]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/can/af_can.c
can: add destructor for self generated skbs
[mirror_ubuntu-bionic-kernel.git] / net / can / af_can.c
1 /*
2 * af_can.c - Protocol family CAN core module
3 * (used by different CAN protocol modules)
4 *
5 * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Volkswagen nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * Alternatively, provided that this notice is retained in full, this
21 * software may be distributed under the terms of the GNU General
22 * Public License ("GPL") version 2, in which case the provisions of the
23 * GPL apply INSTEAD OF those given above.
24 *
25 * The provided data structures and external interfaces from this code
26 * are not restricted to be used by modules with a GPL compatible license.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 *
41 */
42
43 #include <linux/module.h>
44 #include <linux/stddef.h>
45 #include <linux/init.h>
46 #include <linux/kmod.h>
47 #include <linux/slab.h>
48 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/rcupdate.h>
51 #include <linux/uaccess.h>
52 #include <linux/net.h>
53 #include <linux/netdevice.h>
54 #include <linux/socket.h>
55 #include <linux/if_ether.h>
56 #include <linux/if_arp.h>
57 #include <linux/skbuff.h>
58 #include <linux/can.h>
59 #include <linux/can/core.h>
60 #include <linux/can/skb.h>
61 #include <linux/ratelimit.h>
62 #include <net/net_namespace.h>
63 #include <net/sock.h>
64
65 #include "af_can.h"
66
67 static __initconst const char banner[] = KERN_INFO
68 "can: controller area network core (" CAN_VERSION_STRING ")\n";
69
70 MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
71 MODULE_LICENSE("Dual BSD/GPL");
72 MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
73 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
74
75 MODULE_ALIAS_NETPROTO(PF_CAN);
76
77 static int stats_timer __read_mostly = 1;
78 module_param(stats_timer, int, S_IRUGO);
79 MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
80
81 /* receive filters subscribed for 'all' CAN devices */
82 struct dev_rcv_lists can_rx_alldev_list;
83 static DEFINE_SPINLOCK(can_rcvlists_lock);
84
85 static struct kmem_cache *rcv_cache __read_mostly;
86
87 /* table of registered CAN protocols */
88 static const struct can_proto *proto_tab[CAN_NPROTO] __read_mostly;
89 static DEFINE_MUTEX(proto_tab_lock);
90
91 struct timer_list can_stattimer; /* timer for statistics update */
92 struct s_stats can_stats; /* packet statistics */
93 struct s_pstats can_pstats; /* receive list statistics */
94
95 /*
96 * af_can socket functions
97 */
98
99 int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
100 {
101 struct sock *sk = sock->sk;
102
103 switch (cmd) {
104
105 case SIOCGSTAMP:
106 return sock_get_timestamp(sk, (struct timeval __user *)arg);
107
108 default:
109 return -ENOIOCTLCMD;
110 }
111 }
112 EXPORT_SYMBOL(can_ioctl);
113
114 static void can_sock_destruct(struct sock *sk)
115 {
116 skb_queue_purge(&sk->sk_receive_queue);
117 }
118
119 static const struct can_proto *can_get_proto(int protocol)
120 {
121 const struct can_proto *cp;
122
123 rcu_read_lock();
124 cp = rcu_dereference(proto_tab[protocol]);
125 if (cp && !try_module_get(cp->prot->owner))
126 cp = NULL;
127 rcu_read_unlock();
128
129 return cp;
130 }
131
132 static inline void can_put_proto(const struct can_proto *cp)
133 {
134 module_put(cp->prot->owner);
135 }
136
137 static int can_create(struct net *net, struct socket *sock, int protocol,
138 int kern)
139 {
140 struct sock *sk;
141 const struct can_proto *cp;
142 int err = 0;
143
144 sock->state = SS_UNCONNECTED;
145
146 if (protocol < 0 || protocol >= CAN_NPROTO)
147 return -EINVAL;
148
149 if (!net_eq(net, &init_net))
150 return -EAFNOSUPPORT;
151
152 cp = can_get_proto(protocol);
153
154 #ifdef CONFIG_MODULES
155 if (!cp) {
156 /* try to load protocol module if kernel is modular */
157
158 err = request_module("can-proto-%d", protocol);
159
160 /*
161 * In case of error we only print a message but don't
162 * return the error code immediately. Below we will
163 * return -EPROTONOSUPPORT
164 */
165 if (err)
166 printk_ratelimited(KERN_ERR "can: request_module "
167 "(can-proto-%d) failed.\n", protocol);
168
169 cp = can_get_proto(protocol);
170 }
171 #endif
172
173 /* check for available protocol and correct usage */
174
175 if (!cp)
176 return -EPROTONOSUPPORT;
177
178 if (cp->type != sock->type) {
179 err = -EPROTOTYPE;
180 goto errout;
181 }
182
183 sock->ops = cp->ops;
184
185 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot);
186 if (!sk) {
187 err = -ENOMEM;
188 goto errout;
189 }
190
191 sock_init_data(sock, sk);
192 sk->sk_destruct = can_sock_destruct;
193
194 if (sk->sk_prot->init)
195 err = sk->sk_prot->init(sk);
196
197 if (err) {
198 /* release sk on errors */
199 sock_orphan(sk);
200 sock_put(sk);
201 }
202
203 errout:
204 can_put_proto(cp);
205 return err;
206 }
207
208 /*
209 * af_can tx path
210 */
211
212 /**
213 * can_send - transmit a CAN frame (optional with local loopback)
214 * @skb: pointer to socket buffer with CAN frame in data section
215 * @loop: loopback for listeners on local CAN sockets (recommended default!)
216 *
217 * Due to the loopback this routine must not be called from hardirq context.
218 *
219 * Return:
220 * 0 on success
221 * -ENETDOWN when the selected interface is down
222 * -ENOBUFS on full driver queue (see net_xmit_errno())
223 * -ENOMEM when local loopback failed at calling skb_clone()
224 * -EPERM when trying to send on a non-CAN interface
225 * -EMSGSIZE CAN frame size is bigger than CAN interface MTU
226 * -EINVAL when the skb->data does not contain a valid CAN frame
227 */
228 int can_send(struct sk_buff *skb, int loop)
229 {
230 struct sk_buff *newskb = NULL;
231 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
232 int err = -EINVAL;
233
234 if (skb->len == CAN_MTU) {
235 skb->protocol = htons(ETH_P_CAN);
236 if (unlikely(cfd->len > CAN_MAX_DLEN))
237 goto inval_skb;
238 } else if (skb->len == CANFD_MTU) {
239 skb->protocol = htons(ETH_P_CANFD);
240 if (unlikely(cfd->len > CANFD_MAX_DLEN))
241 goto inval_skb;
242 } else
243 goto inval_skb;
244
245 /*
246 * Make sure the CAN frame can pass the selected CAN netdevice.
247 * As structs can_frame and canfd_frame are similar, we can provide
248 * CAN FD frames to legacy CAN drivers as long as the length is <= 8
249 */
250 if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
251 err = -EMSGSIZE;
252 goto inval_skb;
253 }
254
255 if (unlikely(skb->dev->type != ARPHRD_CAN)) {
256 err = -EPERM;
257 goto inval_skb;
258 }
259
260 if (unlikely(!(skb->dev->flags & IFF_UP))) {
261 err = -ENETDOWN;
262 goto inval_skb;
263 }
264
265 skb_reset_network_header(skb);
266 skb_reset_transport_header(skb);
267
268 if (loop) {
269 /* local loopback of sent CAN frames */
270
271 /* indication for the CAN driver: do loopback */
272 skb->pkt_type = PACKET_LOOPBACK;
273
274 /*
275 * The reference to the originating sock may be required
276 * by the receiving socket to check whether the frame is
277 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
278 * Therefore we have to ensure that skb->sk remains the
279 * reference to the originating sock by restoring skb->sk
280 * after each skb_clone() or skb_orphan() usage.
281 */
282
283 if (!(skb->dev->flags & IFF_ECHO)) {
284 /*
285 * If the interface is not capable to do loopback
286 * itself, we do it here.
287 */
288 newskb = skb_clone(skb, GFP_ATOMIC);
289 if (!newskb) {
290 kfree_skb(skb);
291 return -ENOMEM;
292 }
293
294 can_skb_set_owner(newskb, skb->sk);
295 newskb->ip_summed = CHECKSUM_UNNECESSARY;
296 newskb->pkt_type = PACKET_BROADCAST;
297 }
298 } else {
299 /* indication for the CAN driver: no loopback required */
300 skb->pkt_type = PACKET_HOST;
301 }
302
303 /* send to netdevice */
304 err = dev_queue_xmit(skb);
305 if (err > 0)
306 err = net_xmit_errno(err);
307
308 if (err) {
309 kfree_skb(newskb);
310 return err;
311 }
312
313 if (newskb)
314 netif_rx_ni(newskb);
315
316 /* update statistics */
317 can_stats.tx_frames++;
318 can_stats.tx_frames_delta++;
319
320 return 0;
321
322 inval_skb:
323 kfree_skb(skb);
324 return err;
325 }
326 EXPORT_SYMBOL(can_send);
327
328 /*
329 * af_can rx path
330 */
331
332 static struct dev_rcv_lists *find_dev_rcv_lists(struct net_device *dev)
333 {
334 if (!dev)
335 return &can_rx_alldev_list;
336 else
337 return (struct dev_rcv_lists *)dev->ml_priv;
338 }
339
340 /**
341 * find_rcv_list - determine optimal filterlist inside device filter struct
342 * @can_id: pointer to CAN identifier of a given can_filter
343 * @mask: pointer to CAN mask of a given can_filter
344 * @d: pointer to the device filter struct
345 *
346 * Description:
347 * Returns the optimal filterlist to reduce the filter handling in the
348 * receive path. This function is called by service functions that need
349 * to register or unregister a can_filter in the filter lists.
350 *
351 * A filter matches in general, when
352 *
353 * <received_can_id> & mask == can_id & mask
354 *
355 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
356 * relevant bits for the filter.
357 *
358 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
359 * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
360 * frames there is a special filterlist and a special rx path filter handling.
361 *
362 * Return:
363 * Pointer to optimal filterlist for the given can_id/mask pair.
364 * Constistency checked mask.
365 * Reduced can_id to have a preprocessed filter compare value.
366 */
367 static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
368 struct dev_rcv_lists *d)
369 {
370 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
371
372 /* filter for error message frames in extra filterlist */
373 if (*mask & CAN_ERR_FLAG) {
374 /* clear CAN_ERR_FLAG in filter entry */
375 *mask &= CAN_ERR_MASK;
376 return &d->rx[RX_ERR];
377 }
378
379 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
380
381 #define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
382
383 /* ensure valid values in can_mask for 'SFF only' frame filtering */
384 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
385 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
386
387 /* reduce condition testing at receive time */
388 *can_id &= *mask;
389
390 /* inverse can_id/can_mask filter */
391 if (inv)
392 return &d->rx[RX_INV];
393
394 /* mask == 0 => no condition testing at receive time */
395 if (!(*mask))
396 return &d->rx[RX_ALL];
397
398 /* extra filterlists for the subscription of a single non-RTR can_id */
399 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
400 !(*can_id & CAN_RTR_FLAG)) {
401
402 if (*can_id & CAN_EFF_FLAG) {
403 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS)) {
404 /* RFC: a future use-case for hash-tables? */
405 return &d->rx[RX_EFF];
406 }
407 } else {
408 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
409 return &d->rx_sff[*can_id];
410 }
411 }
412
413 /* default: filter via can_id/can_mask */
414 return &d->rx[RX_FIL];
415 }
416
417 /**
418 * can_rx_register - subscribe CAN frames from a specific interface
419 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
420 * @can_id: CAN identifier (see description)
421 * @mask: CAN mask (see description)
422 * @func: callback function on filter match
423 * @data: returned parameter for callback function
424 * @ident: string for calling module identification
425 *
426 * Description:
427 * Invokes the callback function with the received sk_buff and the given
428 * parameter 'data' on a matching receive filter. A filter matches, when
429 *
430 * <received_can_id> & mask == can_id & mask
431 *
432 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
433 * filter for error message frames (CAN_ERR_FLAG bit set in mask).
434 *
435 * The provided pointer to the sk_buff is guaranteed to be valid as long as
436 * the callback function is running. The callback function must *not* free
437 * the given sk_buff while processing it's task. When the given sk_buff is
438 * needed after the end of the callback function it must be cloned inside
439 * the callback function with skb_clone().
440 *
441 * Return:
442 * 0 on success
443 * -ENOMEM on missing cache mem to create subscription entry
444 * -ENODEV unknown device
445 */
446 int can_rx_register(struct net_device *dev, canid_t can_id, canid_t mask,
447 void (*func)(struct sk_buff *, void *), void *data,
448 char *ident)
449 {
450 struct receiver *r;
451 struct hlist_head *rl;
452 struct dev_rcv_lists *d;
453 int err = 0;
454
455 /* insert new receiver (dev,canid,mask) -> (func,data) */
456
457 if (dev && dev->type != ARPHRD_CAN)
458 return -ENODEV;
459
460 r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
461 if (!r)
462 return -ENOMEM;
463
464 spin_lock(&can_rcvlists_lock);
465
466 d = find_dev_rcv_lists(dev);
467 if (d) {
468 rl = find_rcv_list(&can_id, &mask, d);
469
470 r->can_id = can_id;
471 r->mask = mask;
472 r->matches = 0;
473 r->func = func;
474 r->data = data;
475 r->ident = ident;
476
477 hlist_add_head_rcu(&r->list, rl);
478 d->entries++;
479
480 can_pstats.rcv_entries++;
481 if (can_pstats.rcv_entries_max < can_pstats.rcv_entries)
482 can_pstats.rcv_entries_max = can_pstats.rcv_entries;
483 } else {
484 kmem_cache_free(rcv_cache, r);
485 err = -ENODEV;
486 }
487
488 spin_unlock(&can_rcvlists_lock);
489
490 return err;
491 }
492 EXPORT_SYMBOL(can_rx_register);
493
494 /*
495 * can_rx_delete_receiver - rcu callback for single receiver entry removal
496 */
497 static void can_rx_delete_receiver(struct rcu_head *rp)
498 {
499 struct receiver *r = container_of(rp, struct receiver, rcu);
500
501 kmem_cache_free(rcv_cache, r);
502 }
503
504 /**
505 * can_rx_unregister - unsubscribe CAN frames from a specific interface
506 * @dev: pointer to netdevice (NULL => unsubcribe from 'all' CAN devices list)
507 * @can_id: CAN identifier
508 * @mask: CAN mask
509 * @func: callback function on filter match
510 * @data: returned parameter for callback function
511 *
512 * Description:
513 * Removes subscription entry depending on given (subscription) values.
514 */
515 void can_rx_unregister(struct net_device *dev, canid_t can_id, canid_t mask,
516 void (*func)(struct sk_buff *, void *), void *data)
517 {
518 struct receiver *r = NULL;
519 struct hlist_head *rl;
520 struct dev_rcv_lists *d;
521
522 if (dev && dev->type != ARPHRD_CAN)
523 return;
524
525 spin_lock(&can_rcvlists_lock);
526
527 d = find_dev_rcv_lists(dev);
528 if (!d) {
529 pr_err("BUG: receive list not found for "
530 "dev %s, id %03X, mask %03X\n",
531 DNAME(dev), can_id, mask);
532 goto out;
533 }
534
535 rl = find_rcv_list(&can_id, &mask, d);
536
537 /*
538 * Search the receiver list for the item to delete. This should
539 * exist, since no receiver may be unregistered that hasn't
540 * been registered before.
541 */
542
543 hlist_for_each_entry_rcu(r, rl, list) {
544 if (r->can_id == can_id && r->mask == mask &&
545 r->func == func && r->data == data)
546 break;
547 }
548
549 /*
550 * Check for bugs in CAN protocol implementations using af_can.c:
551 * 'r' will be NULL if no matching list item was found for removal.
552 */
553
554 if (!r) {
555 WARN(1, "BUG: receive list entry not found for dev %s, "
556 "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
557 goto out;
558 }
559
560 hlist_del_rcu(&r->list);
561 d->entries--;
562
563 if (can_pstats.rcv_entries > 0)
564 can_pstats.rcv_entries--;
565
566 /* remove device structure requested by NETDEV_UNREGISTER */
567 if (d->remove_on_zero_entries && !d->entries) {
568 kfree(d);
569 dev->ml_priv = NULL;
570 }
571
572 out:
573 spin_unlock(&can_rcvlists_lock);
574
575 /* schedule the receiver item for deletion */
576 if (r)
577 call_rcu(&r->rcu, can_rx_delete_receiver);
578 }
579 EXPORT_SYMBOL(can_rx_unregister);
580
581 static inline void deliver(struct sk_buff *skb, struct receiver *r)
582 {
583 r->func(skb, r->data);
584 r->matches++;
585 }
586
587 static int can_rcv_filter(struct dev_rcv_lists *d, struct sk_buff *skb)
588 {
589 struct receiver *r;
590 int matches = 0;
591 struct can_frame *cf = (struct can_frame *)skb->data;
592 canid_t can_id = cf->can_id;
593
594 if (d->entries == 0)
595 return 0;
596
597 if (can_id & CAN_ERR_FLAG) {
598 /* check for error message frame entries only */
599 hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
600 if (can_id & r->mask) {
601 deliver(skb, r);
602 matches++;
603 }
604 }
605 return matches;
606 }
607
608 /* check for unfiltered entries */
609 hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
610 deliver(skb, r);
611 matches++;
612 }
613
614 /* check for can_id/mask entries */
615 hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
616 if ((can_id & r->mask) == r->can_id) {
617 deliver(skb, r);
618 matches++;
619 }
620 }
621
622 /* check for inverted can_id/mask entries */
623 hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
624 if ((can_id & r->mask) != r->can_id) {
625 deliver(skb, r);
626 matches++;
627 }
628 }
629
630 /* check filterlists for single non-RTR can_ids */
631 if (can_id & CAN_RTR_FLAG)
632 return matches;
633
634 if (can_id & CAN_EFF_FLAG) {
635 hlist_for_each_entry_rcu(r, &d->rx[RX_EFF], list) {
636 if (r->can_id == can_id) {
637 deliver(skb, r);
638 matches++;
639 }
640 }
641 } else {
642 can_id &= CAN_SFF_MASK;
643 hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
644 deliver(skb, r);
645 matches++;
646 }
647 }
648
649 return matches;
650 }
651
652 static void can_receive(struct sk_buff *skb, struct net_device *dev)
653 {
654 struct dev_rcv_lists *d;
655 int matches;
656
657 /* update statistics */
658 can_stats.rx_frames++;
659 can_stats.rx_frames_delta++;
660
661 rcu_read_lock();
662
663 /* deliver the packet to sockets listening on all devices */
664 matches = can_rcv_filter(&can_rx_alldev_list, skb);
665
666 /* find receive list for this device */
667 d = find_dev_rcv_lists(dev);
668 if (d)
669 matches += can_rcv_filter(d, skb);
670
671 rcu_read_unlock();
672
673 /* consume the skbuff allocated by the netdevice driver */
674 consume_skb(skb);
675
676 if (matches > 0) {
677 can_stats.matches++;
678 can_stats.matches_delta++;
679 }
680 }
681
682 static int can_rcv(struct sk_buff *skb, struct net_device *dev,
683 struct packet_type *pt, struct net_device *orig_dev)
684 {
685 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
686
687 if (unlikely(!net_eq(dev_net(dev), &init_net)))
688 goto drop;
689
690 if (WARN_ONCE(dev->type != ARPHRD_CAN ||
691 skb->len != CAN_MTU ||
692 cfd->len > CAN_MAX_DLEN,
693 "PF_CAN: dropped non conform CAN skbuf: "
694 "dev type %d, len %d, datalen %d\n",
695 dev->type, skb->len, cfd->len))
696 goto drop;
697
698 can_receive(skb, dev);
699 return NET_RX_SUCCESS;
700
701 drop:
702 kfree_skb(skb);
703 return NET_RX_DROP;
704 }
705
706 static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
707 struct packet_type *pt, struct net_device *orig_dev)
708 {
709 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
710
711 if (unlikely(!net_eq(dev_net(dev), &init_net)))
712 goto drop;
713
714 if (WARN_ONCE(dev->type != ARPHRD_CAN ||
715 skb->len != CANFD_MTU ||
716 cfd->len > CANFD_MAX_DLEN,
717 "PF_CAN: dropped non conform CAN FD skbuf: "
718 "dev type %d, len %d, datalen %d\n",
719 dev->type, skb->len, cfd->len))
720 goto drop;
721
722 can_receive(skb, dev);
723 return NET_RX_SUCCESS;
724
725 drop:
726 kfree_skb(skb);
727 return NET_RX_DROP;
728 }
729
730 /*
731 * af_can protocol functions
732 */
733
734 /**
735 * can_proto_register - register CAN transport protocol
736 * @cp: pointer to CAN protocol structure
737 *
738 * Return:
739 * 0 on success
740 * -EINVAL invalid (out of range) protocol number
741 * -EBUSY protocol already in use
742 * -ENOBUF if proto_register() fails
743 */
744 int can_proto_register(const struct can_proto *cp)
745 {
746 int proto = cp->protocol;
747 int err = 0;
748
749 if (proto < 0 || proto >= CAN_NPROTO) {
750 pr_err("can: protocol number %d out of range\n", proto);
751 return -EINVAL;
752 }
753
754 err = proto_register(cp->prot, 0);
755 if (err < 0)
756 return err;
757
758 mutex_lock(&proto_tab_lock);
759
760 if (proto_tab[proto]) {
761 pr_err("can: protocol %d already registered\n", proto);
762 err = -EBUSY;
763 } else
764 RCU_INIT_POINTER(proto_tab[proto], cp);
765
766 mutex_unlock(&proto_tab_lock);
767
768 if (err < 0)
769 proto_unregister(cp->prot);
770
771 return err;
772 }
773 EXPORT_SYMBOL(can_proto_register);
774
775 /**
776 * can_proto_unregister - unregister CAN transport protocol
777 * @cp: pointer to CAN protocol structure
778 */
779 void can_proto_unregister(const struct can_proto *cp)
780 {
781 int proto = cp->protocol;
782
783 mutex_lock(&proto_tab_lock);
784 BUG_ON(proto_tab[proto] != cp);
785 RCU_INIT_POINTER(proto_tab[proto], NULL);
786 mutex_unlock(&proto_tab_lock);
787
788 synchronize_rcu();
789
790 proto_unregister(cp->prot);
791 }
792 EXPORT_SYMBOL(can_proto_unregister);
793
794 /*
795 * af_can notifier to create/remove CAN netdevice specific structs
796 */
797 static int can_notifier(struct notifier_block *nb, unsigned long msg,
798 void *ptr)
799 {
800 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
801 struct dev_rcv_lists *d;
802
803 if (!net_eq(dev_net(dev), &init_net))
804 return NOTIFY_DONE;
805
806 if (dev->type != ARPHRD_CAN)
807 return NOTIFY_DONE;
808
809 switch (msg) {
810
811 case NETDEV_REGISTER:
812
813 /* create new dev_rcv_lists for this device */
814 d = kzalloc(sizeof(*d), GFP_KERNEL);
815 if (!d)
816 return NOTIFY_DONE;
817 BUG_ON(dev->ml_priv);
818 dev->ml_priv = d;
819
820 break;
821
822 case NETDEV_UNREGISTER:
823 spin_lock(&can_rcvlists_lock);
824
825 d = dev->ml_priv;
826 if (d) {
827 if (d->entries)
828 d->remove_on_zero_entries = 1;
829 else {
830 kfree(d);
831 dev->ml_priv = NULL;
832 }
833 } else
834 pr_err("can: notifier: receive list not found for dev "
835 "%s\n", dev->name);
836
837 spin_unlock(&can_rcvlists_lock);
838
839 break;
840 }
841
842 return NOTIFY_DONE;
843 }
844
845 /*
846 * af_can module init/exit functions
847 */
848
849 static struct packet_type can_packet __read_mostly = {
850 .type = cpu_to_be16(ETH_P_CAN),
851 .func = can_rcv,
852 };
853
854 static struct packet_type canfd_packet __read_mostly = {
855 .type = cpu_to_be16(ETH_P_CANFD),
856 .func = canfd_rcv,
857 };
858
859 static const struct net_proto_family can_family_ops = {
860 .family = PF_CAN,
861 .create = can_create,
862 .owner = THIS_MODULE,
863 };
864
865 /* notifier block for netdevice event */
866 static struct notifier_block can_netdev_notifier __read_mostly = {
867 .notifier_call = can_notifier,
868 };
869
870 static __init int can_init(void)
871 {
872 /* check for correct padding to be able to use the structs similarly */
873 BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
874 offsetof(struct canfd_frame, len) ||
875 offsetof(struct can_frame, data) !=
876 offsetof(struct canfd_frame, data));
877
878 printk(banner);
879
880 memset(&can_rx_alldev_list, 0, sizeof(can_rx_alldev_list));
881
882 rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
883 0, 0, NULL);
884 if (!rcv_cache)
885 return -ENOMEM;
886
887 if (stats_timer) {
888 /* the statistics are updated every second (timer triggered) */
889 setup_timer(&can_stattimer, can_stat_update, 0);
890 mod_timer(&can_stattimer, round_jiffies(jiffies + HZ));
891 } else
892 can_stattimer.function = NULL;
893
894 can_init_proc();
895
896 /* protocol register */
897 sock_register(&can_family_ops);
898 register_netdevice_notifier(&can_netdev_notifier);
899 dev_add_pack(&can_packet);
900 dev_add_pack(&canfd_packet);
901
902 return 0;
903 }
904
905 static __exit void can_exit(void)
906 {
907 struct net_device *dev;
908
909 if (stats_timer)
910 del_timer_sync(&can_stattimer);
911
912 can_remove_proc();
913
914 /* protocol unregister */
915 dev_remove_pack(&canfd_packet);
916 dev_remove_pack(&can_packet);
917 unregister_netdevice_notifier(&can_netdev_notifier);
918 sock_unregister(PF_CAN);
919
920 /* remove created dev_rcv_lists from still registered CAN devices */
921 rcu_read_lock();
922 for_each_netdev_rcu(&init_net, dev) {
923 if (dev->type == ARPHRD_CAN && dev->ml_priv) {
924
925 struct dev_rcv_lists *d = dev->ml_priv;
926
927 BUG_ON(d->entries);
928 kfree(d);
929 dev->ml_priv = NULL;
930 }
931 }
932 rcu_read_unlock();
933
934 rcu_barrier(); /* Wait for completion of call_rcu()'s */
935
936 kmem_cache_destroy(rcv_cache);
937 }
938
939 module_init(can_init);
940 module_exit(can_exit);