]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/can/af_can.c
can: fix memory leak in initial namespace support
[mirror_ubuntu-bionic-kernel.git] / net / can / af_can.c
1 /*
2 * af_can.c - Protocol family CAN core module
3 * (used by different CAN protocol modules)
4 *
5 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Volkswagen nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * Alternatively, provided that this notice is retained in full, this
21 * software may be distributed under the terms of the GNU General
22 * Public License ("GPL") version 2, in which case the provisions of the
23 * GPL apply INSTEAD OF those given above.
24 *
25 * The provided data structures and external interfaces from this code
26 * are not restricted to be used by modules with a GPL compatible license.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 *
41 */
42
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/ratelimit.h>
62 #include <net/net_namespace.h>
63 #include <net/sock.h>
64
65 #include "af_can.h"
66
67 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
68 MODULE_LICENSE("Dual BSD/GPL");
69 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
70 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
71
72 MODULE_ALIAS_NETPROTO(PF_CAN);
73
74 static int stats_timer __read_mostly = 1;
75 module_param(stats_timer, int, S_IRUGO);
76 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
77
78 static int can_net_id;
79
80 static struct kmem_cache *rcv_cache __read_mostly;
81
82 /* table of registered CAN protocols */
83 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
84 static DEFINE_MUTEX(proto_tab_lock);
85
86 struct timer_list can_stattimer; /* timer for statistics update */
87 struct s_stats can_stats; /* packet statistics */
88 struct s_pstats can_pstats; /* receive list statistics */
89
90 static atomic_t skbcounter = ATOMIC_INIT(0);
91
92 /*
93 * af_can socket functions
94 */
95
96 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
97 {
98 struct sock *sk = sock->sk;
99
100 switch (cmd) {
101
102 case SIOCGSTAMP:
103 return sock_get_timestamp(sk, (struct timeval __user *)arg);
104
105 default:
106 return -ENOIOCTLCMD;
107 }
108 }
109 EXPORT_SYMBOL(can_ioctl);
110
111 static void can_sock_destruct(struct sock *sk)
112 {
113 skb_queue_purge(&sk->sk_receive_queue);
114 }
115
116 static const struct can_proto *can_get_proto(int protocol)
117 {
118 const struct can_proto *cp;
119
120 rcu_read_lock();
121 cp = rcu_dereference(proto_tab[protocol]);
122 if (cp && !try_module_get(cp->prot->owner))
123 cp = NULL;
124 rcu_read_unlock();
125
126 return cp;
127 }
128
129 static inline void can_put_proto(const struct can_proto *cp)
130 {
131 module_put(cp->prot->owner);
132 }
133
134 static int can_create(struct net *net, struct socket *sock, int protocol,
135 int kern)
136 {
137 struct sock *sk;
138 const struct can_proto *cp;
139 int err = 0;
140
141 sock->state = SS_UNCONNECTED;
142
143 if (protocol < 0 || protocol >= CAN_NPROTO)
144 return -EINVAL;
145
146 cp = can_get_proto(protocol);
147
148 #ifdef CONFIG_MODULES
149 if (!cp) {
150 /* try to load protocol module if kernel is modular */
151
152 err = request_module("can-proto-%d", protocol);
153
154 /*
155 * In case of error we only print a message but don't
156 * return the error code immediately. Below we will
157 * return -EPROTONOSUPPORT
158 */
159 if (err)
160 printk_ratelimited(KERN_ERR "can: request_module "
161 "(can-proto-%d) failed.\n", protocol);
162
163 cp = can_get_proto(protocol);
164 }
165 #endif
166
167 /* check for available protocol and correct usage */
168
169 if (!cp)
170 return -EPROTONOSUPPORT;
171
172 if (cp->type != sock->type) {
173 err = -EPROTOTYPE;
174 goto errout;
175 }
176
177 sock->ops = cp->ops;
178
179 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
180 if (!sk) {
181 err = -ENOMEM;
182 goto errout;
183 }
184
185 sock_init_data(sock, sk);
186 sk->sk_destruct = can_sock_destruct;
187
188 if (sk->sk_prot->init)
189 err = sk->sk_prot->init(sk);
190
191 if (err) {
192 /* release sk on errors */
193 sock_orphan(sk);
194 sock_put(sk);
195 }
196
197 errout:
198 can_put_proto(cp);
199 return err;
200 }
201
202 /*
203 * af_can tx path
204 */
205
206 /**
207 * can_send - transmit a CAN frame (optional with local loopback)
208 * @skb: pointer to socket buffer with CAN frame in data section
209 * @loop: loopback for listeners on local CAN sockets (recommended default!)
210 *
211 * Due to the loopback this routine must not be called from hardirq context.
212 *
213 * Return:
214 * 0 on success
215 * -ENETDOWN when the selected interface is down
216 * -ENOBUFS on full driver queue (see net_xmit_errno())
217 * -ENOMEM when local loopback failed at calling skb_clone()
218 * -EPERM when trying to send on a non-CAN interface
219 * -EMSGSIZE CAN frame size is bigger than CAN interface MTU
220 * -EINVAL when the skb->data does not contain a valid CAN frame
221 */
222 int can_send(struct sk_buff *skb, int loop)
223 {
224 struct sk_buff *newskb = NULL;
225 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
226 int err = -EINVAL;
227
228 if (skb->len == CAN_MTU) {
229 skb->protocol = htons(ETH_P_CAN);
230 if (unlikely(cfd->len > CAN_MAX_DLEN))
231 goto inval_skb;
232 } else if (skb->len == CANFD_MTU) {
233 skb->protocol = htons(ETH_P_CANFD);
234 if (unlikely(cfd->len > CANFD_MAX_DLEN))
235 goto inval_skb;
236 } else
237 goto inval_skb;
238
239 /*
240 * Make sure the CAN frame can pass the selected CAN netdevice.
241 * As structs can_frame and canfd_frame are similar, we can provide
242 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
243 */
244 if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
245 err = -EMSGSIZE;
246 goto inval_skb;
247 }
248
249 if (unlikely(skb->dev->type != ARPHRD_CAN)) {
250 err = -EPERM;
251 goto inval_skb;
252 }
253
254 if (unlikely(!(skb->dev->flags & IFF_UP))) {
255 err = -ENETDOWN;
256 goto inval_skb;
257 }
258
259 skb->ip_summed = CHECKSUM_UNNECESSARY;
260
261 skb_reset_mac_header(skb);
262 skb_reset_network_header(skb);
263 skb_reset_transport_header(skb);
264
265 if (loop) {
266 /* local loopback of sent CAN frames */
267
268 /* indication for the CAN driver: do loopback */
269 skb->pkt_type = PACKET_LOOPBACK;
270
271 /*
272 * The reference to the originating sock may be required
273 * by the receiving socket to check whether the frame is
274 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
275 * Therefore we have to ensure that skb->sk remains the
276 * reference to the originating sock by restoring skb->sk
277 * after each skb_clone() or skb_orphan() usage.
278 */
279
280 if (!(skb->dev->flags & IFF_ECHO)) {
281 /*
282 * If the interface is not capable to do loopback
283 * itself, we do it here.
284 */
285 newskb = skb_clone(skb, GFP_ATOMIC);
286 if (!newskb) {
287 kfree_skb(skb);
288 return -ENOMEM;
289 }
290
291 can_skb_set_owner(newskb, skb->sk);
292 newskb->ip_summed = CHECKSUM_UNNECESSARY;
293 newskb->pkt_type = PACKET_BROADCAST;
294 }
295 } else {
296 /* indication for the CAN driver: no loopback required */
297 skb->pkt_type = PACKET_HOST;
298 }
299
300 /* send to netdevice */
301 err = dev_queue_xmit(skb);
302 if (err > 0)
303 err = net_xmit_errno(err);
304
305 if (err) {
306 kfree_skb(newskb);
307 return err;
308 }
309
310 if (newskb)
311 netif_rx_ni(newskb);
312
313 /* update statistics */
314 can_stats.tx_frames++;
315 can_stats.tx_frames_delta++;
316
317 return 0;
318
319 inval_skb:
320 kfree_skb(skb);
321 return err;
322 }
323 EXPORT_SYMBOL(can_send);
324
325 /*
326 * af_can rx path
327 */
328
329 static struct dev_rcv_lists *find_dev_rcv_lists(struct net *net,
330 struct net_device *dev)
331 {
332 if (!dev)
333 return net->can.can_rx_alldev_list;
334 else
335 return (struct dev_rcv_lists *)dev->ml_priv;
336 }
337
338 /**
339 * effhash - hash function for 29 bit CAN identifier reduction
340 * @can_id: 29 bit CAN identifier
341 *
342 * Description:
343 * To reduce the linear traversal in one linked list of _single_ EFF CAN
344 * frame subscriptions the 29 bit identifier is mapped to 10 bits.
345 * (see CAN_EFF_RCV_HASH_BITS definition)
346 *
347 * Return:
348 * Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
349 */
350 static unsigned int effhash(canid_t can_id)
351 {
352 unsigned int hash;
353
354 hash = can_id;
355 hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
356 hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
357
358 return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
359 }
360
361 /**
362 * find_rcv_list - determine optimal filterlist inside device filter struct
363 * @can_id: pointer to CAN identifier of a given can_filter
364 * @mask: pointer to CAN mask of a given can_filter
365 * @d: pointer to the device filter struct
366 *
367 * Description:
368 * Returns the optimal filterlist to reduce the filter handling in the
369 * receive path. This function is called by service functions that need
370 * to register or unregister a can_filter in the filter lists.
371 *
372 * A filter matches in general, when
373 *
374 * <received_can_id> & mask == can_id & mask
375 *
376 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
377 * relevant bits for the filter.
378 *
379 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
380 * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
381 * frames there is a special filterlist and a special rx path filter handling.
382 *
383 * Return:
384 * Pointer to optimal filterlist for the given can_id/mask pair.
385 * Constistency checked mask.
386 * Reduced can_id to have a preprocessed filter compare value.
387 */
388 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
389 struct dev_rcv_lists *d)
390 {
391 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
392
393 /* filter for error message frames in extra filterlist */
394 if (*mask & CAN_ERR_FLAG) {
395 /* clear CAN_ERR_FLAG in filter entry */
396 *mask &= CAN_ERR_MASK;
397 return &d->rx[RX_ERR];
398 }
399
400 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
401
402 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
403
404 /* ensure valid values in can_mask for 'SFF only' frame filtering */
405 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
406 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
407
408 /* reduce condition testing at receive time */
409 *can_id &= *mask;
410
411 /* inverse can_id/can_mask filter */
412 if (inv)
413 return &d->rx[RX_INV];
414
415 /* mask == 0 => no condition testing at receive time */
416 if (!(*mask))
417 return &d->rx[RX_ALL];
418
419 /* extra filterlists for the subscription of a single non-RTR can_id */
420 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
421 !(*can_id & CAN_RTR_FLAG)) {
422
423 if (*can_id & CAN_EFF_FLAG) {
424 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
425 return &d->rx_eff[effhash(*can_id)];
426 } else {
427 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
428 return &d->rx_sff[*can_id];
429 }
430 }
431
432 /* default: filter via can_id/can_mask */
433 return &d->rx[RX_FIL];
434 }
435
436 /**
437 * can_rx_register - subscribe CAN frames from a specific interface
438 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
439 * @can_id: CAN identifier (see description)
440 * @mask: CAN mask (see description)
441 * @func: callback function on filter match
442 * @data: returned parameter for callback function
443 * @ident: string for calling module identification
444 * @sk: socket pointer (might be NULL)
445 *
446 * Description:
447 * Invokes the callback function with the received sk_buff and the given
448 * parameter 'data' on a matching receive filter. A filter matches, when
449 *
450 * <received_can_id> & mask == can_id & mask
451 *
452 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
453 * filter for error message frames (CAN_ERR_FLAG bit set in mask).
454 *
455 * The provided pointer to the sk_buff is guaranteed to be valid as long as
456 * the callback function is running. The callback function must *not* free
457 * the given sk_buff while processing it's task. When the given sk_buff is
458 * needed after the end of the callback function it must be cloned inside
459 * the callback function with skb_clone().
460 *
461 * Return:
462 * 0 on success
463 * -ENOMEM on missing cache mem to create subscription entry
464 * -ENODEV unknown device
465 */
466 int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
467 canid_t mask, void (*func)(struct sk_buff *, void *),
468 void *data, char *ident, struct sock *sk)
469 {
470 struct receiver *r;
471 struct hlist_head *rl;
472 struct dev_rcv_lists *d;
473 int err = 0;
474
475 /* insert new receiver (dev,canid,mask) -> (func,data) */
476
477 if (dev && dev->type != ARPHRD_CAN)
478 return -ENODEV;
479
480 if (dev && !net_eq(net, dev_net(dev)))
481 return -ENODEV;
482
483 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
484 if (!r)
485 return -ENOMEM;
486
487 spin_lock(&net->can.can_rcvlists_lock);
488
489 d = find_dev_rcv_lists(net, dev);
490 if (d) {
491 rl = find_rcv_list(&can_id, &mask, d);
492
493 r->can_id = can_id;
494 r->mask = mask;
495 r->matches = 0;
496 r->func = func;
497 r->data = data;
498 r->ident = ident;
499 r->sk = sk;
500
501 hlist_add_head_rcu(&r->list, rl);
502 d->entries++;
503
504 can_pstats.rcv_entries++;
505 if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
506 can_pstats.rcv_entries_max = can_pstats.rcv_entries;
507 } else {
508 kmem_cache_free(rcv_cache, r);
509 err = -ENODEV;
510 }
511
512 spin_unlock(&net->can.can_rcvlists_lock);
513
514 return err;
515 }
516 EXPORT_SYMBOL(can_rx_register);
517
518 /*
519 * can_rx_delete_receiver - rcu callback for single receiver entry removal
520 */
521 static void can_rx_delete_receiver(struct rcu_head *rp)
522 {
523 struct receiver *r = container_of(rp, struct receiver, rcu);
524 struct sock *sk = r->sk;
525
526 kmem_cache_free(rcv_cache, r);
527 if (sk)
528 sock_put(sk);
529 }
530
531 /**
532 * can_rx_unregister - unsubscribe CAN frames from a specific interface
533 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
534 * @can_id: CAN identifier
535 * @mask: CAN mask
536 * @func: callback function on filter match
537 * @data: returned parameter for callback function
538 *
539 * Description:
540 * Removes subscription entry depending on given (subscription) values.
541 */
542 void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
543 canid_t mask, void (*func)(struct sk_buff *, void *),
544 void *data)
545 {
546 struct receiver *r = NULL;
547 struct hlist_head *rl;
548 struct dev_rcv_lists *d;
549
550 if (dev && dev->type != ARPHRD_CAN)
551 return;
552
553 if (dev && !net_eq(net, dev_net(dev)))
554 return;
555
556 spin_lock(&net->can.can_rcvlists_lock);
557
558 d = find_dev_rcv_lists(net, dev);
559 if (!d) {
560 pr_err("BUG: receive list not found for "
561 "dev %s, id %03X, mask %03X\n",
562 DNAME(dev), can_id, mask);
563 goto out;
564 }
565
566 rl = find_rcv_list(&can_id, &mask, d);
567
568 /*
569 * Search the receiver list for the item to delete. This should
570 * exist, since no receiver may be unregistered that hasn't
571 * been registered before.
572 */
573
574 hlist_for_each_entry_rcu(r, rl, list) {
575 if (r->can_id == can_id && r->mask == mask &&
576 r->func == func && r->data == data)
577 break;
578 }
579
580 /*
581 * Check for bugs in CAN protocol implementations using af_can.c:
582 * 'r' will be NULL if no matching list item was found for removal.
583 */
584
585 if (!r) {
586 WARN(1, "BUG: receive list entry not found for dev %s, "
587 "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
588 goto out;
589 }
590
591 hlist_del_rcu(&r->list);
592 d->entries--;
593
594 if (can_pstats.rcv_entries > 0)
595 can_pstats.rcv_entries--;
596
597 /* remove device structure requested by NETDEV_UNREGISTER */
598 if (d->remove_on_zero_entries && !d->entries) {
599 kfree(d);
600 dev->ml_priv = NULL;
601 }
602
603 out:
604 spin_unlock(&net->can.can_rcvlists_lock);
605
606 /* schedule the receiver item for deletion */
607 if (r) {
608 if (r->sk)
609 sock_hold(r->sk);
610 call_rcu(&r->rcu, can_rx_delete_receiver);
611 }
612 }
613 EXPORT_SYMBOL(can_rx_unregister);
614
615 static inline void deliver(struct sk_buff *skb, struct receiver *r)
616 {
617 r->func(skb, r->data);
618 r->matches++;
619 }
620
621 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
622 {
623 struct receiver *r;
624 int matches = 0;
625 struct can_frame *cf = (struct can_frame *)skb->data;
626 canid_t can_id = cf->can_id;
627
628 if (d->entries == 0)
629 return 0;
630
631 if (can_id & CAN_ERR_FLAG) {
632 /* check for error message frame entries only */
633 hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
634 if (can_id & r->mask) {
635 deliver(skb, r);
636 matches++;
637 }
638 }
639 return matches;
640 }
641
642 /* check for unfiltered entries */
643 hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
644 deliver(skb, r);
645 matches++;
646 }
647
648 /* check for can_id/mask entries */
649 hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
650 if ((can_id & r->mask) == r->can_id) {
651 deliver(skb, r);
652 matches++;
653 }
654 }
655
656 /* check for inverted can_id/mask entries */
657 hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
658 if ((can_id & r->mask) != r->can_id) {
659 deliver(skb, r);
660 matches++;
661 }
662 }
663
664 /* check filterlists for single non-RTR can_ids */
665 if (can_id & CAN_RTR_FLAG)
666 return matches;
667
668 if (can_id & CAN_EFF_FLAG) {
669 hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) {
670 if (r->can_id == can_id) {
671 deliver(skb, r);
672 matches++;
673 }
674 }
675 } else {
676 can_id &= CAN_SFF_MASK;
677 hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
678 deliver(skb, r);
679 matches++;
680 }
681 }
682
683 return matches;
684 }
685
686 static void can_receive(struct sk_buff *skb, struct net_device *dev)
687 {
688 struct dev_rcv_lists *d;
689 int matches;
690
691 /* update statistics */
692 can_stats.rx_frames++;
693 can_stats.rx_frames_delta++;
694
695 /* create non-zero unique skb identifier together with *skb */
696 while (!(can_skb_prv(skb)->skbcnt))
697 can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
698
699 rcu_read_lock();
700
701 /* deliver the packet to sockets listening on all devices */
702 matches = can_rcv_filter(dev_net(dev)->can.can_rx_alldev_list, skb);
703
704 /* find receive list for this device */
705 d = find_dev_rcv_lists(dev_net(dev), dev);
706 if (d)
707 matches += can_rcv_filter(d, skb);
708
709 rcu_read_unlock();
710
711 /* consume the skbuff allocated by the netdevice driver */
712 consume_skb(skb);
713
714 if (matches > 0) {
715 can_stats.matches++;
716 can_stats.matches_delta++;
717 }
718 }
719
720 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
721 struct packet_type *pt, struct net_device *orig_dev)
722 {
723 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
724
725 if (WARN_ONCE(dev->type != ARPHRD_CAN ||
726 skb->len != CAN_MTU ||
727 cfd->len > CAN_MAX_DLEN,
728 "PF_CAN: dropped non conform CAN skbuf: "
729 "dev type %d, len %d, datalen %d\n",
730 dev->type, skb->len, cfd->len))
731 goto drop;
732
733 can_receive(skb, dev);
734 return NET_RX_SUCCESS;
735
736 drop:
737 kfree_skb(skb);
738 return NET_RX_DROP;
739 }
740
741 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
742 struct packet_type *pt, struct net_device *orig_dev)
743 {
744 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
745
746 if (WARN_ONCE(dev->type != ARPHRD_CAN ||
747 skb->len != CANFD_MTU ||
748 cfd->len > CANFD_MAX_DLEN,
749 "PF_CAN: dropped non conform CAN FD skbuf: "
750 "dev type %d, len %d, datalen %d\n",
751 dev->type, skb->len, cfd->len))
752 goto drop;
753
754 can_receive(skb, dev);
755 return NET_RX_SUCCESS;
756
757 drop:
758 kfree_skb(skb);
759 return NET_RX_DROP;
760 }
761
762 /*
763 * af_can protocol functions
764 */
765
766 /**
767 * can_proto_register - register CAN transport protocol
768 * @cp: pointer to CAN protocol structure
769 *
770 * Return:
771 * 0 on success
772 * -EINVAL invalid (out of range) protocol number
773 * -EBUSY protocol already in use
774 * -ENOBUF if proto_register() fails
775 */
776 int can_proto_register(const struct can_proto *cp)
777 {
778 int proto = cp->protocol;
779 int err = 0;
780
781 if (proto < 0 || proto >= CAN_NPROTO) {
782 pr_err("can: protocol number %d out of range\n", proto);
783 return -EINVAL;
784 }
785
786 err = proto_register(cp->prot, 0);
787 if (err < 0)
788 return err;
789
790 mutex_lock(&proto_tab_lock);
791
792 if (proto_tab[proto]) {
793 pr_err("can: protocol %d already registered\n", proto);
794 err = -EBUSY;
795 } else
796 RCU_INIT_POINTER(proto_tab[proto], cp);
797
798 mutex_unlock(&proto_tab_lock);
799
800 if (err < 0)
801 proto_unregister(cp->prot);
802
803 return err;
804 }
805 EXPORT_SYMBOL(can_proto_register);
806
807 /**
808 * can_proto_unregister - unregister CAN transport protocol
809 * @cp: pointer to CAN protocol structure
810 */
811 void can_proto_unregister(const struct can_proto *cp)
812 {
813 int proto = cp->protocol;
814
815 mutex_lock(&proto_tab_lock);
816 BUG_ON(proto_tab[proto] != cp);
817 RCU_INIT_POINTER(proto_tab[proto], NULL);
818 mutex_unlock(&proto_tab_lock);
819
820 synchronize_rcu();
821
822 proto_unregister(cp->prot);
823 }
824 EXPORT_SYMBOL(can_proto_unregister);
825
826 /*
827 * af_can notifier to create/remove CAN netdevice specific structs
828 */
829 static int can_notifier(struct notifier_block *nb, unsigned long msg,
830 void *ptr)
831 {
832 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
833 struct dev_rcv_lists *d;
834
835 if (dev->type != ARPHRD_CAN)
836 return NOTIFY_DONE;
837
838 switch (msg) {
839
840 case NETDEV_REGISTER:
841
842 /* create new dev_rcv_lists for this device */
843 d = kzalloc(sizeof(*d), GFP_KERNEL);
844 if (!d)
845 return NOTIFY_DONE;
846 BUG_ON(dev->ml_priv);
847 dev->ml_priv = d;
848
849 break;
850
851 case NETDEV_UNREGISTER:
852 spin_lock(&dev_net(dev)->can.can_rcvlists_lock);
853
854 d = dev->ml_priv;
855 if (d) {
856 if (d->entries)
857 d->remove_on_zero_entries = 1;
858 else {
859 kfree(d);
860 dev->ml_priv = NULL;
861 }
862 } else
863 pr_err("can: notifier: receive list not found for dev "
864 "%s\n", dev->name);
865
866 spin_unlock(&dev_net(dev)->can.can_rcvlists_lock);
867
868 break;
869 }
870
871 return NOTIFY_DONE;
872 }
873
874 static int can_pernet_init(struct net *net)
875 {
876 net->can.can_rcvlists_lock =
877 __SPIN_LOCK_UNLOCKED(net->can.can_rcvlists_lock);
878 net->can.can_rx_alldev_list =
879 kzalloc(sizeof(struct dev_rcv_lists), GFP_KERNEL);
880
881 if (IS_ENABLED(CONFIG_PROC_FS))
882 can_init_proc(net);
883
884 return 0;
885 }
886
887 static void can_pernet_exit(struct net *net)
888 {
889 struct net_device *dev;
890
891 if (IS_ENABLED(CONFIG_PROC_FS))
892 can_remove_proc(net);
893
894 /* remove created dev_rcv_lists from still registered CAN devices */
895 rcu_read_lock();
896 for_each_netdev_rcu(net, dev) {
897 if (dev->type == ARPHRD_CAN && dev->ml_priv) {
898 struct dev_rcv_lists *d = dev->ml_priv;
899
900 BUG_ON(d->entries);
901 kfree(d);
902 dev->ml_priv = NULL;
903 }
904 }
905 rcu_read_unlock();
906
907 kfree(net->can.can_rx_alldev_list);
908 }
909
910 /*
911 * af_can module init/exit functions
912 */
913
914 static struct packet_type can_packet __read_mostly = {
915 .type = cpu_to_be16(ETH_P_CAN),
916 .func = can_rcv,
917 };
918
919 static struct packet_type canfd_packet __read_mostly = {
920 .type = cpu_to_be16(ETH_P_CANFD),
921 .func = canfd_rcv,
922 };
923
924 static const struct net_proto_family can_family_ops = {
925 .family = PF_CAN,
926 .create = can_create,
927 .owner = THIS_MODULE,
928 };
929
930 /* notifier block for netdevice event */
931 static struct notifier_block can_netdev_notifier __read_mostly = {
932 .notifier_call = can_notifier,
933 };
934
935 static struct pernet_operations can_pernet_ops __read_mostly = {
936 .init = can_pernet_init,
937 .exit = can_pernet_exit,
938 .id = &can_net_id,
939 .size = 0,
940 };
941
942 static __init int can_init(void)
943 {
944 /* check for correct padding to be able to use the structs similarly */
945 BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
946 offsetof(struct canfd_frame, len) ||
947 offsetof(struct can_frame, data) !=
948 offsetof(struct canfd_frame, data));
949
950 pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
951
952 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
953 0, 0, NULL);
954 if (!rcv_cache)
955 return -ENOMEM;
956
957 if (IS_ENABLED(CONFIG_PROC_FS)) {
958 if (stats_timer) {
959 /* the statistics are updated every second (timer triggered) */
960 setup_timer(&can_stattimer, can_stat_update, 0);
961 mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
962 }
963 }
964
965 register_pernet_subsys(&can_pernet_ops);
966
967 /* protocol register */
968 sock_register(&can_family_ops);
969 register_netdevice_notifier(&can_netdev_notifier);
970 dev_add_pack(&can_packet);
971 dev_add_pack(&canfd_packet);
972
973 return 0;
974 }
975
976 static __exit void can_exit(void)
977 {
978 if (IS_ENABLED(CONFIG_PROC_FS)) {
979 if (stats_timer)
980 del_timer_sync(&can_stattimer);
981 }
982
983 /* protocol unregister */
984 dev_remove_pack(&canfd_packet);
985 dev_remove_pack(&can_packet);
986 unregister_netdevice_notifier(&can_netdev_notifier);
987 sock_unregister(PF_CAN);
988
989 unregister_pernet_subsys(&can_pernet_ops);
990
991 rcu_barrier(); /* Wait for completion of call_rcu()'s */
992
993 kmem_cache_destroy(rcv_cache);
994 }
995
996 module_init(can_init);
997 module_exit(can_exit);