]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ceph/messenger.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-bionic-kernel.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/nsproxy.h>
10 #include <linux/slab.h>
11 #include <linux/socket.h>
12 #include <linux/string.h>
13 #ifdef CONFIG_BLOCK
14 #include <linux/bio.h>
15 #endif /* CONFIG_BLOCK */
16 #include <linux/dns_resolver.h>
17 #include <net/tcp.h>
18
19 #include <linux/ceph/ceph_features.h>
20 #include <linux/ceph/libceph.h>
21 #include <linux/ceph/messenger.h>
22 #include <linux/ceph/decode.h>
23 #include <linux/ceph/pagelist.h>
24 #include <linux/export.h>
25
26 /*
27 * Ceph uses the messenger to exchange ceph_msg messages with other
28 * hosts in the system. The messenger provides ordered and reliable
29 * delivery. We tolerate TCP disconnects by reconnecting (with
30 * exponential backoff) in the case of a fault (disconnection, bad
31 * crc, protocol error). Acks allow sent messages to be discarded by
32 * the sender.
33 */
34
35 /*
36 * We track the state of the socket on a given connection using
37 * values defined below. The transition to a new socket state is
38 * handled by a function which verifies we aren't coming from an
39 * unexpected state.
40 *
41 * --------
42 * | NEW* | transient initial state
43 * --------
44 * | con_sock_state_init()
45 * v
46 * ----------
47 * | CLOSED | initialized, but no socket (and no
48 * ---------- TCP connection)
49 * ^ \
50 * | \ con_sock_state_connecting()
51 * | ----------------------
52 * | \
53 * + con_sock_state_closed() \
54 * |+--------------------------- \
55 * | \ \ \
56 * | ----------- \ \
57 * | | CLOSING | socket event; \ \
58 * | ----------- await close \ \
59 * | ^ \ |
60 * | | \ |
61 * | + con_sock_state_closing() \ |
62 * | / \ | |
63 * | / --------------- | |
64 * | / \ v v
65 * | / --------------
66 * | / -----------------| CONNECTING | socket created, TCP
67 * | | / -------------- connect initiated
68 * | | | con_sock_state_connected()
69 * | | v
70 * -------------
71 * | CONNECTED | TCP connection established
72 * -------------
73 *
74 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
75 */
76
77 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
78 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
79 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
80 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
81 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
82
83 /*
84 * connection states
85 */
86 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
87 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
88 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
89 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
90 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
91 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
92
93 /*
94 * ceph_connection flag bits
95 */
96 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
97 * messages on errors */
98 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
99 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
100 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
101 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
102
103 static bool con_flag_valid(unsigned long con_flag)
104 {
105 switch (con_flag) {
106 case CON_FLAG_LOSSYTX:
107 case CON_FLAG_KEEPALIVE_PENDING:
108 case CON_FLAG_WRITE_PENDING:
109 case CON_FLAG_SOCK_CLOSED:
110 case CON_FLAG_BACKOFF:
111 return true;
112 default:
113 return false;
114 }
115 }
116
117 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
118 {
119 BUG_ON(!con_flag_valid(con_flag));
120
121 clear_bit(con_flag, &con->flags);
122 }
123
124 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
125 {
126 BUG_ON(!con_flag_valid(con_flag));
127
128 set_bit(con_flag, &con->flags);
129 }
130
131 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
132 {
133 BUG_ON(!con_flag_valid(con_flag));
134
135 return test_bit(con_flag, &con->flags);
136 }
137
138 static bool con_flag_test_and_clear(struct ceph_connection *con,
139 unsigned long con_flag)
140 {
141 BUG_ON(!con_flag_valid(con_flag));
142
143 return test_and_clear_bit(con_flag, &con->flags);
144 }
145
146 static bool con_flag_test_and_set(struct ceph_connection *con,
147 unsigned long con_flag)
148 {
149 BUG_ON(!con_flag_valid(con_flag));
150
151 return test_and_set_bit(con_flag, &con->flags);
152 }
153
154 /* Slab caches for frequently-allocated structures */
155
156 static struct kmem_cache *ceph_msg_cache;
157 static struct kmem_cache *ceph_msg_data_cache;
158
159 /* static tag bytes (protocol control messages) */
160 static char tag_msg = CEPH_MSGR_TAG_MSG;
161 static char tag_ack = CEPH_MSGR_TAG_ACK;
162 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
163 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
164
165 #ifdef CONFIG_LOCKDEP
166 static struct lock_class_key socket_class;
167 #endif
168
169 /*
170 * When skipping (ignoring) a block of input we read it into a "skip
171 * buffer," which is this many bytes in size.
172 */
173 #define SKIP_BUF_SIZE 1024
174
175 static void queue_con(struct ceph_connection *con);
176 static void cancel_con(struct ceph_connection *con);
177 static void ceph_con_workfn(struct work_struct *);
178 static void con_fault(struct ceph_connection *con);
179
180 /*
181 * Nicely render a sockaddr as a string. An array of formatted
182 * strings is used, to approximate reentrancy.
183 */
184 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
185 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
188
189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190 static atomic_t addr_str_seq = ATOMIC_INIT(0);
191
192 static struct page *zero_page; /* used in certain error cases */
193
194 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
195 {
196 int i;
197 char *s;
198 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
200
201 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202 s = addr_str[i];
203
204 switch (ss->ss_family) {
205 case AF_INET:
206 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207 ntohs(in4->sin_port));
208 break;
209
210 case AF_INET6:
211 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212 ntohs(in6->sin6_port));
213 break;
214
215 default:
216 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217 ss->ss_family);
218 }
219
220 return s;
221 }
222 EXPORT_SYMBOL(ceph_pr_addr);
223
224 static void encode_my_addr(struct ceph_messenger *msgr)
225 {
226 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227 ceph_encode_addr(&msgr->my_enc_addr);
228 }
229
230 /*
231 * work queue for all reading and writing to/from the socket.
232 */
233 static struct workqueue_struct *ceph_msgr_wq;
234
235 static int ceph_msgr_slab_init(void)
236 {
237 BUG_ON(ceph_msg_cache);
238 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
239 if (!ceph_msg_cache)
240 return -ENOMEM;
241
242 BUG_ON(ceph_msg_data_cache);
243 ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
244 if (ceph_msg_data_cache)
245 return 0;
246
247 kmem_cache_destroy(ceph_msg_cache);
248 ceph_msg_cache = NULL;
249
250 return -ENOMEM;
251 }
252
253 static void ceph_msgr_slab_exit(void)
254 {
255 BUG_ON(!ceph_msg_data_cache);
256 kmem_cache_destroy(ceph_msg_data_cache);
257 ceph_msg_data_cache = NULL;
258
259 BUG_ON(!ceph_msg_cache);
260 kmem_cache_destroy(ceph_msg_cache);
261 ceph_msg_cache = NULL;
262 }
263
264 static void _ceph_msgr_exit(void)
265 {
266 if (ceph_msgr_wq) {
267 destroy_workqueue(ceph_msgr_wq);
268 ceph_msgr_wq = NULL;
269 }
270
271 BUG_ON(zero_page == NULL);
272 put_page(zero_page);
273 zero_page = NULL;
274
275 ceph_msgr_slab_exit();
276 }
277
278 int ceph_msgr_init(void)
279 {
280 if (ceph_msgr_slab_init())
281 return -ENOMEM;
282
283 BUG_ON(zero_page != NULL);
284 zero_page = ZERO_PAGE(0);
285 get_page(zero_page);
286
287 /*
288 * The number of active work items is limited by the number of
289 * connections, so leave @max_active at default.
290 */
291 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
292 if (ceph_msgr_wq)
293 return 0;
294
295 pr_err("msgr_init failed to create workqueue\n");
296 _ceph_msgr_exit();
297
298 return -ENOMEM;
299 }
300 EXPORT_SYMBOL(ceph_msgr_init);
301
302 void ceph_msgr_exit(void)
303 {
304 BUG_ON(ceph_msgr_wq == NULL);
305
306 _ceph_msgr_exit();
307 }
308 EXPORT_SYMBOL(ceph_msgr_exit);
309
310 void ceph_msgr_flush(void)
311 {
312 flush_workqueue(ceph_msgr_wq);
313 }
314 EXPORT_SYMBOL(ceph_msgr_flush);
315
316 /* Connection socket state transition functions */
317
318 static void con_sock_state_init(struct ceph_connection *con)
319 {
320 int old_state;
321
322 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
323 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
324 printk("%s: unexpected old state %d\n", __func__, old_state);
325 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
326 CON_SOCK_STATE_CLOSED);
327 }
328
329 static void con_sock_state_connecting(struct ceph_connection *con)
330 {
331 int old_state;
332
333 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
334 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
335 printk("%s: unexpected old state %d\n", __func__, old_state);
336 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
337 CON_SOCK_STATE_CONNECTING);
338 }
339
340 static void con_sock_state_connected(struct ceph_connection *con)
341 {
342 int old_state;
343
344 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
345 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
346 printk("%s: unexpected old state %d\n", __func__, old_state);
347 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
348 CON_SOCK_STATE_CONNECTED);
349 }
350
351 static void con_sock_state_closing(struct ceph_connection *con)
352 {
353 int old_state;
354
355 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
356 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
357 old_state != CON_SOCK_STATE_CONNECTED &&
358 old_state != CON_SOCK_STATE_CLOSING))
359 printk("%s: unexpected old state %d\n", __func__, old_state);
360 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
361 CON_SOCK_STATE_CLOSING);
362 }
363
364 static void con_sock_state_closed(struct ceph_connection *con)
365 {
366 int old_state;
367
368 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
369 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
370 old_state != CON_SOCK_STATE_CLOSING &&
371 old_state != CON_SOCK_STATE_CONNECTING &&
372 old_state != CON_SOCK_STATE_CLOSED))
373 printk("%s: unexpected old state %d\n", __func__, old_state);
374 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
375 CON_SOCK_STATE_CLOSED);
376 }
377
378 /*
379 * socket callback functions
380 */
381
382 /* data available on socket, or listen socket received a connect */
383 static void ceph_sock_data_ready(struct sock *sk)
384 {
385 struct ceph_connection *con = sk->sk_user_data;
386 if (atomic_read(&con->msgr->stopping)) {
387 return;
388 }
389
390 if (sk->sk_state != TCP_CLOSE_WAIT) {
391 dout("%s on %p state = %lu, queueing work\n", __func__,
392 con, con->state);
393 queue_con(con);
394 }
395 }
396
397 /* socket has buffer space for writing */
398 static void ceph_sock_write_space(struct sock *sk)
399 {
400 struct ceph_connection *con = sk->sk_user_data;
401
402 /* only queue to workqueue if there is data we want to write,
403 * and there is sufficient space in the socket buffer to accept
404 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
405 * doesn't get called again until try_write() fills the socket
406 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
407 * and net/core/stream.c:sk_stream_write_space().
408 */
409 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
410 if (sk_stream_is_writeable(sk)) {
411 dout("%s %p queueing write work\n", __func__, con);
412 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
413 queue_con(con);
414 }
415 } else {
416 dout("%s %p nothing to write\n", __func__, con);
417 }
418 }
419
420 /* socket's state has changed */
421 static void ceph_sock_state_change(struct sock *sk)
422 {
423 struct ceph_connection *con = sk->sk_user_data;
424
425 dout("%s %p state = %lu sk_state = %u\n", __func__,
426 con, con->state, sk->sk_state);
427
428 switch (sk->sk_state) {
429 case TCP_CLOSE:
430 dout("%s TCP_CLOSE\n", __func__);
431 case TCP_CLOSE_WAIT:
432 dout("%s TCP_CLOSE_WAIT\n", __func__);
433 con_sock_state_closing(con);
434 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
435 queue_con(con);
436 break;
437 case TCP_ESTABLISHED:
438 dout("%s TCP_ESTABLISHED\n", __func__);
439 con_sock_state_connected(con);
440 queue_con(con);
441 break;
442 default: /* Everything else is uninteresting */
443 break;
444 }
445 }
446
447 /*
448 * set up socket callbacks
449 */
450 static void set_sock_callbacks(struct socket *sock,
451 struct ceph_connection *con)
452 {
453 struct sock *sk = sock->sk;
454 sk->sk_user_data = con;
455 sk->sk_data_ready = ceph_sock_data_ready;
456 sk->sk_write_space = ceph_sock_write_space;
457 sk->sk_state_change = ceph_sock_state_change;
458 }
459
460
461 /*
462 * socket helpers
463 */
464
465 /*
466 * initiate connection to a remote socket.
467 */
468 static int ceph_tcp_connect(struct ceph_connection *con)
469 {
470 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
471 struct socket *sock;
472 int ret;
473
474 BUG_ON(con->sock);
475 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
476 SOCK_STREAM, IPPROTO_TCP, &sock);
477 if (ret)
478 return ret;
479 sock->sk->sk_allocation = GFP_NOFS;
480
481 #ifdef CONFIG_LOCKDEP
482 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
483 #endif
484
485 set_sock_callbacks(sock, con);
486
487 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
488
489 con_sock_state_connecting(con);
490 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
491 O_NONBLOCK);
492 if (ret == -EINPROGRESS) {
493 dout("connect %s EINPROGRESS sk_state = %u\n",
494 ceph_pr_addr(&con->peer_addr.in_addr),
495 sock->sk->sk_state);
496 } else if (ret < 0) {
497 pr_err("connect %s error %d\n",
498 ceph_pr_addr(&con->peer_addr.in_addr), ret);
499 sock_release(sock);
500 return ret;
501 }
502
503 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
504 int optval = 1;
505
506 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
507 (char *)&optval, sizeof(optval));
508 if (ret)
509 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
510 ret);
511 }
512
513 con->sock = sock;
514 return 0;
515 }
516
517 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
518 {
519 struct kvec iov = {buf, len};
520 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
521 int r;
522
523 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
524 if (r == -EAGAIN)
525 r = 0;
526 return r;
527 }
528
529 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
530 int page_offset, size_t length)
531 {
532 void *kaddr;
533 int ret;
534
535 BUG_ON(page_offset + length > PAGE_SIZE);
536
537 kaddr = kmap(page);
538 BUG_ON(!kaddr);
539 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
540 kunmap(page);
541
542 return ret;
543 }
544
545 /*
546 * write something. @more is true if caller will be sending more data
547 * shortly.
548 */
549 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
550 size_t kvlen, size_t len, int more)
551 {
552 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
553 int r;
554
555 if (more)
556 msg.msg_flags |= MSG_MORE;
557 else
558 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
559
560 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
561 if (r == -EAGAIN)
562 r = 0;
563 return r;
564 }
565
566 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
567 int offset, size_t size, bool more)
568 {
569 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
570 int ret;
571
572 ret = kernel_sendpage(sock, page, offset, size, flags);
573 if (ret == -EAGAIN)
574 ret = 0;
575
576 return ret;
577 }
578
579 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
580 int offset, size_t size, bool more)
581 {
582 int ret;
583 struct kvec iov;
584
585 /* sendpage cannot properly handle pages with page_count == 0,
586 * we need to fallback to sendmsg if that's the case */
587 if (page_count(page) >= 1)
588 return __ceph_tcp_sendpage(sock, page, offset, size, more);
589
590 iov.iov_base = kmap(page) + offset;
591 iov.iov_len = size;
592 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
593 kunmap(page);
594
595 return ret;
596 }
597
598 /*
599 * Shutdown/close the socket for the given connection.
600 */
601 static int con_close_socket(struct ceph_connection *con)
602 {
603 int rc = 0;
604
605 dout("con_close_socket on %p sock %p\n", con, con->sock);
606 if (con->sock) {
607 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
608 sock_release(con->sock);
609 con->sock = NULL;
610 }
611
612 /*
613 * Forcibly clear the SOCK_CLOSED flag. It gets set
614 * independent of the connection mutex, and we could have
615 * received a socket close event before we had the chance to
616 * shut the socket down.
617 */
618 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
619
620 con_sock_state_closed(con);
621 return rc;
622 }
623
624 /*
625 * Reset a connection. Discard all incoming and outgoing messages
626 * and clear *_seq state.
627 */
628 static void ceph_msg_remove(struct ceph_msg *msg)
629 {
630 list_del_init(&msg->list_head);
631
632 ceph_msg_put(msg);
633 }
634 static void ceph_msg_remove_list(struct list_head *head)
635 {
636 while (!list_empty(head)) {
637 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
638 list_head);
639 ceph_msg_remove(msg);
640 }
641 }
642
643 static void reset_connection(struct ceph_connection *con)
644 {
645 /* reset connection, out_queue, msg_ and connect_seq */
646 /* discard existing out_queue and msg_seq */
647 dout("reset_connection %p\n", con);
648 ceph_msg_remove_list(&con->out_queue);
649 ceph_msg_remove_list(&con->out_sent);
650
651 if (con->in_msg) {
652 BUG_ON(con->in_msg->con != con);
653 ceph_msg_put(con->in_msg);
654 con->in_msg = NULL;
655 }
656
657 con->connect_seq = 0;
658 con->out_seq = 0;
659 if (con->out_msg) {
660 BUG_ON(con->out_msg->con != con);
661 ceph_msg_put(con->out_msg);
662 con->out_msg = NULL;
663 }
664 con->in_seq = 0;
665 con->in_seq_acked = 0;
666
667 con->out_skip = 0;
668 }
669
670 /*
671 * mark a peer down. drop any open connections.
672 */
673 void ceph_con_close(struct ceph_connection *con)
674 {
675 mutex_lock(&con->mutex);
676 dout("con_close %p peer %s\n", con,
677 ceph_pr_addr(&con->peer_addr.in_addr));
678 con->state = CON_STATE_CLOSED;
679
680 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
681 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
682 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
683 con_flag_clear(con, CON_FLAG_BACKOFF);
684
685 reset_connection(con);
686 con->peer_global_seq = 0;
687 cancel_con(con);
688 con_close_socket(con);
689 mutex_unlock(&con->mutex);
690 }
691 EXPORT_SYMBOL(ceph_con_close);
692
693 /*
694 * Reopen a closed connection, with a new peer address.
695 */
696 void ceph_con_open(struct ceph_connection *con,
697 __u8 entity_type, __u64 entity_num,
698 struct ceph_entity_addr *addr)
699 {
700 mutex_lock(&con->mutex);
701 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
702
703 WARN_ON(con->state != CON_STATE_CLOSED);
704 con->state = CON_STATE_PREOPEN;
705
706 con->peer_name.type = (__u8) entity_type;
707 con->peer_name.num = cpu_to_le64(entity_num);
708
709 memcpy(&con->peer_addr, addr, sizeof(*addr));
710 con->delay = 0; /* reset backoff memory */
711 mutex_unlock(&con->mutex);
712 queue_con(con);
713 }
714 EXPORT_SYMBOL(ceph_con_open);
715
716 /*
717 * return true if this connection ever successfully opened
718 */
719 bool ceph_con_opened(struct ceph_connection *con)
720 {
721 return con->connect_seq > 0;
722 }
723
724 /*
725 * initialize a new connection.
726 */
727 void ceph_con_init(struct ceph_connection *con, void *private,
728 const struct ceph_connection_operations *ops,
729 struct ceph_messenger *msgr)
730 {
731 dout("con_init %p\n", con);
732 memset(con, 0, sizeof(*con));
733 con->private = private;
734 con->ops = ops;
735 con->msgr = msgr;
736
737 con_sock_state_init(con);
738
739 mutex_init(&con->mutex);
740 INIT_LIST_HEAD(&con->out_queue);
741 INIT_LIST_HEAD(&con->out_sent);
742 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
743
744 con->state = CON_STATE_CLOSED;
745 }
746 EXPORT_SYMBOL(ceph_con_init);
747
748
749 /*
750 * We maintain a global counter to order connection attempts. Get
751 * a unique seq greater than @gt.
752 */
753 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
754 {
755 u32 ret;
756
757 spin_lock(&msgr->global_seq_lock);
758 if (msgr->global_seq < gt)
759 msgr->global_seq = gt;
760 ret = ++msgr->global_seq;
761 spin_unlock(&msgr->global_seq_lock);
762 return ret;
763 }
764
765 static void con_out_kvec_reset(struct ceph_connection *con)
766 {
767 BUG_ON(con->out_skip);
768
769 con->out_kvec_left = 0;
770 con->out_kvec_bytes = 0;
771 con->out_kvec_cur = &con->out_kvec[0];
772 }
773
774 static void con_out_kvec_add(struct ceph_connection *con,
775 size_t size, void *data)
776 {
777 int index = con->out_kvec_left;
778
779 BUG_ON(con->out_skip);
780 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
781
782 con->out_kvec[index].iov_len = size;
783 con->out_kvec[index].iov_base = data;
784 con->out_kvec_left++;
785 con->out_kvec_bytes += size;
786 }
787
788 /*
789 * Chop off a kvec from the end. Return residual number of bytes for
790 * that kvec, i.e. how many bytes would have been written if the kvec
791 * hadn't been nuked.
792 */
793 static int con_out_kvec_skip(struct ceph_connection *con)
794 {
795 int off = con->out_kvec_cur - con->out_kvec;
796 int skip = 0;
797
798 if (con->out_kvec_bytes > 0) {
799 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
800 BUG_ON(con->out_kvec_bytes < skip);
801 BUG_ON(!con->out_kvec_left);
802 con->out_kvec_bytes -= skip;
803 con->out_kvec_left--;
804 }
805
806 return skip;
807 }
808
809 #ifdef CONFIG_BLOCK
810
811 /*
812 * For a bio data item, a piece is whatever remains of the next
813 * entry in the current bio iovec, or the first entry in the next
814 * bio in the list.
815 */
816 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
817 size_t length)
818 {
819 struct ceph_msg_data *data = cursor->data;
820 struct bio *bio;
821
822 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
823
824 bio = data->bio;
825 BUG_ON(!bio);
826
827 cursor->resid = min(length, data->bio_length);
828 cursor->bio = bio;
829 cursor->bvec_iter = bio->bi_iter;
830 cursor->last_piece =
831 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
832 }
833
834 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
835 size_t *page_offset,
836 size_t *length)
837 {
838 struct ceph_msg_data *data = cursor->data;
839 struct bio *bio;
840 struct bio_vec bio_vec;
841
842 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
843
844 bio = cursor->bio;
845 BUG_ON(!bio);
846
847 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
848
849 *page_offset = (size_t) bio_vec.bv_offset;
850 BUG_ON(*page_offset >= PAGE_SIZE);
851 if (cursor->last_piece) /* pagelist offset is always 0 */
852 *length = cursor->resid;
853 else
854 *length = (size_t) bio_vec.bv_len;
855 BUG_ON(*length > cursor->resid);
856 BUG_ON(*page_offset + *length > PAGE_SIZE);
857
858 return bio_vec.bv_page;
859 }
860
861 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
862 size_t bytes)
863 {
864 struct bio *bio;
865 struct bio_vec bio_vec;
866
867 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
868
869 bio = cursor->bio;
870 BUG_ON(!bio);
871
872 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
873
874 /* Advance the cursor offset */
875
876 BUG_ON(cursor->resid < bytes);
877 cursor->resid -= bytes;
878
879 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
880
881 if (bytes < bio_vec.bv_len)
882 return false; /* more bytes to process in this segment */
883
884 /* Move on to the next segment, and possibly the next bio */
885
886 if (!cursor->bvec_iter.bi_size) {
887 bio = bio->bi_next;
888 cursor->bio = bio;
889 if (bio)
890 cursor->bvec_iter = bio->bi_iter;
891 else
892 memset(&cursor->bvec_iter, 0,
893 sizeof(cursor->bvec_iter));
894 }
895
896 if (!cursor->last_piece) {
897 BUG_ON(!cursor->resid);
898 BUG_ON(!bio);
899 /* A short read is OK, so use <= rather than == */
900 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
901 cursor->last_piece = true;
902 }
903
904 return true;
905 }
906 #endif /* CONFIG_BLOCK */
907
908 /*
909 * For a page array, a piece comes from the first page in the array
910 * that has not already been fully consumed.
911 */
912 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
913 size_t length)
914 {
915 struct ceph_msg_data *data = cursor->data;
916 int page_count;
917
918 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
919
920 BUG_ON(!data->pages);
921 BUG_ON(!data->length);
922
923 cursor->resid = min(length, data->length);
924 page_count = calc_pages_for(data->alignment, (u64)data->length);
925 cursor->page_offset = data->alignment & ~PAGE_MASK;
926 cursor->page_index = 0;
927 BUG_ON(page_count > (int)USHRT_MAX);
928 cursor->page_count = (unsigned short)page_count;
929 BUG_ON(length > SIZE_MAX - cursor->page_offset);
930 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
931 }
932
933 static struct page *
934 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
935 size_t *page_offset, size_t *length)
936 {
937 struct ceph_msg_data *data = cursor->data;
938
939 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
940
941 BUG_ON(cursor->page_index >= cursor->page_count);
942 BUG_ON(cursor->page_offset >= PAGE_SIZE);
943
944 *page_offset = cursor->page_offset;
945 if (cursor->last_piece)
946 *length = cursor->resid;
947 else
948 *length = PAGE_SIZE - *page_offset;
949
950 return data->pages[cursor->page_index];
951 }
952
953 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
954 size_t bytes)
955 {
956 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
957
958 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
959
960 /* Advance the cursor page offset */
961
962 cursor->resid -= bytes;
963 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
964 if (!bytes || cursor->page_offset)
965 return false; /* more bytes to process in the current page */
966
967 if (!cursor->resid)
968 return false; /* no more data */
969
970 /* Move on to the next page; offset is already at 0 */
971
972 BUG_ON(cursor->page_index >= cursor->page_count);
973 cursor->page_index++;
974 cursor->last_piece = cursor->resid <= PAGE_SIZE;
975
976 return true;
977 }
978
979 /*
980 * For a pagelist, a piece is whatever remains to be consumed in the
981 * first page in the list, or the front of the next page.
982 */
983 static void
984 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
985 size_t length)
986 {
987 struct ceph_msg_data *data = cursor->data;
988 struct ceph_pagelist *pagelist;
989 struct page *page;
990
991 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
992
993 pagelist = data->pagelist;
994 BUG_ON(!pagelist);
995
996 if (!length)
997 return; /* pagelist can be assigned but empty */
998
999 BUG_ON(list_empty(&pagelist->head));
1000 page = list_first_entry(&pagelist->head, struct page, lru);
1001
1002 cursor->resid = min(length, pagelist->length);
1003 cursor->page = page;
1004 cursor->offset = 0;
1005 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1006 }
1007
1008 static struct page *
1009 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1010 size_t *page_offset, size_t *length)
1011 {
1012 struct ceph_msg_data *data = cursor->data;
1013 struct ceph_pagelist *pagelist;
1014
1015 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1016
1017 pagelist = data->pagelist;
1018 BUG_ON(!pagelist);
1019
1020 BUG_ON(!cursor->page);
1021 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1022
1023 /* offset of first page in pagelist is always 0 */
1024 *page_offset = cursor->offset & ~PAGE_MASK;
1025 if (cursor->last_piece)
1026 *length = cursor->resid;
1027 else
1028 *length = PAGE_SIZE - *page_offset;
1029
1030 return cursor->page;
1031 }
1032
1033 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1034 size_t bytes)
1035 {
1036 struct ceph_msg_data *data = cursor->data;
1037 struct ceph_pagelist *pagelist;
1038
1039 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1040
1041 pagelist = data->pagelist;
1042 BUG_ON(!pagelist);
1043
1044 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1045 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1046
1047 /* Advance the cursor offset */
1048
1049 cursor->resid -= bytes;
1050 cursor->offset += bytes;
1051 /* offset of first page in pagelist is always 0 */
1052 if (!bytes || cursor->offset & ~PAGE_MASK)
1053 return false; /* more bytes to process in the current page */
1054
1055 if (!cursor->resid)
1056 return false; /* no more data */
1057
1058 /* Move on to the next page */
1059
1060 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1061 cursor->page = list_next_entry(cursor->page, lru);
1062 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1063
1064 return true;
1065 }
1066
1067 /*
1068 * Message data is handled (sent or received) in pieces, where each
1069 * piece resides on a single page. The network layer might not
1070 * consume an entire piece at once. A data item's cursor keeps
1071 * track of which piece is next to process and how much remains to
1072 * be processed in that piece. It also tracks whether the current
1073 * piece is the last one in the data item.
1074 */
1075 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1076 {
1077 size_t length = cursor->total_resid;
1078
1079 switch (cursor->data->type) {
1080 case CEPH_MSG_DATA_PAGELIST:
1081 ceph_msg_data_pagelist_cursor_init(cursor, length);
1082 break;
1083 case CEPH_MSG_DATA_PAGES:
1084 ceph_msg_data_pages_cursor_init(cursor, length);
1085 break;
1086 #ifdef CONFIG_BLOCK
1087 case CEPH_MSG_DATA_BIO:
1088 ceph_msg_data_bio_cursor_init(cursor, length);
1089 break;
1090 #endif /* CONFIG_BLOCK */
1091 case CEPH_MSG_DATA_NONE:
1092 default:
1093 /* BUG(); */
1094 break;
1095 }
1096 cursor->need_crc = true;
1097 }
1098
1099 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1100 {
1101 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1102 struct ceph_msg_data *data;
1103
1104 BUG_ON(!length);
1105 BUG_ON(length > msg->data_length);
1106 BUG_ON(list_empty(&msg->data));
1107
1108 cursor->data_head = &msg->data;
1109 cursor->total_resid = length;
1110 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1111 cursor->data = data;
1112
1113 __ceph_msg_data_cursor_init(cursor);
1114 }
1115
1116 /*
1117 * Return the page containing the next piece to process for a given
1118 * data item, and supply the page offset and length of that piece.
1119 * Indicate whether this is the last piece in this data item.
1120 */
1121 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1122 size_t *page_offset, size_t *length,
1123 bool *last_piece)
1124 {
1125 struct page *page;
1126
1127 switch (cursor->data->type) {
1128 case CEPH_MSG_DATA_PAGELIST:
1129 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1130 break;
1131 case CEPH_MSG_DATA_PAGES:
1132 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1133 break;
1134 #ifdef CONFIG_BLOCK
1135 case CEPH_MSG_DATA_BIO:
1136 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1137 break;
1138 #endif /* CONFIG_BLOCK */
1139 case CEPH_MSG_DATA_NONE:
1140 default:
1141 page = NULL;
1142 break;
1143 }
1144 BUG_ON(!page);
1145 BUG_ON(*page_offset + *length > PAGE_SIZE);
1146 BUG_ON(!*length);
1147 if (last_piece)
1148 *last_piece = cursor->last_piece;
1149
1150 return page;
1151 }
1152
1153 /*
1154 * Returns true if the result moves the cursor on to the next piece
1155 * of the data item.
1156 */
1157 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1158 size_t bytes)
1159 {
1160 bool new_piece;
1161
1162 BUG_ON(bytes > cursor->resid);
1163 switch (cursor->data->type) {
1164 case CEPH_MSG_DATA_PAGELIST:
1165 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1166 break;
1167 case CEPH_MSG_DATA_PAGES:
1168 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1169 break;
1170 #ifdef CONFIG_BLOCK
1171 case CEPH_MSG_DATA_BIO:
1172 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1173 break;
1174 #endif /* CONFIG_BLOCK */
1175 case CEPH_MSG_DATA_NONE:
1176 default:
1177 BUG();
1178 break;
1179 }
1180 cursor->total_resid -= bytes;
1181
1182 if (!cursor->resid && cursor->total_resid) {
1183 WARN_ON(!cursor->last_piece);
1184 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1185 cursor->data = list_next_entry(cursor->data, links);
1186 __ceph_msg_data_cursor_init(cursor);
1187 new_piece = true;
1188 }
1189 cursor->need_crc = new_piece;
1190
1191 return new_piece;
1192 }
1193
1194 static size_t sizeof_footer(struct ceph_connection *con)
1195 {
1196 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1197 sizeof(struct ceph_msg_footer) :
1198 sizeof(struct ceph_msg_footer_old);
1199 }
1200
1201 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1202 {
1203 BUG_ON(!msg);
1204 BUG_ON(!data_len);
1205
1206 /* Initialize data cursor */
1207
1208 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1209 }
1210
1211 /*
1212 * Prepare footer for currently outgoing message, and finish things
1213 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1214 */
1215 static void prepare_write_message_footer(struct ceph_connection *con)
1216 {
1217 struct ceph_msg *m = con->out_msg;
1218
1219 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1220
1221 dout("prepare_write_message_footer %p\n", con);
1222 con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1223 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1224 if (con->ops->sign_message)
1225 con->ops->sign_message(m);
1226 else
1227 m->footer.sig = 0;
1228 } else {
1229 m->old_footer.flags = m->footer.flags;
1230 }
1231 con->out_more = m->more_to_follow;
1232 con->out_msg_done = true;
1233 }
1234
1235 /*
1236 * Prepare headers for the next outgoing message.
1237 */
1238 static void prepare_write_message(struct ceph_connection *con)
1239 {
1240 struct ceph_msg *m;
1241 u32 crc;
1242
1243 con_out_kvec_reset(con);
1244 con->out_msg_done = false;
1245
1246 /* Sneak an ack in there first? If we can get it into the same
1247 * TCP packet that's a good thing. */
1248 if (con->in_seq > con->in_seq_acked) {
1249 con->in_seq_acked = con->in_seq;
1250 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1251 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1252 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1253 &con->out_temp_ack);
1254 }
1255
1256 BUG_ON(list_empty(&con->out_queue));
1257 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1258 con->out_msg = m;
1259 BUG_ON(m->con != con);
1260
1261 /* put message on sent list */
1262 ceph_msg_get(m);
1263 list_move_tail(&m->list_head, &con->out_sent);
1264
1265 /*
1266 * only assign outgoing seq # if we haven't sent this message
1267 * yet. if it is requeued, resend with it's original seq.
1268 */
1269 if (m->needs_out_seq) {
1270 m->hdr.seq = cpu_to_le64(++con->out_seq);
1271 m->needs_out_seq = false;
1272 }
1273 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1274
1275 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1276 m, con->out_seq, le16_to_cpu(m->hdr.type),
1277 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1278 m->data_length);
1279 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1280
1281 /* tag + hdr + front + middle */
1282 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1283 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1284 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1285
1286 if (m->middle)
1287 con_out_kvec_add(con, m->middle->vec.iov_len,
1288 m->middle->vec.iov_base);
1289
1290 /* fill in hdr crc and finalize hdr */
1291 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1292 con->out_msg->hdr.crc = cpu_to_le32(crc);
1293 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1294
1295 /* fill in front and middle crc, footer */
1296 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1297 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1298 if (m->middle) {
1299 crc = crc32c(0, m->middle->vec.iov_base,
1300 m->middle->vec.iov_len);
1301 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1302 } else
1303 con->out_msg->footer.middle_crc = 0;
1304 dout("%s front_crc %u middle_crc %u\n", __func__,
1305 le32_to_cpu(con->out_msg->footer.front_crc),
1306 le32_to_cpu(con->out_msg->footer.middle_crc));
1307 con->out_msg->footer.flags = 0;
1308
1309 /* is there a data payload? */
1310 con->out_msg->footer.data_crc = 0;
1311 if (m->data_length) {
1312 prepare_message_data(con->out_msg, m->data_length);
1313 con->out_more = 1; /* data + footer will follow */
1314 } else {
1315 /* no, queue up footer too and be done */
1316 prepare_write_message_footer(con);
1317 }
1318
1319 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1320 }
1321
1322 /*
1323 * Prepare an ack.
1324 */
1325 static void prepare_write_ack(struct ceph_connection *con)
1326 {
1327 dout("prepare_write_ack %p %llu -> %llu\n", con,
1328 con->in_seq_acked, con->in_seq);
1329 con->in_seq_acked = con->in_seq;
1330
1331 con_out_kvec_reset(con);
1332
1333 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1334
1335 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1336 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1337 &con->out_temp_ack);
1338
1339 con->out_more = 1; /* more will follow.. eventually.. */
1340 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1341 }
1342
1343 /*
1344 * Prepare to share the seq during handshake
1345 */
1346 static void prepare_write_seq(struct ceph_connection *con)
1347 {
1348 dout("prepare_write_seq %p %llu -> %llu\n", con,
1349 con->in_seq_acked, con->in_seq);
1350 con->in_seq_acked = con->in_seq;
1351
1352 con_out_kvec_reset(con);
1353
1354 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1355 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1356 &con->out_temp_ack);
1357
1358 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1359 }
1360
1361 /*
1362 * Prepare to write keepalive byte.
1363 */
1364 static void prepare_write_keepalive(struct ceph_connection *con)
1365 {
1366 dout("prepare_write_keepalive %p\n", con);
1367 con_out_kvec_reset(con);
1368 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1369 struct timespec now = CURRENT_TIME;
1370
1371 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1372 ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1373 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1374 &con->out_temp_keepalive2);
1375 } else {
1376 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1377 }
1378 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1379 }
1380
1381 /*
1382 * Connection negotiation.
1383 */
1384
1385 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1386 int *auth_proto)
1387 {
1388 struct ceph_auth_handshake *auth;
1389
1390 if (!con->ops->get_authorizer) {
1391 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1392 con->out_connect.authorizer_len = 0;
1393 return NULL;
1394 }
1395
1396 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1397 if (IS_ERR(auth))
1398 return auth;
1399
1400 con->auth_reply_buf = auth->authorizer_reply_buf;
1401 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1402 return auth;
1403 }
1404
1405 /*
1406 * We connected to a peer and are saying hello.
1407 */
1408 static void prepare_write_banner(struct ceph_connection *con)
1409 {
1410 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1411 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1412 &con->msgr->my_enc_addr);
1413
1414 con->out_more = 0;
1415 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1416 }
1417
1418 static int prepare_write_connect(struct ceph_connection *con)
1419 {
1420 unsigned int global_seq = get_global_seq(con->msgr, 0);
1421 int proto;
1422 int auth_proto;
1423 struct ceph_auth_handshake *auth;
1424
1425 switch (con->peer_name.type) {
1426 case CEPH_ENTITY_TYPE_MON:
1427 proto = CEPH_MONC_PROTOCOL;
1428 break;
1429 case CEPH_ENTITY_TYPE_OSD:
1430 proto = CEPH_OSDC_PROTOCOL;
1431 break;
1432 case CEPH_ENTITY_TYPE_MDS:
1433 proto = CEPH_MDSC_PROTOCOL;
1434 break;
1435 default:
1436 BUG();
1437 }
1438
1439 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1440 con->connect_seq, global_seq, proto);
1441
1442 con->out_connect.features =
1443 cpu_to_le64(from_msgr(con->msgr)->supported_features);
1444 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1445 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1446 con->out_connect.global_seq = cpu_to_le32(global_seq);
1447 con->out_connect.protocol_version = cpu_to_le32(proto);
1448 con->out_connect.flags = 0;
1449
1450 auth_proto = CEPH_AUTH_UNKNOWN;
1451 auth = get_connect_authorizer(con, &auth_proto);
1452 if (IS_ERR(auth))
1453 return PTR_ERR(auth);
1454
1455 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1456 con->out_connect.authorizer_len = auth ?
1457 cpu_to_le32(auth->authorizer_buf_len) : 0;
1458
1459 con_out_kvec_add(con, sizeof (con->out_connect),
1460 &con->out_connect);
1461 if (auth && auth->authorizer_buf_len)
1462 con_out_kvec_add(con, auth->authorizer_buf_len,
1463 auth->authorizer_buf);
1464
1465 con->out_more = 0;
1466 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1467
1468 return 0;
1469 }
1470
1471 /*
1472 * write as much of pending kvecs to the socket as we can.
1473 * 1 -> done
1474 * 0 -> socket full, but more to do
1475 * <0 -> error
1476 */
1477 static int write_partial_kvec(struct ceph_connection *con)
1478 {
1479 int ret;
1480
1481 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1482 while (con->out_kvec_bytes > 0) {
1483 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1484 con->out_kvec_left, con->out_kvec_bytes,
1485 con->out_more);
1486 if (ret <= 0)
1487 goto out;
1488 con->out_kvec_bytes -= ret;
1489 if (con->out_kvec_bytes == 0)
1490 break; /* done */
1491
1492 /* account for full iov entries consumed */
1493 while (ret >= con->out_kvec_cur->iov_len) {
1494 BUG_ON(!con->out_kvec_left);
1495 ret -= con->out_kvec_cur->iov_len;
1496 con->out_kvec_cur++;
1497 con->out_kvec_left--;
1498 }
1499 /* and for a partially-consumed entry */
1500 if (ret) {
1501 con->out_kvec_cur->iov_len -= ret;
1502 con->out_kvec_cur->iov_base += ret;
1503 }
1504 }
1505 con->out_kvec_left = 0;
1506 ret = 1;
1507 out:
1508 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1509 con->out_kvec_bytes, con->out_kvec_left, ret);
1510 return ret; /* done! */
1511 }
1512
1513 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1514 unsigned int page_offset,
1515 unsigned int length)
1516 {
1517 char *kaddr;
1518
1519 kaddr = kmap(page);
1520 BUG_ON(kaddr == NULL);
1521 crc = crc32c(crc, kaddr + page_offset, length);
1522 kunmap(page);
1523
1524 return crc;
1525 }
1526 /*
1527 * Write as much message data payload as we can. If we finish, queue
1528 * up the footer.
1529 * 1 -> done, footer is now queued in out_kvec[].
1530 * 0 -> socket full, but more to do
1531 * <0 -> error
1532 */
1533 static int write_partial_message_data(struct ceph_connection *con)
1534 {
1535 struct ceph_msg *msg = con->out_msg;
1536 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1537 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1538 u32 crc;
1539
1540 dout("%s %p msg %p\n", __func__, con, msg);
1541
1542 if (list_empty(&msg->data))
1543 return -EINVAL;
1544
1545 /*
1546 * Iterate through each page that contains data to be
1547 * written, and send as much as possible for each.
1548 *
1549 * If we are calculating the data crc (the default), we will
1550 * need to map the page. If we have no pages, they have
1551 * been revoked, so use the zero page.
1552 */
1553 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1554 while (cursor->resid) {
1555 struct page *page;
1556 size_t page_offset;
1557 size_t length;
1558 bool last_piece;
1559 bool need_crc;
1560 int ret;
1561
1562 page = ceph_msg_data_next(cursor, &page_offset, &length,
1563 &last_piece);
1564 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1565 length, !last_piece);
1566 if (ret <= 0) {
1567 if (do_datacrc)
1568 msg->footer.data_crc = cpu_to_le32(crc);
1569
1570 return ret;
1571 }
1572 if (do_datacrc && cursor->need_crc)
1573 crc = ceph_crc32c_page(crc, page, page_offset, length);
1574 need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1575 }
1576
1577 dout("%s %p msg %p done\n", __func__, con, msg);
1578
1579 /* prepare and queue up footer, too */
1580 if (do_datacrc)
1581 msg->footer.data_crc = cpu_to_le32(crc);
1582 else
1583 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1584 con_out_kvec_reset(con);
1585 prepare_write_message_footer(con);
1586
1587 return 1; /* must return > 0 to indicate success */
1588 }
1589
1590 /*
1591 * write some zeros
1592 */
1593 static int write_partial_skip(struct ceph_connection *con)
1594 {
1595 int ret;
1596
1597 dout("%s %p %d left\n", __func__, con, con->out_skip);
1598 while (con->out_skip > 0) {
1599 size_t size = min(con->out_skip, (int) PAGE_SIZE);
1600
1601 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1602 if (ret <= 0)
1603 goto out;
1604 con->out_skip -= ret;
1605 }
1606 ret = 1;
1607 out:
1608 return ret;
1609 }
1610
1611 /*
1612 * Prepare to read connection handshake, or an ack.
1613 */
1614 static void prepare_read_banner(struct ceph_connection *con)
1615 {
1616 dout("prepare_read_banner %p\n", con);
1617 con->in_base_pos = 0;
1618 }
1619
1620 static void prepare_read_connect(struct ceph_connection *con)
1621 {
1622 dout("prepare_read_connect %p\n", con);
1623 con->in_base_pos = 0;
1624 }
1625
1626 static void prepare_read_ack(struct ceph_connection *con)
1627 {
1628 dout("prepare_read_ack %p\n", con);
1629 con->in_base_pos = 0;
1630 }
1631
1632 static void prepare_read_seq(struct ceph_connection *con)
1633 {
1634 dout("prepare_read_seq %p\n", con);
1635 con->in_base_pos = 0;
1636 con->in_tag = CEPH_MSGR_TAG_SEQ;
1637 }
1638
1639 static void prepare_read_tag(struct ceph_connection *con)
1640 {
1641 dout("prepare_read_tag %p\n", con);
1642 con->in_base_pos = 0;
1643 con->in_tag = CEPH_MSGR_TAG_READY;
1644 }
1645
1646 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1647 {
1648 dout("prepare_read_keepalive_ack %p\n", con);
1649 con->in_base_pos = 0;
1650 }
1651
1652 /*
1653 * Prepare to read a message.
1654 */
1655 static int prepare_read_message(struct ceph_connection *con)
1656 {
1657 dout("prepare_read_message %p\n", con);
1658 BUG_ON(con->in_msg != NULL);
1659 con->in_base_pos = 0;
1660 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1661 return 0;
1662 }
1663
1664
1665 static int read_partial(struct ceph_connection *con,
1666 int end, int size, void *object)
1667 {
1668 while (con->in_base_pos < end) {
1669 int left = end - con->in_base_pos;
1670 int have = size - left;
1671 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1672 if (ret <= 0)
1673 return ret;
1674 con->in_base_pos += ret;
1675 }
1676 return 1;
1677 }
1678
1679
1680 /*
1681 * Read all or part of the connect-side handshake on a new connection
1682 */
1683 static int read_partial_banner(struct ceph_connection *con)
1684 {
1685 int size;
1686 int end;
1687 int ret;
1688
1689 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1690
1691 /* peer's banner */
1692 size = strlen(CEPH_BANNER);
1693 end = size;
1694 ret = read_partial(con, end, size, con->in_banner);
1695 if (ret <= 0)
1696 goto out;
1697
1698 size = sizeof (con->actual_peer_addr);
1699 end += size;
1700 ret = read_partial(con, end, size, &con->actual_peer_addr);
1701 if (ret <= 0)
1702 goto out;
1703
1704 size = sizeof (con->peer_addr_for_me);
1705 end += size;
1706 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1707 if (ret <= 0)
1708 goto out;
1709
1710 out:
1711 return ret;
1712 }
1713
1714 static int read_partial_connect(struct ceph_connection *con)
1715 {
1716 int size;
1717 int end;
1718 int ret;
1719
1720 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1721
1722 size = sizeof (con->in_reply);
1723 end = size;
1724 ret = read_partial(con, end, size, &con->in_reply);
1725 if (ret <= 0)
1726 goto out;
1727
1728 size = le32_to_cpu(con->in_reply.authorizer_len);
1729 end += size;
1730 ret = read_partial(con, end, size, con->auth_reply_buf);
1731 if (ret <= 0)
1732 goto out;
1733
1734 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1735 con, (int)con->in_reply.tag,
1736 le32_to_cpu(con->in_reply.connect_seq),
1737 le32_to_cpu(con->in_reply.global_seq));
1738 out:
1739 return ret;
1740
1741 }
1742
1743 /*
1744 * Verify the hello banner looks okay.
1745 */
1746 static int verify_hello(struct ceph_connection *con)
1747 {
1748 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1749 pr_err("connect to %s got bad banner\n",
1750 ceph_pr_addr(&con->peer_addr.in_addr));
1751 con->error_msg = "protocol error, bad banner";
1752 return -1;
1753 }
1754 return 0;
1755 }
1756
1757 static bool addr_is_blank(struct sockaddr_storage *ss)
1758 {
1759 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1760 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1761
1762 switch (ss->ss_family) {
1763 case AF_INET:
1764 return addr->s_addr == htonl(INADDR_ANY);
1765 case AF_INET6:
1766 return ipv6_addr_any(addr6);
1767 default:
1768 return true;
1769 }
1770 }
1771
1772 static int addr_port(struct sockaddr_storage *ss)
1773 {
1774 switch (ss->ss_family) {
1775 case AF_INET:
1776 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1777 case AF_INET6:
1778 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1779 }
1780 return 0;
1781 }
1782
1783 static void addr_set_port(struct sockaddr_storage *ss, int p)
1784 {
1785 switch (ss->ss_family) {
1786 case AF_INET:
1787 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1788 break;
1789 case AF_INET6:
1790 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1791 break;
1792 }
1793 }
1794
1795 /*
1796 * Unlike other *_pton function semantics, zero indicates success.
1797 */
1798 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1799 char delim, const char **ipend)
1800 {
1801 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1802 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1803
1804 memset(ss, 0, sizeof(*ss));
1805
1806 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1807 ss->ss_family = AF_INET;
1808 return 0;
1809 }
1810
1811 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1812 ss->ss_family = AF_INET6;
1813 return 0;
1814 }
1815
1816 return -EINVAL;
1817 }
1818
1819 /*
1820 * Extract hostname string and resolve using kernel DNS facility.
1821 */
1822 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1823 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1824 struct sockaddr_storage *ss, char delim, const char **ipend)
1825 {
1826 const char *end, *delim_p;
1827 char *colon_p, *ip_addr = NULL;
1828 int ip_len, ret;
1829
1830 /*
1831 * The end of the hostname occurs immediately preceding the delimiter or
1832 * the port marker (':') where the delimiter takes precedence.
1833 */
1834 delim_p = memchr(name, delim, namelen);
1835 colon_p = memchr(name, ':', namelen);
1836
1837 if (delim_p && colon_p)
1838 end = delim_p < colon_p ? delim_p : colon_p;
1839 else if (!delim_p && colon_p)
1840 end = colon_p;
1841 else {
1842 end = delim_p;
1843 if (!end) /* case: hostname:/ */
1844 end = name + namelen;
1845 }
1846
1847 if (end <= name)
1848 return -EINVAL;
1849
1850 /* do dns_resolve upcall */
1851 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1852 if (ip_len > 0)
1853 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1854 else
1855 ret = -ESRCH;
1856
1857 kfree(ip_addr);
1858
1859 *ipend = end;
1860
1861 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1862 ret, ret ? "failed" : ceph_pr_addr(ss));
1863
1864 return ret;
1865 }
1866 #else
1867 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1868 struct sockaddr_storage *ss, char delim, const char **ipend)
1869 {
1870 return -EINVAL;
1871 }
1872 #endif
1873
1874 /*
1875 * Parse a server name (IP or hostname). If a valid IP address is not found
1876 * then try to extract a hostname to resolve using userspace DNS upcall.
1877 */
1878 static int ceph_parse_server_name(const char *name, size_t namelen,
1879 struct sockaddr_storage *ss, char delim, const char **ipend)
1880 {
1881 int ret;
1882
1883 ret = ceph_pton(name, namelen, ss, delim, ipend);
1884 if (ret)
1885 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1886
1887 return ret;
1888 }
1889
1890 /*
1891 * Parse an ip[:port] list into an addr array. Use the default
1892 * monitor port if a port isn't specified.
1893 */
1894 int ceph_parse_ips(const char *c, const char *end,
1895 struct ceph_entity_addr *addr,
1896 int max_count, int *count)
1897 {
1898 int i, ret = -EINVAL;
1899 const char *p = c;
1900
1901 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1902 for (i = 0; i < max_count; i++) {
1903 const char *ipend;
1904 struct sockaddr_storage *ss = &addr[i].in_addr;
1905 int port;
1906 char delim = ',';
1907
1908 if (*p == '[') {
1909 delim = ']';
1910 p++;
1911 }
1912
1913 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1914 if (ret)
1915 goto bad;
1916 ret = -EINVAL;
1917
1918 p = ipend;
1919
1920 if (delim == ']') {
1921 if (*p != ']') {
1922 dout("missing matching ']'\n");
1923 goto bad;
1924 }
1925 p++;
1926 }
1927
1928 /* port? */
1929 if (p < end && *p == ':') {
1930 port = 0;
1931 p++;
1932 while (p < end && *p >= '0' && *p <= '9') {
1933 port = (port * 10) + (*p - '0');
1934 p++;
1935 }
1936 if (port == 0)
1937 port = CEPH_MON_PORT;
1938 else if (port > 65535)
1939 goto bad;
1940 } else {
1941 port = CEPH_MON_PORT;
1942 }
1943
1944 addr_set_port(ss, port);
1945
1946 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1947
1948 if (p == end)
1949 break;
1950 if (*p != ',')
1951 goto bad;
1952 p++;
1953 }
1954
1955 if (p != end)
1956 goto bad;
1957
1958 if (count)
1959 *count = i + 1;
1960 return 0;
1961
1962 bad:
1963 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1964 return ret;
1965 }
1966 EXPORT_SYMBOL(ceph_parse_ips);
1967
1968 static int process_banner(struct ceph_connection *con)
1969 {
1970 dout("process_banner on %p\n", con);
1971
1972 if (verify_hello(con) < 0)
1973 return -1;
1974
1975 ceph_decode_addr(&con->actual_peer_addr);
1976 ceph_decode_addr(&con->peer_addr_for_me);
1977
1978 /*
1979 * Make sure the other end is who we wanted. note that the other
1980 * end may not yet know their ip address, so if it's 0.0.0.0, give
1981 * them the benefit of the doubt.
1982 */
1983 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1984 sizeof(con->peer_addr)) != 0 &&
1985 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1986 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1987 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1988 ceph_pr_addr(&con->peer_addr.in_addr),
1989 (int)le32_to_cpu(con->peer_addr.nonce),
1990 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1991 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1992 con->error_msg = "wrong peer at address";
1993 return -1;
1994 }
1995
1996 /*
1997 * did we learn our address?
1998 */
1999 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2000 int port = addr_port(&con->msgr->inst.addr.in_addr);
2001
2002 memcpy(&con->msgr->inst.addr.in_addr,
2003 &con->peer_addr_for_me.in_addr,
2004 sizeof(con->peer_addr_for_me.in_addr));
2005 addr_set_port(&con->msgr->inst.addr.in_addr, port);
2006 encode_my_addr(con->msgr);
2007 dout("process_banner learned my addr is %s\n",
2008 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2009 }
2010
2011 return 0;
2012 }
2013
2014 static int process_connect(struct ceph_connection *con)
2015 {
2016 u64 sup_feat = from_msgr(con->msgr)->supported_features;
2017 u64 req_feat = from_msgr(con->msgr)->required_features;
2018 u64 server_feat = ceph_sanitize_features(
2019 le64_to_cpu(con->in_reply.features));
2020 int ret;
2021
2022 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2023
2024 if (con->auth_reply_buf) {
2025 /*
2026 * Any connection that defines ->get_authorizer()
2027 * should also define ->verify_authorizer_reply().
2028 * See get_connect_authorizer().
2029 */
2030 ret = con->ops->verify_authorizer_reply(con);
2031 if (ret < 0) {
2032 con->error_msg = "bad authorize reply";
2033 return ret;
2034 }
2035 }
2036
2037 switch (con->in_reply.tag) {
2038 case CEPH_MSGR_TAG_FEATURES:
2039 pr_err("%s%lld %s feature set mismatch,"
2040 " my %llx < server's %llx, missing %llx\n",
2041 ENTITY_NAME(con->peer_name),
2042 ceph_pr_addr(&con->peer_addr.in_addr),
2043 sup_feat, server_feat, server_feat & ~sup_feat);
2044 con->error_msg = "missing required protocol features";
2045 reset_connection(con);
2046 return -1;
2047
2048 case CEPH_MSGR_TAG_BADPROTOVER:
2049 pr_err("%s%lld %s protocol version mismatch,"
2050 " my %d != server's %d\n",
2051 ENTITY_NAME(con->peer_name),
2052 ceph_pr_addr(&con->peer_addr.in_addr),
2053 le32_to_cpu(con->out_connect.protocol_version),
2054 le32_to_cpu(con->in_reply.protocol_version));
2055 con->error_msg = "protocol version mismatch";
2056 reset_connection(con);
2057 return -1;
2058
2059 case CEPH_MSGR_TAG_BADAUTHORIZER:
2060 con->auth_retry++;
2061 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2062 con->auth_retry);
2063 if (con->auth_retry == 2) {
2064 con->error_msg = "connect authorization failure";
2065 return -1;
2066 }
2067 con_out_kvec_reset(con);
2068 ret = prepare_write_connect(con);
2069 if (ret < 0)
2070 return ret;
2071 prepare_read_connect(con);
2072 break;
2073
2074 case CEPH_MSGR_TAG_RESETSESSION:
2075 /*
2076 * If we connected with a large connect_seq but the peer
2077 * has no record of a session with us (no connection, or
2078 * connect_seq == 0), they will send RESETSESION to indicate
2079 * that they must have reset their session, and may have
2080 * dropped messages.
2081 */
2082 dout("process_connect got RESET peer seq %u\n",
2083 le32_to_cpu(con->in_reply.connect_seq));
2084 pr_err("%s%lld %s connection reset\n",
2085 ENTITY_NAME(con->peer_name),
2086 ceph_pr_addr(&con->peer_addr.in_addr));
2087 reset_connection(con);
2088 con_out_kvec_reset(con);
2089 ret = prepare_write_connect(con);
2090 if (ret < 0)
2091 return ret;
2092 prepare_read_connect(con);
2093
2094 /* Tell ceph about it. */
2095 mutex_unlock(&con->mutex);
2096 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2097 if (con->ops->peer_reset)
2098 con->ops->peer_reset(con);
2099 mutex_lock(&con->mutex);
2100 if (con->state != CON_STATE_NEGOTIATING)
2101 return -EAGAIN;
2102 break;
2103
2104 case CEPH_MSGR_TAG_RETRY_SESSION:
2105 /*
2106 * If we sent a smaller connect_seq than the peer has, try
2107 * again with a larger value.
2108 */
2109 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2110 le32_to_cpu(con->out_connect.connect_seq),
2111 le32_to_cpu(con->in_reply.connect_seq));
2112 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2113 con_out_kvec_reset(con);
2114 ret = prepare_write_connect(con);
2115 if (ret < 0)
2116 return ret;
2117 prepare_read_connect(con);
2118 break;
2119
2120 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2121 /*
2122 * If we sent a smaller global_seq than the peer has, try
2123 * again with a larger value.
2124 */
2125 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2126 con->peer_global_seq,
2127 le32_to_cpu(con->in_reply.global_seq));
2128 get_global_seq(con->msgr,
2129 le32_to_cpu(con->in_reply.global_seq));
2130 con_out_kvec_reset(con);
2131 ret = prepare_write_connect(con);
2132 if (ret < 0)
2133 return ret;
2134 prepare_read_connect(con);
2135 break;
2136
2137 case CEPH_MSGR_TAG_SEQ:
2138 case CEPH_MSGR_TAG_READY:
2139 if (req_feat & ~server_feat) {
2140 pr_err("%s%lld %s protocol feature mismatch,"
2141 " my required %llx > server's %llx, need %llx\n",
2142 ENTITY_NAME(con->peer_name),
2143 ceph_pr_addr(&con->peer_addr.in_addr),
2144 req_feat, server_feat, req_feat & ~server_feat);
2145 con->error_msg = "missing required protocol features";
2146 reset_connection(con);
2147 return -1;
2148 }
2149
2150 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2151 con->state = CON_STATE_OPEN;
2152 con->auth_retry = 0; /* we authenticated; clear flag */
2153 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2154 con->connect_seq++;
2155 con->peer_features = server_feat;
2156 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2157 con->peer_global_seq,
2158 le32_to_cpu(con->in_reply.connect_seq),
2159 con->connect_seq);
2160 WARN_ON(con->connect_seq !=
2161 le32_to_cpu(con->in_reply.connect_seq));
2162
2163 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2164 con_flag_set(con, CON_FLAG_LOSSYTX);
2165
2166 con->delay = 0; /* reset backoff memory */
2167
2168 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2169 prepare_write_seq(con);
2170 prepare_read_seq(con);
2171 } else {
2172 prepare_read_tag(con);
2173 }
2174 break;
2175
2176 case CEPH_MSGR_TAG_WAIT:
2177 /*
2178 * If there is a connection race (we are opening
2179 * connections to each other), one of us may just have
2180 * to WAIT. This shouldn't happen if we are the
2181 * client.
2182 */
2183 con->error_msg = "protocol error, got WAIT as client";
2184 return -1;
2185
2186 default:
2187 con->error_msg = "protocol error, garbage tag during connect";
2188 return -1;
2189 }
2190 return 0;
2191 }
2192
2193
2194 /*
2195 * read (part of) an ack
2196 */
2197 static int read_partial_ack(struct ceph_connection *con)
2198 {
2199 int size = sizeof (con->in_temp_ack);
2200 int end = size;
2201
2202 return read_partial(con, end, size, &con->in_temp_ack);
2203 }
2204
2205 /*
2206 * We can finally discard anything that's been acked.
2207 */
2208 static void process_ack(struct ceph_connection *con)
2209 {
2210 struct ceph_msg *m;
2211 u64 ack = le64_to_cpu(con->in_temp_ack);
2212 u64 seq;
2213
2214 while (!list_empty(&con->out_sent)) {
2215 m = list_first_entry(&con->out_sent, struct ceph_msg,
2216 list_head);
2217 seq = le64_to_cpu(m->hdr.seq);
2218 if (seq > ack)
2219 break;
2220 dout("got ack for seq %llu type %d at %p\n", seq,
2221 le16_to_cpu(m->hdr.type), m);
2222 m->ack_stamp = jiffies;
2223 ceph_msg_remove(m);
2224 }
2225 prepare_read_tag(con);
2226 }
2227
2228
2229 static int read_partial_message_section(struct ceph_connection *con,
2230 struct kvec *section,
2231 unsigned int sec_len, u32 *crc)
2232 {
2233 int ret, left;
2234
2235 BUG_ON(!section);
2236
2237 while (section->iov_len < sec_len) {
2238 BUG_ON(section->iov_base == NULL);
2239 left = sec_len - section->iov_len;
2240 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2241 section->iov_len, left);
2242 if (ret <= 0)
2243 return ret;
2244 section->iov_len += ret;
2245 }
2246 if (section->iov_len == sec_len)
2247 *crc = crc32c(0, section->iov_base, section->iov_len);
2248
2249 return 1;
2250 }
2251
2252 static int read_partial_msg_data(struct ceph_connection *con)
2253 {
2254 struct ceph_msg *msg = con->in_msg;
2255 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2256 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2257 struct page *page;
2258 size_t page_offset;
2259 size_t length;
2260 u32 crc = 0;
2261 int ret;
2262
2263 BUG_ON(!msg);
2264 if (list_empty(&msg->data))
2265 return -EIO;
2266
2267 if (do_datacrc)
2268 crc = con->in_data_crc;
2269 while (cursor->resid) {
2270 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2271 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2272 if (ret <= 0) {
2273 if (do_datacrc)
2274 con->in_data_crc = crc;
2275
2276 return ret;
2277 }
2278
2279 if (do_datacrc)
2280 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2281 (void) ceph_msg_data_advance(cursor, (size_t)ret);
2282 }
2283 if (do_datacrc)
2284 con->in_data_crc = crc;
2285
2286 return 1; /* must return > 0 to indicate success */
2287 }
2288
2289 /*
2290 * read (part of) a message.
2291 */
2292 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2293
2294 static int read_partial_message(struct ceph_connection *con)
2295 {
2296 struct ceph_msg *m = con->in_msg;
2297 int size;
2298 int end;
2299 int ret;
2300 unsigned int front_len, middle_len, data_len;
2301 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2302 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2303 u64 seq;
2304 u32 crc;
2305
2306 dout("read_partial_message con %p msg %p\n", con, m);
2307
2308 /* header */
2309 size = sizeof (con->in_hdr);
2310 end = size;
2311 ret = read_partial(con, end, size, &con->in_hdr);
2312 if (ret <= 0)
2313 return ret;
2314
2315 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2316 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2317 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2318 crc, con->in_hdr.crc);
2319 return -EBADMSG;
2320 }
2321
2322 front_len = le32_to_cpu(con->in_hdr.front_len);
2323 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2324 return -EIO;
2325 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2326 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2327 return -EIO;
2328 data_len = le32_to_cpu(con->in_hdr.data_len);
2329 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2330 return -EIO;
2331
2332 /* verify seq# */
2333 seq = le64_to_cpu(con->in_hdr.seq);
2334 if ((s64)seq - (s64)con->in_seq < 1) {
2335 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2336 ENTITY_NAME(con->peer_name),
2337 ceph_pr_addr(&con->peer_addr.in_addr),
2338 seq, con->in_seq + 1);
2339 con->in_base_pos = -front_len - middle_len - data_len -
2340 sizeof_footer(con);
2341 con->in_tag = CEPH_MSGR_TAG_READY;
2342 return 1;
2343 } else if ((s64)seq - (s64)con->in_seq > 1) {
2344 pr_err("read_partial_message bad seq %lld expected %lld\n",
2345 seq, con->in_seq + 1);
2346 con->error_msg = "bad message sequence # for incoming message";
2347 return -EBADE;
2348 }
2349
2350 /* allocate message? */
2351 if (!con->in_msg) {
2352 int skip = 0;
2353
2354 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2355 front_len, data_len);
2356 ret = ceph_con_in_msg_alloc(con, &skip);
2357 if (ret < 0)
2358 return ret;
2359
2360 BUG_ON(!con->in_msg ^ skip);
2361 if (skip) {
2362 /* skip this message */
2363 dout("alloc_msg said skip message\n");
2364 con->in_base_pos = -front_len - middle_len - data_len -
2365 sizeof_footer(con);
2366 con->in_tag = CEPH_MSGR_TAG_READY;
2367 con->in_seq++;
2368 return 1;
2369 }
2370
2371 BUG_ON(!con->in_msg);
2372 BUG_ON(con->in_msg->con != con);
2373 m = con->in_msg;
2374 m->front.iov_len = 0; /* haven't read it yet */
2375 if (m->middle)
2376 m->middle->vec.iov_len = 0;
2377
2378 /* prepare for data payload, if any */
2379
2380 if (data_len)
2381 prepare_message_data(con->in_msg, data_len);
2382 }
2383
2384 /* front */
2385 ret = read_partial_message_section(con, &m->front, front_len,
2386 &con->in_front_crc);
2387 if (ret <= 0)
2388 return ret;
2389
2390 /* middle */
2391 if (m->middle) {
2392 ret = read_partial_message_section(con, &m->middle->vec,
2393 middle_len,
2394 &con->in_middle_crc);
2395 if (ret <= 0)
2396 return ret;
2397 }
2398
2399 /* (page) data */
2400 if (data_len) {
2401 ret = read_partial_msg_data(con);
2402 if (ret <= 0)
2403 return ret;
2404 }
2405
2406 /* footer */
2407 size = sizeof_footer(con);
2408 end += size;
2409 ret = read_partial(con, end, size, &m->footer);
2410 if (ret <= 0)
2411 return ret;
2412
2413 if (!need_sign) {
2414 m->footer.flags = m->old_footer.flags;
2415 m->footer.sig = 0;
2416 }
2417
2418 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2419 m, front_len, m->footer.front_crc, middle_len,
2420 m->footer.middle_crc, data_len, m->footer.data_crc);
2421
2422 /* crc ok? */
2423 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2424 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2425 m, con->in_front_crc, m->footer.front_crc);
2426 return -EBADMSG;
2427 }
2428 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2429 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2430 m, con->in_middle_crc, m->footer.middle_crc);
2431 return -EBADMSG;
2432 }
2433 if (do_datacrc &&
2434 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2435 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2436 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2437 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2438 return -EBADMSG;
2439 }
2440
2441 if (need_sign && con->ops->check_message_signature &&
2442 con->ops->check_message_signature(m)) {
2443 pr_err("read_partial_message %p signature check failed\n", m);
2444 return -EBADMSG;
2445 }
2446
2447 return 1; /* done! */
2448 }
2449
2450 /*
2451 * Process message. This happens in the worker thread. The callback should
2452 * be careful not to do anything that waits on other incoming messages or it
2453 * may deadlock.
2454 */
2455 static void process_message(struct ceph_connection *con)
2456 {
2457 struct ceph_msg *msg = con->in_msg;
2458
2459 BUG_ON(con->in_msg->con != con);
2460 con->in_msg = NULL;
2461
2462 /* if first message, set peer_name */
2463 if (con->peer_name.type == 0)
2464 con->peer_name = msg->hdr.src;
2465
2466 con->in_seq++;
2467 mutex_unlock(&con->mutex);
2468
2469 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2470 msg, le64_to_cpu(msg->hdr.seq),
2471 ENTITY_NAME(msg->hdr.src),
2472 le16_to_cpu(msg->hdr.type),
2473 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2474 le32_to_cpu(msg->hdr.front_len),
2475 le32_to_cpu(msg->hdr.data_len),
2476 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2477 con->ops->dispatch(con, msg);
2478
2479 mutex_lock(&con->mutex);
2480 }
2481
2482 static int read_keepalive_ack(struct ceph_connection *con)
2483 {
2484 struct ceph_timespec ceph_ts;
2485 size_t size = sizeof(ceph_ts);
2486 int ret = read_partial(con, size, size, &ceph_ts);
2487 if (ret <= 0)
2488 return ret;
2489 ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2490 prepare_read_tag(con);
2491 return 1;
2492 }
2493
2494 /*
2495 * Write something to the socket. Called in a worker thread when the
2496 * socket appears to be writeable and we have something ready to send.
2497 */
2498 static int try_write(struct ceph_connection *con)
2499 {
2500 int ret = 1;
2501
2502 dout("try_write start %p state %lu\n", con, con->state);
2503
2504 more:
2505 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2506
2507 /* open the socket first? */
2508 if (con->state == CON_STATE_PREOPEN) {
2509 BUG_ON(con->sock);
2510 con->state = CON_STATE_CONNECTING;
2511
2512 con_out_kvec_reset(con);
2513 prepare_write_banner(con);
2514 prepare_read_banner(con);
2515
2516 BUG_ON(con->in_msg);
2517 con->in_tag = CEPH_MSGR_TAG_READY;
2518 dout("try_write initiating connect on %p new state %lu\n",
2519 con, con->state);
2520 ret = ceph_tcp_connect(con);
2521 if (ret < 0) {
2522 con->error_msg = "connect error";
2523 goto out;
2524 }
2525 }
2526
2527 more_kvec:
2528 /* kvec data queued? */
2529 if (con->out_kvec_left) {
2530 ret = write_partial_kvec(con);
2531 if (ret <= 0)
2532 goto out;
2533 }
2534 if (con->out_skip) {
2535 ret = write_partial_skip(con);
2536 if (ret <= 0)
2537 goto out;
2538 }
2539
2540 /* msg pages? */
2541 if (con->out_msg) {
2542 if (con->out_msg_done) {
2543 ceph_msg_put(con->out_msg);
2544 con->out_msg = NULL; /* we're done with this one */
2545 goto do_next;
2546 }
2547
2548 ret = write_partial_message_data(con);
2549 if (ret == 1)
2550 goto more_kvec; /* we need to send the footer, too! */
2551 if (ret == 0)
2552 goto out;
2553 if (ret < 0) {
2554 dout("try_write write_partial_message_data err %d\n",
2555 ret);
2556 goto out;
2557 }
2558 }
2559
2560 do_next:
2561 if (con->state == CON_STATE_OPEN) {
2562 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2563 prepare_write_keepalive(con);
2564 goto more;
2565 }
2566 /* is anything else pending? */
2567 if (!list_empty(&con->out_queue)) {
2568 prepare_write_message(con);
2569 goto more;
2570 }
2571 if (con->in_seq > con->in_seq_acked) {
2572 prepare_write_ack(con);
2573 goto more;
2574 }
2575 }
2576
2577 /* Nothing to do! */
2578 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2579 dout("try_write nothing else to write.\n");
2580 ret = 0;
2581 out:
2582 dout("try_write done on %p ret %d\n", con, ret);
2583 return ret;
2584 }
2585
2586
2587
2588 /*
2589 * Read what we can from the socket.
2590 */
2591 static int try_read(struct ceph_connection *con)
2592 {
2593 int ret = -1;
2594
2595 more:
2596 dout("try_read start on %p state %lu\n", con, con->state);
2597 if (con->state != CON_STATE_CONNECTING &&
2598 con->state != CON_STATE_NEGOTIATING &&
2599 con->state != CON_STATE_OPEN)
2600 return 0;
2601
2602 BUG_ON(!con->sock);
2603
2604 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2605 con->in_base_pos);
2606
2607 if (con->state == CON_STATE_CONNECTING) {
2608 dout("try_read connecting\n");
2609 ret = read_partial_banner(con);
2610 if (ret <= 0)
2611 goto out;
2612 ret = process_banner(con);
2613 if (ret < 0)
2614 goto out;
2615
2616 con->state = CON_STATE_NEGOTIATING;
2617
2618 /*
2619 * Received banner is good, exchange connection info.
2620 * Do not reset out_kvec, as sending our banner raced
2621 * with receiving peer banner after connect completed.
2622 */
2623 ret = prepare_write_connect(con);
2624 if (ret < 0)
2625 goto out;
2626 prepare_read_connect(con);
2627
2628 /* Send connection info before awaiting response */
2629 goto out;
2630 }
2631
2632 if (con->state == CON_STATE_NEGOTIATING) {
2633 dout("try_read negotiating\n");
2634 ret = read_partial_connect(con);
2635 if (ret <= 0)
2636 goto out;
2637 ret = process_connect(con);
2638 if (ret < 0)
2639 goto out;
2640 goto more;
2641 }
2642
2643 WARN_ON(con->state != CON_STATE_OPEN);
2644
2645 if (con->in_base_pos < 0) {
2646 /*
2647 * skipping + discarding content.
2648 *
2649 * FIXME: there must be a better way to do this!
2650 */
2651 static char buf[SKIP_BUF_SIZE];
2652 int skip = min((int) sizeof (buf), -con->in_base_pos);
2653
2654 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2655 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2656 if (ret <= 0)
2657 goto out;
2658 con->in_base_pos += ret;
2659 if (con->in_base_pos)
2660 goto more;
2661 }
2662 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2663 /*
2664 * what's next?
2665 */
2666 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2667 if (ret <= 0)
2668 goto out;
2669 dout("try_read got tag %d\n", (int)con->in_tag);
2670 switch (con->in_tag) {
2671 case CEPH_MSGR_TAG_MSG:
2672 prepare_read_message(con);
2673 break;
2674 case CEPH_MSGR_TAG_ACK:
2675 prepare_read_ack(con);
2676 break;
2677 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2678 prepare_read_keepalive_ack(con);
2679 break;
2680 case CEPH_MSGR_TAG_CLOSE:
2681 con_close_socket(con);
2682 con->state = CON_STATE_CLOSED;
2683 goto out;
2684 default:
2685 goto bad_tag;
2686 }
2687 }
2688 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2689 ret = read_partial_message(con);
2690 if (ret <= 0) {
2691 switch (ret) {
2692 case -EBADMSG:
2693 con->error_msg = "bad crc/signature";
2694 /* fall through */
2695 case -EBADE:
2696 ret = -EIO;
2697 break;
2698 case -EIO:
2699 con->error_msg = "io error";
2700 break;
2701 }
2702 goto out;
2703 }
2704 if (con->in_tag == CEPH_MSGR_TAG_READY)
2705 goto more;
2706 process_message(con);
2707 if (con->state == CON_STATE_OPEN)
2708 prepare_read_tag(con);
2709 goto more;
2710 }
2711 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2712 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2713 /*
2714 * the final handshake seq exchange is semantically
2715 * equivalent to an ACK
2716 */
2717 ret = read_partial_ack(con);
2718 if (ret <= 0)
2719 goto out;
2720 process_ack(con);
2721 goto more;
2722 }
2723 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2724 ret = read_keepalive_ack(con);
2725 if (ret <= 0)
2726 goto out;
2727 goto more;
2728 }
2729
2730 out:
2731 dout("try_read done on %p ret %d\n", con, ret);
2732 return ret;
2733
2734 bad_tag:
2735 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2736 con->error_msg = "protocol error, garbage tag";
2737 ret = -1;
2738 goto out;
2739 }
2740
2741
2742 /*
2743 * Atomically queue work on a connection after the specified delay.
2744 * Bump @con reference to avoid races with connection teardown.
2745 * Returns 0 if work was queued, or an error code otherwise.
2746 */
2747 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2748 {
2749 if (!con->ops->get(con)) {
2750 dout("%s %p ref count 0\n", __func__, con);
2751 return -ENOENT;
2752 }
2753
2754 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2755 dout("%s %p - already queued\n", __func__, con);
2756 con->ops->put(con);
2757 return -EBUSY;
2758 }
2759
2760 dout("%s %p %lu\n", __func__, con, delay);
2761 return 0;
2762 }
2763
2764 static void queue_con(struct ceph_connection *con)
2765 {
2766 (void) queue_con_delay(con, 0);
2767 }
2768
2769 static void cancel_con(struct ceph_connection *con)
2770 {
2771 if (cancel_delayed_work(&con->work)) {
2772 dout("%s %p\n", __func__, con);
2773 con->ops->put(con);
2774 }
2775 }
2776
2777 static bool con_sock_closed(struct ceph_connection *con)
2778 {
2779 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2780 return false;
2781
2782 #define CASE(x) \
2783 case CON_STATE_ ## x: \
2784 con->error_msg = "socket closed (con state " #x ")"; \
2785 break;
2786
2787 switch (con->state) {
2788 CASE(CLOSED);
2789 CASE(PREOPEN);
2790 CASE(CONNECTING);
2791 CASE(NEGOTIATING);
2792 CASE(OPEN);
2793 CASE(STANDBY);
2794 default:
2795 pr_warn("%s con %p unrecognized state %lu\n",
2796 __func__, con, con->state);
2797 con->error_msg = "unrecognized con state";
2798 BUG();
2799 break;
2800 }
2801 #undef CASE
2802
2803 return true;
2804 }
2805
2806 static bool con_backoff(struct ceph_connection *con)
2807 {
2808 int ret;
2809
2810 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2811 return false;
2812
2813 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2814 if (ret) {
2815 dout("%s: con %p FAILED to back off %lu\n", __func__,
2816 con, con->delay);
2817 BUG_ON(ret == -ENOENT);
2818 con_flag_set(con, CON_FLAG_BACKOFF);
2819 }
2820
2821 return true;
2822 }
2823
2824 /* Finish fault handling; con->mutex must *not* be held here */
2825
2826 static void con_fault_finish(struct ceph_connection *con)
2827 {
2828 dout("%s %p\n", __func__, con);
2829
2830 /*
2831 * in case we faulted due to authentication, invalidate our
2832 * current tickets so that we can get new ones.
2833 */
2834 if (con->auth_retry) {
2835 dout("auth_retry %d, invalidating\n", con->auth_retry);
2836 if (con->ops->invalidate_authorizer)
2837 con->ops->invalidate_authorizer(con);
2838 con->auth_retry = 0;
2839 }
2840
2841 if (con->ops->fault)
2842 con->ops->fault(con);
2843 }
2844
2845 /*
2846 * Do some work on a connection. Drop a connection ref when we're done.
2847 */
2848 static void ceph_con_workfn(struct work_struct *work)
2849 {
2850 struct ceph_connection *con = container_of(work, struct ceph_connection,
2851 work.work);
2852 bool fault;
2853
2854 mutex_lock(&con->mutex);
2855 while (true) {
2856 int ret;
2857
2858 if ((fault = con_sock_closed(con))) {
2859 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2860 break;
2861 }
2862 if (con_backoff(con)) {
2863 dout("%s: con %p BACKOFF\n", __func__, con);
2864 break;
2865 }
2866 if (con->state == CON_STATE_STANDBY) {
2867 dout("%s: con %p STANDBY\n", __func__, con);
2868 break;
2869 }
2870 if (con->state == CON_STATE_CLOSED) {
2871 dout("%s: con %p CLOSED\n", __func__, con);
2872 BUG_ON(con->sock);
2873 break;
2874 }
2875 if (con->state == CON_STATE_PREOPEN) {
2876 dout("%s: con %p PREOPEN\n", __func__, con);
2877 BUG_ON(con->sock);
2878 }
2879
2880 ret = try_read(con);
2881 if (ret < 0) {
2882 if (ret == -EAGAIN)
2883 continue;
2884 if (!con->error_msg)
2885 con->error_msg = "socket error on read";
2886 fault = true;
2887 break;
2888 }
2889
2890 ret = try_write(con);
2891 if (ret < 0) {
2892 if (ret == -EAGAIN)
2893 continue;
2894 if (!con->error_msg)
2895 con->error_msg = "socket error on write";
2896 fault = true;
2897 }
2898
2899 break; /* If we make it to here, we're done */
2900 }
2901 if (fault)
2902 con_fault(con);
2903 mutex_unlock(&con->mutex);
2904
2905 if (fault)
2906 con_fault_finish(con);
2907
2908 con->ops->put(con);
2909 }
2910
2911 /*
2912 * Generic error/fault handler. A retry mechanism is used with
2913 * exponential backoff
2914 */
2915 static void con_fault(struct ceph_connection *con)
2916 {
2917 dout("fault %p state %lu to peer %s\n",
2918 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2919
2920 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2921 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2922 con->error_msg = NULL;
2923
2924 WARN_ON(con->state != CON_STATE_CONNECTING &&
2925 con->state != CON_STATE_NEGOTIATING &&
2926 con->state != CON_STATE_OPEN);
2927
2928 con_close_socket(con);
2929
2930 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2931 dout("fault on LOSSYTX channel, marking CLOSED\n");
2932 con->state = CON_STATE_CLOSED;
2933 return;
2934 }
2935
2936 if (con->in_msg) {
2937 BUG_ON(con->in_msg->con != con);
2938 ceph_msg_put(con->in_msg);
2939 con->in_msg = NULL;
2940 }
2941
2942 /* Requeue anything that hasn't been acked */
2943 list_splice_init(&con->out_sent, &con->out_queue);
2944
2945 /* If there are no messages queued or keepalive pending, place
2946 * the connection in a STANDBY state */
2947 if (list_empty(&con->out_queue) &&
2948 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2949 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2950 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2951 con->state = CON_STATE_STANDBY;
2952 } else {
2953 /* retry after a delay. */
2954 con->state = CON_STATE_PREOPEN;
2955 if (con->delay == 0)
2956 con->delay = BASE_DELAY_INTERVAL;
2957 else if (con->delay < MAX_DELAY_INTERVAL)
2958 con->delay *= 2;
2959 con_flag_set(con, CON_FLAG_BACKOFF);
2960 queue_con(con);
2961 }
2962 }
2963
2964
2965
2966 /*
2967 * initialize a new messenger instance
2968 */
2969 void ceph_messenger_init(struct ceph_messenger *msgr,
2970 struct ceph_entity_addr *myaddr)
2971 {
2972 spin_lock_init(&msgr->global_seq_lock);
2973
2974 if (myaddr)
2975 msgr->inst.addr = *myaddr;
2976
2977 /* select a random nonce */
2978 msgr->inst.addr.type = 0;
2979 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2980 encode_my_addr(msgr);
2981
2982 atomic_set(&msgr->stopping, 0);
2983 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2984
2985 dout("%s %p\n", __func__, msgr);
2986 }
2987 EXPORT_SYMBOL(ceph_messenger_init);
2988
2989 void ceph_messenger_fini(struct ceph_messenger *msgr)
2990 {
2991 put_net(read_pnet(&msgr->net));
2992 }
2993 EXPORT_SYMBOL(ceph_messenger_fini);
2994
2995 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
2996 {
2997 if (msg->con)
2998 msg->con->ops->put(msg->con);
2999
3000 msg->con = con ? con->ops->get(con) : NULL;
3001 BUG_ON(msg->con != con);
3002 }
3003
3004 static void clear_standby(struct ceph_connection *con)
3005 {
3006 /* come back from STANDBY? */
3007 if (con->state == CON_STATE_STANDBY) {
3008 dout("clear_standby %p and ++connect_seq\n", con);
3009 con->state = CON_STATE_PREOPEN;
3010 con->connect_seq++;
3011 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3012 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3013 }
3014 }
3015
3016 /*
3017 * Queue up an outgoing message on the given connection.
3018 */
3019 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3020 {
3021 /* set src+dst */
3022 msg->hdr.src = con->msgr->inst.name;
3023 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3024 msg->needs_out_seq = true;
3025
3026 mutex_lock(&con->mutex);
3027
3028 if (con->state == CON_STATE_CLOSED) {
3029 dout("con_send %p closed, dropping %p\n", con, msg);
3030 ceph_msg_put(msg);
3031 mutex_unlock(&con->mutex);
3032 return;
3033 }
3034
3035 msg_con_set(msg, con);
3036
3037 BUG_ON(!list_empty(&msg->list_head));
3038 list_add_tail(&msg->list_head, &con->out_queue);
3039 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3040 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3041 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3042 le32_to_cpu(msg->hdr.front_len),
3043 le32_to_cpu(msg->hdr.middle_len),
3044 le32_to_cpu(msg->hdr.data_len));
3045
3046 clear_standby(con);
3047 mutex_unlock(&con->mutex);
3048
3049 /* if there wasn't anything waiting to send before, queue
3050 * new work */
3051 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3052 queue_con(con);
3053 }
3054 EXPORT_SYMBOL(ceph_con_send);
3055
3056 /*
3057 * Revoke a message that was previously queued for send
3058 */
3059 void ceph_msg_revoke(struct ceph_msg *msg)
3060 {
3061 struct ceph_connection *con = msg->con;
3062
3063 if (!con) {
3064 dout("%s msg %p null con\n", __func__, msg);
3065 return; /* Message not in our possession */
3066 }
3067
3068 mutex_lock(&con->mutex);
3069 if (!list_empty(&msg->list_head)) {
3070 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3071 list_del_init(&msg->list_head);
3072 msg->hdr.seq = 0;
3073
3074 ceph_msg_put(msg);
3075 }
3076 if (con->out_msg == msg) {
3077 BUG_ON(con->out_skip);
3078 /* footer */
3079 if (con->out_msg_done) {
3080 con->out_skip += con_out_kvec_skip(con);
3081 } else {
3082 BUG_ON(!msg->data_length);
3083 con->out_skip += sizeof_footer(con);
3084 }
3085 /* data, middle, front */
3086 if (msg->data_length)
3087 con->out_skip += msg->cursor.total_resid;
3088 if (msg->middle)
3089 con->out_skip += con_out_kvec_skip(con);
3090 con->out_skip += con_out_kvec_skip(con);
3091
3092 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3093 __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3094 msg->hdr.seq = 0;
3095 con->out_msg = NULL;
3096 ceph_msg_put(msg);
3097 }
3098
3099 mutex_unlock(&con->mutex);
3100 }
3101
3102 /*
3103 * Revoke a message that we may be reading data into
3104 */
3105 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3106 {
3107 struct ceph_connection *con = msg->con;
3108
3109 if (!con) {
3110 dout("%s msg %p null con\n", __func__, msg);
3111 return; /* Message not in our possession */
3112 }
3113
3114 mutex_lock(&con->mutex);
3115 if (con->in_msg == msg) {
3116 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3117 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3118 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3119
3120 /* skip rest of message */
3121 dout("%s %p msg %p revoked\n", __func__, con, msg);
3122 con->in_base_pos = con->in_base_pos -
3123 sizeof(struct ceph_msg_header) -
3124 front_len -
3125 middle_len -
3126 data_len -
3127 sizeof(struct ceph_msg_footer);
3128 ceph_msg_put(con->in_msg);
3129 con->in_msg = NULL;
3130 con->in_tag = CEPH_MSGR_TAG_READY;
3131 con->in_seq++;
3132 } else {
3133 dout("%s %p in_msg %p msg %p no-op\n",
3134 __func__, con, con->in_msg, msg);
3135 }
3136 mutex_unlock(&con->mutex);
3137 }
3138
3139 /*
3140 * Queue a keepalive byte to ensure the tcp connection is alive.
3141 */
3142 void ceph_con_keepalive(struct ceph_connection *con)
3143 {
3144 dout("con_keepalive %p\n", con);
3145 mutex_lock(&con->mutex);
3146 clear_standby(con);
3147 mutex_unlock(&con->mutex);
3148 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3149 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3150 queue_con(con);
3151 }
3152 EXPORT_SYMBOL(ceph_con_keepalive);
3153
3154 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3155 unsigned long interval)
3156 {
3157 if (interval > 0 &&
3158 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3159 struct timespec now = CURRENT_TIME;
3160 struct timespec ts;
3161 jiffies_to_timespec(interval, &ts);
3162 ts = timespec_add(con->last_keepalive_ack, ts);
3163 return timespec_compare(&now, &ts) >= 0;
3164 }
3165 return false;
3166 }
3167
3168 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3169 {
3170 struct ceph_msg_data *data;
3171
3172 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3173 return NULL;
3174
3175 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3176 if (data)
3177 data->type = type;
3178 INIT_LIST_HEAD(&data->links);
3179
3180 return data;
3181 }
3182
3183 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3184 {
3185 if (!data)
3186 return;
3187
3188 WARN_ON(!list_empty(&data->links));
3189 if (data->type == CEPH_MSG_DATA_PAGELIST)
3190 ceph_pagelist_release(data->pagelist);
3191 kmem_cache_free(ceph_msg_data_cache, data);
3192 }
3193
3194 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3195 size_t length, size_t alignment)
3196 {
3197 struct ceph_msg_data *data;
3198
3199 BUG_ON(!pages);
3200 BUG_ON(!length);
3201
3202 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3203 BUG_ON(!data);
3204 data->pages = pages;
3205 data->length = length;
3206 data->alignment = alignment & ~PAGE_MASK;
3207
3208 list_add_tail(&data->links, &msg->data);
3209 msg->data_length += length;
3210 }
3211 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3212
3213 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3214 struct ceph_pagelist *pagelist)
3215 {
3216 struct ceph_msg_data *data;
3217
3218 BUG_ON(!pagelist);
3219 BUG_ON(!pagelist->length);
3220
3221 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3222 BUG_ON(!data);
3223 data->pagelist = pagelist;
3224
3225 list_add_tail(&data->links, &msg->data);
3226 msg->data_length += pagelist->length;
3227 }
3228 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3229
3230 #ifdef CONFIG_BLOCK
3231 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3232 size_t length)
3233 {
3234 struct ceph_msg_data *data;
3235
3236 BUG_ON(!bio);
3237
3238 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3239 BUG_ON(!data);
3240 data->bio = bio;
3241 data->bio_length = length;
3242
3243 list_add_tail(&data->links, &msg->data);
3244 msg->data_length += length;
3245 }
3246 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3247 #endif /* CONFIG_BLOCK */
3248
3249 /*
3250 * construct a new message with given type, size
3251 * the new msg has a ref count of 1.
3252 */
3253 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3254 bool can_fail)
3255 {
3256 struct ceph_msg *m;
3257
3258 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3259 if (m == NULL)
3260 goto out;
3261
3262 m->hdr.type = cpu_to_le16(type);
3263 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3264 m->hdr.front_len = cpu_to_le32(front_len);
3265
3266 INIT_LIST_HEAD(&m->list_head);
3267 kref_init(&m->kref);
3268 INIT_LIST_HEAD(&m->data);
3269
3270 /* front */
3271 if (front_len) {
3272 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3273 if (m->front.iov_base == NULL) {
3274 dout("ceph_msg_new can't allocate %d bytes\n",
3275 front_len);
3276 goto out2;
3277 }
3278 } else {
3279 m->front.iov_base = NULL;
3280 }
3281 m->front_alloc_len = m->front.iov_len = front_len;
3282
3283 dout("ceph_msg_new %p front %d\n", m, front_len);
3284 return m;
3285
3286 out2:
3287 ceph_msg_put(m);
3288 out:
3289 if (!can_fail) {
3290 pr_err("msg_new can't create type %d front %d\n", type,
3291 front_len);
3292 WARN_ON(1);
3293 } else {
3294 dout("msg_new can't create type %d front %d\n", type,
3295 front_len);
3296 }
3297 return NULL;
3298 }
3299 EXPORT_SYMBOL(ceph_msg_new);
3300
3301 /*
3302 * Allocate "middle" portion of a message, if it is needed and wasn't
3303 * allocated by alloc_msg. This allows us to read a small fixed-size
3304 * per-type header in the front and then gracefully fail (i.e.,
3305 * propagate the error to the caller based on info in the front) when
3306 * the middle is too large.
3307 */
3308 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3309 {
3310 int type = le16_to_cpu(msg->hdr.type);
3311 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3312
3313 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3314 ceph_msg_type_name(type), middle_len);
3315 BUG_ON(!middle_len);
3316 BUG_ON(msg->middle);
3317
3318 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3319 if (!msg->middle)
3320 return -ENOMEM;
3321 return 0;
3322 }
3323
3324 /*
3325 * Allocate a message for receiving an incoming message on a
3326 * connection, and save the result in con->in_msg. Uses the
3327 * connection's private alloc_msg op if available.
3328 *
3329 * Returns 0 on success, or a negative error code.
3330 *
3331 * On success, if we set *skip = 1:
3332 * - the next message should be skipped and ignored.
3333 * - con->in_msg == NULL
3334 * or if we set *skip = 0:
3335 * - con->in_msg is non-null.
3336 * On error (ENOMEM, EAGAIN, ...),
3337 * - con->in_msg == NULL
3338 */
3339 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3340 {
3341 struct ceph_msg_header *hdr = &con->in_hdr;
3342 int middle_len = le32_to_cpu(hdr->middle_len);
3343 struct ceph_msg *msg;
3344 int ret = 0;
3345
3346 BUG_ON(con->in_msg != NULL);
3347 BUG_ON(!con->ops->alloc_msg);
3348
3349 mutex_unlock(&con->mutex);
3350 msg = con->ops->alloc_msg(con, hdr, skip);
3351 mutex_lock(&con->mutex);
3352 if (con->state != CON_STATE_OPEN) {
3353 if (msg)
3354 ceph_msg_put(msg);
3355 return -EAGAIN;
3356 }
3357 if (msg) {
3358 BUG_ON(*skip);
3359 msg_con_set(msg, con);
3360 con->in_msg = msg;
3361 } else {
3362 /*
3363 * Null message pointer means either we should skip
3364 * this message or we couldn't allocate memory. The
3365 * former is not an error.
3366 */
3367 if (*skip)
3368 return 0;
3369
3370 con->error_msg = "error allocating memory for incoming message";
3371 return -ENOMEM;
3372 }
3373 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3374
3375 if (middle_len && !con->in_msg->middle) {
3376 ret = ceph_alloc_middle(con, con->in_msg);
3377 if (ret < 0) {
3378 ceph_msg_put(con->in_msg);
3379 con->in_msg = NULL;
3380 }
3381 }
3382
3383 return ret;
3384 }
3385
3386
3387 /*
3388 * Free a generically kmalloc'd message.
3389 */
3390 static void ceph_msg_free(struct ceph_msg *m)
3391 {
3392 dout("%s %p\n", __func__, m);
3393 kvfree(m->front.iov_base);
3394 kmem_cache_free(ceph_msg_cache, m);
3395 }
3396
3397 static void ceph_msg_release(struct kref *kref)
3398 {
3399 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3400 struct ceph_msg_data *data, *next;
3401
3402 dout("%s %p\n", __func__, m);
3403 WARN_ON(!list_empty(&m->list_head));
3404
3405 msg_con_set(m, NULL);
3406
3407 /* drop middle, data, if any */
3408 if (m->middle) {
3409 ceph_buffer_put(m->middle);
3410 m->middle = NULL;
3411 }
3412
3413 list_for_each_entry_safe(data, next, &m->data, links) {
3414 list_del_init(&data->links);
3415 ceph_msg_data_destroy(data);
3416 }
3417 m->data_length = 0;
3418
3419 if (m->pool)
3420 ceph_msgpool_put(m->pool, m);
3421 else
3422 ceph_msg_free(m);
3423 }
3424
3425 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3426 {
3427 dout("%s %p (was %d)\n", __func__, msg,
3428 atomic_read(&msg->kref.refcount));
3429 kref_get(&msg->kref);
3430 return msg;
3431 }
3432 EXPORT_SYMBOL(ceph_msg_get);
3433
3434 void ceph_msg_put(struct ceph_msg *msg)
3435 {
3436 dout("%s %p (was %d)\n", __func__, msg,
3437 atomic_read(&msg->kref.refcount));
3438 kref_put(&msg->kref, ceph_msg_release);
3439 }
3440 EXPORT_SYMBOL(ceph_msg_put);
3441
3442 void ceph_msg_dump(struct ceph_msg *msg)
3443 {
3444 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3445 msg->front_alloc_len, msg->data_length);
3446 print_hex_dump(KERN_DEBUG, "header: ",
3447 DUMP_PREFIX_OFFSET, 16, 1,
3448 &msg->hdr, sizeof(msg->hdr), true);
3449 print_hex_dump(KERN_DEBUG, " front: ",
3450 DUMP_PREFIX_OFFSET, 16, 1,
3451 msg->front.iov_base, msg->front.iov_len, true);
3452 if (msg->middle)
3453 print_hex_dump(KERN_DEBUG, "middle: ",
3454 DUMP_PREFIX_OFFSET, 16, 1,
3455 msg->middle->vec.iov_base,
3456 msg->middle->vec.iov_len, true);
3457 print_hex_dump(KERN_DEBUG, "footer: ",
3458 DUMP_PREFIX_OFFSET, 16, 1,
3459 &msg->footer, sizeof(msg->footer), true);
3460 }
3461 EXPORT_SYMBOL(ceph_msg_dump);