]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/bridge/br_netfilter_hooks.c
bridge: Cache net in br_nf_pre_routing_finish
[mirror_ubuntu-artful-kernel.git] / net / bridge / br_netfilter_hooks.c
1 /*
2 * Handle firewalling
3 * Linux ethernet bridge
4 *
5 * Authors:
6 * Lennert Buytenhek <buytenh@gnu.org>
7 * Bart De Schuymer <bdschuym@pandora.be>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 *
14 * Lennert dedicates this file to Kerstin Wurdinger.
15 */
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/ip.h>
21 #include <linux/netdevice.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_arp.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_pppox.h>
27 #include <linux/ppp_defs.h>
28 #include <linux/netfilter_bridge.h>
29 #include <linux/netfilter_ipv4.h>
30 #include <linux/netfilter_ipv6.h>
31 #include <linux/netfilter_arp.h>
32 #include <linux/in_route.h>
33 #include <linux/inetdevice.h>
34
35 #include <net/ip.h>
36 #include <net/ipv6.h>
37 #include <net/addrconf.h>
38 #include <net/route.h>
39 #include <net/netfilter/br_netfilter.h>
40
41 #include <asm/uaccess.h>
42 #include "br_private.h"
43 #ifdef CONFIG_SYSCTL
44 #include <linux/sysctl.h>
45 #endif
46
47 #ifdef CONFIG_SYSCTL
48 static struct ctl_table_header *brnf_sysctl_header;
49 static int brnf_call_iptables __read_mostly = 1;
50 static int brnf_call_ip6tables __read_mostly = 1;
51 static int brnf_call_arptables __read_mostly = 1;
52 static int brnf_filter_vlan_tagged __read_mostly;
53 static int brnf_filter_pppoe_tagged __read_mostly;
54 static int brnf_pass_vlan_indev __read_mostly;
55 #else
56 #define brnf_call_iptables 1
57 #define brnf_call_ip6tables 1
58 #define brnf_call_arptables 1
59 #define brnf_filter_vlan_tagged 0
60 #define brnf_filter_pppoe_tagged 0
61 #define brnf_pass_vlan_indev 0
62 #endif
63
64 #define IS_IP(skb) \
65 (!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IP))
66
67 #define IS_IPV6(skb) \
68 (!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IPV6))
69
70 #define IS_ARP(skb) \
71 (!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_ARP))
72
73 static inline __be16 vlan_proto(const struct sk_buff *skb)
74 {
75 if (skb_vlan_tag_present(skb))
76 return skb->protocol;
77 else if (skb->protocol == htons(ETH_P_8021Q))
78 return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
79 else
80 return 0;
81 }
82
83 #define IS_VLAN_IP(skb) \
84 (vlan_proto(skb) == htons(ETH_P_IP) && \
85 brnf_filter_vlan_tagged)
86
87 #define IS_VLAN_IPV6(skb) \
88 (vlan_proto(skb) == htons(ETH_P_IPV6) && \
89 brnf_filter_vlan_tagged)
90
91 #define IS_VLAN_ARP(skb) \
92 (vlan_proto(skb) == htons(ETH_P_ARP) && \
93 brnf_filter_vlan_tagged)
94
95 static inline __be16 pppoe_proto(const struct sk_buff *skb)
96 {
97 return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN +
98 sizeof(struct pppoe_hdr)));
99 }
100
101 #define IS_PPPOE_IP(skb) \
102 (skb->protocol == htons(ETH_P_PPP_SES) && \
103 pppoe_proto(skb) == htons(PPP_IP) && \
104 brnf_filter_pppoe_tagged)
105
106 #define IS_PPPOE_IPV6(skb) \
107 (skb->protocol == htons(ETH_P_PPP_SES) && \
108 pppoe_proto(skb) == htons(PPP_IPV6) && \
109 brnf_filter_pppoe_tagged)
110
111 /* largest possible L2 header, see br_nf_dev_queue_xmit() */
112 #define NF_BRIDGE_MAX_MAC_HEADER_LENGTH (PPPOE_SES_HLEN + ETH_HLEN)
113
114 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV4) || IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
115 struct brnf_frag_data {
116 char mac[NF_BRIDGE_MAX_MAC_HEADER_LENGTH];
117 u8 encap_size;
118 u8 size;
119 u16 vlan_tci;
120 __be16 vlan_proto;
121 };
122
123 static DEFINE_PER_CPU(struct brnf_frag_data, brnf_frag_data_storage);
124 #endif
125
126 static void nf_bridge_info_free(struct sk_buff *skb)
127 {
128 if (skb->nf_bridge) {
129 nf_bridge_put(skb->nf_bridge);
130 skb->nf_bridge = NULL;
131 }
132 }
133
134 static inline struct net_device *bridge_parent(const struct net_device *dev)
135 {
136 struct net_bridge_port *port;
137
138 port = br_port_get_rcu(dev);
139 return port ? port->br->dev : NULL;
140 }
141
142 static inline struct nf_bridge_info *nf_bridge_unshare(struct sk_buff *skb)
143 {
144 struct nf_bridge_info *nf_bridge = skb->nf_bridge;
145
146 if (atomic_read(&nf_bridge->use) > 1) {
147 struct nf_bridge_info *tmp = nf_bridge_alloc(skb);
148
149 if (tmp) {
150 memcpy(tmp, nf_bridge, sizeof(struct nf_bridge_info));
151 atomic_set(&tmp->use, 1);
152 }
153 nf_bridge_put(nf_bridge);
154 nf_bridge = tmp;
155 }
156 return nf_bridge;
157 }
158
159 unsigned int nf_bridge_encap_header_len(const struct sk_buff *skb)
160 {
161 switch (skb->protocol) {
162 case __cpu_to_be16(ETH_P_8021Q):
163 return VLAN_HLEN;
164 case __cpu_to_be16(ETH_P_PPP_SES):
165 return PPPOE_SES_HLEN;
166 default:
167 return 0;
168 }
169 }
170
171 static inline void nf_bridge_pull_encap_header(struct sk_buff *skb)
172 {
173 unsigned int len = nf_bridge_encap_header_len(skb);
174
175 skb_pull(skb, len);
176 skb->network_header += len;
177 }
178
179 static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb)
180 {
181 unsigned int len = nf_bridge_encap_header_len(skb);
182
183 skb_pull_rcsum(skb, len);
184 skb->network_header += len;
185 }
186
187 /* When handing a packet over to the IP layer
188 * check whether we have a skb that is in the
189 * expected format
190 */
191
192 static int br_validate_ipv4(struct sk_buff *skb)
193 {
194 const struct iphdr *iph;
195 struct net_device *dev = skb->dev;
196 u32 len;
197
198 if (!pskb_may_pull(skb, sizeof(struct iphdr)))
199 goto inhdr_error;
200
201 iph = ip_hdr(skb);
202
203 /* Basic sanity checks */
204 if (iph->ihl < 5 || iph->version != 4)
205 goto inhdr_error;
206
207 if (!pskb_may_pull(skb, iph->ihl*4))
208 goto inhdr_error;
209
210 iph = ip_hdr(skb);
211 if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
212 goto inhdr_error;
213
214 len = ntohs(iph->tot_len);
215 if (skb->len < len) {
216 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INTRUNCATEDPKTS);
217 goto drop;
218 } else if (len < (iph->ihl*4))
219 goto inhdr_error;
220
221 if (pskb_trim_rcsum(skb, len)) {
222 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INDISCARDS);
223 goto drop;
224 }
225
226 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
227 /* We should really parse IP options here but until
228 * somebody who actually uses IP options complains to
229 * us we'll just silently ignore the options because
230 * we're lazy!
231 */
232 return 0;
233
234 inhdr_error:
235 IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INHDRERRORS);
236 drop:
237 return -1;
238 }
239
240 void nf_bridge_update_protocol(struct sk_buff *skb)
241 {
242 switch (skb->nf_bridge->orig_proto) {
243 case BRNF_PROTO_8021Q:
244 skb->protocol = htons(ETH_P_8021Q);
245 break;
246 case BRNF_PROTO_PPPOE:
247 skb->protocol = htons(ETH_P_PPP_SES);
248 break;
249 case BRNF_PROTO_UNCHANGED:
250 break;
251 }
252 }
253
254 /* Obtain the correct destination MAC address, while preserving the original
255 * source MAC address. If we already know this address, we just copy it. If we
256 * don't, we use the neighbour framework to find out. In both cases, we make
257 * sure that br_handle_frame_finish() is called afterwards.
258 */
259 int br_nf_pre_routing_finish_bridge(struct sock *sk, struct sk_buff *skb)
260 {
261 struct neighbour *neigh;
262 struct dst_entry *dst;
263
264 skb->dev = bridge_parent(skb->dev);
265 if (!skb->dev)
266 goto free_skb;
267 dst = skb_dst(skb);
268 neigh = dst_neigh_lookup_skb(dst, skb);
269 if (neigh) {
270 struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
271 int ret;
272
273 if (neigh->hh.hh_len) {
274 neigh_hh_bridge(&neigh->hh, skb);
275 skb->dev = nf_bridge->physindev;
276 ret = br_handle_frame_finish(sk, skb);
277 } else {
278 /* the neighbour function below overwrites the complete
279 * MAC header, so we save the Ethernet source address and
280 * protocol number.
281 */
282 skb_copy_from_linear_data_offset(skb,
283 -(ETH_HLEN-ETH_ALEN),
284 nf_bridge->neigh_header,
285 ETH_HLEN-ETH_ALEN);
286 /* tell br_dev_xmit to continue with forwarding */
287 nf_bridge->bridged_dnat = 1;
288 /* FIXME Need to refragment */
289 ret = neigh->output(neigh, skb);
290 }
291 neigh_release(neigh);
292 return ret;
293 }
294 free_skb:
295 kfree_skb(skb);
296 return 0;
297 }
298
299 static inline bool
300 br_nf_ipv4_daddr_was_changed(const struct sk_buff *skb,
301 const struct nf_bridge_info *nf_bridge)
302 {
303 return ip_hdr(skb)->daddr != nf_bridge->ipv4_daddr;
304 }
305
306 /* This requires some explaining. If DNAT has taken place,
307 * we will need to fix up the destination Ethernet address.
308 * This is also true when SNAT takes place (for the reply direction).
309 *
310 * There are two cases to consider:
311 * 1. The packet was DNAT'ed to a device in the same bridge
312 * port group as it was received on. We can still bridge
313 * the packet.
314 * 2. The packet was DNAT'ed to a different device, either
315 * a non-bridged device or another bridge port group.
316 * The packet will need to be routed.
317 *
318 * The correct way of distinguishing between these two cases is to
319 * call ip_route_input() and to look at skb->dst->dev, which is
320 * changed to the destination device if ip_route_input() succeeds.
321 *
322 * Let's first consider the case that ip_route_input() succeeds:
323 *
324 * If the output device equals the logical bridge device the packet
325 * came in on, we can consider this bridging. The corresponding MAC
326 * address will be obtained in br_nf_pre_routing_finish_bridge.
327 * Otherwise, the packet is considered to be routed and we just
328 * change the destination MAC address so that the packet will
329 * later be passed up to the IP stack to be routed. For a redirected
330 * packet, ip_route_input() will give back the localhost as output device,
331 * which differs from the bridge device.
332 *
333 * Let's now consider the case that ip_route_input() fails:
334 *
335 * This can be because the destination address is martian, in which case
336 * the packet will be dropped.
337 * If IP forwarding is disabled, ip_route_input() will fail, while
338 * ip_route_output_key() can return success. The source
339 * address for ip_route_output_key() is set to zero, so ip_route_output_key()
340 * thinks we're handling a locally generated packet and won't care
341 * if IP forwarding is enabled. If the output device equals the logical bridge
342 * device, we proceed as if ip_route_input() succeeded. If it differs from the
343 * logical bridge port or if ip_route_output_key() fails we drop the packet.
344 */
345 static int br_nf_pre_routing_finish(struct sock *sk, struct sk_buff *skb)
346 {
347 struct net_device *dev = skb->dev;
348 struct iphdr *iph = ip_hdr(skb);
349 struct net *net = dev_net(dev);
350 struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
351 struct rtable *rt;
352 int err;
353
354 nf_bridge->frag_max_size = IPCB(skb)->frag_max_size;
355
356 if (nf_bridge->pkt_otherhost) {
357 skb->pkt_type = PACKET_OTHERHOST;
358 nf_bridge->pkt_otherhost = false;
359 }
360 nf_bridge->in_prerouting = 0;
361 if (br_nf_ipv4_daddr_was_changed(skb, nf_bridge)) {
362 if ((err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))) {
363 struct in_device *in_dev = __in_dev_get_rcu(dev);
364
365 /* If err equals -EHOSTUNREACH the error is due to a
366 * martian destination or due to the fact that
367 * forwarding is disabled. For most martian packets,
368 * ip_route_output_key() will fail. It won't fail for 2 types of
369 * martian destinations: loopback destinations and destination
370 * 0.0.0.0. In both cases the packet will be dropped because the
371 * destination is the loopback device and not the bridge. */
372 if (err != -EHOSTUNREACH || !in_dev || IN_DEV_FORWARD(in_dev))
373 goto free_skb;
374
375 rt = ip_route_output(net, iph->daddr, 0,
376 RT_TOS(iph->tos), 0);
377 if (!IS_ERR(rt)) {
378 /* - Bridged-and-DNAT'ed traffic doesn't
379 * require ip_forwarding. */
380 if (rt->dst.dev == dev) {
381 skb_dst_set(skb, &rt->dst);
382 goto bridged_dnat;
383 }
384 ip_rt_put(rt);
385 }
386 free_skb:
387 kfree_skb(skb);
388 return 0;
389 } else {
390 if (skb_dst(skb)->dev == dev) {
391 bridged_dnat:
392 skb->dev = nf_bridge->physindev;
393 nf_bridge_update_protocol(skb);
394 nf_bridge_push_encap_header(skb);
395 NF_HOOK_THRESH(NFPROTO_BRIDGE,
396 NF_BR_PRE_ROUTING,
397 sk, skb, skb->dev, NULL,
398 br_nf_pre_routing_finish_bridge,
399 1);
400 return 0;
401 }
402 ether_addr_copy(eth_hdr(skb)->h_dest, dev->dev_addr);
403 skb->pkt_type = PACKET_HOST;
404 }
405 } else {
406 rt = bridge_parent_rtable(nf_bridge->physindev);
407 if (!rt) {
408 kfree_skb(skb);
409 return 0;
410 }
411 skb_dst_set_noref(skb, &rt->dst);
412 }
413
414 skb->dev = nf_bridge->physindev;
415 nf_bridge_update_protocol(skb);
416 nf_bridge_push_encap_header(skb);
417 NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, sk, skb,
418 skb->dev, NULL,
419 br_handle_frame_finish, 1);
420
421 return 0;
422 }
423
424 static struct net_device *brnf_get_logical_dev(struct sk_buff *skb, const struct net_device *dev)
425 {
426 struct net_device *vlan, *br;
427
428 br = bridge_parent(dev);
429 if (brnf_pass_vlan_indev == 0 || !skb_vlan_tag_present(skb))
430 return br;
431
432 vlan = __vlan_find_dev_deep_rcu(br, skb->vlan_proto,
433 skb_vlan_tag_get(skb) & VLAN_VID_MASK);
434
435 return vlan ? vlan : br;
436 }
437
438 /* Some common code for IPv4/IPv6 */
439 struct net_device *setup_pre_routing(struct sk_buff *skb)
440 {
441 struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
442
443 if (skb->pkt_type == PACKET_OTHERHOST) {
444 skb->pkt_type = PACKET_HOST;
445 nf_bridge->pkt_otherhost = true;
446 }
447
448 nf_bridge->in_prerouting = 1;
449 nf_bridge->physindev = skb->dev;
450 skb->dev = brnf_get_logical_dev(skb, skb->dev);
451
452 if (skb->protocol == htons(ETH_P_8021Q))
453 nf_bridge->orig_proto = BRNF_PROTO_8021Q;
454 else if (skb->protocol == htons(ETH_P_PPP_SES))
455 nf_bridge->orig_proto = BRNF_PROTO_PPPOE;
456
457 /* Must drop socket now because of tproxy. */
458 skb_orphan(skb);
459 return skb->dev;
460 }
461
462 /* Direct IPv6 traffic to br_nf_pre_routing_ipv6.
463 * Replicate the checks that IPv4 does on packet reception.
464 * Set skb->dev to the bridge device (i.e. parent of the
465 * receiving device) to make netfilter happy, the REDIRECT
466 * target in particular. Save the original destination IP
467 * address to be able to detect DNAT afterwards. */
468 static unsigned int br_nf_pre_routing(const struct nf_hook_ops *ops,
469 struct sk_buff *skb,
470 const struct nf_hook_state *state)
471 {
472 struct nf_bridge_info *nf_bridge;
473 struct net_bridge_port *p;
474 struct net_bridge *br;
475 __u32 len = nf_bridge_encap_header_len(skb);
476
477 if (unlikely(!pskb_may_pull(skb, len)))
478 return NF_DROP;
479
480 p = br_port_get_rcu(state->in);
481 if (p == NULL)
482 return NF_DROP;
483 br = p->br;
484
485 if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb)) {
486 if (!brnf_call_ip6tables && !br->nf_call_ip6tables)
487 return NF_ACCEPT;
488
489 nf_bridge_pull_encap_header_rcsum(skb);
490 return br_nf_pre_routing_ipv6(ops, skb, state);
491 }
492
493 if (!brnf_call_iptables && !br->nf_call_iptables)
494 return NF_ACCEPT;
495
496 if (!IS_IP(skb) && !IS_VLAN_IP(skb) && !IS_PPPOE_IP(skb))
497 return NF_ACCEPT;
498
499 nf_bridge_pull_encap_header_rcsum(skb);
500
501 if (br_validate_ipv4(skb))
502 return NF_DROP;
503
504 nf_bridge_put(skb->nf_bridge);
505 if (!nf_bridge_alloc(skb))
506 return NF_DROP;
507 if (!setup_pre_routing(skb))
508 return NF_DROP;
509
510 nf_bridge = nf_bridge_info_get(skb);
511 nf_bridge->ipv4_daddr = ip_hdr(skb)->daddr;
512
513 skb->protocol = htons(ETH_P_IP);
514
515 NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, state->sk, skb,
516 skb->dev, NULL,
517 br_nf_pre_routing_finish);
518
519 return NF_STOLEN;
520 }
521
522
523 /* PF_BRIDGE/LOCAL_IN ************************************************/
524 /* The packet is locally destined, which requires a real
525 * dst_entry, so detach the fake one. On the way up, the
526 * packet would pass through PRE_ROUTING again (which already
527 * took place when the packet entered the bridge), but we
528 * register an IPv4 PRE_ROUTING 'sabotage' hook that will
529 * prevent this from happening. */
530 static unsigned int br_nf_local_in(const struct nf_hook_ops *ops,
531 struct sk_buff *skb,
532 const struct nf_hook_state *state)
533 {
534 br_drop_fake_rtable(skb);
535 return NF_ACCEPT;
536 }
537
538 /* PF_BRIDGE/FORWARD *************************************************/
539 static int br_nf_forward_finish(struct sock *sk, struct sk_buff *skb)
540 {
541 struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
542 struct net_device *in;
543
544 if (!IS_ARP(skb) && !IS_VLAN_ARP(skb)) {
545
546 if (skb->protocol == htons(ETH_P_IP))
547 nf_bridge->frag_max_size = IPCB(skb)->frag_max_size;
548
549 if (skb->protocol == htons(ETH_P_IPV6))
550 nf_bridge->frag_max_size = IP6CB(skb)->frag_max_size;
551
552 in = nf_bridge->physindev;
553 if (nf_bridge->pkt_otherhost) {
554 skb->pkt_type = PACKET_OTHERHOST;
555 nf_bridge->pkt_otherhost = false;
556 }
557 nf_bridge_update_protocol(skb);
558 } else {
559 in = *((struct net_device **)(skb->cb));
560 }
561 nf_bridge_push_encap_header(skb);
562
563 NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_FORWARD, sk, skb,
564 in, skb->dev, br_forward_finish, 1);
565 return 0;
566 }
567
568
569 /* This is the 'purely bridged' case. For IP, we pass the packet to
570 * netfilter with indev and outdev set to the bridge device,
571 * but we are still able to filter on the 'real' indev/outdev
572 * because of the physdev module. For ARP, indev and outdev are the
573 * bridge ports. */
574 static unsigned int br_nf_forward_ip(const struct nf_hook_ops *ops,
575 struct sk_buff *skb,
576 const struct nf_hook_state *state)
577 {
578 struct nf_bridge_info *nf_bridge;
579 struct net_device *parent;
580 u_int8_t pf;
581
582 if (!skb->nf_bridge)
583 return NF_ACCEPT;
584
585 /* Need exclusive nf_bridge_info since we might have multiple
586 * different physoutdevs. */
587 if (!nf_bridge_unshare(skb))
588 return NF_DROP;
589
590 nf_bridge = nf_bridge_info_get(skb);
591 if (!nf_bridge)
592 return NF_DROP;
593
594 parent = bridge_parent(state->out);
595 if (!parent)
596 return NF_DROP;
597
598 if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
599 pf = NFPROTO_IPV4;
600 else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
601 pf = NFPROTO_IPV6;
602 else
603 return NF_ACCEPT;
604
605 nf_bridge_pull_encap_header(skb);
606
607 if (skb->pkt_type == PACKET_OTHERHOST) {
608 skb->pkt_type = PACKET_HOST;
609 nf_bridge->pkt_otherhost = true;
610 }
611
612 if (pf == NFPROTO_IPV4) {
613 if (br_validate_ipv4(skb))
614 return NF_DROP;
615 IPCB(skb)->frag_max_size = nf_bridge->frag_max_size;
616 }
617
618 if (pf == NFPROTO_IPV6) {
619 if (br_validate_ipv6(skb))
620 return NF_DROP;
621 IP6CB(skb)->frag_max_size = nf_bridge->frag_max_size;
622 }
623
624 nf_bridge->physoutdev = skb->dev;
625 if (pf == NFPROTO_IPV4)
626 skb->protocol = htons(ETH_P_IP);
627 else
628 skb->protocol = htons(ETH_P_IPV6);
629
630 NF_HOOK(pf, NF_INET_FORWARD, NULL, skb,
631 brnf_get_logical_dev(skb, state->in),
632 parent, br_nf_forward_finish);
633
634 return NF_STOLEN;
635 }
636
637 static unsigned int br_nf_forward_arp(const struct nf_hook_ops *ops,
638 struct sk_buff *skb,
639 const struct nf_hook_state *state)
640 {
641 struct net_bridge_port *p;
642 struct net_bridge *br;
643 struct net_device **d = (struct net_device **)(skb->cb);
644
645 p = br_port_get_rcu(state->out);
646 if (p == NULL)
647 return NF_ACCEPT;
648 br = p->br;
649
650 if (!brnf_call_arptables && !br->nf_call_arptables)
651 return NF_ACCEPT;
652
653 if (!IS_ARP(skb)) {
654 if (!IS_VLAN_ARP(skb))
655 return NF_ACCEPT;
656 nf_bridge_pull_encap_header(skb);
657 }
658
659 if (arp_hdr(skb)->ar_pln != 4) {
660 if (IS_VLAN_ARP(skb))
661 nf_bridge_push_encap_header(skb);
662 return NF_ACCEPT;
663 }
664 *d = state->in;
665 NF_HOOK(NFPROTO_ARP, NF_ARP_FORWARD, state->sk, skb,
666 state->in, state->out, br_nf_forward_finish);
667
668 return NF_STOLEN;
669 }
670
671 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV4) || IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
672 static int br_nf_push_frag_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
673 {
674 struct brnf_frag_data *data;
675 int err;
676
677 data = this_cpu_ptr(&brnf_frag_data_storage);
678 err = skb_cow_head(skb, data->size);
679
680 if (err) {
681 kfree_skb(skb);
682 return 0;
683 }
684
685 if (data->vlan_tci) {
686 skb->vlan_tci = data->vlan_tci;
687 skb->vlan_proto = data->vlan_proto;
688 }
689
690 skb_copy_to_linear_data_offset(skb, -data->size, data->mac, data->size);
691 __skb_push(skb, data->encap_size);
692
693 nf_bridge_info_free(skb);
694 return br_dev_queue_push_xmit(sk, skb);
695 }
696 static int br_nf_push_frag_xmit_sk(struct sock *sk, struct sk_buff *skb)
697 {
698 struct net *net = dev_net(skb_dst(skb)->dev);
699 return br_nf_push_frag_xmit(net, sk, skb);
700 }
701 #endif
702
703 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV4)
704 static int
705 br_nf_ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
706 int (*output)(struct sock *, struct sk_buff *))
707 {
708 unsigned int mtu = ip_skb_dst_mtu(skb);
709 struct iphdr *iph = ip_hdr(skb);
710
711 if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->ignore_df) ||
712 (IPCB(skb)->frag_max_size &&
713 IPCB(skb)->frag_max_size > mtu))) {
714 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
715 kfree_skb(skb);
716 return -EMSGSIZE;
717 }
718
719 return ip_do_fragment(sk, skb, output);
720 }
721 #endif
722
723 static unsigned int nf_bridge_mtu_reduction(const struct sk_buff *skb)
724 {
725 if (skb->nf_bridge->orig_proto == BRNF_PROTO_PPPOE)
726 return PPPOE_SES_HLEN;
727 return 0;
728 }
729
730 static int br_nf_dev_queue_xmit(struct sock *sk, struct sk_buff *skb)
731 {
732 struct nf_bridge_info *nf_bridge;
733 unsigned int mtu_reserved;
734 struct net *net = dev_net(skb_dst(skb)->dev);
735
736 mtu_reserved = nf_bridge_mtu_reduction(skb);
737
738 if (skb_is_gso(skb) || skb->len + mtu_reserved <= skb->dev->mtu) {
739 nf_bridge_info_free(skb);
740 return br_dev_queue_push_xmit(sk, skb);
741 }
742
743 nf_bridge = nf_bridge_info_get(skb);
744
745 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV4)
746 /* This is wrong! We should preserve the original fragment
747 * boundaries by preserving frag_list rather than refragmenting.
748 */
749 if (skb->protocol == htons(ETH_P_IP)) {
750 struct brnf_frag_data *data;
751
752 if (br_validate_ipv4(skb))
753 goto drop;
754
755 IPCB(skb)->frag_max_size = nf_bridge->frag_max_size;
756
757 nf_bridge_update_protocol(skb);
758
759 data = this_cpu_ptr(&brnf_frag_data_storage);
760
761 data->vlan_tci = skb->vlan_tci;
762 data->vlan_proto = skb->vlan_proto;
763 data->encap_size = nf_bridge_encap_header_len(skb);
764 data->size = ETH_HLEN + data->encap_size;
765
766 skb_copy_from_linear_data_offset(skb, -data->size, data->mac,
767 data->size);
768
769 return br_nf_ip_fragment(net, sk, skb, br_nf_push_frag_xmit_sk);
770 }
771 #endif
772 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
773 if (skb->protocol == htons(ETH_P_IPV6)) {
774 const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
775 struct brnf_frag_data *data;
776
777 if (br_validate_ipv6(skb))
778 goto drop;
779
780 IP6CB(skb)->frag_max_size = nf_bridge->frag_max_size;
781
782 nf_bridge_update_protocol(skb);
783
784 data = this_cpu_ptr(&brnf_frag_data_storage);
785 data->encap_size = nf_bridge_encap_header_len(skb);
786 data->size = ETH_HLEN + data->encap_size;
787
788 skb_copy_from_linear_data_offset(skb, -data->size, data->mac,
789 data->size);
790
791 if (v6ops)
792 return v6ops->fragment(sk, skb, br_nf_push_frag_xmit_sk);
793
794 kfree_skb(skb);
795 return -EMSGSIZE;
796 }
797 #endif
798 nf_bridge_info_free(skb);
799 return br_dev_queue_push_xmit(sk, skb);
800 drop:
801 kfree_skb(skb);
802 return 0;
803 }
804
805 /* PF_BRIDGE/POST_ROUTING ********************************************/
806 static unsigned int br_nf_post_routing(const struct nf_hook_ops *ops,
807 struct sk_buff *skb,
808 const struct nf_hook_state *state)
809 {
810 struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
811 struct net_device *realoutdev = bridge_parent(skb->dev);
812 u_int8_t pf;
813
814 /* if nf_bridge is set, but ->physoutdev is NULL, this packet came in
815 * on a bridge, but was delivered locally and is now being routed:
816 *
817 * POST_ROUTING was already invoked from the ip stack.
818 */
819 if (!nf_bridge || !nf_bridge->physoutdev)
820 return NF_ACCEPT;
821
822 if (!realoutdev)
823 return NF_DROP;
824
825 if (IS_IP(skb) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb))
826 pf = NFPROTO_IPV4;
827 else if (IS_IPV6(skb) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb))
828 pf = NFPROTO_IPV6;
829 else
830 return NF_ACCEPT;
831
832 /* We assume any code from br_dev_queue_push_xmit onwards doesn't care
833 * about the value of skb->pkt_type. */
834 if (skb->pkt_type == PACKET_OTHERHOST) {
835 skb->pkt_type = PACKET_HOST;
836 nf_bridge->pkt_otherhost = true;
837 }
838
839 nf_bridge_pull_encap_header(skb);
840 if (pf == NFPROTO_IPV4)
841 skb->protocol = htons(ETH_P_IP);
842 else
843 skb->protocol = htons(ETH_P_IPV6);
844
845 NF_HOOK(pf, NF_INET_POST_ROUTING, state->sk, skb,
846 NULL, realoutdev,
847 br_nf_dev_queue_xmit);
848
849 return NF_STOLEN;
850 }
851
852 /* IP/SABOTAGE *****************************************************/
853 /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING
854 * for the second time. */
855 static unsigned int ip_sabotage_in(const struct nf_hook_ops *ops,
856 struct sk_buff *skb,
857 const struct nf_hook_state *state)
858 {
859 if (skb->nf_bridge && !skb->nf_bridge->in_prerouting)
860 return NF_STOP;
861
862 return NF_ACCEPT;
863 }
864
865 /* This is called when br_netfilter has called into iptables/netfilter,
866 * and DNAT has taken place on a bridge-forwarded packet.
867 *
868 * neigh->output has created a new MAC header, with local br0 MAC
869 * as saddr.
870 *
871 * This restores the original MAC saddr of the bridged packet
872 * before invoking bridge forward logic to transmit the packet.
873 */
874 static void br_nf_pre_routing_finish_bridge_slow(struct sk_buff *skb)
875 {
876 struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
877
878 skb_pull(skb, ETH_HLEN);
879 nf_bridge->bridged_dnat = 0;
880
881 BUILD_BUG_ON(sizeof(nf_bridge->neigh_header) != (ETH_HLEN - ETH_ALEN));
882
883 skb_copy_to_linear_data_offset(skb, -(ETH_HLEN - ETH_ALEN),
884 nf_bridge->neigh_header,
885 ETH_HLEN - ETH_ALEN);
886 skb->dev = nf_bridge->physindev;
887
888 nf_bridge->physoutdev = NULL;
889 br_handle_frame_finish(NULL, skb);
890 }
891
892 static int br_nf_dev_xmit(struct sk_buff *skb)
893 {
894 if (skb->nf_bridge && skb->nf_bridge->bridged_dnat) {
895 br_nf_pre_routing_finish_bridge_slow(skb);
896 return 1;
897 }
898 return 0;
899 }
900
901 static const struct nf_br_ops br_ops = {
902 .br_dev_xmit_hook = br_nf_dev_xmit,
903 };
904
905 void br_netfilter_enable(void)
906 {
907 }
908 EXPORT_SYMBOL_GPL(br_netfilter_enable);
909
910 /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because
911 * br_dev_queue_push_xmit is called afterwards */
912 static struct nf_hook_ops br_nf_ops[] __read_mostly = {
913 {
914 .hook = br_nf_pre_routing,
915 .owner = THIS_MODULE,
916 .pf = NFPROTO_BRIDGE,
917 .hooknum = NF_BR_PRE_ROUTING,
918 .priority = NF_BR_PRI_BRNF,
919 },
920 {
921 .hook = br_nf_local_in,
922 .owner = THIS_MODULE,
923 .pf = NFPROTO_BRIDGE,
924 .hooknum = NF_BR_LOCAL_IN,
925 .priority = NF_BR_PRI_BRNF,
926 },
927 {
928 .hook = br_nf_forward_ip,
929 .owner = THIS_MODULE,
930 .pf = NFPROTO_BRIDGE,
931 .hooknum = NF_BR_FORWARD,
932 .priority = NF_BR_PRI_BRNF - 1,
933 },
934 {
935 .hook = br_nf_forward_arp,
936 .owner = THIS_MODULE,
937 .pf = NFPROTO_BRIDGE,
938 .hooknum = NF_BR_FORWARD,
939 .priority = NF_BR_PRI_BRNF,
940 },
941 {
942 .hook = br_nf_post_routing,
943 .owner = THIS_MODULE,
944 .pf = NFPROTO_BRIDGE,
945 .hooknum = NF_BR_POST_ROUTING,
946 .priority = NF_BR_PRI_LAST,
947 },
948 {
949 .hook = ip_sabotage_in,
950 .owner = THIS_MODULE,
951 .pf = NFPROTO_IPV4,
952 .hooknum = NF_INET_PRE_ROUTING,
953 .priority = NF_IP_PRI_FIRST,
954 },
955 {
956 .hook = ip_sabotage_in,
957 .owner = THIS_MODULE,
958 .pf = NFPROTO_IPV6,
959 .hooknum = NF_INET_PRE_ROUTING,
960 .priority = NF_IP6_PRI_FIRST,
961 },
962 };
963
964 #ifdef CONFIG_SYSCTL
965 static
966 int brnf_sysctl_call_tables(struct ctl_table *ctl, int write,
967 void __user *buffer, size_t *lenp, loff_t *ppos)
968 {
969 int ret;
970
971 ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
972
973 if (write && *(int *)(ctl->data))
974 *(int *)(ctl->data) = 1;
975 return ret;
976 }
977
978 static struct ctl_table brnf_table[] = {
979 {
980 .procname = "bridge-nf-call-arptables",
981 .data = &brnf_call_arptables,
982 .maxlen = sizeof(int),
983 .mode = 0644,
984 .proc_handler = brnf_sysctl_call_tables,
985 },
986 {
987 .procname = "bridge-nf-call-iptables",
988 .data = &brnf_call_iptables,
989 .maxlen = sizeof(int),
990 .mode = 0644,
991 .proc_handler = brnf_sysctl_call_tables,
992 },
993 {
994 .procname = "bridge-nf-call-ip6tables",
995 .data = &brnf_call_ip6tables,
996 .maxlen = sizeof(int),
997 .mode = 0644,
998 .proc_handler = brnf_sysctl_call_tables,
999 },
1000 {
1001 .procname = "bridge-nf-filter-vlan-tagged",
1002 .data = &brnf_filter_vlan_tagged,
1003 .maxlen = sizeof(int),
1004 .mode = 0644,
1005 .proc_handler = brnf_sysctl_call_tables,
1006 },
1007 {
1008 .procname = "bridge-nf-filter-pppoe-tagged",
1009 .data = &brnf_filter_pppoe_tagged,
1010 .maxlen = sizeof(int),
1011 .mode = 0644,
1012 .proc_handler = brnf_sysctl_call_tables,
1013 },
1014 {
1015 .procname = "bridge-nf-pass-vlan-input-dev",
1016 .data = &brnf_pass_vlan_indev,
1017 .maxlen = sizeof(int),
1018 .mode = 0644,
1019 .proc_handler = brnf_sysctl_call_tables,
1020 },
1021 { }
1022 };
1023 #endif
1024
1025 static int __init br_netfilter_init(void)
1026 {
1027 int ret;
1028
1029 ret = nf_register_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1030 if (ret < 0)
1031 return ret;
1032
1033 #ifdef CONFIG_SYSCTL
1034 brnf_sysctl_header = register_net_sysctl(&init_net, "net/bridge", brnf_table);
1035 if (brnf_sysctl_header == NULL) {
1036 printk(KERN_WARNING
1037 "br_netfilter: can't register to sysctl.\n");
1038 nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1039 return -ENOMEM;
1040 }
1041 #endif
1042 RCU_INIT_POINTER(nf_br_ops, &br_ops);
1043 printk(KERN_NOTICE "Bridge firewalling registered\n");
1044 return 0;
1045 }
1046
1047 static void __exit br_netfilter_fini(void)
1048 {
1049 RCU_INIT_POINTER(nf_br_ops, NULL);
1050 nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops));
1051 #ifdef CONFIG_SYSCTL
1052 unregister_net_sysctl_table(brnf_sysctl_header);
1053 #endif
1054 }
1055
1056 module_init(br_netfilter_init);
1057 module_exit(br_netfilter_fini);
1058
1059 MODULE_LICENSE("GPL");
1060 MODULE_AUTHOR("Lennert Buytenhek <buytenh@gnu.org>");
1061 MODULE_AUTHOR("Bart De Schuymer <bdschuym@pandora.be>");
1062 MODULE_DESCRIPTION("Linux ethernet netfilter firewall bridge");