]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/can/af_can.c
can: make use of preallocated can_ml_priv for per device struct can_dev_rcv_lists
[mirror_ubuntu-hirsute-kernel.git] / net / can / af_can.c
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* af_can.c - Protocol family CAN core module
3 * (used by different CAN protocol modules)
4 *
5 * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Volkswagen nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * Alternatively, provided that this notice is retained in full, this
21 * software may be distributed under the terms of the GNU General
22 * Public License ("GPL") version 2, in which case the provisions of the
23 * GPL apply INSTEAD OF those given above.
24 *
25 * The provided data structures and external interfaces from this code
26 * are not restricted to be used by modules with a GPL compatible license.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 *
41 */
42
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/can/can-ml.h>
62 #include <linux/ratelimit.h>
63 #include <net/net_namespace.h>
64 #include <net/sock.h>
65
66 #include "af_can.h"
67
68 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
69 MODULE_LICENSE("Dual BSD/GPL");
70 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
71 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
72
73 MODULE_ALIAS_NETPROTO(PF_CAN);
74
75 static int stats_timer __read_mostly = 1;
76 module_param(stats_timer, int, 0444);
77 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
78
79 static struct kmem_cache *rcv_cache __read_mostly;
80
81 /* table of registered CAN protocols */
82 static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
83 static DEFINE_MUTEX(proto_tab_lock);
84
85 static atomic_t skbcounter = ATOMIC_INIT(0);
86
87 /* af_can socket functions */
88
89 static void can_sock_destruct(struct sock *sk)
90 {
91 skb_queue_purge(&sk->sk_receive_queue);
92 skb_queue_purge(&sk->sk_error_queue);
93 }
94
95 static const struct can_proto *can_get_proto(int protocol)
96 {
97 const struct can_proto *cp;
98
99 rcu_read_lock();
100 cp = rcu_dereference(proto_tab[protocol]);
101 if (cp && !try_module_get(cp->prot->owner))
102 cp = NULL;
103 rcu_read_unlock();
104
105 return cp;
106 }
107
108 static inline void can_put_proto(const struct can_proto *cp)
109 {
110 module_put(cp->prot->owner);
111 }
112
113 static int can_create(struct net *net, struct socket *sock, int protocol,
114 int kern)
115 {
116 struct sock *sk;
117 const struct can_proto *cp;
118 int err = 0;
119
120 sock->state = SS_UNCONNECTED;
121
122 if (protocol < 0 || protocol >= CAN_NPROTO)
123 return -EINVAL;
124
125 cp = can_get_proto(protocol);
126
127 #ifdef CONFIG_MODULES
128 if (!cp) {
129 /* try to load protocol module if kernel is modular */
130
131 err = request_module("can-proto-%d", protocol);
132
133 /* In case of error we only print a message but don't
134 * return the error code immediately. Below we will
135 * return -EPROTONOSUPPORT
136 */
137 if (err)
138 pr_err_ratelimited("can: request_module (can-proto-%d) failed.\n",
139 protocol);
140
141 cp = can_get_proto(protocol);
142 }
143 #endif
144
145 /* check for available protocol and correct usage */
146
147 if (!cp)
148 return -EPROTONOSUPPORT;
149
150 if (cp->type != sock->type) {
151 err = -EPROTOTYPE;
152 goto errout;
153 }
154
155 sock->ops = cp->ops;
156
157 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
158 if (!sk) {
159 err = -ENOMEM;
160 goto errout;
161 }
162
163 sock_init_data(sock, sk);
164 sk->sk_destruct = can_sock_destruct;
165
166 if (sk->sk_prot->init)
167 err = sk->sk_prot->init(sk);
168
169 if (err) {
170 /* release sk on errors */
171 sock_orphan(sk);
172 sock_put(sk);
173 }
174
175 errout:
176 can_put_proto(cp);
177 return err;
178 }
179
180 /* af_can tx path */
181
182 /**
183 * can_send - transmit a CAN frame (optional with local loopback)
184 * @skb: pointer to socket buffer with CAN frame in data section
185 * @loop: loopback for listeners on local CAN sockets (recommended default!)
186 *
187 * Due to the loopback this routine must not be called from hardirq context.
188 *
189 * Return:
190 * 0 on success
191 * -ENETDOWN when the selected interface is down
192 * -ENOBUFS on full driver queue (see net_xmit_errno())
193 * -ENOMEM when local loopback failed at calling skb_clone()
194 * -EPERM when trying to send on a non-CAN interface
195 * -EMSGSIZE CAN frame size is bigger than CAN interface MTU
196 * -EINVAL when the skb->data does not contain a valid CAN frame
197 */
198 int can_send(struct sk_buff *skb, int loop)
199 {
200 struct sk_buff *newskb = NULL;
201 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
202 struct can_pkg_stats *pkg_stats = dev_net(skb->dev)->can.pkg_stats;
203 int err = -EINVAL;
204
205 if (skb->len == CAN_MTU) {
206 skb->protocol = htons(ETH_P_CAN);
207 if (unlikely(cfd->len > CAN_MAX_DLEN))
208 goto inval_skb;
209 } else if (skb->len == CANFD_MTU) {
210 skb->protocol = htons(ETH_P_CANFD);
211 if (unlikely(cfd->len > CANFD_MAX_DLEN))
212 goto inval_skb;
213 } else {
214 goto inval_skb;
215 }
216
217 /* Make sure the CAN frame can pass the selected CAN netdevice.
218 * As structs can_frame and canfd_frame are similar, we can provide
219 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
220 */
221 if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
222 err = -EMSGSIZE;
223 goto inval_skb;
224 }
225
226 if (unlikely(skb->dev->type != ARPHRD_CAN)) {
227 err = -EPERM;
228 goto inval_skb;
229 }
230
231 if (unlikely(!(skb->dev->flags & IFF_UP))) {
232 err = -ENETDOWN;
233 goto inval_skb;
234 }
235
236 skb->ip_summed = CHECKSUM_UNNECESSARY;
237
238 skb_reset_mac_header(skb);
239 skb_reset_network_header(skb);
240 skb_reset_transport_header(skb);
241
242 if (loop) {
243 /* local loopback of sent CAN frames */
244
245 /* indication for the CAN driver: do loopback */
246 skb->pkt_type = PACKET_LOOPBACK;
247
248 /* The reference to the originating sock may be required
249 * by the receiving socket to check whether the frame is
250 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
251 * Therefore we have to ensure that skb->sk remains the
252 * reference to the originating sock by restoring skb->sk
253 * after each skb_clone() or skb_orphan() usage.
254 */
255
256 if (!(skb->dev->flags & IFF_ECHO)) {
257 /* If the interface is not capable to do loopback
258 * itself, we do it here.
259 */
260 newskb = skb_clone(skb, GFP_ATOMIC);
261 if (!newskb) {
262 kfree_skb(skb);
263 return -ENOMEM;
264 }
265
266 can_skb_set_owner(newskb, skb->sk);
267 newskb->ip_summed = CHECKSUM_UNNECESSARY;
268 newskb->pkt_type = PACKET_BROADCAST;
269 }
270 } else {
271 /* indication for the CAN driver: no loopback required */
272 skb->pkt_type = PACKET_HOST;
273 }
274
275 /* send to netdevice */
276 err = dev_queue_xmit(skb);
277 if (err > 0)
278 err = net_xmit_errno(err);
279
280 if (err) {
281 kfree_skb(newskb);
282 return err;
283 }
284
285 if (newskb)
286 netif_rx_ni(newskb);
287
288 /* update statistics */
289 pkg_stats->tx_frames++;
290 pkg_stats->tx_frames_delta++;
291
292 return 0;
293
294 inval_skb:
295 kfree_skb(skb);
296 return err;
297 }
298 EXPORT_SYMBOL(can_send);
299
300 /* af_can rx path */
301
302 static struct can_dev_rcv_lists *can_dev_rcv_lists_find(struct net *net,
303 struct net_device *dev)
304 {
305 if (dev) {
306 struct can_ml_priv *ml_priv = dev->ml_priv;
307 return &ml_priv->dev_rcv_lists;
308 } else {
309 return net->can.rx_alldev_list;
310 }
311 }
312
313 /**
314 * effhash - hash function for 29 bit CAN identifier reduction
315 * @can_id: 29 bit CAN identifier
316 *
317 * Description:
318 * To reduce the linear traversal in one linked list of _single_ EFF CAN
319 * frame subscriptions the 29 bit identifier is mapped to 10 bits.
320 * (see CAN_EFF_RCV_HASH_BITS definition)
321 *
322 * Return:
323 * Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
324 */
325 static unsigned int effhash(canid_t can_id)
326 {
327 unsigned int hash;
328
329 hash = can_id;
330 hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
331 hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
332
333 return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
334 }
335
336 /**
337 * can_rcv_list_find - determine optimal filterlist inside device filter struct
338 * @can_id: pointer to CAN identifier of a given can_filter
339 * @mask: pointer to CAN mask of a given can_filter
340 * @d: pointer to the device filter struct
341 *
342 * Description:
343 * Returns the optimal filterlist to reduce the filter handling in the
344 * receive path. This function is called by service functions that need
345 * to register or unregister a can_filter in the filter lists.
346 *
347 * A filter matches in general, when
348 *
349 * <received_can_id> & mask == can_id & mask
350 *
351 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
352 * relevant bits for the filter.
353 *
354 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
355 * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
356 * frames there is a special filterlist and a special rx path filter handling.
357 *
358 * Return:
359 * Pointer to optimal filterlist for the given can_id/mask pair.
360 * Constistency checked mask.
361 * Reduced can_id to have a preprocessed filter compare value.
362 */
363 static struct hlist_head *can_rcv_list_find(canid_t *can_id, canid_t *mask,
364 struct can_dev_rcv_lists *dev_rcv_lists)
365 {
366 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
367
368 /* filter for error message frames in extra filterlist */
369 if (*mask & CAN_ERR_FLAG) {
370 /* clear CAN_ERR_FLAG in filter entry */
371 *mask &= CAN_ERR_MASK;
372 return &dev_rcv_lists->rx[RX_ERR];
373 }
374
375 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
376
377 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
378
379 /* ensure valid values in can_mask for 'SFF only' frame filtering */
380 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
381 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
382
383 /* reduce condition testing at receive time */
384 *can_id &= *mask;
385
386 /* inverse can_id/can_mask filter */
387 if (inv)
388 return &dev_rcv_lists->rx[RX_INV];
389
390 /* mask == 0 => no condition testing at receive time */
391 if (!(*mask))
392 return &dev_rcv_lists->rx[RX_ALL];
393
394 /* extra filterlists for the subscription of a single non-RTR can_id */
395 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
396 !(*can_id & CAN_RTR_FLAG)) {
397 if (*can_id & CAN_EFF_FLAG) {
398 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
399 return &dev_rcv_lists->rx_eff[effhash(*can_id)];
400 } else {
401 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
402 return &dev_rcv_lists->rx_sff[*can_id];
403 }
404 }
405
406 /* default: filter via can_id/can_mask */
407 return &dev_rcv_lists->rx[RX_FIL];
408 }
409
410 /**
411 * can_rx_register - subscribe CAN frames from a specific interface
412 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
413 * @can_id: CAN identifier (see description)
414 * @mask: CAN mask (see description)
415 * @func: callback function on filter match
416 * @data: returned parameter for callback function
417 * @ident: string for calling module identification
418 * @sk: socket pointer (might be NULL)
419 *
420 * Description:
421 * Invokes the callback function with the received sk_buff and the given
422 * parameter 'data' on a matching receive filter. A filter matches, when
423 *
424 * <received_can_id> & mask == can_id & mask
425 *
426 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
427 * filter for error message frames (CAN_ERR_FLAG bit set in mask).
428 *
429 * The provided pointer to the sk_buff is guaranteed to be valid as long as
430 * the callback function is running. The callback function must *not* free
431 * the given sk_buff while processing it's task. When the given sk_buff is
432 * needed after the end of the callback function it must be cloned inside
433 * the callback function with skb_clone().
434 *
435 * Return:
436 * 0 on success
437 * -ENOMEM on missing cache mem to create subscription entry
438 * -ENODEV unknown device
439 */
440 int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
441 canid_t mask, void (*func)(struct sk_buff *, void *),
442 void *data, char *ident, struct sock *sk)
443 {
444 struct receiver *rcv;
445 struct hlist_head *rcv_list;
446 struct can_dev_rcv_lists *dev_rcv_lists;
447 struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
448 int err = 0;
449
450 /* insert new receiver (dev,canid,mask) -> (func,data) */
451
452 if (dev && dev->type != ARPHRD_CAN)
453 return -ENODEV;
454
455 if (dev && !net_eq(net, dev_net(dev)))
456 return -ENODEV;
457
458 rcv = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
459 if (!rcv)
460 return -ENOMEM;
461
462 spin_lock(&net->can.rcvlists_lock);
463
464 dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
465 if (dev_rcv_lists) {
466 rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
467
468 rcv->can_id = can_id;
469 rcv->mask = mask;
470 rcv->matches = 0;
471 rcv->func = func;
472 rcv->data = data;
473 rcv->ident = ident;
474 rcv->sk = sk;
475
476 hlist_add_head_rcu(&rcv->list, rcv_list);
477 dev_rcv_lists->entries++;
478
479 rcv_lists_stats->rcv_entries++;
480 rcv_lists_stats->rcv_entries_max = max(rcv_lists_stats->rcv_entries_max,
481 rcv_lists_stats->rcv_entries);
482 } else {
483 kmem_cache_free(rcv_cache, rcv);
484 err = -ENODEV;
485 }
486
487 spin_unlock(&net->can.rcvlists_lock);
488
489 return err;
490 }
491 EXPORT_SYMBOL(can_rx_register);
492
493 /* can_rx_delete_receiver - rcu callback for single receiver entry removal */
494 static void can_rx_delete_receiver(struct rcu_head *rp)
495 {
496 struct receiver *rcv = container_of(rp, struct receiver, rcu);
497 struct sock *sk = rcv->sk;
498
499 kmem_cache_free(rcv_cache, rcv);
500 if (sk)
501 sock_put(sk);
502 }
503
504 /**
505 * can_rx_unregister - unsubscribe CAN frames from a specific interface
506 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
507 * @can_id: CAN identifier
508 * @mask: CAN mask
509 * @func: callback function on filter match
510 * @data: returned parameter for callback function
511 *
512 * Description:
513 * Removes subscription entry depending on given (subscription) values.
514 */
515 void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
516 canid_t mask, void (*func)(struct sk_buff *, void *),
517 void *data)
518 {
519 struct receiver *rcv = NULL;
520 struct hlist_head *rcv_list;
521 struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
522 struct can_dev_rcv_lists *dev_rcv_lists;
523
524 if (dev && dev->type != ARPHRD_CAN)
525 return;
526
527 if (dev && !net_eq(net, dev_net(dev)))
528 return;
529
530 spin_lock(&net->can.rcvlists_lock);
531
532 dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
533 if (!dev_rcv_lists) {
534 pr_err("BUG: receive list not found for dev %s, id %03X, mask %03X\n",
535 DNAME(dev), can_id, mask);
536 goto out;
537 }
538
539 rcv_list = can_rcv_list_find(&can_id, &mask, dev_rcv_lists);
540
541 /* Search the receiver list for the item to delete. This should
542 * exist, since no receiver may be unregistered that hasn't
543 * been registered before.
544 */
545 hlist_for_each_entry_rcu(rcv, rcv_list, list) {
546 if (rcv->can_id == can_id && rcv->mask == mask &&
547 rcv->func == func && rcv->data == data)
548 break;
549 }
550
551 /* Check for bugs in CAN protocol implementations using af_can.c:
552 * 'rcv' will be NULL if no matching list item was found for removal.
553 */
554 if (!rcv) {
555 WARN(1, "BUG: receive list entry not found for dev %s, id %03X, mask %03X\n",
556 DNAME(dev), can_id, mask);
557 goto out;
558 }
559
560 hlist_del_rcu(&rcv->list);
561 dev_rcv_lists->entries--;
562
563 if (rcv_lists_stats->rcv_entries > 0)
564 rcv_lists_stats->rcv_entries--;
565
566 out:
567 spin_unlock(&net->can.rcvlists_lock);
568
569 /* schedule the receiver item for deletion */
570 if (rcv) {
571 if (rcv->sk)
572 sock_hold(rcv->sk);
573 call_rcu(&rcv->rcu, can_rx_delete_receiver);
574 }
575 }
576 EXPORT_SYMBOL(can_rx_unregister);
577
578 static inline void deliver(struct sk_buff *skb, struct receiver *rcv)
579 {
580 rcv->func(skb, rcv->data);
581 rcv->matches++;
582 }
583
584 static int can_rcv_filter(struct can_dev_rcv_lists *dev_rcv_lists, struct sk_buff *skb)
585 {
586 struct receiver *rcv;
587 int matches = 0;
588 struct can_frame *cf = (struct can_frame *)skb->data;
589 canid_t can_id = cf->can_id;
590
591 if (dev_rcv_lists->entries == 0)
592 return 0;
593
594 if (can_id & CAN_ERR_FLAG) {
595 /* check for error message frame entries only */
596 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ERR], list) {
597 if (can_id & rcv->mask) {
598 deliver(skb, rcv);
599 matches++;
600 }
601 }
602 return matches;
603 }
604
605 /* check for unfiltered entries */
606 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ALL], list) {
607 deliver(skb, rcv);
608 matches++;
609 }
610
611 /* check for can_id/mask entries */
612 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_FIL], list) {
613 if ((can_id & rcv->mask) == rcv->can_id) {
614 deliver(skb, rcv);
615 matches++;
616 }
617 }
618
619 /* check for inverted can_id/mask entries */
620 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_INV], list) {
621 if ((can_id & rcv->mask) != rcv->can_id) {
622 deliver(skb, rcv);
623 matches++;
624 }
625 }
626
627 /* check filterlists for single non-RTR can_ids */
628 if (can_id & CAN_RTR_FLAG)
629 return matches;
630
631 if (can_id & CAN_EFF_FLAG) {
632 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_eff[effhash(can_id)], list) {
633 if (rcv->can_id == can_id) {
634 deliver(skb, rcv);
635 matches++;
636 }
637 }
638 } else {
639 can_id &= CAN_SFF_MASK;
640 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_sff[can_id], list) {
641 deliver(skb, rcv);
642 matches++;
643 }
644 }
645
646 return matches;
647 }
648
649 static void can_receive(struct sk_buff *skb, struct net_device *dev)
650 {
651 struct can_dev_rcv_lists *dev_rcv_lists;
652 struct net *net = dev_net(dev);
653 struct can_pkg_stats *pkg_stats = net->can.pkg_stats;
654 int matches;
655
656 /* update statistics */
657 pkg_stats->rx_frames++;
658 pkg_stats->rx_frames_delta++;
659
660 /* create non-zero unique skb identifier together with *skb */
661 while (!(can_skb_prv(skb)->skbcnt))
662 can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
663
664 rcu_read_lock();
665
666 /* deliver the packet to sockets listening on all devices */
667 matches = can_rcv_filter(net->can.rx_alldev_list, skb);
668
669 /* find receive list for this device */
670 dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
671 if (dev_rcv_lists)
672 matches += can_rcv_filter(dev_rcv_lists, skb);
673
674 rcu_read_unlock();
675
676 /* consume the skbuff allocated by the netdevice driver */
677 consume_skb(skb);
678
679 if (matches > 0) {
680 pkg_stats->matches++;
681 pkg_stats->matches_delta++;
682 }
683 }
684
685 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
686 struct packet_type *pt, struct net_device *orig_dev)
687 {
688 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
689
690 if (unlikely(dev->type != ARPHRD_CAN || skb->len != CAN_MTU ||
691 cfd->len > CAN_MAX_DLEN)) {
692 pr_warn_once("PF_CAN: dropped non conform CAN skbuf: dev type %d, len %d, datalen %d\n",
693 dev->type, skb->len, cfd->len);
694 kfree_skb(skb);
695 return NET_RX_DROP;
696 }
697
698 can_receive(skb, dev);
699 return NET_RX_SUCCESS;
700 }
701
702 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
703 struct packet_type *pt, struct net_device *orig_dev)
704 {
705 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
706
707 if (unlikely(dev->type != ARPHRD_CAN || skb->len != CANFD_MTU ||
708 cfd->len > CANFD_MAX_DLEN)) {
709 pr_warn_once("PF_CAN: dropped non conform CAN FD skbuf: dev type %d, len %d, datalen %d\n",
710 dev->type, skb->len, cfd->len);
711 kfree_skb(skb);
712 return NET_RX_DROP;
713 }
714
715 can_receive(skb, dev);
716 return NET_RX_SUCCESS;
717 }
718
719 /* af_can protocol functions */
720
721 /**
722 * can_proto_register - register CAN transport protocol
723 * @cp: pointer to CAN protocol structure
724 *
725 * Return:
726 * 0 on success
727 * -EINVAL invalid (out of range) protocol number
728 * -EBUSY protocol already in use
729 * -ENOBUF if proto_register() fails
730 */
731 int can_proto_register(const struct can_proto *cp)
732 {
733 int proto = cp->protocol;
734 int err = 0;
735
736 if (proto < 0 || proto >= CAN_NPROTO) {
737 pr_err("can: protocol number %d out of range\n", proto);
738 return -EINVAL;
739 }
740
741 err = proto_register(cp->prot, 0);
742 if (err < 0)
743 return err;
744
745 mutex_lock(&proto_tab_lock);
746
747 if (rcu_access_pointer(proto_tab[proto])) {
748 pr_err("can: protocol %d already registered\n", proto);
749 err = -EBUSY;
750 } else {
751 RCU_INIT_POINTER(proto_tab[proto], cp);
752 }
753
754 mutex_unlock(&proto_tab_lock);
755
756 if (err < 0)
757 proto_unregister(cp->prot);
758
759 return err;
760 }
761 EXPORT_SYMBOL(can_proto_register);
762
763 /**
764 * can_proto_unregister - unregister CAN transport protocol
765 * @cp: pointer to CAN protocol structure
766 */
767 void can_proto_unregister(const struct can_proto *cp)
768 {
769 int proto = cp->protocol;
770
771 mutex_lock(&proto_tab_lock);
772 BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
773 RCU_INIT_POINTER(proto_tab[proto], NULL);
774 mutex_unlock(&proto_tab_lock);
775
776 synchronize_rcu();
777
778 proto_unregister(cp->prot);
779 }
780 EXPORT_SYMBOL(can_proto_unregister);
781
782 /* af_can notifier to create/remove CAN netdevice specific structs */
783 static int can_notifier(struct notifier_block *nb, unsigned long msg,
784 void *ptr)
785 {
786 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
787
788 if (dev->type != ARPHRD_CAN)
789 return NOTIFY_DONE;
790
791 switch (msg) {
792 case NETDEV_REGISTER:
793 WARN(!dev->ml_priv,
794 "No CAN mid layer private allocated, please fix your driver and use alloc_candev()!\n");
795 break;
796 }
797
798 return NOTIFY_DONE;
799 }
800
801 static int can_pernet_init(struct net *net)
802 {
803 spin_lock_init(&net->can.rcvlists_lock);
804 net->can.rx_alldev_list =
805 kzalloc(sizeof(*net->can.rx_alldev_list), GFP_KERNEL);
806 if (!net->can.rx_alldev_list)
807 goto out;
808 net->can.pkg_stats = kzalloc(sizeof(*net->can.pkg_stats), GFP_KERNEL);
809 if (!net->can.pkg_stats)
810 goto out_free_rx_alldev_list;
811 net->can.rcv_lists_stats = kzalloc(sizeof(*net->can.rcv_lists_stats), GFP_KERNEL);
812 if (!net->can.rcv_lists_stats)
813 goto out_free_pkg_stats;
814
815 if (IS_ENABLED(CONFIG_PROC_FS)) {
816 /* the statistics are updated every second (timer triggered) */
817 if (stats_timer) {
818 timer_setup(&net->can.stattimer, can_stat_update,
819 0);
820 mod_timer(&net->can.stattimer,
821 round_jiffies(jiffies + HZ));
822 }
823 net->can.pkg_stats->jiffies_init = jiffies;
824 can_init_proc(net);
825 }
826
827 return 0;
828
829 out_free_pkg_stats:
830 kfree(net->can.pkg_stats);
831 out_free_rx_alldev_list:
832 kfree(net->can.rx_alldev_list);
833 out:
834 return -ENOMEM;
835 }
836
837 static void can_pernet_exit(struct net *net)
838 {
839 if (IS_ENABLED(CONFIG_PROC_FS)) {
840 can_remove_proc(net);
841 if (stats_timer)
842 del_timer_sync(&net->can.stattimer);
843 }
844
845 kfree(net->can.rx_alldev_list);
846 kfree(net->can.pkg_stats);
847 kfree(net->can.rcv_lists_stats);
848 }
849
850 /* af_can module init/exit functions */
851
852 static struct packet_type can_packet __read_mostly = {
853 .type = cpu_to_be16(ETH_P_CAN),
854 .func = can_rcv,
855 };
856
857 static struct packet_type canfd_packet __read_mostly = {
858 .type = cpu_to_be16(ETH_P_CANFD),
859 .func = canfd_rcv,
860 };
861
862 static const struct net_proto_family can_family_ops = {
863 .family = PF_CAN,
864 .create = can_create,
865 .owner = THIS_MODULE,
866 };
867
868 /* notifier block for netdevice event */
869 static struct notifier_block can_netdev_notifier __read_mostly = {
870 .notifier_call = can_notifier,
871 };
872
873 static struct pernet_operations can_pernet_ops __read_mostly = {
874 .init = can_pernet_init,
875 .exit = can_pernet_exit,
876 };
877
878 static __init int can_init(void)
879 {
880 int err;
881
882 /* check for correct padding to be able to use the structs similarly */
883 BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
884 offsetof(struct canfd_frame, len) ||
885 offsetof(struct can_frame, data) !=
886 offsetof(struct canfd_frame, data));
887
888 pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
889
890 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
891 0, 0, NULL);
892 if (!rcv_cache)
893 return -ENOMEM;
894
895 err = register_pernet_subsys(&can_pernet_ops);
896 if (err)
897 goto out_pernet;
898
899 /* protocol register */
900 err = sock_register(&can_family_ops);
901 if (err)
902 goto out_sock;
903 err = register_netdevice_notifier(&can_netdev_notifier);
904 if (err)
905 goto out_notifier;
906
907 dev_add_pack(&can_packet);
908 dev_add_pack(&canfd_packet);
909
910 return 0;
911
912 out_notifier:
913 sock_unregister(PF_CAN);
914 out_sock:
915 unregister_pernet_subsys(&can_pernet_ops);
916 out_pernet:
917 kmem_cache_destroy(rcv_cache);
918
919 return err;
920 }
921
922 static __exit void can_exit(void)
923 {
924 /* protocol unregister */
925 dev_remove_pack(&canfd_packet);
926 dev_remove_pack(&can_packet);
927 unregister_netdevice_notifier(&can_netdev_notifier);
928 sock_unregister(PF_CAN);
929
930 unregister_pernet_subsys(&can_pernet_ops);
931
932 rcu_barrier(); /* Wait for completion of call_rcu()'s */
933
934 kmem_cache_destroy(rcv_cache);
935 }
936
937 module_init(can_init);
938 module_exit(can_exit);