]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/ceph/messenger.c
libceph: don't use bio_iter as a flag
[mirror_ubuntu-jammy-kernel.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
30 */
31
32 /* State values for ceph_connection->sock_state; NEW is assumed to be 0 */
33
34 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
35 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
36 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
37 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
38 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
39
40 /* static tag bytes (protocol control messages) */
41 static char tag_msg = CEPH_MSGR_TAG_MSG;
42 static char tag_ack = CEPH_MSGR_TAG_ACK;
43 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
44
45 #ifdef CONFIG_LOCKDEP
46 static struct lock_class_key socket_class;
47 #endif
48
49 /*
50 * When skipping (ignoring) a block of input we read it into a "skip
51 * buffer," which is this many bytes in size.
52 */
53 #define SKIP_BUF_SIZE 1024
54
55 static void queue_con(struct ceph_connection *con);
56 static void con_work(struct work_struct *);
57 static void ceph_fault(struct ceph_connection *con);
58
59 /*
60 * Nicely render a sockaddr as a string. An array of formatted
61 * strings is used, to approximate reentrancy.
62 */
63 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
64 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
65 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
66 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
67
68 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
69 static atomic_t addr_str_seq = ATOMIC_INIT(0);
70
71 static struct page *zero_page; /* used in certain error cases */
72
73 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
74 {
75 int i;
76 char *s;
77 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
78 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
79
80 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
81 s = addr_str[i];
82
83 switch (ss->ss_family) {
84 case AF_INET:
85 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
86 ntohs(in4->sin_port));
87 break;
88
89 case AF_INET6:
90 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
91 ntohs(in6->sin6_port));
92 break;
93
94 default:
95 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
96 ss->ss_family);
97 }
98
99 return s;
100 }
101 EXPORT_SYMBOL(ceph_pr_addr);
102
103 static void encode_my_addr(struct ceph_messenger *msgr)
104 {
105 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
106 ceph_encode_addr(&msgr->my_enc_addr);
107 }
108
109 /*
110 * work queue for all reading and writing to/from the socket.
111 */
112 static struct workqueue_struct *ceph_msgr_wq;
113
114 void _ceph_msgr_exit(void)
115 {
116 if (ceph_msgr_wq) {
117 destroy_workqueue(ceph_msgr_wq);
118 ceph_msgr_wq = NULL;
119 }
120
121 BUG_ON(zero_page == NULL);
122 kunmap(zero_page);
123 page_cache_release(zero_page);
124 zero_page = NULL;
125 }
126
127 int ceph_msgr_init(void)
128 {
129 BUG_ON(zero_page != NULL);
130 zero_page = ZERO_PAGE(0);
131 page_cache_get(zero_page);
132
133 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
134 if (ceph_msgr_wq)
135 return 0;
136
137 pr_err("msgr_init failed to create workqueue\n");
138 _ceph_msgr_exit();
139
140 return -ENOMEM;
141 }
142 EXPORT_SYMBOL(ceph_msgr_init);
143
144 void ceph_msgr_exit(void)
145 {
146 BUG_ON(ceph_msgr_wq == NULL);
147
148 _ceph_msgr_exit();
149 }
150 EXPORT_SYMBOL(ceph_msgr_exit);
151
152 void ceph_msgr_flush(void)
153 {
154 flush_workqueue(ceph_msgr_wq);
155 }
156 EXPORT_SYMBOL(ceph_msgr_flush);
157
158 /* Connection socket state transition functions */
159
160 static void con_sock_state_init(struct ceph_connection *con)
161 {
162 int old_state;
163
164 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
165 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
166 printk("%s: unexpected old state %d\n", __func__, old_state);
167 }
168
169 static void con_sock_state_connecting(struct ceph_connection *con)
170 {
171 int old_state;
172
173 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
174 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
175 printk("%s: unexpected old state %d\n", __func__, old_state);
176 }
177
178 static void con_sock_state_connected(struct ceph_connection *con)
179 {
180 int old_state;
181
182 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
183 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
184 printk("%s: unexpected old state %d\n", __func__, old_state);
185 }
186
187 static void con_sock_state_closing(struct ceph_connection *con)
188 {
189 int old_state;
190
191 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
192 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
193 old_state != CON_SOCK_STATE_CONNECTED &&
194 old_state != CON_SOCK_STATE_CLOSING))
195 printk("%s: unexpected old state %d\n", __func__, old_state);
196 }
197
198 static void con_sock_state_closed(struct ceph_connection *con)
199 {
200 int old_state;
201
202 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
203 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
204 old_state != CON_SOCK_STATE_CLOSING))
205 printk("%s: unexpected old state %d\n", __func__, old_state);
206 }
207
208 /*
209 * socket callback functions
210 */
211
212 /* data available on socket, or listen socket received a connect */
213 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
214 {
215 struct ceph_connection *con = sk->sk_user_data;
216
217 if (sk->sk_state != TCP_CLOSE_WAIT) {
218 dout("%s on %p state = %lu, queueing work\n", __func__,
219 con, con->state);
220 queue_con(con);
221 }
222 }
223
224 /* socket has buffer space for writing */
225 static void ceph_sock_write_space(struct sock *sk)
226 {
227 struct ceph_connection *con = sk->sk_user_data;
228
229 /* only queue to workqueue if there is data we want to write,
230 * and there is sufficient space in the socket buffer to accept
231 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
232 * doesn't get called again until try_write() fills the socket
233 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
234 * and net/core/stream.c:sk_stream_write_space().
235 */
236 if (test_bit(WRITE_PENDING, &con->flags)) {
237 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
238 dout("%s %p queueing write work\n", __func__, con);
239 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
240 queue_con(con);
241 }
242 } else {
243 dout("%s %p nothing to write\n", __func__, con);
244 }
245 }
246
247 /* socket's state has changed */
248 static void ceph_sock_state_change(struct sock *sk)
249 {
250 struct ceph_connection *con = sk->sk_user_data;
251
252 dout("%s %p state = %lu sk_state = %u\n", __func__,
253 con, con->state, sk->sk_state);
254
255 if (test_bit(CLOSED, &con->state))
256 return;
257
258 switch (sk->sk_state) {
259 case TCP_CLOSE:
260 dout("%s TCP_CLOSE\n", __func__);
261 case TCP_CLOSE_WAIT:
262 dout("%s TCP_CLOSE_WAIT\n", __func__);
263 con_sock_state_closing(con);
264 if (test_and_set_bit(SOCK_CLOSED, &con->flags) == 0) {
265 if (test_bit(CONNECTING, &con->state))
266 con->error_msg = "connection failed";
267 else
268 con->error_msg = "socket closed";
269 queue_con(con);
270 }
271 break;
272 case TCP_ESTABLISHED:
273 dout("%s TCP_ESTABLISHED\n", __func__);
274 con_sock_state_connected(con);
275 queue_con(con);
276 break;
277 default: /* Everything else is uninteresting */
278 break;
279 }
280 }
281
282 /*
283 * set up socket callbacks
284 */
285 static void set_sock_callbacks(struct socket *sock,
286 struct ceph_connection *con)
287 {
288 struct sock *sk = sock->sk;
289 sk->sk_user_data = con;
290 sk->sk_data_ready = ceph_sock_data_ready;
291 sk->sk_write_space = ceph_sock_write_space;
292 sk->sk_state_change = ceph_sock_state_change;
293 }
294
295
296 /*
297 * socket helpers
298 */
299
300 /*
301 * initiate connection to a remote socket.
302 */
303 static int ceph_tcp_connect(struct ceph_connection *con)
304 {
305 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
306 struct socket *sock;
307 int ret;
308
309 BUG_ON(con->sock);
310 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
311 IPPROTO_TCP, &sock);
312 if (ret)
313 return ret;
314 sock->sk->sk_allocation = GFP_NOFS;
315
316 #ifdef CONFIG_LOCKDEP
317 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
318 #endif
319
320 set_sock_callbacks(sock, con);
321
322 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
323
324 con_sock_state_connecting(con);
325 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
326 O_NONBLOCK);
327 if (ret == -EINPROGRESS) {
328 dout("connect %s EINPROGRESS sk_state = %u\n",
329 ceph_pr_addr(&con->peer_addr.in_addr),
330 sock->sk->sk_state);
331 } else if (ret < 0) {
332 pr_err("connect %s error %d\n",
333 ceph_pr_addr(&con->peer_addr.in_addr), ret);
334 sock_release(sock);
335 con->error_msg = "connect error";
336
337 return ret;
338 }
339 con->sock = sock;
340 return 0;
341 }
342
343 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
344 {
345 struct kvec iov = {buf, len};
346 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
347 int r;
348
349 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
350 if (r == -EAGAIN)
351 r = 0;
352 return r;
353 }
354
355 /*
356 * write something. @more is true if caller will be sending more data
357 * shortly.
358 */
359 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
360 size_t kvlen, size_t len, int more)
361 {
362 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
363 int r;
364
365 if (more)
366 msg.msg_flags |= MSG_MORE;
367 else
368 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
369
370 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
371 if (r == -EAGAIN)
372 r = 0;
373 return r;
374 }
375
376 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
377 int offset, size_t size, int more)
378 {
379 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
380 int ret;
381
382 ret = kernel_sendpage(sock, page, offset, size, flags);
383 if (ret == -EAGAIN)
384 ret = 0;
385
386 return ret;
387 }
388
389
390 /*
391 * Shutdown/close the socket for the given connection.
392 */
393 static int con_close_socket(struct ceph_connection *con)
394 {
395 int rc;
396
397 dout("con_close_socket on %p sock %p\n", con, con->sock);
398 if (!con->sock)
399 return 0;
400 set_bit(SOCK_CLOSED, &con->state);
401 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
402 sock_release(con->sock);
403 con->sock = NULL;
404 clear_bit(SOCK_CLOSED, &con->state);
405 con_sock_state_closed(con);
406 return rc;
407 }
408
409 /*
410 * Reset a connection. Discard all incoming and outgoing messages
411 * and clear *_seq state.
412 */
413 static void ceph_msg_remove(struct ceph_msg *msg)
414 {
415 list_del_init(&msg->list_head);
416 BUG_ON(msg->con == NULL);
417 msg->con->ops->put(msg->con);
418 msg->con = NULL;
419
420 ceph_msg_put(msg);
421 }
422 static void ceph_msg_remove_list(struct list_head *head)
423 {
424 while (!list_empty(head)) {
425 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
426 list_head);
427 ceph_msg_remove(msg);
428 }
429 }
430
431 static void reset_connection(struct ceph_connection *con)
432 {
433 /* reset connection, out_queue, msg_ and connect_seq */
434 /* discard existing out_queue and msg_seq */
435 ceph_msg_remove_list(&con->out_queue);
436 ceph_msg_remove_list(&con->out_sent);
437
438 if (con->in_msg) {
439 BUG_ON(con->in_msg->con != con);
440 con->in_msg->con = NULL;
441 ceph_msg_put(con->in_msg);
442 con->in_msg = NULL;
443 con->ops->put(con);
444 }
445
446 con->connect_seq = 0;
447 con->out_seq = 0;
448 if (con->out_msg) {
449 ceph_msg_put(con->out_msg);
450 con->out_msg = NULL;
451 }
452 con->in_seq = 0;
453 con->in_seq_acked = 0;
454 }
455
456 /*
457 * mark a peer down. drop any open connections.
458 */
459 void ceph_con_close(struct ceph_connection *con)
460 {
461 dout("con_close %p peer %s\n", con,
462 ceph_pr_addr(&con->peer_addr.in_addr));
463 clear_bit(NEGOTIATING, &con->state);
464 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
465 set_bit(CLOSED, &con->state);
466
467 clear_bit(LOSSYTX, &con->flags); /* so we retry next connect */
468 clear_bit(KEEPALIVE_PENDING, &con->flags);
469 clear_bit(WRITE_PENDING, &con->flags);
470
471 mutex_lock(&con->mutex);
472 reset_connection(con);
473 con->peer_global_seq = 0;
474 cancel_delayed_work(&con->work);
475 mutex_unlock(&con->mutex);
476 queue_con(con);
477 }
478 EXPORT_SYMBOL(ceph_con_close);
479
480 /*
481 * Reopen a closed connection, with a new peer address.
482 */
483 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
484 {
485 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
486 set_bit(OPENING, &con->state);
487 WARN_ON(!test_and_clear_bit(CLOSED, &con->state));
488
489 memcpy(&con->peer_addr, addr, sizeof(*addr));
490 con->delay = 0; /* reset backoff memory */
491 queue_con(con);
492 }
493 EXPORT_SYMBOL(ceph_con_open);
494
495 /*
496 * return true if this connection ever successfully opened
497 */
498 bool ceph_con_opened(struct ceph_connection *con)
499 {
500 return con->connect_seq > 0;
501 }
502
503 /*
504 * initialize a new connection.
505 */
506 void ceph_con_init(struct ceph_connection *con, void *private,
507 const struct ceph_connection_operations *ops,
508 struct ceph_messenger *msgr, __u8 entity_type, __u64 entity_num)
509 {
510 dout("con_init %p\n", con);
511 memset(con, 0, sizeof(*con));
512 con->private = private;
513 con->ops = ops;
514 con->msgr = msgr;
515
516 con_sock_state_init(con);
517
518 con->peer_name.type = (__u8) entity_type;
519 con->peer_name.num = cpu_to_le64(entity_num);
520
521 mutex_init(&con->mutex);
522 INIT_LIST_HEAD(&con->out_queue);
523 INIT_LIST_HEAD(&con->out_sent);
524 INIT_DELAYED_WORK(&con->work, con_work);
525
526 set_bit(CLOSED, &con->state);
527 }
528 EXPORT_SYMBOL(ceph_con_init);
529
530
531 /*
532 * We maintain a global counter to order connection attempts. Get
533 * a unique seq greater than @gt.
534 */
535 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
536 {
537 u32 ret;
538
539 spin_lock(&msgr->global_seq_lock);
540 if (msgr->global_seq < gt)
541 msgr->global_seq = gt;
542 ret = ++msgr->global_seq;
543 spin_unlock(&msgr->global_seq_lock);
544 return ret;
545 }
546
547 static void con_out_kvec_reset(struct ceph_connection *con)
548 {
549 con->out_kvec_left = 0;
550 con->out_kvec_bytes = 0;
551 con->out_kvec_cur = &con->out_kvec[0];
552 }
553
554 static void con_out_kvec_add(struct ceph_connection *con,
555 size_t size, void *data)
556 {
557 int index;
558
559 index = con->out_kvec_left;
560 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
561
562 con->out_kvec[index].iov_len = size;
563 con->out_kvec[index].iov_base = data;
564 con->out_kvec_left++;
565 con->out_kvec_bytes += size;
566 }
567
568 #ifdef CONFIG_BLOCK
569 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
570 {
571 if (!bio) {
572 *iter = NULL;
573 *seg = 0;
574 return;
575 }
576 *iter = bio;
577 *seg = bio->bi_idx;
578 }
579
580 static void iter_bio_next(struct bio **bio_iter, int *seg)
581 {
582 if (*bio_iter == NULL)
583 return;
584
585 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
586
587 (*seg)++;
588 if (*seg == (*bio_iter)->bi_vcnt)
589 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
590 }
591 #endif
592
593 static void prepare_write_message_data(struct ceph_connection *con)
594 {
595 struct ceph_msg *msg = con->out_msg;
596
597 BUG_ON(!msg);
598 BUG_ON(!msg->hdr.data_len);
599
600 /* initialize page iterator */
601 con->out_msg_pos.page = 0;
602 if (msg->pages)
603 con->out_msg_pos.page_pos = msg->page_alignment;
604 else
605 con->out_msg_pos.page_pos = 0;
606 #ifdef CONFIG_BLOCK
607 if (msg->bio)
608 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
609 #endif
610 con->out_msg_pos.data_pos = 0;
611 con->out_msg_pos.did_page_crc = false;
612 con->out_more = 1; /* data + footer will follow */
613 }
614
615 /*
616 * Prepare footer for currently outgoing message, and finish things
617 * off. Assumes out_kvec* are already valid.. we just add on to the end.
618 */
619 static void prepare_write_message_footer(struct ceph_connection *con)
620 {
621 struct ceph_msg *m = con->out_msg;
622 int v = con->out_kvec_left;
623
624 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
625
626 dout("prepare_write_message_footer %p\n", con);
627 con->out_kvec_is_msg = true;
628 con->out_kvec[v].iov_base = &m->footer;
629 con->out_kvec[v].iov_len = sizeof(m->footer);
630 con->out_kvec_bytes += sizeof(m->footer);
631 con->out_kvec_left++;
632 con->out_more = m->more_to_follow;
633 con->out_msg_done = true;
634 }
635
636 /*
637 * Prepare headers for the next outgoing message.
638 */
639 static void prepare_write_message(struct ceph_connection *con)
640 {
641 struct ceph_msg *m;
642 u32 crc;
643
644 con_out_kvec_reset(con);
645 con->out_kvec_is_msg = true;
646 con->out_msg_done = false;
647
648 /* Sneak an ack in there first? If we can get it into the same
649 * TCP packet that's a good thing. */
650 if (con->in_seq > con->in_seq_acked) {
651 con->in_seq_acked = con->in_seq;
652 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
653 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
654 con_out_kvec_add(con, sizeof (con->out_temp_ack),
655 &con->out_temp_ack);
656 }
657
658 BUG_ON(list_empty(&con->out_queue));
659 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
660 con->out_msg = m;
661 BUG_ON(m->con != con);
662
663 /* put message on sent list */
664 ceph_msg_get(m);
665 list_move_tail(&m->list_head, &con->out_sent);
666
667 /*
668 * only assign outgoing seq # if we haven't sent this message
669 * yet. if it is requeued, resend with it's original seq.
670 */
671 if (m->needs_out_seq) {
672 m->hdr.seq = cpu_to_le64(++con->out_seq);
673 m->needs_out_seq = false;
674 }
675
676 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
677 m, con->out_seq, le16_to_cpu(m->hdr.type),
678 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
679 le32_to_cpu(m->hdr.data_len),
680 m->nr_pages);
681 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
682
683 /* tag + hdr + front + middle */
684 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
685 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
686 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
687
688 if (m->middle)
689 con_out_kvec_add(con, m->middle->vec.iov_len,
690 m->middle->vec.iov_base);
691
692 /* fill in crc (except data pages), footer */
693 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
694 con->out_msg->hdr.crc = cpu_to_le32(crc);
695 con->out_msg->footer.flags = 0;
696
697 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
698 con->out_msg->footer.front_crc = cpu_to_le32(crc);
699 if (m->middle) {
700 crc = crc32c(0, m->middle->vec.iov_base,
701 m->middle->vec.iov_len);
702 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
703 } else
704 con->out_msg->footer.middle_crc = 0;
705 dout("%s front_crc %u middle_crc %u\n", __func__,
706 le32_to_cpu(con->out_msg->footer.front_crc),
707 le32_to_cpu(con->out_msg->footer.middle_crc));
708
709 /* is there a data payload? */
710 con->out_msg->footer.data_crc = 0;
711 if (m->hdr.data_len)
712 prepare_write_message_data(con);
713 else
714 /* no, queue up footer too and be done */
715 prepare_write_message_footer(con);
716
717 set_bit(WRITE_PENDING, &con->flags);
718 }
719
720 /*
721 * Prepare an ack.
722 */
723 static void prepare_write_ack(struct ceph_connection *con)
724 {
725 dout("prepare_write_ack %p %llu -> %llu\n", con,
726 con->in_seq_acked, con->in_seq);
727 con->in_seq_acked = con->in_seq;
728
729 con_out_kvec_reset(con);
730
731 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
732
733 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
734 con_out_kvec_add(con, sizeof (con->out_temp_ack),
735 &con->out_temp_ack);
736
737 con->out_more = 1; /* more will follow.. eventually.. */
738 set_bit(WRITE_PENDING, &con->flags);
739 }
740
741 /*
742 * Prepare to write keepalive byte.
743 */
744 static void prepare_write_keepalive(struct ceph_connection *con)
745 {
746 dout("prepare_write_keepalive %p\n", con);
747 con_out_kvec_reset(con);
748 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
749 set_bit(WRITE_PENDING, &con->flags);
750 }
751
752 /*
753 * Connection negotiation.
754 */
755
756 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
757 int *auth_proto)
758 {
759 struct ceph_auth_handshake *auth;
760
761 if (!con->ops->get_authorizer) {
762 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
763 con->out_connect.authorizer_len = 0;
764
765 return NULL;
766 }
767
768 /* Can't hold the mutex while getting authorizer */
769
770 mutex_unlock(&con->mutex);
771
772 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
773
774 mutex_lock(&con->mutex);
775
776 if (IS_ERR(auth))
777 return auth;
778 if (test_bit(CLOSED, &con->state) || test_bit(OPENING, &con->flags))
779 return ERR_PTR(-EAGAIN);
780
781 con->auth_reply_buf = auth->authorizer_reply_buf;
782 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
783
784
785 return auth;
786 }
787
788 /*
789 * We connected to a peer and are saying hello.
790 */
791 static void prepare_write_banner(struct ceph_connection *con)
792 {
793 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
794 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
795 &con->msgr->my_enc_addr);
796
797 con->out_more = 0;
798 set_bit(WRITE_PENDING, &con->flags);
799 }
800
801 static int prepare_write_connect(struct ceph_connection *con)
802 {
803 unsigned int global_seq = get_global_seq(con->msgr, 0);
804 int proto;
805 int auth_proto;
806 struct ceph_auth_handshake *auth;
807
808 switch (con->peer_name.type) {
809 case CEPH_ENTITY_TYPE_MON:
810 proto = CEPH_MONC_PROTOCOL;
811 break;
812 case CEPH_ENTITY_TYPE_OSD:
813 proto = CEPH_OSDC_PROTOCOL;
814 break;
815 case CEPH_ENTITY_TYPE_MDS:
816 proto = CEPH_MDSC_PROTOCOL;
817 break;
818 default:
819 BUG();
820 }
821
822 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
823 con->connect_seq, global_seq, proto);
824
825 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
826 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
827 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
828 con->out_connect.global_seq = cpu_to_le32(global_seq);
829 con->out_connect.protocol_version = cpu_to_le32(proto);
830 con->out_connect.flags = 0;
831
832 auth_proto = CEPH_AUTH_UNKNOWN;
833 auth = get_connect_authorizer(con, &auth_proto);
834 if (IS_ERR(auth))
835 return PTR_ERR(auth);
836
837 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
838 con->out_connect.authorizer_len = auth ?
839 cpu_to_le32(auth->authorizer_buf_len) : 0;
840
841 con_out_kvec_add(con, sizeof (con->out_connect),
842 &con->out_connect);
843 if (auth && auth->authorizer_buf_len)
844 con_out_kvec_add(con, auth->authorizer_buf_len,
845 auth->authorizer_buf);
846
847 con->out_more = 0;
848 set_bit(WRITE_PENDING, &con->flags);
849
850 return 0;
851 }
852
853 /*
854 * write as much of pending kvecs to the socket as we can.
855 * 1 -> done
856 * 0 -> socket full, but more to do
857 * <0 -> error
858 */
859 static int write_partial_kvec(struct ceph_connection *con)
860 {
861 int ret;
862
863 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
864 while (con->out_kvec_bytes > 0) {
865 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
866 con->out_kvec_left, con->out_kvec_bytes,
867 con->out_more);
868 if (ret <= 0)
869 goto out;
870 con->out_kvec_bytes -= ret;
871 if (con->out_kvec_bytes == 0)
872 break; /* done */
873
874 /* account for full iov entries consumed */
875 while (ret >= con->out_kvec_cur->iov_len) {
876 BUG_ON(!con->out_kvec_left);
877 ret -= con->out_kvec_cur->iov_len;
878 con->out_kvec_cur++;
879 con->out_kvec_left--;
880 }
881 /* and for a partially-consumed entry */
882 if (ret) {
883 con->out_kvec_cur->iov_len -= ret;
884 con->out_kvec_cur->iov_base += ret;
885 }
886 }
887 con->out_kvec_left = 0;
888 con->out_kvec_is_msg = false;
889 ret = 1;
890 out:
891 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
892 con->out_kvec_bytes, con->out_kvec_left, ret);
893 return ret; /* done! */
894 }
895
896 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
897 size_t len, size_t sent, bool in_trail)
898 {
899 struct ceph_msg *msg = con->out_msg;
900
901 BUG_ON(!msg);
902 BUG_ON(!sent);
903
904 con->out_msg_pos.data_pos += sent;
905 con->out_msg_pos.page_pos += sent;
906 if (sent == len) {
907 con->out_msg_pos.page_pos = 0;
908 con->out_msg_pos.page++;
909 con->out_msg_pos.did_page_crc = false;
910 if (in_trail)
911 list_move_tail(&page->lru,
912 &msg->trail->head);
913 else if (msg->pagelist)
914 list_move_tail(&page->lru,
915 &msg->pagelist->head);
916 #ifdef CONFIG_BLOCK
917 else if (msg->bio)
918 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
919 #endif
920 }
921 }
922
923 /*
924 * Write as much message data payload as we can. If we finish, queue
925 * up the footer.
926 * 1 -> done, footer is now queued in out_kvec[].
927 * 0 -> socket full, but more to do
928 * <0 -> error
929 */
930 static int write_partial_msg_pages(struct ceph_connection *con)
931 {
932 struct ceph_msg *msg = con->out_msg;
933 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
934 size_t len;
935 bool do_datacrc = !con->msgr->nocrc;
936 int ret;
937 int total_max_write;
938 bool in_trail = false;
939 size_t trail_len = (msg->trail ? msg->trail->length : 0);
940
941 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
942 con, msg, con->out_msg_pos.page, msg->nr_pages,
943 con->out_msg_pos.page_pos);
944
945 while (data_len > con->out_msg_pos.data_pos) {
946 struct page *page = NULL;
947 int max_write = PAGE_SIZE;
948 int bio_offset = 0;
949
950 total_max_write = data_len - trail_len -
951 con->out_msg_pos.data_pos;
952
953 /*
954 * if we are calculating the data crc (the default), we need
955 * to map the page. if our pages[] has been revoked, use the
956 * zero page.
957 */
958
959 /* have we reached the trail part of the data? */
960 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
961 in_trail = true;
962
963 total_max_write = data_len - con->out_msg_pos.data_pos;
964
965 page = list_first_entry(&msg->trail->head,
966 struct page, lru);
967 } else if (msg->pages) {
968 page = msg->pages[con->out_msg_pos.page];
969 } else if (msg->pagelist) {
970 page = list_first_entry(&msg->pagelist->head,
971 struct page, lru);
972 #ifdef CONFIG_BLOCK
973 } else if (msg->bio) {
974 struct bio_vec *bv;
975
976 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
977 page = bv->bv_page;
978 bio_offset = bv->bv_offset;
979 max_write = bv->bv_len;
980 #endif
981 } else {
982 page = zero_page;
983 }
984 len = min_t(int, max_write - con->out_msg_pos.page_pos,
985 total_max_write);
986
987 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
988 void *base;
989 u32 crc;
990 u32 tmpcrc = le32_to_cpu(msg->footer.data_crc);
991 char *kaddr;
992
993 kaddr = kmap(page);
994 BUG_ON(kaddr == NULL);
995 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
996 crc = crc32c(tmpcrc, base, len);
997 msg->footer.data_crc = cpu_to_le32(crc);
998 con->out_msg_pos.did_page_crc = true;
999 }
1000 ret = ceph_tcp_sendpage(con->sock, page,
1001 con->out_msg_pos.page_pos + bio_offset,
1002 len, 1);
1003
1004 if (do_datacrc)
1005 kunmap(page);
1006
1007 if (ret <= 0)
1008 goto out;
1009
1010 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1011 }
1012
1013 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1014
1015 /* prepare and queue up footer, too */
1016 if (!do_datacrc)
1017 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1018 con_out_kvec_reset(con);
1019 prepare_write_message_footer(con);
1020 ret = 1;
1021 out:
1022 return ret;
1023 }
1024
1025 /*
1026 * write some zeros
1027 */
1028 static int write_partial_skip(struct ceph_connection *con)
1029 {
1030 int ret;
1031
1032 while (con->out_skip > 0) {
1033 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1034
1035 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1036 if (ret <= 0)
1037 goto out;
1038 con->out_skip -= ret;
1039 }
1040 ret = 1;
1041 out:
1042 return ret;
1043 }
1044
1045 /*
1046 * Prepare to read connection handshake, or an ack.
1047 */
1048 static void prepare_read_banner(struct ceph_connection *con)
1049 {
1050 dout("prepare_read_banner %p\n", con);
1051 con->in_base_pos = 0;
1052 }
1053
1054 static void prepare_read_connect(struct ceph_connection *con)
1055 {
1056 dout("prepare_read_connect %p\n", con);
1057 con->in_base_pos = 0;
1058 }
1059
1060 static void prepare_read_ack(struct ceph_connection *con)
1061 {
1062 dout("prepare_read_ack %p\n", con);
1063 con->in_base_pos = 0;
1064 }
1065
1066 static void prepare_read_tag(struct ceph_connection *con)
1067 {
1068 dout("prepare_read_tag %p\n", con);
1069 con->in_base_pos = 0;
1070 con->in_tag = CEPH_MSGR_TAG_READY;
1071 }
1072
1073 /*
1074 * Prepare to read a message.
1075 */
1076 static int prepare_read_message(struct ceph_connection *con)
1077 {
1078 dout("prepare_read_message %p\n", con);
1079 BUG_ON(con->in_msg != NULL);
1080 con->in_base_pos = 0;
1081 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1082 return 0;
1083 }
1084
1085
1086 static int read_partial(struct ceph_connection *con,
1087 int end, int size, void *object)
1088 {
1089 while (con->in_base_pos < end) {
1090 int left = end - con->in_base_pos;
1091 int have = size - left;
1092 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1093 if (ret <= 0)
1094 return ret;
1095 con->in_base_pos += ret;
1096 }
1097 return 1;
1098 }
1099
1100
1101 /*
1102 * Read all or part of the connect-side handshake on a new connection
1103 */
1104 static int read_partial_banner(struct ceph_connection *con)
1105 {
1106 int size;
1107 int end;
1108 int ret;
1109
1110 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1111
1112 /* peer's banner */
1113 size = strlen(CEPH_BANNER);
1114 end = size;
1115 ret = read_partial(con, end, size, con->in_banner);
1116 if (ret <= 0)
1117 goto out;
1118
1119 size = sizeof (con->actual_peer_addr);
1120 end += size;
1121 ret = read_partial(con, end, size, &con->actual_peer_addr);
1122 if (ret <= 0)
1123 goto out;
1124
1125 size = sizeof (con->peer_addr_for_me);
1126 end += size;
1127 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1128 if (ret <= 0)
1129 goto out;
1130
1131 out:
1132 return ret;
1133 }
1134
1135 static int read_partial_connect(struct ceph_connection *con)
1136 {
1137 int size;
1138 int end;
1139 int ret;
1140
1141 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1142
1143 size = sizeof (con->in_reply);
1144 end = size;
1145 ret = read_partial(con, end, size, &con->in_reply);
1146 if (ret <= 0)
1147 goto out;
1148
1149 size = le32_to_cpu(con->in_reply.authorizer_len);
1150 end += size;
1151 ret = read_partial(con, end, size, con->auth_reply_buf);
1152 if (ret <= 0)
1153 goto out;
1154
1155 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1156 con, (int)con->in_reply.tag,
1157 le32_to_cpu(con->in_reply.connect_seq),
1158 le32_to_cpu(con->in_reply.global_seq));
1159 out:
1160 return ret;
1161
1162 }
1163
1164 /*
1165 * Verify the hello banner looks okay.
1166 */
1167 static int verify_hello(struct ceph_connection *con)
1168 {
1169 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1170 pr_err("connect to %s got bad banner\n",
1171 ceph_pr_addr(&con->peer_addr.in_addr));
1172 con->error_msg = "protocol error, bad banner";
1173 return -1;
1174 }
1175 return 0;
1176 }
1177
1178 static bool addr_is_blank(struct sockaddr_storage *ss)
1179 {
1180 switch (ss->ss_family) {
1181 case AF_INET:
1182 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1183 case AF_INET6:
1184 return
1185 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1186 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1187 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1188 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1189 }
1190 return false;
1191 }
1192
1193 static int addr_port(struct sockaddr_storage *ss)
1194 {
1195 switch (ss->ss_family) {
1196 case AF_INET:
1197 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1198 case AF_INET6:
1199 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1200 }
1201 return 0;
1202 }
1203
1204 static void addr_set_port(struct sockaddr_storage *ss, int p)
1205 {
1206 switch (ss->ss_family) {
1207 case AF_INET:
1208 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1209 break;
1210 case AF_INET6:
1211 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1212 break;
1213 }
1214 }
1215
1216 /*
1217 * Unlike other *_pton function semantics, zero indicates success.
1218 */
1219 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1220 char delim, const char **ipend)
1221 {
1222 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1223 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1224
1225 memset(ss, 0, sizeof(*ss));
1226
1227 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1228 ss->ss_family = AF_INET;
1229 return 0;
1230 }
1231
1232 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1233 ss->ss_family = AF_INET6;
1234 return 0;
1235 }
1236
1237 return -EINVAL;
1238 }
1239
1240 /*
1241 * Extract hostname string and resolve using kernel DNS facility.
1242 */
1243 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1244 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1245 struct sockaddr_storage *ss, char delim, const char **ipend)
1246 {
1247 const char *end, *delim_p;
1248 char *colon_p, *ip_addr = NULL;
1249 int ip_len, ret;
1250
1251 /*
1252 * The end of the hostname occurs immediately preceding the delimiter or
1253 * the port marker (':') where the delimiter takes precedence.
1254 */
1255 delim_p = memchr(name, delim, namelen);
1256 colon_p = memchr(name, ':', namelen);
1257
1258 if (delim_p && colon_p)
1259 end = delim_p < colon_p ? delim_p : colon_p;
1260 else if (!delim_p && colon_p)
1261 end = colon_p;
1262 else {
1263 end = delim_p;
1264 if (!end) /* case: hostname:/ */
1265 end = name + namelen;
1266 }
1267
1268 if (end <= name)
1269 return -EINVAL;
1270
1271 /* do dns_resolve upcall */
1272 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1273 if (ip_len > 0)
1274 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1275 else
1276 ret = -ESRCH;
1277
1278 kfree(ip_addr);
1279
1280 *ipend = end;
1281
1282 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1283 ret, ret ? "failed" : ceph_pr_addr(ss));
1284
1285 return ret;
1286 }
1287 #else
1288 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1289 struct sockaddr_storage *ss, char delim, const char **ipend)
1290 {
1291 return -EINVAL;
1292 }
1293 #endif
1294
1295 /*
1296 * Parse a server name (IP or hostname). If a valid IP address is not found
1297 * then try to extract a hostname to resolve using userspace DNS upcall.
1298 */
1299 static int ceph_parse_server_name(const char *name, size_t namelen,
1300 struct sockaddr_storage *ss, char delim, const char **ipend)
1301 {
1302 int ret;
1303
1304 ret = ceph_pton(name, namelen, ss, delim, ipend);
1305 if (ret)
1306 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1307
1308 return ret;
1309 }
1310
1311 /*
1312 * Parse an ip[:port] list into an addr array. Use the default
1313 * monitor port if a port isn't specified.
1314 */
1315 int ceph_parse_ips(const char *c, const char *end,
1316 struct ceph_entity_addr *addr,
1317 int max_count, int *count)
1318 {
1319 int i, ret = -EINVAL;
1320 const char *p = c;
1321
1322 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1323 for (i = 0; i < max_count; i++) {
1324 const char *ipend;
1325 struct sockaddr_storage *ss = &addr[i].in_addr;
1326 int port;
1327 char delim = ',';
1328
1329 if (*p == '[') {
1330 delim = ']';
1331 p++;
1332 }
1333
1334 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1335 if (ret)
1336 goto bad;
1337 ret = -EINVAL;
1338
1339 p = ipend;
1340
1341 if (delim == ']') {
1342 if (*p != ']') {
1343 dout("missing matching ']'\n");
1344 goto bad;
1345 }
1346 p++;
1347 }
1348
1349 /* port? */
1350 if (p < end && *p == ':') {
1351 port = 0;
1352 p++;
1353 while (p < end && *p >= '0' && *p <= '9') {
1354 port = (port * 10) + (*p - '0');
1355 p++;
1356 }
1357 if (port > 65535 || port == 0)
1358 goto bad;
1359 } else {
1360 port = CEPH_MON_PORT;
1361 }
1362
1363 addr_set_port(ss, port);
1364
1365 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1366
1367 if (p == end)
1368 break;
1369 if (*p != ',')
1370 goto bad;
1371 p++;
1372 }
1373
1374 if (p != end)
1375 goto bad;
1376
1377 if (count)
1378 *count = i + 1;
1379 return 0;
1380
1381 bad:
1382 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1383 return ret;
1384 }
1385 EXPORT_SYMBOL(ceph_parse_ips);
1386
1387 static int process_banner(struct ceph_connection *con)
1388 {
1389 dout("process_banner on %p\n", con);
1390
1391 if (verify_hello(con) < 0)
1392 return -1;
1393
1394 ceph_decode_addr(&con->actual_peer_addr);
1395 ceph_decode_addr(&con->peer_addr_for_me);
1396
1397 /*
1398 * Make sure the other end is who we wanted. note that the other
1399 * end may not yet know their ip address, so if it's 0.0.0.0, give
1400 * them the benefit of the doubt.
1401 */
1402 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1403 sizeof(con->peer_addr)) != 0 &&
1404 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1405 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1406 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1407 ceph_pr_addr(&con->peer_addr.in_addr),
1408 (int)le32_to_cpu(con->peer_addr.nonce),
1409 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1410 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1411 con->error_msg = "wrong peer at address";
1412 return -1;
1413 }
1414
1415 /*
1416 * did we learn our address?
1417 */
1418 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1419 int port = addr_port(&con->msgr->inst.addr.in_addr);
1420
1421 memcpy(&con->msgr->inst.addr.in_addr,
1422 &con->peer_addr_for_me.in_addr,
1423 sizeof(con->peer_addr_for_me.in_addr));
1424 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1425 encode_my_addr(con->msgr);
1426 dout("process_banner learned my addr is %s\n",
1427 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1428 }
1429
1430 set_bit(NEGOTIATING, &con->state);
1431 prepare_read_connect(con);
1432 return 0;
1433 }
1434
1435 static void fail_protocol(struct ceph_connection *con)
1436 {
1437 reset_connection(con);
1438 set_bit(CLOSED, &con->state); /* in case there's queued work */
1439 }
1440
1441 static int process_connect(struct ceph_connection *con)
1442 {
1443 u64 sup_feat = con->msgr->supported_features;
1444 u64 req_feat = con->msgr->required_features;
1445 u64 server_feat = le64_to_cpu(con->in_reply.features);
1446 int ret;
1447
1448 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1449
1450 switch (con->in_reply.tag) {
1451 case CEPH_MSGR_TAG_FEATURES:
1452 pr_err("%s%lld %s feature set mismatch,"
1453 " my %llx < server's %llx, missing %llx\n",
1454 ENTITY_NAME(con->peer_name),
1455 ceph_pr_addr(&con->peer_addr.in_addr),
1456 sup_feat, server_feat, server_feat & ~sup_feat);
1457 con->error_msg = "missing required protocol features";
1458 fail_protocol(con);
1459 return -1;
1460
1461 case CEPH_MSGR_TAG_BADPROTOVER:
1462 pr_err("%s%lld %s protocol version mismatch,"
1463 " my %d != server's %d\n",
1464 ENTITY_NAME(con->peer_name),
1465 ceph_pr_addr(&con->peer_addr.in_addr),
1466 le32_to_cpu(con->out_connect.protocol_version),
1467 le32_to_cpu(con->in_reply.protocol_version));
1468 con->error_msg = "protocol version mismatch";
1469 fail_protocol(con);
1470 return -1;
1471
1472 case CEPH_MSGR_TAG_BADAUTHORIZER:
1473 con->auth_retry++;
1474 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1475 con->auth_retry);
1476 if (con->auth_retry == 2) {
1477 con->error_msg = "connect authorization failure";
1478 return -1;
1479 }
1480 con->auth_retry = 1;
1481 con_out_kvec_reset(con);
1482 ret = prepare_write_connect(con);
1483 if (ret < 0)
1484 return ret;
1485 prepare_read_connect(con);
1486 break;
1487
1488 case CEPH_MSGR_TAG_RESETSESSION:
1489 /*
1490 * If we connected with a large connect_seq but the peer
1491 * has no record of a session with us (no connection, or
1492 * connect_seq == 0), they will send RESETSESION to indicate
1493 * that they must have reset their session, and may have
1494 * dropped messages.
1495 */
1496 dout("process_connect got RESET peer seq %u\n",
1497 le32_to_cpu(con->in_connect.connect_seq));
1498 pr_err("%s%lld %s connection reset\n",
1499 ENTITY_NAME(con->peer_name),
1500 ceph_pr_addr(&con->peer_addr.in_addr));
1501 reset_connection(con);
1502 con_out_kvec_reset(con);
1503 ret = prepare_write_connect(con);
1504 if (ret < 0)
1505 return ret;
1506 prepare_read_connect(con);
1507
1508 /* Tell ceph about it. */
1509 mutex_unlock(&con->mutex);
1510 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1511 if (con->ops->peer_reset)
1512 con->ops->peer_reset(con);
1513 mutex_lock(&con->mutex);
1514 if (test_bit(CLOSED, &con->state) ||
1515 test_bit(OPENING, &con->state))
1516 return -EAGAIN;
1517 break;
1518
1519 case CEPH_MSGR_TAG_RETRY_SESSION:
1520 /*
1521 * If we sent a smaller connect_seq than the peer has, try
1522 * again with a larger value.
1523 */
1524 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1525 le32_to_cpu(con->out_connect.connect_seq),
1526 le32_to_cpu(con->in_connect.connect_seq));
1527 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1528 con_out_kvec_reset(con);
1529 ret = prepare_write_connect(con);
1530 if (ret < 0)
1531 return ret;
1532 prepare_read_connect(con);
1533 break;
1534
1535 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1536 /*
1537 * If we sent a smaller global_seq than the peer has, try
1538 * again with a larger value.
1539 */
1540 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1541 con->peer_global_seq,
1542 le32_to_cpu(con->in_connect.global_seq));
1543 get_global_seq(con->msgr,
1544 le32_to_cpu(con->in_connect.global_seq));
1545 con_out_kvec_reset(con);
1546 ret = prepare_write_connect(con);
1547 if (ret < 0)
1548 return ret;
1549 prepare_read_connect(con);
1550 break;
1551
1552 case CEPH_MSGR_TAG_READY:
1553 if (req_feat & ~server_feat) {
1554 pr_err("%s%lld %s protocol feature mismatch,"
1555 " my required %llx > server's %llx, need %llx\n",
1556 ENTITY_NAME(con->peer_name),
1557 ceph_pr_addr(&con->peer_addr.in_addr),
1558 req_feat, server_feat, req_feat & ~server_feat);
1559 con->error_msg = "missing required protocol features";
1560 fail_protocol(con);
1561 return -1;
1562 }
1563 clear_bit(CONNECTING, &con->state);
1564 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1565 con->connect_seq++;
1566 con->peer_features = server_feat;
1567 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1568 con->peer_global_seq,
1569 le32_to_cpu(con->in_reply.connect_seq),
1570 con->connect_seq);
1571 WARN_ON(con->connect_seq !=
1572 le32_to_cpu(con->in_reply.connect_seq));
1573
1574 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1575 set_bit(LOSSYTX, &con->flags);
1576
1577 prepare_read_tag(con);
1578 break;
1579
1580 case CEPH_MSGR_TAG_WAIT:
1581 /*
1582 * If there is a connection race (we are opening
1583 * connections to each other), one of us may just have
1584 * to WAIT. This shouldn't happen if we are the
1585 * client.
1586 */
1587 pr_err("process_connect got WAIT as client\n");
1588 con->error_msg = "protocol error, got WAIT as client";
1589 return -1;
1590
1591 default:
1592 pr_err("connect protocol error, will retry\n");
1593 con->error_msg = "protocol error, garbage tag during connect";
1594 return -1;
1595 }
1596 return 0;
1597 }
1598
1599
1600 /*
1601 * read (part of) an ack
1602 */
1603 static int read_partial_ack(struct ceph_connection *con)
1604 {
1605 int size = sizeof (con->in_temp_ack);
1606 int end = size;
1607
1608 return read_partial(con, end, size, &con->in_temp_ack);
1609 }
1610
1611
1612 /*
1613 * We can finally discard anything that's been acked.
1614 */
1615 static void process_ack(struct ceph_connection *con)
1616 {
1617 struct ceph_msg *m;
1618 u64 ack = le64_to_cpu(con->in_temp_ack);
1619 u64 seq;
1620
1621 while (!list_empty(&con->out_sent)) {
1622 m = list_first_entry(&con->out_sent, struct ceph_msg,
1623 list_head);
1624 seq = le64_to_cpu(m->hdr.seq);
1625 if (seq > ack)
1626 break;
1627 dout("got ack for seq %llu type %d at %p\n", seq,
1628 le16_to_cpu(m->hdr.type), m);
1629 m->ack_stamp = jiffies;
1630 ceph_msg_remove(m);
1631 }
1632 prepare_read_tag(con);
1633 }
1634
1635
1636
1637
1638 static int read_partial_message_section(struct ceph_connection *con,
1639 struct kvec *section,
1640 unsigned int sec_len, u32 *crc)
1641 {
1642 int ret, left;
1643
1644 BUG_ON(!section);
1645
1646 while (section->iov_len < sec_len) {
1647 BUG_ON(section->iov_base == NULL);
1648 left = sec_len - section->iov_len;
1649 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1650 section->iov_len, left);
1651 if (ret <= 0)
1652 return ret;
1653 section->iov_len += ret;
1654 }
1655 if (section->iov_len == sec_len)
1656 *crc = crc32c(0, section->iov_base, section->iov_len);
1657
1658 return 1;
1659 }
1660
1661 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
1662 struct ceph_msg_header *hdr);
1663
1664
1665 static int read_partial_message_pages(struct ceph_connection *con,
1666 struct page **pages,
1667 unsigned int data_len, bool do_datacrc)
1668 {
1669 void *p;
1670 int ret;
1671 int left;
1672
1673 left = min((int)(data_len - con->in_msg_pos.data_pos),
1674 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1675 /* (page) data */
1676 BUG_ON(pages == NULL);
1677 p = kmap(pages[con->in_msg_pos.page]);
1678 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1679 left);
1680 if (ret > 0 && do_datacrc)
1681 con->in_data_crc =
1682 crc32c(con->in_data_crc,
1683 p + con->in_msg_pos.page_pos, ret);
1684 kunmap(pages[con->in_msg_pos.page]);
1685 if (ret <= 0)
1686 return ret;
1687 con->in_msg_pos.data_pos += ret;
1688 con->in_msg_pos.page_pos += ret;
1689 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1690 con->in_msg_pos.page_pos = 0;
1691 con->in_msg_pos.page++;
1692 }
1693
1694 return ret;
1695 }
1696
1697 #ifdef CONFIG_BLOCK
1698 static int read_partial_message_bio(struct ceph_connection *con,
1699 struct bio **bio_iter, int *bio_seg,
1700 unsigned int data_len, bool do_datacrc)
1701 {
1702 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1703 void *p;
1704 int ret, left;
1705
1706 if (IS_ERR(bv))
1707 return PTR_ERR(bv);
1708
1709 left = min((int)(data_len - con->in_msg_pos.data_pos),
1710 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1711
1712 p = kmap(bv->bv_page) + bv->bv_offset;
1713
1714 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1715 left);
1716 if (ret > 0 && do_datacrc)
1717 con->in_data_crc =
1718 crc32c(con->in_data_crc,
1719 p + con->in_msg_pos.page_pos, ret);
1720 kunmap(bv->bv_page);
1721 if (ret <= 0)
1722 return ret;
1723 con->in_msg_pos.data_pos += ret;
1724 con->in_msg_pos.page_pos += ret;
1725 if (con->in_msg_pos.page_pos == bv->bv_len) {
1726 con->in_msg_pos.page_pos = 0;
1727 iter_bio_next(bio_iter, bio_seg);
1728 }
1729
1730 return ret;
1731 }
1732 #endif
1733
1734 /*
1735 * read (part of) a message.
1736 */
1737 static int read_partial_message(struct ceph_connection *con)
1738 {
1739 struct ceph_msg *m = con->in_msg;
1740 int size;
1741 int end;
1742 int ret;
1743 unsigned int front_len, middle_len, data_len;
1744 bool do_datacrc = !con->msgr->nocrc;
1745 u64 seq;
1746 u32 crc;
1747
1748 dout("read_partial_message con %p msg %p\n", con, m);
1749
1750 /* header */
1751 size = sizeof (con->in_hdr);
1752 end = size;
1753 ret = read_partial(con, end, size, &con->in_hdr);
1754 if (ret <= 0)
1755 return ret;
1756
1757 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1758 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1759 pr_err("read_partial_message bad hdr "
1760 " crc %u != expected %u\n",
1761 crc, con->in_hdr.crc);
1762 return -EBADMSG;
1763 }
1764
1765 front_len = le32_to_cpu(con->in_hdr.front_len);
1766 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1767 return -EIO;
1768 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1769 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1770 return -EIO;
1771 data_len = le32_to_cpu(con->in_hdr.data_len);
1772 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1773 return -EIO;
1774
1775 /* verify seq# */
1776 seq = le64_to_cpu(con->in_hdr.seq);
1777 if ((s64)seq - (s64)con->in_seq < 1) {
1778 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1779 ENTITY_NAME(con->peer_name),
1780 ceph_pr_addr(&con->peer_addr.in_addr),
1781 seq, con->in_seq + 1);
1782 con->in_base_pos = -front_len - middle_len - data_len -
1783 sizeof(m->footer);
1784 con->in_tag = CEPH_MSGR_TAG_READY;
1785 return 0;
1786 } else if ((s64)seq - (s64)con->in_seq > 1) {
1787 pr_err("read_partial_message bad seq %lld expected %lld\n",
1788 seq, con->in_seq + 1);
1789 con->error_msg = "bad message sequence # for incoming message";
1790 return -EBADMSG;
1791 }
1792
1793 /* allocate message? */
1794 if (!con->in_msg) {
1795 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1796 con->in_hdr.front_len, con->in_hdr.data_len);
1797 if (ceph_con_in_msg_alloc(con, &con->in_hdr)) {
1798 /* skip this message */
1799 dout("alloc_msg said skip message\n");
1800 BUG_ON(con->in_msg);
1801 con->in_base_pos = -front_len - middle_len - data_len -
1802 sizeof(m->footer);
1803 con->in_tag = CEPH_MSGR_TAG_READY;
1804 con->in_seq++;
1805 return 0;
1806 }
1807 if (!con->in_msg) {
1808 con->error_msg =
1809 "error allocating memory for incoming message";
1810 return -ENOMEM;
1811 }
1812
1813 BUG_ON(con->in_msg->con != con);
1814 m = con->in_msg;
1815 m->front.iov_len = 0; /* haven't read it yet */
1816 if (m->middle)
1817 m->middle->vec.iov_len = 0;
1818
1819 con->in_msg_pos.page = 0;
1820 if (m->pages)
1821 con->in_msg_pos.page_pos = m->page_alignment;
1822 else
1823 con->in_msg_pos.page_pos = 0;
1824 con->in_msg_pos.data_pos = 0;
1825 }
1826
1827 /* front */
1828 ret = read_partial_message_section(con, &m->front, front_len,
1829 &con->in_front_crc);
1830 if (ret <= 0)
1831 return ret;
1832
1833 /* middle */
1834 if (m->middle) {
1835 ret = read_partial_message_section(con, &m->middle->vec,
1836 middle_len,
1837 &con->in_middle_crc);
1838 if (ret <= 0)
1839 return ret;
1840 }
1841 #ifdef CONFIG_BLOCK
1842 if (m->bio && !m->bio_iter)
1843 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1844 #endif
1845
1846 /* (page) data */
1847 while (con->in_msg_pos.data_pos < data_len) {
1848 if (m->pages) {
1849 ret = read_partial_message_pages(con, m->pages,
1850 data_len, do_datacrc);
1851 if (ret <= 0)
1852 return ret;
1853 #ifdef CONFIG_BLOCK
1854 } else if (m->bio) {
1855
1856 ret = read_partial_message_bio(con,
1857 &m->bio_iter, &m->bio_seg,
1858 data_len, do_datacrc);
1859 if (ret <= 0)
1860 return ret;
1861 #endif
1862 } else {
1863 BUG_ON(1);
1864 }
1865 }
1866
1867 /* footer */
1868 size = sizeof (m->footer);
1869 end += size;
1870 ret = read_partial(con, end, size, &m->footer);
1871 if (ret <= 0)
1872 return ret;
1873
1874 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1875 m, front_len, m->footer.front_crc, middle_len,
1876 m->footer.middle_crc, data_len, m->footer.data_crc);
1877
1878 /* crc ok? */
1879 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1880 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1881 m, con->in_front_crc, m->footer.front_crc);
1882 return -EBADMSG;
1883 }
1884 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1885 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1886 m, con->in_middle_crc, m->footer.middle_crc);
1887 return -EBADMSG;
1888 }
1889 if (do_datacrc &&
1890 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1891 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1892 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1893 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1894 return -EBADMSG;
1895 }
1896
1897 return 1; /* done! */
1898 }
1899
1900 /*
1901 * Process message. This happens in the worker thread. The callback should
1902 * be careful not to do anything that waits on other incoming messages or it
1903 * may deadlock.
1904 */
1905 static void process_message(struct ceph_connection *con)
1906 {
1907 struct ceph_msg *msg;
1908
1909 BUG_ON(con->in_msg->con != con);
1910 con->in_msg->con = NULL;
1911 msg = con->in_msg;
1912 con->in_msg = NULL;
1913 con->ops->put(con);
1914
1915 /* if first message, set peer_name */
1916 if (con->peer_name.type == 0)
1917 con->peer_name = msg->hdr.src;
1918
1919 con->in_seq++;
1920 mutex_unlock(&con->mutex);
1921
1922 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1923 msg, le64_to_cpu(msg->hdr.seq),
1924 ENTITY_NAME(msg->hdr.src),
1925 le16_to_cpu(msg->hdr.type),
1926 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1927 le32_to_cpu(msg->hdr.front_len),
1928 le32_to_cpu(msg->hdr.data_len),
1929 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1930 con->ops->dispatch(con, msg);
1931
1932 mutex_lock(&con->mutex);
1933 prepare_read_tag(con);
1934 }
1935
1936
1937 /*
1938 * Write something to the socket. Called in a worker thread when the
1939 * socket appears to be writeable and we have something ready to send.
1940 */
1941 static int try_write(struct ceph_connection *con)
1942 {
1943 int ret = 1;
1944
1945 dout("try_write start %p state %lu\n", con, con->state);
1946
1947 more:
1948 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1949
1950 /* open the socket first? */
1951 if (con->sock == NULL) {
1952 clear_bit(NEGOTIATING, &con->state);
1953 set_bit(CONNECTING, &con->state);
1954
1955 con_out_kvec_reset(con);
1956 prepare_write_banner(con);
1957 ret = prepare_write_connect(con);
1958 if (ret < 0)
1959 goto out;
1960 prepare_read_banner(con);
1961
1962 BUG_ON(con->in_msg);
1963 con->in_tag = CEPH_MSGR_TAG_READY;
1964 dout("try_write initiating connect on %p new state %lu\n",
1965 con, con->state);
1966 ret = ceph_tcp_connect(con);
1967 if (ret < 0) {
1968 con->error_msg = "connect error";
1969 goto out;
1970 }
1971 }
1972
1973 more_kvec:
1974 /* kvec data queued? */
1975 if (con->out_skip) {
1976 ret = write_partial_skip(con);
1977 if (ret <= 0)
1978 goto out;
1979 }
1980 if (con->out_kvec_left) {
1981 ret = write_partial_kvec(con);
1982 if (ret <= 0)
1983 goto out;
1984 }
1985
1986 /* msg pages? */
1987 if (con->out_msg) {
1988 if (con->out_msg_done) {
1989 ceph_msg_put(con->out_msg);
1990 con->out_msg = NULL; /* we're done with this one */
1991 goto do_next;
1992 }
1993
1994 ret = write_partial_msg_pages(con);
1995 if (ret == 1)
1996 goto more_kvec; /* we need to send the footer, too! */
1997 if (ret == 0)
1998 goto out;
1999 if (ret < 0) {
2000 dout("try_write write_partial_msg_pages err %d\n",
2001 ret);
2002 goto out;
2003 }
2004 }
2005
2006 do_next:
2007 if (!test_bit(CONNECTING, &con->state)) {
2008 /* is anything else pending? */
2009 if (!list_empty(&con->out_queue)) {
2010 prepare_write_message(con);
2011 goto more;
2012 }
2013 if (con->in_seq > con->in_seq_acked) {
2014 prepare_write_ack(con);
2015 goto more;
2016 }
2017 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->flags)) {
2018 prepare_write_keepalive(con);
2019 goto more;
2020 }
2021 }
2022
2023 /* Nothing to do! */
2024 clear_bit(WRITE_PENDING, &con->flags);
2025 dout("try_write nothing else to write.\n");
2026 ret = 0;
2027 out:
2028 dout("try_write done on %p ret %d\n", con, ret);
2029 return ret;
2030 }
2031
2032
2033
2034 /*
2035 * Read what we can from the socket.
2036 */
2037 static int try_read(struct ceph_connection *con)
2038 {
2039 int ret = -1;
2040
2041 if (!con->sock)
2042 return 0;
2043
2044 if (test_bit(STANDBY, &con->state))
2045 return 0;
2046
2047 dout("try_read start on %p\n", con);
2048
2049 more:
2050 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2051 con->in_base_pos);
2052
2053 /*
2054 * process_connect and process_message drop and re-take
2055 * con->mutex. make sure we handle a racing close or reopen.
2056 */
2057 if (test_bit(CLOSED, &con->state) ||
2058 test_bit(OPENING, &con->state)) {
2059 ret = -EAGAIN;
2060 goto out;
2061 }
2062
2063 if (test_bit(CONNECTING, &con->state)) {
2064 if (!test_bit(NEGOTIATING, &con->state)) {
2065 dout("try_read connecting\n");
2066 ret = read_partial_banner(con);
2067 if (ret <= 0)
2068 goto out;
2069 ret = process_banner(con);
2070 if (ret < 0)
2071 goto out;
2072 }
2073 ret = read_partial_connect(con);
2074 if (ret <= 0)
2075 goto out;
2076 ret = process_connect(con);
2077 if (ret < 0)
2078 goto out;
2079 goto more;
2080 }
2081
2082 if (con->in_base_pos < 0) {
2083 /*
2084 * skipping + discarding content.
2085 *
2086 * FIXME: there must be a better way to do this!
2087 */
2088 static char buf[SKIP_BUF_SIZE];
2089 int skip = min((int) sizeof (buf), -con->in_base_pos);
2090
2091 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2092 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2093 if (ret <= 0)
2094 goto out;
2095 con->in_base_pos += ret;
2096 if (con->in_base_pos)
2097 goto more;
2098 }
2099 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2100 /*
2101 * what's next?
2102 */
2103 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2104 if (ret <= 0)
2105 goto out;
2106 dout("try_read got tag %d\n", (int)con->in_tag);
2107 switch (con->in_tag) {
2108 case CEPH_MSGR_TAG_MSG:
2109 prepare_read_message(con);
2110 break;
2111 case CEPH_MSGR_TAG_ACK:
2112 prepare_read_ack(con);
2113 break;
2114 case CEPH_MSGR_TAG_CLOSE:
2115 set_bit(CLOSED, &con->state); /* fixme */
2116 goto out;
2117 default:
2118 goto bad_tag;
2119 }
2120 }
2121 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2122 ret = read_partial_message(con);
2123 if (ret <= 0) {
2124 switch (ret) {
2125 case -EBADMSG:
2126 con->error_msg = "bad crc";
2127 ret = -EIO;
2128 break;
2129 case -EIO:
2130 con->error_msg = "io error";
2131 break;
2132 }
2133 goto out;
2134 }
2135 if (con->in_tag == CEPH_MSGR_TAG_READY)
2136 goto more;
2137 process_message(con);
2138 goto more;
2139 }
2140 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2141 ret = read_partial_ack(con);
2142 if (ret <= 0)
2143 goto out;
2144 process_ack(con);
2145 goto more;
2146 }
2147
2148 out:
2149 dout("try_read done on %p ret %d\n", con, ret);
2150 return ret;
2151
2152 bad_tag:
2153 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2154 con->error_msg = "protocol error, garbage tag";
2155 ret = -1;
2156 goto out;
2157 }
2158
2159
2160 /*
2161 * Atomically queue work on a connection. Bump @con reference to
2162 * avoid races with connection teardown.
2163 */
2164 static void queue_con(struct ceph_connection *con)
2165 {
2166 if (!con->ops->get(con)) {
2167 dout("queue_con %p ref count 0\n", con);
2168 return;
2169 }
2170
2171 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2172 dout("queue_con %p - already queued\n", con);
2173 con->ops->put(con);
2174 } else {
2175 dout("queue_con %p\n", con);
2176 }
2177 }
2178
2179 /*
2180 * Do some work on a connection. Drop a connection ref when we're done.
2181 */
2182 static void con_work(struct work_struct *work)
2183 {
2184 struct ceph_connection *con = container_of(work, struct ceph_connection,
2185 work.work);
2186 int ret;
2187
2188 mutex_lock(&con->mutex);
2189 restart:
2190 if (test_and_clear_bit(BACKOFF, &con->flags)) {
2191 dout("con_work %p backing off\n", con);
2192 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2193 round_jiffies_relative(con->delay))) {
2194 dout("con_work %p backoff %lu\n", con, con->delay);
2195 mutex_unlock(&con->mutex);
2196 return;
2197 } else {
2198 con->ops->put(con);
2199 dout("con_work %p FAILED to back off %lu\n", con,
2200 con->delay);
2201 }
2202 }
2203
2204 if (test_bit(STANDBY, &con->state)) {
2205 dout("con_work %p STANDBY\n", con);
2206 goto done;
2207 }
2208 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2209 dout("con_work CLOSED\n");
2210 con_close_socket(con);
2211 goto done;
2212 }
2213 if (test_and_clear_bit(OPENING, &con->state)) {
2214 /* reopen w/ new peer */
2215 dout("con_work OPENING\n");
2216 con_close_socket(con);
2217 }
2218
2219 if (test_and_clear_bit(SOCK_CLOSED, &con->flags))
2220 goto fault;
2221
2222 ret = try_read(con);
2223 if (ret == -EAGAIN)
2224 goto restart;
2225 if (ret < 0)
2226 goto fault;
2227
2228 ret = try_write(con);
2229 if (ret == -EAGAIN)
2230 goto restart;
2231 if (ret < 0)
2232 goto fault;
2233
2234 done:
2235 mutex_unlock(&con->mutex);
2236 done_unlocked:
2237 con->ops->put(con);
2238 return;
2239
2240 fault:
2241 mutex_unlock(&con->mutex);
2242 ceph_fault(con); /* error/fault path */
2243 goto done_unlocked;
2244 }
2245
2246
2247 /*
2248 * Generic error/fault handler. A retry mechanism is used with
2249 * exponential backoff
2250 */
2251 static void ceph_fault(struct ceph_connection *con)
2252 {
2253 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2254 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2255 dout("fault %p state %lu to peer %s\n",
2256 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2257
2258 if (test_bit(LOSSYTX, &con->flags)) {
2259 dout("fault on LOSSYTX channel\n");
2260 goto out;
2261 }
2262
2263 mutex_lock(&con->mutex);
2264 if (test_bit(CLOSED, &con->state))
2265 goto out_unlock;
2266
2267 con_close_socket(con);
2268
2269 if (con->in_msg) {
2270 BUG_ON(con->in_msg->con != con);
2271 con->in_msg->con = NULL;
2272 ceph_msg_put(con->in_msg);
2273 con->in_msg = NULL;
2274 con->ops->put(con);
2275 }
2276
2277 /* Requeue anything that hasn't been acked */
2278 list_splice_init(&con->out_sent, &con->out_queue);
2279
2280 /* If there are no messages queued or keepalive pending, place
2281 * the connection in a STANDBY state */
2282 if (list_empty(&con->out_queue) &&
2283 !test_bit(KEEPALIVE_PENDING, &con->flags)) {
2284 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2285 clear_bit(WRITE_PENDING, &con->flags);
2286 set_bit(STANDBY, &con->state);
2287 } else {
2288 /* retry after a delay. */
2289 if (con->delay == 0)
2290 con->delay = BASE_DELAY_INTERVAL;
2291 else if (con->delay < MAX_DELAY_INTERVAL)
2292 con->delay *= 2;
2293 con->ops->get(con);
2294 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2295 round_jiffies_relative(con->delay))) {
2296 dout("fault queued %p delay %lu\n", con, con->delay);
2297 } else {
2298 con->ops->put(con);
2299 dout("fault failed to queue %p delay %lu, backoff\n",
2300 con, con->delay);
2301 /*
2302 * In many cases we see a socket state change
2303 * while con_work is running and end up
2304 * queuing (non-delayed) work, such that we
2305 * can't backoff with a delay. Set a flag so
2306 * that when con_work restarts we schedule the
2307 * delay then.
2308 */
2309 set_bit(BACKOFF, &con->flags);
2310 }
2311 }
2312
2313 out_unlock:
2314 mutex_unlock(&con->mutex);
2315 out:
2316 /*
2317 * in case we faulted due to authentication, invalidate our
2318 * current tickets so that we can get new ones.
2319 */
2320 if (con->auth_retry && con->ops->invalidate_authorizer) {
2321 dout("calling invalidate_authorizer()\n");
2322 con->ops->invalidate_authorizer(con);
2323 }
2324
2325 if (con->ops->fault)
2326 con->ops->fault(con);
2327 }
2328
2329
2330
2331 /*
2332 * initialize a new messenger instance
2333 */
2334 void ceph_messenger_init(struct ceph_messenger *msgr,
2335 struct ceph_entity_addr *myaddr,
2336 u32 supported_features,
2337 u32 required_features,
2338 bool nocrc)
2339 {
2340 msgr->supported_features = supported_features;
2341 msgr->required_features = required_features;
2342
2343 spin_lock_init(&msgr->global_seq_lock);
2344
2345 if (myaddr)
2346 msgr->inst.addr = *myaddr;
2347
2348 /* select a random nonce */
2349 msgr->inst.addr.type = 0;
2350 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2351 encode_my_addr(msgr);
2352 msgr->nocrc = nocrc;
2353
2354 dout("%s %p\n", __func__, msgr);
2355 }
2356 EXPORT_SYMBOL(ceph_messenger_init);
2357
2358 static void clear_standby(struct ceph_connection *con)
2359 {
2360 /* come back from STANDBY? */
2361 if (test_and_clear_bit(STANDBY, &con->state)) {
2362 mutex_lock(&con->mutex);
2363 dout("clear_standby %p and ++connect_seq\n", con);
2364 con->connect_seq++;
2365 WARN_ON(test_bit(WRITE_PENDING, &con->flags));
2366 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->flags));
2367 mutex_unlock(&con->mutex);
2368 }
2369 }
2370
2371 /*
2372 * Queue up an outgoing message on the given connection.
2373 */
2374 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2375 {
2376 if (test_bit(CLOSED, &con->state)) {
2377 dout("con_send %p closed, dropping %p\n", con, msg);
2378 ceph_msg_put(msg);
2379 return;
2380 }
2381
2382 /* set src+dst */
2383 msg->hdr.src = con->msgr->inst.name;
2384
2385 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2386
2387 msg->needs_out_seq = true;
2388
2389 /* queue */
2390 mutex_lock(&con->mutex);
2391
2392 BUG_ON(msg->con != NULL);
2393 msg->con = con->ops->get(con);
2394 BUG_ON(msg->con == NULL);
2395
2396 BUG_ON(!list_empty(&msg->list_head));
2397 list_add_tail(&msg->list_head, &con->out_queue);
2398 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2399 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2400 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2401 le32_to_cpu(msg->hdr.front_len),
2402 le32_to_cpu(msg->hdr.middle_len),
2403 le32_to_cpu(msg->hdr.data_len));
2404 mutex_unlock(&con->mutex);
2405
2406 /* if there wasn't anything waiting to send before, queue
2407 * new work */
2408 clear_standby(con);
2409 if (test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2410 queue_con(con);
2411 }
2412 EXPORT_SYMBOL(ceph_con_send);
2413
2414 /*
2415 * Revoke a message that was previously queued for send
2416 */
2417 void ceph_msg_revoke(struct ceph_msg *msg)
2418 {
2419 struct ceph_connection *con = msg->con;
2420
2421 if (!con)
2422 return; /* Message not in our possession */
2423
2424 mutex_lock(&con->mutex);
2425 if (!list_empty(&msg->list_head)) {
2426 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2427 list_del_init(&msg->list_head);
2428 BUG_ON(msg->con == NULL);
2429 msg->con->ops->put(msg->con);
2430 msg->con = NULL;
2431 msg->hdr.seq = 0;
2432
2433 ceph_msg_put(msg);
2434 }
2435 if (con->out_msg == msg) {
2436 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2437 con->out_msg = NULL;
2438 if (con->out_kvec_is_msg) {
2439 con->out_skip = con->out_kvec_bytes;
2440 con->out_kvec_is_msg = false;
2441 }
2442 msg->hdr.seq = 0;
2443
2444 ceph_msg_put(msg);
2445 }
2446 mutex_unlock(&con->mutex);
2447 }
2448
2449 /*
2450 * Revoke a message that we may be reading data into
2451 */
2452 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2453 {
2454 struct ceph_connection *con;
2455
2456 BUG_ON(msg == NULL);
2457 if (!msg->con) {
2458 dout("%s msg %p null con\n", __func__, msg);
2459
2460 return; /* Message not in our possession */
2461 }
2462
2463 con = msg->con;
2464 mutex_lock(&con->mutex);
2465 if (con->in_msg == msg) {
2466 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2467 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2468 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2469
2470 /* skip rest of message */
2471 dout("%s %p msg %p revoked\n", __func__, con, msg);
2472 con->in_base_pos = con->in_base_pos -
2473 sizeof(struct ceph_msg_header) -
2474 front_len -
2475 middle_len -
2476 data_len -
2477 sizeof(struct ceph_msg_footer);
2478 ceph_msg_put(con->in_msg);
2479 con->in_msg = NULL;
2480 con->in_tag = CEPH_MSGR_TAG_READY;
2481 con->in_seq++;
2482 } else {
2483 dout("%s %p in_msg %p msg %p no-op\n",
2484 __func__, con, con->in_msg, msg);
2485 }
2486 mutex_unlock(&con->mutex);
2487 }
2488
2489 /*
2490 * Queue a keepalive byte to ensure the tcp connection is alive.
2491 */
2492 void ceph_con_keepalive(struct ceph_connection *con)
2493 {
2494 dout("con_keepalive %p\n", con);
2495 clear_standby(con);
2496 if (test_and_set_bit(KEEPALIVE_PENDING, &con->flags) == 0 &&
2497 test_and_set_bit(WRITE_PENDING, &con->flags) == 0)
2498 queue_con(con);
2499 }
2500 EXPORT_SYMBOL(ceph_con_keepalive);
2501
2502
2503 /*
2504 * construct a new message with given type, size
2505 * the new msg has a ref count of 1.
2506 */
2507 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2508 bool can_fail)
2509 {
2510 struct ceph_msg *m;
2511
2512 m = kmalloc(sizeof(*m), flags);
2513 if (m == NULL)
2514 goto out;
2515 kref_init(&m->kref);
2516
2517 m->con = NULL;
2518 INIT_LIST_HEAD(&m->list_head);
2519
2520 m->hdr.tid = 0;
2521 m->hdr.type = cpu_to_le16(type);
2522 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2523 m->hdr.version = 0;
2524 m->hdr.front_len = cpu_to_le32(front_len);
2525 m->hdr.middle_len = 0;
2526 m->hdr.data_len = 0;
2527 m->hdr.data_off = 0;
2528 m->hdr.reserved = 0;
2529 m->footer.front_crc = 0;
2530 m->footer.middle_crc = 0;
2531 m->footer.data_crc = 0;
2532 m->footer.flags = 0;
2533 m->front_max = front_len;
2534 m->front_is_vmalloc = false;
2535 m->more_to_follow = false;
2536 m->ack_stamp = 0;
2537 m->pool = NULL;
2538
2539 /* middle */
2540 m->middle = NULL;
2541
2542 /* data */
2543 m->nr_pages = 0;
2544 m->page_alignment = 0;
2545 m->pages = NULL;
2546 m->pagelist = NULL;
2547 m->bio = NULL;
2548 m->bio_iter = NULL;
2549 m->bio_seg = 0;
2550 m->trail = NULL;
2551
2552 /* front */
2553 if (front_len) {
2554 if (front_len > PAGE_CACHE_SIZE) {
2555 m->front.iov_base = __vmalloc(front_len, flags,
2556 PAGE_KERNEL);
2557 m->front_is_vmalloc = true;
2558 } else {
2559 m->front.iov_base = kmalloc(front_len, flags);
2560 }
2561 if (m->front.iov_base == NULL) {
2562 dout("ceph_msg_new can't allocate %d bytes\n",
2563 front_len);
2564 goto out2;
2565 }
2566 } else {
2567 m->front.iov_base = NULL;
2568 }
2569 m->front.iov_len = front_len;
2570
2571 dout("ceph_msg_new %p front %d\n", m, front_len);
2572 return m;
2573
2574 out2:
2575 ceph_msg_put(m);
2576 out:
2577 if (!can_fail) {
2578 pr_err("msg_new can't create type %d front %d\n", type,
2579 front_len);
2580 WARN_ON(1);
2581 } else {
2582 dout("msg_new can't create type %d front %d\n", type,
2583 front_len);
2584 }
2585 return NULL;
2586 }
2587 EXPORT_SYMBOL(ceph_msg_new);
2588
2589 /*
2590 * Allocate "middle" portion of a message, if it is needed and wasn't
2591 * allocated by alloc_msg. This allows us to read a small fixed-size
2592 * per-type header in the front and then gracefully fail (i.e.,
2593 * propagate the error to the caller based on info in the front) when
2594 * the middle is too large.
2595 */
2596 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2597 {
2598 int type = le16_to_cpu(msg->hdr.type);
2599 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2600
2601 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2602 ceph_msg_type_name(type), middle_len);
2603 BUG_ON(!middle_len);
2604 BUG_ON(msg->middle);
2605
2606 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2607 if (!msg->middle)
2608 return -ENOMEM;
2609 return 0;
2610 }
2611
2612 /*
2613 * Allocate a message for receiving an incoming message on a
2614 * connection, and save the result in con->in_msg. Uses the
2615 * connection's private alloc_msg op if available.
2616 *
2617 * Returns true if the message should be skipped, false otherwise.
2618 * If true is returned (skip message), con->in_msg will be NULL.
2619 * If false is returned, con->in_msg will contain a pointer to the
2620 * newly-allocated message, or NULL in case of memory exhaustion.
2621 */
2622 static bool ceph_con_in_msg_alloc(struct ceph_connection *con,
2623 struct ceph_msg_header *hdr)
2624 {
2625 int type = le16_to_cpu(hdr->type);
2626 int front_len = le32_to_cpu(hdr->front_len);
2627 int middle_len = le32_to_cpu(hdr->middle_len);
2628 int ret;
2629
2630 BUG_ON(con->in_msg != NULL);
2631
2632 if (con->ops->alloc_msg) {
2633 int skip = 0;
2634
2635 mutex_unlock(&con->mutex);
2636 con->in_msg = con->ops->alloc_msg(con, hdr, &skip);
2637 mutex_lock(&con->mutex);
2638 if (con->in_msg) {
2639 con->in_msg->con = con->ops->get(con);
2640 BUG_ON(con->in_msg->con == NULL);
2641 }
2642 if (skip)
2643 con->in_msg = NULL;
2644
2645 if (!con->in_msg)
2646 return skip != 0;
2647 }
2648 if (!con->in_msg) {
2649 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2650 if (!con->in_msg) {
2651 pr_err("unable to allocate msg type %d len %d\n",
2652 type, front_len);
2653 return false;
2654 }
2655 con->in_msg->con = con->ops->get(con);
2656 BUG_ON(con->in_msg->con == NULL);
2657 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2658 }
2659 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2660
2661 if (middle_len && !con->in_msg->middle) {
2662 ret = ceph_alloc_middle(con, con->in_msg);
2663 if (ret < 0) {
2664 ceph_msg_put(con->in_msg);
2665 con->in_msg = NULL;
2666 }
2667 }
2668
2669 return false;
2670 }
2671
2672
2673 /*
2674 * Free a generically kmalloc'd message.
2675 */
2676 void ceph_msg_kfree(struct ceph_msg *m)
2677 {
2678 dout("msg_kfree %p\n", m);
2679 if (m->front_is_vmalloc)
2680 vfree(m->front.iov_base);
2681 else
2682 kfree(m->front.iov_base);
2683 kfree(m);
2684 }
2685
2686 /*
2687 * Drop a msg ref. Destroy as needed.
2688 */
2689 void ceph_msg_last_put(struct kref *kref)
2690 {
2691 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2692
2693 dout("ceph_msg_put last one on %p\n", m);
2694 WARN_ON(!list_empty(&m->list_head));
2695
2696 /* drop middle, data, if any */
2697 if (m->middle) {
2698 ceph_buffer_put(m->middle);
2699 m->middle = NULL;
2700 }
2701 m->nr_pages = 0;
2702 m->pages = NULL;
2703
2704 if (m->pagelist) {
2705 ceph_pagelist_release(m->pagelist);
2706 kfree(m->pagelist);
2707 m->pagelist = NULL;
2708 }
2709
2710 m->trail = NULL;
2711
2712 if (m->pool)
2713 ceph_msgpool_put(m->pool, m);
2714 else
2715 ceph_msg_kfree(m);
2716 }
2717 EXPORT_SYMBOL(ceph_msg_last_put);
2718
2719 void ceph_msg_dump(struct ceph_msg *msg)
2720 {
2721 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2722 msg->front_max, msg->nr_pages);
2723 print_hex_dump(KERN_DEBUG, "header: ",
2724 DUMP_PREFIX_OFFSET, 16, 1,
2725 &msg->hdr, sizeof(msg->hdr), true);
2726 print_hex_dump(KERN_DEBUG, " front: ",
2727 DUMP_PREFIX_OFFSET, 16, 1,
2728 msg->front.iov_base, msg->front.iov_len, true);
2729 if (msg->middle)
2730 print_hex_dump(KERN_DEBUG, "middle: ",
2731 DUMP_PREFIX_OFFSET, 16, 1,
2732 msg->middle->vec.iov_base,
2733 msg->middle->vec.iov_len, true);
2734 print_hex_dump(KERN_DEBUG, "footer: ",
2735 DUMP_PREFIX_OFFSET, 16, 1,
2736 &msg->footer, sizeof(msg->footer), true);
2737 }
2738 EXPORT_SYMBOL(ceph_msg_dump);