]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ceph/messenger.c
Merge branch 'work.sendmsg' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-bionic-kernel.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/nsproxy.h>
10 #include <linux/slab.h>
11 #include <linux/socket.h>
12 #include <linux/string.h>
13 #ifdef CONFIG_BLOCK
14 #include <linux/bio.h>
15 #endif /* CONFIG_BLOCK */
16 #include <linux/dns_resolver.h>
17 #include <net/tcp.h>
18
19 #include <linux/ceph/ceph_features.h>
20 #include <linux/ceph/libceph.h>
21 #include <linux/ceph/messenger.h>
22 #include <linux/ceph/decode.h>
23 #include <linux/ceph/pagelist.h>
24 #include <linux/export.h>
25
26 /*
27 * Ceph uses the messenger to exchange ceph_msg messages with other
28 * hosts in the system. The messenger provides ordered and reliable
29 * delivery. We tolerate TCP disconnects by reconnecting (with
30 * exponential backoff) in the case of a fault (disconnection, bad
31 * crc, protocol error). Acks allow sent messages to be discarded by
32 * the sender.
33 */
34
35 /*
36 * We track the state of the socket on a given connection using
37 * values defined below. The transition to a new socket state is
38 * handled by a function which verifies we aren't coming from an
39 * unexpected state.
40 *
41 * --------
42 * | NEW* | transient initial state
43 * --------
44 * | con_sock_state_init()
45 * v
46 * ----------
47 * | CLOSED | initialized, but no socket (and no
48 * ---------- TCP connection)
49 * ^ \
50 * | \ con_sock_state_connecting()
51 * | ----------------------
52 * | \
53 * + con_sock_state_closed() \
54 * |+--------------------------- \
55 * | \ \ \
56 * | ----------- \ \
57 * | | CLOSING | socket event; \ \
58 * | ----------- await close \ \
59 * | ^ \ |
60 * | | \ |
61 * | + con_sock_state_closing() \ |
62 * | / \ | |
63 * | / --------------- | |
64 * | / \ v v
65 * | / --------------
66 * | / -----------------| CONNECTING | socket created, TCP
67 * | | / -------------- connect initiated
68 * | | | con_sock_state_connected()
69 * | | v
70 * -------------
71 * | CONNECTED | TCP connection established
72 * -------------
73 *
74 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
75 */
76
77 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
78 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
79 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
80 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
81 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
82
83 /*
84 * connection states
85 */
86 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
87 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
88 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
89 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
90 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
91 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
92
93 /*
94 * ceph_connection flag bits
95 */
96 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
97 * messages on errors */
98 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
99 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
100 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
101 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
102
103 static bool con_flag_valid(unsigned long con_flag)
104 {
105 switch (con_flag) {
106 case CON_FLAG_LOSSYTX:
107 case CON_FLAG_KEEPALIVE_PENDING:
108 case CON_FLAG_WRITE_PENDING:
109 case CON_FLAG_SOCK_CLOSED:
110 case CON_FLAG_BACKOFF:
111 return true;
112 default:
113 return false;
114 }
115 }
116
117 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
118 {
119 BUG_ON(!con_flag_valid(con_flag));
120
121 clear_bit(con_flag, &con->flags);
122 }
123
124 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
125 {
126 BUG_ON(!con_flag_valid(con_flag));
127
128 set_bit(con_flag, &con->flags);
129 }
130
131 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
132 {
133 BUG_ON(!con_flag_valid(con_flag));
134
135 return test_bit(con_flag, &con->flags);
136 }
137
138 static bool con_flag_test_and_clear(struct ceph_connection *con,
139 unsigned long con_flag)
140 {
141 BUG_ON(!con_flag_valid(con_flag));
142
143 return test_and_clear_bit(con_flag, &con->flags);
144 }
145
146 static bool con_flag_test_and_set(struct ceph_connection *con,
147 unsigned long con_flag)
148 {
149 BUG_ON(!con_flag_valid(con_flag));
150
151 return test_and_set_bit(con_flag, &con->flags);
152 }
153
154 /* Slab caches for frequently-allocated structures */
155
156 static struct kmem_cache *ceph_msg_cache;
157 static struct kmem_cache *ceph_msg_data_cache;
158
159 /* static tag bytes (protocol control messages) */
160 static char tag_msg = CEPH_MSGR_TAG_MSG;
161 static char tag_ack = CEPH_MSGR_TAG_ACK;
162 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
163 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
164
165 #ifdef CONFIG_LOCKDEP
166 static struct lock_class_key socket_class;
167 #endif
168
169 /*
170 * When skipping (ignoring) a block of input we read it into a "skip
171 * buffer," which is this many bytes in size.
172 */
173 #define SKIP_BUF_SIZE 1024
174
175 static void queue_con(struct ceph_connection *con);
176 static void cancel_con(struct ceph_connection *con);
177 static void ceph_con_workfn(struct work_struct *);
178 static void con_fault(struct ceph_connection *con);
179
180 /*
181 * Nicely render a sockaddr as a string. An array of formatted
182 * strings is used, to approximate reentrancy.
183 */
184 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
185 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
188
189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190 static atomic_t addr_str_seq = ATOMIC_INIT(0);
191
192 static struct page *zero_page; /* used in certain error cases */
193
194 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
195 {
196 int i;
197 char *s;
198 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
200
201 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202 s = addr_str[i];
203
204 switch (ss->ss_family) {
205 case AF_INET:
206 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207 ntohs(in4->sin_port));
208 break;
209
210 case AF_INET6:
211 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212 ntohs(in6->sin6_port));
213 break;
214
215 default:
216 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217 ss->ss_family);
218 }
219
220 return s;
221 }
222 EXPORT_SYMBOL(ceph_pr_addr);
223
224 static void encode_my_addr(struct ceph_messenger *msgr)
225 {
226 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227 ceph_encode_addr(&msgr->my_enc_addr);
228 }
229
230 /*
231 * work queue for all reading and writing to/from the socket.
232 */
233 static struct workqueue_struct *ceph_msgr_wq;
234
235 static int ceph_msgr_slab_init(void)
236 {
237 BUG_ON(ceph_msg_cache);
238 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
239 if (!ceph_msg_cache)
240 return -ENOMEM;
241
242 BUG_ON(ceph_msg_data_cache);
243 ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
244 if (ceph_msg_data_cache)
245 return 0;
246
247 kmem_cache_destroy(ceph_msg_cache);
248 ceph_msg_cache = NULL;
249
250 return -ENOMEM;
251 }
252
253 static void ceph_msgr_slab_exit(void)
254 {
255 BUG_ON(!ceph_msg_data_cache);
256 kmem_cache_destroy(ceph_msg_data_cache);
257 ceph_msg_data_cache = NULL;
258
259 BUG_ON(!ceph_msg_cache);
260 kmem_cache_destroy(ceph_msg_cache);
261 ceph_msg_cache = NULL;
262 }
263
264 static void _ceph_msgr_exit(void)
265 {
266 if (ceph_msgr_wq) {
267 destroy_workqueue(ceph_msgr_wq);
268 ceph_msgr_wq = NULL;
269 }
270
271 BUG_ON(zero_page == NULL);
272 put_page(zero_page);
273 zero_page = NULL;
274
275 ceph_msgr_slab_exit();
276 }
277
278 int ceph_msgr_init(void)
279 {
280 if (ceph_msgr_slab_init())
281 return -ENOMEM;
282
283 BUG_ON(zero_page != NULL);
284 zero_page = ZERO_PAGE(0);
285 get_page(zero_page);
286
287 /*
288 * The number of active work items is limited by the number of
289 * connections, so leave @max_active at default.
290 */
291 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
292 if (ceph_msgr_wq)
293 return 0;
294
295 pr_err("msgr_init failed to create workqueue\n");
296 _ceph_msgr_exit();
297
298 return -ENOMEM;
299 }
300 EXPORT_SYMBOL(ceph_msgr_init);
301
302 void ceph_msgr_exit(void)
303 {
304 BUG_ON(ceph_msgr_wq == NULL);
305
306 _ceph_msgr_exit();
307 }
308 EXPORT_SYMBOL(ceph_msgr_exit);
309
310 void ceph_msgr_flush(void)
311 {
312 flush_workqueue(ceph_msgr_wq);
313 }
314 EXPORT_SYMBOL(ceph_msgr_flush);
315
316 /* Connection socket state transition functions */
317
318 static void con_sock_state_init(struct ceph_connection *con)
319 {
320 int old_state;
321
322 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
323 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
324 printk("%s: unexpected old state %d\n", __func__, old_state);
325 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
326 CON_SOCK_STATE_CLOSED);
327 }
328
329 static void con_sock_state_connecting(struct ceph_connection *con)
330 {
331 int old_state;
332
333 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
334 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
335 printk("%s: unexpected old state %d\n", __func__, old_state);
336 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
337 CON_SOCK_STATE_CONNECTING);
338 }
339
340 static void con_sock_state_connected(struct ceph_connection *con)
341 {
342 int old_state;
343
344 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
345 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
346 printk("%s: unexpected old state %d\n", __func__, old_state);
347 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
348 CON_SOCK_STATE_CONNECTED);
349 }
350
351 static void con_sock_state_closing(struct ceph_connection *con)
352 {
353 int old_state;
354
355 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
356 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
357 old_state != CON_SOCK_STATE_CONNECTED &&
358 old_state != CON_SOCK_STATE_CLOSING))
359 printk("%s: unexpected old state %d\n", __func__, old_state);
360 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
361 CON_SOCK_STATE_CLOSING);
362 }
363
364 static void con_sock_state_closed(struct ceph_connection *con)
365 {
366 int old_state;
367
368 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
369 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
370 old_state != CON_SOCK_STATE_CLOSING &&
371 old_state != CON_SOCK_STATE_CONNECTING &&
372 old_state != CON_SOCK_STATE_CLOSED))
373 printk("%s: unexpected old state %d\n", __func__, old_state);
374 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
375 CON_SOCK_STATE_CLOSED);
376 }
377
378 /*
379 * socket callback functions
380 */
381
382 /* data available on socket, or listen socket received a connect */
383 static void ceph_sock_data_ready(struct sock *sk)
384 {
385 struct ceph_connection *con = sk->sk_user_data;
386 if (atomic_read(&con->msgr->stopping)) {
387 return;
388 }
389
390 if (sk->sk_state != TCP_CLOSE_WAIT) {
391 dout("%s on %p state = %lu, queueing work\n", __func__,
392 con, con->state);
393 queue_con(con);
394 }
395 }
396
397 /* socket has buffer space for writing */
398 static void ceph_sock_write_space(struct sock *sk)
399 {
400 struct ceph_connection *con = sk->sk_user_data;
401
402 /* only queue to workqueue if there is data we want to write,
403 * and there is sufficient space in the socket buffer to accept
404 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
405 * doesn't get called again until try_write() fills the socket
406 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
407 * and net/core/stream.c:sk_stream_write_space().
408 */
409 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
410 if (sk_stream_is_writeable(sk)) {
411 dout("%s %p queueing write work\n", __func__, con);
412 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
413 queue_con(con);
414 }
415 } else {
416 dout("%s %p nothing to write\n", __func__, con);
417 }
418 }
419
420 /* socket's state has changed */
421 static void ceph_sock_state_change(struct sock *sk)
422 {
423 struct ceph_connection *con = sk->sk_user_data;
424
425 dout("%s %p state = %lu sk_state = %u\n", __func__,
426 con, con->state, sk->sk_state);
427
428 switch (sk->sk_state) {
429 case TCP_CLOSE:
430 dout("%s TCP_CLOSE\n", __func__);
431 case TCP_CLOSE_WAIT:
432 dout("%s TCP_CLOSE_WAIT\n", __func__);
433 con_sock_state_closing(con);
434 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
435 queue_con(con);
436 break;
437 case TCP_ESTABLISHED:
438 dout("%s TCP_ESTABLISHED\n", __func__);
439 con_sock_state_connected(con);
440 queue_con(con);
441 break;
442 default: /* Everything else is uninteresting */
443 break;
444 }
445 }
446
447 /*
448 * set up socket callbacks
449 */
450 static void set_sock_callbacks(struct socket *sock,
451 struct ceph_connection *con)
452 {
453 struct sock *sk = sock->sk;
454 sk->sk_user_data = con;
455 sk->sk_data_ready = ceph_sock_data_ready;
456 sk->sk_write_space = ceph_sock_write_space;
457 sk->sk_state_change = ceph_sock_state_change;
458 }
459
460
461 /*
462 * socket helpers
463 */
464
465 /*
466 * initiate connection to a remote socket.
467 */
468 static int ceph_tcp_connect(struct ceph_connection *con)
469 {
470 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
471 struct socket *sock;
472 int ret;
473
474 BUG_ON(con->sock);
475 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
476 SOCK_STREAM, IPPROTO_TCP, &sock);
477 if (ret)
478 return ret;
479 sock->sk->sk_allocation = GFP_NOFS;
480
481 #ifdef CONFIG_LOCKDEP
482 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
483 #endif
484
485 set_sock_callbacks(sock, con);
486
487 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
488
489 con_sock_state_connecting(con);
490 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
491 O_NONBLOCK);
492 if (ret == -EINPROGRESS) {
493 dout("connect %s EINPROGRESS sk_state = %u\n",
494 ceph_pr_addr(&con->peer_addr.in_addr),
495 sock->sk->sk_state);
496 } else if (ret < 0) {
497 pr_err("connect %s error %d\n",
498 ceph_pr_addr(&con->peer_addr.in_addr), ret);
499 sock_release(sock);
500 return ret;
501 }
502
503 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
504 int optval = 1;
505
506 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
507 (char *)&optval, sizeof(optval));
508 if (ret)
509 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
510 ret);
511 }
512
513 con->sock = sock;
514 return 0;
515 }
516
517 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
518 {
519 struct kvec iov = {buf, len};
520 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
521 int r;
522
523 iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
524 r = sock_recvmsg(sock, &msg, msg.msg_flags);
525 if (r == -EAGAIN)
526 r = 0;
527 return r;
528 }
529
530 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
531 int page_offset, size_t length)
532 {
533 struct bio_vec bvec = {
534 .bv_page = page,
535 .bv_offset = page_offset,
536 .bv_len = length
537 };
538 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
539 int r;
540
541 BUG_ON(page_offset + length > PAGE_SIZE);
542 iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
543 r = sock_recvmsg(sock, &msg, msg.msg_flags);
544 if (r == -EAGAIN)
545 r = 0;
546 return r;
547 }
548
549 /*
550 * write something. @more is true if caller will be sending more data
551 * shortly.
552 */
553 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
554 size_t kvlen, size_t len, int more)
555 {
556 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
557 int r;
558
559 if (more)
560 msg.msg_flags |= MSG_MORE;
561 else
562 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
563
564 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
565 if (r == -EAGAIN)
566 r = 0;
567 return r;
568 }
569
570 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
571 int offset, size_t size, bool more)
572 {
573 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
574 int ret;
575
576 ret = kernel_sendpage(sock, page, offset, size, flags);
577 if (ret == -EAGAIN)
578 ret = 0;
579
580 return ret;
581 }
582
583 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
584 int offset, size_t size, bool more)
585 {
586 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
587 struct bio_vec bvec;
588 int ret;
589
590 /* sendpage cannot properly handle pages with page_count == 0,
591 * we need to fallback to sendmsg if that's the case */
592 if (page_count(page) >= 1)
593 return __ceph_tcp_sendpage(sock, page, offset, size, more);
594
595 bvec.bv_page = page;
596 bvec.bv_offset = offset;
597 bvec.bv_len = size;
598
599 if (more)
600 msg.msg_flags |= MSG_MORE;
601 else
602 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
603
604 iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
605 ret = sock_sendmsg(sock, &msg);
606 if (ret == -EAGAIN)
607 ret = 0;
608
609 return ret;
610 }
611
612 /*
613 * Shutdown/close the socket for the given connection.
614 */
615 static int con_close_socket(struct ceph_connection *con)
616 {
617 int rc = 0;
618
619 dout("con_close_socket on %p sock %p\n", con, con->sock);
620 if (con->sock) {
621 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
622 sock_release(con->sock);
623 con->sock = NULL;
624 }
625
626 /*
627 * Forcibly clear the SOCK_CLOSED flag. It gets set
628 * independent of the connection mutex, and we could have
629 * received a socket close event before we had the chance to
630 * shut the socket down.
631 */
632 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
633
634 con_sock_state_closed(con);
635 return rc;
636 }
637
638 /*
639 * Reset a connection. Discard all incoming and outgoing messages
640 * and clear *_seq state.
641 */
642 static void ceph_msg_remove(struct ceph_msg *msg)
643 {
644 list_del_init(&msg->list_head);
645
646 ceph_msg_put(msg);
647 }
648 static void ceph_msg_remove_list(struct list_head *head)
649 {
650 while (!list_empty(head)) {
651 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
652 list_head);
653 ceph_msg_remove(msg);
654 }
655 }
656
657 static void reset_connection(struct ceph_connection *con)
658 {
659 /* reset connection, out_queue, msg_ and connect_seq */
660 /* discard existing out_queue and msg_seq */
661 dout("reset_connection %p\n", con);
662 ceph_msg_remove_list(&con->out_queue);
663 ceph_msg_remove_list(&con->out_sent);
664
665 if (con->in_msg) {
666 BUG_ON(con->in_msg->con != con);
667 ceph_msg_put(con->in_msg);
668 con->in_msg = NULL;
669 }
670
671 con->connect_seq = 0;
672 con->out_seq = 0;
673 if (con->out_msg) {
674 BUG_ON(con->out_msg->con != con);
675 ceph_msg_put(con->out_msg);
676 con->out_msg = NULL;
677 }
678 con->in_seq = 0;
679 con->in_seq_acked = 0;
680
681 con->out_skip = 0;
682 }
683
684 /*
685 * mark a peer down. drop any open connections.
686 */
687 void ceph_con_close(struct ceph_connection *con)
688 {
689 mutex_lock(&con->mutex);
690 dout("con_close %p peer %s\n", con,
691 ceph_pr_addr(&con->peer_addr.in_addr));
692 con->state = CON_STATE_CLOSED;
693
694 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
695 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
696 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
697 con_flag_clear(con, CON_FLAG_BACKOFF);
698
699 reset_connection(con);
700 con->peer_global_seq = 0;
701 cancel_con(con);
702 con_close_socket(con);
703 mutex_unlock(&con->mutex);
704 }
705 EXPORT_SYMBOL(ceph_con_close);
706
707 /*
708 * Reopen a closed connection, with a new peer address.
709 */
710 void ceph_con_open(struct ceph_connection *con,
711 __u8 entity_type, __u64 entity_num,
712 struct ceph_entity_addr *addr)
713 {
714 mutex_lock(&con->mutex);
715 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
716
717 WARN_ON(con->state != CON_STATE_CLOSED);
718 con->state = CON_STATE_PREOPEN;
719
720 con->peer_name.type = (__u8) entity_type;
721 con->peer_name.num = cpu_to_le64(entity_num);
722
723 memcpy(&con->peer_addr, addr, sizeof(*addr));
724 con->delay = 0; /* reset backoff memory */
725 mutex_unlock(&con->mutex);
726 queue_con(con);
727 }
728 EXPORT_SYMBOL(ceph_con_open);
729
730 /*
731 * return true if this connection ever successfully opened
732 */
733 bool ceph_con_opened(struct ceph_connection *con)
734 {
735 return con->connect_seq > 0;
736 }
737
738 /*
739 * initialize a new connection.
740 */
741 void ceph_con_init(struct ceph_connection *con, void *private,
742 const struct ceph_connection_operations *ops,
743 struct ceph_messenger *msgr)
744 {
745 dout("con_init %p\n", con);
746 memset(con, 0, sizeof(*con));
747 con->private = private;
748 con->ops = ops;
749 con->msgr = msgr;
750
751 con_sock_state_init(con);
752
753 mutex_init(&con->mutex);
754 INIT_LIST_HEAD(&con->out_queue);
755 INIT_LIST_HEAD(&con->out_sent);
756 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
757
758 con->state = CON_STATE_CLOSED;
759 }
760 EXPORT_SYMBOL(ceph_con_init);
761
762
763 /*
764 * We maintain a global counter to order connection attempts. Get
765 * a unique seq greater than @gt.
766 */
767 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
768 {
769 u32 ret;
770
771 spin_lock(&msgr->global_seq_lock);
772 if (msgr->global_seq < gt)
773 msgr->global_seq = gt;
774 ret = ++msgr->global_seq;
775 spin_unlock(&msgr->global_seq_lock);
776 return ret;
777 }
778
779 static void con_out_kvec_reset(struct ceph_connection *con)
780 {
781 BUG_ON(con->out_skip);
782
783 con->out_kvec_left = 0;
784 con->out_kvec_bytes = 0;
785 con->out_kvec_cur = &con->out_kvec[0];
786 }
787
788 static void con_out_kvec_add(struct ceph_connection *con,
789 size_t size, void *data)
790 {
791 int index = con->out_kvec_left;
792
793 BUG_ON(con->out_skip);
794 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
795
796 con->out_kvec[index].iov_len = size;
797 con->out_kvec[index].iov_base = data;
798 con->out_kvec_left++;
799 con->out_kvec_bytes += size;
800 }
801
802 /*
803 * Chop off a kvec from the end. Return residual number of bytes for
804 * that kvec, i.e. how many bytes would have been written if the kvec
805 * hadn't been nuked.
806 */
807 static int con_out_kvec_skip(struct ceph_connection *con)
808 {
809 int off = con->out_kvec_cur - con->out_kvec;
810 int skip = 0;
811
812 if (con->out_kvec_bytes > 0) {
813 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
814 BUG_ON(con->out_kvec_bytes < skip);
815 BUG_ON(!con->out_kvec_left);
816 con->out_kvec_bytes -= skip;
817 con->out_kvec_left--;
818 }
819
820 return skip;
821 }
822
823 #ifdef CONFIG_BLOCK
824
825 /*
826 * For a bio data item, a piece is whatever remains of the next
827 * entry in the current bio iovec, or the first entry in the next
828 * bio in the list.
829 */
830 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
831 size_t length)
832 {
833 struct ceph_msg_data *data = cursor->data;
834 struct bio *bio;
835
836 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
837
838 bio = data->bio;
839 BUG_ON(!bio);
840
841 cursor->resid = min(length, data->bio_length);
842 cursor->bio = bio;
843 cursor->bvec_iter = bio->bi_iter;
844 cursor->last_piece =
845 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
846 }
847
848 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
849 size_t *page_offset,
850 size_t *length)
851 {
852 struct ceph_msg_data *data = cursor->data;
853 struct bio *bio;
854 struct bio_vec bio_vec;
855
856 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
857
858 bio = cursor->bio;
859 BUG_ON(!bio);
860
861 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
862
863 *page_offset = (size_t) bio_vec.bv_offset;
864 BUG_ON(*page_offset >= PAGE_SIZE);
865 if (cursor->last_piece) /* pagelist offset is always 0 */
866 *length = cursor->resid;
867 else
868 *length = (size_t) bio_vec.bv_len;
869 BUG_ON(*length > cursor->resid);
870 BUG_ON(*page_offset + *length > PAGE_SIZE);
871
872 return bio_vec.bv_page;
873 }
874
875 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
876 size_t bytes)
877 {
878 struct bio *bio;
879 struct bio_vec bio_vec;
880
881 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
882
883 bio = cursor->bio;
884 BUG_ON(!bio);
885
886 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
887
888 /* Advance the cursor offset */
889
890 BUG_ON(cursor->resid < bytes);
891 cursor->resid -= bytes;
892
893 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
894
895 if (bytes < bio_vec.bv_len)
896 return false; /* more bytes to process in this segment */
897
898 /* Move on to the next segment, and possibly the next bio */
899
900 if (!cursor->bvec_iter.bi_size) {
901 bio = bio->bi_next;
902 cursor->bio = bio;
903 if (bio)
904 cursor->bvec_iter = bio->bi_iter;
905 else
906 memset(&cursor->bvec_iter, 0,
907 sizeof(cursor->bvec_iter));
908 }
909
910 if (!cursor->last_piece) {
911 BUG_ON(!cursor->resid);
912 BUG_ON(!bio);
913 /* A short read is OK, so use <= rather than == */
914 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
915 cursor->last_piece = true;
916 }
917
918 return true;
919 }
920 #endif /* CONFIG_BLOCK */
921
922 /*
923 * For a page array, a piece comes from the first page in the array
924 * that has not already been fully consumed.
925 */
926 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
927 size_t length)
928 {
929 struct ceph_msg_data *data = cursor->data;
930 int page_count;
931
932 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
933
934 BUG_ON(!data->pages);
935 BUG_ON(!data->length);
936
937 cursor->resid = min(length, data->length);
938 page_count = calc_pages_for(data->alignment, (u64)data->length);
939 cursor->page_offset = data->alignment & ~PAGE_MASK;
940 cursor->page_index = 0;
941 BUG_ON(page_count > (int)USHRT_MAX);
942 cursor->page_count = (unsigned short)page_count;
943 BUG_ON(length > SIZE_MAX - cursor->page_offset);
944 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
945 }
946
947 static struct page *
948 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
949 size_t *page_offset, size_t *length)
950 {
951 struct ceph_msg_data *data = cursor->data;
952
953 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
954
955 BUG_ON(cursor->page_index >= cursor->page_count);
956 BUG_ON(cursor->page_offset >= PAGE_SIZE);
957
958 *page_offset = cursor->page_offset;
959 if (cursor->last_piece)
960 *length = cursor->resid;
961 else
962 *length = PAGE_SIZE - *page_offset;
963
964 return data->pages[cursor->page_index];
965 }
966
967 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
968 size_t bytes)
969 {
970 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
971
972 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
973
974 /* Advance the cursor page offset */
975
976 cursor->resid -= bytes;
977 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
978 if (!bytes || cursor->page_offset)
979 return false; /* more bytes to process in the current page */
980
981 if (!cursor->resid)
982 return false; /* no more data */
983
984 /* Move on to the next page; offset is already at 0 */
985
986 BUG_ON(cursor->page_index >= cursor->page_count);
987 cursor->page_index++;
988 cursor->last_piece = cursor->resid <= PAGE_SIZE;
989
990 return true;
991 }
992
993 /*
994 * For a pagelist, a piece is whatever remains to be consumed in the
995 * first page in the list, or the front of the next page.
996 */
997 static void
998 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
999 size_t length)
1000 {
1001 struct ceph_msg_data *data = cursor->data;
1002 struct ceph_pagelist *pagelist;
1003 struct page *page;
1004
1005 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1006
1007 pagelist = data->pagelist;
1008 BUG_ON(!pagelist);
1009
1010 if (!length)
1011 return; /* pagelist can be assigned but empty */
1012
1013 BUG_ON(list_empty(&pagelist->head));
1014 page = list_first_entry(&pagelist->head, struct page, lru);
1015
1016 cursor->resid = min(length, pagelist->length);
1017 cursor->page = page;
1018 cursor->offset = 0;
1019 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1020 }
1021
1022 static struct page *
1023 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1024 size_t *page_offset, size_t *length)
1025 {
1026 struct ceph_msg_data *data = cursor->data;
1027 struct ceph_pagelist *pagelist;
1028
1029 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1030
1031 pagelist = data->pagelist;
1032 BUG_ON(!pagelist);
1033
1034 BUG_ON(!cursor->page);
1035 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1036
1037 /* offset of first page in pagelist is always 0 */
1038 *page_offset = cursor->offset & ~PAGE_MASK;
1039 if (cursor->last_piece)
1040 *length = cursor->resid;
1041 else
1042 *length = PAGE_SIZE - *page_offset;
1043
1044 return cursor->page;
1045 }
1046
1047 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1048 size_t bytes)
1049 {
1050 struct ceph_msg_data *data = cursor->data;
1051 struct ceph_pagelist *pagelist;
1052
1053 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1054
1055 pagelist = data->pagelist;
1056 BUG_ON(!pagelist);
1057
1058 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1059 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1060
1061 /* Advance the cursor offset */
1062
1063 cursor->resid -= bytes;
1064 cursor->offset += bytes;
1065 /* offset of first page in pagelist is always 0 */
1066 if (!bytes || cursor->offset & ~PAGE_MASK)
1067 return false; /* more bytes to process in the current page */
1068
1069 if (!cursor->resid)
1070 return false; /* no more data */
1071
1072 /* Move on to the next page */
1073
1074 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1075 cursor->page = list_next_entry(cursor->page, lru);
1076 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1077
1078 return true;
1079 }
1080
1081 /*
1082 * Message data is handled (sent or received) in pieces, where each
1083 * piece resides on a single page. The network layer might not
1084 * consume an entire piece at once. A data item's cursor keeps
1085 * track of which piece is next to process and how much remains to
1086 * be processed in that piece. It also tracks whether the current
1087 * piece is the last one in the data item.
1088 */
1089 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1090 {
1091 size_t length = cursor->total_resid;
1092
1093 switch (cursor->data->type) {
1094 case CEPH_MSG_DATA_PAGELIST:
1095 ceph_msg_data_pagelist_cursor_init(cursor, length);
1096 break;
1097 case CEPH_MSG_DATA_PAGES:
1098 ceph_msg_data_pages_cursor_init(cursor, length);
1099 break;
1100 #ifdef CONFIG_BLOCK
1101 case CEPH_MSG_DATA_BIO:
1102 ceph_msg_data_bio_cursor_init(cursor, length);
1103 break;
1104 #endif /* CONFIG_BLOCK */
1105 case CEPH_MSG_DATA_NONE:
1106 default:
1107 /* BUG(); */
1108 break;
1109 }
1110 cursor->need_crc = true;
1111 }
1112
1113 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1114 {
1115 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1116 struct ceph_msg_data *data;
1117
1118 BUG_ON(!length);
1119 BUG_ON(length > msg->data_length);
1120 BUG_ON(list_empty(&msg->data));
1121
1122 cursor->data_head = &msg->data;
1123 cursor->total_resid = length;
1124 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1125 cursor->data = data;
1126
1127 __ceph_msg_data_cursor_init(cursor);
1128 }
1129
1130 /*
1131 * Return the page containing the next piece to process for a given
1132 * data item, and supply the page offset and length of that piece.
1133 * Indicate whether this is the last piece in this data item.
1134 */
1135 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1136 size_t *page_offset, size_t *length,
1137 bool *last_piece)
1138 {
1139 struct page *page;
1140
1141 switch (cursor->data->type) {
1142 case CEPH_MSG_DATA_PAGELIST:
1143 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1144 break;
1145 case CEPH_MSG_DATA_PAGES:
1146 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1147 break;
1148 #ifdef CONFIG_BLOCK
1149 case CEPH_MSG_DATA_BIO:
1150 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1151 break;
1152 #endif /* CONFIG_BLOCK */
1153 case CEPH_MSG_DATA_NONE:
1154 default:
1155 page = NULL;
1156 break;
1157 }
1158 BUG_ON(!page);
1159 BUG_ON(*page_offset + *length > PAGE_SIZE);
1160 BUG_ON(!*length);
1161 if (last_piece)
1162 *last_piece = cursor->last_piece;
1163
1164 return page;
1165 }
1166
1167 /*
1168 * Returns true if the result moves the cursor on to the next piece
1169 * of the data item.
1170 */
1171 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1172 size_t bytes)
1173 {
1174 bool new_piece;
1175
1176 BUG_ON(bytes > cursor->resid);
1177 switch (cursor->data->type) {
1178 case CEPH_MSG_DATA_PAGELIST:
1179 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1180 break;
1181 case CEPH_MSG_DATA_PAGES:
1182 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1183 break;
1184 #ifdef CONFIG_BLOCK
1185 case CEPH_MSG_DATA_BIO:
1186 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1187 break;
1188 #endif /* CONFIG_BLOCK */
1189 case CEPH_MSG_DATA_NONE:
1190 default:
1191 BUG();
1192 break;
1193 }
1194 cursor->total_resid -= bytes;
1195
1196 if (!cursor->resid && cursor->total_resid) {
1197 WARN_ON(!cursor->last_piece);
1198 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1199 cursor->data = list_next_entry(cursor->data, links);
1200 __ceph_msg_data_cursor_init(cursor);
1201 new_piece = true;
1202 }
1203 cursor->need_crc = new_piece;
1204
1205 return new_piece;
1206 }
1207
1208 static size_t sizeof_footer(struct ceph_connection *con)
1209 {
1210 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1211 sizeof(struct ceph_msg_footer) :
1212 sizeof(struct ceph_msg_footer_old);
1213 }
1214
1215 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1216 {
1217 BUG_ON(!msg);
1218 BUG_ON(!data_len);
1219
1220 /* Initialize data cursor */
1221
1222 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1223 }
1224
1225 /*
1226 * Prepare footer for currently outgoing message, and finish things
1227 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1228 */
1229 static void prepare_write_message_footer(struct ceph_connection *con)
1230 {
1231 struct ceph_msg *m = con->out_msg;
1232
1233 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1234
1235 dout("prepare_write_message_footer %p\n", con);
1236 con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1237 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1238 if (con->ops->sign_message)
1239 con->ops->sign_message(m);
1240 else
1241 m->footer.sig = 0;
1242 } else {
1243 m->old_footer.flags = m->footer.flags;
1244 }
1245 con->out_more = m->more_to_follow;
1246 con->out_msg_done = true;
1247 }
1248
1249 /*
1250 * Prepare headers for the next outgoing message.
1251 */
1252 static void prepare_write_message(struct ceph_connection *con)
1253 {
1254 struct ceph_msg *m;
1255 u32 crc;
1256
1257 con_out_kvec_reset(con);
1258 con->out_msg_done = false;
1259
1260 /* Sneak an ack in there first? If we can get it into the same
1261 * TCP packet that's a good thing. */
1262 if (con->in_seq > con->in_seq_acked) {
1263 con->in_seq_acked = con->in_seq;
1264 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1265 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1266 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1267 &con->out_temp_ack);
1268 }
1269
1270 BUG_ON(list_empty(&con->out_queue));
1271 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1272 con->out_msg = m;
1273 BUG_ON(m->con != con);
1274
1275 /* put message on sent list */
1276 ceph_msg_get(m);
1277 list_move_tail(&m->list_head, &con->out_sent);
1278
1279 /*
1280 * only assign outgoing seq # if we haven't sent this message
1281 * yet. if it is requeued, resend with it's original seq.
1282 */
1283 if (m->needs_out_seq) {
1284 m->hdr.seq = cpu_to_le64(++con->out_seq);
1285 m->needs_out_seq = false;
1286 }
1287 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1288
1289 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1290 m, con->out_seq, le16_to_cpu(m->hdr.type),
1291 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1292 m->data_length);
1293 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1294
1295 /* tag + hdr + front + middle */
1296 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1297 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1298 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1299
1300 if (m->middle)
1301 con_out_kvec_add(con, m->middle->vec.iov_len,
1302 m->middle->vec.iov_base);
1303
1304 /* fill in hdr crc and finalize hdr */
1305 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1306 con->out_msg->hdr.crc = cpu_to_le32(crc);
1307 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1308
1309 /* fill in front and middle crc, footer */
1310 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1311 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1312 if (m->middle) {
1313 crc = crc32c(0, m->middle->vec.iov_base,
1314 m->middle->vec.iov_len);
1315 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1316 } else
1317 con->out_msg->footer.middle_crc = 0;
1318 dout("%s front_crc %u middle_crc %u\n", __func__,
1319 le32_to_cpu(con->out_msg->footer.front_crc),
1320 le32_to_cpu(con->out_msg->footer.middle_crc));
1321 con->out_msg->footer.flags = 0;
1322
1323 /* is there a data payload? */
1324 con->out_msg->footer.data_crc = 0;
1325 if (m->data_length) {
1326 prepare_message_data(con->out_msg, m->data_length);
1327 con->out_more = 1; /* data + footer will follow */
1328 } else {
1329 /* no, queue up footer too and be done */
1330 prepare_write_message_footer(con);
1331 }
1332
1333 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1334 }
1335
1336 /*
1337 * Prepare an ack.
1338 */
1339 static void prepare_write_ack(struct ceph_connection *con)
1340 {
1341 dout("prepare_write_ack %p %llu -> %llu\n", con,
1342 con->in_seq_acked, con->in_seq);
1343 con->in_seq_acked = con->in_seq;
1344
1345 con_out_kvec_reset(con);
1346
1347 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1348
1349 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1350 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1351 &con->out_temp_ack);
1352
1353 con->out_more = 1; /* more will follow.. eventually.. */
1354 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1355 }
1356
1357 /*
1358 * Prepare to share the seq during handshake
1359 */
1360 static void prepare_write_seq(struct ceph_connection *con)
1361 {
1362 dout("prepare_write_seq %p %llu -> %llu\n", con,
1363 con->in_seq_acked, con->in_seq);
1364 con->in_seq_acked = con->in_seq;
1365
1366 con_out_kvec_reset(con);
1367
1368 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1369 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1370 &con->out_temp_ack);
1371
1372 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1373 }
1374
1375 /*
1376 * Prepare to write keepalive byte.
1377 */
1378 static void prepare_write_keepalive(struct ceph_connection *con)
1379 {
1380 dout("prepare_write_keepalive %p\n", con);
1381 con_out_kvec_reset(con);
1382 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1383 struct timespec now = CURRENT_TIME;
1384
1385 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1386 ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1387 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1388 &con->out_temp_keepalive2);
1389 } else {
1390 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1391 }
1392 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1393 }
1394
1395 /*
1396 * Connection negotiation.
1397 */
1398
1399 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1400 int *auth_proto)
1401 {
1402 struct ceph_auth_handshake *auth;
1403
1404 if (!con->ops->get_authorizer) {
1405 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1406 con->out_connect.authorizer_len = 0;
1407 return NULL;
1408 }
1409
1410 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1411 if (IS_ERR(auth))
1412 return auth;
1413
1414 con->auth_reply_buf = auth->authorizer_reply_buf;
1415 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1416 return auth;
1417 }
1418
1419 /*
1420 * We connected to a peer and are saying hello.
1421 */
1422 static void prepare_write_banner(struct ceph_connection *con)
1423 {
1424 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1425 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1426 &con->msgr->my_enc_addr);
1427
1428 con->out_more = 0;
1429 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1430 }
1431
1432 static int prepare_write_connect(struct ceph_connection *con)
1433 {
1434 unsigned int global_seq = get_global_seq(con->msgr, 0);
1435 int proto;
1436 int auth_proto;
1437 struct ceph_auth_handshake *auth;
1438
1439 switch (con->peer_name.type) {
1440 case CEPH_ENTITY_TYPE_MON:
1441 proto = CEPH_MONC_PROTOCOL;
1442 break;
1443 case CEPH_ENTITY_TYPE_OSD:
1444 proto = CEPH_OSDC_PROTOCOL;
1445 break;
1446 case CEPH_ENTITY_TYPE_MDS:
1447 proto = CEPH_MDSC_PROTOCOL;
1448 break;
1449 default:
1450 BUG();
1451 }
1452
1453 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1454 con->connect_seq, global_seq, proto);
1455
1456 con->out_connect.features =
1457 cpu_to_le64(from_msgr(con->msgr)->supported_features);
1458 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1459 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1460 con->out_connect.global_seq = cpu_to_le32(global_seq);
1461 con->out_connect.protocol_version = cpu_to_le32(proto);
1462 con->out_connect.flags = 0;
1463
1464 auth_proto = CEPH_AUTH_UNKNOWN;
1465 auth = get_connect_authorizer(con, &auth_proto);
1466 if (IS_ERR(auth))
1467 return PTR_ERR(auth);
1468
1469 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1470 con->out_connect.authorizer_len = auth ?
1471 cpu_to_le32(auth->authorizer_buf_len) : 0;
1472
1473 con_out_kvec_add(con, sizeof (con->out_connect),
1474 &con->out_connect);
1475 if (auth && auth->authorizer_buf_len)
1476 con_out_kvec_add(con, auth->authorizer_buf_len,
1477 auth->authorizer_buf);
1478
1479 con->out_more = 0;
1480 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1481
1482 return 0;
1483 }
1484
1485 /*
1486 * write as much of pending kvecs to the socket as we can.
1487 * 1 -> done
1488 * 0 -> socket full, but more to do
1489 * <0 -> error
1490 */
1491 static int write_partial_kvec(struct ceph_connection *con)
1492 {
1493 int ret;
1494
1495 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1496 while (con->out_kvec_bytes > 0) {
1497 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1498 con->out_kvec_left, con->out_kvec_bytes,
1499 con->out_more);
1500 if (ret <= 0)
1501 goto out;
1502 con->out_kvec_bytes -= ret;
1503 if (con->out_kvec_bytes == 0)
1504 break; /* done */
1505
1506 /* account for full iov entries consumed */
1507 while (ret >= con->out_kvec_cur->iov_len) {
1508 BUG_ON(!con->out_kvec_left);
1509 ret -= con->out_kvec_cur->iov_len;
1510 con->out_kvec_cur++;
1511 con->out_kvec_left--;
1512 }
1513 /* and for a partially-consumed entry */
1514 if (ret) {
1515 con->out_kvec_cur->iov_len -= ret;
1516 con->out_kvec_cur->iov_base += ret;
1517 }
1518 }
1519 con->out_kvec_left = 0;
1520 ret = 1;
1521 out:
1522 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1523 con->out_kvec_bytes, con->out_kvec_left, ret);
1524 return ret; /* done! */
1525 }
1526
1527 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1528 unsigned int page_offset,
1529 unsigned int length)
1530 {
1531 char *kaddr;
1532
1533 kaddr = kmap(page);
1534 BUG_ON(kaddr == NULL);
1535 crc = crc32c(crc, kaddr + page_offset, length);
1536 kunmap(page);
1537
1538 return crc;
1539 }
1540 /*
1541 * Write as much message data payload as we can. If we finish, queue
1542 * up the footer.
1543 * 1 -> done, footer is now queued in out_kvec[].
1544 * 0 -> socket full, but more to do
1545 * <0 -> error
1546 */
1547 static int write_partial_message_data(struct ceph_connection *con)
1548 {
1549 struct ceph_msg *msg = con->out_msg;
1550 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1551 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1552 u32 crc;
1553
1554 dout("%s %p msg %p\n", __func__, con, msg);
1555
1556 if (list_empty(&msg->data))
1557 return -EINVAL;
1558
1559 /*
1560 * Iterate through each page that contains data to be
1561 * written, and send as much as possible for each.
1562 *
1563 * If we are calculating the data crc (the default), we will
1564 * need to map the page. If we have no pages, they have
1565 * been revoked, so use the zero page.
1566 */
1567 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1568 while (cursor->resid) {
1569 struct page *page;
1570 size_t page_offset;
1571 size_t length;
1572 bool last_piece;
1573 bool need_crc;
1574 int ret;
1575
1576 page = ceph_msg_data_next(cursor, &page_offset, &length,
1577 &last_piece);
1578 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1579 length, !last_piece);
1580 if (ret <= 0) {
1581 if (do_datacrc)
1582 msg->footer.data_crc = cpu_to_le32(crc);
1583
1584 return ret;
1585 }
1586 if (do_datacrc && cursor->need_crc)
1587 crc = ceph_crc32c_page(crc, page, page_offset, length);
1588 need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1589 }
1590
1591 dout("%s %p msg %p done\n", __func__, con, msg);
1592
1593 /* prepare and queue up footer, too */
1594 if (do_datacrc)
1595 msg->footer.data_crc = cpu_to_le32(crc);
1596 else
1597 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1598 con_out_kvec_reset(con);
1599 prepare_write_message_footer(con);
1600
1601 return 1; /* must return > 0 to indicate success */
1602 }
1603
1604 /*
1605 * write some zeros
1606 */
1607 static int write_partial_skip(struct ceph_connection *con)
1608 {
1609 int ret;
1610
1611 dout("%s %p %d left\n", __func__, con, con->out_skip);
1612 while (con->out_skip > 0) {
1613 size_t size = min(con->out_skip, (int) PAGE_SIZE);
1614
1615 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1616 if (ret <= 0)
1617 goto out;
1618 con->out_skip -= ret;
1619 }
1620 ret = 1;
1621 out:
1622 return ret;
1623 }
1624
1625 /*
1626 * Prepare to read connection handshake, or an ack.
1627 */
1628 static void prepare_read_banner(struct ceph_connection *con)
1629 {
1630 dout("prepare_read_banner %p\n", con);
1631 con->in_base_pos = 0;
1632 }
1633
1634 static void prepare_read_connect(struct ceph_connection *con)
1635 {
1636 dout("prepare_read_connect %p\n", con);
1637 con->in_base_pos = 0;
1638 }
1639
1640 static void prepare_read_ack(struct ceph_connection *con)
1641 {
1642 dout("prepare_read_ack %p\n", con);
1643 con->in_base_pos = 0;
1644 }
1645
1646 static void prepare_read_seq(struct ceph_connection *con)
1647 {
1648 dout("prepare_read_seq %p\n", con);
1649 con->in_base_pos = 0;
1650 con->in_tag = CEPH_MSGR_TAG_SEQ;
1651 }
1652
1653 static void prepare_read_tag(struct ceph_connection *con)
1654 {
1655 dout("prepare_read_tag %p\n", con);
1656 con->in_base_pos = 0;
1657 con->in_tag = CEPH_MSGR_TAG_READY;
1658 }
1659
1660 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1661 {
1662 dout("prepare_read_keepalive_ack %p\n", con);
1663 con->in_base_pos = 0;
1664 }
1665
1666 /*
1667 * Prepare to read a message.
1668 */
1669 static int prepare_read_message(struct ceph_connection *con)
1670 {
1671 dout("prepare_read_message %p\n", con);
1672 BUG_ON(con->in_msg != NULL);
1673 con->in_base_pos = 0;
1674 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1675 return 0;
1676 }
1677
1678
1679 static int read_partial(struct ceph_connection *con,
1680 int end, int size, void *object)
1681 {
1682 while (con->in_base_pos < end) {
1683 int left = end - con->in_base_pos;
1684 int have = size - left;
1685 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1686 if (ret <= 0)
1687 return ret;
1688 con->in_base_pos += ret;
1689 }
1690 return 1;
1691 }
1692
1693
1694 /*
1695 * Read all or part of the connect-side handshake on a new connection
1696 */
1697 static int read_partial_banner(struct ceph_connection *con)
1698 {
1699 int size;
1700 int end;
1701 int ret;
1702
1703 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1704
1705 /* peer's banner */
1706 size = strlen(CEPH_BANNER);
1707 end = size;
1708 ret = read_partial(con, end, size, con->in_banner);
1709 if (ret <= 0)
1710 goto out;
1711
1712 size = sizeof (con->actual_peer_addr);
1713 end += size;
1714 ret = read_partial(con, end, size, &con->actual_peer_addr);
1715 if (ret <= 0)
1716 goto out;
1717
1718 size = sizeof (con->peer_addr_for_me);
1719 end += size;
1720 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1721 if (ret <= 0)
1722 goto out;
1723
1724 out:
1725 return ret;
1726 }
1727
1728 static int read_partial_connect(struct ceph_connection *con)
1729 {
1730 int size;
1731 int end;
1732 int ret;
1733
1734 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1735
1736 size = sizeof (con->in_reply);
1737 end = size;
1738 ret = read_partial(con, end, size, &con->in_reply);
1739 if (ret <= 0)
1740 goto out;
1741
1742 size = le32_to_cpu(con->in_reply.authorizer_len);
1743 end += size;
1744 ret = read_partial(con, end, size, con->auth_reply_buf);
1745 if (ret <= 0)
1746 goto out;
1747
1748 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1749 con, (int)con->in_reply.tag,
1750 le32_to_cpu(con->in_reply.connect_seq),
1751 le32_to_cpu(con->in_reply.global_seq));
1752 out:
1753 return ret;
1754
1755 }
1756
1757 /*
1758 * Verify the hello banner looks okay.
1759 */
1760 static int verify_hello(struct ceph_connection *con)
1761 {
1762 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1763 pr_err("connect to %s got bad banner\n",
1764 ceph_pr_addr(&con->peer_addr.in_addr));
1765 con->error_msg = "protocol error, bad banner";
1766 return -1;
1767 }
1768 return 0;
1769 }
1770
1771 static bool addr_is_blank(struct sockaddr_storage *ss)
1772 {
1773 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1774 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1775
1776 switch (ss->ss_family) {
1777 case AF_INET:
1778 return addr->s_addr == htonl(INADDR_ANY);
1779 case AF_INET6:
1780 return ipv6_addr_any(addr6);
1781 default:
1782 return true;
1783 }
1784 }
1785
1786 static int addr_port(struct sockaddr_storage *ss)
1787 {
1788 switch (ss->ss_family) {
1789 case AF_INET:
1790 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1791 case AF_INET6:
1792 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1793 }
1794 return 0;
1795 }
1796
1797 static void addr_set_port(struct sockaddr_storage *ss, int p)
1798 {
1799 switch (ss->ss_family) {
1800 case AF_INET:
1801 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1802 break;
1803 case AF_INET6:
1804 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1805 break;
1806 }
1807 }
1808
1809 /*
1810 * Unlike other *_pton function semantics, zero indicates success.
1811 */
1812 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1813 char delim, const char **ipend)
1814 {
1815 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1816 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1817
1818 memset(ss, 0, sizeof(*ss));
1819
1820 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1821 ss->ss_family = AF_INET;
1822 return 0;
1823 }
1824
1825 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1826 ss->ss_family = AF_INET6;
1827 return 0;
1828 }
1829
1830 return -EINVAL;
1831 }
1832
1833 /*
1834 * Extract hostname string and resolve using kernel DNS facility.
1835 */
1836 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1837 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1838 struct sockaddr_storage *ss, char delim, const char **ipend)
1839 {
1840 const char *end, *delim_p;
1841 char *colon_p, *ip_addr = NULL;
1842 int ip_len, ret;
1843
1844 /*
1845 * The end of the hostname occurs immediately preceding the delimiter or
1846 * the port marker (':') where the delimiter takes precedence.
1847 */
1848 delim_p = memchr(name, delim, namelen);
1849 colon_p = memchr(name, ':', namelen);
1850
1851 if (delim_p && colon_p)
1852 end = delim_p < colon_p ? delim_p : colon_p;
1853 else if (!delim_p && colon_p)
1854 end = colon_p;
1855 else {
1856 end = delim_p;
1857 if (!end) /* case: hostname:/ */
1858 end = name + namelen;
1859 }
1860
1861 if (end <= name)
1862 return -EINVAL;
1863
1864 /* do dns_resolve upcall */
1865 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1866 if (ip_len > 0)
1867 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1868 else
1869 ret = -ESRCH;
1870
1871 kfree(ip_addr);
1872
1873 *ipend = end;
1874
1875 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1876 ret, ret ? "failed" : ceph_pr_addr(ss));
1877
1878 return ret;
1879 }
1880 #else
1881 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1882 struct sockaddr_storage *ss, char delim, const char **ipend)
1883 {
1884 return -EINVAL;
1885 }
1886 #endif
1887
1888 /*
1889 * Parse a server name (IP or hostname). If a valid IP address is not found
1890 * then try to extract a hostname to resolve using userspace DNS upcall.
1891 */
1892 static int ceph_parse_server_name(const char *name, size_t namelen,
1893 struct sockaddr_storage *ss, char delim, const char **ipend)
1894 {
1895 int ret;
1896
1897 ret = ceph_pton(name, namelen, ss, delim, ipend);
1898 if (ret)
1899 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1900
1901 return ret;
1902 }
1903
1904 /*
1905 * Parse an ip[:port] list into an addr array. Use the default
1906 * monitor port if a port isn't specified.
1907 */
1908 int ceph_parse_ips(const char *c, const char *end,
1909 struct ceph_entity_addr *addr,
1910 int max_count, int *count)
1911 {
1912 int i, ret = -EINVAL;
1913 const char *p = c;
1914
1915 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1916 for (i = 0; i < max_count; i++) {
1917 const char *ipend;
1918 struct sockaddr_storage *ss = &addr[i].in_addr;
1919 int port;
1920 char delim = ',';
1921
1922 if (*p == '[') {
1923 delim = ']';
1924 p++;
1925 }
1926
1927 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1928 if (ret)
1929 goto bad;
1930 ret = -EINVAL;
1931
1932 p = ipend;
1933
1934 if (delim == ']') {
1935 if (*p != ']') {
1936 dout("missing matching ']'\n");
1937 goto bad;
1938 }
1939 p++;
1940 }
1941
1942 /* port? */
1943 if (p < end && *p == ':') {
1944 port = 0;
1945 p++;
1946 while (p < end && *p >= '0' && *p <= '9') {
1947 port = (port * 10) + (*p - '0');
1948 p++;
1949 }
1950 if (port == 0)
1951 port = CEPH_MON_PORT;
1952 else if (port > 65535)
1953 goto bad;
1954 } else {
1955 port = CEPH_MON_PORT;
1956 }
1957
1958 addr_set_port(ss, port);
1959
1960 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1961
1962 if (p == end)
1963 break;
1964 if (*p != ',')
1965 goto bad;
1966 p++;
1967 }
1968
1969 if (p != end)
1970 goto bad;
1971
1972 if (count)
1973 *count = i + 1;
1974 return 0;
1975
1976 bad:
1977 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1978 return ret;
1979 }
1980 EXPORT_SYMBOL(ceph_parse_ips);
1981
1982 static int process_banner(struct ceph_connection *con)
1983 {
1984 dout("process_banner on %p\n", con);
1985
1986 if (verify_hello(con) < 0)
1987 return -1;
1988
1989 ceph_decode_addr(&con->actual_peer_addr);
1990 ceph_decode_addr(&con->peer_addr_for_me);
1991
1992 /*
1993 * Make sure the other end is who we wanted. note that the other
1994 * end may not yet know their ip address, so if it's 0.0.0.0, give
1995 * them the benefit of the doubt.
1996 */
1997 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1998 sizeof(con->peer_addr)) != 0 &&
1999 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2000 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2001 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2002 ceph_pr_addr(&con->peer_addr.in_addr),
2003 (int)le32_to_cpu(con->peer_addr.nonce),
2004 ceph_pr_addr(&con->actual_peer_addr.in_addr),
2005 (int)le32_to_cpu(con->actual_peer_addr.nonce));
2006 con->error_msg = "wrong peer at address";
2007 return -1;
2008 }
2009
2010 /*
2011 * did we learn our address?
2012 */
2013 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2014 int port = addr_port(&con->msgr->inst.addr.in_addr);
2015
2016 memcpy(&con->msgr->inst.addr.in_addr,
2017 &con->peer_addr_for_me.in_addr,
2018 sizeof(con->peer_addr_for_me.in_addr));
2019 addr_set_port(&con->msgr->inst.addr.in_addr, port);
2020 encode_my_addr(con->msgr);
2021 dout("process_banner learned my addr is %s\n",
2022 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2023 }
2024
2025 return 0;
2026 }
2027
2028 static int process_connect(struct ceph_connection *con)
2029 {
2030 u64 sup_feat = from_msgr(con->msgr)->supported_features;
2031 u64 req_feat = from_msgr(con->msgr)->required_features;
2032 u64 server_feat = ceph_sanitize_features(
2033 le64_to_cpu(con->in_reply.features));
2034 int ret;
2035
2036 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2037
2038 if (con->auth_reply_buf) {
2039 /*
2040 * Any connection that defines ->get_authorizer()
2041 * should also define ->verify_authorizer_reply().
2042 * See get_connect_authorizer().
2043 */
2044 ret = con->ops->verify_authorizer_reply(con);
2045 if (ret < 0) {
2046 con->error_msg = "bad authorize reply";
2047 return ret;
2048 }
2049 }
2050
2051 switch (con->in_reply.tag) {
2052 case CEPH_MSGR_TAG_FEATURES:
2053 pr_err("%s%lld %s feature set mismatch,"
2054 " my %llx < server's %llx, missing %llx\n",
2055 ENTITY_NAME(con->peer_name),
2056 ceph_pr_addr(&con->peer_addr.in_addr),
2057 sup_feat, server_feat, server_feat & ~sup_feat);
2058 con->error_msg = "missing required protocol features";
2059 reset_connection(con);
2060 return -1;
2061
2062 case CEPH_MSGR_TAG_BADPROTOVER:
2063 pr_err("%s%lld %s protocol version mismatch,"
2064 " my %d != server's %d\n",
2065 ENTITY_NAME(con->peer_name),
2066 ceph_pr_addr(&con->peer_addr.in_addr),
2067 le32_to_cpu(con->out_connect.protocol_version),
2068 le32_to_cpu(con->in_reply.protocol_version));
2069 con->error_msg = "protocol version mismatch";
2070 reset_connection(con);
2071 return -1;
2072
2073 case CEPH_MSGR_TAG_BADAUTHORIZER:
2074 con->auth_retry++;
2075 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2076 con->auth_retry);
2077 if (con->auth_retry == 2) {
2078 con->error_msg = "connect authorization failure";
2079 return -1;
2080 }
2081 con_out_kvec_reset(con);
2082 ret = prepare_write_connect(con);
2083 if (ret < 0)
2084 return ret;
2085 prepare_read_connect(con);
2086 break;
2087
2088 case CEPH_MSGR_TAG_RESETSESSION:
2089 /*
2090 * If we connected with a large connect_seq but the peer
2091 * has no record of a session with us (no connection, or
2092 * connect_seq == 0), they will send RESETSESION to indicate
2093 * that they must have reset their session, and may have
2094 * dropped messages.
2095 */
2096 dout("process_connect got RESET peer seq %u\n",
2097 le32_to_cpu(con->in_reply.connect_seq));
2098 pr_err("%s%lld %s connection reset\n",
2099 ENTITY_NAME(con->peer_name),
2100 ceph_pr_addr(&con->peer_addr.in_addr));
2101 reset_connection(con);
2102 con_out_kvec_reset(con);
2103 ret = prepare_write_connect(con);
2104 if (ret < 0)
2105 return ret;
2106 prepare_read_connect(con);
2107
2108 /* Tell ceph about it. */
2109 mutex_unlock(&con->mutex);
2110 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2111 if (con->ops->peer_reset)
2112 con->ops->peer_reset(con);
2113 mutex_lock(&con->mutex);
2114 if (con->state != CON_STATE_NEGOTIATING)
2115 return -EAGAIN;
2116 break;
2117
2118 case CEPH_MSGR_TAG_RETRY_SESSION:
2119 /*
2120 * If we sent a smaller connect_seq than the peer has, try
2121 * again with a larger value.
2122 */
2123 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2124 le32_to_cpu(con->out_connect.connect_seq),
2125 le32_to_cpu(con->in_reply.connect_seq));
2126 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2127 con_out_kvec_reset(con);
2128 ret = prepare_write_connect(con);
2129 if (ret < 0)
2130 return ret;
2131 prepare_read_connect(con);
2132 break;
2133
2134 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2135 /*
2136 * If we sent a smaller global_seq than the peer has, try
2137 * again with a larger value.
2138 */
2139 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2140 con->peer_global_seq,
2141 le32_to_cpu(con->in_reply.global_seq));
2142 get_global_seq(con->msgr,
2143 le32_to_cpu(con->in_reply.global_seq));
2144 con_out_kvec_reset(con);
2145 ret = prepare_write_connect(con);
2146 if (ret < 0)
2147 return ret;
2148 prepare_read_connect(con);
2149 break;
2150
2151 case CEPH_MSGR_TAG_SEQ:
2152 case CEPH_MSGR_TAG_READY:
2153 if (req_feat & ~server_feat) {
2154 pr_err("%s%lld %s protocol feature mismatch,"
2155 " my required %llx > server's %llx, need %llx\n",
2156 ENTITY_NAME(con->peer_name),
2157 ceph_pr_addr(&con->peer_addr.in_addr),
2158 req_feat, server_feat, req_feat & ~server_feat);
2159 con->error_msg = "missing required protocol features";
2160 reset_connection(con);
2161 return -1;
2162 }
2163
2164 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2165 con->state = CON_STATE_OPEN;
2166 con->auth_retry = 0; /* we authenticated; clear flag */
2167 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2168 con->connect_seq++;
2169 con->peer_features = server_feat;
2170 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2171 con->peer_global_seq,
2172 le32_to_cpu(con->in_reply.connect_seq),
2173 con->connect_seq);
2174 WARN_ON(con->connect_seq !=
2175 le32_to_cpu(con->in_reply.connect_seq));
2176
2177 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2178 con_flag_set(con, CON_FLAG_LOSSYTX);
2179
2180 con->delay = 0; /* reset backoff memory */
2181
2182 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2183 prepare_write_seq(con);
2184 prepare_read_seq(con);
2185 } else {
2186 prepare_read_tag(con);
2187 }
2188 break;
2189
2190 case CEPH_MSGR_TAG_WAIT:
2191 /*
2192 * If there is a connection race (we are opening
2193 * connections to each other), one of us may just have
2194 * to WAIT. This shouldn't happen if we are the
2195 * client.
2196 */
2197 con->error_msg = "protocol error, got WAIT as client";
2198 return -1;
2199
2200 default:
2201 con->error_msg = "protocol error, garbage tag during connect";
2202 return -1;
2203 }
2204 return 0;
2205 }
2206
2207
2208 /*
2209 * read (part of) an ack
2210 */
2211 static int read_partial_ack(struct ceph_connection *con)
2212 {
2213 int size = sizeof (con->in_temp_ack);
2214 int end = size;
2215
2216 return read_partial(con, end, size, &con->in_temp_ack);
2217 }
2218
2219 /*
2220 * We can finally discard anything that's been acked.
2221 */
2222 static void process_ack(struct ceph_connection *con)
2223 {
2224 struct ceph_msg *m;
2225 u64 ack = le64_to_cpu(con->in_temp_ack);
2226 u64 seq;
2227
2228 while (!list_empty(&con->out_sent)) {
2229 m = list_first_entry(&con->out_sent, struct ceph_msg,
2230 list_head);
2231 seq = le64_to_cpu(m->hdr.seq);
2232 if (seq > ack)
2233 break;
2234 dout("got ack for seq %llu type %d at %p\n", seq,
2235 le16_to_cpu(m->hdr.type), m);
2236 m->ack_stamp = jiffies;
2237 ceph_msg_remove(m);
2238 }
2239 prepare_read_tag(con);
2240 }
2241
2242
2243 static int read_partial_message_section(struct ceph_connection *con,
2244 struct kvec *section,
2245 unsigned int sec_len, u32 *crc)
2246 {
2247 int ret, left;
2248
2249 BUG_ON(!section);
2250
2251 while (section->iov_len < sec_len) {
2252 BUG_ON(section->iov_base == NULL);
2253 left = sec_len - section->iov_len;
2254 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2255 section->iov_len, left);
2256 if (ret <= 0)
2257 return ret;
2258 section->iov_len += ret;
2259 }
2260 if (section->iov_len == sec_len)
2261 *crc = crc32c(0, section->iov_base, section->iov_len);
2262
2263 return 1;
2264 }
2265
2266 static int read_partial_msg_data(struct ceph_connection *con)
2267 {
2268 struct ceph_msg *msg = con->in_msg;
2269 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2270 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2271 struct page *page;
2272 size_t page_offset;
2273 size_t length;
2274 u32 crc = 0;
2275 int ret;
2276
2277 BUG_ON(!msg);
2278 if (list_empty(&msg->data))
2279 return -EIO;
2280
2281 if (do_datacrc)
2282 crc = con->in_data_crc;
2283 while (cursor->resid) {
2284 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2285 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2286 if (ret <= 0) {
2287 if (do_datacrc)
2288 con->in_data_crc = crc;
2289
2290 return ret;
2291 }
2292
2293 if (do_datacrc)
2294 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2295 (void) ceph_msg_data_advance(cursor, (size_t)ret);
2296 }
2297 if (do_datacrc)
2298 con->in_data_crc = crc;
2299
2300 return 1; /* must return > 0 to indicate success */
2301 }
2302
2303 /*
2304 * read (part of) a message.
2305 */
2306 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2307
2308 static int read_partial_message(struct ceph_connection *con)
2309 {
2310 struct ceph_msg *m = con->in_msg;
2311 int size;
2312 int end;
2313 int ret;
2314 unsigned int front_len, middle_len, data_len;
2315 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2316 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2317 u64 seq;
2318 u32 crc;
2319
2320 dout("read_partial_message con %p msg %p\n", con, m);
2321
2322 /* header */
2323 size = sizeof (con->in_hdr);
2324 end = size;
2325 ret = read_partial(con, end, size, &con->in_hdr);
2326 if (ret <= 0)
2327 return ret;
2328
2329 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2330 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2331 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2332 crc, con->in_hdr.crc);
2333 return -EBADMSG;
2334 }
2335
2336 front_len = le32_to_cpu(con->in_hdr.front_len);
2337 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2338 return -EIO;
2339 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2340 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2341 return -EIO;
2342 data_len = le32_to_cpu(con->in_hdr.data_len);
2343 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2344 return -EIO;
2345
2346 /* verify seq# */
2347 seq = le64_to_cpu(con->in_hdr.seq);
2348 if ((s64)seq - (s64)con->in_seq < 1) {
2349 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2350 ENTITY_NAME(con->peer_name),
2351 ceph_pr_addr(&con->peer_addr.in_addr),
2352 seq, con->in_seq + 1);
2353 con->in_base_pos = -front_len - middle_len - data_len -
2354 sizeof_footer(con);
2355 con->in_tag = CEPH_MSGR_TAG_READY;
2356 return 1;
2357 } else if ((s64)seq - (s64)con->in_seq > 1) {
2358 pr_err("read_partial_message bad seq %lld expected %lld\n",
2359 seq, con->in_seq + 1);
2360 con->error_msg = "bad message sequence # for incoming message";
2361 return -EBADE;
2362 }
2363
2364 /* allocate message? */
2365 if (!con->in_msg) {
2366 int skip = 0;
2367
2368 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2369 front_len, data_len);
2370 ret = ceph_con_in_msg_alloc(con, &skip);
2371 if (ret < 0)
2372 return ret;
2373
2374 BUG_ON(!con->in_msg ^ skip);
2375 if (skip) {
2376 /* skip this message */
2377 dout("alloc_msg said skip message\n");
2378 con->in_base_pos = -front_len - middle_len - data_len -
2379 sizeof_footer(con);
2380 con->in_tag = CEPH_MSGR_TAG_READY;
2381 con->in_seq++;
2382 return 1;
2383 }
2384
2385 BUG_ON(!con->in_msg);
2386 BUG_ON(con->in_msg->con != con);
2387 m = con->in_msg;
2388 m->front.iov_len = 0; /* haven't read it yet */
2389 if (m->middle)
2390 m->middle->vec.iov_len = 0;
2391
2392 /* prepare for data payload, if any */
2393
2394 if (data_len)
2395 prepare_message_data(con->in_msg, data_len);
2396 }
2397
2398 /* front */
2399 ret = read_partial_message_section(con, &m->front, front_len,
2400 &con->in_front_crc);
2401 if (ret <= 0)
2402 return ret;
2403
2404 /* middle */
2405 if (m->middle) {
2406 ret = read_partial_message_section(con, &m->middle->vec,
2407 middle_len,
2408 &con->in_middle_crc);
2409 if (ret <= 0)
2410 return ret;
2411 }
2412
2413 /* (page) data */
2414 if (data_len) {
2415 ret = read_partial_msg_data(con);
2416 if (ret <= 0)
2417 return ret;
2418 }
2419
2420 /* footer */
2421 size = sizeof_footer(con);
2422 end += size;
2423 ret = read_partial(con, end, size, &m->footer);
2424 if (ret <= 0)
2425 return ret;
2426
2427 if (!need_sign) {
2428 m->footer.flags = m->old_footer.flags;
2429 m->footer.sig = 0;
2430 }
2431
2432 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2433 m, front_len, m->footer.front_crc, middle_len,
2434 m->footer.middle_crc, data_len, m->footer.data_crc);
2435
2436 /* crc ok? */
2437 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2438 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2439 m, con->in_front_crc, m->footer.front_crc);
2440 return -EBADMSG;
2441 }
2442 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2443 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2444 m, con->in_middle_crc, m->footer.middle_crc);
2445 return -EBADMSG;
2446 }
2447 if (do_datacrc &&
2448 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2449 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2450 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2451 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2452 return -EBADMSG;
2453 }
2454
2455 if (need_sign && con->ops->check_message_signature &&
2456 con->ops->check_message_signature(m)) {
2457 pr_err("read_partial_message %p signature check failed\n", m);
2458 return -EBADMSG;
2459 }
2460
2461 return 1; /* done! */
2462 }
2463
2464 /*
2465 * Process message. This happens in the worker thread. The callback should
2466 * be careful not to do anything that waits on other incoming messages or it
2467 * may deadlock.
2468 */
2469 static void process_message(struct ceph_connection *con)
2470 {
2471 struct ceph_msg *msg = con->in_msg;
2472
2473 BUG_ON(con->in_msg->con != con);
2474 con->in_msg = NULL;
2475
2476 /* if first message, set peer_name */
2477 if (con->peer_name.type == 0)
2478 con->peer_name = msg->hdr.src;
2479
2480 con->in_seq++;
2481 mutex_unlock(&con->mutex);
2482
2483 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2484 msg, le64_to_cpu(msg->hdr.seq),
2485 ENTITY_NAME(msg->hdr.src),
2486 le16_to_cpu(msg->hdr.type),
2487 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2488 le32_to_cpu(msg->hdr.front_len),
2489 le32_to_cpu(msg->hdr.data_len),
2490 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2491 con->ops->dispatch(con, msg);
2492
2493 mutex_lock(&con->mutex);
2494 }
2495
2496 static int read_keepalive_ack(struct ceph_connection *con)
2497 {
2498 struct ceph_timespec ceph_ts;
2499 size_t size = sizeof(ceph_ts);
2500 int ret = read_partial(con, size, size, &ceph_ts);
2501 if (ret <= 0)
2502 return ret;
2503 ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2504 prepare_read_tag(con);
2505 return 1;
2506 }
2507
2508 /*
2509 * Write something to the socket. Called in a worker thread when the
2510 * socket appears to be writeable and we have something ready to send.
2511 */
2512 static int try_write(struct ceph_connection *con)
2513 {
2514 int ret = 1;
2515
2516 dout("try_write start %p state %lu\n", con, con->state);
2517
2518 more:
2519 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2520
2521 /* open the socket first? */
2522 if (con->state == CON_STATE_PREOPEN) {
2523 BUG_ON(con->sock);
2524 con->state = CON_STATE_CONNECTING;
2525
2526 con_out_kvec_reset(con);
2527 prepare_write_banner(con);
2528 prepare_read_banner(con);
2529
2530 BUG_ON(con->in_msg);
2531 con->in_tag = CEPH_MSGR_TAG_READY;
2532 dout("try_write initiating connect on %p new state %lu\n",
2533 con, con->state);
2534 ret = ceph_tcp_connect(con);
2535 if (ret < 0) {
2536 con->error_msg = "connect error";
2537 goto out;
2538 }
2539 }
2540
2541 more_kvec:
2542 /* kvec data queued? */
2543 if (con->out_kvec_left) {
2544 ret = write_partial_kvec(con);
2545 if (ret <= 0)
2546 goto out;
2547 }
2548 if (con->out_skip) {
2549 ret = write_partial_skip(con);
2550 if (ret <= 0)
2551 goto out;
2552 }
2553
2554 /* msg pages? */
2555 if (con->out_msg) {
2556 if (con->out_msg_done) {
2557 ceph_msg_put(con->out_msg);
2558 con->out_msg = NULL; /* we're done with this one */
2559 goto do_next;
2560 }
2561
2562 ret = write_partial_message_data(con);
2563 if (ret == 1)
2564 goto more_kvec; /* we need to send the footer, too! */
2565 if (ret == 0)
2566 goto out;
2567 if (ret < 0) {
2568 dout("try_write write_partial_message_data err %d\n",
2569 ret);
2570 goto out;
2571 }
2572 }
2573
2574 do_next:
2575 if (con->state == CON_STATE_OPEN) {
2576 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2577 prepare_write_keepalive(con);
2578 goto more;
2579 }
2580 /* is anything else pending? */
2581 if (!list_empty(&con->out_queue)) {
2582 prepare_write_message(con);
2583 goto more;
2584 }
2585 if (con->in_seq > con->in_seq_acked) {
2586 prepare_write_ack(con);
2587 goto more;
2588 }
2589 }
2590
2591 /* Nothing to do! */
2592 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2593 dout("try_write nothing else to write.\n");
2594 ret = 0;
2595 out:
2596 dout("try_write done on %p ret %d\n", con, ret);
2597 return ret;
2598 }
2599
2600
2601
2602 /*
2603 * Read what we can from the socket.
2604 */
2605 static int try_read(struct ceph_connection *con)
2606 {
2607 int ret = -1;
2608
2609 more:
2610 dout("try_read start on %p state %lu\n", con, con->state);
2611 if (con->state != CON_STATE_CONNECTING &&
2612 con->state != CON_STATE_NEGOTIATING &&
2613 con->state != CON_STATE_OPEN)
2614 return 0;
2615
2616 BUG_ON(!con->sock);
2617
2618 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2619 con->in_base_pos);
2620
2621 if (con->state == CON_STATE_CONNECTING) {
2622 dout("try_read connecting\n");
2623 ret = read_partial_banner(con);
2624 if (ret <= 0)
2625 goto out;
2626 ret = process_banner(con);
2627 if (ret < 0)
2628 goto out;
2629
2630 con->state = CON_STATE_NEGOTIATING;
2631
2632 /*
2633 * Received banner is good, exchange connection info.
2634 * Do not reset out_kvec, as sending our banner raced
2635 * with receiving peer banner after connect completed.
2636 */
2637 ret = prepare_write_connect(con);
2638 if (ret < 0)
2639 goto out;
2640 prepare_read_connect(con);
2641
2642 /* Send connection info before awaiting response */
2643 goto out;
2644 }
2645
2646 if (con->state == CON_STATE_NEGOTIATING) {
2647 dout("try_read negotiating\n");
2648 ret = read_partial_connect(con);
2649 if (ret <= 0)
2650 goto out;
2651 ret = process_connect(con);
2652 if (ret < 0)
2653 goto out;
2654 goto more;
2655 }
2656
2657 WARN_ON(con->state != CON_STATE_OPEN);
2658
2659 if (con->in_base_pos < 0) {
2660 /*
2661 * skipping + discarding content.
2662 *
2663 * FIXME: there must be a better way to do this!
2664 */
2665 static char buf[SKIP_BUF_SIZE];
2666 int skip = min((int) sizeof (buf), -con->in_base_pos);
2667
2668 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2669 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2670 if (ret <= 0)
2671 goto out;
2672 con->in_base_pos += ret;
2673 if (con->in_base_pos)
2674 goto more;
2675 }
2676 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2677 /*
2678 * what's next?
2679 */
2680 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2681 if (ret <= 0)
2682 goto out;
2683 dout("try_read got tag %d\n", (int)con->in_tag);
2684 switch (con->in_tag) {
2685 case CEPH_MSGR_TAG_MSG:
2686 prepare_read_message(con);
2687 break;
2688 case CEPH_MSGR_TAG_ACK:
2689 prepare_read_ack(con);
2690 break;
2691 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2692 prepare_read_keepalive_ack(con);
2693 break;
2694 case CEPH_MSGR_TAG_CLOSE:
2695 con_close_socket(con);
2696 con->state = CON_STATE_CLOSED;
2697 goto out;
2698 default:
2699 goto bad_tag;
2700 }
2701 }
2702 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2703 ret = read_partial_message(con);
2704 if (ret <= 0) {
2705 switch (ret) {
2706 case -EBADMSG:
2707 con->error_msg = "bad crc/signature";
2708 /* fall through */
2709 case -EBADE:
2710 ret = -EIO;
2711 break;
2712 case -EIO:
2713 con->error_msg = "io error";
2714 break;
2715 }
2716 goto out;
2717 }
2718 if (con->in_tag == CEPH_MSGR_TAG_READY)
2719 goto more;
2720 process_message(con);
2721 if (con->state == CON_STATE_OPEN)
2722 prepare_read_tag(con);
2723 goto more;
2724 }
2725 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2726 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2727 /*
2728 * the final handshake seq exchange is semantically
2729 * equivalent to an ACK
2730 */
2731 ret = read_partial_ack(con);
2732 if (ret <= 0)
2733 goto out;
2734 process_ack(con);
2735 goto more;
2736 }
2737 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2738 ret = read_keepalive_ack(con);
2739 if (ret <= 0)
2740 goto out;
2741 goto more;
2742 }
2743
2744 out:
2745 dout("try_read done on %p ret %d\n", con, ret);
2746 return ret;
2747
2748 bad_tag:
2749 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2750 con->error_msg = "protocol error, garbage tag";
2751 ret = -1;
2752 goto out;
2753 }
2754
2755
2756 /*
2757 * Atomically queue work on a connection after the specified delay.
2758 * Bump @con reference to avoid races with connection teardown.
2759 * Returns 0 if work was queued, or an error code otherwise.
2760 */
2761 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2762 {
2763 if (!con->ops->get(con)) {
2764 dout("%s %p ref count 0\n", __func__, con);
2765 return -ENOENT;
2766 }
2767
2768 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2769 dout("%s %p - already queued\n", __func__, con);
2770 con->ops->put(con);
2771 return -EBUSY;
2772 }
2773
2774 dout("%s %p %lu\n", __func__, con, delay);
2775 return 0;
2776 }
2777
2778 static void queue_con(struct ceph_connection *con)
2779 {
2780 (void) queue_con_delay(con, 0);
2781 }
2782
2783 static void cancel_con(struct ceph_connection *con)
2784 {
2785 if (cancel_delayed_work(&con->work)) {
2786 dout("%s %p\n", __func__, con);
2787 con->ops->put(con);
2788 }
2789 }
2790
2791 static bool con_sock_closed(struct ceph_connection *con)
2792 {
2793 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2794 return false;
2795
2796 #define CASE(x) \
2797 case CON_STATE_ ## x: \
2798 con->error_msg = "socket closed (con state " #x ")"; \
2799 break;
2800
2801 switch (con->state) {
2802 CASE(CLOSED);
2803 CASE(PREOPEN);
2804 CASE(CONNECTING);
2805 CASE(NEGOTIATING);
2806 CASE(OPEN);
2807 CASE(STANDBY);
2808 default:
2809 pr_warn("%s con %p unrecognized state %lu\n",
2810 __func__, con, con->state);
2811 con->error_msg = "unrecognized con state";
2812 BUG();
2813 break;
2814 }
2815 #undef CASE
2816
2817 return true;
2818 }
2819
2820 static bool con_backoff(struct ceph_connection *con)
2821 {
2822 int ret;
2823
2824 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2825 return false;
2826
2827 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2828 if (ret) {
2829 dout("%s: con %p FAILED to back off %lu\n", __func__,
2830 con, con->delay);
2831 BUG_ON(ret == -ENOENT);
2832 con_flag_set(con, CON_FLAG_BACKOFF);
2833 }
2834
2835 return true;
2836 }
2837
2838 /* Finish fault handling; con->mutex must *not* be held here */
2839
2840 static void con_fault_finish(struct ceph_connection *con)
2841 {
2842 dout("%s %p\n", __func__, con);
2843
2844 /*
2845 * in case we faulted due to authentication, invalidate our
2846 * current tickets so that we can get new ones.
2847 */
2848 if (con->auth_retry) {
2849 dout("auth_retry %d, invalidating\n", con->auth_retry);
2850 if (con->ops->invalidate_authorizer)
2851 con->ops->invalidate_authorizer(con);
2852 con->auth_retry = 0;
2853 }
2854
2855 if (con->ops->fault)
2856 con->ops->fault(con);
2857 }
2858
2859 /*
2860 * Do some work on a connection. Drop a connection ref when we're done.
2861 */
2862 static void ceph_con_workfn(struct work_struct *work)
2863 {
2864 struct ceph_connection *con = container_of(work, struct ceph_connection,
2865 work.work);
2866 bool fault;
2867
2868 mutex_lock(&con->mutex);
2869 while (true) {
2870 int ret;
2871
2872 if ((fault = con_sock_closed(con))) {
2873 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2874 break;
2875 }
2876 if (con_backoff(con)) {
2877 dout("%s: con %p BACKOFF\n", __func__, con);
2878 break;
2879 }
2880 if (con->state == CON_STATE_STANDBY) {
2881 dout("%s: con %p STANDBY\n", __func__, con);
2882 break;
2883 }
2884 if (con->state == CON_STATE_CLOSED) {
2885 dout("%s: con %p CLOSED\n", __func__, con);
2886 BUG_ON(con->sock);
2887 break;
2888 }
2889 if (con->state == CON_STATE_PREOPEN) {
2890 dout("%s: con %p PREOPEN\n", __func__, con);
2891 BUG_ON(con->sock);
2892 }
2893
2894 ret = try_read(con);
2895 if (ret < 0) {
2896 if (ret == -EAGAIN)
2897 continue;
2898 if (!con->error_msg)
2899 con->error_msg = "socket error on read";
2900 fault = true;
2901 break;
2902 }
2903
2904 ret = try_write(con);
2905 if (ret < 0) {
2906 if (ret == -EAGAIN)
2907 continue;
2908 if (!con->error_msg)
2909 con->error_msg = "socket error on write";
2910 fault = true;
2911 }
2912
2913 break; /* If we make it to here, we're done */
2914 }
2915 if (fault)
2916 con_fault(con);
2917 mutex_unlock(&con->mutex);
2918
2919 if (fault)
2920 con_fault_finish(con);
2921
2922 con->ops->put(con);
2923 }
2924
2925 /*
2926 * Generic error/fault handler. A retry mechanism is used with
2927 * exponential backoff
2928 */
2929 static void con_fault(struct ceph_connection *con)
2930 {
2931 dout("fault %p state %lu to peer %s\n",
2932 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2933
2934 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2935 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2936 con->error_msg = NULL;
2937
2938 WARN_ON(con->state != CON_STATE_CONNECTING &&
2939 con->state != CON_STATE_NEGOTIATING &&
2940 con->state != CON_STATE_OPEN);
2941
2942 con_close_socket(con);
2943
2944 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2945 dout("fault on LOSSYTX channel, marking CLOSED\n");
2946 con->state = CON_STATE_CLOSED;
2947 return;
2948 }
2949
2950 if (con->in_msg) {
2951 BUG_ON(con->in_msg->con != con);
2952 ceph_msg_put(con->in_msg);
2953 con->in_msg = NULL;
2954 }
2955
2956 /* Requeue anything that hasn't been acked */
2957 list_splice_init(&con->out_sent, &con->out_queue);
2958
2959 /* If there are no messages queued or keepalive pending, place
2960 * the connection in a STANDBY state */
2961 if (list_empty(&con->out_queue) &&
2962 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2963 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2964 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2965 con->state = CON_STATE_STANDBY;
2966 } else {
2967 /* retry after a delay. */
2968 con->state = CON_STATE_PREOPEN;
2969 if (con->delay == 0)
2970 con->delay = BASE_DELAY_INTERVAL;
2971 else if (con->delay < MAX_DELAY_INTERVAL)
2972 con->delay *= 2;
2973 con_flag_set(con, CON_FLAG_BACKOFF);
2974 queue_con(con);
2975 }
2976 }
2977
2978
2979
2980 /*
2981 * initialize a new messenger instance
2982 */
2983 void ceph_messenger_init(struct ceph_messenger *msgr,
2984 struct ceph_entity_addr *myaddr)
2985 {
2986 spin_lock_init(&msgr->global_seq_lock);
2987
2988 if (myaddr)
2989 msgr->inst.addr = *myaddr;
2990
2991 /* select a random nonce */
2992 msgr->inst.addr.type = 0;
2993 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2994 encode_my_addr(msgr);
2995
2996 atomic_set(&msgr->stopping, 0);
2997 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2998
2999 dout("%s %p\n", __func__, msgr);
3000 }
3001 EXPORT_SYMBOL(ceph_messenger_init);
3002
3003 void ceph_messenger_fini(struct ceph_messenger *msgr)
3004 {
3005 put_net(read_pnet(&msgr->net));
3006 }
3007 EXPORT_SYMBOL(ceph_messenger_fini);
3008
3009 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3010 {
3011 if (msg->con)
3012 msg->con->ops->put(msg->con);
3013
3014 msg->con = con ? con->ops->get(con) : NULL;
3015 BUG_ON(msg->con != con);
3016 }
3017
3018 static void clear_standby(struct ceph_connection *con)
3019 {
3020 /* come back from STANDBY? */
3021 if (con->state == CON_STATE_STANDBY) {
3022 dout("clear_standby %p and ++connect_seq\n", con);
3023 con->state = CON_STATE_PREOPEN;
3024 con->connect_seq++;
3025 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3026 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3027 }
3028 }
3029
3030 /*
3031 * Queue up an outgoing message on the given connection.
3032 */
3033 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3034 {
3035 /* set src+dst */
3036 msg->hdr.src = con->msgr->inst.name;
3037 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3038 msg->needs_out_seq = true;
3039
3040 mutex_lock(&con->mutex);
3041
3042 if (con->state == CON_STATE_CLOSED) {
3043 dout("con_send %p closed, dropping %p\n", con, msg);
3044 ceph_msg_put(msg);
3045 mutex_unlock(&con->mutex);
3046 return;
3047 }
3048
3049 msg_con_set(msg, con);
3050
3051 BUG_ON(!list_empty(&msg->list_head));
3052 list_add_tail(&msg->list_head, &con->out_queue);
3053 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3054 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3055 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3056 le32_to_cpu(msg->hdr.front_len),
3057 le32_to_cpu(msg->hdr.middle_len),
3058 le32_to_cpu(msg->hdr.data_len));
3059
3060 clear_standby(con);
3061 mutex_unlock(&con->mutex);
3062
3063 /* if there wasn't anything waiting to send before, queue
3064 * new work */
3065 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3066 queue_con(con);
3067 }
3068 EXPORT_SYMBOL(ceph_con_send);
3069
3070 /*
3071 * Revoke a message that was previously queued for send
3072 */
3073 void ceph_msg_revoke(struct ceph_msg *msg)
3074 {
3075 struct ceph_connection *con = msg->con;
3076
3077 if (!con) {
3078 dout("%s msg %p null con\n", __func__, msg);
3079 return; /* Message not in our possession */
3080 }
3081
3082 mutex_lock(&con->mutex);
3083 if (!list_empty(&msg->list_head)) {
3084 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3085 list_del_init(&msg->list_head);
3086 msg->hdr.seq = 0;
3087
3088 ceph_msg_put(msg);
3089 }
3090 if (con->out_msg == msg) {
3091 BUG_ON(con->out_skip);
3092 /* footer */
3093 if (con->out_msg_done) {
3094 con->out_skip += con_out_kvec_skip(con);
3095 } else {
3096 BUG_ON(!msg->data_length);
3097 con->out_skip += sizeof_footer(con);
3098 }
3099 /* data, middle, front */
3100 if (msg->data_length)
3101 con->out_skip += msg->cursor.total_resid;
3102 if (msg->middle)
3103 con->out_skip += con_out_kvec_skip(con);
3104 con->out_skip += con_out_kvec_skip(con);
3105
3106 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3107 __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3108 msg->hdr.seq = 0;
3109 con->out_msg = NULL;
3110 ceph_msg_put(msg);
3111 }
3112
3113 mutex_unlock(&con->mutex);
3114 }
3115
3116 /*
3117 * Revoke a message that we may be reading data into
3118 */
3119 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3120 {
3121 struct ceph_connection *con = msg->con;
3122
3123 if (!con) {
3124 dout("%s msg %p null con\n", __func__, msg);
3125 return; /* Message not in our possession */
3126 }
3127
3128 mutex_lock(&con->mutex);
3129 if (con->in_msg == msg) {
3130 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3131 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3132 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3133
3134 /* skip rest of message */
3135 dout("%s %p msg %p revoked\n", __func__, con, msg);
3136 con->in_base_pos = con->in_base_pos -
3137 sizeof(struct ceph_msg_header) -
3138 front_len -
3139 middle_len -
3140 data_len -
3141 sizeof(struct ceph_msg_footer);
3142 ceph_msg_put(con->in_msg);
3143 con->in_msg = NULL;
3144 con->in_tag = CEPH_MSGR_TAG_READY;
3145 con->in_seq++;
3146 } else {
3147 dout("%s %p in_msg %p msg %p no-op\n",
3148 __func__, con, con->in_msg, msg);
3149 }
3150 mutex_unlock(&con->mutex);
3151 }
3152
3153 /*
3154 * Queue a keepalive byte to ensure the tcp connection is alive.
3155 */
3156 void ceph_con_keepalive(struct ceph_connection *con)
3157 {
3158 dout("con_keepalive %p\n", con);
3159 mutex_lock(&con->mutex);
3160 clear_standby(con);
3161 mutex_unlock(&con->mutex);
3162 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3163 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3164 queue_con(con);
3165 }
3166 EXPORT_SYMBOL(ceph_con_keepalive);
3167
3168 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3169 unsigned long interval)
3170 {
3171 if (interval > 0 &&
3172 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3173 struct timespec now = CURRENT_TIME;
3174 struct timespec ts;
3175 jiffies_to_timespec(interval, &ts);
3176 ts = timespec_add(con->last_keepalive_ack, ts);
3177 return timespec_compare(&now, &ts) >= 0;
3178 }
3179 return false;
3180 }
3181
3182 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3183 {
3184 struct ceph_msg_data *data;
3185
3186 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3187 return NULL;
3188
3189 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3190 if (data)
3191 data->type = type;
3192 INIT_LIST_HEAD(&data->links);
3193
3194 return data;
3195 }
3196
3197 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3198 {
3199 if (!data)
3200 return;
3201
3202 WARN_ON(!list_empty(&data->links));
3203 if (data->type == CEPH_MSG_DATA_PAGELIST)
3204 ceph_pagelist_release(data->pagelist);
3205 kmem_cache_free(ceph_msg_data_cache, data);
3206 }
3207
3208 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3209 size_t length, size_t alignment)
3210 {
3211 struct ceph_msg_data *data;
3212
3213 BUG_ON(!pages);
3214 BUG_ON(!length);
3215
3216 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3217 BUG_ON(!data);
3218 data->pages = pages;
3219 data->length = length;
3220 data->alignment = alignment & ~PAGE_MASK;
3221
3222 list_add_tail(&data->links, &msg->data);
3223 msg->data_length += length;
3224 }
3225 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3226
3227 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3228 struct ceph_pagelist *pagelist)
3229 {
3230 struct ceph_msg_data *data;
3231
3232 BUG_ON(!pagelist);
3233 BUG_ON(!pagelist->length);
3234
3235 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3236 BUG_ON(!data);
3237 data->pagelist = pagelist;
3238
3239 list_add_tail(&data->links, &msg->data);
3240 msg->data_length += pagelist->length;
3241 }
3242 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3243
3244 #ifdef CONFIG_BLOCK
3245 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3246 size_t length)
3247 {
3248 struct ceph_msg_data *data;
3249
3250 BUG_ON(!bio);
3251
3252 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3253 BUG_ON(!data);
3254 data->bio = bio;
3255 data->bio_length = length;
3256
3257 list_add_tail(&data->links, &msg->data);
3258 msg->data_length += length;
3259 }
3260 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3261 #endif /* CONFIG_BLOCK */
3262
3263 /*
3264 * construct a new message with given type, size
3265 * the new msg has a ref count of 1.
3266 */
3267 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3268 bool can_fail)
3269 {
3270 struct ceph_msg *m;
3271
3272 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3273 if (m == NULL)
3274 goto out;
3275
3276 m->hdr.type = cpu_to_le16(type);
3277 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3278 m->hdr.front_len = cpu_to_le32(front_len);
3279
3280 INIT_LIST_HEAD(&m->list_head);
3281 kref_init(&m->kref);
3282 INIT_LIST_HEAD(&m->data);
3283
3284 /* front */
3285 if (front_len) {
3286 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3287 if (m->front.iov_base == NULL) {
3288 dout("ceph_msg_new can't allocate %d bytes\n",
3289 front_len);
3290 goto out2;
3291 }
3292 } else {
3293 m->front.iov_base = NULL;
3294 }
3295 m->front_alloc_len = m->front.iov_len = front_len;
3296
3297 dout("ceph_msg_new %p front %d\n", m, front_len);
3298 return m;
3299
3300 out2:
3301 ceph_msg_put(m);
3302 out:
3303 if (!can_fail) {
3304 pr_err("msg_new can't create type %d front %d\n", type,
3305 front_len);
3306 WARN_ON(1);
3307 } else {
3308 dout("msg_new can't create type %d front %d\n", type,
3309 front_len);
3310 }
3311 return NULL;
3312 }
3313 EXPORT_SYMBOL(ceph_msg_new);
3314
3315 /*
3316 * Allocate "middle" portion of a message, if it is needed and wasn't
3317 * allocated by alloc_msg. This allows us to read a small fixed-size
3318 * per-type header in the front and then gracefully fail (i.e.,
3319 * propagate the error to the caller based on info in the front) when
3320 * the middle is too large.
3321 */
3322 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3323 {
3324 int type = le16_to_cpu(msg->hdr.type);
3325 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3326
3327 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3328 ceph_msg_type_name(type), middle_len);
3329 BUG_ON(!middle_len);
3330 BUG_ON(msg->middle);
3331
3332 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3333 if (!msg->middle)
3334 return -ENOMEM;
3335 return 0;
3336 }
3337
3338 /*
3339 * Allocate a message for receiving an incoming message on a
3340 * connection, and save the result in con->in_msg. Uses the
3341 * connection's private alloc_msg op if available.
3342 *
3343 * Returns 0 on success, or a negative error code.
3344 *
3345 * On success, if we set *skip = 1:
3346 * - the next message should be skipped and ignored.
3347 * - con->in_msg == NULL
3348 * or if we set *skip = 0:
3349 * - con->in_msg is non-null.
3350 * On error (ENOMEM, EAGAIN, ...),
3351 * - con->in_msg == NULL
3352 */
3353 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3354 {
3355 struct ceph_msg_header *hdr = &con->in_hdr;
3356 int middle_len = le32_to_cpu(hdr->middle_len);
3357 struct ceph_msg *msg;
3358 int ret = 0;
3359
3360 BUG_ON(con->in_msg != NULL);
3361 BUG_ON(!con->ops->alloc_msg);
3362
3363 mutex_unlock(&con->mutex);
3364 msg = con->ops->alloc_msg(con, hdr, skip);
3365 mutex_lock(&con->mutex);
3366 if (con->state != CON_STATE_OPEN) {
3367 if (msg)
3368 ceph_msg_put(msg);
3369 return -EAGAIN;
3370 }
3371 if (msg) {
3372 BUG_ON(*skip);
3373 msg_con_set(msg, con);
3374 con->in_msg = msg;
3375 } else {
3376 /*
3377 * Null message pointer means either we should skip
3378 * this message or we couldn't allocate memory. The
3379 * former is not an error.
3380 */
3381 if (*skip)
3382 return 0;
3383
3384 con->error_msg = "error allocating memory for incoming message";
3385 return -ENOMEM;
3386 }
3387 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3388
3389 if (middle_len && !con->in_msg->middle) {
3390 ret = ceph_alloc_middle(con, con->in_msg);
3391 if (ret < 0) {
3392 ceph_msg_put(con->in_msg);
3393 con->in_msg = NULL;
3394 }
3395 }
3396
3397 return ret;
3398 }
3399
3400
3401 /*
3402 * Free a generically kmalloc'd message.
3403 */
3404 static void ceph_msg_free(struct ceph_msg *m)
3405 {
3406 dout("%s %p\n", __func__, m);
3407 kvfree(m->front.iov_base);
3408 kmem_cache_free(ceph_msg_cache, m);
3409 }
3410
3411 static void ceph_msg_release(struct kref *kref)
3412 {
3413 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3414 struct ceph_msg_data *data, *next;
3415
3416 dout("%s %p\n", __func__, m);
3417 WARN_ON(!list_empty(&m->list_head));
3418
3419 msg_con_set(m, NULL);
3420
3421 /* drop middle, data, if any */
3422 if (m->middle) {
3423 ceph_buffer_put(m->middle);
3424 m->middle = NULL;
3425 }
3426
3427 list_for_each_entry_safe(data, next, &m->data, links) {
3428 list_del_init(&data->links);
3429 ceph_msg_data_destroy(data);
3430 }
3431 m->data_length = 0;
3432
3433 if (m->pool)
3434 ceph_msgpool_put(m->pool, m);
3435 else
3436 ceph_msg_free(m);
3437 }
3438
3439 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3440 {
3441 dout("%s %p (was %d)\n", __func__, msg,
3442 kref_read(&msg->kref));
3443 kref_get(&msg->kref);
3444 return msg;
3445 }
3446 EXPORT_SYMBOL(ceph_msg_get);
3447
3448 void ceph_msg_put(struct ceph_msg *msg)
3449 {
3450 dout("%s %p (was %d)\n", __func__, msg,
3451 kref_read(&msg->kref));
3452 kref_put(&msg->kref, ceph_msg_release);
3453 }
3454 EXPORT_SYMBOL(ceph_msg_put);
3455
3456 void ceph_msg_dump(struct ceph_msg *msg)
3457 {
3458 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3459 msg->front_alloc_len, msg->data_length);
3460 print_hex_dump(KERN_DEBUG, "header: ",
3461 DUMP_PREFIX_OFFSET, 16, 1,
3462 &msg->hdr, sizeof(msg->hdr), true);
3463 print_hex_dump(KERN_DEBUG, " front: ",
3464 DUMP_PREFIX_OFFSET, 16, 1,
3465 msg->front.iov_base, msg->front.iov_len, true);
3466 if (msg->middle)
3467 print_hex_dump(KERN_DEBUG, "middle: ",
3468 DUMP_PREFIX_OFFSET, 16, 1,
3469 msg->middle->vec.iov_base,
3470 msg->middle->vec.iov_len, true);
3471 print_hex_dump(KERN_DEBUG, "footer: ",
3472 DUMP_PREFIX_OFFSET, 16, 1,
3473 &msg->footer, sizeof(msg->footer), true);
3474 }
3475 EXPORT_SYMBOL(ceph_msg_dump);