]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ceph/messenger.c
Merge branches 'for-4.4/upstream-fixes', 'for-4.5/async-suspend', 'for-4.5/container...
[mirror_ubuntu-artful-kernel.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/nsproxy.h>
10 #include <linux/slab.h>
11 #include <linux/socket.h>
12 #include <linux/string.h>
13 #ifdef CONFIG_BLOCK
14 #include <linux/bio.h>
15 #endif /* CONFIG_BLOCK */
16 #include <linux/dns_resolver.h>
17 #include <net/tcp.h>
18
19 #include <linux/ceph/ceph_features.h>
20 #include <linux/ceph/libceph.h>
21 #include <linux/ceph/messenger.h>
22 #include <linux/ceph/decode.h>
23 #include <linux/ceph/pagelist.h>
24 #include <linux/export.h>
25
26 #define list_entry_next(pos, member) \
27 list_entry(pos->member.next, typeof(*pos), member)
28
29 /*
30 * Ceph uses the messenger to exchange ceph_msg messages with other
31 * hosts in the system. The messenger provides ordered and reliable
32 * delivery. We tolerate TCP disconnects by reconnecting (with
33 * exponential backoff) in the case of a fault (disconnection, bad
34 * crc, protocol error). Acks allow sent messages to be discarded by
35 * the sender.
36 */
37
38 /*
39 * We track the state of the socket on a given connection using
40 * values defined below. The transition to a new socket state is
41 * handled by a function which verifies we aren't coming from an
42 * unexpected state.
43 *
44 * --------
45 * | NEW* | transient initial state
46 * --------
47 * | con_sock_state_init()
48 * v
49 * ----------
50 * | CLOSED | initialized, but no socket (and no
51 * ---------- TCP connection)
52 * ^ \
53 * | \ con_sock_state_connecting()
54 * | ----------------------
55 * | \
56 * + con_sock_state_closed() \
57 * |+--------------------------- \
58 * | \ \ \
59 * | ----------- \ \
60 * | | CLOSING | socket event; \ \
61 * | ----------- await close \ \
62 * | ^ \ |
63 * | | \ |
64 * | + con_sock_state_closing() \ |
65 * | / \ | |
66 * | / --------------- | |
67 * | / \ v v
68 * | / --------------
69 * | / -----------------| CONNECTING | socket created, TCP
70 * | | / -------------- connect initiated
71 * | | | con_sock_state_connected()
72 * | | v
73 * -------------
74 * | CONNECTED | TCP connection established
75 * -------------
76 *
77 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
78 */
79
80 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
81 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
82 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
83 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
84 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
85
86 /*
87 * connection states
88 */
89 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
90 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
91 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
92 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
93 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
94 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
95
96 /*
97 * ceph_connection flag bits
98 */
99 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
100 * messages on errors */
101 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
102 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
103 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
104 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
105
106 static bool con_flag_valid(unsigned long con_flag)
107 {
108 switch (con_flag) {
109 case CON_FLAG_LOSSYTX:
110 case CON_FLAG_KEEPALIVE_PENDING:
111 case CON_FLAG_WRITE_PENDING:
112 case CON_FLAG_SOCK_CLOSED:
113 case CON_FLAG_BACKOFF:
114 return true;
115 default:
116 return false;
117 }
118 }
119
120 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
121 {
122 BUG_ON(!con_flag_valid(con_flag));
123
124 clear_bit(con_flag, &con->flags);
125 }
126
127 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
128 {
129 BUG_ON(!con_flag_valid(con_flag));
130
131 set_bit(con_flag, &con->flags);
132 }
133
134 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
135 {
136 BUG_ON(!con_flag_valid(con_flag));
137
138 return test_bit(con_flag, &con->flags);
139 }
140
141 static bool con_flag_test_and_clear(struct ceph_connection *con,
142 unsigned long con_flag)
143 {
144 BUG_ON(!con_flag_valid(con_flag));
145
146 return test_and_clear_bit(con_flag, &con->flags);
147 }
148
149 static bool con_flag_test_and_set(struct ceph_connection *con,
150 unsigned long con_flag)
151 {
152 BUG_ON(!con_flag_valid(con_flag));
153
154 return test_and_set_bit(con_flag, &con->flags);
155 }
156
157 /* Slab caches for frequently-allocated structures */
158
159 static struct kmem_cache *ceph_msg_cache;
160 static struct kmem_cache *ceph_msg_data_cache;
161
162 /* static tag bytes (protocol control messages) */
163 static char tag_msg = CEPH_MSGR_TAG_MSG;
164 static char tag_ack = CEPH_MSGR_TAG_ACK;
165 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
166 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
167
168 #ifdef CONFIG_LOCKDEP
169 static struct lock_class_key socket_class;
170 #endif
171
172 /*
173 * When skipping (ignoring) a block of input we read it into a "skip
174 * buffer," which is this many bytes in size.
175 */
176 #define SKIP_BUF_SIZE 1024
177
178 static void queue_con(struct ceph_connection *con);
179 static void cancel_con(struct ceph_connection *con);
180 static void ceph_con_workfn(struct work_struct *);
181 static void con_fault(struct ceph_connection *con);
182
183 /*
184 * Nicely render a sockaddr as a string. An array of formatted
185 * strings is used, to approximate reentrancy.
186 */
187 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
188 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
189 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
190 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
191
192 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
193 static atomic_t addr_str_seq = ATOMIC_INIT(0);
194
195 static struct page *zero_page; /* used in certain error cases */
196
197 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
198 {
199 int i;
200 char *s;
201 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
202 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
203
204 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
205 s = addr_str[i];
206
207 switch (ss->ss_family) {
208 case AF_INET:
209 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
210 ntohs(in4->sin_port));
211 break;
212
213 case AF_INET6:
214 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
215 ntohs(in6->sin6_port));
216 break;
217
218 default:
219 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
220 ss->ss_family);
221 }
222
223 return s;
224 }
225 EXPORT_SYMBOL(ceph_pr_addr);
226
227 static void encode_my_addr(struct ceph_messenger *msgr)
228 {
229 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
230 ceph_encode_addr(&msgr->my_enc_addr);
231 }
232
233 /*
234 * work queue for all reading and writing to/from the socket.
235 */
236 static struct workqueue_struct *ceph_msgr_wq;
237
238 static int ceph_msgr_slab_init(void)
239 {
240 BUG_ON(ceph_msg_cache);
241 ceph_msg_cache = kmem_cache_create("ceph_msg",
242 sizeof (struct ceph_msg),
243 __alignof__(struct ceph_msg), 0, NULL);
244
245 if (!ceph_msg_cache)
246 return -ENOMEM;
247
248 BUG_ON(ceph_msg_data_cache);
249 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
250 sizeof (struct ceph_msg_data),
251 __alignof__(struct ceph_msg_data),
252 0, NULL);
253 if (ceph_msg_data_cache)
254 return 0;
255
256 kmem_cache_destroy(ceph_msg_cache);
257 ceph_msg_cache = NULL;
258
259 return -ENOMEM;
260 }
261
262 static void ceph_msgr_slab_exit(void)
263 {
264 BUG_ON(!ceph_msg_data_cache);
265 kmem_cache_destroy(ceph_msg_data_cache);
266 ceph_msg_data_cache = NULL;
267
268 BUG_ON(!ceph_msg_cache);
269 kmem_cache_destroy(ceph_msg_cache);
270 ceph_msg_cache = NULL;
271 }
272
273 static void _ceph_msgr_exit(void)
274 {
275 if (ceph_msgr_wq) {
276 destroy_workqueue(ceph_msgr_wq);
277 ceph_msgr_wq = NULL;
278 }
279
280 BUG_ON(zero_page == NULL);
281 page_cache_release(zero_page);
282 zero_page = NULL;
283
284 ceph_msgr_slab_exit();
285 }
286
287 int ceph_msgr_init(void)
288 {
289 if (ceph_msgr_slab_init())
290 return -ENOMEM;
291
292 BUG_ON(zero_page != NULL);
293 zero_page = ZERO_PAGE(0);
294 page_cache_get(zero_page);
295
296 /*
297 * The number of active work items is limited by the number of
298 * connections, so leave @max_active at default.
299 */
300 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
301 if (ceph_msgr_wq)
302 return 0;
303
304 pr_err("msgr_init failed to create workqueue\n");
305 _ceph_msgr_exit();
306
307 return -ENOMEM;
308 }
309 EXPORT_SYMBOL(ceph_msgr_init);
310
311 void ceph_msgr_exit(void)
312 {
313 BUG_ON(ceph_msgr_wq == NULL);
314
315 _ceph_msgr_exit();
316 }
317 EXPORT_SYMBOL(ceph_msgr_exit);
318
319 void ceph_msgr_flush(void)
320 {
321 flush_workqueue(ceph_msgr_wq);
322 }
323 EXPORT_SYMBOL(ceph_msgr_flush);
324
325 /* Connection socket state transition functions */
326
327 static void con_sock_state_init(struct ceph_connection *con)
328 {
329 int old_state;
330
331 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
332 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
333 printk("%s: unexpected old state %d\n", __func__, old_state);
334 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
335 CON_SOCK_STATE_CLOSED);
336 }
337
338 static void con_sock_state_connecting(struct ceph_connection *con)
339 {
340 int old_state;
341
342 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
343 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
344 printk("%s: unexpected old state %d\n", __func__, old_state);
345 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
346 CON_SOCK_STATE_CONNECTING);
347 }
348
349 static void con_sock_state_connected(struct ceph_connection *con)
350 {
351 int old_state;
352
353 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
354 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
355 printk("%s: unexpected old state %d\n", __func__, old_state);
356 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
357 CON_SOCK_STATE_CONNECTED);
358 }
359
360 static void con_sock_state_closing(struct ceph_connection *con)
361 {
362 int old_state;
363
364 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
365 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
366 old_state != CON_SOCK_STATE_CONNECTED &&
367 old_state != CON_SOCK_STATE_CLOSING))
368 printk("%s: unexpected old state %d\n", __func__, old_state);
369 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
370 CON_SOCK_STATE_CLOSING);
371 }
372
373 static void con_sock_state_closed(struct ceph_connection *con)
374 {
375 int old_state;
376
377 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
378 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
379 old_state != CON_SOCK_STATE_CLOSING &&
380 old_state != CON_SOCK_STATE_CONNECTING &&
381 old_state != CON_SOCK_STATE_CLOSED))
382 printk("%s: unexpected old state %d\n", __func__, old_state);
383 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
384 CON_SOCK_STATE_CLOSED);
385 }
386
387 /*
388 * socket callback functions
389 */
390
391 /* data available on socket, or listen socket received a connect */
392 static void ceph_sock_data_ready(struct sock *sk)
393 {
394 struct ceph_connection *con = sk->sk_user_data;
395 if (atomic_read(&con->msgr->stopping)) {
396 return;
397 }
398
399 if (sk->sk_state != TCP_CLOSE_WAIT) {
400 dout("%s on %p state = %lu, queueing work\n", __func__,
401 con, con->state);
402 queue_con(con);
403 }
404 }
405
406 /* socket has buffer space for writing */
407 static void ceph_sock_write_space(struct sock *sk)
408 {
409 struct ceph_connection *con = sk->sk_user_data;
410
411 /* only queue to workqueue if there is data we want to write,
412 * and there is sufficient space in the socket buffer to accept
413 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
414 * doesn't get called again until try_write() fills the socket
415 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
416 * and net/core/stream.c:sk_stream_write_space().
417 */
418 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
419 if (sk_stream_is_writeable(sk)) {
420 dout("%s %p queueing write work\n", __func__, con);
421 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
422 queue_con(con);
423 }
424 } else {
425 dout("%s %p nothing to write\n", __func__, con);
426 }
427 }
428
429 /* socket's state has changed */
430 static void ceph_sock_state_change(struct sock *sk)
431 {
432 struct ceph_connection *con = sk->sk_user_data;
433
434 dout("%s %p state = %lu sk_state = %u\n", __func__,
435 con, con->state, sk->sk_state);
436
437 switch (sk->sk_state) {
438 case TCP_CLOSE:
439 dout("%s TCP_CLOSE\n", __func__);
440 case TCP_CLOSE_WAIT:
441 dout("%s TCP_CLOSE_WAIT\n", __func__);
442 con_sock_state_closing(con);
443 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
444 queue_con(con);
445 break;
446 case TCP_ESTABLISHED:
447 dout("%s TCP_ESTABLISHED\n", __func__);
448 con_sock_state_connected(con);
449 queue_con(con);
450 break;
451 default: /* Everything else is uninteresting */
452 break;
453 }
454 }
455
456 /*
457 * set up socket callbacks
458 */
459 static void set_sock_callbacks(struct socket *sock,
460 struct ceph_connection *con)
461 {
462 struct sock *sk = sock->sk;
463 sk->sk_user_data = con;
464 sk->sk_data_ready = ceph_sock_data_ready;
465 sk->sk_write_space = ceph_sock_write_space;
466 sk->sk_state_change = ceph_sock_state_change;
467 }
468
469
470 /*
471 * socket helpers
472 */
473
474 /*
475 * initiate connection to a remote socket.
476 */
477 static int ceph_tcp_connect(struct ceph_connection *con)
478 {
479 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
480 struct socket *sock;
481 int ret;
482
483 BUG_ON(con->sock);
484 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
485 SOCK_STREAM, IPPROTO_TCP, &sock);
486 if (ret)
487 return ret;
488 sock->sk->sk_allocation = GFP_NOFS;
489
490 #ifdef CONFIG_LOCKDEP
491 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
492 #endif
493
494 set_sock_callbacks(sock, con);
495
496 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
497
498 con_sock_state_connecting(con);
499 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
500 O_NONBLOCK);
501 if (ret == -EINPROGRESS) {
502 dout("connect %s EINPROGRESS sk_state = %u\n",
503 ceph_pr_addr(&con->peer_addr.in_addr),
504 sock->sk->sk_state);
505 } else if (ret < 0) {
506 pr_err("connect %s error %d\n",
507 ceph_pr_addr(&con->peer_addr.in_addr), ret);
508 sock_release(sock);
509 return ret;
510 }
511
512 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
513 int optval = 1;
514
515 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
516 (char *)&optval, sizeof(optval));
517 if (ret)
518 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
519 ret);
520 }
521
522 con->sock = sock;
523 return 0;
524 }
525
526 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
527 {
528 struct kvec iov = {buf, len};
529 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
530 int r;
531
532 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
533 if (r == -EAGAIN)
534 r = 0;
535 return r;
536 }
537
538 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
539 int page_offset, size_t length)
540 {
541 void *kaddr;
542 int ret;
543
544 BUG_ON(page_offset + length > PAGE_SIZE);
545
546 kaddr = kmap(page);
547 BUG_ON(!kaddr);
548 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
549 kunmap(page);
550
551 return ret;
552 }
553
554 /*
555 * write something. @more is true if caller will be sending more data
556 * shortly.
557 */
558 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
559 size_t kvlen, size_t len, int more)
560 {
561 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
562 int r;
563
564 if (more)
565 msg.msg_flags |= MSG_MORE;
566 else
567 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
568
569 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
570 if (r == -EAGAIN)
571 r = 0;
572 return r;
573 }
574
575 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
576 int offset, size_t size, bool more)
577 {
578 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
579 int ret;
580
581 ret = kernel_sendpage(sock, page, offset, size, flags);
582 if (ret == -EAGAIN)
583 ret = 0;
584
585 return ret;
586 }
587
588 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
589 int offset, size_t size, bool more)
590 {
591 int ret;
592 struct kvec iov;
593
594 /* sendpage cannot properly handle pages with page_count == 0,
595 * we need to fallback to sendmsg if that's the case */
596 if (page_count(page) >= 1)
597 return __ceph_tcp_sendpage(sock, page, offset, size, more);
598
599 iov.iov_base = kmap(page) + offset;
600 iov.iov_len = size;
601 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
602 kunmap(page);
603
604 return ret;
605 }
606
607 /*
608 * Shutdown/close the socket for the given connection.
609 */
610 static int con_close_socket(struct ceph_connection *con)
611 {
612 int rc = 0;
613
614 dout("con_close_socket on %p sock %p\n", con, con->sock);
615 if (con->sock) {
616 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
617 sock_release(con->sock);
618 con->sock = NULL;
619 }
620
621 /*
622 * Forcibly clear the SOCK_CLOSED flag. It gets set
623 * independent of the connection mutex, and we could have
624 * received a socket close event before we had the chance to
625 * shut the socket down.
626 */
627 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
628
629 con_sock_state_closed(con);
630 return rc;
631 }
632
633 /*
634 * Reset a connection. Discard all incoming and outgoing messages
635 * and clear *_seq state.
636 */
637 static void ceph_msg_remove(struct ceph_msg *msg)
638 {
639 list_del_init(&msg->list_head);
640
641 ceph_msg_put(msg);
642 }
643 static void ceph_msg_remove_list(struct list_head *head)
644 {
645 while (!list_empty(head)) {
646 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
647 list_head);
648 ceph_msg_remove(msg);
649 }
650 }
651
652 static void reset_connection(struct ceph_connection *con)
653 {
654 /* reset connection, out_queue, msg_ and connect_seq */
655 /* discard existing out_queue and msg_seq */
656 dout("reset_connection %p\n", con);
657 ceph_msg_remove_list(&con->out_queue);
658 ceph_msg_remove_list(&con->out_sent);
659
660 if (con->in_msg) {
661 BUG_ON(con->in_msg->con != con);
662 ceph_msg_put(con->in_msg);
663 con->in_msg = NULL;
664 }
665
666 con->connect_seq = 0;
667 con->out_seq = 0;
668 if (con->out_msg) {
669 BUG_ON(con->out_msg->con != con);
670 ceph_msg_put(con->out_msg);
671 con->out_msg = NULL;
672 }
673 con->in_seq = 0;
674 con->in_seq_acked = 0;
675 }
676
677 /*
678 * mark a peer down. drop any open connections.
679 */
680 void ceph_con_close(struct ceph_connection *con)
681 {
682 mutex_lock(&con->mutex);
683 dout("con_close %p peer %s\n", con,
684 ceph_pr_addr(&con->peer_addr.in_addr));
685 con->state = CON_STATE_CLOSED;
686
687 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
688 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
689 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
690 con_flag_clear(con, CON_FLAG_BACKOFF);
691
692 reset_connection(con);
693 con->peer_global_seq = 0;
694 cancel_con(con);
695 con_close_socket(con);
696 mutex_unlock(&con->mutex);
697 }
698 EXPORT_SYMBOL(ceph_con_close);
699
700 /*
701 * Reopen a closed connection, with a new peer address.
702 */
703 void ceph_con_open(struct ceph_connection *con,
704 __u8 entity_type, __u64 entity_num,
705 struct ceph_entity_addr *addr)
706 {
707 mutex_lock(&con->mutex);
708 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
709
710 WARN_ON(con->state != CON_STATE_CLOSED);
711 con->state = CON_STATE_PREOPEN;
712
713 con->peer_name.type = (__u8) entity_type;
714 con->peer_name.num = cpu_to_le64(entity_num);
715
716 memcpy(&con->peer_addr, addr, sizeof(*addr));
717 con->delay = 0; /* reset backoff memory */
718 mutex_unlock(&con->mutex);
719 queue_con(con);
720 }
721 EXPORT_SYMBOL(ceph_con_open);
722
723 /*
724 * return true if this connection ever successfully opened
725 */
726 bool ceph_con_opened(struct ceph_connection *con)
727 {
728 return con->connect_seq > 0;
729 }
730
731 /*
732 * initialize a new connection.
733 */
734 void ceph_con_init(struct ceph_connection *con, void *private,
735 const struct ceph_connection_operations *ops,
736 struct ceph_messenger *msgr)
737 {
738 dout("con_init %p\n", con);
739 memset(con, 0, sizeof(*con));
740 con->private = private;
741 con->ops = ops;
742 con->msgr = msgr;
743
744 con_sock_state_init(con);
745
746 mutex_init(&con->mutex);
747 INIT_LIST_HEAD(&con->out_queue);
748 INIT_LIST_HEAD(&con->out_sent);
749 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
750
751 con->state = CON_STATE_CLOSED;
752 }
753 EXPORT_SYMBOL(ceph_con_init);
754
755
756 /*
757 * We maintain a global counter to order connection attempts. Get
758 * a unique seq greater than @gt.
759 */
760 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
761 {
762 u32 ret;
763
764 spin_lock(&msgr->global_seq_lock);
765 if (msgr->global_seq < gt)
766 msgr->global_seq = gt;
767 ret = ++msgr->global_seq;
768 spin_unlock(&msgr->global_seq_lock);
769 return ret;
770 }
771
772 static void con_out_kvec_reset(struct ceph_connection *con)
773 {
774 con->out_kvec_left = 0;
775 con->out_kvec_bytes = 0;
776 con->out_kvec_cur = &con->out_kvec[0];
777 }
778
779 static void con_out_kvec_add(struct ceph_connection *con,
780 size_t size, void *data)
781 {
782 int index;
783
784 index = con->out_kvec_left;
785 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
786
787 con->out_kvec[index].iov_len = size;
788 con->out_kvec[index].iov_base = data;
789 con->out_kvec_left++;
790 con->out_kvec_bytes += size;
791 }
792
793 #ifdef CONFIG_BLOCK
794
795 /*
796 * For a bio data item, a piece is whatever remains of the next
797 * entry in the current bio iovec, or the first entry in the next
798 * bio in the list.
799 */
800 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
801 size_t length)
802 {
803 struct ceph_msg_data *data = cursor->data;
804 struct bio *bio;
805
806 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
807
808 bio = data->bio;
809 BUG_ON(!bio);
810
811 cursor->resid = min(length, data->bio_length);
812 cursor->bio = bio;
813 cursor->bvec_iter = bio->bi_iter;
814 cursor->last_piece =
815 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
816 }
817
818 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
819 size_t *page_offset,
820 size_t *length)
821 {
822 struct ceph_msg_data *data = cursor->data;
823 struct bio *bio;
824 struct bio_vec bio_vec;
825
826 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
827
828 bio = cursor->bio;
829 BUG_ON(!bio);
830
831 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
832
833 *page_offset = (size_t) bio_vec.bv_offset;
834 BUG_ON(*page_offset >= PAGE_SIZE);
835 if (cursor->last_piece) /* pagelist offset is always 0 */
836 *length = cursor->resid;
837 else
838 *length = (size_t) bio_vec.bv_len;
839 BUG_ON(*length > cursor->resid);
840 BUG_ON(*page_offset + *length > PAGE_SIZE);
841
842 return bio_vec.bv_page;
843 }
844
845 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
846 size_t bytes)
847 {
848 struct bio *bio;
849 struct bio_vec bio_vec;
850
851 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
852
853 bio = cursor->bio;
854 BUG_ON(!bio);
855
856 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
857
858 /* Advance the cursor offset */
859
860 BUG_ON(cursor->resid < bytes);
861 cursor->resid -= bytes;
862
863 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
864
865 if (bytes < bio_vec.bv_len)
866 return false; /* more bytes to process in this segment */
867
868 /* Move on to the next segment, and possibly the next bio */
869
870 if (!cursor->bvec_iter.bi_size) {
871 bio = bio->bi_next;
872 cursor->bio = bio;
873 if (bio)
874 cursor->bvec_iter = bio->bi_iter;
875 else
876 memset(&cursor->bvec_iter, 0,
877 sizeof(cursor->bvec_iter));
878 }
879
880 if (!cursor->last_piece) {
881 BUG_ON(!cursor->resid);
882 BUG_ON(!bio);
883 /* A short read is OK, so use <= rather than == */
884 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
885 cursor->last_piece = true;
886 }
887
888 return true;
889 }
890 #endif /* CONFIG_BLOCK */
891
892 /*
893 * For a page array, a piece comes from the first page in the array
894 * that has not already been fully consumed.
895 */
896 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
897 size_t length)
898 {
899 struct ceph_msg_data *data = cursor->data;
900 int page_count;
901
902 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
903
904 BUG_ON(!data->pages);
905 BUG_ON(!data->length);
906
907 cursor->resid = min(length, data->length);
908 page_count = calc_pages_for(data->alignment, (u64)data->length);
909 cursor->page_offset = data->alignment & ~PAGE_MASK;
910 cursor->page_index = 0;
911 BUG_ON(page_count > (int)USHRT_MAX);
912 cursor->page_count = (unsigned short)page_count;
913 BUG_ON(length > SIZE_MAX - cursor->page_offset);
914 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
915 }
916
917 static struct page *
918 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
919 size_t *page_offset, size_t *length)
920 {
921 struct ceph_msg_data *data = cursor->data;
922
923 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
924
925 BUG_ON(cursor->page_index >= cursor->page_count);
926 BUG_ON(cursor->page_offset >= PAGE_SIZE);
927
928 *page_offset = cursor->page_offset;
929 if (cursor->last_piece)
930 *length = cursor->resid;
931 else
932 *length = PAGE_SIZE - *page_offset;
933
934 return data->pages[cursor->page_index];
935 }
936
937 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
938 size_t bytes)
939 {
940 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
941
942 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
943
944 /* Advance the cursor page offset */
945
946 cursor->resid -= bytes;
947 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
948 if (!bytes || cursor->page_offset)
949 return false; /* more bytes to process in the current page */
950
951 if (!cursor->resid)
952 return false; /* no more data */
953
954 /* Move on to the next page; offset is already at 0 */
955
956 BUG_ON(cursor->page_index >= cursor->page_count);
957 cursor->page_index++;
958 cursor->last_piece = cursor->resid <= PAGE_SIZE;
959
960 return true;
961 }
962
963 /*
964 * For a pagelist, a piece is whatever remains to be consumed in the
965 * first page in the list, or the front of the next page.
966 */
967 static void
968 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
969 size_t length)
970 {
971 struct ceph_msg_data *data = cursor->data;
972 struct ceph_pagelist *pagelist;
973 struct page *page;
974
975 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
976
977 pagelist = data->pagelist;
978 BUG_ON(!pagelist);
979
980 if (!length)
981 return; /* pagelist can be assigned but empty */
982
983 BUG_ON(list_empty(&pagelist->head));
984 page = list_first_entry(&pagelist->head, struct page, lru);
985
986 cursor->resid = min(length, pagelist->length);
987 cursor->page = page;
988 cursor->offset = 0;
989 cursor->last_piece = cursor->resid <= PAGE_SIZE;
990 }
991
992 static struct page *
993 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
994 size_t *page_offset, size_t *length)
995 {
996 struct ceph_msg_data *data = cursor->data;
997 struct ceph_pagelist *pagelist;
998
999 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1000
1001 pagelist = data->pagelist;
1002 BUG_ON(!pagelist);
1003
1004 BUG_ON(!cursor->page);
1005 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1006
1007 /* offset of first page in pagelist is always 0 */
1008 *page_offset = cursor->offset & ~PAGE_MASK;
1009 if (cursor->last_piece)
1010 *length = cursor->resid;
1011 else
1012 *length = PAGE_SIZE - *page_offset;
1013
1014 return cursor->page;
1015 }
1016
1017 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1018 size_t bytes)
1019 {
1020 struct ceph_msg_data *data = cursor->data;
1021 struct ceph_pagelist *pagelist;
1022
1023 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1024
1025 pagelist = data->pagelist;
1026 BUG_ON(!pagelist);
1027
1028 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1029 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1030
1031 /* Advance the cursor offset */
1032
1033 cursor->resid -= bytes;
1034 cursor->offset += bytes;
1035 /* offset of first page in pagelist is always 0 */
1036 if (!bytes || cursor->offset & ~PAGE_MASK)
1037 return false; /* more bytes to process in the current page */
1038
1039 if (!cursor->resid)
1040 return false; /* no more data */
1041
1042 /* Move on to the next page */
1043
1044 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1045 cursor->page = list_entry_next(cursor->page, lru);
1046 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1047
1048 return true;
1049 }
1050
1051 /*
1052 * Message data is handled (sent or received) in pieces, where each
1053 * piece resides on a single page. The network layer might not
1054 * consume an entire piece at once. A data item's cursor keeps
1055 * track of which piece is next to process and how much remains to
1056 * be processed in that piece. It also tracks whether the current
1057 * piece is the last one in the data item.
1058 */
1059 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1060 {
1061 size_t length = cursor->total_resid;
1062
1063 switch (cursor->data->type) {
1064 case CEPH_MSG_DATA_PAGELIST:
1065 ceph_msg_data_pagelist_cursor_init(cursor, length);
1066 break;
1067 case CEPH_MSG_DATA_PAGES:
1068 ceph_msg_data_pages_cursor_init(cursor, length);
1069 break;
1070 #ifdef CONFIG_BLOCK
1071 case CEPH_MSG_DATA_BIO:
1072 ceph_msg_data_bio_cursor_init(cursor, length);
1073 break;
1074 #endif /* CONFIG_BLOCK */
1075 case CEPH_MSG_DATA_NONE:
1076 default:
1077 /* BUG(); */
1078 break;
1079 }
1080 cursor->need_crc = true;
1081 }
1082
1083 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1084 {
1085 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1086 struct ceph_msg_data *data;
1087
1088 BUG_ON(!length);
1089 BUG_ON(length > msg->data_length);
1090 BUG_ON(list_empty(&msg->data));
1091
1092 cursor->data_head = &msg->data;
1093 cursor->total_resid = length;
1094 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1095 cursor->data = data;
1096
1097 __ceph_msg_data_cursor_init(cursor);
1098 }
1099
1100 /*
1101 * Return the page containing the next piece to process for a given
1102 * data item, and supply the page offset and length of that piece.
1103 * Indicate whether this is the last piece in this data item.
1104 */
1105 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1106 size_t *page_offset, size_t *length,
1107 bool *last_piece)
1108 {
1109 struct page *page;
1110
1111 switch (cursor->data->type) {
1112 case CEPH_MSG_DATA_PAGELIST:
1113 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1114 break;
1115 case CEPH_MSG_DATA_PAGES:
1116 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1117 break;
1118 #ifdef CONFIG_BLOCK
1119 case CEPH_MSG_DATA_BIO:
1120 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1121 break;
1122 #endif /* CONFIG_BLOCK */
1123 case CEPH_MSG_DATA_NONE:
1124 default:
1125 page = NULL;
1126 break;
1127 }
1128 BUG_ON(!page);
1129 BUG_ON(*page_offset + *length > PAGE_SIZE);
1130 BUG_ON(!*length);
1131 if (last_piece)
1132 *last_piece = cursor->last_piece;
1133
1134 return page;
1135 }
1136
1137 /*
1138 * Returns true if the result moves the cursor on to the next piece
1139 * of the data item.
1140 */
1141 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1142 size_t bytes)
1143 {
1144 bool new_piece;
1145
1146 BUG_ON(bytes > cursor->resid);
1147 switch (cursor->data->type) {
1148 case CEPH_MSG_DATA_PAGELIST:
1149 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1150 break;
1151 case CEPH_MSG_DATA_PAGES:
1152 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1153 break;
1154 #ifdef CONFIG_BLOCK
1155 case CEPH_MSG_DATA_BIO:
1156 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1157 break;
1158 #endif /* CONFIG_BLOCK */
1159 case CEPH_MSG_DATA_NONE:
1160 default:
1161 BUG();
1162 break;
1163 }
1164 cursor->total_resid -= bytes;
1165
1166 if (!cursor->resid && cursor->total_resid) {
1167 WARN_ON(!cursor->last_piece);
1168 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1169 cursor->data = list_entry_next(cursor->data, links);
1170 __ceph_msg_data_cursor_init(cursor);
1171 new_piece = true;
1172 }
1173 cursor->need_crc = new_piece;
1174
1175 return new_piece;
1176 }
1177
1178 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1179 {
1180 BUG_ON(!msg);
1181 BUG_ON(!data_len);
1182
1183 /* Initialize data cursor */
1184
1185 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1186 }
1187
1188 /*
1189 * Prepare footer for currently outgoing message, and finish things
1190 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1191 */
1192 static void prepare_write_message_footer(struct ceph_connection *con)
1193 {
1194 struct ceph_msg *m = con->out_msg;
1195 int v = con->out_kvec_left;
1196
1197 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1198
1199 dout("prepare_write_message_footer %p\n", con);
1200 con->out_kvec_is_msg = true;
1201 con->out_kvec[v].iov_base = &m->footer;
1202 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1203 if (con->ops->sign_message)
1204 con->ops->sign_message(m);
1205 else
1206 m->footer.sig = 0;
1207 con->out_kvec[v].iov_len = sizeof(m->footer);
1208 con->out_kvec_bytes += sizeof(m->footer);
1209 } else {
1210 m->old_footer.flags = m->footer.flags;
1211 con->out_kvec[v].iov_len = sizeof(m->old_footer);
1212 con->out_kvec_bytes += sizeof(m->old_footer);
1213 }
1214 con->out_kvec_left++;
1215 con->out_more = m->more_to_follow;
1216 con->out_msg_done = true;
1217 }
1218
1219 /*
1220 * Prepare headers for the next outgoing message.
1221 */
1222 static void prepare_write_message(struct ceph_connection *con)
1223 {
1224 struct ceph_msg *m;
1225 u32 crc;
1226
1227 con_out_kvec_reset(con);
1228 con->out_kvec_is_msg = true;
1229 con->out_msg_done = false;
1230
1231 /* Sneak an ack in there first? If we can get it into the same
1232 * TCP packet that's a good thing. */
1233 if (con->in_seq > con->in_seq_acked) {
1234 con->in_seq_acked = con->in_seq;
1235 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1236 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1237 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1238 &con->out_temp_ack);
1239 }
1240
1241 BUG_ON(list_empty(&con->out_queue));
1242 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1243 con->out_msg = m;
1244 BUG_ON(m->con != con);
1245
1246 /* put message on sent list */
1247 ceph_msg_get(m);
1248 list_move_tail(&m->list_head, &con->out_sent);
1249
1250 /*
1251 * only assign outgoing seq # if we haven't sent this message
1252 * yet. if it is requeued, resend with it's original seq.
1253 */
1254 if (m->needs_out_seq) {
1255 m->hdr.seq = cpu_to_le64(++con->out_seq);
1256 m->needs_out_seq = false;
1257 }
1258 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1259
1260 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1261 m, con->out_seq, le16_to_cpu(m->hdr.type),
1262 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1263 m->data_length);
1264 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1265
1266 /* tag + hdr + front + middle */
1267 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1268 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1269 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1270
1271 if (m->middle)
1272 con_out_kvec_add(con, m->middle->vec.iov_len,
1273 m->middle->vec.iov_base);
1274
1275 /* fill in crc (except data pages), footer */
1276 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1277 con->out_msg->hdr.crc = cpu_to_le32(crc);
1278 con->out_msg->footer.flags = 0;
1279
1280 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1281 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1282 if (m->middle) {
1283 crc = crc32c(0, m->middle->vec.iov_base,
1284 m->middle->vec.iov_len);
1285 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1286 } else
1287 con->out_msg->footer.middle_crc = 0;
1288 dout("%s front_crc %u middle_crc %u\n", __func__,
1289 le32_to_cpu(con->out_msg->footer.front_crc),
1290 le32_to_cpu(con->out_msg->footer.middle_crc));
1291
1292 /* is there a data payload? */
1293 con->out_msg->footer.data_crc = 0;
1294 if (m->data_length) {
1295 prepare_message_data(con->out_msg, m->data_length);
1296 con->out_more = 1; /* data + footer will follow */
1297 } else {
1298 /* no, queue up footer too and be done */
1299 prepare_write_message_footer(con);
1300 }
1301
1302 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1303 }
1304
1305 /*
1306 * Prepare an ack.
1307 */
1308 static void prepare_write_ack(struct ceph_connection *con)
1309 {
1310 dout("prepare_write_ack %p %llu -> %llu\n", con,
1311 con->in_seq_acked, con->in_seq);
1312 con->in_seq_acked = con->in_seq;
1313
1314 con_out_kvec_reset(con);
1315
1316 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1317
1318 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1319 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1320 &con->out_temp_ack);
1321
1322 con->out_more = 1; /* more will follow.. eventually.. */
1323 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1324 }
1325
1326 /*
1327 * Prepare to share the seq during handshake
1328 */
1329 static void prepare_write_seq(struct ceph_connection *con)
1330 {
1331 dout("prepare_write_seq %p %llu -> %llu\n", con,
1332 con->in_seq_acked, con->in_seq);
1333 con->in_seq_acked = con->in_seq;
1334
1335 con_out_kvec_reset(con);
1336
1337 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1338 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1339 &con->out_temp_ack);
1340
1341 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1342 }
1343
1344 /*
1345 * Prepare to write keepalive byte.
1346 */
1347 static void prepare_write_keepalive(struct ceph_connection *con)
1348 {
1349 dout("prepare_write_keepalive %p\n", con);
1350 con_out_kvec_reset(con);
1351 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1352 struct timespec now = CURRENT_TIME;
1353
1354 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1355 ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1356 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1357 &con->out_temp_keepalive2);
1358 } else {
1359 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1360 }
1361 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1362 }
1363
1364 /*
1365 * Connection negotiation.
1366 */
1367
1368 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1369 int *auth_proto)
1370 {
1371 struct ceph_auth_handshake *auth;
1372
1373 if (!con->ops->get_authorizer) {
1374 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1375 con->out_connect.authorizer_len = 0;
1376 return NULL;
1377 }
1378
1379 /* Can't hold the mutex while getting authorizer */
1380 mutex_unlock(&con->mutex);
1381 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1382 mutex_lock(&con->mutex);
1383
1384 if (IS_ERR(auth))
1385 return auth;
1386 if (con->state != CON_STATE_NEGOTIATING)
1387 return ERR_PTR(-EAGAIN);
1388
1389 con->auth_reply_buf = auth->authorizer_reply_buf;
1390 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1391 return auth;
1392 }
1393
1394 /*
1395 * We connected to a peer and are saying hello.
1396 */
1397 static void prepare_write_banner(struct ceph_connection *con)
1398 {
1399 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1400 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1401 &con->msgr->my_enc_addr);
1402
1403 con->out_more = 0;
1404 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1405 }
1406
1407 static int prepare_write_connect(struct ceph_connection *con)
1408 {
1409 unsigned int global_seq = get_global_seq(con->msgr, 0);
1410 int proto;
1411 int auth_proto;
1412 struct ceph_auth_handshake *auth;
1413
1414 switch (con->peer_name.type) {
1415 case CEPH_ENTITY_TYPE_MON:
1416 proto = CEPH_MONC_PROTOCOL;
1417 break;
1418 case CEPH_ENTITY_TYPE_OSD:
1419 proto = CEPH_OSDC_PROTOCOL;
1420 break;
1421 case CEPH_ENTITY_TYPE_MDS:
1422 proto = CEPH_MDSC_PROTOCOL;
1423 break;
1424 default:
1425 BUG();
1426 }
1427
1428 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1429 con->connect_seq, global_seq, proto);
1430
1431 con->out_connect.features =
1432 cpu_to_le64(from_msgr(con->msgr)->supported_features);
1433 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1434 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1435 con->out_connect.global_seq = cpu_to_le32(global_seq);
1436 con->out_connect.protocol_version = cpu_to_le32(proto);
1437 con->out_connect.flags = 0;
1438
1439 auth_proto = CEPH_AUTH_UNKNOWN;
1440 auth = get_connect_authorizer(con, &auth_proto);
1441 if (IS_ERR(auth))
1442 return PTR_ERR(auth);
1443
1444 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1445 con->out_connect.authorizer_len = auth ?
1446 cpu_to_le32(auth->authorizer_buf_len) : 0;
1447
1448 con_out_kvec_add(con, sizeof (con->out_connect),
1449 &con->out_connect);
1450 if (auth && auth->authorizer_buf_len)
1451 con_out_kvec_add(con, auth->authorizer_buf_len,
1452 auth->authorizer_buf);
1453
1454 con->out_more = 0;
1455 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1456
1457 return 0;
1458 }
1459
1460 /*
1461 * write as much of pending kvecs to the socket as we can.
1462 * 1 -> done
1463 * 0 -> socket full, but more to do
1464 * <0 -> error
1465 */
1466 static int write_partial_kvec(struct ceph_connection *con)
1467 {
1468 int ret;
1469
1470 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1471 while (con->out_kvec_bytes > 0) {
1472 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1473 con->out_kvec_left, con->out_kvec_bytes,
1474 con->out_more);
1475 if (ret <= 0)
1476 goto out;
1477 con->out_kvec_bytes -= ret;
1478 if (con->out_kvec_bytes == 0)
1479 break; /* done */
1480
1481 /* account for full iov entries consumed */
1482 while (ret >= con->out_kvec_cur->iov_len) {
1483 BUG_ON(!con->out_kvec_left);
1484 ret -= con->out_kvec_cur->iov_len;
1485 con->out_kvec_cur++;
1486 con->out_kvec_left--;
1487 }
1488 /* and for a partially-consumed entry */
1489 if (ret) {
1490 con->out_kvec_cur->iov_len -= ret;
1491 con->out_kvec_cur->iov_base += ret;
1492 }
1493 }
1494 con->out_kvec_left = 0;
1495 con->out_kvec_is_msg = false;
1496 ret = 1;
1497 out:
1498 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1499 con->out_kvec_bytes, con->out_kvec_left, ret);
1500 return ret; /* done! */
1501 }
1502
1503 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1504 unsigned int page_offset,
1505 unsigned int length)
1506 {
1507 char *kaddr;
1508
1509 kaddr = kmap(page);
1510 BUG_ON(kaddr == NULL);
1511 crc = crc32c(crc, kaddr + page_offset, length);
1512 kunmap(page);
1513
1514 return crc;
1515 }
1516 /*
1517 * Write as much message data payload as we can. If we finish, queue
1518 * up the footer.
1519 * 1 -> done, footer is now queued in out_kvec[].
1520 * 0 -> socket full, but more to do
1521 * <0 -> error
1522 */
1523 static int write_partial_message_data(struct ceph_connection *con)
1524 {
1525 struct ceph_msg *msg = con->out_msg;
1526 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1527 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1528 u32 crc;
1529
1530 dout("%s %p msg %p\n", __func__, con, msg);
1531
1532 if (list_empty(&msg->data))
1533 return -EINVAL;
1534
1535 /*
1536 * Iterate through each page that contains data to be
1537 * written, and send as much as possible for each.
1538 *
1539 * If we are calculating the data crc (the default), we will
1540 * need to map the page. If we have no pages, they have
1541 * been revoked, so use the zero page.
1542 */
1543 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1544 while (cursor->resid) {
1545 struct page *page;
1546 size_t page_offset;
1547 size_t length;
1548 bool last_piece;
1549 bool need_crc;
1550 int ret;
1551
1552 page = ceph_msg_data_next(cursor, &page_offset, &length,
1553 &last_piece);
1554 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1555 length, !last_piece);
1556 if (ret <= 0) {
1557 if (do_datacrc)
1558 msg->footer.data_crc = cpu_to_le32(crc);
1559
1560 return ret;
1561 }
1562 if (do_datacrc && cursor->need_crc)
1563 crc = ceph_crc32c_page(crc, page, page_offset, length);
1564 need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1565 }
1566
1567 dout("%s %p msg %p done\n", __func__, con, msg);
1568
1569 /* prepare and queue up footer, too */
1570 if (do_datacrc)
1571 msg->footer.data_crc = cpu_to_le32(crc);
1572 else
1573 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1574 con_out_kvec_reset(con);
1575 prepare_write_message_footer(con);
1576
1577 return 1; /* must return > 0 to indicate success */
1578 }
1579
1580 /*
1581 * write some zeros
1582 */
1583 static int write_partial_skip(struct ceph_connection *con)
1584 {
1585 int ret;
1586
1587 while (con->out_skip > 0) {
1588 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1589
1590 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1591 if (ret <= 0)
1592 goto out;
1593 con->out_skip -= ret;
1594 }
1595 ret = 1;
1596 out:
1597 return ret;
1598 }
1599
1600 /*
1601 * Prepare to read connection handshake, or an ack.
1602 */
1603 static void prepare_read_banner(struct ceph_connection *con)
1604 {
1605 dout("prepare_read_banner %p\n", con);
1606 con->in_base_pos = 0;
1607 }
1608
1609 static void prepare_read_connect(struct ceph_connection *con)
1610 {
1611 dout("prepare_read_connect %p\n", con);
1612 con->in_base_pos = 0;
1613 }
1614
1615 static void prepare_read_ack(struct ceph_connection *con)
1616 {
1617 dout("prepare_read_ack %p\n", con);
1618 con->in_base_pos = 0;
1619 }
1620
1621 static void prepare_read_seq(struct ceph_connection *con)
1622 {
1623 dout("prepare_read_seq %p\n", con);
1624 con->in_base_pos = 0;
1625 con->in_tag = CEPH_MSGR_TAG_SEQ;
1626 }
1627
1628 static void prepare_read_tag(struct ceph_connection *con)
1629 {
1630 dout("prepare_read_tag %p\n", con);
1631 con->in_base_pos = 0;
1632 con->in_tag = CEPH_MSGR_TAG_READY;
1633 }
1634
1635 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1636 {
1637 dout("prepare_read_keepalive_ack %p\n", con);
1638 con->in_base_pos = 0;
1639 }
1640
1641 /*
1642 * Prepare to read a message.
1643 */
1644 static int prepare_read_message(struct ceph_connection *con)
1645 {
1646 dout("prepare_read_message %p\n", con);
1647 BUG_ON(con->in_msg != NULL);
1648 con->in_base_pos = 0;
1649 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1650 return 0;
1651 }
1652
1653
1654 static int read_partial(struct ceph_connection *con,
1655 int end, int size, void *object)
1656 {
1657 while (con->in_base_pos < end) {
1658 int left = end - con->in_base_pos;
1659 int have = size - left;
1660 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1661 if (ret <= 0)
1662 return ret;
1663 con->in_base_pos += ret;
1664 }
1665 return 1;
1666 }
1667
1668
1669 /*
1670 * Read all or part of the connect-side handshake on a new connection
1671 */
1672 static int read_partial_banner(struct ceph_connection *con)
1673 {
1674 int size;
1675 int end;
1676 int ret;
1677
1678 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1679
1680 /* peer's banner */
1681 size = strlen(CEPH_BANNER);
1682 end = size;
1683 ret = read_partial(con, end, size, con->in_banner);
1684 if (ret <= 0)
1685 goto out;
1686
1687 size = sizeof (con->actual_peer_addr);
1688 end += size;
1689 ret = read_partial(con, end, size, &con->actual_peer_addr);
1690 if (ret <= 0)
1691 goto out;
1692
1693 size = sizeof (con->peer_addr_for_me);
1694 end += size;
1695 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1696 if (ret <= 0)
1697 goto out;
1698
1699 out:
1700 return ret;
1701 }
1702
1703 static int read_partial_connect(struct ceph_connection *con)
1704 {
1705 int size;
1706 int end;
1707 int ret;
1708
1709 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1710
1711 size = sizeof (con->in_reply);
1712 end = size;
1713 ret = read_partial(con, end, size, &con->in_reply);
1714 if (ret <= 0)
1715 goto out;
1716
1717 size = le32_to_cpu(con->in_reply.authorizer_len);
1718 end += size;
1719 ret = read_partial(con, end, size, con->auth_reply_buf);
1720 if (ret <= 0)
1721 goto out;
1722
1723 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1724 con, (int)con->in_reply.tag,
1725 le32_to_cpu(con->in_reply.connect_seq),
1726 le32_to_cpu(con->in_reply.global_seq));
1727 out:
1728 return ret;
1729
1730 }
1731
1732 /*
1733 * Verify the hello banner looks okay.
1734 */
1735 static int verify_hello(struct ceph_connection *con)
1736 {
1737 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1738 pr_err("connect to %s got bad banner\n",
1739 ceph_pr_addr(&con->peer_addr.in_addr));
1740 con->error_msg = "protocol error, bad banner";
1741 return -1;
1742 }
1743 return 0;
1744 }
1745
1746 static bool addr_is_blank(struct sockaddr_storage *ss)
1747 {
1748 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1749 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1750
1751 switch (ss->ss_family) {
1752 case AF_INET:
1753 return addr->s_addr == htonl(INADDR_ANY);
1754 case AF_INET6:
1755 return ipv6_addr_any(addr6);
1756 default:
1757 return true;
1758 }
1759 }
1760
1761 static int addr_port(struct sockaddr_storage *ss)
1762 {
1763 switch (ss->ss_family) {
1764 case AF_INET:
1765 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1766 case AF_INET6:
1767 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1768 }
1769 return 0;
1770 }
1771
1772 static void addr_set_port(struct sockaddr_storage *ss, int p)
1773 {
1774 switch (ss->ss_family) {
1775 case AF_INET:
1776 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1777 break;
1778 case AF_INET6:
1779 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1780 break;
1781 }
1782 }
1783
1784 /*
1785 * Unlike other *_pton function semantics, zero indicates success.
1786 */
1787 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1788 char delim, const char **ipend)
1789 {
1790 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1791 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1792
1793 memset(ss, 0, sizeof(*ss));
1794
1795 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1796 ss->ss_family = AF_INET;
1797 return 0;
1798 }
1799
1800 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1801 ss->ss_family = AF_INET6;
1802 return 0;
1803 }
1804
1805 return -EINVAL;
1806 }
1807
1808 /*
1809 * Extract hostname string and resolve using kernel DNS facility.
1810 */
1811 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1812 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1813 struct sockaddr_storage *ss, char delim, const char **ipend)
1814 {
1815 const char *end, *delim_p;
1816 char *colon_p, *ip_addr = NULL;
1817 int ip_len, ret;
1818
1819 /*
1820 * The end of the hostname occurs immediately preceding the delimiter or
1821 * the port marker (':') where the delimiter takes precedence.
1822 */
1823 delim_p = memchr(name, delim, namelen);
1824 colon_p = memchr(name, ':', namelen);
1825
1826 if (delim_p && colon_p)
1827 end = delim_p < colon_p ? delim_p : colon_p;
1828 else if (!delim_p && colon_p)
1829 end = colon_p;
1830 else {
1831 end = delim_p;
1832 if (!end) /* case: hostname:/ */
1833 end = name + namelen;
1834 }
1835
1836 if (end <= name)
1837 return -EINVAL;
1838
1839 /* do dns_resolve upcall */
1840 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1841 if (ip_len > 0)
1842 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1843 else
1844 ret = -ESRCH;
1845
1846 kfree(ip_addr);
1847
1848 *ipend = end;
1849
1850 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1851 ret, ret ? "failed" : ceph_pr_addr(ss));
1852
1853 return ret;
1854 }
1855 #else
1856 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1857 struct sockaddr_storage *ss, char delim, const char **ipend)
1858 {
1859 return -EINVAL;
1860 }
1861 #endif
1862
1863 /*
1864 * Parse a server name (IP or hostname). If a valid IP address is not found
1865 * then try to extract a hostname to resolve using userspace DNS upcall.
1866 */
1867 static int ceph_parse_server_name(const char *name, size_t namelen,
1868 struct sockaddr_storage *ss, char delim, const char **ipend)
1869 {
1870 int ret;
1871
1872 ret = ceph_pton(name, namelen, ss, delim, ipend);
1873 if (ret)
1874 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1875
1876 return ret;
1877 }
1878
1879 /*
1880 * Parse an ip[:port] list into an addr array. Use the default
1881 * monitor port if a port isn't specified.
1882 */
1883 int ceph_parse_ips(const char *c, const char *end,
1884 struct ceph_entity_addr *addr,
1885 int max_count, int *count)
1886 {
1887 int i, ret = -EINVAL;
1888 const char *p = c;
1889
1890 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1891 for (i = 0; i < max_count; i++) {
1892 const char *ipend;
1893 struct sockaddr_storage *ss = &addr[i].in_addr;
1894 int port;
1895 char delim = ',';
1896
1897 if (*p == '[') {
1898 delim = ']';
1899 p++;
1900 }
1901
1902 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1903 if (ret)
1904 goto bad;
1905 ret = -EINVAL;
1906
1907 p = ipend;
1908
1909 if (delim == ']') {
1910 if (*p != ']') {
1911 dout("missing matching ']'\n");
1912 goto bad;
1913 }
1914 p++;
1915 }
1916
1917 /* port? */
1918 if (p < end && *p == ':') {
1919 port = 0;
1920 p++;
1921 while (p < end && *p >= '0' && *p <= '9') {
1922 port = (port * 10) + (*p - '0');
1923 p++;
1924 }
1925 if (port == 0)
1926 port = CEPH_MON_PORT;
1927 else if (port > 65535)
1928 goto bad;
1929 } else {
1930 port = CEPH_MON_PORT;
1931 }
1932
1933 addr_set_port(ss, port);
1934
1935 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1936
1937 if (p == end)
1938 break;
1939 if (*p != ',')
1940 goto bad;
1941 p++;
1942 }
1943
1944 if (p != end)
1945 goto bad;
1946
1947 if (count)
1948 *count = i + 1;
1949 return 0;
1950
1951 bad:
1952 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1953 return ret;
1954 }
1955 EXPORT_SYMBOL(ceph_parse_ips);
1956
1957 static int process_banner(struct ceph_connection *con)
1958 {
1959 dout("process_banner on %p\n", con);
1960
1961 if (verify_hello(con) < 0)
1962 return -1;
1963
1964 ceph_decode_addr(&con->actual_peer_addr);
1965 ceph_decode_addr(&con->peer_addr_for_me);
1966
1967 /*
1968 * Make sure the other end is who we wanted. note that the other
1969 * end may not yet know their ip address, so if it's 0.0.0.0, give
1970 * them the benefit of the doubt.
1971 */
1972 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1973 sizeof(con->peer_addr)) != 0 &&
1974 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1975 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1976 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1977 ceph_pr_addr(&con->peer_addr.in_addr),
1978 (int)le32_to_cpu(con->peer_addr.nonce),
1979 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1980 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1981 con->error_msg = "wrong peer at address";
1982 return -1;
1983 }
1984
1985 /*
1986 * did we learn our address?
1987 */
1988 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1989 int port = addr_port(&con->msgr->inst.addr.in_addr);
1990
1991 memcpy(&con->msgr->inst.addr.in_addr,
1992 &con->peer_addr_for_me.in_addr,
1993 sizeof(con->peer_addr_for_me.in_addr));
1994 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1995 encode_my_addr(con->msgr);
1996 dout("process_banner learned my addr is %s\n",
1997 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1998 }
1999
2000 return 0;
2001 }
2002
2003 static int process_connect(struct ceph_connection *con)
2004 {
2005 u64 sup_feat = from_msgr(con->msgr)->supported_features;
2006 u64 req_feat = from_msgr(con->msgr)->required_features;
2007 u64 server_feat = ceph_sanitize_features(
2008 le64_to_cpu(con->in_reply.features));
2009 int ret;
2010
2011 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2012
2013 switch (con->in_reply.tag) {
2014 case CEPH_MSGR_TAG_FEATURES:
2015 pr_err("%s%lld %s feature set mismatch,"
2016 " my %llx < server's %llx, missing %llx\n",
2017 ENTITY_NAME(con->peer_name),
2018 ceph_pr_addr(&con->peer_addr.in_addr),
2019 sup_feat, server_feat, server_feat & ~sup_feat);
2020 con->error_msg = "missing required protocol features";
2021 reset_connection(con);
2022 return -1;
2023
2024 case CEPH_MSGR_TAG_BADPROTOVER:
2025 pr_err("%s%lld %s protocol version mismatch,"
2026 " my %d != server's %d\n",
2027 ENTITY_NAME(con->peer_name),
2028 ceph_pr_addr(&con->peer_addr.in_addr),
2029 le32_to_cpu(con->out_connect.protocol_version),
2030 le32_to_cpu(con->in_reply.protocol_version));
2031 con->error_msg = "protocol version mismatch";
2032 reset_connection(con);
2033 return -1;
2034
2035 case CEPH_MSGR_TAG_BADAUTHORIZER:
2036 con->auth_retry++;
2037 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2038 con->auth_retry);
2039 if (con->auth_retry == 2) {
2040 con->error_msg = "connect authorization failure";
2041 return -1;
2042 }
2043 con_out_kvec_reset(con);
2044 ret = prepare_write_connect(con);
2045 if (ret < 0)
2046 return ret;
2047 prepare_read_connect(con);
2048 break;
2049
2050 case CEPH_MSGR_TAG_RESETSESSION:
2051 /*
2052 * If we connected with a large connect_seq but the peer
2053 * has no record of a session with us (no connection, or
2054 * connect_seq == 0), they will send RESETSESION to indicate
2055 * that they must have reset their session, and may have
2056 * dropped messages.
2057 */
2058 dout("process_connect got RESET peer seq %u\n",
2059 le32_to_cpu(con->in_reply.connect_seq));
2060 pr_err("%s%lld %s connection reset\n",
2061 ENTITY_NAME(con->peer_name),
2062 ceph_pr_addr(&con->peer_addr.in_addr));
2063 reset_connection(con);
2064 con_out_kvec_reset(con);
2065 ret = prepare_write_connect(con);
2066 if (ret < 0)
2067 return ret;
2068 prepare_read_connect(con);
2069
2070 /* Tell ceph about it. */
2071 mutex_unlock(&con->mutex);
2072 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2073 if (con->ops->peer_reset)
2074 con->ops->peer_reset(con);
2075 mutex_lock(&con->mutex);
2076 if (con->state != CON_STATE_NEGOTIATING)
2077 return -EAGAIN;
2078 break;
2079
2080 case CEPH_MSGR_TAG_RETRY_SESSION:
2081 /*
2082 * If we sent a smaller connect_seq than the peer has, try
2083 * again with a larger value.
2084 */
2085 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2086 le32_to_cpu(con->out_connect.connect_seq),
2087 le32_to_cpu(con->in_reply.connect_seq));
2088 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2089 con_out_kvec_reset(con);
2090 ret = prepare_write_connect(con);
2091 if (ret < 0)
2092 return ret;
2093 prepare_read_connect(con);
2094 break;
2095
2096 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2097 /*
2098 * If we sent a smaller global_seq than the peer has, try
2099 * again with a larger value.
2100 */
2101 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2102 con->peer_global_seq,
2103 le32_to_cpu(con->in_reply.global_seq));
2104 get_global_seq(con->msgr,
2105 le32_to_cpu(con->in_reply.global_seq));
2106 con_out_kvec_reset(con);
2107 ret = prepare_write_connect(con);
2108 if (ret < 0)
2109 return ret;
2110 prepare_read_connect(con);
2111 break;
2112
2113 case CEPH_MSGR_TAG_SEQ:
2114 case CEPH_MSGR_TAG_READY:
2115 if (req_feat & ~server_feat) {
2116 pr_err("%s%lld %s protocol feature mismatch,"
2117 " my required %llx > server's %llx, need %llx\n",
2118 ENTITY_NAME(con->peer_name),
2119 ceph_pr_addr(&con->peer_addr.in_addr),
2120 req_feat, server_feat, req_feat & ~server_feat);
2121 con->error_msg = "missing required protocol features";
2122 reset_connection(con);
2123 return -1;
2124 }
2125
2126 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2127 con->state = CON_STATE_OPEN;
2128 con->auth_retry = 0; /* we authenticated; clear flag */
2129 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2130 con->connect_seq++;
2131 con->peer_features = server_feat;
2132 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2133 con->peer_global_seq,
2134 le32_to_cpu(con->in_reply.connect_seq),
2135 con->connect_seq);
2136 WARN_ON(con->connect_seq !=
2137 le32_to_cpu(con->in_reply.connect_seq));
2138
2139 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2140 con_flag_set(con, CON_FLAG_LOSSYTX);
2141
2142 con->delay = 0; /* reset backoff memory */
2143
2144 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2145 prepare_write_seq(con);
2146 prepare_read_seq(con);
2147 } else {
2148 prepare_read_tag(con);
2149 }
2150 break;
2151
2152 case CEPH_MSGR_TAG_WAIT:
2153 /*
2154 * If there is a connection race (we are opening
2155 * connections to each other), one of us may just have
2156 * to WAIT. This shouldn't happen if we are the
2157 * client.
2158 */
2159 con->error_msg = "protocol error, got WAIT as client";
2160 return -1;
2161
2162 default:
2163 con->error_msg = "protocol error, garbage tag during connect";
2164 return -1;
2165 }
2166 return 0;
2167 }
2168
2169
2170 /*
2171 * read (part of) an ack
2172 */
2173 static int read_partial_ack(struct ceph_connection *con)
2174 {
2175 int size = sizeof (con->in_temp_ack);
2176 int end = size;
2177
2178 return read_partial(con, end, size, &con->in_temp_ack);
2179 }
2180
2181 /*
2182 * We can finally discard anything that's been acked.
2183 */
2184 static void process_ack(struct ceph_connection *con)
2185 {
2186 struct ceph_msg *m;
2187 u64 ack = le64_to_cpu(con->in_temp_ack);
2188 u64 seq;
2189
2190 while (!list_empty(&con->out_sent)) {
2191 m = list_first_entry(&con->out_sent, struct ceph_msg,
2192 list_head);
2193 seq = le64_to_cpu(m->hdr.seq);
2194 if (seq > ack)
2195 break;
2196 dout("got ack for seq %llu type %d at %p\n", seq,
2197 le16_to_cpu(m->hdr.type), m);
2198 m->ack_stamp = jiffies;
2199 ceph_msg_remove(m);
2200 }
2201 prepare_read_tag(con);
2202 }
2203
2204
2205 static int read_partial_message_section(struct ceph_connection *con,
2206 struct kvec *section,
2207 unsigned int sec_len, u32 *crc)
2208 {
2209 int ret, left;
2210
2211 BUG_ON(!section);
2212
2213 while (section->iov_len < sec_len) {
2214 BUG_ON(section->iov_base == NULL);
2215 left = sec_len - section->iov_len;
2216 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2217 section->iov_len, left);
2218 if (ret <= 0)
2219 return ret;
2220 section->iov_len += ret;
2221 }
2222 if (section->iov_len == sec_len)
2223 *crc = crc32c(0, section->iov_base, section->iov_len);
2224
2225 return 1;
2226 }
2227
2228 static int read_partial_msg_data(struct ceph_connection *con)
2229 {
2230 struct ceph_msg *msg = con->in_msg;
2231 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2232 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2233 struct page *page;
2234 size_t page_offset;
2235 size_t length;
2236 u32 crc = 0;
2237 int ret;
2238
2239 BUG_ON(!msg);
2240 if (list_empty(&msg->data))
2241 return -EIO;
2242
2243 if (do_datacrc)
2244 crc = con->in_data_crc;
2245 while (cursor->resid) {
2246 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2247 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2248 if (ret <= 0) {
2249 if (do_datacrc)
2250 con->in_data_crc = crc;
2251
2252 return ret;
2253 }
2254
2255 if (do_datacrc)
2256 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2257 (void) ceph_msg_data_advance(cursor, (size_t)ret);
2258 }
2259 if (do_datacrc)
2260 con->in_data_crc = crc;
2261
2262 return 1; /* must return > 0 to indicate success */
2263 }
2264
2265 /*
2266 * read (part of) a message.
2267 */
2268 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2269
2270 static int read_partial_message(struct ceph_connection *con)
2271 {
2272 struct ceph_msg *m = con->in_msg;
2273 int size;
2274 int end;
2275 int ret;
2276 unsigned int front_len, middle_len, data_len;
2277 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2278 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2279 u64 seq;
2280 u32 crc;
2281
2282 dout("read_partial_message con %p msg %p\n", con, m);
2283
2284 /* header */
2285 size = sizeof (con->in_hdr);
2286 end = size;
2287 ret = read_partial(con, end, size, &con->in_hdr);
2288 if (ret <= 0)
2289 return ret;
2290
2291 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2292 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2293 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2294 crc, con->in_hdr.crc);
2295 return -EBADMSG;
2296 }
2297
2298 front_len = le32_to_cpu(con->in_hdr.front_len);
2299 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2300 return -EIO;
2301 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2302 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2303 return -EIO;
2304 data_len = le32_to_cpu(con->in_hdr.data_len);
2305 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2306 return -EIO;
2307
2308 /* verify seq# */
2309 seq = le64_to_cpu(con->in_hdr.seq);
2310 if ((s64)seq - (s64)con->in_seq < 1) {
2311 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2312 ENTITY_NAME(con->peer_name),
2313 ceph_pr_addr(&con->peer_addr.in_addr),
2314 seq, con->in_seq + 1);
2315 con->in_base_pos = -front_len - middle_len - data_len -
2316 sizeof(m->footer);
2317 con->in_tag = CEPH_MSGR_TAG_READY;
2318 return 0;
2319 } else if ((s64)seq - (s64)con->in_seq > 1) {
2320 pr_err("read_partial_message bad seq %lld expected %lld\n",
2321 seq, con->in_seq + 1);
2322 con->error_msg = "bad message sequence # for incoming message";
2323 return -EBADE;
2324 }
2325
2326 /* allocate message? */
2327 if (!con->in_msg) {
2328 int skip = 0;
2329
2330 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2331 front_len, data_len);
2332 ret = ceph_con_in_msg_alloc(con, &skip);
2333 if (ret < 0)
2334 return ret;
2335
2336 BUG_ON(!con->in_msg ^ skip);
2337 if (skip) {
2338 /* skip this message */
2339 dout("alloc_msg said skip message\n");
2340 con->in_base_pos = -front_len - middle_len - data_len -
2341 sizeof(m->footer);
2342 con->in_tag = CEPH_MSGR_TAG_READY;
2343 con->in_seq++;
2344 return 0;
2345 }
2346
2347 BUG_ON(!con->in_msg);
2348 BUG_ON(con->in_msg->con != con);
2349 m = con->in_msg;
2350 m->front.iov_len = 0; /* haven't read it yet */
2351 if (m->middle)
2352 m->middle->vec.iov_len = 0;
2353
2354 /* prepare for data payload, if any */
2355
2356 if (data_len)
2357 prepare_message_data(con->in_msg, data_len);
2358 }
2359
2360 /* front */
2361 ret = read_partial_message_section(con, &m->front, front_len,
2362 &con->in_front_crc);
2363 if (ret <= 0)
2364 return ret;
2365
2366 /* middle */
2367 if (m->middle) {
2368 ret = read_partial_message_section(con, &m->middle->vec,
2369 middle_len,
2370 &con->in_middle_crc);
2371 if (ret <= 0)
2372 return ret;
2373 }
2374
2375 /* (page) data */
2376 if (data_len) {
2377 ret = read_partial_msg_data(con);
2378 if (ret <= 0)
2379 return ret;
2380 }
2381
2382 /* footer */
2383 if (need_sign)
2384 size = sizeof(m->footer);
2385 else
2386 size = sizeof(m->old_footer);
2387
2388 end += size;
2389 ret = read_partial(con, end, size, &m->footer);
2390 if (ret <= 0)
2391 return ret;
2392
2393 if (!need_sign) {
2394 m->footer.flags = m->old_footer.flags;
2395 m->footer.sig = 0;
2396 }
2397
2398 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2399 m, front_len, m->footer.front_crc, middle_len,
2400 m->footer.middle_crc, data_len, m->footer.data_crc);
2401
2402 /* crc ok? */
2403 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2404 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2405 m, con->in_front_crc, m->footer.front_crc);
2406 return -EBADMSG;
2407 }
2408 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2409 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2410 m, con->in_middle_crc, m->footer.middle_crc);
2411 return -EBADMSG;
2412 }
2413 if (do_datacrc &&
2414 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2415 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2416 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2417 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2418 return -EBADMSG;
2419 }
2420
2421 if (need_sign && con->ops->check_message_signature &&
2422 con->ops->check_message_signature(m)) {
2423 pr_err("read_partial_message %p signature check failed\n", m);
2424 return -EBADMSG;
2425 }
2426
2427 return 1; /* done! */
2428 }
2429
2430 /*
2431 * Process message. This happens in the worker thread. The callback should
2432 * be careful not to do anything that waits on other incoming messages or it
2433 * may deadlock.
2434 */
2435 static void process_message(struct ceph_connection *con)
2436 {
2437 struct ceph_msg *msg = con->in_msg;
2438
2439 BUG_ON(con->in_msg->con != con);
2440 con->in_msg = NULL;
2441
2442 /* if first message, set peer_name */
2443 if (con->peer_name.type == 0)
2444 con->peer_name = msg->hdr.src;
2445
2446 con->in_seq++;
2447 mutex_unlock(&con->mutex);
2448
2449 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2450 msg, le64_to_cpu(msg->hdr.seq),
2451 ENTITY_NAME(msg->hdr.src),
2452 le16_to_cpu(msg->hdr.type),
2453 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2454 le32_to_cpu(msg->hdr.front_len),
2455 le32_to_cpu(msg->hdr.data_len),
2456 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2457 con->ops->dispatch(con, msg);
2458
2459 mutex_lock(&con->mutex);
2460 }
2461
2462 static int read_keepalive_ack(struct ceph_connection *con)
2463 {
2464 struct ceph_timespec ceph_ts;
2465 size_t size = sizeof(ceph_ts);
2466 int ret = read_partial(con, size, size, &ceph_ts);
2467 if (ret <= 0)
2468 return ret;
2469 ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2470 prepare_read_tag(con);
2471 return 1;
2472 }
2473
2474 /*
2475 * Write something to the socket. Called in a worker thread when the
2476 * socket appears to be writeable and we have something ready to send.
2477 */
2478 static int try_write(struct ceph_connection *con)
2479 {
2480 int ret = 1;
2481
2482 dout("try_write start %p state %lu\n", con, con->state);
2483
2484 more:
2485 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2486
2487 /* open the socket first? */
2488 if (con->state == CON_STATE_PREOPEN) {
2489 BUG_ON(con->sock);
2490 con->state = CON_STATE_CONNECTING;
2491
2492 con_out_kvec_reset(con);
2493 prepare_write_banner(con);
2494 prepare_read_banner(con);
2495
2496 BUG_ON(con->in_msg);
2497 con->in_tag = CEPH_MSGR_TAG_READY;
2498 dout("try_write initiating connect on %p new state %lu\n",
2499 con, con->state);
2500 ret = ceph_tcp_connect(con);
2501 if (ret < 0) {
2502 con->error_msg = "connect error";
2503 goto out;
2504 }
2505 }
2506
2507 more_kvec:
2508 /* kvec data queued? */
2509 if (con->out_skip) {
2510 ret = write_partial_skip(con);
2511 if (ret <= 0)
2512 goto out;
2513 }
2514 if (con->out_kvec_left) {
2515 ret = write_partial_kvec(con);
2516 if (ret <= 0)
2517 goto out;
2518 }
2519
2520 /* msg pages? */
2521 if (con->out_msg) {
2522 if (con->out_msg_done) {
2523 ceph_msg_put(con->out_msg);
2524 con->out_msg = NULL; /* we're done with this one */
2525 goto do_next;
2526 }
2527
2528 ret = write_partial_message_data(con);
2529 if (ret == 1)
2530 goto more_kvec; /* we need to send the footer, too! */
2531 if (ret == 0)
2532 goto out;
2533 if (ret < 0) {
2534 dout("try_write write_partial_message_data err %d\n",
2535 ret);
2536 goto out;
2537 }
2538 }
2539
2540 do_next:
2541 if (con->state == CON_STATE_OPEN) {
2542 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2543 prepare_write_keepalive(con);
2544 goto more;
2545 }
2546 /* is anything else pending? */
2547 if (!list_empty(&con->out_queue)) {
2548 prepare_write_message(con);
2549 goto more;
2550 }
2551 if (con->in_seq > con->in_seq_acked) {
2552 prepare_write_ack(con);
2553 goto more;
2554 }
2555 }
2556
2557 /* Nothing to do! */
2558 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2559 dout("try_write nothing else to write.\n");
2560 ret = 0;
2561 out:
2562 dout("try_write done on %p ret %d\n", con, ret);
2563 return ret;
2564 }
2565
2566
2567
2568 /*
2569 * Read what we can from the socket.
2570 */
2571 static int try_read(struct ceph_connection *con)
2572 {
2573 int ret = -1;
2574
2575 more:
2576 dout("try_read start on %p state %lu\n", con, con->state);
2577 if (con->state != CON_STATE_CONNECTING &&
2578 con->state != CON_STATE_NEGOTIATING &&
2579 con->state != CON_STATE_OPEN)
2580 return 0;
2581
2582 BUG_ON(!con->sock);
2583
2584 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2585 con->in_base_pos);
2586
2587 if (con->state == CON_STATE_CONNECTING) {
2588 dout("try_read connecting\n");
2589 ret = read_partial_banner(con);
2590 if (ret <= 0)
2591 goto out;
2592 ret = process_banner(con);
2593 if (ret < 0)
2594 goto out;
2595
2596 con->state = CON_STATE_NEGOTIATING;
2597
2598 /*
2599 * Received banner is good, exchange connection info.
2600 * Do not reset out_kvec, as sending our banner raced
2601 * with receiving peer banner after connect completed.
2602 */
2603 ret = prepare_write_connect(con);
2604 if (ret < 0)
2605 goto out;
2606 prepare_read_connect(con);
2607
2608 /* Send connection info before awaiting response */
2609 goto out;
2610 }
2611
2612 if (con->state == CON_STATE_NEGOTIATING) {
2613 dout("try_read negotiating\n");
2614 ret = read_partial_connect(con);
2615 if (ret <= 0)
2616 goto out;
2617 ret = process_connect(con);
2618 if (ret < 0)
2619 goto out;
2620 goto more;
2621 }
2622
2623 WARN_ON(con->state != CON_STATE_OPEN);
2624
2625 if (con->in_base_pos < 0) {
2626 /*
2627 * skipping + discarding content.
2628 *
2629 * FIXME: there must be a better way to do this!
2630 */
2631 static char buf[SKIP_BUF_SIZE];
2632 int skip = min((int) sizeof (buf), -con->in_base_pos);
2633
2634 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2635 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2636 if (ret <= 0)
2637 goto out;
2638 con->in_base_pos += ret;
2639 if (con->in_base_pos)
2640 goto more;
2641 }
2642 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2643 /*
2644 * what's next?
2645 */
2646 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2647 if (ret <= 0)
2648 goto out;
2649 dout("try_read got tag %d\n", (int)con->in_tag);
2650 switch (con->in_tag) {
2651 case CEPH_MSGR_TAG_MSG:
2652 prepare_read_message(con);
2653 break;
2654 case CEPH_MSGR_TAG_ACK:
2655 prepare_read_ack(con);
2656 break;
2657 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2658 prepare_read_keepalive_ack(con);
2659 break;
2660 case CEPH_MSGR_TAG_CLOSE:
2661 con_close_socket(con);
2662 con->state = CON_STATE_CLOSED;
2663 goto out;
2664 default:
2665 goto bad_tag;
2666 }
2667 }
2668 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2669 ret = read_partial_message(con);
2670 if (ret <= 0) {
2671 switch (ret) {
2672 case -EBADMSG:
2673 con->error_msg = "bad crc/signature";
2674 /* fall through */
2675 case -EBADE:
2676 ret = -EIO;
2677 break;
2678 case -EIO:
2679 con->error_msg = "io error";
2680 break;
2681 }
2682 goto out;
2683 }
2684 if (con->in_tag == CEPH_MSGR_TAG_READY)
2685 goto more;
2686 process_message(con);
2687 if (con->state == CON_STATE_OPEN)
2688 prepare_read_tag(con);
2689 goto more;
2690 }
2691 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2692 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2693 /*
2694 * the final handshake seq exchange is semantically
2695 * equivalent to an ACK
2696 */
2697 ret = read_partial_ack(con);
2698 if (ret <= 0)
2699 goto out;
2700 process_ack(con);
2701 goto more;
2702 }
2703 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2704 ret = read_keepalive_ack(con);
2705 if (ret <= 0)
2706 goto out;
2707 goto more;
2708 }
2709
2710 out:
2711 dout("try_read done on %p ret %d\n", con, ret);
2712 return ret;
2713
2714 bad_tag:
2715 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2716 con->error_msg = "protocol error, garbage tag";
2717 ret = -1;
2718 goto out;
2719 }
2720
2721
2722 /*
2723 * Atomically queue work on a connection after the specified delay.
2724 * Bump @con reference to avoid races with connection teardown.
2725 * Returns 0 if work was queued, or an error code otherwise.
2726 */
2727 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2728 {
2729 if (!con->ops->get(con)) {
2730 dout("%s %p ref count 0\n", __func__, con);
2731 return -ENOENT;
2732 }
2733
2734 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2735 dout("%s %p - already queued\n", __func__, con);
2736 con->ops->put(con);
2737 return -EBUSY;
2738 }
2739
2740 dout("%s %p %lu\n", __func__, con, delay);
2741 return 0;
2742 }
2743
2744 static void queue_con(struct ceph_connection *con)
2745 {
2746 (void) queue_con_delay(con, 0);
2747 }
2748
2749 static void cancel_con(struct ceph_connection *con)
2750 {
2751 if (cancel_delayed_work(&con->work)) {
2752 dout("%s %p\n", __func__, con);
2753 con->ops->put(con);
2754 }
2755 }
2756
2757 static bool con_sock_closed(struct ceph_connection *con)
2758 {
2759 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2760 return false;
2761
2762 #define CASE(x) \
2763 case CON_STATE_ ## x: \
2764 con->error_msg = "socket closed (con state " #x ")"; \
2765 break;
2766
2767 switch (con->state) {
2768 CASE(CLOSED);
2769 CASE(PREOPEN);
2770 CASE(CONNECTING);
2771 CASE(NEGOTIATING);
2772 CASE(OPEN);
2773 CASE(STANDBY);
2774 default:
2775 pr_warn("%s con %p unrecognized state %lu\n",
2776 __func__, con, con->state);
2777 con->error_msg = "unrecognized con state";
2778 BUG();
2779 break;
2780 }
2781 #undef CASE
2782
2783 return true;
2784 }
2785
2786 static bool con_backoff(struct ceph_connection *con)
2787 {
2788 int ret;
2789
2790 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2791 return false;
2792
2793 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2794 if (ret) {
2795 dout("%s: con %p FAILED to back off %lu\n", __func__,
2796 con, con->delay);
2797 BUG_ON(ret == -ENOENT);
2798 con_flag_set(con, CON_FLAG_BACKOFF);
2799 }
2800
2801 return true;
2802 }
2803
2804 /* Finish fault handling; con->mutex must *not* be held here */
2805
2806 static void con_fault_finish(struct ceph_connection *con)
2807 {
2808 /*
2809 * in case we faulted due to authentication, invalidate our
2810 * current tickets so that we can get new ones.
2811 */
2812 if (con->auth_retry && con->ops->invalidate_authorizer) {
2813 dout("calling invalidate_authorizer()\n");
2814 con->ops->invalidate_authorizer(con);
2815 }
2816
2817 if (con->ops->fault)
2818 con->ops->fault(con);
2819 }
2820
2821 /*
2822 * Do some work on a connection. Drop a connection ref when we're done.
2823 */
2824 static void ceph_con_workfn(struct work_struct *work)
2825 {
2826 struct ceph_connection *con = container_of(work, struct ceph_connection,
2827 work.work);
2828 bool fault;
2829
2830 mutex_lock(&con->mutex);
2831 while (true) {
2832 int ret;
2833
2834 if ((fault = con_sock_closed(con))) {
2835 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2836 break;
2837 }
2838 if (con_backoff(con)) {
2839 dout("%s: con %p BACKOFF\n", __func__, con);
2840 break;
2841 }
2842 if (con->state == CON_STATE_STANDBY) {
2843 dout("%s: con %p STANDBY\n", __func__, con);
2844 break;
2845 }
2846 if (con->state == CON_STATE_CLOSED) {
2847 dout("%s: con %p CLOSED\n", __func__, con);
2848 BUG_ON(con->sock);
2849 break;
2850 }
2851 if (con->state == CON_STATE_PREOPEN) {
2852 dout("%s: con %p PREOPEN\n", __func__, con);
2853 BUG_ON(con->sock);
2854 }
2855
2856 ret = try_read(con);
2857 if (ret < 0) {
2858 if (ret == -EAGAIN)
2859 continue;
2860 if (!con->error_msg)
2861 con->error_msg = "socket error on read";
2862 fault = true;
2863 break;
2864 }
2865
2866 ret = try_write(con);
2867 if (ret < 0) {
2868 if (ret == -EAGAIN)
2869 continue;
2870 if (!con->error_msg)
2871 con->error_msg = "socket error on write";
2872 fault = true;
2873 }
2874
2875 break; /* If we make it to here, we're done */
2876 }
2877 if (fault)
2878 con_fault(con);
2879 mutex_unlock(&con->mutex);
2880
2881 if (fault)
2882 con_fault_finish(con);
2883
2884 con->ops->put(con);
2885 }
2886
2887 /*
2888 * Generic error/fault handler. A retry mechanism is used with
2889 * exponential backoff
2890 */
2891 static void con_fault(struct ceph_connection *con)
2892 {
2893 dout("fault %p state %lu to peer %s\n",
2894 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2895
2896 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2897 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2898 con->error_msg = NULL;
2899
2900 WARN_ON(con->state != CON_STATE_CONNECTING &&
2901 con->state != CON_STATE_NEGOTIATING &&
2902 con->state != CON_STATE_OPEN);
2903
2904 con_close_socket(con);
2905
2906 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2907 dout("fault on LOSSYTX channel, marking CLOSED\n");
2908 con->state = CON_STATE_CLOSED;
2909 return;
2910 }
2911
2912 if (con->in_msg) {
2913 BUG_ON(con->in_msg->con != con);
2914 ceph_msg_put(con->in_msg);
2915 con->in_msg = NULL;
2916 }
2917
2918 /* Requeue anything that hasn't been acked */
2919 list_splice_init(&con->out_sent, &con->out_queue);
2920
2921 /* If there are no messages queued or keepalive pending, place
2922 * the connection in a STANDBY state */
2923 if (list_empty(&con->out_queue) &&
2924 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2925 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2926 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2927 con->state = CON_STATE_STANDBY;
2928 } else {
2929 /* retry after a delay. */
2930 con->state = CON_STATE_PREOPEN;
2931 if (con->delay == 0)
2932 con->delay = BASE_DELAY_INTERVAL;
2933 else if (con->delay < MAX_DELAY_INTERVAL)
2934 con->delay *= 2;
2935 con_flag_set(con, CON_FLAG_BACKOFF);
2936 queue_con(con);
2937 }
2938 }
2939
2940
2941
2942 /*
2943 * initialize a new messenger instance
2944 */
2945 void ceph_messenger_init(struct ceph_messenger *msgr,
2946 struct ceph_entity_addr *myaddr)
2947 {
2948 spin_lock_init(&msgr->global_seq_lock);
2949
2950 if (myaddr)
2951 msgr->inst.addr = *myaddr;
2952
2953 /* select a random nonce */
2954 msgr->inst.addr.type = 0;
2955 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2956 encode_my_addr(msgr);
2957
2958 atomic_set(&msgr->stopping, 0);
2959 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
2960
2961 dout("%s %p\n", __func__, msgr);
2962 }
2963 EXPORT_SYMBOL(ceph_messenger_init);
2964
2965 void ceph_messenger_fini(struct ceph_messenger *msgr)
2966 {
2967 put_net(read_pnet(&msgr->net));
2968 }
2969 EXPORT_SYMBOL(ceph_messenger_fini);
2970
2971 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
2972 {
2973 if (msg->con)
2974 msg->con->ops->put(msg->con);
2975
2976 msg->con = con ? con->ops->get(con) : NULL;
2977 BUG_ON(msg->con != con);
2978 }
2979
2980 static void clear_standby(struct ceph_connection *con)
2981 {
2982 /* come back from STANDBY? */
2983 if (con->state == CON_STATE_STANDBY) {
2984 dout("clear_standby %p and ++connect_seq\n", con);
2985 con->state = CON_STATE_PREOPEN;
2986 con->connect_seq++;
2987 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2988 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2989 }
2990 }
2991
2992 /*
2993 * Queue up an outgoing message on the given connection.
2994 */
2995 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2996 {
2997 /* set src+dst */
2998 msg->hdr.src = con->msgr->inst.name;
2999 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3000 msg->needs_out_seq = true;
3001
3002 mutex_lock(&con->mutex);
3003
3004 if (con->state == CON_STATE_CLOSED) {
3005 dout("con_send %p closed, dropping %p\n", con, msg);
3006 ceph_msg_put(msg);
3007 mutex_unlock(&con->mutex);
3008 return;
3009 }
3010
3011 msg_con_set(msg, con);
3012
3013 BUG_ON(!list_empty(&msg->list_head));
3014 list_add_tail(&msg->list_head, &con->out_queue);
3015 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3016 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3017 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3018 le32_to_cpu(msg->hdr.front_len),
3019 le32_to_cpu(msg->hdr.middle_len),
3020 le32_to_cpu(msg->hdr.data_len));
3021
3022 clear_standby(con);
3023 mutex_unlock(&con->mutex);
3024
3025 /* if there wasn't anything waiting to send before, queue
3026 * new work */
3027 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3028 queue_con(con);
3029 }
3030 EXPORT_SYMBOL(ceph_con_send);
3031
3032 /*
3033 * Revoke a message that was previously queued for send
3034 */
3035 void ceph_msg_revoke(struct ceph_msg *msg)
3036 {
3037 struct ceph_connection *con = msg->con;
3038
3039 if (!con) {
3040 dout("%s msg %p null con\n", __func__, msg);
3041 return; /* Message not in our possession */
3042 }
3043
3044 mutex_lock(&con->mutex);
3045 if (!list_empty(&msg->list_head)) {
3046 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3047 list_del_init(&msg->list_head);
3048 msg->hdr.seq = 0;
3049
3050 ceph_msg_put(msg);
3051 }
3052 if (con->out_msg == msg) {
3053 dout("%s %p msg %p - was sending\n", __func__, con, msg);
3054 con->out_msg = NULL;
3055 if (con->out_kvec_is_msg) {
3056 con->out_skip = con->out_kvec_bytes;
3057 con->out_kvec_is_msg = false;
3058 }
3059 msg->hdr.seq = 0;
3060
3061 ceph_msg_put(msg);
3062 }
3063 mutex_unlock(&con->mutex);
3064 }
3065
3066 /*
3067 * Revoke a message that we may be reading data into
3068 */
3069 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3070 {
3071 struct ceph_connection *con = msg->con;
3072
3073 if (!con) {
3074 dout("%s msg %p null con\n", __func__, msg);
3075 return; /* Message not in our possession */
3076 }
3077
3078 mutex_lock(&con->mutex);
3079 if (con->in_msg == msg) {
3080 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3081 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3082 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3083
3084 /* skip rest of message */
3085 dout("%s %p msg %p revoked\n", __func__, con, msg);
3086 con->in_base_pos = con->in_base_pos -
3087 sizeof(struct ceph_msg_header) -
3088 front_len -
3089 middle_len -
3090 data_len -
3091 sizeof(struct ceph_msg_footer);
3092 ceph_msg_put(con->in_msg);
3093 con->in_msg = NULL;
3094 con->in_tag = CEPH_MSGR_TAG_READY;
3095 con->in_seq++;
3096 } else {
3097 dout("%s %p in_msg %p msg %p no-op\n",
3098 __func__, con, con->in_msg, msg);
3099 }
3100 mutex_unlock(&con->mutex);
3101 }
3102
3103 /*
3104 * Queue a keepalive byte to ensure the tcp connection is alive.
3105 */
3106 void ceph_con_keepalive(struct ceph_connection *con)
3107 {
3108 dout("con_keepalive %p\n", con);
3109 mutex_lock(&con->mutex);
3110 clear_standby(con);
3111 mutex_unlock(&con->mutex);
3112 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3113 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3114 queue_con(con);
3115 }
3116 EXPORT_SYMBOL(ceph_con_keepalive);
3117
3118 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3119 unsigned long interval)
3120 {
3121 if (interval > 0 &&
3122 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3123 struct timespec now = CURRENT_TIME;
3124 struct timespec ts;
3125 jiffies_to_timespec(interval, &ts);
3126 ts = timespec_add(con->last_keepalive_ack, ts);
3127 return timespec_compare(&now, &ts) >= 0;
3128 }
3129 return false;
3130 }
3131
3132 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3133 {
3134 struct ceph_msg_data *data;
3135
3136 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3137 return NULL;
3138
3139 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3140 if (data)
3141 data->type = type;
3142 INIT_LIST_HEAD(&data->links);
3143
3144 return data;
3145 }
3146
3147 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3148 {
3149 if (!data)
3150 return;
3151
3152 WARN_ON(!list_empty(&data->links));
3153 if (data->type == CEPH_MSG_DATA_PAGELIST)
3154 ceph_pagelist_release(data->pagelist);
3155 kmem_cache_free(ceph_msg_data_cache, data);
3156 }
3157
3158 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3159 size_t length, size_t alignment)
3160 {
3161 struct ceph_msg_data *data;
3162
3163 BUG_ON(!pages);
3164 BUG_ON(!length);
3165
3166 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3167 BUG_ON(!data);
3168 data->pages = pages;
3169 data->length = length;
3170 data->alignment = alignment & ~PAGE_MASK;
3171
3172 list_add_tail(&data->links, &msg->data);
3173 msg->data_length += length;
3174 }
3175 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3176
3177 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3178 struct ceph_pagelist *pagelist)
3179 {
3180 struct ceph_msg_data *data;
3181
3182 BUG_ON(!pagelist);
3183 BUG_ON(!pagelist->length);
3184
3185 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3186 BUG_ON(!data);
3187 data->pagelist = pagelist;
3188
3189 list_add_tail(&data->links, &msg->data);
3190 msg->data_length += pagelist->length;
3191 }
3192 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3193
3194 #ifdef CONFIG_BLOCK
3195 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3196 size_t length)
3197 {
3198 struct ceph_msg_data *data;
3199
3200 BUG_ON(!bio);
3201
3202 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3203 BUG_ON(!data);
3204 data->bio = bio;
3205 data->bio_length = length;
3206
3207 list_add_tail(&data->links, &msg->data);
3208 msg->data_length += length;
3209 }
3210 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3211 #endif /* CONFIG_BLOCK */
3212
3213 /*
3214 * construct a new message with given type, size
3215 * the new msg has a ref count of 1.
3216 */
3217 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3218 bool can_fail)
3219 {
3220 struct ceph_msg *m;
3221
3222 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3223 if (m == NULL)
3224 goto out;
3225
3226 m->hdr.type = cpu_to_le16(type);
3227 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3228 m->hdr.front_len = cpu_to_le32(front_len);
3229
3230 INIT_LIST_HEAD(&m->list_head);
3231 kref_init(&m->kref);
3232 INIT_LIST_HEAD(&m->data);
3233
3234 /* front */
3235 if (front_len) {
3236 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3237 if (m->front.iov_base == NULL) {
3238 dout("ceph_msg_new can't allocate %d bytes\n",
3239 front_len);
3240 goto out2;
3241 }
3242 } else {
3243 m->front.iov_base = NULL;
3244 }
3245 m->front_alloc_len = m->front.iov_len = front_len;
3246
3247 dout("ceph_msg_new %p front %d\n", m, front_len);
3248 return m;
3249
3250 out2:
3251 ceph_msg_put(m);
3252 out:
3253 if (!can_fail) {
3254 pr_err("msg_new can't create type %d front %d\n", type,
3255 front_len);
3256 WARN_ON(1);
3257 } else {
3258 dout("msg_new can't create type %d front %d\n", type,
3259 front_len);
3260 }
3261 return NULL;
3262 }
3263 EXPORT_SYMBOL(ceph_msg_new);
3264
3265 /*
3266 * Allocate "middle" portion of a message, if it is needed and wasn't
3267 * allocated by alloc_msg. This allows us to read a small fixed-size
3268 * per-type header in the front and then gracefully fail (i.e.,
3269 * propagate the error to the caller based on info in the front) when
3270 * the middle is too large.
3271 */
3272 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3273 {
3274 int type = le16_to_cpu(msg->hdr.type);
3275 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3276
3277 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3278 ceph_msg_type_name(type), middle_len);
3279 BUG_ON(!middle_len);
3280 BUG_ON(msg->middle);
3281
3282 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3283 if (!msg->middle)
3284 return -ENOMEM;
3285 return 0;
3286 }
3287
3288 /*
3289 * Allocate a message for receiving an incoming message on a
3290 * connection, and save the result in con->in_msg. Uses the
3291 * connection's private alloc_msg op if available.
3292 *
3293 * Returns 0 on success, or a negative error code.
3294 *
3295 * On success, if we set *skip = 1:
3296 * - the next message should be skipped and ignored.
3297 * - con->in_msg == NULL
3298 * or if we set *skip = 0:
3299 * - con->in_msg is non-null.
3300 * On error (ENOMEM, EAGAIN, ...),
3301 * - con->in_msg == NULL
3302 */
3303 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3304 {
3305 struct ceph_msg_header *hdr = &con->in_hdr;
3306 int middle_len = le32_to_cpu(hdr->middle_len);
3307 struct ceph_msg *msg;
3308 int ret = 0;
3309
3310 BUG_ON(con->in_msg != NULL);
3311 BUG_ON(!con->ops->alloc_msg);
3312
3313 mutex_unlock(&con->mutex);
3314 msg = con->ops->alloc_msg(con, hdr, skip);
3315 mutex_lock(&con->mutex);
3316 if (con->state != CON_STATE_OPEN) {
3317 if (msg)
3318 ceph_msg_put(msg);
3319 return -EAGAIN;
3320 }
3321 if (msg) {
3322 BUG_ON(*skip);
3323 msg_con_set(msg, con);
3324 con->in_msg = msg;
3325 } else {
3326 /*
3327 * Null message pointer means either we should skip
3328 * this message or we couldn't allocate memory. The
3329 * former is not an error.
3330 */
3331 if (*skip)
3332 return 0;
3333
3334 con->error_msg = "error allocating memory for incoming message";
3335 return -ENOMEM;
3336 }
3337 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3338
3339 if (middle_len && !con->in_msg->middle) {
3340 ret = ceph_alloc_middle(con, con->in_msg);
3341 if (ret < 0) {
3342 ceph_msg_put(con->in_msg);
3343 con->in_msg = NULL;
3344 }
3345 }
3346
3347 return ret;
3348 }
3349
3350
3351 /*
3352 * Free a generically kmalloc'd message.
3353 */
3354 static void ceph_msg_free(struct ceph_msg *m)
3355 {
3356 dout("%s %p\n", __func__, m);
3357 kvfree(m->front.iov_base);
3358 kmem_cache_free(ceph_msg_cache, m);
3359 }
3360
3361 static void ceph_msg_release(struct kref *kref)
3362 {
3363 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3364 LIST_HEAD(data);
3365 struct list_head *links;
3366 struct list_head *next;
3367
3368 dout("%s %p\n", __func__, m);
3369 WARN_ON(!list_empty(&m->list_head));
3370
3371 msg_con_set(m, NULL);
3372
3373 /* drop middle, data, if any */
3374 if (m->middle) {
3375 ceph_buffer_put(m->middle);
3376 m->middle = NULL;
3377 }
3378
3379 list_splice_init(&m->data, &data);
3380 list_for_each_safe(links, next, &data) {
3381 struct ceph_msg_data *data;
3382
3383 data = list_entry(links, struct ceph_msg_data, links);
3384 list_del_init(links);
3385 ceph_msg_data_destroy(data);
3386 }
3387 m->data_length = 0;
3388
3389 if (m->pool)
3390 ceph_msgpool_put(m->pool, m);
3391 else
3392 ceph_msg_free(m);
3393 }
3394
3395 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3396 {
3397 dout("%s %p (was %d)\n", __func__, msg,
3398 atomic_read(&msg->kref.refcount));
3399 kref_get(&msg->kref);
3400 return msg;
3401 }
3402 EXPORT_SYMBOL(ceph_msg_get);
3403
3404 void ceph_msg_put(struct ceph_msg *msg)
3405 {
3406 dout("%s %p (was %d)\n", __func__, msg,
3407 atomic_read(&msg->kref.refcount));
3408 kref_put(&msg->kref, ceph_msg_release);
3409 }
3410 EXPORT_SYMBOL(ceph_msg_put);
3411
3412 void ceph_msg_dump(struct ceph_msg *msg)
3413 {
3414 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3415 msg->front_alloc_len, msg->data_length);
3416 print_hex_dump(KERN_DEBUG, "header: ",
3417 DUMP_PREFIX_OFFSET, 16, 1,
3418 &msg->hdr, sizeof(msg->hdr), true);
3419 print_hex_dump(KERN_DEBUG, " front: ",
3420 DUMP_PREFIX_OFFSET, 16, 1,
3421 msg->front.iov_base, msg->front.iov_len, true);
3422 if (msg->middle)
3423 print_hex_dump(KERN_DEBUG, "middle: ",
3424 DUMP_PREFIX_OFFSET, 16, 1,
3425 msg->middle->vec.iov_base,
3426 msg->middle->vec.iov_len, true);
3427 print_hex_dump(KERN_DEBUG, "footer: ",
3428 DUMP_PREFIX_OFFSET, 16, 1,
3429 &msg->footer, sizeof(msg->footer), true);
3430 }
3431 EXPORT_SYMBOL(ceph_msg_dump);