]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ceph/messenger.c
libceph: don't clear bio_iter in prepare_write_message()
[mirror_ubuntu-artful-kernel.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23
24 /*
25 * Ceph uses the messenger to exchange ceph_msg messages with other
26 * hosts in the system. The messenger provides ordered and reliable
27 * delivery. We tolerate TCP disconnects by reconnecting (with
28 * exponential backoff) in the case of a fault (disconnection, bad
29 * crc, protocol error). Acks allow sent messages to be discarded by
30 * the sender.
31 */
32
33 /*
34 * We track the state of the socket on a given connection using
35 * values defined below. The transition to a new socket state is
36 * handled by a function which verifies we aren't coming from an
37 * unexpected state.
38 *
39 * --------
40 * | NEW* | transient initial state
41 * --------
42 * | con_sock_state_init()
43 * v
44 * ----------
45 * | CLOSED | initialized, but no socket (and no
46 * ---------- TCP connection)
47 * ^ \
48 * | \ con_sock_state_connecting()
49 * | ----------------------
50 * | \
51 * + con_sock_state_closed() \
52 * |+--------------------------- \
53 * | \ \ \
54 * | ----------- \ \
55 * | | CLOSING | socket event; \ \
56 * | ----------- await close \ \
57 * | ^ \ |
58 * | | \ |
59 * | + con_sock_state_closing() \ |
60 * | / \ | |
61 * | / --------------- | |
62 * | / \ v v
63 * | / --------------
64 * | / -----------------| CONNECTING | socket created, TCP
65 * | | / -------------- connect initiated
66 * | | | con_sock_state_connected()
67 * | | v
68 * -------------
69 * | CONNECTED | TCP connection established
70 * -------------
71 *
72 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
73 */
74
75 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
76 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
77 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
78 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
79 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
80
81 /*
82 * connection states
83 */
84 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
85 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
86 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
87 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
88 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
89 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
90
91 /*
92 * ceph_connection flag bits
93 */
94 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
95 * messages on errors */
96 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
97 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
98 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
99 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
100
101 static bool con_flag_valid(unsigned long con_flag)
102 {
103 switch (con_flag) {
104 case CON_FLAG_LOSSYTX:
105 case CON_FLAG_KEEPALIVE_PENDING:
106 case CON_FLAG_WRITE_PENDING:
107 case CON_FLAG_SOCK_CLOSED:
108 case CON_FLAG_BACKOFF:
109 return true;
110 default:
111 return false;
112 }
113 }
114
115 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
116 {
117 BUG_ON(!con_flag_valid(con_flag));
118
119 clear_bit(con_flag, &con->flags);
120 }
121
122 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
123 {
124 BUG_ON(!con_flag_valid(con_flag));
125
126 set_bit(con_flag, &con->flags);
127 }
128
129 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
130 {
131 BUG_ON(!con_flag_valid(con_flag));
132
133 return test_bit(con_flag, &con->flags);
134 }
135
136 static bool con_flag_test_and_clear(struct ceph_connection *con,
137 unsigned long con_flag)
138 {
139 BUG_ON(!con_flag_valid(con_flag));
140
141 return test_and_clear_bit(con_flag, &con->flags);
142 }
143
144 static bool con_flag_test_and_set(struct ceph_connection *con,
145 unsigned long con_flag)
146 {
147 BUG_ON(!con_flag_valid(con_flag));
148
149 return test_and_set_bit(con_flag, &con->flags);
150 }
151
152 /* static tag bytes (protocol control messages) */
153 static char tag_msg = CEPH_MSGR_TAG_MSG;
154 static char tag_ack = CEPH_MSGR_TAG_ACK;
155 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
156
157 #ifdef CONFIG_LOCKDEP
158 static struct lock_class_key socket_class;
159 #endif
160
161 /*
162 * When skipping (ignoring) a block of input we read it into a "skip
163 * buffer," which is this many bytes in size.
164 */
165 #define SKIP_BUF_SIZE 1024
166
167 static void queue_con(struct ceph_connection *con);
168 static void con_work(struct work_struct *);
169 static void con_fault(struct ceph_connection *con);
170
171 /*
172 * Nicely render a sockaddr as a string. An array of formatted
173 * strings is used, to approximate reentrancy.
174 */
175 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
176 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
177 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
178 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
179
180 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
181 static atomic_t addr_str_seq = ATOMIC_INIT(0);
182
183 static struct page *zero_page; /* used in certain error cases */
184
185 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
186 {
187 int i;
188 char *s;
189 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
190 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
191
192 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
193 s = addr_str[i];
194
195 switch (ss->ss_family) {
196 case AF_INET:
197 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
198 ntohs(in4->sin_port));
199 break;
200
201 case AF_INET6:
202 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
203 ntohs(in6->sin6_port));
204 break;
205
206 default:
207 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
208 ss->ss_family);
209 }
210
211 return s;
212 }
213 EXPORT_SYMBOL(ceph_pr_addr);
214
215 static void encode_my_addr(struct ceph_messenger *msgr)
216 {
217 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
218 ceph_encode_addr(&msgr->my_enc_addr);
219 }
220
221 /*
222 * work queue for all reading and writing to/from the socket.
223 */
224 static struct workqueue_struct *ceph_msgr_wq;
225
226 static void _ceph_msgr_exit(void)
227 {
228 if (ceph_msgr_wq) {
229 destroy_workqueue(ceph_msgr_wq);
230 ceph_msgr_wq = NULL;
231 }
232
233 BUG_ON(zero_page == NULL);
234 kunmap(zero_page);
235 page_cache_release(zero_page);
236 zero_page = NULL;
237 }
238
239 int ceph_msgr_init(void)
240 {
241 BUG_ON(zero_page != NULL);
242 zero_page = ZERO_PAGE(0);
243 page_cache_get(zero_page);
244
245 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
246 if (ceph_msgr_wq)
247 return 0;
248
249 pr_err("msgr_init failed to create workqueue\n");
250 _ceph_msgr_exit();
251
252 return -ENOMEM;
253 }
254 EXPORT_SYMBOL(ceph_msgr_init);
255
256 void ceph_msgr_exit(void)
257 {
258 BUG_ON(ceph_msgr_wq == NULL);
259
260 _ceph_msgr_exit();
261 }
262 EXPORT_SYMBOL(ceph_msgr_exit);
263
264 void ceph_msgr_flush(void)
265 {
266 flush_workqueue(ceph_msgr_wq);
267 }
268 EXPORT_SYMBOL(ceph_msgr_flush);
269
270 /* Connection socket state transition functions */
271
272 static void con_sock_state_init(struct ceph_connection *con)
273 {
274 int old_state;
275
276 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
277 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
278 printk("%s: unexpected old state %d\n", __func__, old_state);
279 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
280 CON_SOCK_STATE_CLOSED);
281 }
282
283 static void con_sock_state_connecting(struct ceph_connection *con)
284 {
285 int old_state;
286
287 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
288 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
289 printk("%s: unexpected old state %d\n", __func__, old_state);
290 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
291 CON_SOCK_STATE_CONNECTING);
292 }
293
294 static void con_sock_state_connected(struct ceph_connection *con)
295 {
296 int old_state;
297
298 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
299 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
300 printk("%s: unexpected old state %d\n", __func__, old_state);
301 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
302 CON_SOCK_STATE_CONNECTED);
303 }
304
305 static void con_sock_state_closing(struct ceph_connection *con)
306 {
307 int old_state;
308
309 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
310 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
311 old_state != CON_SOCK_STATE_CONNECTED &&
312 old_state != CON_SOCK_STATE_CLOSING))
313 printk("%s: unexpected old state %d\n", __func__, old_state);
314 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
315 CON_SOCK_STATE_CLOSING);
316 }
317
318 static void con_sock_state_closed(struct ceph_connection *con)
319 {
320 int old_state;
321
322 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
323 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
324 old_state != CON_SOCK_STATE_CLOSING &&
325 old_state != CON_SOCK_STATE_CONNECTING &&
326 old_state != CON_SOCK_STATE_CLOSED))
327 printk("%s: unexpected old state %d\n", __func__, old_state);
328 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329 CON_SOCK_STATE_CLOSED);
330 }
331
332 /*
333 * socket callback functions
334 */
335
336 /* data available on socket, or listen socket received a connect */
337 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
338 {
339 struct ceph_connection *con = sk->sk_user_data;
340 if (atomic_read(&con->msgr->stopping)) {
341 return;
342 }
343
344 if (sk->sk_state != TCP_CLOSE_WAIT) {
345 dout("%s on %p state = %lu, queueing work\n", __func__,
346 con, con->state);
347 queue_con(con);
348 }
349 }
350
351 /* socket has buffer space for writing */
352 static void ceph_sock_write_space(struct sock *sk)
353 {
354 struct ceph_connection *con = sk->sk_user_data;
355
356 /* only queue to workqueue if there is data we want to write,
357 * and there is sufficient space in the socket buffer to accept
358 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
359 * doesn't get called again until try_write() fills the socket
360 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
361 * and net/core/stream.c:sk_stream_write_space().
362 */
363 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
364 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
365 dout("%s %p queueing write work\n", __func__, con);
366 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
367 queue_con(con);
368 }
369 } else {
370 dout("%s %p nothing to write\n", __func__, con);
371 }
372 }
373
374 /* socket's state has changed */
375 static void ceph_sock_state_change(struct sock *sk)
376 {
377 struct ceph_connection *con = sk->sk_user_data;
378
379 dout("%s %p state = %lu sk_state = %u\n", __func__,
380 con, con->state, sk->sk_state);
381
382 switch (sk->sk_state) {
383 case TCP_CLOSE:
384 dout("%s TCP_CLOSE\n", __func__);
385 case TCP_CLOSE_WAIT:
386 dout("%s TCP_CLOSE_WAIT\n", __func__);
387 con_sock_state_closing(con);
388 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
389 queue_con(con);
390 break;
391 case TCP_ESTABLISHED:
392 dout("%s TCP_ESTABLISHED\n", __func__);
393 con_sock_state_connected(con);
394 queue_con(con);
395 break;
396 default: /* Everything else is uninteresting */
397 break;
398 }
399 }
400
401 /*
402 * set up socket callbacks
403 */
404 static void set_sock_callbacks(struct socket *sock,
405 struct ceph_connection *con)
406 {
407 struct sock *sk = sock->sk;
408 sk->sk_user_data = con;
409 sk->sk_data_ready = ceph_sock_data_ready;
410 sk->sk_write_space = ceph_sock_write_space;
411 sk->sk_state_change = ceph_sock_state_change;
412 }
413
414
415 /*
416 * socket helpers
417 */
418
419 /*
420 * initiate connection to a remote socket.
421 */
422 static int ceph_tcp_connect(struct ceph_connection *con)
423 {
424 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
425 struct socket *sock;
426 int ret;
427
428 BUG_ON(con->sock);
429 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
430 IPPROTO_TCP, &sock);
431 if (ret)
432 return ret;
433 sock->sk->sk_allocation = GFP_NOFS;
434
435 #ifdef CONFIG_LOCKDEP
436 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
437 #endif
438
439 set_sock_callbacks(sock, con);
440
441 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
442
443 con_sock_state_connecting(con);
444 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
445 O_NONBLOCK);
446 if (ret == -EINPROGRESS) {
447 dout("connect %s EINPROGRESS sk_state = %u\n",
448 ceph_pr_addr(&con->peer_addr.in_addr),
449 sock->sk->sk_state);
450 } else if (ret < 0) {
451 pr_err("connect %s error %d\n",
452 ceph_pr_addr(&con->peer_addr.in_addr), ret);
453 sock_release(sock);
454 con->error_msg = "connect error";
455
456 return ret;
457 }
458 con->sock = sock;
459 return 0;
460 }
461
462 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
463 {
464 struct kvec iov = {buf, len};
465 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
466 int r;
467
468 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
469 if (r == -EAGAIN)
470 r = 0;
471 return r;
472 }
473
474 /*
475 * write something. @more is true if caller will be sending more data
476 * shortly.
477 */
478 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
479 size_t kvlen, size_t len, int more)
480 {
481 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
482 int r;
483
484 if (more)
485 msg.msg_flags |= MSG_MORE;
486 else
487 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
488
489 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
490 if (r == -EAGAIN)
491 r = 0;
492 return r;
493 }
494
495 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
496 int offset, size_t size, bool more)
497 {
498 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
499 int ret;
500
501 ret = kernel_sendpage(sock, page, offset, size, flags);
502 if (ret == -EAGAIN)
503 ret = 0;
504
505 return ret;
506 }
507
508
509 /*
510 * Shutdown/close the socket for the given connection.
511 */
512 static int con_close_socket(struct ceph_connection *con)
513 {
514 int rc = 0;
515
516 dout("con_close_socket on %p sock %p\n", con, con->sock);
517 if (con->sock) {
518 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
519 sock_release(con->sock);
520 con->sock = NULL;
521 }
522
523 /*
524 * Forcibly clear the SOCK_CLOSED flag. It gets set
525 * independent of the connection mutex, and we could have
526 * received a socket close event before we had the chance to
527 * shut the socket down.
528 */
529 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
530
531 con_sock_state_closed(con);
532 return rc;
533 }
534
535 /*
536 * Reset a connection. Discard all incoming and outgoing messages
537 * and clear *_seq state.
538 */
539 static void ceph_msg_remove(struct ceph_msg *msg)
540 {
541 list_del_init(&msg->list_head);
542 BUG_ON(msg->con == NULL);
543 msg->con->ops->put(msg->con);
544 msg->con = NULL;
545
546 ceph_msg_put(msg);
547 }
548 static void ceph_msg_remove_list(struct list_head *head)
549 {
550 while (!list_empty(head)) {
551 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
552 list_head);
553 ceph_msg_remove(msg);
554 }
555 }
556
557 static void reset_connection(struct ceph_connection *con)
558 {
559 /* reset connection, out_queue, msg_ and connect_seq */
560 /* discard existing out_queue and msg_seq */
561 dout("reset_connection %p\n", con);
562 ceph_msg_remove_list(&con->out_queue);
563 ceph_msg_remove_list(&con->out_sent);
564
565 if (con->in_msg) {
566 BUG_ON(con->in_msg->con != con);
567 con->in_msg->con = NULL;
568 ceph_msg_put(con->in_msg);
569 con->in_msg = NULL;
570 con->ops->put(con);
571 }
572
573 con->connect_seq = 0;
574 con->out_seq = 0;
575 if (con->out_msg) {
576 ceph_msg_put(con->out_msg);
577 con->out_msg = NULL;
578 }
579 con->in_seq = 0;
580 con->in_seq_acked = 0;
581 }
582
583 /*
584 * mark a peer down. drop any open connections.
585 */
586 void ceph_con_close(struct ceph_connection *con)
587 {
588 mutex_lock(&con->mutex);
589 dout("con_close %p peer %s\n", con,
590 ceph_pr_addr(&con->peer_addr.in_addr));
591 con->state = CON_STATE_CLOSED;
592
593 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
594 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
595 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
596 con_flag_clear(con, CON_FLAG_BACKOFF);
597
598 reset_connection(con);
599 con->peer_global_seq = 0;
600 cancel_delayed_work(&con->work);
601 con_close_socket(con);
602 mutex_unlock(&con->mutex);
603 }
604 EXPORT_SYMBOL(ceph_con_close);
605
606 /*
607 * Reopen a closed connection, with a new peer address.
608 */
609 void ceph_con_open(struct ceph_connection *con,
610 __u8 entity_type, __u64 entity_num,
611 struct ceph_entity_addr *addr)
612 {
613 mutex_lock(&con->mutex);
614 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
615
616 WARN_ON(con->state != CON_STATE_CLOSED);
617 con->state = CON_STATE_PREOPEN;
618
619 con->peer_name.type = (__u8) entity_type;
620 con->peer_name.num = cpu_to_le64(entity_num);
621
622 memcpy(&con->peer_addr, addr, sizeof(*addr));
623 con->delay = 0; /* reset backoff memory */
624 mutex_unlock(&con->mutex);
625 queue_con(con);
626 }
627 EXPORT_SYMBOL(ceph_con_open);
628
629 /*
630 * return true if this connection ever successfully opened
631 */
632 bool ceph_con_opened(struct ceph_connection *con)
633 {
634 return con->connect_seq > 0;
635 }
636
637 /*
638 * initialize a new connection.
639 */
640 void ceph_con_init(struct ceph_connection *con, void *private,
641 const struct ceph_connection_operations *ops,
642 struct ceph_messenger *msgr)
643 {
644 dout("con_init %p\n", con);
645 memset(con, 0, sizeof(*con));
646 con->private = private;
647 con->ops = ops;
648 con->msgr = msgr;
649
650 con_sock_state_init(con);
651
652 mutex_init(&con->mutex);
653 INIT_LIST_HEAD(&con->out_queue);
654 INIT_LIST_HEAD(&con->out_sent);
655 INIT_DELAYED_WORK(&con->work, con_work);
656
657 con->state = CON_STATE_CLOSED;
658 }
659 EXPORT_SYMBOL(ceph_con_init);
660
661
662 /*
663 * We maintain a global counter to order connection attempts. Get
664 * a unique seq greater than @gt.
665 */
666 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
667 {
668 u32 ret;
669
670 spin_lock(&msgr->global_seq_lock);
671 if (msgr->global_seq < gt)
672 msgr->global_seq = gt;
673 ret = ++msgr->global_seq;
674 spin_unlock(&msgr->global_seq_lock);
675 return ret;
676 }
677
678 static void con_out_kvec_reset(struct ceph_connection *con)
679 {
680 con->out_kvec_left = 0;
681 con->out_kvec_bytes = 0;
682 con->out_kvec_cur = &con->out_kvec[0];
683 }
684
685 static void con_out_kvec_add(struct ceph_connection *con,
686 size_t size, void *data)
687 {
688 int index;
689
690 index = con->out_kvec_left;
691 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
692
693 con->out_kvec[index].iov_len = size;
694 con->out_kvec[index].iov_base = data;
695 con->out_kvec_left++;
696 con->out_kvec_bytes += size;
697 }
698
699 #ifdef CONFIG_BLOCK
700 static void init_bio_iter(struct bio *bio, struct bio **bio_iter,
701 unsigned int *bio_seg)
702 {
703 if (!bio) {
704 *bio_iter = NULL;
705 *bio_seg = 0;
706 return;
707 }
708 *bio_iter = bio;
709 *bio_seg = (unsigned int) bio->bi_idx;
710 }
711
712 static void iter_bio_next(struct bio **bio_iter, unsigned int *seg)
713 {
714 if (*bio_iter == NULL)
715 return;
716
717 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
718
719 (*seg)++;
720 if (*seg == (*bio_iter)->bi_vcnt)
721 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
722 }
723 #endif
724
725 static void prepare_write_message_data(struct ceph_connection *con)
726 {
727 struct ceph_msg *msg = con->out_msg;
728
729 BUG_ON(!msg);
730 BUG_ON(!msg->hdr.data_len);
731
732 /* initialize page iterator */
733 con->out_msg_pos.page = 0;
734 if (msg->pages)
735 con->out_msg_pos.page_pos = msg->page_alignment;
736 else
737 con->out_msg_pos.page_pos = 0;
738 #ifdef CONFIG_BLOCK
739 if (msg->bio)
740 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
741 #endif
742 con->out_msg_pos.data_pos = 0;
743 con->out_msg_pos.did_page_crc = false;
744 con->out_more = 1; /* data + footer will follow */
745 }
746
747 /*
748 * Prepare footer for currently outgoing message, and finish things
749 * off. Assumes out_kvec* are already valid.. we just add on to the end.
750 */
751 static void prepare_write_message_footer(struct ceph_connection *con)
752 {
753 struct ceph_msg *m = con->out_msg;
754 int v = con->out_kvec_left;
755
756 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
757
758 dout("prepare_write_message_footer %p\n", con);
759 con->out_kvec_is_msg = true;
760 con->out_kvec[v].iov_base = &m->footer;
761 con->out_kvec[v].iov_len = sizeof(m->footer);
762 con->out_kvec_bytes += sizeof(m->footer);
763 con->out_kvec_left++;
764 con->out_more = m->more_to_follow;
765 con->out_msg_done = true;
766 }
767
768 /*
769 * Prepare headers for the next outgoing message.
770 */
771 static void prepare_write_message(struct ceph_connection *con)
772 {
773 struct ceph_msg *m;
774 u32 crc;
775
776 con_out_kvec_reset(con);
777 con->out_kvec_is_msg = true;
778 con->out_msg_done = false;
779
780 /* Sneak an ack in there first? If we can get it into the same
781 * TCP packet that's a good thing. */
782 if (con->in_seq > con->in_seq_acked) {
783 con->in_seq_acked = con->in_seq;
784 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
785 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
786 con_out_kvec_add(con, sizeof (con->out_temp_ack),
787 &con->out_temp_ack);
788 }
789
790 BUG_ON(list_empty(&con->out_queue));
791 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
792 con->out_msg = m;
793 BUG_ON(m->con != con);
794
795 /* put message on sent list */
796 ceph_msg_get(m);
797 list_move_tail(&m->list_head, &con->out_sent);
798
799 /*
800 * only assign outgoing seq # if we haven't sent this message
801 * yet. if it is requeued, resend with it's original seq.
802 */
803 if (m->needs_out_seq) {
804 m->hdr.seq = cpu_to_le64(++con->out_seq);
805 m->needs_out_seq = false;
806 }
807
808 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d (%zd)\n",
809 m, con->out_seq, le16_to_cpu(m->hdr.type),
810 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
811 le32_to_cpu(m->hdr.data_len), m->length);
812 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
813
814 /* tag + hdr + front + middle */
815 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
816 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
817 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
818
819 if (m->middle)
820 con_out_kvec_add(con, m->middle->vec.iov_len,
821 m->middle->vec.iov_base);
822
823 /* fill in crc (except data pages), footer */
824 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
825 con->out_msg->hdr.crc = cpu_to_le32(crc);
826 con->out_msg->footer.flags = 0;
827
828 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
829 con->out_msg->footer.front_crc = cpu_to_le32(crc);
830 if (m->middle) {
831 crc = crc32c(0, m->middle->vec.iov_base,
832 m->middle->vec.iov_len);
833 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
834 } else
835 con->out_msg->footer.middle_crc = 0;
836 dout("%s front_crc %u middle_crc %u\n", __func__,
837 le32_to_cpu(con->out_msg->footer.front_crc),
838 le32_to_cpu(con->out_msg->footer.middle_crc));
839
840 /* is there a data payload? */
841 con->out_msg->footer.data_crc = 0;
842 if (m->hdr.data_len)
843 prepare_write_message_data(con);
844 else
845 /* no, queue up footer too and be done */
846 prepare_write_message_footer(con);
847
848 con_flag_set(con, CON_FLAG_WRITE_PENDING);
849 }
850
851 /*
852 * Prepare an ack.
853 */
854 static void prepare_write_ack(struct ceph_connection *con)
855 {
856 dout("prepare_write_ack %p %llu -> %llu\n", con,
857 con->in_seq_acked, con->in_seq);
858 con->in_seq_acked = con->in_seq;
859
860 con_out_kvec_reset(con);
861
862 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
863
864 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
865 con_out_kvec_add(con, sizeof (con->out_temp_ack),
866 &con->out_temp_ack);
867
868 con->out_more = 1; /* more will follow.. eventually.. */
869 con_flag_set(con, CON_FLAG_WRITE_PENDING);
870 }
871
872 /*
873 * Prepare to write keepalive byte.
874 */
875 static void prepare_write_keepalive(struct ceph_connection *con)
876 {
877 dout("prepare_write_keepalive %p\n", con);
878 con_out_kvec_reset(con);
879 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
880 con_flag_set(con, CON_FLAG_WRITE_PENDING);
881 }
882
883 /*
884 * Connection negotiation.
885 */
886
887 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
888 int *auth_proto)
889 {
890 struct ceph_auth_handshake *auth;
891
892 if (!con->ops->get_authorizer) {
893 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
894 con->out_connect.authorizer_len = 0;
895 return NULL;
896 }
897
898 /* Can't hold the mutex while getting authorizer */
899 mutex_unlock(&con->mutex);
900 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
901 mutex_lock(&con->mutex);
902
903 if (IS_ERR(auth))
904 return auth;
905 if (con->state != CON_STATE_NEGOTIATING)
906 return ERR_PTR(-EAGAIN);
907
908 con->auth_reply_buf = auth->authorizer_reply_buf;
909 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
910 return auth;
911 }
912
913 /*
914 * We connected to a peer and are saying hello.
915 */
916 static void prepare_write_banner(struct ceph_connection *con)
917 {
918 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
919 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
920 &con->msgr->my_enc_addr);
921
922 con->out_more = 0;
923 con_flag_set(con, CON_FLAG_WRITE_PENDING);
924 }
925
926 static int prepare_write_connect(struct ceph_connection *con)
927 {
928 unsigned int global_seq = get_global_seq(con->msgr, 0);
929 int proto;
930 int auth_proto;
931 struct ceph_auth_handshake *auth;
932
933 switch (con->peer_name.type) {
934 case CEPH_ENTITY_TYPE_MON:
935 proto = CEPH_MONC_PROTOCOL;
936 break;
937 case CEPH_ENTITY_TYPE_OSD:
938 proto = CEPH_OSDC_PROTOCOL;
939 break;
940 case CEPH_ENTITY_TYPE_MDS:
941 proto = CEPH_MDSC_PROTOCOL;
942 break;
943 default:
944 BUG();
945 }
946
947 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
948 con->connect_seq, global_seq, proto);
949
950 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
951 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
952 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
953 con->out_connect.global_seq = cpu_to_le32(global_seq);
954 con->out_connect.protocol_version = cpu_to_le32(proto);
955 con->out_connect.flags = 0;
956
957 auth_proto = CEPH_AUTH_UNKNOWN;
958 auth = get_connect_authorizer(con, &auth_proto);
959 if (IS_ERR(auth))
960 return PTR_ERR(auth);
961
962 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
963 con->out_connect.authorizer_len = auth ?
964 cpu_to_le32(auth->authorizer_buf_len) : 0;
965
966 con_out_kvec_add(con, sizeof (con->out_connect),
967 &con->out_connect);
968 if (auth && auth->authorizer_buf_len)
969 con_out_kvec_add(con, auth->authorizer_buf_len,
970 auth->authorizer_buf);
971
972 con->out_more = 0;
973 con_flag_set(con, CON_FLAG_WRITE_PENDING);
974
975 return 0;
976 }
977
978 /*
979 * write as much of pending kvecs to the socket as we can.
980 * 1 -> done
981 * 0 -> socket full, but more to do
982 * <0 -> error
983 */
984 static int write_partial_kvec(struct ceph_connection *con)
985 {
986 int ret;
987
988 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
989 while (con->out_kvec_bytes > 0) {
990 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
991 con->out_kvec_left, con->out_kvec_bytes,
992 con->out_more);
993 if (ret <= 0)
994 goto out;
995 con->out_kvec_bytes -= ret;
996 if (con->out_kvec_bytes == 0)
997 break; /* done */
998
999 /* account for full iov entries consumed */
1000 while (ret >= con->out_kvec_cur->iov_len) {
1001 BUG_ON(!con->out_kvec_left);
1002 ret -= con->out_kvec_cur->iov_len;
1003 con->out_kvec_cur++;
1004 con->out_kvec_left--;
1005 }
1006 /* and for a partially-consumed entry */
1007 if (ret) {
1008 con->out_kvec_cur->iov_len -= ret;
1009 con->out_kvec_cur->iov_base += ret;
1010 }
1011 }
1012 con->out_kvec_left = 0;
1013 con->out_kvec_is_msg = false;
1014 ret = 1;
1015 out:
1016 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1017 con->out_kvec_bytes, con->out_kvec_left, ret);
1018 return ret; /* done! */
1019 }
1020
1021 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
1022 size_t len, size_t sent, bool in_trail)
1023 {
1024 struct ceph_msg *msg = con->out_msg;
1025
1026 BUG_ON(!msg);
1027 BUG_ON(!sent);
1028
1029 con->out_msg_pos.data_pos += sent;
1030 con->out_msg_pos.page_pos += sent;
1031 if (sent < len)
1032 return;
1033
1034 BUG_ON(sent != len);
1035 con->out_msg_pos.page_pos = 0;
1036 con->out_msg_pos.page++;
1037 con->out_msg_pos.did_page_crc = false;
1038 if (in_trail)
1039 list_rotate_left(&msg->trail->head);
1040 else if (msg->pagelist)
1041 list_rotate_left(&msg->pagelist->head);
1042 #ifdef CONFIG_BLOCK
1043 else if (msg->bio)
1044 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1045 #endif
1046 }
1047
1048 static void in_msg_pos_next(struct ceph_connection *con, size_t len,
1049 size_t received)
1050 {
1051 struct ceph_msg *msg = con->in_msg;
1052
1053 BUG_ON(!msg);
1054 BUG_ON(!received);
1055
1056 con->in_msg_pos.data_pos += received;
1057 con->in_msg_pos.page_pos += received;
1058 if (received < len)
1059 return;
1060
1061 BUG_ON(received != len);
1062 con->in_msg_pos.page_pos = 0;
1063 con->in_msg_pos.page++;
1064 #ifdef CONFIG_BLOCK
1065 if (msg->bio)
1066 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1067 #endif /* CONFIG_BLOCK */
1068 }
1069
1070 /*
1071 * Write as much message data payload as we can. If we finish, queue
1072 * up the footer.
1073 * 1 -> done, footer is now queued in out_kvec[].
1074 * 0 -> socket full, but more to do
1075 * <0 -> error
1076 */
1077 static int write_partial_msg_pages(struct ceph_connection *con)
1078 {
1079 struct ceph_msg *msg = con->out_msg;
1080 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1081 size_t len;
1082 bool do_datacrc = !con->msgr->nocrc;
1083 int ret;
1084 int total_max_write;
1085 bool in_trail = false;
1086 const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1087 const size_t trail_off = data_len - trail_len;
1088
1089 dout("write_partial_msg_pages %p msg %p page %d offset %d\n",
1090 con, msg, con->out_msg_pos.page, con->out_msg_pos.page_pos);
1091
1092 /*
1093 * Iterate through each page that contains data to be
1094 * written, and send as much as possible for each.
1095 *
1096 * If we are calculating the data crc (the default), we will
1097 * need to map the page. If we have no pages, they have
1098 * been revoked, so use the zero page.
1099 */
1100 while (data_len > con->out_msg_pos.data_pos) {
1101 struct page *page = NULL;
1102 int max_write = PAGE_SIZE;
1103 int bio_offset = 0;
1104
1105 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1106 if (!in_trail)
1107 total_max_write = trail_off - con->out_msg_pos.data_pos;
1108
1109 if (in_trail) {
1110 total_max_write = data_len - con->out_msg_pos.data_pos;
1111
1112 page = list_first_entry(&msg->trail->head,
1113 struct page, lru);
1114 } else if (msg->pages) {
1115 page = msg->pages[con->out_msg_pos.page];
1116 } else if (msg->pagelist) {
1117 page = list_first_entry(&msg->pagelist->head,
1118 struct page, lru);
1119 #ifdef CONFIG_BLOCK
1120 } else if (msg->bio) {
1121 struct bio_vec *bv;
1122
1123 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1124 page = bv->bv_page;
1125 bio_offset = bv->bv_offset;
1126 max_write = bv->bv_len;
1127 #endif
1128 } else {
1129 page = zero_page;
1130 }
1131 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1132 total_max_write);
1133
1134 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1135 void *base;
1136 u32 crc = le32_to_cpu(msg->footer.data_crc);
1137 char *kaddr;
1138
1139 kaddr = kmap(page);
1140 BUG_ON(kaddr == NULL);
1141 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1142 crc = crc32c(crc, base, len);
1143 kunmap(page);
1144 msg->footer.data_crc = cpu_to_le32(crc);
1145 con->out_msg_pos.did_page_crc = true;
1146 }
1147 ret = ceph_tcp_sendpage(con->sock, page,
1148 con->out_msg_pos.page_pos + bio_offset,
1149 len, true);
1150 if (ret <= 0)
1151 goto out;
1152
1153 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1154 }
1155
1156 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1157
1158 /* prepare and queue up footer, too */
1159 if (!do_datacrc)
1160 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1161 con_out_kvec_reset(con);
1162 prepare_write_message_footer(con);
1163 ret = 1;
1164 out:
1165 return ret;
1166 }
1167
1168 /*
1169 * write some zeros
1170 */
1171 static int write_partial_skip(struct ceph_connection *con)
1172 {
1173 int ret;
1174
1175 while (con->out_skip > 0) {
1176 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1177
1178 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1179 if (ret <= 0)
1180 goto out;
1181 con->out_skip -= ret;
1182 }
1183 ret = 1;
1184 out:
1185 return ret;
1186 }
1187
1188 /*
1189 * Prepare to read connection handshake, or an ack.
1190 */
1191 static void prepare_read_banner(struct ceph_connection *con)
1192 {
1193 dout("prepare_read_banner %p\n", con);
1194 con->in_base_pos = 0;
1195 }
1196
1197 static void prepare_read_connect(struct ceph_connection *con)
1198 {
1199 dout("prepare_read_connect %p\n", con);
1200 con->in_base_pos = 0;
1201 }
1202
1203 static void prepare_read_ack(struct ceph_connection *con)
1204 {
1205 dout("prepare_read_ack %p\n", con);
1206 con->in_base_pos = 0;
1207 }
1208
1209 static void prepare_read_tag(struct ceph_connection *con)
1210 {
1211 dout("prepare_read_tag %p\n", con);
1212 con->in_base_pos = 0;
1213 con->in_tag = CEPH_MSGR_TAG_READY;
1214 }
1215
1216 /*
1217 * Prepare to read a message.
1218 */
1219 static int prepare_read_message(struct ceph_connection *con)
1220 {
1221 dout("prepare_read_message %p\n", con);
1222 BUG_ON(con->in_msg != NULL);
1223 con->in_base_pos = 0;
1224 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1225 return 0;
1226 }
1227
1228
1229 static int read_partial(struct ceph_connection *con,
1230 int end, int size, void *object)
1231 {
1232 while (con->in_base_pos < end) {
1233 int left = end - con->in_base_pos;
1234 int have = size - left;
1235 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1236 if (ret <= 0)
1237 return ret;
1238 con->in_base_pos += ret;
1239 }
1240 return 1;
1241 }
1242
1243
1244 /*
1245 * Read all or part of the connect-side handshake on a new connection
1246 */
1247 static int read_partial_banner(struct ceph_connection *con)
1248 {
1249 int size;
1250 int end;
1251 int ret;
1252
1253 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1254
1255 /* peer's banner */
1256 size = strlen(CEPH_BANNER);
1257 end = size;
1258 ret = read_partial(con, end, size, con->in_banner);
1259 if (ret <= 0)
1260 goto out;
1261
1262 size = sizeof (con->actual_peer_addr);
1263 end += size;
1264 ret = read_partial(con, end, size, &con->actual_peer_addr);
1265 if (ret <= 0)
1266 goto out;
1267
1268 size = sizeof (con->peer_addr_for_me);
1269 end += size;
1270 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1271 if (ret <= 0)
1272 goto out;
1273
1274 out:
1275 return ret;
1276 }
1277
1278 static int read_partial_connect(struct ceph_connection *con)
1279 {
1280 int size;
1281 int end;
1282 int ret;
1283
1284 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1285
1286 size = sizeof (con->in_reply);
1287 end = size;
1288 ret = read_partial(con, end, size, &con->in_reply);
1289 if (ret <= 0)
1290 goto out;
1291
1292 size = le32_to_cpu(con->in_reply.authorizer_len);
1293 end += size;
1294 ret = read_partial(con, end, size, con->auth_reply_buf);
1295 if (ret <= 0)
1296 goto out;
1297
1298 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1299 con, (int)con->in_reply.tag,
1300 le32_to_cpu(con->in_reply.connect_seq),
1301 le32_to_cpu(con->in_reply.global_seq));
1302 out:
1303 return ret;
1304
1305 }
1306
1307 /*
1308 * Verify the hello banner looks okay.
1309 */
1310 static int verify_hello(struct ceph_connection *con)
1311 {
1312 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1313 pr_err("connect to %s got bad banner\n",
1314 ceph_pr_addr(&con->peer_addr.in_addr));
1315 con->error_msg = "protocol error, bad banner";
1316 return -1;
1317 }
1318 return 0;
1319 }
1320
1321 static bool addr_is_blank(struct sockaddr_storage *ss)
1322 {
1323 switch (ss->ss_family) {
1324 case AF_INET:
1325 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1326 case AF_INET6:
1327 return
1328 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1329 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1330 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1331 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1332 }
1333 return false;
1334 }
1335
1336 static int addr_port(struct sockaddr_storage *ss)
1337 {
1338 switch (ss->ss_family) {
1339 case AF_INET:
1340 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1341 case AF_INET6:
1342 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1343 }
1344 return 0;
1345 }
1346
1347 static void addr_set_port(struct sockaddr_storage *ss, int p)
1348 {
1349 switch (ss->ss_family) {
1350 case AF_INET:
1351 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1352 break;
1353 case AF_INET6:
1354 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1355 break;
1356 }
1357 }
1358
1359 /*
1360 * Unlike other *_pton function semantics, zero indicates success.
1361 */
1362 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1363 char delim, const char **ipend)
1364 {
1365 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1366 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1367
1368 memset(ss, 0, sizeof(*ss));
1369
1370 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1371 ss->ss_family = AF_INET;
1372 return 0;
1373 }
1374
1375 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1376 ss->ss_family = AF_INET6;
1377 return 0;
1378 }
1379
1380 return -EINVAL;
1381 }
1382
1383 /*
1384 * Extract hostname string and resolve using kernel DNS facility.
1385 */
1386 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1387 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1388 struct sockaddr_storage *ss, char delim, const char **ipend)
1389 {
1390 const char *end, *delim_p;
1391 char *colon_p, *ip_addr = NULL;
1392 int ip_len, ret;
1393
1394 /*
1395 * The end of the hostname occurs immediately preceding the delimiter or
1396 * the port marker (':') where the delimiter takes precedence.
1397 */
1398 delim_p = memchr(name, delim, namelen);
1399 colon_p = memchr(name, ':', namelen);
1400
1401 if (delim_p && colon_p)
1402 end = delim_p < colon_p ? delim_p : colon_p;
1403 else if (!delim_p && colon_p)
1404 end = colon_p;
1405 else {
1406 end = delim_p;
1407 if (!end) /* case: hostname:/ */
1408 end = name + namelen;
1409 }
1410
1411 if (end <= name)
1412 return -EINVAL;
1413
1414 /* do dns_resolve upcall */
1415 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1416 if (ip_len > 0)
1417 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1418 else
1419 ret = -ESRCH;
1420
1421 kfree(ip_addr);
1422
1423 *ipend = end;
1424
1425 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1426 ret, ret ? "failed" : ceph_pr_addr(ss));
1427
1428 return ret;
1429 }
1430 #else
1431 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1432 struct sockaddr_storage *ss, char delim, const char **ipend)
1433 {
1434 return -EINVAL;
1435 }
1436 #endif
1437
1438 /*
1439 * Parse a server name (IP or hostname). If a valid IP address is not found
1440 * then try to extract a hostname to resolve using userspace DNS upcall.
1441 */
1442 static int ceph_parse_server_name(const char *name, size_t namelen,
1443 struct sockaddr_storage *ss, char delim, const char **ipend)
1444 {
1445 int ret;
1446
1447 ret = ceph_pton(name, namelen, ss, delim, ipend);
1448 if (ret)
1449 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1450
1451 return ret;
1452 }
1453
1454 /*
1455 * Parse an ip[:port] list into an addr array. Use the default
1456 * monitor port if a port isn't specified.
1457 */
1458 int ceph_parse_ips(const char *c, const char *end,
1459 struct ceph_entity_addr *addr,
1460 int max_count, int *count)
1461 {
1462 int i, ret = -EINVAL;
1463 const char *p = c;
1464
1465 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1466 for (i = 0; i < max_count; i++) {
1467 const char *ipend;
1468 struct sockaddr_storage *ss = &addr[i].in_addr;
1469 int port;
1470 char delim = ',';
1471
1472 if (*p == '[') {
1473 delim = ']';
1474 p++;
1475 }
1476
1477 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1478 if (ret)
1479 goto bad;
1480 ret = -EINVAL;
1481
1482 p = ipend;
1483
1484 if (delim == ']') {
1485 if (*p != ']') {
1486 dout("missing matching ']'\n");
1487 goto bad;
1488 }
1489 p++;
1490 }
1491
1492 /* port? */
1493 if (p < end && *p == ':') {
1494 port = 0;
1495 p++;
1496 while (p < end && *p >= '0' && *p <= '9') {
1497 port = (port * 10) + (*p - '0');
1498 p++;
1499 }
1500 if (port > 65535 || port == 0)
1501 goto bad;
1502 } else {
1503 port = CEPH_MON_PORT;
1504 }
1505
1506 addr_set_port(ss, port);
1507
1508 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1509
1510 if (p == end)
1511 break;
1512 if (*p != ',')
1513 goto bad;
1514 p++;
1515 }
1516
1517 if (p != end)
1518 goto bad;
1519
1520 if (count)
1521 *count = i + 1;
1522 return 0;
1523
1524 bad:
1525 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1526 return ret;
1527 }
1528 EXPORT_SYMBOL(ceph_parse_ips);
1529
1530 static int process_banner(struct ceph_connection *con)
1531 {
1532 dout("process_banner on %p\n", con);
1533
1534 if (verify_hello(con) < 0)
1535 return -1;
1536
1537 ceph_decode_addr(&con->actual_peer_addr);
1538 ceph_decode_addr(&con->peer_addr_for_me);
1539
1540 /*
1541 * Make sure the other end is who we wanted. note that the other
1542 * end may not yet know their ip address, so if it's 0.0.0.0, give
1543 * them the benefit of the doubt.
1544 */
1545 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1546 sizeof(con->peer_addr)) != 0 &&
1547 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1548 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1549 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1550 ceph_pr_addr(&con->peer_addr.in_addr),
1551 (int)le32_to_cpu(con->peer_addr.nonce),
1552 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1553 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1554 con->error_msg = "wrong peer at address";
1555 return -1;
1556 }
1557
1558 /*
1559 * did we learn our address?
1560 */
1561 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1562 int port = addr_port(&con->msgr->inst.addr.in_addr);
1563
1564 memcpy(&con->msgr->inst.addr.in_addr,
1565 &con->peer_addr_for_me.in_addr,
1566 sizeof(con->peer_addr_for_me.in_addr));
1567 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1568 encode_my_addr(con->msgr);
1569 dout("process_banner learned my addr is %s\n",
1570 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1571 }
1572
1573 return 0;
1574 }
1575
1576 static int process_connect(struct ceph_connection *con)
1577 {
1578 u64 sup_feat = con->msgr->supported_features;
1579 u64 req_feat = con->msgr->required_features;
1580 u64 server_feat = le64_to_cpu(con->in_reply.features);
1581 int ret;
1582
1583 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1584
1585 switch (con->in_reply.tag) {
1586 case CEPH_MSGR_TAG_FEATURES:
1587 pr_err("%s%lld %s feature set mismatch,"
1588 " my %llx < server's %llx, missing %llx\n",
1589 ENTITY_NAME(con->peer_name),
1590 ceph_pr_addr(&con->peer_addr.in_addr),
1591 sup_feat, server_feat, server_feat & ~sup_feat);
1592 con->error_msg = "missing required protocol features";
1593 reset_connection(con);
1594 return -1;
1595
1596 case CEPH_MSGR_TAG_BADPROTOVER:
1597 pr_err("%s%lld %s protocol version mismatch,"
1598 " my %d != server's %d\n",
1599 ENTITY_NAME(con->peer_name),
1600 ceph_pr_addr(&con->peer_addr.in_addr),
1601 le32_to_cpu(con->out_connect.protocol_version),
1602 le32_to_cpu(con->in_reply.protocol_version));
1603 con->error_msg = "protocol version mismatch";
1604 reset_connection(con);
1605 return -1;
1606
1607 case CEPH_MSGR_TAG_BADAUTHORIZER:
1608 con->auth_retry++;
1609 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1610 con->auth_retry);
1611 if (con->auth_retry == 2) {
1612 con->error_msg = "connect authorization failure";
1613 return -1;
1614 }
1615 con->auth_retry = 1;
1616 con_out_kvec_reset(con);
1617 ret = prepare_write_connect(con);
1618 if (ret < 0)
1619 return ret;
1620 prepare_read_connect(con);
1621 break;
1622
1623 case CEPH_MSGR_TAG_RESETSESSION:
1624 /*
1625 * If we connected with a large connect_seq but the peer
1626 * has no record of a session with us (no connection, or
1627 * connect_seq == 0), they will send RESETSESION to indicate
1628 * that they must have reset their session, and may have
1629 * dropped messages.
1630 */
1631 dout("process_connect got RESET peer seq %u\n",
1632 le32_to_cpu(con->in_reply.connect_seq));
1633 pr_err("%s%lld %s connection reset\n",
1634 ENTITY_NAME(con->peer_name),
1635 ceph_pr_addr(&con->peer_addr.in_addr));
1636 reset_connection(con);
1637 con_out_kvec_reset(con);
1638 ret = prepare_write_connect(con);
1639 if (ret < 0)
1640 return ret;
1641 prepare_read_connect(con);
1642
1643 /* Tell ceph about it. */
1644 mutex_unlock(&con->mutex);
1645 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1646 if (con->ops->peer_reset)
1647 con->ops->peer_reset(con);
1648 mutex_lock(&con->mutex);
1649 if (con->state != CON_STATE_NEGOTIATING)
1650 return -EAGAIN;
1651 break;
1652
1653 case CEPH_MSGR_TAG_RETRY_SESSION:
1654 /*
1655 * If we sent a smaller connect_seq than the peer has, try
1656 * again with a larger value.
1657 */
1658 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1659 le32_to_cpu(con->out_connect.connect_seq),
1660 le32_to_cpu(con->in_reply.connect_seq));
1661 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1662 con_out_kvec_reset(con);
1663 ret = prepare_write_connect(con);
1664 if (ret < 0)
1665 return ret;
1666 prepare_read_connect(con);
1667 break;
1668
1669 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1670 /*
1671 * If we sent a smaller global_seq than the peer has, try
1672 * again with a larger value.
1673 */
1674 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1675 con->peer_global_seq,
1676 le32_to_cpu(con->in_reply.global_seq));
1677 get_global_seq(con->msgr,
1678 le32_to_cpu(con->in_reply.global_seq));
1679 con_out_kvec_reset(con);
1680 ret = prepare_write_connect(con);
1681 if (ret < 0)
1682 return ret;
1683 prepare_read_connect(con);
1684 break;
1685
1686 case CEPH_MSGR_TAG_READY:
1687 if (req_feat & ~server_feat) {
1688 pr_err("%s%lld %s protocol feature mismatch,"
1689 " my required %llx > server's %llx, need %llx\n",
1690 ENTITY_NAME(con->peer_name),
1691 ceph_pr_addr(&con->peer_addr.in_addr),
1692 req_feat, server_feat, req_feat & ~server_feat);
1693 con->error_msg = "missing required protocol features";
1694 reset_connection(con);
1695 return -1;
1696 }
1697
1698 WARN_ON(con->state != CON_STATE_NEGOTIATING);
1699 con->state = CON_STATE_OPEN;
1700
1701 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1702 con->connect_seq++;
1703 con->peer_features = server_feat;
1704 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1705 con->peer_global_seq,
1706 le32_to_cpu(con->in_reply.connect_seq),
1707 con->connect_seq);
1708 WARN_ON(con->connect_seq !=
1709 le32_to_cpu(con->in_reply.connect_seq));
1710
1711 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1712 con_flag_set(con, CON_FLAG_LOSSYTX);
1713
1714 con->delay = 0; /* reset backoff memory */
1715
1716 prepare_read_tag(con);
1717 break;
1718
1719 case CEPH_MSGR_TAG_WAIT:
1720 /*
1721 * If there is a connection race (we are opening
1722 * connections to each other), one of us may just have
1723 * to WAIT. This shouldn't happen if we are the
1724 * client.
1725 */
1726 pr_err("process_connect got WAIT as client\n");
1727 con->error_msg = "protocol error, got WAIT as client";
1728 return -1;
1729
1730 default:
1731 pr_err("connect protocol error, will retry\n");
1732 con->error_msg = "protocol error, garbage tag during connect";
1733 return -1;
1734 }
1735 return 0;
1736 }
1737
1738
1739 /*
1740 * read (part of) an ack
1741 */
1742 static int read_partial_ack(struct ceph_connection *con)
1743 {
1744 int size = sizeof (con->in_temp_ack);
1745 int end = size;
1746
1747 return read_partial(con, end, size, &con->in_temp_ack);
1748 }
1749
1750
1751 /*
1752 * We can finally discard anything that's been acked.
1753 */
1754 static void process_ack(struct ceph_connection *con)
1755 {
1756 struct ceph_msg *m;
1757 u64 ack = le64_to_cpu(con->in_temp_ack);
1758 u64 seq;
1759
1760 while (!list_empty(&con->out_sent)) {
1761 m = list_first_entry(&con->out_sent, struct ceph_msg,
1762 list_head);
1763 seq = le64_to_cpu(m->hdr.seq);
1764 if (seq > ack)
1765 break;
1766 dout("got ack for seq %llu type %d at %p\n", seq,
1767 le16_to_cpu(m->hdr.type), m);
1768 m->ack_stamp = jiffies;
1769 ceph_msg_remove(m);
1770 }
1771 prepare_read_tag(con);
1772 }
1773
1774
1775
1776
1777 static int read_partial_message_section(struct ceph_connection *con,
1778 struct kvec *section,
1779 unsigned int sec_len, u32 *crc)
1780 {
1781 int ret, left;
1782
1783 BUG_ON(!section);
1784
1785 while (section->iov_len < sec_len) {
1786 BUG_ON(section->iov_base == NULL);
1787 left = sec_len - section->iov_len;
1788 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1789 section->iov_len, left);
1790 if (ret <= 0)
1791 return ret;
1792 section->iov_len += ret;
1793 }
1794 if (section->iov_len == sec_len)
1795 *crc = crc32c(0, section->iov_base, section->iov_len);
1796
1797 return 1;
1798 }
1799
1800 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1801
1802 static int read_partial_message_pages(struct ceph_connection *con,
1803 struct page **pages,
1804 unsigned int data_len, bool do_datacrc)
1805 {
1806 struct page *page;
1807 void *p;
1808 int ret;
1809 int left;
1810
1811 left = min((int)(data_len - con->in_msg_pos.data_pos),
1812 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1813 /* (page) data */
1814 BUG_ON(pages == NULL);
1815 page = pages[con->in_msg_pos.page];
1816 p = kmap(page);
1817 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos, left);
1818 if (ret > 0 && do_datacrc)
1819 con->in_data_crc =
1820 crc32c(con->in_data_crc,
1821 p + con->in_msg_pos.page_pos, ret);
1822 kunmap(page);
1823 if (ret <= 0)
1824 return ret;
1825
1826 in_msg_pos_next(con, left, ret);
1827
1828 return ret;
1829 }
1830
1831 #ifdef CONFIG_BLOCK
1832 static int read_partial_message_bio(struct ceph_connection *con,
1833 unsigned int data_len, bool do_datacrc)
1834 {
1835 struct ceph_msg *msg = con->in_msg;
1836 struct bio_vec *bv;
1837 struct page *page;
1838 void *p;
1839 int ret, left;
1840
1841 BUG_ON(!msg);
1842 BUG_ON(!msg->bio_iter);
1843 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1844
1845 left = min((int)(data_len - con->in_msg_pos.data_pos),
1846 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1847
1848 page = bv->bv_page;
1849 p = kmap(page) + bv->bv_offset;
1850
1851 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos, left);
1852 if (ret > 0 && do_datacrc)
1853 con->in_data_crc =
1854 crc32c(con->in_data_crc,
1855 p + con->in_msg_pos.page_pos, ret);
1856 kunmap(page);
1857 if (ret <= 0)
1858 return ret;
1859
1860 in_msg_pos_next(con, left, ret);
1861
1862 return ret;
1863 }
1864 #endif
1865
1866 /*
1867 * read (part of) a message.
1868 */
1869 static int read_partial_message(struct ceph_connection *con)
1870 {
1871 struct ceph_msg *m = con->in_msg;
1872 int size;
1873 int end;
1874 int ret;
1875 unsigned int front_len, middle_len, data_len;
1876 bool do_datacrc = !con->msgr->nocrc;
1877 u64 seq;
1878 u32 crc;
1879
1880 dout("read_partial_message con %p msg %p\n", con, m);
1881
1882 /* header */
1883 size = sizeof (con->in_hdr);
1884 end = size;
1885 ret = read_partial(con, end, size, &con->in_hdr);
1886 if (ret <= 0)
1887 return ret;
1888
1889 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1890 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1891 pr_err("read_partial_message bad hdr "
1892 " crc %u != expected %u\n",
1893 crc, con->in_hdr.crc);
1894 return -EBADMSG;
1895 }
1896
1897 front_len = le32_to_cpu(con->in_hdr.front_len);
1898 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1899 return -EIO;
1900 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1901 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
1902 return -EIO;
1903 data_len = le32_to_cpu(con->in_hdr.data_len);
1904 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1905 return -EIO;
1906
1907 /* verify seq# */
1908 seq = le64_to_cpu(con->in_hdr.seq);
1909 if ((s64)seq - (s64)con->in_seq < 1) {
1910 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1911 ENTITY_NAME(con->peer_name),
1912 ceph_pr_addr(&con->peer_addr.in_addr),
1913 seq, con->in_seq + 1);
1914 con->in_base_pos = -front_len - middle_len - data_len -
1915 sizeof(m->footer);
1916 con->in_tag = CEPH_MSGR_TAG_READY;
1917 return 0;
1918 } else if ((s64)seq - (s64)con->in_seq > 1) {
1919 pr_err("read_partial_message bad seq %lld expected %lld\n",
1920 seq, con->in_seq + 1);
1921 con->error_msg = "bad message sequence # for incoming message";
1922 return -EBADMSG;
1923 }
1924
1925 /* allocate message? */
1926 if (!con->in_msg) {
1927 int skip = 0;
1928
1929 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1930 front_len, data_len);
1931 ret = ceph_con_in_msg_alloc(con, &skip);
1932 if (ret < 0)
1933 return ret;
1934 if (skip) {
1935 /* skip this message */
1936 dout("alloc_msg said skip message\n");
1937 BUG_ON(con->in_msg);
1938 con->in_base_pos = -front_len - middle_len - data_len -
1939 sizeof(m->footer);
1940 con->in_tag = CEPH_MSGR_TAG_READY;
1941 con->in_seq++;
1942 return 0;
1943 }
1944
1945 BUG_ON(!con->in_msg);
1946 BUG_ON(con->in_msg->con != con);
1947 m = con->in_msg;
1948 m->front.iov_len = 0; /* haven't read it yet */
1949 if (m->middle)
1950 m->middle->vec.iov_len = 0;
1951
1952 con->in_msg_pos.page = 0;
1953 if (m->pages)
1954 con->in_msg_pos.page_pos = m->page_alignment;
1955 else
1956 con->in_msg_pos.page_pos = 0;
1957 con->in_msg_pos.data_pos = 0;
1958
1959 #ifdef CONFIG_BLOCK
1960 if (m->bio)
1961 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1962 #endif
1963 }
1964
1965 /* front */
1966 ret = read_partial_message_section(con, &m->front, front_len,
1967 &con->in_front_crc);
1968 if (ret <= 0)
1969 return ret;
1970
1971 /* middle */
1972 if (m->middle) {
1973 ret = read_partial_message_section(con, &m->middle->vec,
1974 middle_len,
1975 &con->in_middle_crc);
1976 if (ret <= 0)
1977 return ret;
1978 }
1979
1980 /* (page) data */
1981 while (con->in_msg_pos.data_pos < data_len) {
1982 if (m->pages) {
1983 ret = read_partial_message_pages(con, m->pages,
1984 data_len, do_datacrc);
1985 if (ret <= 0)
1986 return ret;
1987 #ifdef CONFIG_BLOCK
1988 } else if (m->bio) {
1989 ret = read_partial_message_bio(con,
1990 data_len, do_datacrc);
1991 if (ret <= 0)
1992 return ret;
1993 #endif
1994 } else {
1995 BUG_ON(1);
1996 }
1997 }
1998
1999 /* footer */
2000 size = sizeof (m->footer);
2001 end += size;
2002 ret = read_partial(con, end, size, &m->footer);
2003 if (ret <= 0)
2004 return ret;
2005
2006 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2007 m, front_len, m->footer.front_crc, middle_len,
2008 m->footer.middle_crc, data_len, m->footer.data_crc);
2009
2010 /* crc ok? */
2011 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2012 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2013 m, con->in_front_crc, m->footer.front_crc);
2014 return -EBADMSG;
2015 }
2016 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2017 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2018 m, con->in_middle_crc, m->footer.middle_crc);
2019 return -EBADMSG;
2020 }
2021 if (do_datacrc &&
2022 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2023 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2024 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2025 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2026 return -EBADMSG;
2027 }
2028
2029 return 1; /* done! */
2030 }
2031
2032 /*
2033 * Process message. This happens in the worker thread. The callback should
2034 * be careful not to do anything that waits on other incoming messages or it
2035 * may deadlock.
2036 */
2037 static void process_message(struct ceph_connection *con)
2038 {
2039 struct ceph_msg *msg;
2040
2041 BUG_ON(con->in_msg->con != con);
2042 con->in_msg->con = NULL;
2043 msg = con->in_msg;
2044 con->in_msg = NULL;
2045 con->ops->put(con);
2046
2047 /* if first message, set peer_name */
2048 if (con->peer_name.type == 0)
2049 con->peer_name = msg->hdr.src;
2050
2051 con->in_seq++;
2052 mutex_unlock(&con->mutex);
2053
2054 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2055 msg, le64_to_cpu(msg->hdr.seq),
2056 ENTITY_NAME(msg->hdr.src),
2057 le16_to_cpu(msg->hdr.type),
2058 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2059 le32_to_cpu(msg->hdr.front_len),
2060 le32_to_cpu(msg->hdr.data_len),
2061 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2062 con->ops->dispatch(con, msg);
2063
2064 mutex_lock(&con->mutex);
2065 }
2066
2067
2068 /*
2069 * Write something to the socket. Called in a worker thread when the
2070 * socket appears to be writeable and we have something ready to send.
2071 */
2072 static int try_write(struct ceph_connection *con)
2073 {
2074 int ret = 1;
2075
2076 dout("try_write start %p state %lu\n", con, con->state);
2077
2078 more:
2079 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2080
2081 /* open the socket first? */
2082 if (con->state == CON_STATE_PREOPEN) {
2083 BUG_ON(con->sock);
2084 con->state = CON_STATE_CONNECTING;
2085
2086 con_out_kvec_reset(con);
2087 prepare_write_banner(con);
2088 prepare_read_banner(con);
2089
2090 BUG_ON(con->in_msg);
2091 con->in_tag = CEPH_MSGR_TAG_READY;
2092 dout("try_write initiating connect on %p new state %lu\n",
2093 con, con->state);
2094 ret = ceph_tcp_connect(con);
2095 if (ret < 0) {
2096 con->error_msg = "connect error";
2097 goto out;
2098 }
2099 }
2100
2101 more_kvec:
2102 /* kvec data queued? */
2103 if (con->out_skip) {
2104 ret = write_partial_skip(con);
2105 if (ret <= 0)
2106 goto out;
2107 }
2108 if (con->out_kvec_left) {
2109 ret = write_partial_kvec(con);
2110 if (ret <= 0)
2111 goto out;
2112 }
2113
2114 /* msg pages? */
2115 if (con->out_msg) {
2116 if (con->out_msg_done) {
2117 ceph_msg_put(con->out_msg);
2118 con->out_msg = NULL; /* we're done with this one */
2119 goto do_next;
2120 }
2121
2122 ret = write_partial_msg_pages(con);
2123 if (ret == 1)
2124 goto more_kvec; /* we need to send the footer, too! */
2125 if (ret == 0)
2126 goto out;
2127 if (ret < 0) {
2128 dout("try_write write_partial_msg_pages err %d\n",
2129 ret);
2130 goto out;
2131 }
2132 }
2133
2134 do_next:
2135 if (con->state == CON_STATE_OPEN) {
2136 /* is anything else pending? */
2137 if (!list_empty(&con->out_queue)) {
2138 prepare_write_message(con);
2139 goto more;
2140 }
2141 if (con->in_seq > con->in_seq_acked) {
2142 prepare_write_ack(con);
2143 goto more;
2144 }
2145 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2146 prepare_write_keepalive(con);
2147 goto more;
2148 }
2149 }
2150
2151 /* Nothing to do! */
2152 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2153 dout("try_write nothing else to write.\n");
2154 ret = 0;
2155 out:
2156 dout("try_write done on %p ret %d\n", con, ret);
2157 return ret;
2158 }
2159
2160
2161
2162 /*
2163 * Read what we can from the socket.
2164 */
2165 static int try_read(struct ceph_connection *con)
2166 {
2167 int ret = -1;
2168
2169 more:
2170 dout("try_read start on %p state %lu\n", con, con->state);
2171 if (con->state != CON_STATE_CONNECTING &&
2172 con->state != CON_STATE_NEGOTIATING &&
2173 con->state != CON_STATE_OPEN)
2174 return 0;
2175
2176 BUG_ON(!con->sock);
2177
2178 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2179 con->in_base_pos);
2180
2181 if (con->state == CON_STATE_CONNECTING) {
2182 dout("try_read connecting\n");
2183 ret = read_partial_banner(con);
2184 if (ret <= 0)
2185 goto out;
2186 ret = process_banner(con);
2187 if (ret < 0)
2188 goto out;
2189
2190 con->state = CON_STATE_NEGOTIATING;
2191
2192 /*
2193 * Received banner is good, exchange connection info.
2194 * Do not reset out_kvec, as sending our banner raced
2195 * with receiving peer banner after connect completed.
2196 */
2197 ret = prepare_write_connect(con);
2198 if (ret < 0)
2199 goto out;
2200 prepare_read_connect(con);
2201
2202 /* Send connection info before awaiting response */
2203 goto out;
2204 }
2205
2206 if (con->state == CON_STATE_NEGOTIATING) {
2207 dout("try_read negotiating\n");
2208 ret = read_partial_connect(con);
2209 if (ret <= 0)
2210 goto out;
2211 ret = process_connect(con);
2212 if (ret < 0)
2213 goto out;
2214 goto more;
2215 }
2216
2217 WARN_ON(con->state != CON_STATE_OPEN);
2218
2219 if (con->in_base_pos < 0) {
2220 /*
2221 * skipping + discarding content.
2222 *
2223 * FIXME: there must be a better way to do this!
2224 */
2225 static char buf[SKIP_BUF_SIZE];
2226 int skip = min((int) sizeof (buf), -con->in_base_pos);
2227
2228 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2229 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2230 if (ret <= 0)
2231 goto out;
2232 con->in_base_pos += ret;
2233 if (con->in_base_pos)
2234 goto more;
2235 }
2236 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2237 /*
2238 * what's next?
2239 */
2240 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2241 if (ret <= 0)
2242 goto out;
2243 dout("try_read got tag %d\n", (int)con->in_tag);
2244 switch (con->in_tag) {
2245 case CEPH_MSGR_TAG_MSG:
2246 prepare_read_message(con);
2247 break;
2248 case CEPH_MSGR_TAG_ACK:
2249 prepare_read_ack(con);
2250 break;
2251 case CEPH_MSGR_TAG_CLOSE:
2252 con_close_socket(con);
2253 con->state = CON_STATE_CLOSED;
2254 goto out;
2255 default:
2256 goto bad_tag;
2257 }
2258 }
2259 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2260 ret = read_partial_message(con);
2261 if (ret <= 0) {
2262 switch (ret) {
2263 case -EBADMSG:
2264 con->error_msg = "bad crc";
2265 ret = -EIO;
2266 break;
2267 case -EIO:
2268 con->error_msg = "io error";
2269 break;
2270 }
2271 goto out;
2272 }
2273 if (con->in_tag == CEPH_MSGR_TAG_READY)
2274 goto more;
2275 process_message(con);
2276 if (con->state == CON_STATE_OPEN)
2277 prepare_read_tag(con);
2278 goto more;
2279 }
2280 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2281 ret = read_partial_ack(con);
2282 if (ret <= 0)
2283 goto out;
2284 process_ack(con);
2285 goto more;
2286 }
2287
2288 out:
2289 dout("try_read done on %p ret %d\n", con, ret);
2290 return ret;
2291
2292 bad_tag:
2293 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2294 con->error_msg = "protocol error, garbage tag";
2295 ret = -1;
2296 goto out;
2297 }
2298
2299
2300 /*
2301 * Atomically queue work on a connection after the specified delay.
2302 * Bump @con reference to avoid races with connection teardown.
2303 * Returns 0 if work was queued, or an error code otherwise.
2304 */
2305 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2306 {
2307 if (!con->ops->get(con)) {
2308 dout("%s %p ref count 0\n", __func__, con);
2309
2310 return -ENOENT;
2311 }
2312
2313 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2314 dout("%s %p - already queued\n", __func__, con);
2315 con->ops->put(con);
2316
2317 return -EBUSY;
2318 }
2319
2320 dout("%s %p %lu\n", __func__, con, delay);
2321
2322 return 0;
2323 }
2324
2325 static void queue_con(struct ceph_connection *con)
2326 {
2327 (void) queue_con_delay(con, 0);
2328 }
2329
2330 static bool con_sock_closed(struct ceph_connection *con)
2331 {
2332 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2333 return false;
2334
2335 #define CASE(x) \
2336 case CON_STATE_ ## x: \
2337 con->error_msg = "socket closed (con state " #x ")"; \
2338 break;
2339
2340 switch (con->state) {
2341 CASE(CLOSED);
2342 CASE(PREOPEN);
2343 CASE(CONNECTING);
2344 CASE(NEGOTIATING);
2345 CASE(OPEN);
2346 CASE(STANDBY);
2347 default:
2348 pr_warning("%s con %p unrecognized state %lu\n",
2349 __func__, con, con->state);
2350 con->error_msg = "unrecognized con state";
2351 BUG();
2352 break;
2353 }
2354 #undef CASE
2355
2356 return true;
2357 }
2358
2359 static bool con_backoff(struct ceph_connection *con)
2360 {
2361 int ret;
2362
2363 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2364 return false;
2365
2366 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2367 if (ret) {
2368 dout("%s: con %p FAILED to back off %lu\n", __func__,
2369 con, con->delay);
2370 BUG_ON(ret == -ENOENT);
2371 con_flag_set(con, CON_FLAG_BACKOFF);
2372 }
2373
2374 return true;
2375 }
2376
2377 /* Finish fault handling; con->mutex must *not* be held here */
2378
2379 static void con_fault_finish(struct ceph_connection *con)
2380 {
2381 /*
2382 * in case we faulted due to authentication, invalidate our
2383 * current tickets so that we can get new ones.
2384 */
2385 if (con->auth_retry && con->ops->invalidate_authorizer) {
2386 dout("calling invalidate_authorizer()\n");
2387 con->ops->invalidate_authorizer(con);
2388 }
2389
2390 if (con->ops->fault)
2391 con->ops->fault(con);
2392 }
2393
2394 /*
2395 * Do some work on a connection. Drop a connection ref when we're done.
2396 */
2397 static void con_work(struct work_struct *work)
2398 {
2399 struct ceph_connection *con = container_of(work, struct ceph_connection,
2400 work.work);
2401 bool fault;
2402
2403 mutex_lock(&con->mutex);
2404 while (true) {
2405 int ret;
2406
2407 if ((fault = con_sock_closed(con))) {
2408 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2409 break;
2410 }
2411 if (con_backoff(con)) {
2412 dout("%s: con %p BACKOFF\n", __func__, con);
2413 break;
2414 }
2415 if (con->state == CON_STATE_STANDBY) {
2416 dout("%s: con %p STANDBY\n", __func__, con);
2417 break;
2418 }
2419 if (con->state == CON_STATE_CLOSED) {
2420 dout("%s: con %p CLOSED\n", __func__, con);
2421 BUG_ON(con->sock);
2422 break;
2423 }
2424 if (con->state == CON_STATE_PREOPEN) {
2425 dout("%s: con %p PREOPEN\n", __func__, con);
2426 BUG_ON(con->sock);
2427 }
2428
2429 ret = try_read(con);
2430 if (ret < 0) {
2431 if (ret == -EAGAIN)
2432 continue;
2433 con->error_msg = "socket error on read";
2434 fault = true;
2435 break;
2436 }
2437
2438 ret = try_write(con);
2439 if (ret < 0) {
2440 if (ret == -EAGAIN)
2441 continue;
2442 con->error_msg = "socket error on write";
2443 fault = true;
2444 }
2445
2446 break; /* If we make it to here, we're done */
2447 }
2448 if (fault)
2449 con_fault(con);
2450 mutex_unlock(&con->mutex);
2451
2452 if (fault)
2453 con_fault_finish(con);
2454
2455 con->ops->put(con);
2456 }
2457
2458 /*
2459 * Generic error/fault handler. A retry mechanism is used with
2460 * exponential backoff
2461 */
2462 static void con_fault(struct ceph_connection *con)
2463 {
2464 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2465 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2466 dout("fault %p state %lu to peer %s\n",
2467 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2468
2469 WARN_ON(con->state != CON_STATE_CONNECTING &&
2470 con->state != CON_STATE_NEGOTIATING &&
2471 con->state != CON_STATE_OPEN);
2472
2473 con_close_socket(con);
2474
2475 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2476 dout("fault on LOSSYTX channel, marking CLOSED\n");
2477 con->state = CON_STATE_CLOSED;
2478 return;
2479 }
2480
2481 if (con->in_msg) {
2482 BUG_ON(con->in_msg->con != con);
2483 con->in_msg->con = NULL;
2484 ceph_msg_put(con->in_msg);
2485 con->in_msg = NULL;
2486 con->ops->put(con);
2487 }
2488
2489 /* Requeue anything that hasn't been acked */
2490 list_splice_init(&con->out_sent, &con->out_queue);
2491
2492 /* If there are no messages queued or keepalive pending, place
2493 * the connection in a STANDBY state */
2494 if (list_empty(&con->out_queue) &&
2495 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2496 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2497 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2498 con->state = CON_STATE_STANDBY;
2499 } else {
2500 /* retry after a delay. */
2501 con->state = CON_STATE_PREOPEN;
2502 if (con->delay == 0)
2503 con->delay = BASE_DELAY_INTERVAL;
2504 else if (con->delay < MAX_DELAY_INTERVAL)
2505 con->delay *= 2;
2506 con_flag_set(con, CON_FLAG_BACKOFF);
2507 queue_con(con);
2508 }
2509 }
2510
2511
2512
2513 /*
2514 * initialize a new messenger instance
2515 */
2516 void ceph_messenger_init(struct ceph_messenger *msgr,
2517 struct ceph_entity_addr *myaddr,
2518 u32 supported_features,
2519 u32 required_features,
2520 bool nocrc)
2521 {
2522 msgr->supported_features = supported_features;
2523 msgr->required_features = required_features;
2524
2525 spin_lock_init(&msgr->global_seq_lock);
2526
2527 if (myaddr)
2528 msgr->inst.addr = *myaddr;
2529
2530 /* select a random nonce */
2531 msgr->inst.addr.type = 0;
2532 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2533 encode_my_addr(msgr);
2534 msgr->nocrc = nocrc;
2535
2536 atomic_set(&msgr->stopping, 0);
2537
2538 dout("%s %p\n", __func__, msgr);
2539 }
2540 EXPORT_SYMBOL(ceph_messenger_init);
2541
2542 static void clear_standby(struct ceph_connection *con)
2543 {
2544 /* come back from STANDBY? */
2545 if (con->state == CON_STATE_STANDBY) {
2546 dout("clear_standby %p and ++connect_seq\n", con);
2547 con->state = CON_STATE_PREOPEN;
2548 con->connect_seq++;
2549 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2550 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2551 }
2552 }
2553
2554 /*
2555 * Queue up an outgoing message on the given connection.
2556 */
2557 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2558 {
2559 /* set src+dst */
2560 msg->hdr.src = con->msgr->inst.name;
2561 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2562 msg->needs_out_seq = true;
2563
2564 mutex_lock(&con->mutex);
2565
2566 if (con->state == CON_STATE_CLOSED) {
2567 dout("con_send %p closed, dropping %p\n", con, msg);
2568 ceph_msg_put(msg);
2569 mutex_unlock(&con->mutex);
2570 return;
2571 }
2572
2573 BUG_ON(msg->con != NULL);
2574 msg->con = con->ops->get(con);
2575 BUG_ON(msg->con == NULL);
2576
2577 BUG_ON(!list_empty(&msg->list_head));
2578 list_add_tail(&msg->list_head, &con->out_queue);
2579 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2580 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2581 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2582 le32_to_cpu(msg->hdr.front_len),
2583 le32_to_cpu(msg->hdr.middle_len),
2584 le32_to_cpu(msg->hdr.data_len));
2585
2586 clear_standby(con);
2587 mutex_unlock(&con->mutex);
2588
2589 /* if there wasn't anything waiting to send before, queue
2590 * new work */
2591 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2592 queue_con(con);
2593 }
2594 EXPORT_SYMBOL(ceph_con_send);
2595
2596 /*
2597 * Revoke a message that was previously queued for send
2598 */
2599 void ceph_msg_revoke(struct ceph_msg *msg)
2600 {
2601 struct ceph_connection *con = msg->con;
2602
2603 if (!con)
2604 return; /* Message not in our possession */
2605
2606 mutex_lock(&con->mutex);
2607 if (!list_empty(&msg->list_head)) {
2608 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2609 list_del_init(&msg->list_head);
2610 BUG_ON(msg->con == NULL);
2611 msg->con->ops->put(msg->con);
2612 msg->con = NULL;
2613 msg->hdr.seq = 0;
2614
2615 ceph_msg_put(msg);
2616 }
2617 if (con->out_msg == msg) {
2618 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2619 con->out_msg = NULL;
2620 if (con->out_kvec_is_msg) {
2621 con->out_skip = con->out_kvec_bytes;
2622 con->out_kvec_is_msg = false;
2623 }
2624 msg->hdr.seq = 0;
2625
2626 ceph_msg_put(msg);
2627 }
2628 mutex_unlock(&con->mutex);
2629 }
2630
2631 /*
2632 * Revoke a message that we may be reading data into
2633 */
2634 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2635 {
2636 struct ceph_connection *con;
2637
2638 BUG_ON(msg == NULL);
2639 if (!msg->con) {
2640 dout("%s msg %p null con\n", __func__, msg);
2641
2642 return; /* Message not in our possession */
2643 }
2644
2645 con = msg->con;
2646 mutex_lock(&con->mutex);
2647 if (con->in_msg == msg) {
2648 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2649 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2650 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2651
2652 /* skip rest of message */
2653 dout("%s %p msg %p revoked\n", __func__, con, msg);
2654 con->in_base_pos = con->in_base_pos -
2655 sizeof(struct ceph_msg_header) -
2656 front_len -
2657 middle_len -
2658 data_len -
2659 sizeof(struct ceph_msg_footer);
2660 ceph_msg_put(con->in_msg);
2661 con->in_msg = NULL;
2662 con->in_tag = CEPH_MSGR_TAG_READY;
2663 con->in_seq++;
2664 } else {
2665 dout("%s %p in_msg %p msg %p no-op\n",
2666 __func__, con, con->in_msg, msg);
2667 }
2668 mutex_unlock(&con->mutex);
2669 }
2670
2671 /*
2672 * Queue a keepalive byte to ensure the tcp connection is alive.
2673 */
2674 void ceph_con_keepalive(struct ceph_connection *con)
2675 {
2676 dout("con_keepalive %p\n", con);
2677 mutex_lock(&con->mutex);
2678 clear_standby(con);
2679 mutex_unlock(&con->mutex);
2680 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
2681 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2682 queue_con(con);
2683 }
2684 EXPORT_SYMBOL(ceph_con_keepalive);
2685
2686 void ceph_msg_data_set_pages(struct ceph_msg *msg, struct page **pages,
2687 size_t length, size_t alignment)
2688 {
2689 BUG_ON(!pages);
2690 BUG_ON(!length);
2691 BUG_ON(msg->pages);
2692 BUG_ON(msg->length);
2693
2694 msg->pages = pages;
2695 msg->length = length;
2696 msg->page_alignment = alignment & ~PAGE_MASK;
2697 }
2698 EXPORT_SYMBOL(ceph_msg_data_set_pages);
2699
2700 void ceph_msg_data_set_pagelist(struct ceph_msg *msg,
2701 struct ceph_pagelist *pagelist)
2702 {
2703 BUG_ON(!pagelist);
2704 BUG_ON(!pagelist->length);
2705 BUG_ON(msg->pagelist);
2706
2707 msg->pagelist = pagelist;
2708 }
2709 EXPORT_SYMBOL(ceph_msg_data_set_pagelist);
2710
2711 void ceph_msg_data_set_bio(struct ceph_msg *msg, struct bio *bio)
2712 {
2713 BUG_ON(!bio);
2714 BUG_ON(msg->bio);
2715
2716 msg->bio = bio;
2717 }
2718 EXPORT_SYMBOL(ceph_msg_data_set_bio);
2719
2720 void ceph_msg_data_set_trail(struct ceph_msg *msg, struct ceph_pagelist *trail)
2721 {
2722 BUG_ON(!trail);
2723 BUG_ON(!trail->length);
2724 BUG_ON(msg->trail);
2725
2726 msg->trail = trail;
2727 }
2728 EXPORT_SYMBOL(ceph_msg_data_set_trail);
2729
2730 /*
2731 * construct a new message with given type, size
2732 * the new msg has a ref count of 1.
2733 */
2734 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2735 bool can_fail)
2736 {
2737 struct ceph_msg *m;
2738
2739 m = kzalloc(sizeof(*m), flags);
2740 if (m == NULL)
2741 goto out;
2742
2743 m->hdr.type = cpu_to_le16(type);
2744 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2745 m->hdr.front_len = cpu_to_le32(front_len);
2746
2747 INIT_LIST_HEAD(&m->list_head);
2748 kref_init(&m->kref);
2749
2750 /* front */
2751 m->front_max = front_len;
2752 if (front_len) {
2753 if (front_len > PAGE_CACHE_SIZE) {
2754 m->front.iov_base = __vmalloc(front_len, flags,
2755 PAGE_KERNEL);
2756 m->front_is_vmalloc = true;
2757 } else {
2758 m->front.iov_base = kmalloc(front_len, flags);
2759 }
2760 if (m->front.iov_base == NULL) {
2761 dout("ceph_msg_new can't allocate %d bytes\n",
2762 front_len);
2763 goto out2;
2764 }
2765 } else {
2766 m->front.iov_base = NULL;
2767 }
2768 m->front.iov_len = front_len;
2769
2770 dout("ceph_msg_new %p front %d\n", m, front_len);
2771 return m;
2772
2773 out2:
2774 ceph_msg_put(m);
2775 out:
2776 if (!can_fail) {
2777 pr_err("msg_new can't create type %d front %d\n", type,
2778 front_len);
2779 WARN_ON(1);
2780 } else {
2781 dout("msg_new can't create type %d front %d\n", type,
2782 front_len);
2783 }
2784 return NULL;
2785 }
2786 EXPORT_SYMBOL(ceph_msg_new);
2787
2788 /*
2789 * Allocate "middle" portion of a message, if it is needed and wasn't
2790 * allocated by alloc_msg. This allows us to read a small fixed-size
2791 * per-type header in the front and then gracefully fail (i.e.,
2792 * propagate the error to the caller based on info in the front) when
2793 * the middle is too large.
2794 */
2795 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2796 {
2797 int type = le16_to_cpu(msg->hdr.type);
2798 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2799
2800 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2801 ceph_msg_type_name(type), middle_len);
2802 BUG_ON(!middle_len);
2803 BUG_ON(msg->middle);
2804
2805 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2806 if (!msg->middle)
2807 return -ENOMEM;
2808 return 0;
2809 }
2810
2811 /*
2812 * Allocate a message for receiving an incoming message on a
2813 * connection, and save the result in con->in_msg. Uses the
2814 * connection's private alloc_msg op if available.
2815 *
2816 * Returns 0 on success, or a negative error code.
2817 *
2818 * On success, if we set *skip = 1:
2819 * - the next message should be skipped and ignored.
2820 * - con->in_msg == NULL
2821 * or if we set *skip = 0:
2822 * - con->in_msg is non-null.
2823 * On error (ENOMEM, EAGAIN, ...),
2824 * - con->in_msg == NULL
2825 */
2826 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2827 {
2828 struct ceph_msg_header *hdr = &con->in_hdr;
2829 int middle_len = le32_to_cpu(hdr->middle_len);
2830 struct ceph_msg *msg;
2831 int ret = 0;
2832
2833 BUG_ON(con->in_msg != NULL);
2834 BUG_ON(!con->ops->alloc_msg);
2835
2836 mutex_unlock(&con->mutex);
2837 msg = con->ops->alloc_msg(con, hdr, skip);
2838 mutex_lock(&con->mutex);
2839 if (con->state != CON_STATE_OPEN) {
2840 if (msg)
2841 ceph_msg_put(msg);
2842 return -EAGAIN;
2843 }
2844 if (msg) {
2845 BUG_ON(*skip);
2846 con->in_msg = msg;
2847 con->in_msg->con = con->ops->get(con);
2848 BUG_ON(con->in_msg->con == NULL);
2849 } else {
2850 /*
2851 * Null message pointer means either we should skip
2852 * this message or we couldn't allocate memory. The
2853 * former is not an error.
2854 */
2855 if (*skip)
2856 return 0;
2857 con->error_msg = "error allocating memory for incoming message";
2858
2859 return -ENOMEM;
2860 }
2861 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2862
2863 if (middle_len && !con->in_msg->middle) {
2864 ret = ceph_alloc_middle(con, con->in_msg);
2865 if (ret < 0) {
2866 ceph_msg_put(con->in_msg);
2867 con->in_msg = NULL;
2868 }
2869 }
2870
2871 return ret;
2872 }
2873
2874
2875 /*
2876 * Free a generically kmalloc'd message.
2877 */
2878 void ceph_msg_kfree(struct ceph_msg *m)
2879 {
2880 dout("msg_kfree %p\n", m);
2881 if (m->front_is_vmalloc)
2882 vfree(m->front.iov_base);
2883 else
2884 kfree(m->front.iov_base);
2885 kfree(m);
2886 }
2887
2888 /*
2889 * Drop a msg ref. Destroy as needed.
2890 */
2891 void ceph_msg_last_put(struct kref *kref)
2892 {
2893 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2894
2895 dout("ceph_msg_put last one on %p\n", m);
2896 WARN_ON(!list_empty(&m->list_head));
2897
2898 /* drop middle, data, if any */
2899 if (m->middle) {
2900 ceph_buffer_put(m->middle);
2901 m->middle = NULL;
2902 }
2903 m->length = 0;
2904 m->pages = NULL;
2905
2906 if (m->pagelist) {
2907 ceph_pagelist_release(m->pagelist);
2908 kfree(m->pagelist);
2909 m->pagelist = NULL;
2910 }
2911
2912 m->trail = NULL;
2913
2914 if (m->pool)
2915 ceph_msgpool_put(m->pool, m);
2916 else
2917 ceph_msg_kfree(m);
2918 }
2919 EXPORT_SYMBOL(ceph_msg_last_put);
2920
2921 void ceph_msg_dump(struct ceph_msg *msg)
2922 {
2923 pr_debug("msg_dump %p (front_max %d length %zd)\n", msg,
2924 msg->front_max, msg->length);
2925 print_hex_dump(KERN_DEBUG, "header: ",
2926 DUMP_PREFIX_OFFSET, 16, 1,
2927 &msg->hdr, sizeof(msg->hdr), true);
2928 print_hex_dump(KERN_DEBUG, " front: ",
2929 DUMP_PREFIX_OFFSET, 16, 1,
2930 msg->front.iov_base, msg->front.iov_len, true);
2931 if (msg->middle)
2932 print_hex_dump(KERN_DEBUG, "middle: ",
2933 DUMP_PREFIX_OFFSET, 16, 1,
2934 msg->middle->vec.iov_base,
2935 msg->middle->vec.iov_len, true);
2936 print_hex_dump(KERN_DEBUG, "footer: ",
2937 DUMP_PREFIX_OFFSET, 16, 1,
2938 &msg->footer, sizeof(msg->footer), true);
2939 }
2940 EXPORT_SYMBOL(ceph_msg_dump);