]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/can/isotp.c
can: isotp: set default value for N_As to 50 micro seconds
[mirror_ubuntu-jammy-kernel.git] / net / can / isotp.c
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* isotp.c - ISO 15765-2 CAN transport protocol for protocol family CAN
3 *
4 * This implementation does not provide ISO-TP specific return values to the
5 * userspace.
6 *
7 * - RX path timeout of data reception leads to -ETIMEDOUT
8 * - RX path SN mismatch leads to -EILSEQ
9 * - RX path data reception with wrong padding leads to -EBADMSG
10 * - TX path flowcontrol reception timeout leads to -ECOMM
11 * - TX path flowcontrol reception overflow leads to -EMSGSIZE
12 * - TX path flowcontrol reception with wrong layout/padding leads to -EBADMSG
13 * - when a transfer (tx) is on the run the next write() blocks until it's done
14 * - use CAN_ISOTP_WAIT_TX_DONE flag to block the caller until the PDU is sent
15 * - as we have static buffers the check whether the PDU fits into the buffer
16 * is done at FF reception time (no support for sending 'wait frames')
17 * - take care of the tx-queue-len as traffic shaping is still on the TODO list
18 *
19 * Copyright (c) 2020 Volkswagen Group Electronic Research
20 * All rights reserved.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the above copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. Neither the name of Volkswagen nor the names of its contributors
31 * may be used to endorse or promote products derived from this software
32 * without specific prior written permission.
33 *
34 * Alternatively, provided that this notice is retained in full, this
35 * software may be distributed under the terms of the GNU General
36 * Public License ("GPL") version 2, in which case the provisions of the
37 * GPL apply INSTEAD OF those given above.
38 *
39 * The provided data structures and external interfaces from this code
40 * are not restricted to be used by modules with a GPL compatible license.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
43 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
44 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
45 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
46 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
47 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
48 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
49 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
50 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
51 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
52 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
53 * DAMAGE.
54 */
55
56 #include <linux/module.h>
57 #include <linux/init.h>
58 #include <linux/interrupt.h>
59 #include <linux/spinlock.h>
60 #include <linux/hrtimer.h>
61 #include <linux/wait.h>
62 #include <linux/uio.h>
63 #include <linux/net.h>
64 #include <linux/netdevice.h>
65 #include <linux/socket.h>
66 #include <linux/if_arp.h>
67 #include <linux/skbuff.h>
68 #include <linux/can.h>
69 #include <linux/can/core.h>
70 #include <linux/can/skb.h>
71 #include <linux/can/isotp.h>
72 #include <linux/slab.h>
73 #include <net/sock.h>
74 #include <net/net_namespace.h>
75
76 MODULE_DESCRIPTION("PF_CAN isotp 15765-2:2016 protocol");
77 MODULE_LICENSE("Dual BSD/GPL");
78 MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
79 MODULE_ALIAS("can-proto-6");
80
81 #define ISOTP_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_addr.tp)
82
83 #define SINGLE_MASK(id) (((id) & CAN_EFF_FLAG) ? \
84 (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG) : \
85 (CAN_SFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG))
86
87 /* ISO 15765-2:2016 supports more than 4095 byte per ISO PDU as the FF_DL can
88 * take full 32 bit values (4 Gbyte). We would need some good concept to handle
89 * this between user space and kernel space. For now increase the static buffer
90 * to something about 8 kbyte to be able to test this new functionality.
91 */
92 #define MAX_MSG_LENGTH 8200
93
94 /* N_PCI type values in bits 7-4 of N_PCI bytes */
95 #define N_PCI_SF 0x00 /* single frame */
96 #define N_PCI_FF 0x10 /* first frame */
97 #define N_PCI_CF 0x20 /* consecutive frame */
98 #define N_PCI_FC 0x30 /* flow control */
99
100 #define N_PCI_SZ 1 /* size of the PCI byte #1 */
101 #define SF_PCI_SZ4 1 /* size of SingleFrame PCI including 4 bit SF_DL */
102 #define SF_PCI_SZ8 2 /* size of SingleFrame PCI including 8 bit SF_DL */
103 #define FF_PCI_SZ12 2 /* size of FirstFrame PCI including 12 bit FF_DL */
104 #define FF_PCI_SZ32 6 /* size of FirstFrame PCI including 32 bit FF_DL */
105 #define FC_CONTENT_SZ 3 /* flow control content size in byte (FS/BS/STmin) */
106
107 #define ISOTP_CHECK_PADDING (CAN_ISOTP_CHK_PAD_LEN | CAN_ISOTP_CHK_PAD_DATA)
108
109 /* Flow Status given in FC frame */
110 #define ISOTP_FC_CTS 0 /* clear to send */
111 #define ISOTP_FC_WT 1 /* wait */
112 #define ISOTP_FC_OVFLW 2 /* overflow */
113
114 enum {
115 ISOTP_IDLE = 0,
116 ISOTP_WAIT_FIRST_FC,
117 ISOTP_WAIT_FC,
118 ISOTP_WAIT_DATA,
119 ISOTP_SENDING
120 };
121
122 struct tpcon {
123 unsigned int idx;
124 unsigned int len;
125 u32 state;
126 u8 bs;
127 u8 sn;
128 u8 ll_dl;
129 u8 buf[MAX_MSG_LENGTH + 1];
130 };
131
132 struct isotp_sock {
133 struct sock sk;
134 int bound;
135 int ifindex;
136 canid_t txid;
137 canid_t rxid;
138 ktime_t tx_gap;
139 ktime_t lastrxcf_tstamp;
140 struct hrtimer rxtimer, txtimer;
141 struct can_isotp_options opt;
142 struct can_isotp_fc_options rxfc, txfc;
143 struct can_isotp_ll_options ll;
144 u32 frame_txtime;
145 u32 force_tx_stmin;
146 u32 force_rx_stmin;
147 struct tpcon rx, tx;
148 struct list_head notifier;
149 wait_queue_head_t wait;
150 spinlock_t rx_lock; /* protect single thread state machine */
151 };
152
153 static LIST_HEAD(isotp_notifier_list);
154 static DEFINE_SPINLOCK(isotp_notifier_lock);
155 static struct isotp_sock *isotp_busy_notifier;
156
157 static inline struct isotp_sock *isotp_sk(const struct sock *sk)
158 {
159 return (struct isotp_sock *)sk;
160 }
161
162 static enum hrtimer_restart isotp_rx_timer_handler(struct hrtimer *hrtimer)
163 {
164 struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
165 rxtimer);
166 struct sock *sk = &so->sk;
167
168 if (so->rx.state == ISOTP_WAIT_DATA) {
169 /* we did not get new data frames in time */
170
171 /* report 'connection timed out' */
172 sk->sk_err = ETIMEDOUT;
173 if (!sock_flag(sk, SOCK_DEAD))
174 sk_error_report(sk);
175
176 /* reset rx state */
177 so->rx.state = ISOTP_IDLE;
178 }
179
180 return HRTIMER_NORESTART;
181 }
182
183 static int isotp_send_fc(struct sock *sk, int ae, u8 flowstatus)
184 {
185 struct net_device *dev;
186 struct sk_buff *nskb;
187 struct canfd_frame *ncf;
188 struct isotp_sock *so = isotp_sk(sk);
189 int can_send_ret;
190
191 nskb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), gfp_any());
192 if (!nskb)
193 return 1;
194
195 dev = dev_get_by_index(sock_net(sk), so->ifindex);
196 if (!dev) {
197 kfree_skb(nskb);
198 return 1;
199 }
200
201 can_skb_reserve(nskb);
202 can_skb_prv(nskb)->ifindex = dev->ifindex;
203 can_skb_prv(nskb)->skbcnt = 0;
204
205 nskb->dev = dev;
206 can_skb_set_owner(nskb, sk);
207 ncf = (struct canfd_frame *)nskb->data;
208 skb_put_zero(nskb, so->ll.mtu);
209
210 /* create & send flow control reply */
211 ncf->can_id = so->txid;
212
213 if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
214 memset(ncf->data, so->opt.txpad_content, CAN_MAX_DLEN);
215 ncf->len = CAN_MAX_DLEN;
216 } else {
217 ncf->len = ae + FC_CONTENT_SZ;
218 }
219
220 ncf->data[ae] = N_PCI_FC | flowstatus;
221 ncf->data[ae + 1] = so->rxfc.bs;
222 ncf->data[ae + 2] = so->rxfc.stmin;
223
224 if (ae)
225 ncf->data[0] = so->opt.ext_address;
226
227 ncf->flags = so->ll.tx_flags;
228
229 can_send_ret = can_send(nskb, 1);
230 if (can_send_ret)
231 pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
232 __func__, ERR_PTR(can_send_ret));
233
234 dev_put(dev);
235
236 /* reset blocksize counter */
237 so->rx.bs = 0;
238
239 /* reset last CF frame rx timestamp for rx stmin enforcement */
240 so->lastrxcf_tstamp = ktime_set(0, 0);
241
242 /* start rx timeout watchdog */
243 hrtimer_start(&so->rxtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
244 return 0;
245 }
246
247 static void isotp_rcv_skb(struct sk_buff *skb, struct sock *sk)
248 {
249 struct sockaddr_can *addr = (struct sockaddr_can *)skb->cb;
250
251 BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can));
252
253 memset(addr, 0, sizeof(*addr));
254 addr->can_family = AF_CAN;
255 addr->can_ifindex = skb->dev->ifindex;
256
257 if (sock_queue_rcv_skb(sk, skb) < 0)
258 kfree_skb(skb);
259 }
260
261 static u8 padlen(u8 datalen)
262 {
263 static const u8 plen[] = {
264 8, 8, 8, 8, 8, 8, 8, 8, 8, /* 0 - 8 */
265 12, 12, 12, 12, /* 9 - 12 */
266 16, 16, 16, 16, /* 13 - 16 */
267 20, 20, 20, 20, /* 17 - 20 */
268 24, 24, 24, 24, /* 21 - 24 */
269 32, 32, 32, 32, 32, 32, 32, 32, /* 25 - 32 */
270 48, 48, 48, 48, 48, 48, 48, 48, /* 33 - 40 */
271 48, 48, 48, 48, 48, 48, 48, 48 /* 41 - 48 */
272 };
273
274 if (datalen > 48)
275 return 64;
276
277 return plen[datalen];
278 }
279
280 /* check for length optimization and return 1/true when the check fails */
281 static int check_optimized(struct canfd_frame *cf, int start_index)
282 {
283 /* for CAN_DL <= 8 the start_index is equal to the CAN_DL as the
284 * padding would start at this point. E.g. if the padding would
285 * start at cf.data[7] cf->len has to be 7 to be optimal.
286 * Note: The data[] index starts with zero.
287 */
288 if (cf->len <= CAN_MAX_DLEN)
289 return (cf->len != start_index);
290
291 /* This relation is also valid in the non-linear DLC range, where
292 * we need to take care of the minimal next possible CAN_DL.
293 * The correct check would be (padlen(cf->len) != padlen(start_index)).
294 * But as cf->len can only take discrete values from 12, .., 64 at this
295 * point the padlen(cf->len) is always equal to cf->len.
296 */
297 return (cf->len != padlen(start_index));
298 }
299
300 /* check padding and return 1/true when the check fails */
301 static int check_pad(struct isotp_sock *so, struct canfd_frame *cf,
302 int start_index, u8 content)
303 {
304 int i;
305
306 /* no RX_PADDING value => check length of optimized frame length */
307 if (!(so->opt.flags & CAN_ISOTP_RX_PADDING)) {
308 if (so->opt.flags & CAN_ISOTP_CHK_PAD_LEN)
309 return check_optimized(cf, start_index);
310
311 /* no valid test against empty value => ignore frame */
312 return 1;
313 }
314
315 /* check datalength of correctly padded CAN frame */
316 if ((so->opt.flags & CAN_ISOTP_CHK_PAD_LEN) &&
317 cf->len != padlen(cf->len))
318 return 1;
319
320 /* check padding content */
321 if (so->opt.flags & CAN_ISOTP_CHK_PAD_DATA) {
322 for (i = start_index; i < cf->len; i++)
323 if (cf->data[i] != content)
324 return 1;
325 }
326 return 0;
327 }
328
329 static int isotp_rcv_fc(struct isotp_sock *so, struct canfd_frame *cf, int ae)
330 {
331 struct sock *sk = &so->sk;
332
333 if (so->tx.state != ISOTP_WAIT_FC &&
334 so->tx.state != ISOTP_WAIT_FIRST_FC)
335 return 0;
336
337 hrtimer_cancel(&so->txtimer);
338
339 if ((cf->len < ae + FC_CONTENT_SZ) ||
340 ((so->opt.flags & ISOTP_CHECK_PADDING) &&
341 check_pad(so, cf, ae + FC_CONTENT_SZ, so->opt.rxpad_content))) {
342 /* malformed PDU - report 'not a data message' */
343 sk->sk_err = EBADMSG;
344 if (!sock_flag(sk, SOCK_DEAD))
345 sk_error_report(sk);
346
347 so->tx.state = ISOTP_IDLE;
348 wake_up_interruptible(&so->wait);
349 return 1;
350 }
351
352 /* get communication parameters only from the first FC frame */
353 if (so->tx.state == ISOTP_WAIT_FIRST_FC) {
354 so->txfc.bs = cf->data[ae + 1];
355 so->txfc.stmin = cf->data[ae + 2];
356
357 /* fix wrong STmin values according spec */
358 if (so->txfc.stmin > 0x7F &&
359 (so->txfc.stmin < 0xF1 || so->txfc.stmin > 0xF9))
360 so->txfc.stmin = 0x7F;
361
362 so->tx_gap = ktime_set(0, 0);
363 /* add transmission time for CAN frame N_As */
364 so->tx_gap = ktime_add_ns(so->tx_gap, so->frame_txtime);
365 /* add waiting time for consecutive frames N_Cs */
366 if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
367 so->tx_gap = ktime_add_ns(so->tx_gap,
368 so->force_tx_stmin);
369 else if (so->txfc.stmin < 0x80)
370 so->tx_gap = ktime_add_ns(so->tx_gap,
371 so->txfc.stmin * 1000000);
372 else
373 so->tx_gap = ktime_add_ns(so->tx_gap,
374 (so->txfc.stmin - 0xF0)
375 * 100000);
376 so->tx.state = ISOTP_WAIT_FC;
377 }
378
379 switch (cf->data[ae] & 0x0F) {
380 case ISOTP_FC_CTS:
381 so->tx.bs = 0;
382 so->tx.state = ISOTP_SENDING;
383 /* start cyclic timer for sending CF frame */
384 hrtimer_start(&so->txtimer, so->tx_gap,
385 HRTIMER_MODE_REL_SOFT);
386 break;
387
388 case ISOTP_FC_WT:
389 /* start timer to wait for next FC frame */
390 hrtimer_start(&so->txtimer, ktime_set(1, 0),
391 HRTIMER_MODE_REL_SOFT);
392 break;
393
394 case ISOTP_FC_OVFLW:
395 /* overflow on receiver side - report 'message too long' */
396 sk->sk_err = EMSGSIZE;
397 if (!sock_flag(sk, SOCK_DEAD))
398 sk_error_report(sk);
399 fallthrough;
400
401 default:
402 /* stop this tx job */
403 so->tx.state = ISOTP_IDLE;
404 wake_up_interruptible(&so->wait);
405 }
406 return 0;
407 }
408
409 static int isotp_rcv_sf(struct sock *sk, struct canfd_frame *cf, int pcilen,
410 struct sk_buff *skb, int len)
411 {
412 struct isotp_sock *so = isotp_sk(sk);
413 struct sk_buff *nskb;
414
415 hrtimer_cancel(&so->rxtimer);
416 so->rx.state = ISOTP_IDLE;
417
418 if (!len || len > cf->len - pcilen)
419 return 1;
420
421 if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
422 check_pad(so, cf, pcilen + len, so->opt.rxpad_content)) {
423 /* malformed PDU - report 'not a data message' */
424 sk->sk_err = EBADMSG;
425 if (!sock_flag(sk, SOCK_DEAD))
426 sk_error_report(sk);
427 return 1;
428 }
429
430 nskb = alloc_skb(len, gfp_any());
431 if (!nskb)
432 return 1;
433
434 memcpy(skb_put(nskb, len), &cf->data[pcilen], len);
435
436 nskb->tstamp = skb->tstamp;
437 nskb->dev = skb->dev;
438 isotp_rcv_skb(nskb, sk);
439 return 0;
440 }
441
442 static int isotp_rcv_ff(struct sock *sk, struct canfd_frame *cf, int ae)
443 {
444 struct isotp_sock *so = isotp_sk(sk);
445 int i;
446 int off;
447 int ff_pci_sz;
448
449 hrtimer_cancel(&so->rxtimer);
450 so->rx.state = ISOTP_IDLE;
451
452 /* get the used sender LL_DL from the (first) CAN frame data length */
453 so->rx.ll_dl = padlen(cf->len);
454
455 /* the first frame has to use the entire frame up to LL_DL length */
456 if (cf->len != so->rx.ll_dl)
457 return 1;
458
459 /* get the FF_DL */
460 so->rx.len = (cf->data[ae] & 0x0F) << 8;
461 so->rx.len += cf->data[ae + 1];
462
463 /* Check for FF_DL escape sequence supporting 32 bit PDU length */
464 if (so->rx.len) {
465 ff_pci_sz = FF_PCI_SZ12;
466 } else {
467 /* FF_DL = 0 => get real length from next 4 bytes */
468 so->rx.len = cf->data[ae + 2] << 24;
469 so->rx.len += cf->data[ae + 3] << 16;
470 so->rx.len += cf->data[ae + 4] << 8;
471 so->rx.len += cf->data[ae + 5];
472 ff_pci_sz = FF_PCI_SZ32;
473 }
474
475 /* take care of a potential SF_DL ESC offset for TX_DL > 8 */
476 off = (so->rx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
477
478 if (so->rx.len + ae + off + ff_pci_sz < so->rx.ll_dl)
479 return 1;
480
481 if (so->rx.len > MAX_MSG_LENGTH) {
482 /* send FC frame with overflow status */
483 isotp_send_fc(sk, ae, ISOTP_FC_OVFLW);
484 return 1;
485 }
486
487 /* copy the first received data bytes */
488 so->rx.idx = 0;
489 for (i = ae + ff_pci_sz; i < so->rx.ll_dl; i++)
490 so->rx.buf[so->rx.idx++] = cf->data[i];
491
492 /* initial setup for this pdu reception */
493 so->rx.sn = 1;
494 so->rx.state = ISOTP_WAIT_DATA;
495
496 /* no creation of flow control frames */
497 if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
498 return 0;
499
500 /* send our first FC frame */
501 isotp_send_fc(sk, ae, ISOTP_FC_CTS);
502 return 0;
503 }
504
505 static int isotp_rcv_cf(struct sock *sk, struct canfd_frame *cf, int ae,
506 struct sk_buff *skb)
507 {
508 struct isotp_sock *so = isotp_sk(sk);
509 struct sk_buff *nskb;
510 int i;
511
512 if (so->rx.state != ISOTP_WAIT_DATA)
513 return 0;
514
515 /* drop if timestamp gap is less than force_rx_stmin nano secs */
516 if (so->opt.flags & CAN_ISOTP_FORCE_RXSTMIN) {
517 if (ktime_to_ns(ktime_sub(skb->tstamp, so->lastrxcf_tstamp)) <
518 so->force_rx_stmin)
519 return 0;
520
521 so->lastrxcf_tstamp = skb->tstamp;
522 }
523
524 hrtimer_cancel(&so->rxtimer);
525
526 /* CFs are never longer than the FF */
527 if (cf->len > so->rx.ll_dl)
528 return 1;
529
530 /* CFs have usually the LL_DL length */
531 if (cf->len < so->rx.ll_dl) {
532 /* this is only allowed for the last CF */
533 if (so->rx.len - so->rx.idx > so->rx.ll_dl - ae - N_PCI_SZ)
534 return 1;
535 }
536
537 if ((cf->data[ae] & 0x0F) != so->rx.sn) {
538 /* wrong sn detected - report 'illegal byte sequence' */
539 sk->sk_err = EILSEQ;
540 if (!sock_flag(sk, SOCK_DEAD))
541 sk_error_report(sk);
542
543 /* reset rx state */
544 so->rx.state = ISOTP_IDLE;
545 return 1;
546 }
547 so->rx.sn++;
548 so->rx.sn %= 16;
549
550 for (i = ae + N_PCI_SZ; i < cf->len; i++) {
551 so->rx.buf[so->rx.idx++] = cf->data[i];
552 if (so->rx.idx >= so->rx.len)
553 break;
554 }
555
556 if (so->rx.idx >= so->rx.len) {
557 /* we are done */
558 so->rx.state = ISOTP_IDLE;
559
560 if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
561 check_pad(so, cf, i + 1, so->opt.rxpad_content)) {
562 /* malformed PDU - report 'not a data message' */
563 sk->sk_err = EBADMSG;
564 if (!sock_flag(sk, SOCK_DEAD))
565 sk_error_report(sk);
566 return 1;
567 }
568
569 nskb = alloc_skb(so->rx.len, gfp_any());
570 if (!nskb)
571 return 1;
572
573 memcpy(skb_put(nskb, so->rx.len), so->rx.buf,
574 so->rx.len);
575
576 nskb->tstamp = skb->tstamp;
577 nskb->dev = skb->dev;
578 isotp_rcv_skb(nskb, sk);
579 return 0;
580 }
581
582 /* perform blocksize handling, if enabled */
583 if (!so->rxfc.bs || ++so->rx.bs < so->rxfc.bs) {
584 /* start rx timeout watchdog */
585 hrtimer_start(&so->rxtimer, ktime_set(1, 0),
586 HRTIMER_MODE_REL_SOFT);
587 return 0;
588 }
589
590 /* no creation of flow control frames */
591 if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
592 return 0;
593
594 /* we reached the specified blocksize so->rxfc.bs */
595 isotp_send_fc(sk, ae, ISOTP_FC_CTS);
596 return 0;
597 }
598
599 static void isotp_rcv(struct sk_buff *skb, void *data)
600 {
601 struct sock *sk = (struct sock *)data;
602 struct isotp_sock *so = isotp_sk(sk);
603 struct canfd_frame *cf;
604 int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
605 u8 n_pci_type, sf_dl;
606
607 /* Strictly receive only frames with the configured MTU size
608 * => clear separation of CAN2.0 / CAN FD transport channels
609 */
610 if (skb->len != so->ll.mtu)
611 return;
612
613 cf = (struct canfd_frame *)skb->data;
614
615 /* if enabled: check reception of my configured extended address */
616 if (ae && cf->data[0] != so->opt.rx_ext_address)
617 return;
618
619 n_pci_type = cf->data[ae] & 0xF0;
620
621 /* Make sure the state changes and data structures stay consistent at
622 * CAN frame reception time. This locking is not needed in real world
623 * use cases but the inconsistency can be triggered with syzkaller.
624 */
625 spin_lock(&so->rx_lock);
626
627 if (so->opt.flags & CAN_ISOTP_HALF_DUPLEX) {
628 /* check rx/tx path half duplex expectations */
629 if ((so->tx.state != ISOTP_IDLE && n_pci_type != N_PCI_FC) ||
630 (so->rx.state != ISOTP_IDLE && n_pci_type == N_PCI_FC))
631 goto out_unlock;
632 }
633
634 switch (n_pci_type) {
635 case N_PCI_FC:
636 /* tx path: flow control frame containing the FC parameters */
637 isotp_rcv_fc(so, cf, ae);
638 break;
639
640 case N_PCI_SF:
641 /* rx path: single frame
642 *
643 * As we do not have a rx.ll_dl configuration, we can only test
644 * if the CAN frames payload length matches the LL_DL == 8
645 * requirements - no matter if it's CAN 2.0 or CAN FD
646 */
647
648 /* get the SF_DL from the N_PCI byte */
649 sf_dl = cf->data[ae] & 0x0F;
650
651 if (cf->len <= CAN_MAX_DLEN) {
652 isotp_rcv_sf(sk, cf, SF_PCI_SZ4 + ae, skb, sf_dl);
653 } else {
654 if (skb->len == CANFD_MTU) {
655 /* We have a CAN FD frame and CAN_DL is greater than 8:
656 * Only frames with the SF_DL == 0 ESC value are valid.
657 *
658 * If so take care of the increased SF PCI size
659 * (SF_PCI_SZ8) to point to the message content behind
660 * the extended SF PCI info and get the real SF_DL
661 * length value from the formerly first data byte.
662 */
663 if (sf_dl == 0)
664 isotp_rcv_sf(sk, cf, SF_PCI_SZ8 + ae, skb,
665 cf->data[SF_PCI_SZ4 + ae]);
666 }
667 }
668 break;
669
670 case N_PCI_FF:
671 /* rx path: first frame */
672 isotp_rcv_ff(sk, cf, ae);
673 break;
674
675 case N_PCI_CF:
676 /* rx path: consecutive frame */
677 isotp_rcv_cf(sk, cf, ae, skb);
678 break;
679 }
680
681 out_unlock:
682 spin_unlock(&so->rx_lock);
683 }
684
685 static void isotp_fill_dataframe(struct canfd_frame *cf, struct isotp_sock *so,
686 int ae, int off)
687 {
688 int pcilen = N_PCI_SZ + ae + off;
689 int space = so->tx.ll_dl - pcilen;
690 int num = min_t(int, so->tx.len - so->tx.idx, space);
691 int i;
692
693 cf->can_id = so->txid;
694 cf->len = num + pcilen;
695
696 if (num < space) {
697 if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
698 /* user requested padding */
699 cf->len = padlen(cf->len);
700 memset(cf->data, so->opt.txpad_content, cf->len);
701 } else if (cf->len > CAN_MAX_DLEN) {
702 /* mandatory padding for CAN FD frames */
703 cf->len = padlen(cf->len);
704 memset(cf->data, CAN_ISOTP_DEFAULT_PAD_CONTENT,
705 cf->len);
706 }
707 }
708
709 for (i = 0; i < num; i++)
710 cf->data[pcilen + i] = so->tx.buf[so->tx.idx++];
711
712 if (ae)
713 cf->data[0] = so->opt.ext_address;
714 }
715
716 static void isotp_create_fframe(struct canfd_frame *cf, struct isotp_sock *so,
717 int ae)
718 {
719 int i;
720 int ff_pci_sz;
721
722 cf->can_id = so->txid;
723 cf->len = so->tx.ll_dl;
724 if (ae)
725 cf->data[0] = so->opt.ext_address;
726
727 /* create N_PCI bytes with 12/32 bit FF_DL data length */
728 if (so->tx.len > 4095) {
729 /* use 32 bit FF_DL notation */
730 cf->data[ae] = N_PCI_FF;
731 cf->data[ae + 1] = 0;
732 cf->data[ae + 2] = (u8)(so->tx.len >> 24) & 0xFFU;
733 cf->data[ae + 3] = (u8)(so->tx.len >> 16) & 0xFFU;
734 cf->data[ae + 4] = (u8)(so->tx.len >> 8) & 0xFFU;
735 cf->data[ae + 5] = (u8)so->tx.len & 0xFFU;
736 ff_pci_sz = FF_PCI_SZ32;
737 } else {
738 /* use 12 bit FF_DL notation */
739 cf->data[ae] = (u8)(so->tx.len >> 8) | N_PCI_FF;
740 cf->data[ae + 1] = (u8)so->tx.len & 0xFFU;
741 ff_pci_sz = FF_PCI_SZ12;
742 }
743
744 /* add first data bytes depending on ae */
745 for (i = ae + ff_pci_sz; i < so->tx.ll_dl; i++)
746 cf->data[i] = so->tx.buf[so->tx.idx++];
747
748 so->tx.sn = 1;
749 so->tx.state = ISOTP_WAIT_FIRST_FC;
750 }
751
752 static enum hrtimer_restart isotp_tx_timer_handler(struct hrtimer *hrtimer)
753 {
754 struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
755 txtimer);
756 struct sock *sk = &so->sk;
757 struct sk_buff *skb;
758 struct net_device *dev;
759 struct canfd_frame *cf;
760 enum hrtimer_restart restart = HRTIMER_NORESTART;
761 int can_send_ret;
762 int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
763
764 switch (so->tx.state) {
765 case ISOTP_WAIT_FC:
766 case ISOTP_WAIT_FIRST_FC:
767
768 /* we did not get any flow control frame in time */
769
770 /* report 'communication error on send' */
771 sk->sk_err = ECOMM;
772 if (!sock_flag(sk, SOCK_DEAD))
773 sk_error_report(sk);
774
775 /* reset tx state */
776 so->tx.state = ISOTP_IDLE;
777 wake_up_interruptible(&so->wait);
778 break;
779
780 case ISOTP_SENDING:
781
782 /* push out the next segmented pdu */
783 dev = dev_get_by_index(sock_net(sk), so->ifindex);
784 if (!dev)
785 break;
786
787 isotp_tx_burst:
788 skb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv),
789 GFP_ATOMIC);
790 if (!skb) {
791 dev_put(dev);
792 break;
793 }
794
795 can_skb_reserve(skb);
796 can_skb_prv(skb)->ifindex = dev->ifindex;
797 can_skb_prv(skb)->skbcnt = 0;
798
799 cf = (struct canfd_frame *)skb->data;
800 skb_put_zero(skb, so->ll.mtu);
801
802 /* create consecutive frame */
803 isotp_fill_dataframe(cf, so, ae, 0);
804
805 /* place consecutive frame N_PCI in appropriate index */
806 cf->data[ae] = N_PCI_CF | so->tx.sn++;
807 so->tx.sn %= 16;
808 so->tx.bs++;
809
810 cf->flags = so->ll.tx_flags;
811
812 skb->dev = dev;
813 can_skb_set_owner(skb, sk);
814
815 can_send_ret = can_send(skb, 1);
816 if (can_send_ret) {
817 pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
818 __func__, ERR_PTR(can_send_ret));
819 if (can_send_ret == -ENOBUFS)
820 pr_notice_once("can-isotp: tx queue is full, increasing txqueuelen may prevent this error\n");
821 }
822 if (so->tx.idx >= so->tx.len) {
823 /* we are done */
824 so->tx.state = ISOTP_IDLE;
825 dev_put(dev);
826 wake_up_interruptible(&so->wait);
827 break;
828 }
829
830 if (so->txfc.bs && so->tx.bs >= so->txfc.bs) {
831 /* stop and wait for FC */
832 so->tx.state = ISOTP_WAIT_FC;
833 dev_put(dev);
834 hrtimer_set_expires(&so->txtimer,
835 ktime_add(ktime_get(),
836 ktime_set(1, 0)));
837 restart = HRTIMER_RESTART;
838 break;
839 }
840
841 /* no gap between data frames needed => use burst mode */
842 if (!so->tx_gap)
843 goto isotp_tx_burst;
844
845 /* start timer to send next data frame with correct delay */
846 dev_put(dev);
847 hrtimer_set_expires(&so->txtimer,
848 ktime_add(ktime_get(), so->tx_gap));
849 restart = HRTIMER_RESTART;
850 break;
851
852 default:
853 WARN_ON_ONCE(1);
854 }
855
856 return restart;
857 }
858
859 static int isotp_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
860 {
861 struct sock *sk = sock->sk;
862 struct isotp_sock *so = isotp_sk(sk);
863 u32 old_state = so->tx.state;
864 struct sk_buff *skb;
865 struct net_device *dev;
866 struct canfd_frame *cf;
867 int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
868 int wait_tx_done = (so->opt.flags & CAN_ISOTP_WAIT_TX_DONE) ? 1 : 0;
869 int off;
870 int err;
871
872 if (!so->bound)
873 return -EADDRNOTAVAIL;
874
875 /* we do not support multiple buffers - for now */
876 if (cmpxchg(&so->tx.state, ISOTP_IDLE, ISOTP_SENDING) != ISOTP_IDLE ||
877 wq_has_sleeper(&so->wait)) {
878 if (msg->msg_flags & MSG_DONTWAIT) {
879 err = -EAGAIN;
880 goto err_out;
881 }
882
883 /* wait for complete transmission of current pdu */
884 err = wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
885 if (err)
886 goto err_out;
887 }
888
889 if (!size || size > MAX_MSG_LENGTH) {
890 err = -EINVAL;
891 goto err_out_drop;
892 }
893
894 /* take care of a potential SF_DL ESC offset for TX_DL > 8 */
895 off = (so->tx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
896
897 /* does the given data fit into a single frame for SF_BROADCAST? */
898 if ((so->opt.flags & CAN_ISOTP_SF_BROADCAST) &&
899 (size > so->tx.ll_dl - SF_PCI_SZ4 - ae - off)) {
900 err = -EINVAL;
901 goto err_out_drop;
902 }
903
904 err = memcpy_from_msg(so->tx.buf, msg, size);
905 if (err < 0)
906 goto err_out_drop;
907
908 dev = dev_get_by_index(sock_net(sk), so->ifindex);
909 if (!dev) {
910 err = -ENXIO;
911 goto err_out_drop;
912 }
913
914 skb = sock_alloc_send_skb(sk, so->ll.mtu + sizeof(struct can_skb_priv),
915 msg->msg_flags & MSG_DONTWAIT, &err);
916 if (!skb) {
917 dev_put(dev);
918 goto err_out_drop;
919 }
920
921 can_skb_reserve(skb);
922 can_skb_prv(skb)->ifindex = dev->ifindex;
923 can_skb_prv(skb)->skbcnt = 0;
924
925 so->tx.len = size;
926 so->tx.idx = 0;
927
928 cf = (struct canfd_frame *)skb->data;
929 skb_put_zero(skb, so->ll.mtu);
930
931 /* check for single frame transmission depending on TX_DL */
932 if (size <= so->tx.ll_dl - SF_PCI_SZ4 - ae - off) {
933 /* The message size generally fits into a SingleFrame - good.
934 *
935 * SF_DL ESC offset optimization:
936 *
937 * When TX_DL is greater 8 but the message would still fit
938 * into a 8 byte CAN frame, we can omit the offset.
939 * This prevents a protocol caused length extension from
940 * CAN_DL = 8 to CAN_DL = 12 due to the SF_SL ESC handling.
941 */
942 if (size <= CAN_MAX_DLEN - SF_PCI_SZ4 - ae)
943 off = 0;
944
945 isotp_fill_dataframe(cf, so, ae, off);
946
947 /* place single frame N_PCI w/o length in appropriate index */
948 cf->data[ae] = N_PCI_SF;
949
950 /* place SF_DL size value depending on the SF_DL ESC offset */
951 if (off)
952 cf->data[SF_PCI_SZ4 + ae] = size;
953 else
954 cf->data[ae] |= size;
955
956 so->tx.state = ISOTP_IDLE;
957 wake_up_interruptible(&so->wait);
958
959 /* don't enable wait queue for a single frame transmission */
960 wait_tx_done = 0;
961 } else {
962 /* send first frame and wait for FC */
963
964 isotp_create_fframe(cf, so, ae);
965
966 /* start timeout for FC */
967 hrtimer_start(&so->txtimer, ktime_set(1, 0), HRTIMER_MODE_REL_SOFT);
968 }
969
970 /* send the first or only CAN frame */
971 cf->flags = so->ll.tx_flags;
972
973 skb->dev = dev;
974 skb->sk = sk;
975 err = can_send(skb, 1);
976 dev_put(dev);
977 if (err) {
978 pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
979 __func__, ERR_PTR(err));
980 goto err_out_drop;
981 }
982
983 if (wait_tx_done) {
984 /* wait for complete transmission of current pdu */
985 wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
986
987 if (sk->sk_err)
988 return -sk->sk_err;
989 }
990
991 return size;
992
993 err_out_drop:
994 /* drop this PDU and unlock a potential wait queue */
995 old_state = ISOTP_IDLE;
996 err_out:
997 so->tx.state = old_state;
998 if (so->tx.state == ISOTP_IDLE)
999 wake_up_interruptible(&so->wait);
1000
1001 return err;
1002 }
1003
1004 static int isotp_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1005 int flags)
1006 {
1007 struct sock *sk = sock->sk;
1008 struct sk_buff *skb;
1009 struct isotp_sock *so = isotp_sk(sk);
1010 int noblock = flags & MSG_DONTWAIT;
1011 int ret = 0;
1012
1013 if (flags & ~(MSG_DONTWAIT | MSG_TRUNC | MSG_PEEK))
1014 return -EINVAL;
1015
1016 if (!so->bound)
1017 return -EADDRNOTAVAIL;
1018
1019 flags &= ~MSG_DONTWAIT;
1020 skb = skb_recv_datagram(sk, flags, noblock, &ret);
1021 if (!skb)
1022 return ret;
1023
1024 if (size < skb->len)
1025 msg->msg_flags |= MSG_TRUNC;
1026 else
1027 size = skb->len;
1028
1029 ret = memcpy_to_msg(msg, skb->data, size);
1030 if (ret < 0)
1031 goto out_err;
1032
1033 sock_recv_timestamp(msg, sk, skb);
1034
1035 if (msg->msg_name) {
1036 __sockaddr_check_size(ISOTP_MIN_NAMELEN);
1037 msg->msg_namelen = ISOTP_MIN_NAMELEN;
1038 memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
1039 }
1040
1041 /* set length of return value */
1042 ret = (flags & MSG_TRUNC) ? skb->len : size;
1043
1044 out_err:
1045 skb_free_datagram(sk, skb);
1046
1047 return ret;
1048 }
1049
1050 static int isotp_release(struct socket *sock)
1051 {
1052 struct sock *sk = sock->sk;
1053 struct isotp_sock *so;
1054 struct net *net;
1055
1056 if (!sk)
1057 return 0;
1058
1059 so = isotp_sk(sk);
1060 net = sock_net(sk);
1061
1062 /* wait for complete transmission of current pdu */
1063 wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1064
1065 spin_lock(&isotp_notifier_lock);
1066 while (isotp_busy_notifier == so) {
1067 spin_unlock(&isotp_notifier_lock);
1068 schedule_timeout_uninterruptible(1);
1069 spin_lock(&isotp_notifier_lock);
1070 }
1071 list_del(&so->notifier);
1072 spin_unlock(&isotp_notifier_lock);
1073
1074 lock_sock(sk);
1075
1076 /* remove current filters & unregister */
1077 if (so->bound && (!(so->opt.flags & CAN_ISOTP_SF_BROADCAST))) {
1078 if (so->ifindex) {
1079 struct net_device *dev;
1080
1081 dev = dev_get_by_index(net, so->ifindex);
1082 if (dev) {
1083 can_rx_unregister(net, dev, so->rxid,
1084 SINGLE_MASK(so->rxid),
1085 isotp_rcv, sk);
1086 dev_put(dev);
1087 synchronize_rcu();
1088 }
1089 }
1090 }
1091
1092 hrtimer_cancel(&so->txtimer);
1093 hrtimer_cancel(&so->rxtimer);
1094
1095 so->ifindex = 0;
1096 so->bound = 0;
1097
1098 sock_orphan(sk);
1099 sock->sk = NULL;
1100
1101 release_sock(sk);
1102 sock_put(sk);
1103
1104 return 0;
1105 }
1106
1107 static int isotp_bind(struct socket *sock, struct sockaddr *uaddr, int len)
1108 {
1109 struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1110 struct sock *sk = sock->sk;
1111 struct isotp_sock *so = isotp_sk(sk);
1112 struct net *net = sock_net(sk);
1113 int ifindex;
1114 struct net_device *dev;
1115 canid_t tx_id, rx_id;
1116 int err = 0;
1117 int notify_enetdown = 0;
1118 int do_rx_reg = 1;
1119
1120 if (len < ISOTP_MIN_NAMELEN)
1121 return -EINVAL;
1122
1123 /* sanitize tx/rx CAN identifiers */
1124 tx_id = addr->can_addr.tp.tx_id;
1125 if (tx_id & CAN_EFF_FLAG)
1126 tx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1127 else
1128 tx_id &= CAN_SFF_MASK;
1129
1130 rx_id = addr->can_addr.tp.rx_id;
1131 if (rx_id & CAN_EFF_FLAG)
1132 rx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1133 else
1134 rx_id &= CAN_SFF_MASK;
1135
1136 if (!addr->can_ifindex)
1137 return -ENODEV;
1138
1139 lock_sock(sk);
1140
1141 /* do not register frame reception for functional addressing */
1142 if (so->opt.flags & CAN_ISOTP_SF_BROADCAST)
1143 do_rx_reg = 0;
1144
1145 /* do not validate rx address for functional addressing */
1146 if (do_rx_reg && rx_id == tx_id) {
1147 err = -EADDRNOTAVAIL;
1148 goto out;
1149 }
1150
1151 if (so->bound && addr->can_ifindex == so->ifindex &&
1152 rx_id == so->rxid && tx_id == so->txid)
1153 goto out;
1154
1155 dev = dev_get_by_index(net, addr->can_ifindex);
1156 if (!dev) {
1157 err = -ENODEV;
1158 goto out;
1159 }
1160 if (dev->type != ARPHRD_CAN) {
1161 dev_put(dev);
1162 err = -ENODEV;
1163 goto out;
1164 }
1165 if (dev->mtu < so->ll.mtu) {
1166 dev_put(dev);
1167 err = -EINVAL;
1168 goto out;
1169 }
1170 if (!(dev->flags & IFF_UP))
1171 notify_enetdown = 1;
1172
1173 ifindex = dev->ifindex;
1174
1175 if (do_rx_reg)
1176 can_rx_register(net, dev, rx_id, SINGLE_MASK(rx_id),
1177 isotp_rcv, sk, "isotp", sk);
1178
1179 dev_put(dev);
1180
1181 if (so->bound && do_rx_reg) {
1182 /* unregister old filter */
1183 if (so->ifindex) {
1184 dev = dev_get_by_index(net, so->ifindex);
1185 if (dev) {
1186 can_rx_unregister(net, dev, so->rxid,
1187 SINGLE_MASK(so->rxid),
1188 isotp_rcv, sk);
1189 dev_put(dev);
1190 }
1191 }
1192 }
1193
1194 /* switch to new settings */
1195 so->ifindex = ifindex;
1196 so->rxid = rx_id;
1197 so->txid = tx_id;
1198 so->bound = 1;
1199
1200 out:
1201 release_sock(sk);
1202
1203 if (notify_enetdown) {
1204 sk->sk_err = ENETDOWN;
1205 if (!sock_flag(sk, SOCK_DEAD))
1206 sk_error_report(sk);
1207 }
1208
1209 return err;
1210 }
1211
1212 static int isotp_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1213 {
1214 struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1215 struct sock *sk = sock->sk;
1216 struct isotp_sock *so = isotp_sk(sk);
1217
1218 if (peer)
1219 return -EOPNOTSUPP;
1220
1221 memset(addr, 0, ISOTP_MIN_NAMELEN);
1222 addr->can_family = AF_CAN;
1223 addr->can_ifindex = so->ifindex;
1224 addr->can_addr.tp.rx_id = so->rxid;
1225 addr->can_addr.tp.tx_id = so->txid;
1226
1227 return ISOTP_MIN_NAMELEN;
1228 }
1229
1230 static int isotp_setsockopt_locked(struct socket *sock, int level, int optname,
1231 sockptr_t optval, unsigned int optlen)
1232 {
1233 struct sock *sk = sock->sk;
1234 struct isotp_sock *so = isotp_sk(sk);
1235 int ret = 0;
1236
1237 if (so->bound)
1238 return -EISCONN;
1239
1240 switch (optname) {
1241 case CAN_ISOTP_OPTS:
1242 if (optlen != sizeof(struct can_isotp_options))
1243 return -EINVAL;
1244
1245 if (copy_from_sockptr(&so->opt, optval, optlen))
1246 return -EFAULT;
1247
1248 /* no separate rx_ext_address is given => use ext_address */
1249 if (!(so->opt.flags & CAN_ISOTP_RX_EXT_ADDR))
1250 so->opt.rx_ext_address = so->opt.ext_address;
1251
1252 /* check for frame_txtime changes (0 => no changes) */
1253 if (so->opt.frame_txtime) {
1254 if (so->opt.frame_txtime == CAN_ISOTP_FRAME_TXTIME_ZERO)
1255 so->frame_txtime = 0;
1256 else
1257 so->frame_txtime = so->opt.frame_txtime;
1258 }
1259 break;
1260
1261 case CAN_ISOTP_RECV_FC:
1262 if (optlen != sizeof(struct can_isotp_fc_options))
1263 return -EINVAL;
1264
1265 if (copy_from_sockptr(&so->rxfc, optval, optlen))
1266 return -EFAULT;
1267 break;
1268
1269 case CAN_ISOTP_TX_STMIN:
1270 if (optlen != sizeof(u32))
1271 return -EINVAL;
1272
1273 if (copy_from_sockptr(&so->force_tx_stmin, optval, optlen))
1274 return -EFAULT;
1275 break;
1276
1277 case CAN_ISOTP_RX_STMIN:
1278 if (optlen != sizeof(u32))
1279 return -EINVAL;
1280
1281 if (copy_from_sockptr(&so->force_rx_stmin, optval, optlen))
1282 return -EFAULT;
1283 break;
1284
1285 case CAN_ISOTP_LL_OPTS:
1286 if (optlen == sizeof(struct can_isotp_ll_options)) {
1287 struct can_isotp_ll_options ll;
1288
1289 if (copy_from_sockptr(&ll, optval, optlen))
1290 return -EFAULT;
1291
1292 /* check for correct ISO 11898-1 DLC data length */
1293 if (ll.tx_dl != padlen(ll.tx_dl))
1294 return -EINVAL;
1295
1296 if (ll.mtu != CAN_MTU && ll.mtu != CANFD_MTU)
1297 return -EINVAL;
1298
1299 if (ll.mtu == CAN_MTU &&
1300 (ll.tx_dl > CAN_MAX_DLEN || ll.tx_flags != 0))
1301 return -EINVAL;
1302
1303 memcpy(&so->ll, &ll, sizeof(ll));
1304
1305 /* set ll_dl for tx path to similar place as for rx */
1306 so->tx.ll_dl = ll.tx_dl;
1307 } else {
1308 return -EINVAL;
1309 }
1310 break;
1311
1312 default:
1313 ret = -ENOPROTOOPT;
1314 }
1315
1316 return ret;
1317 }
1318
1319 static int isotp_setsockopt(struct socket *sock, int level, int optname,
1320 sockptr_t optval, unsigned int optlen)
1321
1322 {
1323 struct sock *sk = sock->sk;
1324 int ret;
1325
1326 if (level != SOL_CAN_ISOTP)
1327 return -EINVAL;
1328
1329 lock_sock(sk);
1330 ret = isotp_setsockopt_locked(sock, level, optname, optval, optlen);
1331 release_sock(sk);
1332 return ret;
1333 }
1334
1335 static int isotp_getsockopt(struct socket *sock, int level, int optname,
1336 char __user *optval, int __user *optlen)
1337 {
1338 struct sock *sk = sock->sk;
1339 struct isotp_sock *so = isotp_sk(sk);
1340 int len;
1341 void *val;
1342
1343 if (level != SOL_CAN_ISOTP)
1344 return -EINVAL;
1345 if (get_user(len, optlen))
1346 return -EFAULT;
1347 if (len < 0)
1348 return -EINVAL;
1349
1350 switch (optname) {
1351 case CAN_ISOTP_OPTS:
1352 len = min_t(int, len, sizeof(struct can_isotp_options));
1353 val = &so->opt;
1354 break;
1355
1356 case CAN_ISOTP_RECV_FC:
1357 len = min_t(int, len, sizeof(struct can_isotp_fc_options));
1358 val = &so->rxfc;
1359 break;
1360
1361 case CAN_ISOTP_TX_STMIN:
1362 len = min_t(int, len, sizeof(u32));
1363 val = &so->force_tx_stmin;
1364 break;
1365
1366 case CAN_ISOTP_RX_STMIN:
1367 len = min_t(int, len, sizeof(u32));
1368 val = &so->force_rx_stmin;
1369 break;
1370
1371 case CAN_ISOTP_LL_OPTS:
1372 len = min_t(int, len, sizeof(struct can_isotp_ll_options));
1373 val = &so->ll;
1374 break;
1375
1376 default:
1377 return -ENOPROTOOPT;
1378 }
1379
1380 if (put_user(len, optlen))
1381 return -EFAULT;
1382 if (copy_to_user(optval, val, len))
1383 return -EFAULT;
1384 return 0;
1385 }
1386
1387 static void isotp_notify(struct isotp_sock *so, unsigned long msg,
1388 struct net_device *dev)
1389 {
1390 struct sock *sk = &so->sk;
1391
1392 if (!net_eq(dev_net(dev), sock_net(sk)))
1393 return;
1394
1395 if (so->ifindex != dev->ifindex)
1396 return;
1397
1398 switch (msg) {
1399 case NETDEV_UNREGISTER:
1400 lock_sock(sk);
1401 /* remove current filters & unregister */
1402 if (so->bound && (!(so->opt.flags & CAN_ISOTP_SF_BROADCAST)))
1403 can_rx_unregister(dev_net(dev), dev, so->rxid,
1404 SINGLE_MASK(so->rxid),
1405 isotp_rcv, sk);
1406
1407 so->ifindex = 0;
1408 so->bound = 0;
1409 release_sock(sk);
1410
1411 sk->sk_err = ENODEV;
1412 if (!sock_flag(sk, SOCK_DEAD))
1413 sk_error_report(sk);
1414 break;
1415
1416 case NETDEV_DOWN:
1417 sk->sk_err = ENETDOWN;
1418 if (!sock_flag(sk, SOCK_DEAD))
1419 sk_error_report(sk);
1420 break;
1421 }
1422 }
1423
1424 static int isotp_notifier(struct notifier_block *nb, unsigned long msg,
1425 void *ptr)
1426 {
1427 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1428
1429 if (dev->type != ARPHRD_CAN)
1430 return NOTIFY_DONE;
1431 if (msg != NETDEV_UNREGISTER && msg != NETDEV_DOWN)
1432 return NOTIFY_DONE;
1433 if (unlikely(isotp_busy_notifier)) /* Check for reentrant bug. */
1434 return NOTIFY_DONE;
1435
1436 spin_lock(&isotp_notifier_lock);
1437 list_for_each_entry(isotp_busy_notifier, &isotp_notifier_list, notifier) {
1438 spin_unlock(&isotp_notifier_lock);
1439 isotp_notify(isotp_busy_notifier, msg, dev);
1440 spin_lock(&isotp_notifier_lock);
1441 }
1442 isotp_busy_notifier = NULL;
1443 spin_unlock(&isotp_notifier_lock);
1444 return NOTIFY_DONE;
1445 }
1446
1447 static int isotp_init(struct sock *sk)
1448 {
1449 struct isotp_sock *so = isotp_sk(sk);
1450
1451 so->ifindex = 0;
1452 so->bound = 0;
1453
1454 so->opt.flags = CAN_ISOTP_DEFAULT_FLAGS;
1455 so->opt.ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1456 so->opt.rx_ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1457 so->opt.rxpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1458 so->opt.txpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1459 so->opt.frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1460 so->frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1461 so->rxfc.bs = CAN_ISOTP_DEFAULT_RECV_BS;
1462 so->rxfc.stmin = CAN_ISOTP_DEFAULT_RECV_STMIN;
1463 so->rxfc.wftmax = CAN_ISOTP_DEFAULT_RECV_WFTMAX;
1464 so->ll.mtu = CAN_ISOTP_DEFAULT_LL_MTU;
1465 so->ll.tx_dl = CAN_ISOTP_DEFAULT_LL_TX_DL;
1466 so->ll.tx_flags = CAN_ISOTP_DEFAULT_LL_TX_FLAGS;
1467
1468 /* set ll_dl for tx path to similar place as for rx */
1469 so->tx.ll_dl = so->ll.tx_dl;
1470
1471 so->rx.state = ISOTP_IDLE;
1472 so->tx.state = ISOTP_IDLE;
1473
1474 hrtimer_init(&so->rxtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1475 so->rxtimer.function = isotp_rx_timer_handler;
1476 hrtimer_init(&so->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1477 so->txtimer.function = isotp_tx_timer_handler;
1478
1479 init_waitqueue_head(&so->wait);
1480 spin_lock_init(&so->rx_lock);
1481
1482 spin_lock(&isotp_notifier_lock);
1483 list_add_tail(&so->notifier, &isotp_notifier_list);
1484 spin_unlock(&isotp_notifier_lock);
1485
1486 return 0;
1487 }
1488
1489 static int isotp_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd,
1490 unsigned long arg)
1491 {
1492 /* no ioctls for socket layer -> hand it down to NIC layer */
1493 return -ENOIOCTLCMD;
1494 }
1495
1496 static const struct proto_ops isotp_ops = {
1497 .family = PF_CAN,
1498 .release = isotp_release,
1499 .bind = isotp_bind,
1500 .connect = sock_no_connect,
1501 .socketpair = sock_no_socketpair,
1502 .accept = sock_no_accept,
1503 .getname = isotp_getname,
1504 .poll = datagram_poll,
1505 .ioctl = isotp_sock_no_ioctlcmd,
1506 .gettstamp = sock_gettstamp,
1507 .listen = sock_no_listen,
1508 .shutdown = sock_no_shutdown,
1509 .setsockopt = isotp_setsockopt,
1510 .getsockopt = isotp_getsockopt,
1511 .sendmsg = isotp_sendmsg,
1512 .recvmsg = isotp_recvmsg,
1513 .mmap = sock_no_mmap,
1514 .sendpage = sock_no_sendpage,
1515 };
1516
1517 static struct proto isotp_proto __read_mostly = {
1518 .name = "CAN_ISOTP",
1519 .owner = THIS_MODULE,
1520 .obj_size = sizeof(struct isotp_sock),
1521 .init = isotp_init,
1522 };
1523
1524 static const struct can_proto isotp_can_proto = {
1525 .type = SOCK_DGRAM,
1526 .protocol = CAN_ISOTP,
1527 .ops = &isotp_ops,
1528 .prot = &isotp_proto,
1529 };
1530
1531 static struct notifier_block canisotp_notifier = {
1532 .notifier_call = isotp_notifier
1533 };
1534
1535 static __init int isotp_module_init(void)
1536 {
1537 int err;
1538
1539 pr_info("can: isotp protocol\n");
1540
1541 err = can_proto_register(&isotp_can_proto);
1542 if (err < 0)
1543 pr_err("can: registration of isotp protocol failed %pe\n", ERR_PTR(err));
1544 else
1545 register_netdevice_notifier(&canisotp_notifier);
1546
1547 return err;
1548 }
1549
1550 static __exit void isotp_module_exit(void)
1551 {
1552 can_proto_unregister(&isotp_can_proto);
1553 unregister_netdevice_notifier(&canisotp_notifier);
1554 }
1555
1556 module_init(isotp_module_init);
1557 module_exit(isotp_module_exit);