff *skb)
604 {
605 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
606 struct net_device *in;
607
608 if (skb->protocol != htons(ETH_P_ARP) && !IS_VLAN_ARP(skb)) {
609 in = nf_bridge->physindev;
610 if (nf_bridge->mask & BRNF_PKT_TYPE) {
611 skb->pkt_type = PACKET_OTHERHOST;
612 nf_bridge->mask ^= BRNF_PKT_TYPE;
613 }
614 } else {
615 in = *((struct net_device **)(skb->cb));
616 }
617 nf_bridge_push_encap_header(skb);
618 NF_HOOK_THRESH(PF_BRIDGE, NF_BR_FORWARD, skb, in,
619 skb->dev, br_forward_finish, 1);
620 return 0;
621 }
622
623 /* This is the 'purely bridged' case. For IP, we pass the packet to
624 * netfilter with indev and outdev set to the bridge device,
625 * but we are still able to filter on the 'real' indev/outdev
626 * because of the physdev module. For ARP, indev and outdev are the
627 * bridge ports. */
628 static unsigned int br_nf_forward_ip(unsigned int hook, struct sk_buff **pskb,
629 const struct net_device *in,
630 const struct net_device *out,
631 int (*okfn)(struct sk_buff *))
632 {
633 struct sk_buff *skb = *pskb;
634 struct nf_bridge_info *nf_bridge;
635 struct net_device *parent;
636 int pf;
637
638 if (!skb->nf_bridge)
639 return NF_ACCEPT;
640
641 parent = bridge_parent(out);
642 if (!parent)
643 return NF_DROP;
644
645 if (skb->protocol == htons(ETH_P_IP) || IS_VLAN_IP(skb) ||
646 IS_PPPOE_IP(skb))
647 pf = PF_INET;
648 else
649 pf = PF_INET6;
650
651 nf_bridge_pull_encap_header(*pskb);
652
653 nf_bridge = skb->nf_bridge;
654 if (skb->pkt_type == PACKET_OTHERHOST) {
655 skb->pkt_type = PACKET_HOST;
656 nf_bridge->mask |= BRNF_PKT_TYPE;
657 }
658
659 /* The physdev module checks on this */
660 nf_bridge->mask |= BRNF_BRIDGED;
661 nf_bridge->physoutdev = skb->dev;
662
663 NF_HOOK(pf, NF_IP_FORWARD, skb, bridge_parent(in), parent,
664 br_nf_forward_finish);
665
666 return NF_STOLEN;
667 }
668
669 static unsigned int br_nf_forward_arp(unsigned int hook, struct sk_buff **pskb,
670 const struct net_device *in,
671 const struct net_device *out,
672 int (*okfn)(struct sk_buff *))
673 {
674 struct sk_buff *skb = *pskb;
675 struct net_device **d = (struct net_device **)(skb->cb);
676
677 #ifdef CONFIG_SYSCTL
678 if (!brnf_call_arptables)
679 return NF_ACCEPT;
680 #endif
681
682 if (skb->protocol != htons(ETH_P_ARP)) {
683 if (!IS_VLAN_ARP(skb))
684 return NF_ACCEPT;
685 nf_bridge_pull_encap_header(*pskb);
686 }
687
688 if (arp_hdr(skb)->ar_pln != 4) {
689 if (IS_VLAN_ARP(skb))
690 nf_bridge_push_encap_header(*pskb);
691 return NF_ACCEPT;
692 }
693 *d = (struct net_device *)in;
694 NF_HOOK(NF_ARP, NF_ARP_FORWARD, skb, (struct net_device *)in,
695 (struct net_device *)out, br_nf_forward_finish);
696
697 return NF_STOLEN;
698 }
699
700 /* PF_BRIDGE/LOCAL_OUT ***********************************************
701 *
702 * This function sees both locally originated IP packets and forwarded
703 * IP packets (in both cases the destination device is a bridge
704 * device). It also sees bridged-and-DNAT'ed packets.
705 *
706 * If (nf_bridge->mask & BRNF_BRIDGED_DNAT) then the packet is bridged
707 * and we fake the PF_BRIDGE/FORWARD hook. The function br_nf_forward()
708 * will then fake the PF_INET/FORWARD hook. br_nf_local_out() has priority
709 * NF_BR_PRI_FIRST, so no relevant PF_BRIDGE/INPUT functions have been nor
710 * will be executed.
711 */
712 static unsigned int br_nf_local_out(unsigned int hook, struct sk_buff **pskb,
713 const struct net_device *in,
714 const struct net_device *out,
715 int (*okfn)(struct sk_buff *))
716 {
717 struct net_device *realindev;
718 struct sk_buff *skb = *pskb;
719 struct nf_bridge_info *nf_bridge;
720
721 if (!skb->nf_bridge)
722 return NF_ACCEPT;
723
724 nf_bridge = skb->nf_bridge;
725 if (!(nf_bridge->mask & BRNF_BRIDGED_DNAT))
726 return NF_ACCEPT;
727
728 /* Bridged, take PF_BRIDGE/FORWARD.
729 * (see big note in front of br_nf_pre_routing_finish) */
730 nf_bridge->physoutdev = skb->dev;
731 realindev = nf_bridge->physindev;
732
733 if (nf_bridge->mask & BRNF_PKT_TYPE) {
734 skb->pkt_type = PACKET_OTHERHOST;
735 nf_bridge->mask ^= BRNF_PKT_TYPE;
736 }
737 nf_bridge_push_encap_header(skb);
738
739 NF_HOOK(PF_BRIDGE, NF_BR_FORWARD, skb, realindev, skb->dev,
740 br_forward_finish);
741 return NF_STOLEN;
742 }
743
744 static int br_nf_dev_queue_xmit(struct sk_buff *skb)
745 {
746 if (skb->protocol == htons(ETH_P_IP) &&
747 skb->len > skb->dev->mtu &&
748 !skb_is_gso(skb))
749 return ip_fragment(skb, br_dev_queue_push_xmit);
750 else
751 return br_dev_queue_push_xmit(skb);
752 }
753
754 /* PF_BRIDGE/POST_ROUTING ********************************************/
755 static unsigned int br_nf_post_routing(unsigned int hook, struct sk_buff **pskb,
756 const struct net_device *in,
757 const struct net_device *out,
758 int (*okfn)(struct sk_buff *))
759 {
760 struct sk_buff *skb = *pskb;
761 struct nf_bridge_info *nf_bridge = (*pskb)->nf_bridge;
762 struct net_device *realoutdev = bridge_parent(skb->dev);
763 int pf;
764
765 #ifdef CONFIG_NETFILTER_DEBUG
766 /* Be very paranoid. This probably won't happen anymore, but let's
767 * keep the check just to be sure... */
768 if (skb_mac_header(skb) < skb->head ||
769 skb_mac_header(skb) + ETH_HLEN > skb->data) {
770 printk(KERN_CRIT "br_netfilter: Argh!! br_nf_post_routing: "
771 "bad mac.raw pointer.\n");
772 goto print_error;
773 }
774 #endif
775
776 if (!nf_bridge)
777 return NF_ACCEPT;
778
779 if (!realoutdev)
780 return NF_DROP;
781
782 if (skb->protocol == htons(ETH_P_IP) || IS_VLAN_IP(skb) ||
783 IS_PPPOE_IP(skb))
784 pf = PF_INET;
785 else
786 pf = PF_INET6;
787
788 #ifdef CONFIG_NETFILTER_DEBUG
789 if (skb->dst == NULL) {
790 printk(KERN_INFO "br_netfilter post_routing: skb->dst == NULL\n");
791 goto print_error;
792 }
793 #endif
794
795 /* We assume any code from br_dev_queue_push_xmit onwards doesn't care
796 * about the value of skb->pkt_type. */
797 if (skb->pkt_type == PACKET_OTHERHOST) {
798 skb->pkt_type = PACKET_HOST;
799 nf_bridge->mask |= BRNF_PKT_TYPE;
800 }
801
802 nf_bridge_pull_encap_header(skb);
803 nf_bridge_save_header(skb);
804
805 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
806 if (nf_bridge->netoutdev)
807 realoutdev = nf_bridge->netoutdev;
808 #endif
809 NF_HOOK(pf, NF_IP_POST_ROUTING, skb, NULL, realoutdev,
810 br_nf_dev_queue_xmit);
811
812 return NF_STOLEN;
813
814 #ifdef CONFIG_NETFILTER_DEBUG
815 print_error:
816 if (skb->dev != NULL) {
817 printk("[%s]", skb->dev->name);
818 if (realoutdev)
819 printk("[%s]", realoutdev->name);
820 }
821 printk(" head:%p, raw:%p, data:%p\n", skb->head, skb_mac_header(skb),
822 skb->data);
823 dump_stack();
824 return NF_ACCEPT;
825 #endif
826 }
827
828 /* IP/SABOTAGE *****************************************************/
829 /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING
830 * for the second time. */
831 static unsigned int ip_sabotage_in(unsigned int hook, struct sk_buff **pskb,
832 const struct net_device *in,
833 const struct net_device *out,
834 int (*okfn)(struct sk_buff *))
835 {
836 if ((*pskb)->nf_bridge &&
837 !((*pskb)->nf_bridge->mask & BRNF_NF_BRIDGE_PREROUTING)) {
838 return NF_STOP;
839 }
840
841 return NF_ACCEPT;
842 }
843
844 /* For br_nf_local_out we need (prio = NF_BR_PRI_FIRST), to insure that innocent
845 * PF_BRIDGE/NF_BR_LOCAL_OUT functions don't get bridged traffic as input.
846 * For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because
847 * ip_refrag() can return NF_STOLEN. */
848 static struct nf_hook_ops br_nf_ops[] = {
849 { .hook = br_nf_pre_routing,
850 .owner = THIS_MODULE,
851 .pf = PF_BRIDGE,
852 .hooknum = NF_BR_PRE_ROUTING,
853 .priority = NF_BR_PRI_BRNF, },
854 { .hook = br_nf_local_in,
855 .owner = THIS_MODULE,
856 .pf = PF_BRIDGE,
857 .hooknum = NF_BR_LOCAL_IN,
858 .priority = NF_BR_PRI_BRNF, },
859 { .hook = br_nf_forward_ip,
860 .owner = THIS_MODULE,
861 .pf = PF_BRIDGE,
862 .hooknum = NF_BR_FORWARD,
863 .priority = NF_BR_PRI_BRNF - 1, },
864 { .hook = br_nf_forward_arp,
865 .owner = THIS_MODULE,
866 .pf = PF_BRIDGE,
867 .hooknum = NF_BR_FORWARD,
868 .priority = NF_BR_PRI_BRNF, },
869 { .hook = br_nf_local_out,
870 .owner = THIS_MODULE,
871 .pf = PF_BRIDGE,
872 .hooknum = NF_BR_LOCAL_OUT,
873 .priority = NF_BR_PRI_FIRST, },
874 { .hook = br_nf_post_routing,
875 .owner = THIS_MODULE,
876 .pf = PF_BRIDGE,
877 .hooknum = NF_BR_POST_ROUTING,
878 .priority = NF_BR_PRI_LAST, },
879 { .hook = ip_sabotage_in,
880 .owner = THIS_MODULE,
881 .pf = PF_INET,
882 .hooknum = NF_IP_PRE_ROUTING,
883 .priority = NF_IP_PRI_FIRST, },
884 { .hook = ip_sabotage_in,
885 .owner = THIS_MODULE,
886 .pf = PF_INET6,
887 .hooknum = NF_IP6_PRE_ROUTING,
888 .priority = NF_IP6_PRI_FIRST, },
889 };
890
891 #ifdef CONFIG_SYSCTL
892 static
893 int brnf_sysctl_call_tables(ctl_table * ctl, int write, struct file *filp,
894 void __user * buffer, size_t * lenp, loff_t * ppos)
895 {
896 int ret;
897
898 ret = proc_dointvec(ctl, write, filp, buffer, lenp, ppos);
899
900 if (write && *(int *)(ctl->data))
901 *(int *)(ctl->data) = 1;
902 return ret;
903 }
904
905 static ctl_table brnf_table[] = {
906 {
907 .procname = "bridge-nf-call-arptables",
908 .data = &brnf_call_arptables,
909 .maxlen = sizeof(int),
910 .mode = 0644,
911 .proc_handler = &brnf_sysctl_call_tables,
912 },
913 {
914 .procname = "bridge-nf-call-iptables",
915 .data = &brnf_call_iptables,
916 .maxlen = sizeof(int),
917 .mode = 0644,
918 .proc_handler = &brnf_sysctl_call_tables,
919 },
920 {
921 .procname = "bridge-nf-call-ip6tables",
922 .data = &brnf_call_ip6tables,
923 .maxlen = sizeof(int),
924 .mode = 0644,
925 .proc_handler = &brnf_sysctl_call_tables,
926 },
927 {
928 .procname = "bridge-nf-filter-vlan-tagged",
929 .data = &brnf_filter_vlan_tagged,
930 .maxlen = sizeof(int),
931 .mode = 0644,
932 .proc_handler = &brnf_sysctl_call_tables,
933 },
934 {
935 .procname = "bridge-nf-filter-pppoe-tagged",
936 .data = &brnf_filter_pppoe_tagged,
937 .maxlen = sizeof(int),
938 .mode = 0644,
939 .proc_handler = &brnf_sysctl_call_tables,
940 },
941 { .ctl_name = 0 }
942 };
943
944 static ctl_table brnf_bridge_table[] = {
945 {
946 .ctl_name = NET_BRIDGE,
947 .procname = "bridge",
948 .mode = 0555,
949 .child = brnf_table,
950 },
951 { .ctl_name = 0 }
952 };
953
954 static ctl_table brnf_net_table[] = {
955 {
956 .ctl_name = CTL_NET,
957 .procname = "net",
958 .mode = 0555,
959 .child = brnf_bridge_table,
960 },
961 { .ctl_name = 0 }
962 };
963 #endif
964
965 int __init br_netfilter_init(void)
966 {
967 int ret;
968
969 ret = nf_register_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
970 if (ret < 0)
971 return ret;
972 #ifdef CONFIG_SYSCTL
973 brnf_sysctl_header = register_sysctl_table(brnf_net_table);
974 if (brnf_sysctl_header == NULL) {
975 printk(KERN_WARNING
976 "br_netfilter: can't register to sysctl.\n");
977 nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
978 return -ENOMEM;
979 }
980 #endif
981 printk(KERN_NOTICE "Bridge firewalling registered\n");
982 return 0;
983 }
984
985 void br_netfilter_fini(void)
986 {
987 nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
988 #ifdef CONFIG_SYSCTL
989 unregister_sysctl_table(brnf_sysctl_header);
990 #endif
991 }