]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/ceph/messenger.c
Merge tag 'gpio-v4.17-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-jammy-kernel.git] / net / ceph / messenger.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27
28 /*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37 /*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85 /*
86 * connection states
87 */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
94
95 /*
96 * ceph_connection flag bits
97 */
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
116 }
117 }
118
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 BUG_ON(!con_flag_valid(con_flag));
122
123 clear_bit(con_flag, &con->flags);
124 }
125
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 BUG_ON(!con_flag_valid(con_flag));
129
130 set_bit(con_flag, &con->flags);
131 }
132
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 BUG_ON(!con_flag_valid(con_flag));
136
137 return test_bit(con_flag, &con->flags);
138 }
139
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
142 {
143 BUG_ON(!con_flag_valid(con_flag));
144
145 return test_and_clear_bit(con_flag, &con->flags);
146 }
147
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
150 {
151 BUG_ON(!con_flag_valid(con_flag));
152
153 return test_and_set_bit(con_flag, &con->flags);
154 }
155
156 /* Slab caches for frequently-allocated structures */
157
158 static struct kmem_cache *ceph_msg_cache;
159 static struct kmem_cache *ceph_msg_data_cache;
160
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
166
167 #ifdef CONFIG_LOCKDEP
168 static struct lock_class_key socket_class;
169 #endif
170
171 /*
172 * When skipping (ignoring) a block of input we read it into a "skip
173 * buffer," which is this many bytes in size.
174 */
175 #define SKIP_BUF_SIZE 1024
176
177 static void queue_con(struct ceph_connection *con);
178 static void cancel_con(struct ceph_connection *con);
179 static void ceph_con_workfn(struct work_struct *);
180 static void con_fault(struct ceph_connection *con);
181
182 /*
183 * Nicely render a sockaddr as a string. An array of formatted
184 * strings is used, to approximate reentrancy.
185 */
186 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
187 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
188 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
189 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
190
191 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
192 static atomic_t addr_str_seq = ATOMIC_INIT(0);
193
194 static struct page *zero_page; /* used in certain error cases */
195
196 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
197 {
198 int i;
199 char *s;
200 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
201 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
202
203 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
204 s = addr_str[i];
205
206 switch (ss->ss_family) {
207 case AF_INET:
208 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
209 ntohs(in4->sin_port));
210 break;
211
212 case AF_INET6:
213 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
214 ntohs(in6->sin6_port));
215 break;
216
217 default:
218 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
219 ss->ss_family);
220 }
221
222 return s;
223 }
224 EXPORT_SYMBOL(ceph_pr_addr);
225
226 static void encode_my_addr(struct ceph_messenger *msgr)
227 {
228 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
229 ceph_encode_addr(&msgr->my_enc_addr);
230 }
231
232 /*
233 * work queue for all reading and writing to/from the socket.
234 */
235 static struct workqueue_struct *ceph_msgr_wq;
236
237 static int ceph_msgr_slab_init(void)
238 {
239 BUG_ON(ceph_msg_cache);
240 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
241 if (!ceph_msg_cache)
242 return -ENOMEM;
243
244 BUG_ON(ceph_msg_data_cache);
245 ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
246 if (ceph_msg_data_cache)
247 return 0;
248
249 kmem_cache_destroy(ceph_msg_cache);
250 ceph_msg_cache = NULL;
251
252 return -ENOMEM;
253 }
254
255 static void ceph_msgr_slab_exit(void)
256 {
257 BUG_ON(!ceph_msg_data_cache);
258 kmem_cache_destroy(ceph_msg_data_cache);
259 ceph_msg_data_cache = NULL;
260
261 BUG_ON(!ceph_msg_cache);
262 kmem_cache_destroy(ceph_msg_cache);
263 ceph_msg_cache = NULL;
264 }
265
266 static void _ceph_msgr_exit(void)
267 {
268 if (ceph_msgr_wq) {
269 destroy_workqueue(ceph_msgr_wq);
270 ceph_msgr_wq = NULL;
271 }
272
273 BUG_ON(zero_page == NULL);
274 put_page(zero_page);
275 zero_page = NULL;
276
277 ceph_msgr_slab_exit();
278 }
279
280 int __init ceph_msgr_init(void)
281 {
282 if (ceph_msgr_slab_init())
283 return -ENOMEM;
284
285 BUG_ON(zero_page != NULL);
286 zero_page = ZERO_PAGE(0);
287 get_page(zero_page);
288
289 /*
290 * The number of active work items is limited by the number of
291 * connections, so leave @max_active at default.
292 */
293 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
294 if (ceph_msgr_wq)
295 return 0;
296
297 pr_err("msgr_init failed to create workqueue\n");
298 _ceph_msgr_exit();
299
300 return -ENOMEM;
301 }
302
303 void ceph_msgr_exit(void)
304 {
305 BUG_ON(ceph_msgr_wq == NULL);
306
307 _ceph_msgr_exit();
308 }
309
310 void ceph_msgr_flush(void)
311 {
312 flush_workqueue(ceph_msgr_wq);
313 }
314 EXPORT_SYMBOL(ceph_msgr_flush);
315
316 /* Connection socket state transition functions */
317
318 static void con_sock_state_init(struct ceph_connection *con)
319 {
320 int old_state;
321
322 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
323 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
324 printk("%s: unexpected old state %d\n", __func__, old_state);
325 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
326 CON_SOCK_STATE_CLOSED);
327 }
328
329 static void con_sock_state_connecting(struct ceph_connection *con)
330 {
331 int old_state;
332
333 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
334 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
335 printk("%s: unexpected old state %d\n", __func__, old_state);
336 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
337 CON_SOCK_STATE_CONNECTING);
338 }
339
340 static void con_sock_state_connected(struct ceph_connection *con)
341 {
342 int old_state;
343
344 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
345 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
346 printk("%s: unexpected old state %d\n", __func__, old_state);
347 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
348 CON_SOCK_STATE_CONNECTED);
349 }
350
351 static void con_sock_state_closing(struct ceph_connection *con)
352 {
353 int old_state;
354
355 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
356 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
357 old_state != CON_SOCK_STATE_CONNECTED &&
358 old_state != CON_SOCK_STATE_CLOSING))
359 printk("%s: unexpected old state %d\n", __func__, old_state);
360 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
361 CON_SOCK_STATE_CLOSING);
362 }
363
364 static void con_sock_state_closed(struct ceph_connection *con)
365 {
366 int old_state;
367
368 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
369 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
370 old_state != CON_SOCK_STATE_CLOSING &&
371 old_state != CON_SOCK_STATE_CONNECTING &&
372 old_state != CON_SOCK_STATE_CLOSED))
373 printk("%s: unexpected old state %d\n", __func__, old_state);
374 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
375 CON_SOCK_STATE_CLOSED);
376 }
377
378 /*
379 * socket callback functions
380 */
381
382 /* data available on socket, or listen socket received a connect */
383 static void ceph_sock_data_ready(struct sock *sk)
384 {
385 struct ceph_connection *con = sk->sk_user_data;
386 if (atomic_read(&con->msgr->stopping)) {
387 return;
388 }
389
390 if (sk->sk_state != TCP_CLOSE_WAIT) {
391 dout("%s on %p state = %lu, queueing work\n", __func__,
392 con, con->state);
393 queue_con(con);
394 }
395 }
396
397 /* socket has buffer space for writing */
398 static void ceph_sock_write_space(struct sock *sk)
399 {
400 struct ceph_connection *con = sk->sk_user_data;
401
402 /* only queue to workqueue if there is data we want to write,
403 * and there is sufficient space in the socket buffer to accept
404 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
405 * doesn't get called again until try_write() fills the socket
406 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
407 * and net/core/stream.c:sk_stream_write_space().
408 */
409 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
410 if (sk_stream_is_writeable(sk)) {
411 dout("%s %p queueing write work\n", __func__, con);
412 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
413 queue_con(con);
414 }
415 } else {
416 dout("%s %p nothing to write\n", __func__, con);
417 }
418 }
419
420 /* socket's state has changed */
421 static void ceph_sock_state_change(struct sock *sk)
422 {
423 struct ceph_connection *con = sk->sk_user_data;
424
425 dout("%s %p state = %lu sk_state = %u\n", __func__,
426 con, con->state, sk->sk_state);
427
428 switch (sk->sk_state) {
429 case TCP_CLOSE:
430 dout("%s TCP_CLOSE\n", __func__);
431 /* fall through */
432 case TCP_CLOSE_WAIT:
433 dout("%s TCP_CLOSE_WAIT\n", __func__);
434 con_sock_state_closing(con);
435 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
436 queue_con(con);
437 break;
438 case TCP_ESTABLISHED:
439 dout("%s TCP_ESTABLISHED\n", __func__);
440 con_sock_state_connected(con);
441 queue_con(con);
442 break;
443 default: /* Everything else is uninteresting */
444 break;
445 }
446 }
447
448 /*
449 * set up socket callbacks
450 */
451 static void set_sock_callbacks(struct socket *sock,
452 struct ceph_connection *con)
453 {
454 struct sock *sk = sock->sk;
455 sk->sk_user_data = con;
456 sk->sk_data_ready = ceph_sock_data_ready;
457 sk->sk_write_space = ceph_sock_write_space;
458 sk->sk_state_change = ceph_sock_state_change;
459 }
460
461
462 /*
463 * socket helpers
464 */
465
466 /*
467 * initiate connection to a remote socket.
468 */
469 static int ceph_tcp_connect(struct ceph_connection *con)
470 {
471 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
472 struct socket *sock;
473 unsigned int noio_flag;
474 int ret;
475
476 BUG_ON(con->sock);
477
478 /* sock_create_kern() allocates with GFP_KERNEL */
479 noio_flag = memalloc_noio_save();
480 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
481 SOCK_STREAM, IPPROTO_TCP, &sock);
482 memalloc_noio_restore(noio_flag);
483 if (ret)
484 return ret;
485 sock->sk->sk_allocation = GFP_NOFS;
486
487 #ifdef CONFIG_LOCKDEP
488 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
489 #endif
490
491 set_sock_callbacks(sock, con);
492
493 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
494
495 con_sock_state_connecting(con);
496 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
497 O_NONBLOCK);
498 if (ret == -EINPROGRESS) {
499 dout("connect %s EINPROGRESS sk_state = %u\n",
500 ceph_pr_addr(&con->peer_addr.in_addr),
501 sock->sk->sk_state);
502 } else if (ret < 0) {
503 pr_err("connect %s error %d\n",
504 ceph_pr_addr(&con->peer_addr.in_addr), ret);
505 sock_release(sock);
506 return ret;
507 }
508
509 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
510 int optval = 1;
511
512 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
513 (char *)&optval, sizeof(optval));
514 if (ret)
515 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
516 ret);
517 }
518
519 con->sock = sock;
520 return 0;
521 }
522
523 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
524 {
525 struct kvec iov = {buf, len};
526 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
527 int r;
528
529 iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
530 r = sock_recvmsg(sock, &msg, msg.msg_flags);
531 if (r == -EAGAIN)
532 r = 0;
533 return r;
534 }
535
536 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
537 int page_offset, size_t length)
538 {
539 struct bio_vec bvec = {
540 .bv_page = page,
541 .bv_offset = page_offset,
542 .bv_len = length
543 };
544 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
545 int r;
546
547 BUG_ON(page_offset + length > PAGE_SIZE);
548 iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
549 r = sock_recvmsg(sock, &msg, msg.msg_flags);
550 if (r == -EAGAIN)
551 r = 0;
552 return r;
553 }
554
555 /*
556 * write something. @more is true if caller will be sending more data
557 * shortly.
558 */
559 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
560 size_t kvlen, size_t len, int more)
561 {
562 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
563 int r;
564
565 if (more)
566 msg.msg_flags |= MSG_MORE;
567 else
568 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
569
570 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
571 if (r == -EAGAIN)
572 r = 0;
573 return r;
574 }
575
576 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
577 int offset, size_t size, bool more)
578 {
579 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
580 int ret;
581
582 ret = kernel_sendpage(sock, page, offset, size, flags);
583 if (ret == -EAGAIN)
584 ret = 0;
585
586 return ret;
587 }
588
589 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
590 int offset, size_t size, bool more)
591 {
592 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
593 struct bio_vec bvec;
594 int ret;
595
596 /* sendpage cannot properly handle pages with page_count == 0,
597 * we need to fallback to sendmsg if that's the case */
598 if (page_count(page) >= 1)
599 return __ceph_tcp_sendpage(sock, page, offset, size, more);
600
601 bvec.bv_page = page;
602 bvec.bv_offset = offset;
603 bvec.bv_len = size;
604
605 if (more)
606 msg.msg_flags |= MSG_MORE;
607 else
608 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
609
610 iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
611 ret = sock_sendmsg(sock, &msg);
612 if (ret == -EAGAIN)
613 ret = 0;
614
615 return ret;
616 }
617
618 /*
619 * Shutdown/close the socket for the given connection.
620 */
621 static int con_close_socket(struct ceph_connection *con)
622 {
623 int rc = 0;
624
625 dout("con_close_socket on %p sock %p\n", con, con->sock);
626 if (con->sock) {
627 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
628 sock_release(con->sock);
629 con->sock = NULL;
630 }
631
632 /*
633 * Forcibly clear the SOCK_CLOSED flag. It gets set
634 * independent of the connection mutex, and we could have
635 * received a socket close event before we had the chance to
636 * shut the socket down.
637 */
638 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
639
640 con_sock_state_closed(con);
641 return rc;
642 }
643
644 /*
645 * Reset a connection. Discard all incoming and outgoing messages
646 * and clear *_seq state.
647 */
648 static void ceph_msg_remove(struct ceph_msg *msg)
649 {
650 list_del_init(&msg->list_head);
651
652 ceph_msg_put(msg);
653 }
654 static void ceph_msg_remove_list(struct list_head *head)
655 {
656 while (!list_empty(head)) {
657 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
658 list_head);
659 ceph_msg_remove(msg);
660 }
661 }
662
663 static void reset_connection(struct ceph_connection *con)
664 {
665 /* reset connection, out_queue, msg_ and connect_seq */
666 /* discard existing out_queue and msg_seq */
667 dout("reset_connection %p\n", con);
668 ceph_msg_remove_list(&con->out_queue);
669 ceph_msg_remove_list(&con->out_sent);
670
671 if (con->in_msg) {
672 BUG_ON(con->in_msg->con != con);
673 ceph_msg_put(con->in_msg);
674 con->in_msg = NULL;
675 }
676
677 con->connect_seq = 0;
678 con->out_seq = 0;
679 if (con->out_msg) {
680 BUG_ON(con->out_msg->con != con);
681 ceph_msg_put(con->out_msg);
682 con->out_msg = NULL;
683 }
684 con->in_seq = 0;
685 con->in_seq_acked = 0;
686
687 con->out_skip = 0;
688 }
689
690 /*
691 * mark a peer down. drop any open connections.
692 */
693 void ceph_con_close(struct ceph_connection *con)
694 {
695 mutex_lock(&con->mutex);
696 dout("con_close %p peer %s\n", con,
697 ceph_pr_addr(&con->peer_addr.in_addr));
698 con->state = CON_STATE_CLOSED;
699
700 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
701 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
702 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
703 con_flag_clear(con, CON_FLAG_BACKOFF);
704
705 reset_connection(con);
706 con->peer_global_seq = 0;
707 cancel_con(con);
708 con_close_socket(con);
709 mutex_unlock(&con->mutex);
710 }
711 EXPORT_SYMBOL(ceph_con_close);
712
713 /*
714 * Reopen a closed connection, with a new peer address.
715 */
716 void ceph_con_open(struct ceph_connection *con,
717 __u8 entity_type, __u64 entity_num,
718 struct ceph_entity_addr *addr)
719 {
720 mutex_lock(&con->mutex);
721 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
722
723 WARN_ON(con->state != CON_STATE_CLOSED);
724 con->state = CON_STATE_PREOPEN;
725
726 con->peer_name.type = (__u8) entity_type;
727 con->peer_name.num = cpu_to_le64(entity_num);
728
729 memcpy(&con->peer_addr, addr, sizeof(*addr));
730 con->delay = 0; /* reset backoff memory */
731 mutex_unlock(&con->mutex);
732 queue_con(con);
733 }
734 EXPORT_SYMBOL(ceph_con_open);
735
736 /*
737 * return true if this connection ever successfully opened
738 */
739 bool ceph_con_opened(struct ceph_connection *con)
740 {
741 return con->connect_seq > 0;
742 }
743
744 /*
745 * initialize a new connection.
746 */
747 void ceph_con_init(struct ceph_connection *con, void *private,
748 const struct ceph_connection_operations *ops,
749 struct ceph_messenger *msgr)
750 {
751 dout("con_init %p\n", con);
752 memset(con, 0, sizeof(*con));
753 con->private = private;
754 con->ops = ops;
755 con->msgr = msgr;
756
757 con_sock_state_init(con);
758
759 mutex_init(&con->mutex);
760 INIT_LIST_HEAD(&con->out_queue);
761 INIT_LIST_HEAD(&con->out_sent);
762 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
763
764 con->state = CON_STATE_CLOSED;
765 }
766 EXPORT_SYMBOL(ceph_con_init);
767
768
769 /*
770 * We maintain a global counter to order connection attempts. Get
771 * a unique seq greater than @gt.
772 */
773 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
774 {
775 u32 ret;
776
777 spin_lock(&msgr->global_seq_lock);
778 if (msgr->global_seq < gt)
779 msgr->global_seq = gt;
780 ret = ++msgr->global_seq;
781 spin_unlock(&msgr->global_seq_lock);
782 return ret;
783 }
784
785 static void con_out_kvec_reset(struct ceph_connection *con)
786 {
787 BUG_ON(con->out_skip);
788
789 con->out_kvec_left = 0;
790 con->out_kvec_bytes = 0;
791 con->out_kvec_cur = &con->out_kvec[0];
792 }
793
794 static void con_out_kvec_add(struct ceph_connection *con,
795 size_t size, void *data)
796 {
797 int index = con->out_kvec_left;
798
799 BUG_ON(con->out_skip);
800 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
801
802 con->out_kvec[index].iov_len = size;
803 con->out_kvec[index].iov_base = data;
804 con->out_kvec_left++;
805 con->out_kvec_bytes += size;
806 }
807
808 /*
809 * Chop off a kvec from the end. Return residual number of bytes for
810 * that kvec, i.e. how many bytes would have been written if the kvec
811 * hadn't been nuked.
812 */
813 static int con_out_kvec_skip(struct ceph_connection *con)
814 {
815 int off = con->out_kvec_cur - con->out_kvec;
816 int skip = 0;
817
818 if (con->out_kvec_bytes > 0) {
819 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
820 BUG_ON(con->out_kvec_bytes < skip);
821 BUG_ON(!con->out_kvec_left);
822 con->out_kvec_bytes -= skip;
823 con->out_kvec_left--;
824 }
825
826 return skip;
827 }
828
829 #ifdef CONFIG_BLOCK
830
831 /*
832 * For a bio data item, a piece is whatever remains of the next
833 * entry in the current bio iovec, or the first entry in the next
834 * bio in the list.
835 */
836 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
837 size_t length)
838 {
839 struct ceph_msg_data *data = cursor->data;
840 struct ceph_bio_iter *it = &cursor->bio_iter;
841
842 cursor->resid = min_t(size_t, length, data->bio_length);
843 *it = data->bio_pos;
844 if (cursor->resid < it->iter.bi_size)
845 it->iter.bi_size = cursor->resid;
846
847 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
848 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
849 }
850
851 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
852 size_t *page_offset,
853 size_t *length)
854 {
855 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
856 cursor->bio_iter.iter);
857
858 *page_offset = bv.bv_offset;
859 *length = bv.bv_len;
860 return bv.bv_page;
861 }
862
863 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
864 size_t bytes)
865 {
866 struct ceph_bio_iter *it = &cursor->bio_iter;
867
868 BUG_ON(bytes > cursor->resid);
869 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
870 cursor->resid -= bytes;
871 bio_advance_iter(it->bio, &it->iter, bytes);
872
873 if (!cursor->resid) {
874 BUG_ON(!cursor->last_piece);
875 return false; /* no more data */
876 }
877
878 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done))
879 return false; /* more bytes to process in this segment */
880
881 if (!it->iter.bi_size) {
882 it->bio = it->bio->bi_next;
883 it->iter = it->bio->bi_iter;
884 if (cursor->resid < it->iter.bi_size)
885 it->iter.bi_size = cursor->resid;
886 }
887
888 BUG_ON(cursor->last_piece);
889 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
890 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
891 return true;
892 }
893 #endif /* CONFIG_BLOCK */
894
895 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
896 size_t length)
897 {
898 struct ceph_msg_data *data = cursor->data;
899 struct bio_vec *bvecs = data->bvec_pos.bvecs;
900
901 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
902 cursor->bvec_iter = data->bvec_pos.iter;
903 cursor->bvec_iter.bi_size = cursor->resid;
904
905 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
906 cursor->last_piece =
907 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
908 }
909
910 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
911 size_t *page_offset,
912 size_t *length)
913 {
914 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
915 cursor->bvec_iter);
916
917 *page_offset = bv.bv_offset;
918 *length = bv.bv_len;
919 return bv.bv_page;
920 }
921
922 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
923 size_t bytes)
924 {
925 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
926
927 BUG_ON(bytes > cursor->resid);
928 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
929 cursor->resid -= bytes;
930 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
931
932 if (!cursor->resid) {
933 BUG_ON(!cursor->last_piece);
934 return false; /* no more data */
935 }
936
937 if (!bytes || cursor->bvec_iter.bi_bvec_done)
938 return false; /* more bytes to process in this segment */
939
940 BUG_ON(cursor->last_piece);
941 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
942 cursor->last_piece =
943 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
944 return true;
945 }
946
947 /*
948 * For a page array, a piece comes from the first page in the array
949 * that has not already been fully consumed.
950 */
951 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
952 size_t length)
953 {
954 struct ceph_msg_data *data = cursor->data;
955 int page_count;
956
957 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
958
959 BUG_ON(!data->pages);
960 BUG_ON(!data->length);
961
962 cursor->resid = min(length, data->length);
963 page_count = calc_pages_for(data->alignment, (u64)data->length);
964 cursor->page_offset = data->alignment & ~PAGE_MASK;
965 cursor->page_index = 0;
966 BUG_ON(page_count > (int)USHRT_MAX);
967 cursor->page_count = (unsigned short)page_count;
968 BUG_ON(length > SIZE_MAX - cursor->page_offset);
969 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
970 }
971
972 static struct page *
973 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
974 size_t *page_offset, size_t *length)
975 {
976 struct ceph_msg_data *data = cursor->data;
977
978 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
979
980 BUG_ON(cursor->page_index >= cursor->page_count);
981 BUG_ON(cursor->page_offset >= PAGE_SIZE);
982
983 *page_offset = cursor->page_offset;
984 if (cursor->last_piece)
985 *length = cursor->resid;
986 else
987 *length = PAGE_SIZE - *page_offset;
988
989 return data->pages[cursor->page_index];
990 }
991
992 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
993 size_t bytes)
994 {
995 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
996
997 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
998
999 /* Advance the cursor page offset */
1000
1001 cursor->resid -= bytes;
1002 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
1003 if (!bytes || cursor->page_offset)
1004 return false; /* more bytes to process in the current page */
1005
1006 if (!cursor->resid)
1007 return false; /* no more data */
1008
1009 /* Move on to the next page; offset is already at 0 */
1010
1011 BUG_ON(cursor->page_index >= cursor->page_count);
1012 cursor->page_index++;
1013 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1014
1015 return true;
1016 }
1017
1018 /*
1019 * For a pagelist, a piece is whatever remains to be consumed in the
1020 * first page in the list, or the front of the next page.
1021 */
1022 static void
1023 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1024 size_t length)
1025 {
1026 struct ceph_msg_data *data = cursor->data;
1027 struct ceph_pagelist *pagelist;
1028 struct page *page;
1029
1030 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1031
1032 pagelist = data->pagelist;
1033 BUG_ON(!pagelist);
1034
1035 if (!length)
1036 return; /* pagelist can be assigned but empty */
1037
1038 BUG_ON(list_empty(&pagelist->head));
1039 page = list_first_entry(&pagelist->head, struct page, lru);
1040
1041 cursor->resid = min(length, pagelist->length);
1042 cursor->page = page;
1043 cursor->offset = 0;
1044 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1045 }
1046
1047 static struct page *
1048 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1049 size_t *page_offset, size_t *length)
1050 {
1051 struct ceph_msg_data *data = cursor->data;
1052 struct ceph_pagelist *pagelist;
1053
1054 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1055
1056 pagelist = data->pagelist;
1057 BUG_ON(!pagelist);
1058
1059 BUG_ON(!cursor->page);
1060 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1061
1062 /* offset of first page in pagelist is always 0 */
1063 *page_offset = cursor->offset & ~PAGE_MASK;
1064 if (cursor->last_piece)
1065 *length = cursor->resid;
1066 else
1067 *length = PAGE_SIZE - *page_offset;
1068
1069 return cursor->page;
1070 }
1071
1072 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1073 size_t bytes)
1074 {
1075 struct ceph_msg_data *data = cursor->data;
1076 struct ceph_pagelist *pagelist;
1077
1078 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1079
1080 pagelist = data->pagelist;
1081 BUG_ON(!pagelist);
1082
1083 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1084 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1085
1086 /* Advance the cursor offset */
1087
1088 cursor->resid -= bytes;
1089 cursor->offset += bytes;
1090 /* offset of first page in pagelist is always 0 */
1091 if (!bytes || cursor->offset & ~PAGE_MASK)
1092 return false; /* more bytes to process in the current page */
1093
1094 if (!cursor->resid)
1095 return false; /* no more data */
1096
1097 /* Move on to the next page */
1098
1099 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1100 cursor->page = list_next_entry(cursor->page, lru);
1101 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1102
1103 return true;
1104 }
1105
1106 /*
1107 * Message data is handled (sent or received) in pieces, where each
1108 * piece resides on a single page. The network layer might not
1109 * consume an entire piece at once. A data item's cursor keeps
1110 * track of which piece is next to process and how much remains to
1111 * be processed in that piece. It also tracks whether the current
1112 * piece is the last one in the data item.
1113 */
1114 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1115 {
1116 size_t length = cursor->total_resid;
1117
1118 switch (cursor->data->type) {
1119 case CEPH_MSG_DATA_PAGELIST:
1120 ceph_msg_data_pagelist_cursor_init(cursor, length);
1121 break;
1122 case CEPH_MSG_DATA_PAGES:
1123 ceph_msg_data_pages_cursor_init(cursor, length);
1124 break;
1125 #ifdef CONFIG_BLOCK
1126 case CEPH_MSG_DATA_BIO:
1127 ceph_msg_data_bio_cursor_init(cursor, length);
1128 break;
1129 #endif /* CONFIG_BLOCK */
1130 case CEPH_MSG_DATA_BVECS:
1131 ceph_msg_data_bvecs_cursor_init(cursor, length);
1132 break;
1133 case CEPH_MSG_DATA_NONE:
1134 default:
1135 /* BUG(); */
1136 break;
1137 }
1138 cursor->need_crc = true;
1139 }
1140
1141 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1142 {
1143 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1144 struct ceph_msg_data *data;
1145
1146 BUG_ON(!length);
1147 BUG_ON(length > msg->data_length);
1148 BUG_ON(list_empty(&msg->data));
1149
1150 cursor->data_head = &msg->data;
1151 cursor->total_resid = length;
1152 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1153 cursor->data = data;
1154
1155 __ceph_msg_data_cursor_init(cursor);
1156 }
1157
1158 /*
1159 * Return the page containing the next piece to process for a given
1160 * data item, and supply the page offset and length of that piece.
1161 * Indicate whether this is the last piece in this data item.
1162 */
1163 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1164 size_t *page_offset, size_t *length,
1165 bool *last_piece)
1166 {
1167 struct page *page;
1168
1169 switch (cursor->data->type) {
1170 case CEPH_MSG_DATA_PAGELIST:
1171 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1172 break;
1173 case CEPH_MSG_DATA_PAGES:
1174 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1175 break;
1176 #ifdef CONFIG_BLOCK
1177 case CEPH_MSG_DATA_BIO:
1178 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1179 break;
1180 #endif /* CONFIG_BLOCK */
1181 case CEPH_MSG_DATA_BVECS:
1182 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1183 break;
1184 case CEPH_MSG_DATA_NONE:
1185 default:
1186 page = NULL;
1187 break;
1188 }
1189
1190 BUG_ON(!page);
1191 BUG_ON(*page_offset + *length > PAGE_SIZE);
1192 BUG_ON(!*length);
1193 BUG_ON(*length > cursor->resid);
1194 if (last_piece)
1195 *last_piece = cursor->last_piece;
1196
1197 return page;
1198 }
1199
1200 /*
1201 * Returns true if the result moves the cursor on to the next piece
1202 * of the data item.
1203 */
1204 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1205 size_t bytes)
1206 {
1207 bool new_piece;
1208
1209 BUG_ON(bytes > cursor->resid);
1210 switch (cursor->data->type) {
1211 case CEPH_MSG_DATA_PAGELIST:
1212 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1213 break;
1214 case CEPH_MSG_DATA_PAGES:
1215 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1216 break;
1217 #ifdef CONFIG_BLOCK
1218 case CEPH_MSG_DATA_BIO:
1219 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1220 break;
1221 #endif /* CONFIG_BLOCK */
1222 case CEPH_MSG_DATA_BVECS:
1223 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1224 break;
1225 case CEPH_MSG_DATA_NONE:
1226 default:
1227 BUG();
1228 break;
1229 }
1230 cursor->total_resid -= bytes;
1231
1232 if (!cursor->resid && cursor->total_resid) {
1233 WARN_ON(!cursor->last_piece);
1234 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1235 cursor->data = list_next_entry(cursor->data, links);
1236 __ceph_msg_data_cursor_init(cursor);
1237 new_piece = true;
1238 }
1239 cursor->need_crc = new_piece;
1240 }
1241
1242 static size_t sizeof_footer(struct ceph_connection *con)
1243 {
1244 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1245 sizeof(struct ceph_msg_footer) :
1246 sizeof(struct ceph_msg_footer_old);
1247 }
1248
1249 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1250 {
1251 BUG_ON(!msg);
1252 BUG_ON(!data_len);
1253
1254 /* Initialize data cursor */
1255
1256 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1257 }
1258
1259 /*
1260 * Prepare footer for currently outgoing message, and finish things
1261 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1262 */
1263 static void prepare_write_message_footer(struct ceph_connection *con)
1264 {
1265 struct ceph_msg *m = con->out_msg;
1266
1267 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1268
1269 dout("prepare_write_message_footer %p\n", con);
1270 con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1271 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1272 if (con->ops->sign_message)
1273 con->ops->sign_message(m);
1274 else
1275 m->footer.sig = 0;
1276 } else {
1277 m->old_footer.flags = m->footer.flags;
1278 }
1279 con->out_more = m->more_to_follow;
1280 con->out_msg_done = true;
1281 }
1282
1283 /*
1284 * Prepare headers for the next outgoing message.
1285 */
1286 static void prepare_write_message(struct ceph_connection *con)
1287 {
1288 struct ceph_msg *m;
1289 u32 crc;
1290
1291 con_out_kvec_reset(con);
1292 con->out_msg_done = false;
1293
1294 /* Sneak an ack in there first? If we can get it into the same
1295 * TCP packet that's a good thing. */
1296 if (con->in_seq > con->in_seq_acked) {
1297 con->in_seq_acked = con->in_seq;
1298 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1299 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1300 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1301 &con->out_temp_ack);
1302 }
1303
1304 BUG_ON(list_empty(&con->out_queue));
1305 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1306 con->out_msg = m;
1307 BUG_ON(m->con != con);
1308
1309 /* put message on sent list */
1310 ceph_msg_get(m);
1311 list_move_tail(&m->list_head, &con->out_sent);
1312
1313 /*
1314 * only assign outgoing seq # if we haven't sent this message
1315 * yet. if it is requeued, resend with it's original seq.
1316 */
1317 if (m->needs_out_seq) {
1318 m->hdr.seq = cpu_to_le64(++con->out_seq);
1319 m->needs_out_seq = false;
1320
1321 if (con->ops->reencode_message)
1322 con->ops->reencode_message(m);
1323 }
1324
1325 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1326 m, con->out_seq, le16_to_cpu(m->hdr.type),
1327 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1328 m->data_length);
1329 WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1330 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1331
1332 /* tag + hdr + front + middle */
1333 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1334 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1335 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1336
1337 if (m->middle)
1338 con_out_kvec_add(con, m->middle->vec.iov_len,
1339 m->middle->vec.iov_base);
1340
1341 /* fill in hdr crc and finalize hdr */
1342 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1343 con->out_msg->hdr.crc = cpu_to_le32(crc);
1344 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1345
1346 /* fill in front and middle crc, footer */
1347 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1348 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1349 if (m->middle) {
1350 crc = crc32c(0, m->middle->vec.iov_base,
1351 m->middle->vec.iov_len);
1352 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1353 } else
1354 con->out_msg->footer.middle_crc = 0;
1355 dout("%s front_crc %u middle_crc %u\n", __func__,
1356 le32_to_cpu(con->out_msg->footer.front_crc),
1357 le32_to_cpu(con->out_msg->footer.middle_crc));
1358 con->out_msg->footer.flags = 0;
1359
1360 /* is there a data payload? */
1361 con->out_msg->footer.data_crc = 0;
1362 if (m->data_length) {
1363 prepare_message_data(con->out_msg, m->data_length);
1364 con->out_more = 1; /* data + footer will follow */
1365 } else {
1366 /* no, queue up footer too and be done */
1367 prepare_write_message_footer(con);
1368 }
1369
1370 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1371 }
1372
1373 /*
1374 * Prepare an ack.
1375 */
1376 static void prepare_write_ack(struct ceph_connection *con)
1377 {
1378 dout("prepare_write_ack %p %llu -> %llu\n", con,
1379 con->in_seq_acked, con->in_seq);
1380 con->in_seq_acked = con->in_seq;
1381
1382 con_out_kvec_reset(con);
1383
1384 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1385
1386 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1387 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1388 &con->out_temp_ack);
1389
1390 con->out_more = 1; /* more will follow.. eventually.. */
1391 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1392 }
1393
1394 /*
1395 * Prepare to share the seq during handshake
1396 */
1397 static void prepare_write_seq(struct ceph_connection *con)
1398 {
1399 dout("prepare_write_seq %p %llu -> %llu\n", con,
1400 con->in_seq_acked, con->in_seq);
1401 con->in_seq_acked = con->in_seq;
1402
1403 con_out_kvec_reset(con);
1404
1405 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1406 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1407 &con->out_temp_ack);
1408
1409 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1410 }
1411
1412 /*
1413 * Prepare to write keepalive byte.
1414 */
1415 static void prepare_write_keepalive(struct ceph_connection *con)
1416 {
1417 dout("prepare_write_keepalive %p\n", con);
1418 con_out_kvec_reset(con);
1419 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1420 struct timespec now;
1421
1422 ktime_get_real_ts(&now);
1423 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1424 ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1425 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1426 &con->out_temp_keepalive2);
1427 } else {
1428 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1429 }
1430 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1431 }
1432
1433 /*
1434 * Connection negotiation.
1435 */
1436
1437 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1438 int *auth_proto)
1439 {
1440 struct ceph_auth_handshake *auth;
1441
1442 if (!con->ops->get_authorizer) {
1443 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1444 con->out_connect.authorizer_len = 0;
1445 return NULL;
1446 }
1447
1448 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1449 if (IS_ERR(auth))
1450 return auth;
1451
1452 con->auth_reply_buf = auth->authorizer_reply_buf;
1453 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1454 return auth;
1455 }
1456
1457 /*
1458 * We connected to a peer and are saying hello.
1459 */
1460 static void prepare_write_banner(struct ceph_connection *con)
1461 {
1462 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1463 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1464 &con->msgr->my_enc_addr);
1465
1466 con->out_more = 0;
1467 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1468 }
1469
1470 static int prepare_write_connect(struct ceph_connection *con)
1471 {
1472 unsigned int global_seq = get_global_seq(con->msgr, 0);
1473 int proto;
1474 int auth_proto;
1475 struct ceph_auth_handshake *auth;
1476
1477 switch (con->peer_name.type) {
1478 case CEPH_ENTITY_TYPE_MON:
1479 proto = CEPH_MONC_PROTOCOL;
1480 break;
1481 case CEPH_ENTITY_TYPE_OSD:
1482 proto = CEPH_OSDC_PROTOCOL;
1483 break;
1484 case CEPH_ENTITY_TYPE_MDS:
1485 proto = CEPH_MDSC_PROTOCOL;
1486 break;
1487 default:
1488 BUG();
1489 }
1490
1491 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1492 con->connect_seq, global_seq, proto);
1493
1494 con->out_connect.features =
1495 cpu_to_le64(from_msgr(con->msgr)->supported_features);
1496 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1497 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1498 con->out_connect.global_seq = cpu_to_le32(global_seq);
1499 con->out_connect.protocol_version = cpu_to_le32(proto);
1500 con->out_connect.flags = 0;
1501
1502 auth_proto = CEPH_AUTH_UNKNOWN;
1503 auth = get_connect_authorizer(con, &auth_proto);
1504 if (IS_ERR(auth))
1505 return PTR_ERR(auth);
1506
1507 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1508 con->out_connect.authorizer_len = auth ?
1509 cpu_to_le32(auth->authorizer_buf_len) : 0;
1510
1511 con_out_kvec_add(con, sizeof (con->out_connect),
1512 &con->out_connect);
1513 if (auth && auth->authorizer_buf_len)
1514 con_out_kvec_add(con, auth->authorizer_buf_len,
1515 auth->authorizer_buf);
1516
1517 con->out_more = 0;
1518 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1519
1520 return 0;
1521 }
1522
1523 /*
1524 * write as much of pending kvecs to the socket as we can.
1525 * 1 -> done
1526 * 0 -> socket full, but more to do
1527 * <0 -> error
1528 */
1529 static int write_partial_kvec(struct ceph_connection *con)
1530 {
1531 int ret;
1532
1533 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1534 while (con->out_kvec_bytes > 0) {
1535 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1536 con->out_kvec_left, con->out_kvec_bytes,
1537 con->out_more);
1538 if (ret <= 0)
1539 goto out;
1540 con->out_kvec_bytes -= ret;
1541 if (con->out_kvec_bytes == 0)
1542 break; /* done */
1543
1544 /* account for full iov entries consumed */
1545 while (ret >= con->out_kvec_cur->iov_len) {
1546 BUG_ON(!con->out_kvec_left);
1547 ret -= con->out_kvec_cur->iov_len;
1548 con->out_kvec_cur++;
1549 con->out_kvec_left--;
1550 }
1551 /* and for a partially-consumed entry */
1552 if (ret) {
1553 con->out_kvec_cur->iov_len -= ret;
1554 con->out_kvec_cur->iov_base += ret;
1555 }
1556 }
1557 con->out_kvec_left = 0;
1558 ret = 1;
1559 out:
1560 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1561 con->out_kvec_bytes, con->out_kvec_left, ret);
1562 return ret; /* done! */
1563 }
1564
1565 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1566 unsigned int page_offset,
1567 unsigned int length)
1568 {
1569 char *kaddr;
1570
1571 kaddr = kmap(page);
1572 BUG_ON(kaddr == NULL);
1573 crc = crc32c(crc, kaddr + page_offset, length);
1574 kunmap(page);
1575
1576 return crc;
1577 }
1578 /*
1579 * Write as much message data payload as we can. If we finish, queue
1580 * up the footer.
1581 * 1 -> done, footer is now queued in out_kvec[].
1582 * 0 -> socket full, but more to do
1583 * <0 -> error
1584 */
1585 static int write_partial_message_data(struct ceph_connection *con)
1586 {
1587 struct ceph_msg *msg = con->out_msg;
1588 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1589 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1590 u32 crc;
1591
1592 dout("%s %p msg %p\n", __func__, con, msg);
1593
1594 if (list_empty(&msg->data))
1595 return -EINVAL;
1596
1597 /*
1598 * Iterate through each page that contains data to be
1599 * written, and send as much as possible for each.
1600 *
1601 * If we are calculating the data crc (the default), we will
1602 * need to map the page. If we have no pages, they have
1603 * been revoked, so use the zero page.
1604 */
1605 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1606 while (cursor->total_resid) {
1607 struct page *page;
1608 size_t page_offset;
1609 size_t length;
1610 bool last_piece;
1611 int ret;
1612
1613 if (!cursor->resid) {
1614 ceph_msg_data_advance(cursor, 0);
1615 continue;
1616 }
1617
1618 page = ceph_msg_data_next(cursor, &page_offset, &length,
1619 &last_piece);
1620 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1621 length, !last_piece);
1622 if (ret <= 0) {
1623 if (do_datacrc)
1624 msg->footer.data_crc = cpu_to_le32(crc);
1625
1626 return ret;
1627 }
1628 if (do_datacrc && cursor->need_crc)
1629 crc = ceph_crc32c_page(crc, page, page_offset, length);
1630 ceph_msg_data_advance(cursor, (size_t)ret);
1631 }
1632
1633 dout("%s %p msg %p done\n", __func__, con, msg);
1634
1635 /* prepare and queue up footer, too */
1636 if (do_datacrc)
1637 msg->footer.data_crc = cpu_to_le32(crc);
1638 else
1639 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1640 con_out_kvec_reset(con);
1641 prepare_write_message_footer(con);
1642
1643 return 1; /* must return > 0 to indicate success */
1644 }
1645
1646 /*
1647 * write some zeros
1648 */
1649 static int write_partial_skip(struct ceph_connection *con)
1650 {
1651 int ret;
1652
1653 dout("%s %p %d left\n", __func__, con, con->out_skip);
1654 while (con->out_skip > 0) {
1655 size_t size = min(con->out_skip, (int) PAGE_SIZE);
1656
1657 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1658 if (ret <= 0)
1659 goto out;
1660 con->out_skip -= ret;
1661 }
1662 ret = 1;
1663 out:
1664 return ret;
1665 }
1666
1667 /*
1668 * Prepare to read connection handshake, or an ack.
1669 */
1670 static void prepare_read_banner(struct ceph_connection *con)
1671 {
1672 dout("prepare_read_banner %p\n", con);
1673 con->in_base_pos = 0;
1674 }
1675
1676 static void prepare_read_connect(struct ceph_connection *con)
1677 {
1678 dout("prepare_read_connect %p\n", con);
1679 con->in_base_pos = 0;
1680 }
1681
1682 static void prepare_read_ack(struct ceph_connection *con)
1683 {
1684 dout("prepare_read_ack %p\n", con);
1685 con->in_base_pos = 0;
1686 }
1687
1688 static void prepare_read_seq(struct ceph_connection *con)
1689 {
1690 dout("prepare_read_seq %p\n", con);
1691 con->in_base_pos = 0;
1692 con->in_tag = CEPH_MSGR_TAG_SEQ;
1693 }
1694
1695 static void prepare_read_tag(struct ceph_connection *con)
1696 {
1697 dout("prepare_read_tag %p\n", con);
1698 con->in_base_pos = 0;
1699 con->in_tag = CEPH_MSGR_TAG_READY;
1700 }
1701
1702 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1703 {
1704 dout("prepare_read_keepalive_ack %p\n", con);
1705 con->in_base_pos = 0;
1706 }
1707
1708 /*
1709 * Prepare to read a message.
1710 */
1711 static int prepare_read_message(struct ceph_connection *con)
1712 {
1713 dout("prepare_read_message %p\n", con);
1714 BUG_ON(con->in_msg != NULL);
1715 con->in_base_pos = 0;
1716 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1717 return 0;
1718 }
1719
1720
1721 static int read_partial(struct ceph_connection *con,
1722 int end, int size, void *object)
1723 {
1724 while (con->in_base_pos < end) {
1725 int left = end - con->in_base_pos;
1726 int have = size - left;
1727 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1728 if (ret <= 0)
1729 return ret;
1730 con->in_base_pos += ret;
1731 }
1732 return 1;
1733 }
1734
1735
1736 /*
1737 * Read all or part of the connect-side handshake on a new connection
1738 */
1739 static int read_partial_banner(struct ceph_connection *con)
1740 {
1741 int size;
1742 int end;
1743 int ret;
1744
1745 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1746
1747 /* peer's banner */
1748 size = strlen(CEPH_BANNER);
1749 end = size;
1750 ret = read_partial(con, end, size, con->in_banner);
1751 if (ret <= 0)
1752 goto out;
1753
1754 size = sizeof (con->actual_peer_addr);
1755 end += size;
1756 ret = read_partial(con, end, size, &con->actual_peer_addr);
1757 if (ret <= 0)
1758 goto out;
1759
1760 size = sizeof (con->peer_addr_for_me);
1761 end += size;
1762 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1763 if (ret <= 0)
1764 goto out;
1765
1766 out:
1767 return ret;
1768 }
1769
1770 static int read_partial_connect(struct ceph_connection *con)
1771 {
1772 int size;
1773 int end;
1774 int ret;
1775
1776 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1777
1778 size = sizeof (con->in_reply);
1779 end = size;
1780 ret = read_partial(con, end, size, &con->in_reply);
1781 if (ret <= 0)
1782 goto out;
1783
1784 size = le32_to_cpu(con->in_reply.authorizer_len);
1785 end += size;
1786 ret = read_partial(con, end, size, con->auth_reply_buf);
1787 if (ret <= 0)
1788 goto out;
1789
1790 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1791 con, (int)con->in_reply.tag,
1792 le32_to_cpu(con->in_reply.connect_seq),
1793 le32_to_cpu(con->in_reply.global_seq));
1794 out:
1795 return ret;
1796
1797 }
1798
1799 /*
1800 * Verify the hello banner looks okay.
1801 */
1802 static int verify_hello(struct ceph_connection *con)
1803 {
1804 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1805 pr_err("connect to %s got bad banner\n",
1806 ceph_pr_addr(&con->peer_addr.in_addr));
1807 con->error_msg = "protocol error, bad banner";
1808 return -1;
1809 }
1810 return 0;
1811 }
1812
1813 static bool addr_is_blank(struct sockaddr_storage *ss)
1814 {
1815 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1816 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1817
1818 switch (ss->ss_family) {
1819 case AF_INET:
1820 return addr->s_addr == htonl(INADDR_ANY);
1821 case AF_INET6:
1822 return ipv6_addr_any(addr6);
1823 default:
1824 return true;
1825 }
1826 }
1827
1828 static int addr_port(struct sockaddr_storage *ss)
1829 {
1830 switch (ss->ss_family) {
1831 case AF_INET:
1832 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1833 case AF_INET6:
1834 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1835 }
1836 return 0;
1837 }
1838
1839 static void addr_set_port(struct sockaddr_storage *ss, int p)
1840 {
1841 switch (ss->ss_family) {
1842 case AF_INET:
1843 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1844 break;
1845 case AF_INET6:
1846 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1847 break;
1848 }
1849 }
1850
1851 /*
1852 * Unlike other *_pton function semantics, zero indicates success.
1853 */
1854 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1855 char delim, const char **ipend)
1856 {
1857 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1858 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1859
1860 memset(ss, 0, sizeof(*ss));
1861
1862 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1863 ss->ss_family = AF_INET;
1864 return 0;
1865 }
1866
1867 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1868 ss->ss_family = AF_INET6;
1869 return 0;
1870 }
1871
1872 return -EINVAL;
1873 }
1874
1875 /*
1876 * Extract hostname string and resolve using kernel DNS facility.
1877 */
1878 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1879 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1880 struct sockaddr_storage *ss, char delim, const char **ipend)
1881 {
1882 const char *end, *delim_p;
1883 char *colon_p, *ip_addr = NULL;
1884 int ip_len, ret;
1885
1886 /*
1887 * The end of the hostname occurs immediately preceding the delimiter or
1888 * the port marker (':') where the delimiter takes precedence.
1889 */
1890 delim_p = memchr(name, delim, namelen);
1891 colon_p = memchr(name, ':', namelen);
1892
1893 if (delim_p && colon_p)
1894 end = delim_p < colon_p ? delim_p : colon_p;
1895 else if (!delim_p && colon_p)
1896 end = colon_p;
1897 else {
1898 end = delim_p;
1899 if (!end) /* case: hostname:/ */
1900 end = name + namelen;
1901 }
1902
1903 if (end <= name)
1904 return -EINVAL;
1905
1906 /* do dns_resolve upcall */
1907 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1908 if (ip_len > 0)
1909 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1910 else
1911 ret = -ESRCH;
1912
1913 kfree(ip_addr);
1914
1915 *ipend = end;
1916
1917 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1918 ret, ret ? "failed" : ceph_pr_addr(ss));
1919
1920 return ret;
1921 }
1922 #else
1923 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1924 struct sockaddr_storage *ss, char delim, const char **ipend)
1925 {
1926 return -EINVAL;
1927 }
1928 #endif
1929
1930 /*
1931 * Parse a server name (IP or hostname). If a valid IP address is not found
1932 * then try to extract a hostname to resolve using userspace DNS upcall.
1933 */
1934 static int ceph_parse_server_name(const char *name, size_t namelen,
1935 struct sockaddr_storage *ss, char delim, const char **ipend)
1936 {
1937 int ret;
1938
1939 ret = ceph_pton(name, namelen, ss, delim, ipend);
1940 if (ret)
1941 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1942
1943 return ret;
1944 }
1945
1946 /*
1947 * Parse an ip[:port] list into an addr array. Use the default
1948 * monitor port if a port isn't specified.
1949 */
1950 int ceph_parse_ips(const char *c, const char *end,
1951 struct ceph_entity_addr *addr,
1952 int max_count, int *count)
1953 {
1954 int i, ret = -EINVAL;
1955 const char *p = c;
1956
1957 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1958 for (i = 0; i < max_count; i++) {
1959 const char *ipend;
1960 struct sockaddr_storage *ss = &addr[i].in_addr;
1961 int port;
1962 char delim = ',';
1963
1964 if (*p == '[') {
1965 delim = ']';
1966 p++;
1967 }
1968
1969 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1970 if (ret)
1971 goto bad;
1972 ret = -EINVAL;
1973
1974 p = ipend;
1975
1976 if (delim == ']') {
1977 if (*p != ']') {
1978 dout("missing matching ']'\n");
1979 goto bad;
1980 }
1981 p++;
1982 }
1983
1984 /* port? */
1985 if (p < end && *p == ':') {
1986 port = 0;
1987 p++;
1988 while (p < end && *p >= '0' && *p <= '9') {
1989 port = (port * 10) + (*p - '0');
1990 p++;
1991 }
1992 if (port == 0)
1993 port = CEPH_MON_PORT;
1994 else if (port > 65535)
1995 goto bad;
1996 } else {
1997 port = CEPH_MON_PORT;
1998 }
1999
2000 addr_set_port(ss, port);
2001
2002 dout("parse_ips got %s\n", ceph_pr_addr(ss));
2003
2004 if (p == end)
2005 break;
2006 if (*p != ',')
2007 goto bad;
2008 p++;
2009 }
2010
2011 if (p != end)
2012 goto bad;
2013
2014 if (count)
2015 *count = i + 1;
2016 return 0;
2017
2018 bad:
2019 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
2020 return ret;
2021 }
2022 EXPORT_SYMBOL(ceph_parse_ips);
2023
2024 static int process_banner(struct ceph_connection *con)
2025 {
2026 dout("process_banner on %p\n", con);
2027
2028 if (verify_hello(con) < 0)
2029 return -1;
2030
2031 ceph_decode_addr(&con->actual_peer_addr);
2032 ceph_decode_addr(&con->peer_addr_for_me);
2033
2034 /*
2035 * Make sure the other end is who we wanted. note that the other
2036 * end may not yet know their ip address, so if it's 0.0.0.0, give
2037 * them the benefit of the doubt.
2038 */
2039 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2040 sizeof(con->peer_addr)) != 0 &&
2041 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2042 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2043 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2044 ceph_pr_addr(&con->peer_addr.in_addr),
2045 (int)le32_to_cpu(con->peer_addr.nonce),
2046 ceph_pr_addr(&con->actual_peer_addr.in_addr),
2047 (int)le32_to_cpu(con->actual_peer_addr.nonce));
2048 con->error_msg = "wrong peer at address";
2049 return -1;
2050 }
2051
2052 /*
2053 * did we learn our address?
2054 */
2055 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2056 int port = addr_port(&con->msgr->inst.addr.in_addr);
2057
2058 memcpy(&con->msgr->inst.addr.in_addr,
2059 &con->peer_addr_for_me.in_addr,
2060 sizeof(con->peer_addr_for_me.in_addr));
2061 addr_set_port(&con->msgr->inst.addr.in_addr, port);
2062 encode_my_addr(con->msgr);
2063 dout("process_banner learned my addr is %s\n",
2064 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2065 }
2066
2067 return 0;
2068 }
2069
2070 static int process_connect(struct ceph_connection *con)
2071 {
2072 u64 sup_feat = from_msgr(con->msgr)->supported_features;
2073 u64 req_feat = from_msgr(con->msgr)->required_features;
2074 u64 server_feat = le64_to_cpu(con->in_reply.features);
2075 int ret;
2076
2077 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2078
2079 if (con->auth_reply_buf) {
2080 /*
2081 * Any connection that defines ->get_authorizer()
2082 * should also define ->verify_authorizer_reply().
2083 * See get_connect_authorizer().
2084 */
2085 ret = con->ops->verify_authorizer_reply(con);
2086 if (ret < 0) {
2087 con->error_msg = "bad authorize reply";
2088 return ret;
2089 }
2090 }
2091
2092 switch (con->in_reply.tag) {
2093 case CEPH_MSGR_TAG_FEATURES:
2094 pr_err("%s%lld %s feature set mismatch,"
2095 " my %llx < server's %llx, missing %llx\n",
2096 ENTITY_NAME(con->peer_name),
2097 ceph_pr_addr(&con->peer_addr.in_addr),
2098 sup_feat, server_feat, server_feat & ~sup_feat);
2099 con->error_msg = "missing required protocol features";
2100 reset_connection(con);
2101 return -1;
2102
2103 case CEPH_MSGR_TAG_BADPROTOVER:
2104 pr_err("%s%lld %s protocol version mismatch,"
2105 " my %d != server's %d\n",
2106 ENTITY_NAME(con->peer_name),
2107 ceph_pr_addr(&con->peer_addr.in_addr),
2108 le32_to_cpu(con->out_connect.protocol_version),
2109 le32_to_cpu(con->in_reply.protocol_version));
2110 con->error_msg = "protocol version mismatch";
2111 reset_connection(con);
2112 return -1;
2113
2114 case CEPH_MSGR_TAG_BADAUTHORIZER:
2115 con->auth_retry++;
2116 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2117 con->auth_retry);
2118 if (con->auth_retry == 2) {
2119 con->error_msg = "connect authorization failure";
2120 return -1;
2121 }
2122 con_out_kvec_reset(con);
2123 ret = prepare_write_connect(con);
2124 if (ret < 0)
2125 return ret;
2126 prepare_read_connect(con);
2127 break;
2128
2129 case CEPH_MSGR_TAG_RESETSESSION:
2130 /*
2131 * If we connected with a large connect_seq but the peer
2132 * has no record of a session with us (no connection, or
2133 * connect_seq == 0), they will send RESETSESION to indicate
2134 * that they must have reset their session, and may have
2135 * dropped messages.
2136 */
2137 dout("process_connect got RESET peer seq %u\n",
2138 le32_to_cpu(con->in_reply.connect_seq));
2139 pr_err("%s%lld %s connection reset\n",
2140 ENTITY_NAME(con->peer_name),
2141 ceph_pr_addr(&con->peer_addr.in_addr));
2142 reset_connection(con);
2143 con_out_kvec_reset(con);
2144 ret = prepare_write_connect(con);
2145 if (ret < 0)
2146 return ret;
2147 prepare_read_connect(con);
2148
2149 /* Tell ceph about it. */
2150 mutex_unlock(&con->mutex);
2151 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2152 if (con->ops->peer_reset)
2153 con->ops->peer_reset(con);
2154 mutex_lock(&con->mutex);
2155 if (con->state != CON_STATE_NEGOTIATING)
2156 return -EAGAIN;
2157 break;
2158
2159 case CEPH_MSGR_TAG_RETRY_SESSION:
2160 /*
2161 * If we sent a smaller connect_seq than the peer has, try
2162 * again with a larger value.
2163 */
2164 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2165 le32_to_cpu(con->out_connect.connect_seq),
2166 le32_to_cpu(con->in_reply.connect_seq));
2167 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2168 con_out_kvec_reset(con);
2169 ret = prepare_write_connect(con);
2170 if (ret < 0)
2171 return ret;
2172 prepare_read_connect(con);
2173 break;
2174
2175 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2176 /*
2177 * If we sent a smaller global_seq than the peer has, try
2178 * again with a larger value.
2179 */
2180 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2181 con->peer_global_seq,
2182 le32_to_cpu(con->in_reply.global_seq));
2183 get_global_seq(con->msgr,
2184 le32_to_cpu(con->in_reply.global_seq));
2185 con_out_kvec_reset(con);
2186 ret = prepare_write_connect(con);
2187 if (ret < 0)
2188 return ret;
2189 prepare_read_connect(con);
2190 break;
2191
2192 case CEPH_MSGR_TAG_SEQ:
2193 case CEPH_MSGR_TAG_READY:
2194 if (req_feat & ~server_feat) {
2195 pr_err("%s%lld %s protocol feature mismatch,"
2196 " my required %llx > server's %llx, need %llx\n",
2197 ENTITY_NAME(con->peer_name),
2198 ceph_pr_addr(&con->peer_addr.in_addr),
2199 req_feat, server_feat, req_feat & ~server_feat);
2200 con->error_msg = "missing required protocol features";
2201 reset_connection(con);
2202 return -1;
2203 }
2204
2205 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2206 con->state = CON_STATE_OPEN;
2207 con->auth_retry = 0; /* we authenticated; clear flag */
2208 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2209 con->connect_seq++;
2210 con->peer_features = server_feat;
2211 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2212 con->peer_global_seq,
2213 le32_to_cpu(con->in_reply.connect_seq),
2214 con->connect_seq);
2215 WARN_ON(con->connect_seq !=
2216 le32_to_cpu(con->in_reply.connect_seq));
2217
2218 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2219 con_flag_set(con, CON_FLAG_LOSSYTX);
2220
2221 con->delay = 0; /* reset backoff memory */
2222
2223 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2224 prepare_write_seq(con);
2225 prepare_read_seq(con);
2226 } else {
2227 prepare_read_tag(con);
2228 }
2229 break;
2230
2231 case CEPH_MSGR_TAG_WAIT:
2232 /*
2233 * If there is a connection race (we are opening
2234 * connections to each other), one of us may just have
2235 * to WAIT. This shouldn't happen if we are the
2236 * client.
2237 */
2238 con->error_msg = "protocol error, got WAIT as client";
2239 return -1;
2240
2241 default:
2242 con->error_msg = "protocol error, garbage tag during connect";
2243 return -1;
2244 }
2245 return 0;
2246 }
2247
2248
2249 /*
2250 * read (part of) an ack
2251 */
2252 static int read_partial_ack(struct ceph_connection *con)
2253 {
2254 int size = sizeof (con->in_temp_ack);
2255 int end = size;
2256
2257 return read_partial(con, end, size, &con->in_temp_ack);
2258 }
2259
2260 /*
2261 * We can finally discard anything that's been acked.
2262 */
2263 static void process_ack(struct ceph_connection *con)
2264 {
2265 struct ceph_msg *m;
2266 u64 ack = le64_to_cpu(con->in_temp_ack);
2267 u64 seq;
2268 bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2269 struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2270
2271 /*
2272 * In the reconnect case, con_fault() has requeued messages
2273 * in out_sent. We should cleanup old messages according to
2274 * the reconnect seq.
2275 */
2276 while (!list_empty(list)) {
2277 m = list_first_entry(list, struct ceph_msg, list_head);
2278 if (reconnect && m->needs_out_seq)
2279 break;
2280 seq = le64_to_cpu(m->hdr.seq);
2281 if (seq > ack)
2282 break;
2283 dout("got ack for seq %llu type %d at %p\n", seq,
2284 le16_to_cpu(m->hdr.type), m);
2285 m->ack_stamp = jiffies;
2286 ceph_msg_remove(m);
2287 }
2288
2289 prepare_read_tag(con);
2290 }
2291
2292
2293 static int read_partial_message_section(struct ceph_connection *con,
2294 struct kvec *section,
2295 unsigned int sec_len, u32 *crc)
2296 {
2297 int ret, left;
2298
2299 BUG_ON(!section);
2300
2301 while (section->iov_len < sec_len) {
2302 BUG_ON(section->iov_base == NULL);
2303 left = sec_len - section->iov_len;
2304 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2305 section->iov_len, left);
2306 if (ret <= 0)
2307 return ret;
2308 section->iov_len += ret;
2309 }
2310 if (section->iov_len == sec_len)
2311 *crc = crc32c(0, section->iov_base, section->iov_len);
2312
2313 return 1;
2314 }
2315
2316 static int read_partial_msg_data(struct ceph_connection *con)
2317 {
2318 struct ceph_msg *msg = con->in_msg;
2319 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2320 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2321 struct page *page;
2322 size_t page_offset;
2323 size_t length;
2324 u32 crc = 0;
2325 int ret;
2326
2327 BUG_ON(!msg);
2328 if (list_empty(&msg->data))
2329 return -EIO;
2330
2331 if (do_datacrc)
2332 crc = con->in_data_crc;
2333 while (cursor->total_resid) {
2334 if (!cursor->resid) {
2335 ceph_msg_data_advance(cursor, 0);
2336 continue;
2337 }
2338
2339 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2340 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2341 if (ret <= 0) {
2342 if (do_datacrc)
2343 con->in_data_crc = crc;
2344
2345 return ret;
2346 }
2347
2348 if (do_datacrc)
2349 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2350 ceph_msg_data_advance(cursor, (size_t)ret);
2351 }
2352 if (do_datacrc)
2353 con->in_data_crc = crc;
2354
2355 return 1; /* must return > 0 to indicate success */
2356 }
2357
2358 /*
2359 * read (part of) a message.
2360 */
2361 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2362
2363 static int read_partial_message(struct ceph_connection *con)
2364 {
2365 struct ceph_msg *m = con->in_msg;
2366 int size;
2367 int end;
2368 int ret;
2369 unsigned int front_len, middle_len, data_len;
2370 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2371 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2372 u64 seq;
2373 u32 crc;
2374
2375 dout("read_partial_message con %p msg %p\n", con, m);
2376
2377 /* header */
2378 size = sizeof (con->in_hdr);
2379 end = size;
2380 ret = read_partial(con, end, size, &con->in_hdr);
2381 if (ret <= 0)
2382 return ret;
2383
2384 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2385 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2386 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2387 crc, con->in_hdr.crc);
2388 return -EBADMSG;
2389 }
2390
2391 front_len = le32_to_cpu(con->in_hdr.front_len);
2392 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2393 return -EIO;
2394 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2395 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2396 return -EIO;
2397 data_len = le32_to_cpu(con->in_hdr.data_len);
2398 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2399 return -EIO;
2400
2401 /* verify seq# */
2402 seq = le64_to_cpu(con->in_hdr.seq);
2403 if ((s64)seq - (s64)con->in_seq < 1) {
2404 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2405 ENTITY_NAME(con->peer_name),
2406 ceph_pr_addr(&con->peer_addr.in_addr),
2407 seq, con->in_seq + 1);
2408 con->in_base_pos = -front_len - middle_len - data_len -
2409 sizeof_footer(con);
2410 con->in_tag = CEPH_MSGR_TAG_READY;
2411 return 1;
2412 } else if ((s64)seq - (s64)con->in_seq > 1) {
2413 pr_err("read_partial_message bad seq %lld expected %lld\n",
2414 seq, con->in_seq + 1);
2415 con->error_msg = "bad message sequence # for incoming message";
2416 return -EBADE;
2417 }
2418
2419 /* allocate message? */
2420 if (!con->in_msg) {
2421 int skip = 0;
2422
2423 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2424 front_len, data_len);
2425 ret = ceph_con_in_msg_alloc(con, &skip);
2426 if (ret < 0)
2427 return ret;
2428
2429 BUG_ON(!con->in_msg ^ skip);
2430 if (skip) {
2431 /* skip this message */
2432 dout("alloc_msg said skip message\n");
2433 con->in_base_pos = -front_len - middle_len - data_len -
2434 sizeof_footer(con);
2435 con->in_tag = CEPH_MSGR_TAG_READY;
2436 con->in_seq++;
2437 return 1;
2438 }
2439
2440 BUG_ON(!con->in_msg);
2441 BUG_ON(con->in_msg->con != con);
2442 m = con->in_msg;
2443 m->front.iov_len = 0; /* haven't read it yet */
2444 if (m->middle)
2445 m->middle->vec.iov_len = 0;
2446
2447 /* prepare for data payload, if any */
2448
2449 if (data_len)
2450 prepare_message_data(con->in_msg, data_len);
2451 }
2452
2453 /* front */
2454 ret = read_partial_message_section(con, &m->front, front_len,
2455 &con->in_front_crc);
2456 if (ret <= 0)
2457 return ret;
2458
2459 /* middle */
2460 if (m->middle) {
2461 ret = read_partial_message_section(con, &m->middle->vec,
2462 middle_len,
2463 &con->in_middle_crc);
2464 if (ret <= 0)
2465 return ret;
2466 }
2467
2468 /* (page) data */
2469 if (data_len) {
2470 ret = read_partial_msg_data(con);
2471 if (ret <= 0)
2472 return ret;
2473 }
2474
2475 /* footer */
2476 size = sizeof_footer(con);
2477 end += size;
2478 ret = read_partial(con, end, size, &m->footer);
2479 if (ret <= 0)
2480 return ret;
2481
2482 if (!need_sign) {
2483 m->footer.flags = m->old_footer.flags;
2484 m->footer.sig = 0;
2485 }
2486
2487 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2488 m, front_len, m->footer.front_crc, middle_len,
2489 m->footer.middle_crc, data_len, m->footer.data_crc);
2490
2491 /* crc ok? */
2492 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2493 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2494 m, con->in_front_crc, m->footer.front_crc);
2495 return -EBADMSG;
2496 }
2497 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2498 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2499 m, con->in_middle_crc, m->footer.middle_crc);
2500 return -EBADMSG;
2501 }
2502 if (do_datacrc &&
2503 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2504 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2505 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2506 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2507 return -EBADMSG;
2508 }
2509
2510 if (need_sign && con->ops->check_message_signature &&
2511 con->ops->check_message_signature(m)) {
2512 pr_err("read_partial_message %p signature check failed\n", m);
2513 return -EBADMSG;
2514 }
2515
2516 return 1; /* done! */
2517 }
2518
2519 /*
2520 * Process message. This happens in the worker thread. The callback should
2521 * be careful not to do anything that waits on other incoming messages or it
2522 * may deadlock.
2523 */
2524 static void process_message(struct ceph_connection *con)
2525 {
2526 struct ceph_msg *msg = con->in_msg;
2527
2528 BUG_ON(con->in_msg->con != con);
2529 con->in_msg = NULL;
2530
2531 /* if first message, set peer_name */
2532 if (con->peer_name.type == 0)
2533 con->peer_name = msg->hdr.src;
2534
2535 con->in_seq++;
2536 mutex_unlock(&con->mutex);
2537
2538 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2539 msg, le64_to_cpu(msg->hdr.seq),
2540 ENTITY_NAME(msg->hdr.src),
2541 le16_to_cpu(msg->hdr.type),
2542 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2543 le32_to_cpu(msg->hdr.front_len),
2544 le32_to_cpu(msg->hdr.data_len),
2545 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2546 con->ops->dispatch(con, msg);
2547
2548 mutex_lock(&con->mutex);
2549 }
2550
2551 static int read_keepalive_ack(struct ceph_connection *con)
2552 {
2553 struct ceph_timespec ceph_ts;
2554 size_t size = sizeof(ceph_ts);
2555 int ret = read_partial(con, size, size, &ceph_ts);
2556 if (ret <= 0)
2557 return ret;
2558 ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2559 prepare_read_tag(con);
2560 return 1;
2561 }
2562
2563 /*
2564 * Write something to the socket. Called in a worker thread when the
2565 * socket appears to be writeable and we have something ready to send.
2566 */
2567 static int try_write(struct ceph_connection *con)
2568 {
2569 int ret = 1;
2570
2571 dout("try_write start %p state %lu\n", con, con->state);
2572 if (con->state != CON_STATE_PREOPEN &&
2573 con->state != CON_STATE_CONNECTING &&
2574 con->state != CON_STATE_NEGOTIATING &&
2575 con->state != CON_STATE_OPEN)
2576 return 0;
2577
2578 more:
2579 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2580
2581 /* open the socket first? */
2582 if (con->state == CON_STATE_PREOPEN) {
2583 BUG_ON(con->sock);
2584 con->state = CON_STATE_CONNECTING;
2585
2586 con_out_kvec_reset(con);
2587 prepare_write_banner(con);
2588 prepare_read_banner(con);
2589
2590 BUG_ON(con->in_msg);
2591 con->in_tag = CEPH_MSGR_TAG_READY;
2592 dout("try_write initiating connect on %p new state %lu\n",
2593 con, con->state);
2594 ret = ceph_tcp_connect(con);
2595 if (ret < 0) {
2596 con->error_msg = "connect error";
2597 goto out;
2598 }
2599 }
2600
2601 more_kvec:
2602 BUG_ON(!con->sock);
2603
2604 /* kvec data queued? */
2605 if (con->out_kvec_left) {
2606 ret = write_partial_kvec(con);
2607 if (ret <= 0)
2608 goto out;
2609 }
2610 if (con->out_skip) {
2611 ret = write_partial_skip(con);
2612 if (ret <= 0)
2613 goto out;
2614 }
2615
2616 /* msg pages? */
2617 if (con->out_msg) {
2618 if (con->out_msg_done) {
2619 ceph_msg_put(con->out_msg);
2620 con->out_msg = NULL; /* we're done with this one */
2621 goto do_next;
2622 }
2623
2624 ret = write_partial_message_data(con);
2625 if (ret == 1)
2626 goto more_kvec; /* we need to send the footer, too! */
2627 if (ret == 0)
2628 goto out;
2629 if (ret < 0) {
2630 dout("try_write write_partial_message_data err %d\n",
2631 ret);
2632 goto out;
2633 }
2634 }
2635
2636 do_next:
2637 if (con->state == CON_STATE_OPEN) {
2638 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2639 prepare_write_keepalive(con);
2640 goto more;
2641 }
2642 /* is anything else pending? */
2643 if (!list_empty(&con->out_queue)) {
2644 prepare_write_message(con);
2645 goto more;
2646 }
2647 if (con->in_seq > con->in_seq_acked) {
2648 prepare_write_ack(con);
2649 goto more;
2650 }
2651 }
2652
2653 /* Nothing to do! */
2654 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2655 dout("try_write nothing else to write.\n");
2656 ret = 0;
2657 out:
2658 dout("try_write done on %p ret %d\n", con, ret);
2659 return ret;
2660 }
2661
2662
2663
2664 /*
2665 * Read what we can from the socket.
2666 */
2667 static int try_read(struct ceph_connection *con)
2668 {
2669 int ret = -1;
2670
2671 more:
2672 dout("try_read start on %p state %lu\n", con, con->state);
2673 if (con->state != CON_STATE_CONNECTING &&
2674 con->state != CON_STATE_NEGOTIATING &&
2675 con->state != CON_STATE_OPEN)
2676 return 0;
2677
2678 BUG_ON(!con->sock);
2679
2680 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2681 con->in_base_pos);
2682
2683 if (con->state == CON_STATE_CONNECTING) {
2684 dout("try_read connecting\n");
2685 ret = read_partial_banner(con);
2686 if (ret <= 0)
2687 goto out;
2688 ret = process_banner(con);
2689 if (ret < 0)
2690 goto out;
2691
2692 con->state = CON_STATE_NEGOTIATING;
2693
2694 /*
2695 * Received banner is good, exchange connection info.
2696 * Do not reset out_kvec, as sending our banner raced
2697 * with receiving peer banner after connect completed.
2698 */
2699 ret = prepare_write_connect(con);
2700 if (ret < 0)
2701 goto out;
2702 prepare_read_connect(con);
2703
2704 /* Send connection info before awaiting response */
2705 goto out;
2706 }
2707
2708 if (con->state == CON_STATE_NEGOTIATING) {
2709 dout("try_read negotiating\n");
2710 ret = read_partial_connect(con);
2711 if (ret <= 0)
2712 goto out;
2713 ret = process_connect(con);
2714 if (ret < 0)
2715 goto out;
2716 goto more;
2717 }
2718
2719 WARN_ON(con->state != CON_STATE_OPEN);
2720
2721 if (con->in_base_pos < 0) {
2722 /*
2723 * skipping + discarding content.
2724 *
2725 * FIXME: there must be a better way to do this!
2726 */
2727 static char buf[SKIP_BUF_SIZE];
2728 int skip = min((int) sizeof (buf), -con->in_base_pos);
2729
2730 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2731 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2732 if (ret <= 0)
2733 goto out;
2734 con->in_base_pos += ret;
2735 if (con->in_base_pos)
2736 goto more;
2737 }
2738 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2739 /*
2740 * what's next?
2741 */
2742 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2743 if (ret <= 0)
2744 goto out;
2745 dout("try_read got tag %d\n", (int)con->in_tag);
2746 switch (con->in_tag) {
2747 case CEPH_MSGR_TAG_MSG:
2748 prepare_read_message(con);
2749 break;
2750 case CEPH_MSGR_TAG_ACK:
2751 prepare_read_ack(con);
2752 break;
2753 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2754 prepare_read_keepalive_ack(con);
2755 break;
2756 case CEPH_MSGR_TAG_CLOSE:
2757 con_close_socket(con);
2758 con->state = CON_STATE_CLOSED;
2759 goto out;
2760 default:
2761 goto bad_tag;
2762 }
2763 }
2764 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2765 ret = read_partial_message(con);
2766 if (ret <= 0) {
2767 switch (ret) {
2768 case -EBADMSG:
2769 con->error_msg = "bad crc/signature";
2770 /* fall through */
2771 case -EBADE:
2772 ret = -EIO;
2773 break;
2774 case -EIO:
2775 con->error_msg = "io error";
2776 break;
2777 }
2778 goto out;
2779 }
2780 if (con->in_tag == CEPH_MSGR_TAG_READY)
2781 goto more;
2782 process_message(con);
2783 if (con->state == CON_STATE_OPEN)
2784 prepare_read_tag(con);
2785 goto more;
2786 }
2787 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2788 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2789 /*
2790 * the final handshake seq exchange is semantically
2791 * equivalent to an ACK
2792 */
2793 ret = read_partial_ack(con);
2794 if (ret <= 0)
2795 goto out;
2796 process_ack(con);
2797 goto more;
2798 }
2799 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2800 ret = read_keepalive_ack(con);
2801 if (ret <= 0)
2802 goto out;
2803 goto more;
2804 }
2805
2806 out:
2807 dout("try_read done on %p ret %d\n", con, ret);
2808 return ret;
2809
2810 bad_tag:
2811 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2812 con->error_msg = "protocol error, garbage tag";
2813 ret = -1;
2814 goto out;
2815 }
2816
2817
2818 /*
2819 * Atomically queue work on a connection after the specified delay.
2820 * Bump @con reference to avoid races with connection teardown.
2821 * Returns 0 if work was queued, or an error code otherwise.
2822 */
2823 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2824 {
2825 if (!con->ops->get(con)) {
2826 dout("%s %p ref count 0\n", __func__, con);
2827 return -ENOENT;
2828 }
2829
2830 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2831 dout("%s %p - already queued\n", __func__, con);
2832 con->ops->put(con);
2833 return -EBUSY;
2834 }
2835
2836 dout("%s %p %lu\n", __func__, con, delay);
2837 return 0;
2838 }
2839
2840 static void queue_con(struct ceph_connection *con)
2841 {
2842 (void) queue_con_delay(con, 0);
2843 }
2844
2845 static void cancel_con(struct ceph_connection *con)
2846 {
2847 if (cancel_delayed_work(&con->work)) {
2848 dout("%s %p\n", __func__, con);
2849 con->ops->put(con);
2850 }
2851 }
2852
2853 static bool con_sock_closed(struct ceph_connection *con)
2854 {
2855 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2856 return false;
2857
2858 #define CASE(x) \
2859 case CON_STATE_ ## x: \
2860 con->error_msg = "socket closed (con state " #x ")"; \
2861 break;
2862
2863 switch (con->state) {
2864 CASE(CLOSED);
2865 CASE(PREOPEN);
2866 CASE(CONNECTING);
2867 CASE(NEGOTIATING);
2868 CASE(OPEN);
2869 CASE(STANDBY);
2870 default:
2871 pr_warn("%s con %p unrecognized state %lu\n",
2872 __func__, con, con->state);
2873 con->error_msg = "unrecognized con state";
2874 BUG();
2875 break;
2876 }
2877 #undef CASE
2878
2879 return true;
2880 }
2881
2882 static bool con_backoff(struct ceph_connection *con)
2883 {
2884 int ret;
2885
2886 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2887 return false;
2888
2889 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2890 if (ret) {
2891 dout("%s: con %p FAILED to back off %lu\n", __func__,
2892 con, con->delay);
2893 BUG_ON(ret == -ENOENT);
2894 con_flag_set(con, CON_FLAG_BACKOFF);
2895 }
2896
2897 return true;
2898 }
2899
2900 /* Finish fault handling; con->mutex must *not* be held here */
2901
2902 static void con_fault_finish(struct ceph_connection *con)
2903 {
2904 dout("%s %p\n", __func__, con);
2905
2906 /*
2907 * in case we faulted due to authentication, invalidate our
2908 * current tickets so that we can get new ones.
2909 */
2910 if (con->auth_retry) {
2911 dout("auth_retry %d, invalidating\n", con->auth_retry);
2912 if (con->ops->invalidate_authorizer)
2913 con->ops->invalidate_authorizer(con);
2914 con->auth_retry = 0;
2915 }
2916
2917 if (con->ops->fault)
2918 con->ops->fault(con);
2919 }
2920
2921 /*
2922 * Do some work on a connection. Drop a connection ref when we're done.
2923 */
2924 static void ceph_con_workfn(struct work_struct *work)
2925 {
2926 struct ceph_connection *con = container_of(work, struct ceph_connection,
2927 work.work);
2928 bool fault;
2929
2930 mutex_lock(&con->mutex);
2931 while (true) {
2932 int ret;
2933
2934 if ((fault = con_sock_closed(con))) {
2935 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2936 break;
2937 }
2938 if (con_backoff(con)) {
2939 dout("%s: con %p BACKOFF\n", __func__, con);
2940 break;
2941 }
2942 if (con->state == CON_STATE_STANDBY) {
2943 dout("%s: con %p STANDBY\n", __func__, con);
2944 break;
2945 }
2946 if (con->state == CON_STATE_CLOSED) {
2947 dout("%s: con %p CLOSED\n", __func__, con);
2948 BUG_ON(con->sock);
2949 break;
2950 }
2951 if (con->state == CON_STATE_PREOPEN) {
2952 dout("%s: con %p PREOPEN\n", __func__, con);
2953 BUG_ON(con->sock);
2954 }
2955
2956 ret = try_read(con);
2957 if (ret < 0) {
2958 if (ret == -EAGAIN)
2959 continue;
2960 if (!con->error_msg)
2961 con->error_msg = "socket error on read";
2962 fault = true;
2963 break;
2964 }
2965
2966 ret = try_write(con);
2967 if (ret < 0) {
2968 if (ret == -EAGAIN)
2969 continue;
2970 if (!con->error_msg)
2971 con->error_msg = "socket error on write";
2972 fault = true;
2973 }
2974
2975 break; /* If we make it to here, we're done */
2976 }
2977 if (fault)
2978 con_fault(con);
2979 mutex_unlock(&con->mutex);
2980
2981 if (fault)
2982 con_fault_finish(con);
2983
2984 con->ops->put(con);
2985 }
2986
2987 /*
2988 * Generic error/fault handler. A retry mechanism is used with
2989 * exponential backoff
2990 */
2991 static void con_fault(struct ceph_connection *con)
2992 {
2993 dout("fault %p state %lu to peer %s\n",
2994 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2995
2996 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2997 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2998 con->error_msg = NULL;
2999
3000 WARN_ON(con->state != CON_STATE_CONNECTING &&
3001 con->state != CON_STATE_NEGOTIATING &&
3002 con->state != CON_STATE_OPEN);
3003
3004 con_close_socket(con);
3005
3006 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
3007 dout("fault on LOSSYTX channel, marking CLOSED\n");
3008 con->state = CON_STATE_CLOSED;
3009 return;
3010 }
3011
3012 if (con->in_msg) {
3013 BUG_ON(con->in_msg->con != con);
3014 ceph_msg_put(con->in_msg);
3015 con->in_msg = NULL;
3016 }
3017
3018 /* Requeue anything that hasn't been acked */
3019 list_splice_init(&con->out_sent, &con->out_queue);
3020
3021 /* If there are no messages queued or keepalive pending, place
3022 * the connection in a STANDBY state */
3023 if (list_empty(&con->out_queue) &&
3024 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3025 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3026 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3027 con->state = CON_STATE_STANDBY;
3028 } else {
3029 /* retry after a delay. */
3030 con->state = CON_STATE_PREOPEN;
3031 if (con->delay == 0)
3032 con->delay = BASE_DELAY_INTERVAL;
3033 else if (con->delay < MAX_DELAY_INTERVAL)
3034 con->delay *= 2;
3035 con_flag_set(con, CON_FLAG_BACKOFF);
3036 queue_con(con);
3037 }
3038 }
3039
3040
3041
3042 /*
3043 * initialize a new messenger instance
3044 */
3045 void ceph_messenger_init(struct ceph_messenger *msgr,
3046 struct ceph_entity_addr *myaddr)
3047 {
3048 spin_lock_init(&msgr->global_seq_lock);
3049
3050 if (myaddr)
3051 msgr->inst.addr = *myaddr;
3052
3053 /* select a random nonce */
3054 msgr->inst.addr.type = 0;
3055 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3056 encode_my_addr(msgr);
3057
3058 atomic_set(&msgr->stopping, 0);
3059 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3060
3061 dout("%s %p\n", __func__, msgr);
3062 }
3063 EXPORT_SYMBOL(ceph_messenger_init);
3064
3065 void ceph_messenger_fini(struct ceph_messenger *msgr)
3066 {
3067 put_net(read_pnet(&msgr->net));
3068 }
3069 EXPORT_SYMBOL(ceph_messenger_fini);
3070
3071 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3072 {
3073 if (msg->con)
3074 msg->con->ops->put(msg->con);
3075
3076 msg->con = con ? con->ops->get(con) : NULL;
3077 BUG_ON(msg->con != con);
3078 }
3079
3080 static void clear_standby(struct ceph_connection *con)
3081 {
3082 /* come back from STANDBY? */
3083 if (con->state == CON_STATE_STANDBY) {
3084 dout("clear_standby %p and ++connect_seq\n", con);
3085 con->state = CON_STATE_PREOPEN;
3086 con->connect_seq++;
3087 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3088 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3089 }
3090 }
3091
3092 /*
3093 * Queue up an outgoing message on the given connection.
3094 */
3095 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3096 {
3097 /* set src+dst */
3098 msg->hdr.src = con->msgr->inst.name;
3099 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3100 msg->needs_out_seq = true;
3101
3102 mutex_lock(&con->mutex);
3103
3104 if (con->state == CON_STATE_CLOSED) {
3105 dout("con_send %p closed, dropping %p\n", con, msg);
3106 ceph_msg_put(msg);
3107 mutex_unlock(&con->mutex);
3108 return;
3109 }
3110
3111 msg_con_set(msg, con);
3112
3113 BUG_ON(!list_empty(&msg->list_head));
3114 list_add_tail(&msg->list_head, &con->out_queue);
3115 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3116 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3117 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3118 le32_to_cpu(msg->hdr.front_len),
3119 le32_to_cpu(msg->hdr.middle_len),
3120 le32_to_cpu(msg->hdr.data_len));
3121
3122 clear_standby(con);
3123 mutex_unlock(&con->mutex);
3124
3125 /* if there wasn't anything waiting to send before, queue
3126 * new work */
3127 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3128 queue_con(con);
3129 }
3130 EXPORT_SYMBOL(ceph_con_send);
3131
3132 /*
3133 * Revoke a message that was previously queued for send
3134 */
3135 void ceph_msg_revoke(struct ceph_msg *msg)
3136 {
3137 struct ceph_connection *con = msg->con;
3138
3139 if (!con) {
3140 dout("%s msg %p null con\n", __func__, msg);
3141 return; /* Message not in our possession */
3142 }
3143
3144 mutex_lock(&con->mutex);
3145 if (!list_empty(&msg->list_head)) {
3146 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3147 list_del_init(&msg->list_head);
3148 msg->hdr.seq = 0;
3149
3150 ceph_msg_put(msg);
3151 }
3152 if (con->out_msg == msg) {
3153 BUG_ON(con->out_skip);
3154 /* footer */
3155 if (con->out_msg_done) {
3156 con->out_skip += con_out_kvec_skip(con);
3157 } else {
3158 BUG_ON(!msg->data_length);
3159 con->out_skip += sizeof_footer(con);
3160 }
3161 /* data, middle, front */
3162 if (msg->data_length)
3163 con->out_skip += msg->cursor.total_resid;
3164 if (msg->middle)
3165 con->out_skip += con_out_kvec_skip(con);
3166 con->out_skip += con_out_kvec_skip(con);
3167
3168 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3169 __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3170 msg->hdr.seq = 0;
3171 con->out_msg = NULL;
3172 ceph_msg_put(msg);
3173 }
3174
3175 mutex_unlock(&con->mutex);
3176 }
3177
3178 /*
3179 * Revoke a message that we may be reading data into
3180 */
3181 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3182 {
3183 struct ceph_connection *con = msg->con;
3184
3185 if (!con) {
3186 dout("%s msg %p null con\n", __func__, msg);
3187 return; /* Message not in our possession */
3188 }
3189
3190 mutex_lock(&con->mutex);
3191 if (con->in_msg == msg) {
3192 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3193 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3194 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3195
3196 /* skip rest of message */
3197 dout("%s %p msg %p revoked\n", __func__, con, msg);
3198 con->in_base_pos = con->in_base_pos -
3199 sizeof(struct ceph_msg_header) -
3200 front_len -
3201 middle_len -
3202 data_len -
3203 sizeof(struct ceph_msg_footer);
3204 ceph_msg_put(con->in_msg);
3205 con->in_msg = NULL;
3206 con->in_tag = CEPH_MSGR_TAG_READY;
3207 con->in_seq++;
3208 } else {
3209 dout("%s %p in_msg %p msg %p no-op\n",
3210 __func__, con, con->in_msg, msg);
3211 }
3212 mutex_unlock(&con->mutex);
3213 }
3214
3215 /*
3216 * Queue a keepalive byte to ensure the tcp connection is alive.
3217 */
3218 void ceph_con_keepalive(struct ceph_connection *con)
3219 {
3220 dout("con_keepalive %p\n", con);
3221 mutex_lock(&con->mutex);
3222 clear_standby(con);
3223 mutex_unlock(&con->mutex);
3224 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3225 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3226 queue_con(con);
3227 }
3228 EXPORT_SYMBOL(ceph_con_keepalive);
3229
3230 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3231 unsigned long interval)
3232 {
3233 if (interval > 0 &&
3234 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3235 struct timespec now;
3236 struct timespec ts;
3237 ktime_get_real_ts(&now);
3238 jiffies_to_timespec(interval, &ts);
3239 ts = timespec_add(con->last_keepalive_ack, ts);
3240 return timespec_compare(&now, &ts) >= 0;
3241 }
3242 return false;
3243 }
3244
3245 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3246 {
3247 struct ceph_msg_data *data;
3248
3249 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3250 return NULL;
3251
3252 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3253 if (!data)
3254 return NULL;
3255
3256 data->type = type;
3257 INIT_LIST_HEAD(&data->links);
3258
3259 return data;
3260 }
3261
3262 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3263 {
3264 if (!data)
3265 return;
3266
3267 WARN_ON(!list_empty(&data->links));
3268 if (data->type == CEPH_MSG_DATA_PAGELIST)
3269 ceph_pagelist_release(data->pagelist);
3270 kmem_cache_free(ceph_msg_data_cache, data);
3271 }
3272
3273 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3274 size_t length, size_t alignment)
3275 {
3276 struct ceph_msg_data *data;
3277
3278 BUG_ON(!pages);
3279 BUG_ON(!length);
3280
3281 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3282 BUG_ON(!data);
3283 data->pages = pages;
3284 data->length = length;
3285 data->alignment = alignment & ~PAGE_MASK;
3286
3287 list_add_tail(&data->links, &msg->data);
3288 msg->data_length += length;
3289 }
3290 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3291
3292 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3293 struct ceph_pagelist *pagelist)
3294 {
3295 struct ceph_msg_data *data;
3296
3297 BUG_ON(!pagelist);
3298 BUG_ON(!pagelist->length);
3299
3300 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3301 BUG_ON(!data);
3302 data->pagelist = pagelist;
3303
3304 list_add_tail(&data->links, &msg->data);
3305 msg->data_length += pagelist->length;
3306 }
3307 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3308
3309 #ifdef CONFIG_BLOCK
3310 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3311 u32 length)
3312 {
3313 struct ceph_msg_data *data;
3314
3315 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3316 BUG_ON(!data);
3317 data->bio_pos = *bio_pos;
3318 data->bio_length = length;
3319
3320 list_add_tail(&data->links, &msg->data);
3321 msg->data_length += length;
3322 }
3323 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3324 #endif /* CONFIG_BLOCK */
3325
3326 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3327 struct ceph_bvec_iter *bvec_pos)
3328 {
3329 struct ceph_msg_data *data;
3330
3331 data = ceph_msg_data_create(CEPH_MSG_DATA_BVECS);
3332 BUG_ON(!data);
3333 data->bvec_pos = *bvec_pos;
3334
3335 list_add_tail(&data->links, &msg->data);
3336 msg->data_length += bvec_pos->iter.bi_size;
3337 }
3338 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3339
3340 /*
3341 * construct a new message with given type, size
3342 * the new msg has a ref count of 1.
3343 */
3344 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3345 bool can_fail)
3346 {
3347 struct ceph_msg *m;
3348
3349 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3350 if (m == NULL)
3351 goto out;
3352
3353 m->hdr.type = cpu_to_le16(type);
3354 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3355 m->hdr.front_len = cpu_to_le32(front_len);
3356
3357 INIT_LIST_HEAD(&m->list_head);
3358 kref_init(&m->kref);
3359 INIT_LIST_HEAD(&m->data);
3360
3361 /* front */
3362 if (front_len) {
3363 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3364 if (m->front.iov_base == NULL) {
3365 dout("ceph_msg_new can't allocate %d bytes\n",
3366 front_len);
3367 goto out2;
3368 }
3369 } else {
3370 m->front.iov_base = NULL;
3371 }
3372 m->front_alloc_len = m->front.iov_len = front_len;
3373
3374 dout("ceph_msg_new %p front %d\n", m, front_len);
3375 return m;
3376
3377 out2:
3378 ceph_msg_put(m);
3379 out:
3380 if (!can_fail) {
3381 pr_err("msg_new can't create type %d front %d\n", type,
3382 front_len);
3383 WARN_ON(1);
3384 } else {
3385 dout("msg_new can't create type %d front %d\n", type,
3386 front_len);
3387 }
3388 return NULL;
3389 }
3390 EXPORT_SYMBOL(ceph_msg_new);
3391
3392 /*
3393 * Allocate "middle" portion of a message, if it is needed and wasn't
3394 * allocated by alloc_msg. This allows us to read a small fixed-size
3395 * per-type header in the front and then gracefully fail (i.e.,
3396 * propagate the error to the caller based on info in the front) when
3397 * the middle is too large.
3398 */
3399 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3400 {
3401 int type = le16_to_cpu(msg->hdr.type);
3402 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3403
3404 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3405 ceph_msg_type_name(type), middle_len);
3406 BUG_ON(!middle_len);
3407 BUG_ON(msg->middle);
3408
3409 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3410 if (!msg->middle)
3411 return -ENOMEM;
3412 return 0;
3413 }
3414
3415 /*
3416 * Allocate a message for receiving an incoming message on a
3417 * connection, and save the result in con->in_msg. Uses the
3418 * connection's private alloc_msg op if available.
3419 *
3420 * Returns 0 on success, or a negative error code.
3421 *
3422 * On success, if we set *skip = 1:
3423 * - the next message should be skipped and ignored.
3424 * - con->in_msg == NULL
3425 * or if we set *skip = 0:
3426 * - con->in_msg is non-null.
3427 * On error (ENOMEM, EAGAIN, ...),
3428 * - con->in_msg == NULL
3429 */
3430 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3431 {
3432 struct ceph_msg_header *hdr = &con->in_hdr;
3433 int middle_len = le32_to_cpu(hdr->middle_len);
3434 struct ceph_msg *msg;
3435 int ret = 0;
3436
3437 BUG_ON(con->in_msg != NULL);
3438 BUG_ON(!con->ops->alloc_msg);
3439
3440 mutex_unlock(&con->mutex);
3441 msg = con->ops->alloc_msg(con, hdr, skip);
3442 mutex_lock(&con->mutex);
3443 if (con->state != CON_STATE_OPEN) {
3444 if (msg)
3445 ceph_msg_put(msg);
3446 return -EAGAIN;
3447 }
3448 if (msg) {
3449 BUG_ON(*skip);
3450 msg_con_set(msg, con);
3451 con->in_msg = msg;
3452 } else {
3453 /*
3454 * Null message pointer means either we should skip
3455 * this message or we couldn't allocate memory. The
3456 * former is not an error.
3457 */
3458 if (*skip)
3459 return 0;
3460
3461 con->error_msg = "error allocating memory for incoming message";
3462 return -ENOMEM;
3463 }
3464 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3465
3466 if (middle_len && !con->in_msg->middle) {
3467 ret = ceph_alloc_middle(con, con->in_msg);
3468 if (ret < 0) {
3469 ceph_msg_put(con->in_msg);
3470 con->in_msg = NULL;
3471 }
3472 }
3473
3474 return ret;
3475 }
3476
3477
3478 /*
3479 * Free a generically kmalloc'd message.
3480 */
3481 static void ceph_msg_free(struct ceph_msg *m)
3482 {
3483 dout("%s %p\n", __func__, m);
3484 kvfree(m->front.iov_base);
3485 kmem_cache_free(ceph_msg_cache, m);
3486 }
3487
3488 static void ceph_msg_release(struct kref *kref)
3489 {
3490 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3491 struct ceph_msg_data *data, *next;
3492
3493 dout("%s %p\n", __func__, m);
3494 WARN_ON(!list_empty(&m->list_head));
3495
3496 msg_con_set(m, NULL);
3497
3498 /* drop middle, data, if any */
3499 if (m->middle) {
3500 ceph_buffer_put(m->middle);
3501 m->middle = NULL;
3502 }
3503
3504 list_for_each_entry_safe(data, next, &m->data, links) {
3505 list_del_init(&data->links);
3506 ceph_msg_data_destroy(data);
3507 }
3508 m->data_length = 0;
3509
3510 if (m->pool)
3511 ceph_msgpool_put(m->pool, m);
3512 else
3513 ceph_msg_free(m);
3514 }
3515
3516 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3517 {
3518 dout("%s %p (was %d)\n", __func__, msg,
3519 kref_read(&msg->kref));
3520 kref_get(&msg->kref);
3521 return msg;
3522 }
3523 EXPORT_SYMBOL(ceph_msg_get);
3524
3525 void ceph_msg_put(struct ceph_msg *msg)
3526 {
3527 dout("%s %p (was %d)\n", __func__, msg,
3528 kref_read(&msg->kref));
3529 kref_put(&msg->kref, ceph_msg_release);
3530 }
3531 EXPORT_SYMBOL(ceph_msg_put);
3532
3533 void ceph_msg_dump(struct ceph_msg *msg)
3534 {
3535 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3536 msg->front_alloc_len, msg->data_length);
3537 print_hex_dump(KERN_DEBUG, "header: ",
3538 DUMP_PREFIX_OFFSET, 16, 1,
3539 &msg->hdr, sizeof(msg->hdr), true);
3540 print_hex_dump(KERN_DEBUG, " front: ",
3541 DUMP_PREFIX_OFFSET, 16, 1,
3542 msg->front.iov_base, msg->front.iov_len, true);
3543 if (msg->middle)
3544 print_hex_dump(KERN_DEBUG, "middle: ",
3545 DUMP_PREFIX_OFFSET, 16, 1,
3546 msg->middle->vec.iov_base,
3547 msg->middle->vec.iov_len, true);
3548 print_hex_dump(KERN_DEBUG, "footer: ",
3549 DUMP_PREFIX_OFFSET, 16, 1,
3550 &msg->footer, sizeof(msg->footer), true);
3551 }
3552 EXPORT_SYMBOL(ceph_msg_dump);