]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/can/af_can.c
7933e62a7318915327c7f0a9a8ead8beada40a2e
[mirror_ubuntu-bionic-kernel.git] / net / can / af_can.c
1 /*
2 * af_can.c - Protocol family CAN core module
3 * (used by different CAN protocol modules)
4 *
5 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Volkswagen nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * Alternatively, provided that this notice is retained in full, this
21 * software may be distributed under the terms of the GNU General
22 * Public License ("GPL") version 2, in which case the provisions of the
23 * GPL apply INSTEAD OF those given above.
24 *
25 * The provided data structures and external interfaces from this code
26 * are not restricted to be used by modules with a GPL compatible license.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 *
41 */
42
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/ratelimit.h>
62 #include <net/net_namespace.h>
63 #include <net/sock.h>
64
65 #include "af_can.h"
66
67 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
68 MODULE_LICENSE("Dual BSD/GPL");
69 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
70 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
71
72 MODULE_ALIAS_NETPROTO(PF_CAN);
73
74 static int stats_timer __read_mostly = 1;
75 module_param(stats_timer, int, S_IRUGO);
76 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
77
78 /* receive filters subscribed for 'all' CAN devices */
79 struct dev_rcv_lists can_rx_alldev_list;
80 static DEFINE_SPINLOCK(can_rcvlists_lock);
81
82 static struct kmem_cache *rcv_cache __read_mostly;
83
84 /* table of registered CAN protocols */
85 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
86 static DEFINE_MUTEX(proto_tab_lock);
87
88 struct timer_list can_stattimer; /* timer for statistics update */
89 struct s_stats can_stats; /* packet statistics */
90 struct s_pstats can_pstats; /* receive list statistics */
91
92 /*
93 * af_can socket functions
94 */
95
96 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
97 {
98 struct sock *sk = sock->sk;
99
100 switch (cmd) {
101
102 case SIOCGSTAMP:
103 return sock_get_timestamp(sk, (struct timeval __user *)arg);
104
105 default:
106 return -ENOIOCTLCMD;
107 }
108 }
109 EXPORT_SYMBOL(can_ioctl);
110
111 static void can_sock_destruct(struct sock *sk)
112 {
113 skb_queue_purge(&sk->sk_receive_queue);
114 }
115
116 static const struct can_proto *can_get_proto(int protocol)
117 {
118 const struct can_proto *cp;
119
120 rcu_read_lock();
121 cp = rcu_dereference(proto_tab[protocol]);
122 if (cp && !try_module_get(cp->prot->owner))
123 cp = NULL;
124 rcu_read_unlock();
125
126 return cp;
127 }
128
129 static inline void can_put_proto(const struct can_proto *cp)
130 {
131 module_put(cp->prot->owner);
132 }
133
134 static int can_create(struct net *net, struct socket *sock, int protocol,
135 int kern)
136 {
137 struct sock *sk;
138 const struct can_proto *cp;
139 int err = 0;
140
141 sock->state = SS_UNCONNECTED;
142
143 if (protocol < 0 || protocol >= CAN_NPROTO)
144 return -EINVAL;
145
146 if (!net_eq(net, &init_net))
147 return -EAFNOSUPPORT;
148
149 cp = can_get_proto(protocol);
150
151 #ifdef CONFIG_MODULES
152 if (!cp) {
153 /* try to load protocol module if kernel is modular */
154
155 err = request_module("can-proto-%d", protocol);
156
157 /*
158 * In case of error we only print a message but don't
159 * return the error code immediately. Below we will
160 * return -EPROTONOSUPPORT
161 */
162 if (err)
163 printk_ratelimited(KERN_ERR "can: request_module "
164 "(can-proto-%d) failed.\n", protocol);
165
166 cp = can_get_proto(protocol);
167 }
168 #endif
169
170 /* check for available protocol and correct usage */
171
172 if (!cp)
173 return -EPROTONOSUPPORT;
174
175 if (cp->type != sock->type) {
176 err = -EPROTOTYPE;
177 goto errout;
178 }
179
180 sock->ops = cp->ops;
181
182 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
183 if (!sk) {
184 err = -ENOMEM;
185 goto errout;
186 }
187
188 sock_init_data(sock, sk);
189 sk->sk_destruct = can_sock_destruct;
190
191 if (sk->sk_prot->init)
192 err = sk->sk_prot->init(sk);
193
194 if (err) {
195 /* release sk on errors */
196 sock_orphan(sk);
197 sock_put(sk);
198 }
199
200 errout:
201 can_put_proto(cp);
202 return err;
203 }
204
205 /*
206 * af_can tx path
207 */
208
209 /**
210 * can_send - transmit a CAN frame (optional with local loopback)
211 * @skb: pointer to socket buffer with CAN frame in data section
212 * @loop: loopback for listeners on local CAN sockets (recommended default!)
213 *
214 * Due to the loopback this routine must not be called from hardirq context.
215 *
216 * Return:
217 * 0 on success
218 * -ENETDOWN when the selected interface is down
219 * -ENOBUFS on full driver queue (see net_xmit_errno())
220 * -ENOMEM when local loopback failed at calling skb_clone()
221 * -EPERM when trying to send on a non-CAN interface
222 * -EMSGSIZE CAN frame size is bigger than CAN interface MTU
223 * -EINVAL when the skb->data does not contain a valid CAN frame
224 */
225 int can_send(struct sk_buff *skb, int loop)
226 {
227 struct sk_buff *newskb = NULL;
228 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
229 int err = -EINVAL;
230
231 if (skb->len == CAN_MTU) {
232 skb->protocol = htons(ETH_P_CAN);
233 if (unlikely(cfd->len > CAN_MAX_DLEN))
234 goto inval_skb;
235 } else if (skb->len == CANFD_MTU) {
236 skb->protocol = htons(ETH_P_CANFD);
237 if (unlikely(cfd->len > CANFD_MAX_DLEN))
238 goto inval_skb;
239 } else
240 goto inval_skb;
241
242 /*
243 * Make sure the CAN frame can pass the selected CAN netdevice.
244 * As structs can_frame and canfd_frame are similar, we can provide
245 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
246 */
247 if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
248 err = -EMSGSIZE;
249 goto inval_skb;
250 }
251
252 if (unlikely(skb->dev->type != ARPHRD_CAN)) {
253 err = -EPERM;
254 goto inval_skb;
255 }
256
257 if (unlikely(!(skb->dev->flags & IFF_UP))) {
258 err = -ENETDOWN;
259 goto inval_skb;
260 }
261
262 skb->ip_summed = CHECKSUM_UNNECESSARY;
263
264 skb_reset_mac_header(skb);
265 skb_reset_network_header(skb);
266 skb_reset_transport_header(skb);
267
268 if (loop) {
269 /* local loopback of sent CAN frames */
270
271 /* indication for the CAN driver: do loopback */
272 skb->pkt_type = PACKET_LOOPBACK;
273
274 /*
275 * The reference to the originating sock may be required
276 * by the receiving socket to check whether the frame is
277 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
278 * Therefore we have to ensure that skb->sk remains the
279 * reference to the originating sock by restoring skb->sk
280 * after each skb_clone() or skb_orphan() usage.
281 */
282
283 if (!(skb->dev->flags & IFF_ECHO)) {
284 /*
285 * If the interface is not capable to do loopback
286 * itself, we do it here.
287 */
288 newskb = skb_clone(skb, GFP_ATOMIC);
289 if (!newskb) {
290 kfree_skb(skb);
291 return -ENOMEM;
292 }
293
294 can_skb_set_owner(newskb, skb->sk);
295 newskb->ip_summed = CHECKSUM_UNNECESSARY;
296 newskb->pkt_type = PACKET_BROADCAST;
297 }
298 } else {
299 /* indication for the CAN driver: no loopback required */
300 skb->pkt_type = PACKET_HOST;
301 }
302
303 /* send to netdevice */
304 err = dev_queue_xmit(skb);
305 if (err > 0)
306 err = net_xmit_errno(err);
307
308 if (err) {
309 kfree_skb(newskb);
310 return err;
311 }
312
313 if (newskb) {
314 if (!(newskb->tstamp.tv64))
315 __net_timestamp(newskb);
316
317 netif_rx_ni(newskb);
318 }
319
320 /* update statistics */
321 can_stats.tx_frames++;
322 can_stats.tx_frames_delta++;
323
324 return 0;
325
326 inval_skb:
327 kfree_skb(skb);
328 return err;
329 }
330 EXPORT_SYMBOL(can_send);
331
332 /*
333 * af_can rx path
334 */
335
336 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
337 {
338 if (!dev)
339 return &can_rx_alldev_list;
340 else
341 return (struct dev_rcv_lists *)dev->ml_priv;
342 }
343
344 /**
345 * effhash - hash function for 29 bit CAN identifier reduction
346 * @can_id: 29 bit CAN identifier
347 *
348 * Description:
349 * To reduce the linear traversal in one linked list of _single_ EFF CAN
350 * frame subscriptions the 29 bit identifier is mapped to 10 bits.
351 * (see CAN_EFF_RCV_HASH_BITS definition)
352 *
353 * Return:
354 * Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
355 */
356 static unsigned int effhash(canid_t can_id)
357 {
358 unsigned int hash;
359
360 hash = can_id;
361 hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
362 hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
363
364 return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
365 }
366
367 /**
368 * find_rcv_list - determine optimal filterlist inside device filter struct
369 * @can_id: pointer to CAN identifier of a given can_filter
370 * @mask: pointer to CAN mask of a given can_filter
371 * @d: pointer to the device filter struct
372 *
373 * Description:
374 * Returns the optimal filterlist to reduce the filter handling in the
375 * receive path. This function is called by service functions that need
376 * to register or unregister a can_filter in the filter lists.
377 *
378 * A filter matches in general, when
379 *
380 * <received_can_id> & mask == can_id & mask
381 *
382 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
383 * relevant bits for the filter.
384 *
385 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
386 * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
387 * frames there is a special filterlist and a special rx path filter handling.
388 *
389 * Return:
390 * Pointer to optimal filterlist for the given can_id/mask pair.
391 * Constistency checked mask.
392 * Reduced can_id to have a preprocessed filter compare value.
393 */
394 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
395 struct dev_rcv_lists *d)
396 {
397 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
398
399 /* filter for error message frames in extra filterlist */
400 if (*mask & CAN_ERR_FLAG) {
401 /* clear CAN_ERR_FLAG in filter entry */
402 *mask &= CAN_ERR_MASK;
403 return &d->rx[RX_ERR];
404 }
405
406 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
407
408 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
409
410 /* ensure valid values in can_mask for 'SFF only' frame filtering */
411 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
412 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
413
414 /* reduce condition testing at receive time */
415 *can_id &= *mask;
416
417 /* inverse can_id/can_mask filter */
418 if (inv)
419 return &d->rx[RX_INV];
420
421 /* mask == 0 => no condition testing at receive time */
422 if (!(*mask))
423 return &d->rx[RX_ALL];
424
425 /* extra filterlists for the subscription of a single non-RTR can_id */
426 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
427 !(*can_id & CAN_RTR_FLAG)) {
428
429 if (*can_id & CAN_EFF_FLAG) {
430 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
431 return &d->rx_eff[effhash(*can_id)];
432 } else {
433 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
434 return &d->rx_sff[*can_id];
435 }
436 }
437
438 /* default: filter via can_id/can_mask */
439 return &d->rx[RX_FIL];
440 }
441
442 /**
443 * can_rx_register - subscribe CAN frames from a specific interface
444 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
445 * @can_id: CAN identifier (see description)
446 * @mask: CAN mask (see description)
447 * @func: callback function on filter match
448 * @data: returned parameter for callback function
449 * @ident: string for calling module identification
450 *
451 * Description:
452 * Invokes the callback function with the received sk_buff and the given
453 * parameter 'data' on a matching receive filter. A filter matches, when
454 *
455 * <received_can_id> & mask == can_id & mask
456 *
457 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
458 * filter for error message frames (CAN_ERR_FLAG bit set in mask).
459 *
460 * The provided pointer to the sk_buff is guaranteed to be valid as long as
461 * the callback function is running. The callback function must *not* free
462 * the given sk_buff while processing it's task. When the given sk_buff is
463 * needed after the end of the callback function it must be cloned inside
464 * the callback function with skb_clone().
465 *
466 * Return:
467 * 0 on success
468 * -ENOMEM on missing cache mem to create subscription entry
469 * -ENODEV unknown device
470 */
471 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
472 void (*func)(struct sk_buff *, void *), void *data,
473 char *ident)
474 {
475 struct receiver *r;
476 struct hlist_head *rl;
477 struct dev_rcv_lists *d;
478 int err = 0;
479
480 /* insert new receiver (dev,canid,mask) -> (func,data) */
481
482 if (dev && dev->type != ARPHRD_CAN)
483 return -ENODEV;
484
485 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
486 if (!r)
487 return -ENOMEM;
488
489 spin_lock(&can_rcvlists_lock);
490
491 d = find_dev_rcv_lists(dev);
492 if (d) {
493 rl = find_rcv_list(&can_id, &mask, d);
494
495 r->can_id = can_id;
496 r->mask = mask;
497 r->matches = 0;
498 r->func = func;
499 r->data = data;
500 r->ident = ident;
501
502 hlist_add_head_rcu(&r->list, rl);
503 d->entries++;
504
505 can_pstats.rcv_entries++;
506 if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
507 can_pstats.rcv_entries_max = can_pstats.rcv_entries;
508 } else {
509 kmem_cache_free(rcv_cache, r);
510 err = -ENODEV;
511 }
512
513 spin_unlock(&can_rcvlists_lock);
514
515 return err;
516 }
517 EXPORT_SYMBOL(can_rx_register);
518
519 /*
520 * can_rx_delete_receiver - rcu callback for single receiver entry removal
521 */
522 static void can_rx_delete_receiver(struct rcu_head *rp)
523 {
524 struct receiver *r = container_of(rp, struct receiver, rcu);
525
526 kmem_cache_free(rcv_cache, r);
527 }
528
529 /**
530 * can_rx_unregister - unsubscribe CAN frames from a specific interface
531 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
532 * @can_id: CAN identifier
533 * @mask: CAN mask
534 * @func: callback function on filter match
535 * @data: returned parameter for callback function
536 *
537 * Description:
538 * Removes subscription entry depending on given (subscription) values.
539 */
540 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
541 void (*func)(struct sk_buff *, void *), void *data)
542 {
543 struct receiver *r = NULL;
544 struct hlist_head *rl;
545 struct dev_rcv_lists *d;
546
547 if (dev && dev->type != ARPHRD_CAN)
548 return;
549
550 spin_lock(&can_rcvlists_lock);
551
552 d = find_dev_rcv_lists(dev);
553 if (!d) {
554 pr_err("BUG: receive list not found for "
555 "dev %s, id %03X, mask %03X\n",
556 DNAME(dev), can_id, mask);
557 goto out;
558 }
559
560 rl = find_rcv_list(&can_id, &mask, d);
561
562 /*
563 * Search the receiver list for the item to delete. This should
564 * exist, since no receiver may be unregistered that hasn't
565 * been registered before.
566 */
567
568 hlist_for_each_entry_rcu(r, rl, list) {
569 if (r->can_id == can_id && r->mask == mask &&
570 r->func == func && r->data == data)
571 break;
572 }
573
574 /*
575 * Check for bugs in CAN protocol implementations using af_can.c:
576 * 'r' will be NULL if no matching list item was found for removal.
577 */
578
579 if (!r) {
580 WARN(1, "BUG: receive list entry not found for dev %s, "
581 "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
582 goto out;
583 }
584
585 hlist_del_rcu(&r->list);
586 d->entries--;
587
588 if (can_pstats.rcv_entries > 0)
589 can_pstats.rcv_entries--;
590
591 /* remove device structure requested by NETDEV_UNREGISTER */
592 if (d->remove_on_zero_entries && !d->entries) {
593 kfree(d);
594 dev->ml_priv = NULL;
595 }
596
597 out:
598 spin_unlock(&can_rcvlists_lock);
599
600 /* schedule the receiver item for deletion */
601 if (r)
602 call_rcu(&r->rcu, can_rx_delete_receiver);
603 }
604 EXPORT_SYMBOL(can_rx_unregister);
605
606 static inline void deliver(struct sk_buff *skb, struct receiver *r)
607 {
608 r->func(skb, r->data);
609 r->matches++;
610 }
611
612 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
613 {
614 struct receiver *r;
615 int matches = 0;
616 struct can_frame *cf = (struct can_frame *)skb->data;
617 canid_t can_id = cf->can_id;
618
619 if (d->entries == 0)
620 return 0;
621
622 if (can_id & CAN_ERR_FLAG) {
623 /* check for error message frame entries only */
624 hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
625 if (can_id & r->mask) {
626 deliver(skb, r);
627 matches++;
628 }
629 }
630 return matches;
631 }
632
633 /* check for unfiltered entries */
634 hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
635 deliver(skb, r);
636 matches++;
637 }
638
639 /* check for can_id/mask entries */
640 hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
641 if ((can_id & r->mask) == r->can_id) {
642 deliver(skb, r);
643 matches++;
644 }
645 }
646
647 /* check for inverted can_id/mask entries */
648 hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
649 if ((can_id & r->mask) != r->can_id) {
650 deliver(skb, r);
651 matches++;
652 }
653 }
654
655 /* check filterlists for single non-RTR can_ids */
656 if (can_id & CAN_RTR_FLAG)
657 return matches;
658
659 if (can_id & CAN_EFF_FLAG) {
660 hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) {
661 if (r->can_id == can_id) {
662 deliver(skb, r);
663 matches++;
664 }
665 }
666 } else {
667 can_id &= CAN_SFF_MASK;
668 hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
669 deliver(skb, r);
670 matches++;
671 }
672 }
673
674 return matches;
675 }
676
677 static void can_receive(struct sk_buff *skb, struct net_device *dev)
678 {
679 struct dev_rcv_lists *d;
680 int matches;
681
682 /* update statistics */
683 can_stats.rx_frames++;
684 can_stats.rx_frames_delta++;
685
686 rcu_read_lock();
687
688 /* deliver the packet to sockets listening on all devices */
689 matches = can_rcv_filter(&can_rx_alldev_list, skb);
690
691 /* find receive list for this device */
692 d = find_dev_rcv_lists(dev);
693 if (d)
694 matches += can_rcv_filter(d, skb);
695
696 rcu_read_unlock();
697
698 /* consume the skbuff allocated by the netdevice driver */
699 consume_skb(skb);
700
701 if (matches > 0) {
702 can_stats.matches++;
703 can_stats.matches_delta++;
704 }
705 }
706
707 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
708 struct packet_type *pt, struct net_device *orig_dev)
709 {
710 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
711
712 if (unlikely(!net_eq(dev_net(dev), &init_net)))
713 goto drop;
714
715 if (WARN_ONCE(dev->type != ARPHRD_CAN ||
716 skb->len != CAN_MTU ||
717 cfd->len > CAN_MAX_DLEN,
718 "PF_CAN: dropped non conform CAN skbuf: "
719 "dev type %d, len %d, datalen %d\n",
720 dev->type, skb->len, cfd->len))
721 goto drop;
722
723 can_receive(skb, dev);
724 return NET_RX_SUCCESS;
725
726 drop:
727 kfree_skb(skb);
728 return NET_RX_DROP;
729 }
730
731 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
732 struct packet_type *pt, struct net_device *orig_dev)
733 {
734 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
735
736 if (unlikely(!net_eq(dev_net(dev), &init_net)))
737 goto drop;
738
739 if (WARN_ONCE(dev->type != ARPHRD_CAN ||
740 skb->len != CANFD_MTU ||
741 cfd->len > CANFD_MAX_DLEN,
742 "PF_CAN: dropped non conform CAN FD skbuf: "
743 "dev type %d, len %d, datalen %d\n",
744 dev->type, skb->len, cfd->len))
745 goto drop;
746
747 can_receive(skb, dev);
748 return NET_RX_SUCCESS;
749
750 drop:
751 kfree_skb(skb);
752 return NET_RX_DROP;
753 }
754
755 /*
756 * af_can protocol functions
757 */
758
759 /**
760 * can_proto_register - register CAN transport protocol
761 * @cp: pointer to CAN protocol structure
762 *
763 * Return:
764 * 0 on success
765 * -EINVAL invalid (out of range) protocol number
766 * -EBUSY protocol already in use
767 * -ENOBUF if proto_register() fails
768 */
769 int can_proto_register(const struct can_proto *cp)
770 {
771 int proto = cp->protocol;
772 int err = 0;
773
774 if (proto < 0 || proto >= CAN_NPROTO) {
775 pr_err("can: protocol number %d out of range\n", proto);
776 return -EINVAL;
777 }
778
779 err = proto_register(cp->prot, 0);
780 if (err < 0)
781 return err;
782
783 mutex_lock(&proto_tab_lock);
784
785 if (proto_tab[proto]) {
786 pr_err("can: protocol %d already registered\n", proto);
787 err = -EBUSY;
788 } else
789 RCU_INIT_POINTER(proto_tab[proto], cp);
790
791 mutex_unlock(&proto_tab_lock);
792
793 if (err < 0)
794 proto_unregister(cp->prot);
795
796 return err;
797 }
798 EXPORT_SYMBOL(can_proto_register);
799
800 /**
801 * can_proto_unregister - unregister CAN transport protocol
802 * @cp: pointer to CAN protocol structure
803 */
804 void can_proto_unregister(const struct can_proto *cp)
805 {
806 int proto = cp->protocol;
807
808 mutex_lock(&proto_tab_lock);
809 BUG_ON(proto_tab[proto] != cp);
810 RCU_INIT_POINTER(proto_tab[proto], NULL);
811 mutex_unlock(&proto_tab_lock);
812
813 synchronize_rcu();
814
815 proto_unregister(cp->prot);
816 }
817 EXPORT_SYMBOL(can_proto_unregister);
818
819 /*
820 * af_can notifier to create/remove CAN netdevice specific structs
821 */
822 static int can_notifier(struct notifier_block *nb, unsigned long msg,
823 void *ptr)
824 {
825 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
826 struct dev_rcv_lists *d;
827
828 if (!net_eq(dev_net(dev), &init_net))
829 return NOTIFY_DONE;
830
831 if (dev->type != ARPHRD_CAN)
832 return NOTIFY_DONE;
833
834 switch (msg) {
835
836 case NETDEV_REGISTER:
837
838 /* create new dev_rcv_lists for this device */
839 d = kzalloc(sizeof(*d), GFP_KERNEL);
840 if (!d)
841 return NOTIFY_DONE;
842 BUG_ON(dev->ml_priv);
843 dev->ml_priv = d;
844
845 break;
846
847 case NETDEV_UNREGISTER:
848 spin_lock(&can_rcvlists_lock);
849
850 d = dev->ml_priv;
851 if (d) {
852 if (d->entries)
853 d->remove_on_zero_entries = 1;
854 else {
855 kfree(d);
856 dev->ml_priv = NULL;
857 }
858 } else
859 pr_err("can: notifier: receive list not found for dev "
860 "%s\n", dev->name);
861
862 spin_unlock(&can_rcvlists_lock);
863
864 break;
865 }
866
867 return NOTIFY_DONE;
868 }
869
870 /*
871 * af_can module init/exit functions
872 */
873
874 static struct packet_type can_packet __read_mostly = {
875 .type = cpu_to_be16(ETH_P_CAN),
876 .func = can_rcv,
877 };
878
879 static struct packet_type canfd_packet __read_mostly = {
880 .type = cpu_to_be16(ETH_P_CANFD),
881 .func = canfd_rcv,
882 };
883
884 static const struct net_proto_family can_family_ops = {
885 .family = PF_CAN,
886 .create = can_create,
887 .owner = THIS_MODULE,
888 };
889
890 /* notifier block for netdevice event */
891 static struct notifier_block can_netdev_notifier __read_mostly = {
892 .notifier_call = can_notifier,
893 };
894
895 static __init int can_init(void)
896 {
897 /* check for correct padding to be able to use the structs similarly */
898 BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
899 offsetof(struct canfd_frame, len) ||
900 offsetof(struct can_frame, data) !=
901 offsetof(struct canfd_frame, data));
902
903 pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
904
905 memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list));
906
907 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
908 0, 0, NULL);
909 if (!rcv_cache)
910 return -ENOMEM;
911
912 if (stats_timer) {
913 /* the statistics are updated every second (timer triggered) */
914 setup_timer(&can_stattimer, can_stat_update, 0);
915 mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
916 } else
917 can_stattimer.function = NULL;
918
919 can_init_proc();
920
921 /* protocol register */
922 sock_register(&can_family_ops);
923 register_netdevice_notifier(&can_netdev_notifier);
924 dev_add_pack(&can_packet);
925 dev_add_pack(&canfd_packet);
926
927 return 0;
928 }
929
930 static __exit void can_exit(void)
931 {
932 struct net_device *dev;
933
934 if (stats_timer)
935 del_timer_sync(&can_stattimer);
936
937 can_remove_proc();
938
939 /* protocol unregister */
940 dev_remove_pack(&canfd_packet);
941 dev_remove_pack(&can_packet);
942 unregister_netdevice_notifier(&can_netdev_notifier);
943 sock_unregister(PF_CAN);
944
945 /* remove created dev_rcv_lists from still registered CAN devices */
946 rcu_read_lock();
947 for_each_netdev_rcu(&init_net, dev) {
948 if (dev->type == ARPHRD_CAN && dev->ml_priv) {
949
950 struct dev_rcv_lists *d = dev->ml_priv;
951
952 BUG_ON(d->entries);
953 kfree(d);
954 dev->ml_priv = NULL;
955 }
956 }
957 rcu_read_unlock();
958
959 rcu_barrier(); /* Wait for completion of call_rcu()'s */
960
961 kmem_cache_destroy(rcv_cache);
962 }
963
964 module_init(can_init);
965 module_exit(can_exit);