]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ceph/messenger.c
Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24
25 #define list_entry_next(pos, member) \
26 list_entry(pos->member.next, typeof(*pos), member)
27
28 /*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37 /*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85 /*
86 * connection states
87 */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
94
95 /*
96 * ceph_connection flag bits
97 */
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
116 }
117 }
118
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 BUG_ON(!con_flag_valid(con_flag));
122
123 clear_bit(con_flag, &con->flags);
124 }
125
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 BUG_ON(!con_flag_valid(con_flag));
129
130 set_bit(con_flag, &con->flags);
131 }
132
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 BUG_ON(!con_flag_valid(con_flag));
136
137 return test_bit(con_flag, &con->flags);
138 }
139
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
142 {
143 BUG_ON(!con_flag_valid(con_flag));
144
145 return test_and_clear_bit(con_flag, &con->flags);
146 }
147
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
150 {
151 BUG_ON(!con_flag_valid(con_flag));
152
153 return test_and_set_bit(con_flag, &con->flags);
154 }
155
156 /* Slab caches for frequently-allocated structures */
157
158 static struct kmem_cache *ceph_msg_cache;
159 static struct kmem_cache *ceph_msg_data_cache;
160
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169
170 /*
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
173 */
174 #define SKIP_BUF_SIZE 1024
175
176 static void queue_con(struct ceph_connection *con);
177 static void cancel_con(struct ceph_connection *con);
178 static void con_work(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
180
181 /*
182 * Nicely render a sockaddr as a string. An array of formatted
183 * strings is used, to approximate reentrancy.
184 */
185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
189
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
192
193 static struct page *zero_page; /* used in certain error cases */
194
195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
196 {
197 int i;
198 char *s;
199 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
201
202 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 s = addr_str[i];
204
205 switch (ss->ss_family) {
206 case AF_INET:
207 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 ntohs(in4->sin_port));
209 break;
210
211 case AF_INET6:
212 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 ntohs(in6->sin6_port));
214 break;
215
216 default:
217 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 ss->ss_family);
219 }
220
221 return s;
222 }
223 EXPORT_SYMBOL(ceph_pr_addr);
224
225 static void encode_my_addr(struct ceph_messenger *msgr)
226 {
227 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 ceph_encode_addr(&msgr->my_enc_addr);
229 }
230
231 /*
232 * work queue for all reading and writing to/from the socket.
233 */
234 static struct workqueue_struct *ceph_msgr_wq;
235
236 static int ceph_msgr_slab_init(void)
237 {
238 BUG_ON(ceph_msg_cache);
239 ceph_msg_cache = kmem_cache_create("ceph_msg",
240 sizeof (struct ceph_msg),
241 __alignof__(struct ceph_msg), 0, NULL);
242
243 if (!ceph_msg_cache)
244 return -ENOMEM;
245
246 BUG_ON(ceph_msg_data_cache);
247 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
248 sizeof (struct ceph_msg_data),
249 __alignof__(struct ceph_msg_data),
250 0, NULL);
251 if (ceph_msg_data_cache)
252 return 0;
253
254 kmem_cache_destroy(ceph_msg_cache);
255 ceph_msg_cache = NULL;
256
257 return -ENOMEM;
258 }
259
260 static void ceph_msgr_slab_exit(void)
261 {
262 BUG_ON(!ceph_msg_data_cache);
263 kmem_cache_destroy(ceph_msg_data_cache);
264 ceph_msg_data_cache = NULL;
265
266 BUG_ON(!ceph_msg_cache);
267 kmem_cache_destroy(ceph_msg_cache);
268 ceph_msg_cache = NULL;
269 }
270
271 static void _ceph_msgr_exit(void)
272 {
273 if (ceph_msgr_wq) {
274 destroy_workqueue(ceph_msgr_wq);
275 ceph_msgr_wq = NULL;
276 }
277
278 ceph_msgr_slab_exit();
279
280 BUG_ON(zero_page == NULL);
281 kunmap(zero_page);
282 page_cache_release(zero_page);
283 zero_page = NULL;
284 }
285
286 int ceph_msgr_init(void)
287 {
288 BUG_ON(zero_page != NULL);
289 zero_page = ZERO_PAGE(0);
290 page_cache_get(zero_page);
291
292 if (ceph_msgr_slab_init())
293 return -ENOMEM;
294
295 /*
296 * The number of active work items is limited by the number of
297 * connections, so leave @max_active at default.
298 */
299 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
300 if (ceph_msgr_wq)
301 return 0;
302
303 pr_err("msgr_init failed to create workqueue\n");
304 _ceph_msgr_exit();
305
306 return -ENOMEM;
307 }
308 EXPORT_SYMBOL(ceph_msgr_init);
309
310 void ceph_msgr_exit(void)
311 {
312 BUG_ON(ceph_msgr_wq == NULL);
313
314 _ceph_msgr_exit();
315 }
316 EXPORT_SYMBOL(ceph_msgr_exit);
317
318 void ceph_msgr_flush(void)
319 {
320 flush_workqueue(ceph_msgr_wq);
321 }
322 EXPORT_SYMBOL(ceph_msgr_flush);
323
324 /* Connection socket state transition functions */
325
326 static void con_sock_state_init(struct ceph_connection *con)
327 {
328 int old_state;
329
330 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
331 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
332 printk("%s: unexpected old state %d\n", __func__, old_state);
333 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
334 CON_SOCK_STATE_CLOSED);
335 }
336
337 static void con_sock_state_connecting(struct ceph_connection *con)
338 {
339 int old_state;
340
341 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
342 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
343 printk("%s: unexpected old state %d\n", __func__, old_state);
344 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
345 CON_SOCK_STATE_CONNECTING);
346 }
347
348 static void con_sock_state_connected(struct ceph_connection *con)
349 {
350 int old_state;
351
352 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
353 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
354 printk("%s: unexpected old state %d\n", __func__, old_state);
355 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
356 CON_SOCK_STATE_CONNECTED);
357 }
358
359 static void con_sock_state_closing(struct ceph_connection *con)
360 {
361 int old_state;
362
363 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
364 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
365 old_state != CON_SOCK_STATE_CONNECTED &&
366 old_state != CON_SOCK_STATE_CLOSING))
367 printk("%s: unexpected old state %d\n", __func__, old_state);
368 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
369 CON_SOCK_STATE_CLOSING);
370 }
371
372 static void con_sock_state_closed(struct ceph_connection *con)
373 {
374 int old_state;
375
376 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
377 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
378 old_state != CON_SOCK_STATE_CLOSING &&
379 old_state != CON_SOCK_STATE_CONNECTING &&
380 old_state != CON_SOCK_STATE_CLOSED))
381 printk("%s: unexpected old state %d\n", __func__, old_state);
382 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
383 CON_SOCK_STATE_CLOSED);
384 }
385
386 /*
387 * socket callback functions
388 */
389
390 /* data available on socket, or listen socket received a connect */
391 static void ceph_sock_data_ready(struct sock *sk)
392 {
393 struct ceph_connection *con = sk->sk_user_data;
394 if (atomic_read(&con->msgr->stopping)) {
395 return;
396 }
397
398 if (sk->sk_state != TCP_CLOSE_WAIT) {
399 dout("%s on %p state = %lu, queueing work\n", __func__,
400 con, con->state);
401 queue_con(con);
402 }
403 }
404
405 /* socket has buffer space for writing */
406 static void ceph_sock_write_space(struct sock *sk)
407 {
408 struct ceph_connection *con = sk->sk_user_data;
409
410 /* only queue to workqueue if there is data we want to write,
411 * and there is sufficient space in the socket buffer to accept
412 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
413 * doesn't get called again until try_write() fills the socket
414 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
415 * and net/core/stream.c:sk_stream_write_space().
416 */
417 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
418 if (sk_stream_is_writeable(sk)) {
419 dout("%s %p queueing write work\n", __func__, con);
420 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
421 queue_con(con);
422 }
423 } else {
424 dout("%s %p nothing to write\n", __func__, con);
425 }
426 }
427
428 /* socket's state has changed */
429 static void ceph_sock_state_change(struct sock *sk)
430 {
431 struct ceph_connection *con = sk->sk_user_data;
432
433 dout("%s %p state = %lu sk_state = %u\n", __func__,
434 con, con->state, sk->sk_state);
435
436 switch (sk->sk_state) {
437 case TCP_CLOSE:
438 dout("%s TCP_CLOSE\n", __func__);
439 case TCP_CLOSE_WAIT:
440 dout("%s TCP_CLOSE_WAIT\n", __func__);
441 con_sock_state_closing(con);
442 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
443 queue_con(con);
444 break;
445 case TCP_ESTABLISHED:
446 dout("%s TCP_ESTABLISHED\n", __func__);
447 con_sock_state_connected(con);
448 queue_con(con);
449 break;
450 default: /* Everything else is uninteresting */
451 break;
452 }
453 }
454
455 /*
456 * set up socket callbacks
457 */
458 static void set_sock_callbacks(struct socket *sock,
459 struct ceph_connection *con)
460 {
461 struct sock *sk = sock->sk;
462 sk->sk_user_data = con;
463 sk->sk_data_ready = ceph_sock_data_ready;
464 sk->sk_write_space = ceph_sock_write_space;
465 sk->sk_state_change = ceph_sock_state_change;
466 }
467
468
469 /*
470 * socket helpers
471 */
472
473 /*
474 * initiate connection to a remote socket.
475 */
476 static int ceph_tcp_connect(struct ceph_connection *con)
477 {
478 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
479 struct socket *sock;
480 int ret;
481
482 BUG_ON(con->sock);
483 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
484 IPPROTO_TCP, &sock);
485 if (ret)
486 return ret;
487 sock->sk->sk_allocation = GFP_NOFS;
488
489 #ifdef CONFIG_LOCKDEP
490 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
491 #endif
492
493 set_sock_callbacks(sock, con);
494
495 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
496
497 con_sock_state_connecting(con);
498 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
499 O_NONBLOCK);
500 if (ret == -EINPROGRESS) {
501 dout("connect %s EINPROGRESS sk_state = %u\n",
502 ceph_pr_addr(&con->peer_addr.in_addr),
503 sock->sk->sk_state);
504 } else if (ret < 0) {
505 pr_err("connect %s error %d\n",
506 ceph_pr_addr(&con->peer_addr.in_addr), ret);
507 sock_release(sock);
508 con->error_msg = "connect error";
509
510 return ret;
511 }
512
513 if (con->msgr->tcp_nodelay) {
514 int optval = 1;
515
516 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
517 (char *)&optval, sizeof(optval));
518 if (ret)
519 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
520 ret);
521 }
522
523 con->sock = sock;
524 return 0;
525 }
526
527 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
528 {
529 struct kvec iov = {buf, len};
530 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
531 int r;
532
533 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
534 if (r == -EAGAIN)
535 r = 0;
536 return r;
537 }
538
539 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
540 int page_offset, size_t length)
541 {
542 void *kaddr;
543 int ret;
544
545 BUG_ON(page_offset + length > PAGE_SIZE);
546
547 kaddr = kmap(page);
548 BUG_ON(!kaddr);
549 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
550 kunmap(page);
551
552 return ret;
553 }
554
555 /*
556 * write something. @more is true if caller will be sending more data
557 * shortly.
558 */
559 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
560 size_t kvlen, size_t len, int more)
561 {
562 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
563 int r;
564
565 if (more)
566 msg.msg_flags |= MSG_MORE;
567 else
568 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
569
570 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
571 if (r == -EAGAIN)
572 r = 0;
573 return r;
574 }
575
576 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
577 int offset, size_t size, bool more)
578 {
579 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
580 int ret;
581
582 ret = kernel_sendpage(sock, page, offset, size, flags);
583 if (ret == -EAGAIN)
584 ret = 0;
585
586 return ret;
587 }
588
589 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
590 int offset, size_t size, bool more)
591 {
592 int ret;
593 struct kvec iov;
594
595 /* sendpage cannot properly handle pages with page_count == 0,
596 * we need to fallback to sendmsg if that's the case */
597 if (page_count(page) >= 1)
598 return __ceph_tcp_sendpage(sock, page, offset, size, more);
599
600 iov.iov_base = kmap(page) + offset;
601 iov.iov_len = size;
602 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
603 kunmap(page);
604
605 return ret;
606 }
607
608 /*
609 * Shutdown/close the socket for the given connection.
610 */
611 static int con_close_socket(struct ceph_connection *con)
612 {
613 int rc = 0;
614
615 dout("con_close_socket on %p sock %p\n", con, con->sock);
616 if (con->sock) {
617 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
618 sock_release(con->sock);
619 con->sock = NULL;
620 }
621
622 /*
623 * Forcibly clear the SOCK_CLOSED flag. It gets set
624 * independent of the connection mutex, and we could have
625 * received a socket close event before we had the chance to
626 * shut the socket down.
627 */
628 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
629
630 con_sock_state_closed(con);
631 return rc;
632 }
633
634 /*
635 * Reset a connection. Discard all incoming and outgoing messages
636 * and clear *_seq state.
637 */
638 static void ceph_msg_remove(struct ceph_msg *msg)
639 {
640 list_del_init(&msg->list_head);
641 BUG_ON(msg->con == NULL);
642 msg->con->ops->put(msg->con);
643 msg->con = NULL;
644
645 ceph_msg_put(msg);
646 }
647 static void ceph_msg_remove_list(struct list_head *head)
648 {
649 while (!list_empty(head)) {
650 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
651 list_head);
652 ceph_msg_remove(msg);
653 }
654 }
655
656 static void reset_connection(struct ceph_connection *con)
657 {
658 /* reset connection, out_queue, msg_ and connect_seq */
659 /* discard existing out_queue and msg_seq */
660 dout("reset_connection %p\n", con);
661 ceph_msg_remove_list(&con->out_queue);
662 ceph_msg_remove_list(&con->out_sent);
663
664 if (con->in_msg) {
665 BUG_ON(con->in_msg->con != con);
666 con->in_msg->con = NULL;
667 ceph_msg_put(con->in_msg);
668 con->in_msg = NULL;
669 con->ops->put(con);
670 }
671
672 con->connect_seq = 0;
673 con->out_seq = 0;
674 if (con->out_msg) {
675 ceph_msg_put(con->out_msg);
676 con->out_msg = NULL;
677 }
678 con->in_seq = 0;
679 con->in_seq_acked = 0;
680 }
681
682 /*
683 * mark a peer down. drop any open connections.
684 */
685 void ceph_con_close(struct ceph_connection *con)
686 {
687 mutex_lock(&con->mutex);
688 dout("con_close %p peer %s\n", con,
689 ceph_pr_addr(&con->peer_addr.in_addr));
690 con->state = CON_STATE_CLOSED;
691
692 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
693 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
694 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
695 con_flag_clear(con, CON_FLAG_BACKOFF);
696
697 reset_connection(con);
698 con->peer_global_seq = 0;
699 cancel_con(con);
700 con_close_socket(con);
701 mutex_unlock(&con->mutex);
702 }
703 EXPORT_SYMBOL(ceph_con_close);
704
705 /*
706 * Reopen a closed connection, with a new peer address.
707 */
708 void ceph_con_open(struct ceph_connection *con,
709 __u8 entity_type, __u64 entity_num,
710 struct ceph_entity_addr *addr)
711 {
712 mutex_lock(&con->mutex);
713 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
714
715 WARN_ON(con->state != CON_STATE_CLOSED);
716 con->state = CON_STATE_PREOPEN;
717
718 con->peer_name.type = (__u8) entity_type;
719 con->peer_name.num = cpu_to_le64(entity_num);
720
721 memcpy(&con->peer_addr, addr, sizeof(*addr));
722 con->delay = 0; /* reset backoff memory */
723 mutex_unlock(&con->mutex);
724 queue_con(con);
725 }
726 EXPORT_SYMBOL(ceph_con_open);
727
728 /*
729 * return true if this connection ever successfully opened
730 */
731 bool ceph_con_opened(struct ceph_connection *con)
732 {
733 return con->connect_seq > 0;
734 }
735
736 /*
737 * initialize a new connection.
738 */
739 void ceph_con_init(struct ceph_connection *con, void *private,
740 const struct ceph_connection_operations *ops,
741 struct ceph_messenger *msgr)
742 {
743 dout("con_init %p\n", con);
744 memset(con, 0, sizeof(*con));
745 con->private = private;
746 con->ops = ops;
747 con->msgr = msgr;
748
749 con_sock_state_init(con);
750
751 mutex_init(&con->mutex);
752 INIT_LIST_HEAD(&con->out_queue);
753 INIT_LIST_HEAD(&con->out_sent);
754 INIT_DELAYED_WORK(&con->work, con_work);
755
756 con->state = CON_STATE_CLOSED;
757 }
758 EXPORT_SYMBOL(ceph_con_init);
759
760
761 /*
762 * We maintain a global counter to order connection attempts. Get
763 * a unique seq greater than @gt.
764 */
765 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
766 {
767 u32 ret;
768
769 spin_lock(&msgr->global_seq_lock);
770 if (msgr->global_seq < gt)
771 msgr->global_seq = gt;
772 ret = ++msgr->global_seq;
773 spin_unlock(&msgr->global_seq_lock);
774 return ret;
775 }
776
777 static void con_out_kvec_reset(struct ceph_connection *con)
778 {
779 con->out_kvec_left = 0;
780 con->out_kvec_bytes = 0;
781 con->out_kvec_cur = &con->out_kvec[0];
782 }
783
784 static void con_out_kvec_add(struct ceph_connection *con,
785 size_t size, void *data)
786 {
787 int index;
788
789 index = con->out_kvec_left;
790 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
791
792 con->out_kvec[index].iov_len = size;
793 con->out_kvec[index].iov_base = data;
794 con->out_kvec_left++;
795 con->out_kvec_bytes += size;
796 }
797
798 #ifdef CONFIG_BLOCK
799
800 /*
801 * For a bio data item, a piece is whatever remains of the next
802 * entry in the current bio iovec, or the first entry in the next
803 * bio in the list.
804 */
805 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
806 size_t length)
807 {
808 struct ceph_msg_data *data = cursor->data;
809 struct bio *bio;
810
811 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
812
813 bio = data->bio;
814 BUG_ON(!bio);
815
816 cursor->resid = min(length, data->bio_length);
817 cursor->bio = bio;
818 cursor->bvec_iter = bio->bi_iter;
819 cursor->last_piece =
820 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
821 }
822
823 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
824 size_t *page_offset,
825 size_t *length)
826 {
827 struct ceph_msg_data *data = cursor->data;
828 struct bio *bio;
829 struct bio_vec bio_vec;
830
831 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
832
833 bio = cursor->bio;
834 BUG_ON(!bio);
835
836 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
837
838 *page_offset = (size_t) bio_vec.bv_offset;
839 BUG_ON(*page_offset >= PAGE_SIZE);
840 if (cursor->last_piece) /* pagelist offset is always 0 */
841 *length = cursor->resid;
842 else
843 *length = (size_t) bio_vec.bv_len;
844 BUG_ON(*length > cursor->resid);
845 BUG_ON(*page_offset + *length > PAGE_SIZE);
846
847 return bio_vec.bv_page;
848 }
849
850 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
851 size_t bytes)
852 {
853 struct bio *bio;
854 struct bio_vec bio_vec;
855
856 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
857
858 bio = cursor->bio;
859 BUG_ON(!bio);
860
861 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
862
863 /* Advance the cursor offset */
864
865 BUG_ON(cursor->resid < bytes);
866 cursor->resid -= bytes;
867
868 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
869
870 if (bytes < bio_vec.bv_len)
871 return false; /* more bytes to process in this segment */
872
873 /* Move on to the next segment, and possibly the next bio */
874
875 if (!cursor->bvec_iter.bi_size) {
876 bio = bio->bi_next;
877 cursor->bio = bio;
878 if (bio)
879 cursor->bvec_iter = bio->bi_iter;
880 else
881 memset(&cursor->bvec_iter, 0,
882 sizeof(cursor->bvec_iter));
883 }
884
885 if (!cursor->last_piece) {
886 BUG_ON(!cursor->resid);
887 BUG_ON(!bio);
888 /* A short read is OK, so use <= rather than == */
889 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
890 cursor->last_piece = true;
891 }
892
893 return true;
894 }
895 #endif /* CONFIG_BLOCK */
896
897 /*
898 * For a page array, a piece comes from the first page in the array
899 * that has not already been fully consumed.
900 */
901 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
902 size_t length)
903 {
904 struct ceph_msg_data *data = cursor->data;
905 int page_count;
906
907 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
908
909 BUG_ON(!data->pages);
910 BUG_ON(!data->length);
911
912 cursor->resid = min(length, data->length);
913 page_count = calc_pages_for(data->alignment, (u64)data->length);
914 cursor->page_offset = data->alignment & ~PAGE_MASK;
915 cursor->page_index = 0;
916 BUG_ON(page_count > (int)USHRT_MAX);
917 cursor->page_count = (unsigned short)page_count;
918 BUG_ON(length > SIZE_MAX - cursor->page_offset);
919 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
920 }
921
922 static struct page *
923 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
924 size_t *page_offset, size_t *length)
925 {
926 struct ceph_msg_data *data = cursor->data;
927
928 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
929
930 BUG_ON(cursor->page_index >= cursor->page_count);
931 BUG_ON(cursor->page_offset >= PAGE_SIZE);
932
933 *page_offset = cursor->page_offset;
934 if (cursor->last_piece)
935 *length = cursor->resid;
936 else
937 *length = PAGE_SIZE - *page_offset;
938
939 return data->pages[cursor->page_index];
940 }
941
942 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
943 size_t bytes)
944 {
945 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
946
947 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
948
949 /* Advance the cursor page offset */
950
951 cursor->resid -= bytes;
952 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
953 if (!bytes || cursor->page_offset)
954 return false; /* more bytes to process in the current page */
955
956 if (!cursor->resid)
957 return false; /* no more data */
958
959 /* Move on to the next page; offset is already at 0 */
960
961 BUG_ON(cursor->page_index >= cursor->page_count);
962 cursor->page_index++;
963 cursor->last_piece = cursor->resid <= PAGE_SIZE;
964
965 return true;
966 }
967
968 /*
969 * For a pagelist, a piece is whatever remains to be consumed in the
970 * first page in the list, or the front of the next page.
971 */
972 static void
973 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
974 size_t length)
975 {
976 struct ceph_msg_data *data = cursor->data;
977 struct ceph_pagelist *pagelist;
978 struct page *page;
979
980 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
981
982 pagelist = data->pagelist;
983 BUG_ON(!pagelist);
984
985 if (!length)
986 return; /* pagelist can be assigned but empty */
987
988 BUG_ON(list_empty(&pagelist->head));
989 page = list_first_entry(&pagelist->head, struct page, lru);
990
991 cursor->resid = min(length, pagelist->length);
992 cursor->page = page;
993 cursor->offset = 0;
994 cursor->last_piece = cursor->resid <= PAGE_SIZE;
995 }
996
997 static struct page *
998 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
999 size_t *page_offset, size_t *length)
1000 {
1001 struct ceph_msg_data *data = cursor->data;
1002 struct ceph_pagelist *pagelist;
1003
1004 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1005
1006 pagelist = data->pagelist;
1007 BUG_ON(!pagelist);
1008
1009 BUG_ON(!cursor->page);
1010 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1011
1012 /* offset of first page in pagelist is always 0 */
1013 *page_offset = cursor->offset & ~PAGE_MASK;
1014 if (cursor->last_piece)
1015 *length = cursor->resid;
1016 else
1017 *length = PAGE_SIZE - *page_offset;
1018
1019 return cursor->page;
1020 }
1021
1022 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1023 size_t bytes)
1024 {
1025 struct ceph_msg_data *data = cursor->data;
1026 struct ceph_pagelist *pagelist;
1027
1028 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1029
1030 pagelist = data->pagelist;
1031 BUG_ON(!pagelist);
1032
1033 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1034 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1035
1036 /* Advance the cursor offset */
1037
1038 cursor->resid -= bytes;
1039 cursor->offset += bytes;
1040 /* offset of first page in pagelist is always 0 */
1041 if (!bytes || cursor->offset & ~PAGE_MASK)
1042 return false; /* more bytes to process in the current page */
1043
1044 if (!cursor->resid)
1045 return false; /* no more data */
1046
1047 /* Move on to the next page */
1048
1049 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1050 cursor->page = list_entry_next(cursor->page, lru);
1051 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1052
1053 return true;
1054 }
1055
1056 /*
1057 * Message data is handled (sent or received) in pieces, where each
1058 * piece resides on a single page. The network layer might not
1059 * consume an entire piece at once. A data item's cursor keeps
1060 * track of which piece is next to process and how much remains to
1061 * be processed in that piece. It also tracks whether the current
1062 * piece is the last one in the data item.
1063 */
1064 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1065 {
1066 size_t length = cursor->total_resid;
1067
1068 switch (cursor->data->type) {
1069 case CEPH_MSG_DATA_PAGELIST:
1070 ceph_msg_data_pagelist_cursor_init(cursor, length);
1071 break;
1072 case CEPH_MSG_DATA_PAGES:
1073 ceph_msg_data_pages_cursor_init(cursor, length);
1074 break;
1075 #ifdef CONFIG_BLOCK
1076 case CEPH_MSG_DATA_BIO:
1077 ceph_msg_data_bio_cursor_init(cursor, length);
1078 break;
1079 #endif /* CONFIG_BLOCK */
1080 case CEPH_MSG_DATA_NONE:
1081 default:
1082 /* BUG(); */
1083 break;
1084 }
1085 cursor->need_crc = true;
1086 }
1087
1088 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1089 {
1090 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1091 struct ceph_msg_data *data;
1092
1093 BUG_ON(!length);
1094 BUG_ON(length > msg->data_length);
1095 BUG_ON(list_empty(&msg->data));
1096
1097 cursor->data_head = &msg->data;
1098 cursor->total_resid = length;
1099 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1100 cursor->data = data;
1101
1102 __ceph_msg_data_cursor_init(cursor);
1103 }
1104
1105 /*
1106 * Return the page containing the next piece to process for a given
1107 * data item, and supply the page offset and length of that piece.
1108 * Indicate whether this is the last piece in this data item.
1109 */
1110 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1111 size_t *page_offset, size_t *length,
1112 bool *last_piece)
1113 {
1114 struct page *page;
1115
1116 switch (cursor->data->type) {
1117 case CEPH_MSG_DATA_PAGELIST:
1118 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1119 break;
1120 case CEPH_MSG_DATA_PAGES:
1121 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1122 break;
1123 #ifdef CONFIG_BLOCK
1124 case CEPH_MSG_DATA_BIO:
1125 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1126 break;
1127 #endif /* CONFIG_BLOCK */
1128 case CEPH_MSG_DATA_NONE:
1129 default:
1130 page = NULL;
1131 break;
1132 }
1133 BUG_ON(!page);
1134 BUG_ON(*page_offset + *length > PAGE_SIZE);
1135 BUG_ON(!*length);
1136 if (last_piece)
1137 *last_piece = cursor->last_piece;
1138
1139 return page;
1140 }
1141
1142 /*
1143 * Returns true if the result moves the cursor on to the next piece
1144 * of the data item.
1145 */
1146 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1147 size_t bytes)
1148 {
1149 bool new_piece;
1150
1151 BUG_ON(bytes > cursor->resid);
1152 switch (cursor->data->type) {
1153 case CEPH_MSG_DATA_PAGELIST:
1154 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1155 break;
1156 case CEPH_MSG_DATA_PAGES:
1157 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1158 break;
1159 #ifdef CONFIG_BLOCK
1160 case CEPH_MSG_DATA_BIO:
1161 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1162 break;
1163 #endif /* CONFIG_BLOCK */
1164 case CEPH_MSG_DATA_NONE:
1165 default:
1166 BUG();
1167 break;
1168 }
1169 cursor->total_resid -= bytes;
1170
1171 if (!cursor->resid && cursor->total_resid) {
1172 WARN_ON(!cursor->last_piece);
1173 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1174 cursor->data = list_entry_next(cursor->data, links);
1175 __ceph_msg_data_cursor_init(cursor);
1176 new_piece = true;
1177 }
1178 cursor->need_crc = new_piece;
1179
1180 return new_piece;
1181 }
1182
1183 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1184 {
1185 BUG_ON(!msg);
1186 BUG_ON(!data_len);
1187
1188 /* Initialize data cursor */
1189
1190 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1191 }
1192
1193 /*
1194 * Prepare footer for currently outgoing message, and finish things
1195 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1196 */
1197 static void prepare_write_message_footer(struct ceph_connection *con)
1198 {
1199 struct ceph_msg *m = con->out_msg;
1200 int v = con->out_kvec_left;
1201
1202 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1203
1204 dout("prepare_write_message_footer %p\n", con);
1205 con->out_kvec_is_msg = true;
1206 con->out_kvec[v].iov_base = &m->footer;
1207 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1208 if (con->ops->sign_message)
1209 con->ops->sign_message(con, m);
1210 else
1211 m->footer.sig = 0;
1212 con->out_kvec[v].iov_len = sizeof(m->footer);
1213 con->out_kvec_bytes += sizeof(m->footer);
1214 } else {
1215 m->old_footer.flags = m->footer.flags;
1216 con->out_kvec[v].iov_len = sizeof(m->old_footer);
1217 con->out_kvec_bytes += sizeof(m->old_footer);
1218 }
1219 con->out_kvec_left++;
1220 con->out_more = m->more_to_follow;
1221 con->out_msg_done = true;
1222 }
1223
1224 /*
1225 * Prepare headers for the next outgoing message.
1226 */
1227 static void prepare_write_message(struct ceph_connection *con)
1228 {
1229 struct ceph_msg *m;
1230 u32 crc;
1231
1232 con_out_kvec_reset(con);
1233 con->out_kvec_is_msg = true;
1234 con->out_msg_done = false;
1235
1236 /* Sneak an ack in there first? If we can get it into the same
1237 * TCP packet that's a good thing. */
1238 if (con->in_seq > con->in_seq_acked) {
1239 con->in_seq_acked = con->in_seq;
1240 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1241 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1242 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1243 &con->out_temp_ack);
1244 }
1245
1246 BUG_ON(list_empty(&con->out_queue));
1247 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1248 con->out_msg = m;
1249 BUG_ON(m->con != con);
1250
1251 /* put message on sent list */
1252 ceph_msg_get(m);
1253 list_move_tail(&m->list_head, &con->out_sent);
1254
1255 /*
1256 * only assign outgoing seq # if we haven't sent this message
1257 * yet. if it is requeued, resend with it's original seq.
1258 */
1259 if (m->needs_out_seq) {
1260 m->hdr.seq = cpu_to_le64(++con->out_seq);
1261 m->needs_out_seq = false;
1262 }
1263 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1264
1265 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1266 m, con->out_seq, le16_to_cpu(m->hdr.type),
1267 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1268 m->data_length);
1269 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1270
1271 /* tag + hdr + front + middle */
1272 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1273 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1274 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1275
1276 if (m->middle)
1277 con_out_kvec_add(con, m->middle->vec.iov_len,
1278 m->middle->vec.iov_base);
1279
1280 /* fill in crc (except data pages), footer */
1281 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1282 con->out_msg->hdr.crc = cpu_to_le32(crc);
1283 con->out_msg->footer.flags = 0;
1284
1285 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1286 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1287 if (m->middle) {
1288 crc = crc32c(0, m->middle->vec.iov_base,
1289 m->middle->vec.iov_len);
1290 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1291 } else
1292 con->out_msg->footer.middle_crc = 0;
1293 dout("%s front_crc %u middle_crc %u\n", __func__,
1294 le32_to_cpu(con->out_msg->footer.front_crc),
1295 le32_to_cpu(con->out_msg->footer.middle_crc));
1296
1297 /* is there a data payload? */
1298 con->out_msg->footer.data_crc = 0;
1299 if (m->data_length) {
1300 prepare_message_data(con->out_msg, m->data_length);
1301 con->out_more = 1; /* data + footer will follow */
1302 } else {
1303 /* no, queue up footer too and be done */
1304 prepare_write_message_footer(con);
1305 }
1306
1307 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1308 }
1309
1310 /*
1311 * Prepare an ack.
1312 */
1313 static void prepare_write_ack(struct ceph_connection *con)
1314 {
1315 dout("prepare_write_ack %p %llu -> %llu\n", con,
1316 con->in_seq_acked, con->in_seq);
1317 con->in_seq_acked = con->in_seq;
1318
1319 con_out_kvec_reset(con);
1320
1321 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1322
1323 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1324 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1325 &con->out_temp_ack);
1326
1327 con->out_more = 1; /* more will follow.. eventually.. */
1328 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1329 }
1330
1331 /*
1332 * Prepare to share the seq during handshake
1333 */
1334 static void prepare_write_seq(struct ceph_connection *con)
1335 {
1336 dout("prepare_write_seq %p %llu -> %llu\n", con,
1337 con->in_seq_acked, con->in_seq);
1338 con->in_seq_acked = con->in_seq;
1339
1340 con_out_kvec_reset(con);
1341
1342 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1343 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1344 &con->out_temp_ack);
1345
1346 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1347 }
1348
1349 /*
1350 * Prepare to write keepalive byte.
1351 */
1352 static void prepare_write_keepalive(struct ceph_connection *con)
1353 {
1354 dout("prepare_write_keepalive %p\n", con);
1355 con_out_kvec_reset(con);
1356 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1357 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1358 }
1359
1360 /*
1361 * Connection negotiation.
1362 */
1363
1364 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1365 int *auth_proto)
1366 {
1367 struct ceph_auth_handshake *auth;
1368
1369 if (!con->ops->get_authorizer) {
1370 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1371 con->out_connect.authorizer_len = 0;
1372 return NULL;
1373 }
1374
1375 /* Can't hold the mutex while getting authorizer */
1376 mutex_unlock(&con->mutex);
1377 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1378 mutex_lock(&con->mutex);
1379
1380 if (IS_ERR(auth))
1381 return auth;
1382 if (con->state != CON_STATE_NEGOTIATING)
1383 return ERR_PTR(-EAGAIN);
1384
1385 con->auth_reply_buf = auth->authorizer_reply_buf;
1386 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1387 return auth;
1388 }
1389
1390 /*
1391 * We connected to a peer and are saying hello.
1392 */
1393 static void prepare_write_banner(struct ceph_connection *con)
1394 {
1395 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1396 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1397 &con->msgr->my_enc_addr);
1398
1399 con->out_more = 0;
1400 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1401 }
1402
1403 static int prepare_write_connect(struct ceph_connection *con)
1404 {
1405 unsigned int global_seq = get_global_seq(con->msgr, 0);
1406 int proto;
1407 int auth_proto;
1408 struct ceph_auth_handshake *auth;
1409
1410 switch (con->peer_name.type) {
1411 case CEPH_ENTITY_TYPE_MON:
1412 proto = CEPH_MONC_PROTOCOL;
1413 break;
1414 case CEPH_ENTITY_TYPE_OSD:
1415 proto = CEPH_OSDC_PROTOCOL;
1416 break;
1417 case CEPH_ENTITY_TYPE_MDS:
1418 proto = CEPH_MDSC_PROTOCOL;
1419 break;
1420 default:
1421 BUG();
1422 }
1423
1424 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1425 con->connect_seq, global_seq, proto);
1426
1427 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1428 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1429 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1430 con->out_connect.global_seq = cpu_to_le32(global_seq);
1431 con->out_connect.protocol_version = cpu_to_le32(proto);
1432 con->out_connect.flags = 0;
1433
1434 auth_proto = CEPH_AUTH_UNKNOWN;
1435 auth = get_connect_authorizer(con, &auth_proto);
1436 if (IS_ERR(auth))
1437 return PTR_ERR(auth);
1438
1439 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1440 con->out_connect.authorizer_len = auth ?
1441 cpu_to_le32(auth->authorizer_buf_len) : 0;
1442
1443 con_out_kvec_add(con, sizeof (con->out_connect),
1444 &con->out_connect);
1445 if (auth && auth->authorizer_buf_len)
1446 con_out_kvec_add(con, auth->authorizer_buf_len,
1447 auth->authorizer_buf);
1448
1449 con->out_more = 0;
1450 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1451
1452 return 0;
1453 }
1454
1455 /*
1456 * write as much of pending kvecs to the socket as we can.
1457 * 1 -> done
1458 * 0 -> socket full, but more to do
1459 * <0 -> error
1460 */
1461 static int write_partial_kvec(struct ceph_connection *con)
1462 {
1463 int ret;
1464
1465 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1466 while (con->out_kvec_bytes > 0) {
1467 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1468 con->out_kvec_left, con->out_kvec_bytes,
1469 con->out_more);
1470 if (ret <= 0)
1471 goto out;
1472 con->out_kvec_bytes -= ret;
1473 if (con->out_kvec_bytes == 0)
1474 break; /* done */
1475
1476 /* account for full iov entries consumed */
1477 while (ret >= con->out_kvec_cur->iov_len) {
1478 BUG_ON(!con->out_kvec_left);
1479 ret -= con->out_kvec_cur->iov_len;
1480 con->out_kvec_cur++;
1481 con->out_kvec_left--;
1482 }
1483 /* and for a partially-consumed entry */
1484 if (ret) {
1485 con->out_kvec_cur->iov_len -= ret;
1486 con->out_kvec_cur->iov_base += ret;
1487 }
1488 }
1489 con->out_kvec_left = 0;
1490 con->out_kvec_is_msg = false;
1491 ret = 1;
1492 out:
1493 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1494 con->out_kvec_bytes, con->out_kvec_left, ret);
1495 return ret; /* done! */
1496 }
1497
1498 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1499 unsigned int page_offset,
1500 unsigned int length)
1501 {
1502 char *kaddr;
1503
1504 kaddr = kmap(page);
1505 BUG_ON(kaddr == NULL);
1506 crc = crc32c(crc, kaddr + page_offset, length);
1507 kunmap(page);
1508
1509 return crc;
1510 }
1511 /*
1512 * Write as much message data payload as we can. If we finish, queue
1513 * up the footer.
1514 * 1 -> done, footer is now queued in out_kvec[].
1515 * 0 -> socket full, but more to do
1516 * <0 -> error
1517 */
1518 static int write_partial_message_data(struct ceph_connection *con)
1519 {
1520 struct ceph_msg *msg = con->out_msg;
1521 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1522 bool do_datacrc = !con->msgr->nocrc;
1523 u32 crc;
1524
1525 dout("%s %p msg %p\n", __func__, con, msg);
1526
1527 if (list_empty(&msg->data))
1528 return -EINVAL;
1529
1530 /*
1531 * Iterate through each page that contains data to be
1532 * written, and send as much as possible for each.
1533 *
1534 * If we are calculating the data crc (the default), we will
1535 * need to map the page. If we have no pages, they have
1536 * been revoked, so use the zero page.
1537 */
1538 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1539 while (cursor->resid) {
1540 struct page *page;
1541 size_t page_offset;
1542 size_t length;
1543 bool last_piece;
1544 bool need_crc;
1545 int ret;
1546
1547 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1548 &last_piece);
1549 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1550 length, last_piece);
1551 if (ret <= 0) {
1552 if (do_datacrc)
1553 msg->footer.data_crc = cpu_to_le32(crc);
1554
1555 return ret;
1556 }
1557 if (do_datacrc && cursor->need_crc)
1558 crc = ceph_crc32c_page(crc, page, page_offset, length);
1559 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1560 }
1561
1562 dout("%s %p msg %p done\n", __func__, con, msg);
1563
1564 /* prepare and queue up footer, too */
1565 if (do_datacrc)
1566 msg->footer.data_crc = cpu_to_le32(crc);
1567 else
1568 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1569 con_out_kvec_reset(con);
1570 prepare_write_message_footer(con);
1571
1572 return 1; /* must return > 0 to indicate success */
1573 }
1574
1575 /*
1576 * write some zeros
1577 */
1578 static int write_partial_skip(struct ceph_connection *con)
1579 {
1580 int ret;
1581
1582 while (con->out_skip > 0) {
1583 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1584
1585 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1586 if (ret <= 0)
1587 goto out;
1588 con->out_skip -= ret;
1589 }
1590 ret = 1;
1591 out:
1592 return ret;
1593 }
1594
1595 /*
1596 * Prepare to read connection handshake, or an ack.
1597 */
1598 static void prepare_read_banner(struct ceph_connection *con)
1599 {
1600 dout("prepare_read_banner %p\n", con);
1601 con->in_base_pos = 0;
1602 }
1603
1604 static void prepare_read_connect(struct ceph_connection *con)
1605 {
1606 dout("prepare_read_connect %p\n", con);
1607 con->in_base_pos = 0;
1608 }
1609
1610 static void prepare_read_ack(struct ceph_connection *con)
1611 {
1612 dout("prepare_read_ack %p\n", con);
1613 con->in_base_pos = 0;
1614 }
1615
1616 static void prepare_read_seq(struct ceph_connection *con)
1617 {
1618 dout("prepare_read_seq %p\n", con);
1619 con->in_base_pos = 0;
1620 con->in_tag = CEPH_MSGR_TAG_SEQ;
1621 }
1622
1623 static void prepare_read_tag(struct ceph_connection *con)
1624 {
1625 dout("prepare_read_tag %p\n", con);
1626 con->in_base_pos = 0;
1627 con->in_tag = CEPH_MSGR_TAG_READY;
1628 }
1629
1630 /*
1631 * Prepare to read a message.
1632 */
1633 static int prepare_read_message(struct ceph_connection *con)
1634 {
1635 dout("prepare_read_message %p\n", con);
1636 BUG_ON(con->in_msg != NULL);
1637 con->in_base_pos = 0;
1638 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1639 return 0;
1640 }
1641
1642
1643 static int read_partial(struct ceph_connection *con,
1644 int end, int size, void *object)
1645 {
1646 while (con->in_base_pos < end) {
1647 int left = end - con->in_base_pos;
1648 int have = size - left;
1649 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1650 if (ret <= 0)
1651 return ret;
1652 con->in_base_pos += ret;
1653 }
1654 return 1;
1655 }
1656
1657
1658 /*
1659 * Read all or part of the connect-side handshake on a new connection
1660 */
1661 static int read_partial_banner(struct ceph_connection *con)
1662 {
1663 int size;
1664 int end;
1665 int ret;
1666
1667 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1668
1669 /* peer's banner */
1670 size = strlen(CEPH_BANNER);
1671 end = size;
1672 ret = read_partial(con, end, size, con->in_banner);
1673 if (ret <= 0)
1674 goto out;
1675
1676 size = sizeof (con->actual_peer_addr);
1677 end += size;
1678 ret = read_partial(con, end, size, &con->actual_peer_addr);
1679 if (ret <= 0)
1680 goto out;
1681
1682 size = sizeof (con->peer_addr_for_me);
1683 end += size;
1684 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1685 if (ret <= 0)
1686 goto out;
1687
1688 out:
1689 return ret;
1690 }
1691
1692 static int read_partial_connect(struct ceph_connection *con)
1693 {
1694 int size;
1695 int end;
1696 int ret;
1697
1698 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1699
1700 size = sizeof (con->in_reply);
1701 end = size;
1702 ret = read_partial(con, end, size, &con->in_reply);
1703 if (ret <= 0)
1704 goto out;
1705
1706 size = le32_to_cpu(con->in_reply.authorizer_len);
1707 end += size;
1708 ret = read_partial(con, end, size, con->auth_reply_buf);
1709 if (ret <= 0)
1710 goto out;
1711
1712 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1713 con, (int)con->in_reply.tag,
1714 le32_to_cpu(con->in_reply.connect_seq),
1715 le32_to_cpu(con->in_reply.global_seq));
1716 out:
1717 return ret;
1718
1719 }
1720
1721 /*
1722 * Verify the hello banner looks okay.
1723 */
1724 static int verify_hello(struct ceph_connection *con)
1725 {
1726 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1727 pr_err("connect to %s got bad banner\n",
1728 ceph_pr_addr(&con->peer_addr.in_addr));
1729 con->error_msg = "protocol error, bad banner";
1730 return -1;
1731 }
1732 return 0;
1733 }
1734
1735 static bool addr_is_blank(struct sockaddr_storage *ss)
1736 {
1737 switch (ss->ss_family) {
1738 case AF_INET:
1739 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1740 case AF_INET6:
1741 return
1742 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1743 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1744 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1745 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1746 }
1747 return false;
1748 }
1749
1750 static int addr_port(struct sockaddr_storage *ss)
1751 {
1752 switch (ss->ss_family) {
1753 case AF_INET:
1754 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1755 case AF_INET6:
1756 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1757 }
1758 return 0;
1759 }
1760
1761 static void addr_set_port(struct sockaddr_storage *ss, int p)
1762 {
1763 switch (ss->ss_family) {
1764 case AF_INET:
1765 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1766 break;
1767 case AF_INET6:
1768 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1769 break;
1770 }
1771 }
1772
1773 /*
1774 * Unlike other *_pton function semantics, zero indicates success.
1775 */
1776 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1777 char delim, const char **ipend)
1778 {
1779 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1780 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1781
1782 memset(ss, 0, sizeof(*ss));
1783
1784 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1785 ss->ss_family = AF_INET;
1786 return 0;
1787 }
1788
1789 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1790 ss->ss_family = AF_INET6;
1791 return 0;
1792 }
1793
1794 return -EINVAL;
1795 }
1796
1797 /*
1798 * Extract hostname string and resolve using kernel DNS facility.
1799 */
1800 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1801 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1802 struct sockaddr_storage *ss, char delim, const char **ipend)
1803 {
1804 const char *end, *delim_p;
1805 char *colon_p, *ip_addr = NULL;
1806 int ip_len, ret;
1807
1808 /*
1809 * The end of the hostname occurs immediately preceding the delimiter or
1810 * the port marker (':') where the delimiter takes precedence.
1811 */
1812 delim_p = memchr(name, delim, namelen);
1813 colon_p = memchr(name, ':', namelen);
1814
1815 if (delim_p && colon_p)
1816 end = delim_p < colon_p ? delim_p : colon_p;
1817 else if (!delim_p && colon_p)
1818 end = colon_p;
1819 else {
1820 end = delim_p;
1821 if (!end) /* case: hostname:/ */
1822 end = name + namelen;
1823 }
1824
1825 if (end <= name)
1826 return -EINVAL;
1827
1828 /* do dns_resolve upcall */
1829 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1830 if (ip_len > 0)
1831 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1832 else
1833 ret = -ESRCH;
1834
1835 kfree(ip_addr);
1836
1837 *ipend = end;
1838
1839 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1840 ret, ret ? "failed" : ceph_pr_addr(ss));
1841
1842 return ret;
1843 }
1844 #else
1845 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1846 struct sockaddr_storage *ss, char delim, const char **ipend)
1847 {
1848 return -EINVAL;
1849 }
1850 #endif
1851
1852 /*
1853 * Parse a server name (IP or hostname). If a valid IP address is not found
1854 * then try to extract a hostname to resolve using userspace DNS upcall.
1855 */
1856 static int ceph_parse_server_name(const char *name, size_t namelen,
1857 struct sockaddr_storage *ss, char delim, const char **ipend)
1858 {
1859 int ret;
1860
1861 ret = ceph_pton(name, namelen, ss, delim, ipend);
1862 if (ret)
1863 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1864
1865 return ret;
1866 }
1867
1868 /*
1869 * Parse an ip[:port] list into an addr array. Use the default
1870 * monitor port if a port isn't specified.
1871 */
1872 int ceph_parse_ips(const char *c, const char *end,
1873 struct ceph_entity_addr *addr,
1874 int max_count, int *count)
1875 {
1876 int i, ret = -EINVAL;
1877 const char *p = c;
1878
1879 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1880 for (i = 0; i < max_count; i++) {
1881 const char *ipend;
1882 struct sockaddr_storage *ss = &addr[i].in_addr;
1883 int port;
1884 char delim = ',';
1885
1886 if (*p == '[') {
1887 delim = ']';
1888 p++;
1889 }
1890
1891 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1892 if (ret)
1893 goto bad;
1894 ret = -EINVAL;
1895
1896 p = ipend;
1897
1898 if (delim == ']') {
1899 if (*p != ']') {
1900 dout("missing matching ']'\n");
1901 goto bad;
1902 }
1903 p++;
1904 }
1905
1906 /* port? */
1907 if (p < end && *p == ':') {
1908 port = 0;
1909 p++;
1910 while (p < end && *p >= '0' && *p <= '9') {
1911 port = (port * 10) + (*p - '0');
1912 p++;
1913 }
1914 if (port == 0)
1915 port = CEPH_MON_PORT;
1916 else if (port > 65535)
1917 goto bad;
1918 } else {
1919 port = CEPH_MON_PORT;
1920 }
1921
1922 addr_set_port(ss, port);
1923
1924 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1925
1926 if (p == end)
1927 break;
1928 if (*p != ',')
1929 goto bad;
1930 p++;
1931 }
1932
1933 if (p != end)
1934 goto bad;
1935
1936 if (count)
1937 *count = i + 1;
1938 return 0;
1939
1940 bad:
1941 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1942 return ret;
1943 }
1944 EXPORT_SYMBOL(ceph_parse_ips);
1945
1946 static int process_banner(struct ceph_connection *con)
1947 {
1948 dout("process_banner on %p\n", con);
1949
1950 if (verify_hello(con) < 0)
1951 return -1;
1952
1953 ceph_decode_addr(&con->actual_peer_addr);
1954 ceph_decode_addr(&con->peer_addr_for_me);
1955
1956 /*
1957 * Make sure the other end is who we wanted. note that the other
1958 * end may not yet know their ip address, so if it's 0.0.0.0, give
1959 * them the benefit of the doubt.
1960 */
1961 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1962 sizeof(con->peer_addr)) != 0 &&
1963 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1964 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1965 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
1966 ceph_pr_addr(&con->peer_addr.in_addr),
1967 (int)le32_to_cpu(con->peer_addr.nonce),
1968 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1969 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1970 con->error_msg = "wrong peer at address";
1971 return -1;
1972 }
1973
1974 /*
1975 * did we learn our address?
1976 */
1977 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1978 int port = addr_port(&con->msgr->inst.addr.in_addr);
1979
1980 memcpy(&con->msgr->inst.addr.in_addr,
1981 &con->peer_addr_for_me.in_addr,
1982 sizeof(con->peer_addr_for_me.in_addr));
1983 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1984 encode_my_addr(con->msgr);
1985 dout("process_banner learned my addr is %s\n",
1986 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1987 }
1988
1989 return 0;
1990 }
1991
1992 static int process_connect(struct ceph_connection *con)
1993 {
1994 u64 sup_feat = con->msgr->supported_features;
1995 u64 req_feat = con->msgr->required_features;
1996 u64 server_feat = ceph_sanitize_features(
1997 le64_to_cpu(con->in_reply.features));
1998 int ret;
1999
2000 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2001
2002 switch (con->in_reply.tag) {
2003 case CEPH_MSGR_TAG_FEATURES:
2004 pr_err("%s%lld %s feature set mismatch,"
2005 " my %llx < server's %llx, missing %llx\n",
2006 ENTITY_NAME(con->peer_name),
2007 ceph_pr_addr(&con->peer_addr.in_addr),
2008 sup_feat, server_feat, server_feat & ~sup_feat);
2009 con->error_msg = "missing required protocol features";
2010 reset_connection(con);
2011 return -1;
2012
2013 case CEPH_MSGR_TAG_BADPROTOVER:
2014 pr_err("%s%lld %s protocol version mismatch,"
2015 " my %d != server's %d\n",
2016 ENTITY_NAME(con->peer_name),
2017 ceph_pr_addr(&con->peer_addr.in_addr),
2018 le32_to_cpu(con->out_connect.protocol_version),
2019 le32_to_cpu(con->in_reply.protocol_version));
2020 con->error_msg = "protocol version mismatch";
2021 reset_connection(con);
2022 return -1;
2023
2024 case CEPH_MSGR_TAG_BADAUTHORIZER:
2025 con->auth_retry++;
2026 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2027 con->auth_retry);
2028 if (con->auth_retry == 2) {
2029 con->error_msg = "connect authorization failure";
2030 return -1;
2031 }
2032 con_out_kvec_reset(con);
2033 ret = prepare_write_connect(con);
2034 if (ret < 0)
2035 return ret;
2036 prepare_read_connect(con);
2037 break;
2038
2039 case CEPH_MSGR_TAG_RESETSESSION:
2040 /*
2041 * If we connected with a large connect_seq but the peer
2042 * has no record of a session with us (no connection, or
2043 * connect_seq == 0), they will send RESETSESION to indicate
2044 * that they must have reset their session, and may have
2045 * dropped messages.
2046 */
2047 dout("process_connect got RESET peer seq %u\n",
2048 le32_to_cpu(con->in_reply.connect_seq));
2049 pr_err("%s%lld %s connection reset\n",
2050 ENTITY_NAME(con->peer_name),
2051 ceph_pr_addr(&con->peer_addr.in_addr));
2052 reset_connection(con);
2053 con_out_kvec_reset(con);
2054 ret = prepare_write_connect(con);
2055 if (ret < 0)
2056 return ret;
2057 prepare_read_connect(con);
2058
2059 /* Tell ceph about it. */
2060 mutex_unlock(&con->mutex);
2061 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2062 if (con->ops->peer_reset)
2063 con->ops->peer_reset(con);
2064 mutex_lock(&con->mutex);
2065 if (con->state != CON_STATE_NEGOTIATING)
2066 return -EAGAIN;
2067 break;
2068
2069 case CEPH_MSGR_TAG_RETRY_SESSION:
2070 /*
2071 * If we sent a smaller connect_seq than the peer has, try
2072 * again with a larger value.
2073 */
2074 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2075 le32_to_cpu(con->out_connect.connect_seq),
2076 le32_to_cpu(con->in_reply.connect_seq));
2077 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2078 con_out_kvec_reset(con);
2079 ret = prepare_write_connect(con);
2080 if (ret < 0)
2081 return ret;
2082 prepare_read_connect(con);
2083 break;
2084
2085 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2086 /*
2087 * If we sent a smaller global_seq than the peer has, try
2088 * again with a larger value.
2089 */
2090 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2091 con->peer_global_seq,
2092 le32_to_cpu(con->in_reply.global_seq));
2093 get_global_seq(con->msgr,
2094 le32_to_cpu(con->in_reply.global_seq));
2095 con_out_kvec_reset(con);
2096 ret = prepare_write_connect(con);
2097 if (ret < 0)
2098 return ret;
2099 prepare_read_connect(con);
2100 break;
2101
2102 case CEPH_MSGR_TAG_SEQ:
2103 case CEPH_MSGR_TAG_READY:
2104 if (req_feat & ~server_feat) {
2105 pr_err("%s%lld %s protocol feature mismatch,"
2106 " my required %llx > server's %llx, need %llx\n",
2107 ENTITY_NAME(con->peer_name),
2108 ceph_pr_addr(&con->peer_addr.in_addr),
2109 req_feat, server_feat, req_feat & ~server_feat);
2110 con->error_msg = "missing required protocol features";
2111 reset_connection(con);
2112 return -1;
2113 }
2114
2115 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2116 con->state = CON_STATE_OPEN;
2117 con->auth_retry = 0; /* we authenticated; clear flag */
2118 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2119 con->connect_seq++;
2120 con->peer_features = server_feat;
2121 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2122 con->peer_global_seq,
2123 le32_to_cpu(con->in_reply.connect_seq),
2124 con->connect_seq);
2125 WARN_ON(con->connect_seq !=
2126 le32_to_cpu(con->in_reply.connect_seq));
2127
2128 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2129 con_flag_set(con, CON_FLAG_LOSSYTX);
2130
2131 con->delay = 0; /* reset backoff memory */
2132
2133 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2134 prepare_write_seq(con);
2135 prepare_read_seq(con);
2136 } else {
2137 prepare_read_tag(con);
2138 }
2139 break;
2140
2141 case CEPH_MSGR_TAG_WAIT:
2142 /*
2143 * If there is a connection race (we are opening
2144 * connections to each other), one of us may just have
2145 * to WAIT. This shouldn't happen if we are the
2146 * client.
2147 */
2148 pr_err("process_connect got WAIT as client\n");
2149 con->error_msg = "protocol error, got WAIT as client";
2150 return -1;
2151
2152 default:
2153 pr_err("connect protocol error, will retry\n");
2154 con->error_msg = "protocol error, garbage tag during connect";
2155 return -1;
2156 }
2157 return 0;
2158 }
2159
2160
2161 /*
2162 * read (part of) an ack
2163 */
2164 static int read_partial_ack(struct ceph_connection *con)
2165 {
2166 int size = sizeof (con->in_temp_ack);
2167 int end = size;
2168
2169 return read_partial(con, end, size, &con->in_temp_ack);
2170 }
2171
2172 /*
2173 * We can finally discard anything that's been acked.
2174 */
2175 static void process_ack(struct ceph_connection *con)
2176 {
2177 struct ceph_msg *m;
2178 u64 ack = le64_to_cpu(con->in_temp_ack);
2179 u64 seq;
2180
2181 while (!list_empty(&con->out_sent)) {
2182 m = list_first_entry(&con->out_sent, struct ceph_msg,
2183 list_head);
2184 seq = le64_to_cpu(m->hdr.seq);
2185 if (seq > ack)
2186 break;
2187 dout("got ack for seq %llu type %d at %p\n", seq,
2188 le16_to_cpu(m->hdr.type), m);
2189 m->ack_stamp = jiffies;
2190 ceph_msg_remove(m);
2191 }
2192 prepare_read_tag(con);
2193 }
2194
2195
2196 static int read_partial_message_section(struct ceph_connection *con,
2197 struct kvec *section,
2198 unsigned int sec_len, u32 *crc)
2199 {
2200 int ret, left;
2201
2202 BUG_ON(!section);
2203
2204 while (section->iov_len < sec_len) {
2205 BUG_ON(section->iov_base == NULL);
2206 left = sec_len - section->iov_len;
2207 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2208 section->iov_len, left);
2209 if (ret <= 0)
2210 return ret;
2211 section->iov_len += ret;
2212 }
2213 if (section->iov_len == sec_len)
2214 *crc = crc32c(0, section->iov_base, section->iov_len);
2215
2216 return 1;
2217 }
2218
2219 static int read_partial_msg_data(struct ceph_connection *con)
2220 {
2221 struct ceph_msg *msg = con->in_msg;
2222 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2223 const bool do_datacrc = !con->msgr->nocrc;
2224 struct page *page;
2225 size_t page_offset;
2226 size_t length;
2227 u32 crc = 0;
2228 int ret;
2229
2230 BUG_ON(!msg);
2231 if (list_empty(&msg->data))
2232 return -EIO;
2233
2234 if (do_datacrc)
2235 crc = con->in_data_crc;
2236 while (cursor->resid) {
2237 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2238 NULL);
2239 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2240 if (ret <= 0) {
2241 if (do_datacrc)
2242 con->in_data_crc = crc;
2243
2244 return ret;
2245 }
2246
2247 if (do_datacrc)
2248 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2249 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2250 }
2251 if (do_datacrc)
2252 con->in_data_crc = crc;
2253
2254 return 1; /* must return > 0 to indicate success */
2255 }
2256
2257 /*
2258 * read (part of) a message.
2259 */
2260 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2261
2262 static int read_partial_message(struct ceph_connection *con)
2263 {
2264 struct ceph_msg *m = con->in_msg;
2265 int size;
2266 int end;
2267 int ret;
2268 unsigned int front_len, middle_len, data_len;
2269 bool do_datacrc = !con->msgr->nocrc;
2270 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2271 u64 seq;
2272 u32 crc;
2273
2274 dout("read_partial_message con %p msg %p\n", con, m);
2275
2276 /* header */
2277 size = sizeof (con->in_hdr);
2278 end = size;
2279 ret = read_partial(con, end, size, &con->in_hdr);
2280 if (ret <= 0)
2281 return ret;
2282
2283 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2284 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2285 pr_err("read_partial_message bad hdr "
2286 " crc %u != expected %u\n",
2287 crc, con->in_hdr.crc);
2288 return -EBADMSG;
2289 }
2290
2291 front_len = le32_to_cpu(con->in_hdr.front_len);
2292 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2293 return -EIO;
2294 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2295 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2296 return -EIO;
2297 data_len = le32_to_cpu(con->in_hdr.data_len);
2298 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2299 return -EIO;
2300
2301 /* verify seq# */
2302 seq = le64_to_cpu(con->in_hdr.seq);
2303 if ((s64)seq - (s64)con->in_seq < 1) {
2304 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2305 ENTITY_NAME(con->peer_name),
2306 ceph_pr_addr(&con->peer_addr.in_addr),
2307 seq, con->in_seq + 1);
2308 con->in_base_pos = -front_len - middle_len - data_len -
2309 sizeof(m->footer);
2310 con->in_tag = CEPH_MSGR_TAG_READY;
2311 return 0;
2312 } else if ((s64)seq - (s64)con->in_seq > 1) {
2313 pr_err("read_partial_message bad seq %lld expected %lld\n",
2314 seq, con->in_seq + 1);
2315 con->error_msg = "bad message sequence # for incoming message";
2316 return -EBADMSG;
2317 }
2318
2319 /* allocate message? */
2320 if (!con->in_msg) {
2321 int skip = 0;
2322
2323 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2324 front_len, data_len);
2325 ret = ceph_con_in_msg_alloc(con, &skip);
2326 if (ret < 0)
2327 return ret;
2328
2329 BUG_ON(!con->in_msg ^ skip);
2330 if (con->in_msg && data_len > con->in_msg->data_length) {
2331 pr_warn("%s skipping long message (%u > %zd)\n",
2332 __func__, data_len, con->in_msg->data_length);
2333 ceph_msg_put(con->in_msg);
2334 con->in_msg = NULL;
2335 skip = 1;
2336 }
2337 if (skip) {
2338 /* skip this message */
2339 dout("alloc_msg said skip message\n");
2340 con->in_base_pos = -front_len - middle_len - data_len -
2341 sizeof(m->footer);
2342 con->in_tag = CEPH_MSGR_TAG_READY;
2343 con->in_seq++;
2344 return 0;
2345 }
2346
2347 BUG_ON(!con->in_msg);
2348 BUG_ON(con->in_msg->con != con);
2349 m = con->in_msg;
2350 m->front.iov_len = 0; /* haven't read it yet */
2351 if (m->middle)
2352 m->middle->vec.iov_len = 0;
2353
2354 /* prepare for data payload, if any */
2355
2356 if (data_len)
2357 prepare_message_data(con->in_msg, data_len);
2358 }
2359
2360 /* front */
2361 ret = read_partial_message_section(con, &m->front, front_len,
2362 &con->in_front_crc);
2363 if (ret <= 0)
2364 return ret;
2365
2366 /* middle */
2367 if (m->middle) {
2368 ret = read_partial_message_section(con, &m->middle->vec,
2369 middle_len,
2370 &con->in_middle_crc);
2371 if (ret <= 0)
2372 return ret;
2373 }
2374
2375 /* (page) data */
2376 if (data_len) {
2377 ret = read_partial_msg_data(con);
2378 if (ret <= 0)
2379 return ret;
2380 }
2381
2382 /* footer */
2383 if (need_sign)
2384 size = sizeof(m->footer);
2385 else
2386 size = sizeof(m->old_footer);
2387
2388 end += size;
2389 ret = read_partial(con, end, size, &m->footer);
2390 if (ret <= 0)
2391 return ret;
2392
2393 if (!need_sign) {
2394 m->footer.flags = m->old_footer.flags;
2395 m->footer.sig = 0;
2396 }
2397
2398 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2399 m, front_len, m->footer.front_crc, middle_len,
2400 m->footer.middle_crc, data_len, m->footer.data_crc);
2401
2402 /* crc ok? */
2403 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2404 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2405 m, con->in_front_crc, m->footer.front_crc);
2406 return -EBADMSG;
2407 }
2408 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2409 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2410 m, con->in_middle_crc, m->footer.middle_crc);
2411 return -EBADMSG;
2412 }
2413 if (do_datacrc &&
2414 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2415 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2416 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2417 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2418 return -EBADMSG;
2419 }
2420
2421 if (need_sign && con->ops->check_message_signature &&
2422 con->ops->check_message_signature(con, m)) {
2423 pr_err("read_partial_message %p signature check failed\n", m);
2424 return -EBADMSG;
2425 }
2426
2427 return 1; /* done! */
2428 }
2429
2430 /*
2431 * Process message. This happens in the worker thread. The callback should
2432 * be careful not to do anything that waits on other incoming messages or it
2433 * may deadlock.
2434 */
2435 static void process_message(struct ceph_connection *con)
2436 {
2437 struct ceph_msg *msg;
2438
2439 BUG_ON(con->in_msg->con != con);
2440 con->in_msg->con = NULL;
2441 msg = con->in_msg;
2442 con->in_msg = NULL;
2443 con->ops->put(con);
2444
2445 /* if first message, set peer_name */
2446 if (con->peer_name.type == 0)
2447 con->peer_name = msg->hdr.src;
2448
2449 con->in_seq++;
2450 mutex_unlock(&con->mutex);
2451
2452 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2453 msg, le64_to_cpu(msg->hdr.seq),
2454 ENTITY_NAME(msg->hdr.src),
2455 le16_to_cpu(msg->hdr.type),
2456 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2457 le32_to_cpu(msg->hdr.front_len),
2458 le32_to_cpu(msg->hdr.data_len),
2459 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2460 con->ops->dispatch(con, msg);
2461
2462 mutex_lock(&con->mutex);
2463 }
2464
2465
2466 /*
2467 * Write something to the socket. Called in a worker thread when the
2468 * socket appears to be writeable and we have something ready to send.
2469 */
2470 static int try_write(struct ceph_connection *con)
2471 {
2472 int ret = 1;
2473
2474 dout("try_write start %p state %lu\n", con, con->state);
2475
2476 more:
2477 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2478
2479 /* open the socket first? */
2480 if (con->state == CON_STATE_PREOPEN) {
2481 BUG_ON(con->sock);
2482 con->state = CON_STATE_CONNECTING;
2483
2484 con_out_kvec_reset(con);
2485 prepare_write_banner(con);
2486 prepare_read_banner(con);
2487
2488 BUG_ON(con->in_msg);
2489 con->in_tag = CEPH_MSGR_TAG_READY;
2490 dout("try_write initiating connect on %p new state %lu\n",
2491 con, con->state);
2492 ret = ceph_tcp_connect(con);
2493 if (ret < 0) {
2494 con->error_msg = "connect error";
2495 goto out;
2496 }
2497 }
2498
2499 more_kvec:
2500 /* kvec data queued? */
2501 if (con->out_skip) {
2502 ret = write_partial_skip(con);
2503 if (ret <= 0)
2504 goto out;
2505 }
2506 if (con->out_kvec_left) {
2507 ret = write_partial_kvec(con);
2508 if (ret <= 0)
2509 goto out;
2510 }
2511
2512 /* msg pages? */
2513 if (con->out_msg) {
2514 if (con->out_msg_done) {
2515 ceph_msg_put(con->out_msg);
2516 con->out_msg = NULL; /* we're done with this one */
2517 goto do_next;
2518 }
2519
2520 ret = write_partial_message_data(con);
2521 if (ret == 1)
2522 goto more_kvec; /* we need to send the footer, too! */
2523 if (ret == 0)
2524 goto out;
2525 if (ret < 0) {
2526 dout("try_write write_partial_message_data err %d\n",
2527 ret);
2528 goto out;
2529 }
2530 }
2531
2532 do_next:
2533 if (con->state == CON_STATE_OPEN) {
2534 /* is anything else pending? */
2535 if (!list_empty(&con->out_queue)) {
2536 prepare_write_message(con);
2537 goto more;
2538 }
2539 if (con->in_seq > con->in_seq_acked) {
2540 prepare_write_ack(con);
2541 goto more;
2542 }
2543 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2544 prepare_write_keepalive(con);
2545 goto more;
2546 }
2547 }
2548
2549 /* Nothing to do! */
2550 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2551 dout("try_write nothing else to write.\n");
2552 ret = 0;
2553 out:
2554 dout("try_write done on %p ret %d\n", con, ret);
2555 return ret;
2556 }
2557
2558
2559
2560 /*
2561 * Read what we can from the socket.
2562 */
2563 static int try_read(struct ceph_connection *con)
2564 {
2565 int ret = -1;
2566
2567 more:
2568 dout("try_read start on %p state %lu\n", con, con->state);
2569 if (con->state != CON_STATE_CONNECTING &&
2570 con->state != CON_STATE_NEGOTIATING &&
2571 con->state != CON_STATE_OPEN)
2572 return 0;
2573
2574 BUG_ON(!con->sock);
2575
2576 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2577 con->in_base_pos);
2578
2579 if (con->state == CON_STATE_CONNECTING) {
2580 dout("try_read connecting\n");
2581 ret = read_partial_banner(con);
2582 if (ret <= 0)
2583 goto out;
2584 ret = process_banner(con);
2585 if (ret < 0)
2586 goto out;
2587
2588 con->state = CON_STATE_NEGOTIATING;
2589
2590 /*
2591 * Received banner is good, exchange connection info.
2592 * Do not reset out_kvec, as sending our banner raced
2593 * with receiving peer banner after connect completed.
2594 */
2595 ret = prepare_write_connect(con);
2596 if (ret < 0)
2597 goto out;
2598 prepare_read_connect(con);
2599
2600 /* Send connection info before awaiting response */
2601 goto out;
2602 }
2603
2604 if (con->state == CON_STATE_NEGOTIATING) {
2605 dout("try_read negotiating\n");
2606 ret = read_partial_connect(con);
2607 if (ret <= 0)
2608 goto out;
2609 ret = process_connect(con);
2610 if (ret < 0)
2611 goto out;
2612 goto more;
2613 }
2614
2615 WARN_ON(con->state != CON_STATE_OPEN);
2616
2617 if (con->in_base_pos < 0) {
2618 /*
2619 * skipping + discarding content.
2620 *
2621 * FIXME: there must be a better way to do this!
2622 */
2623 static char buf[SKIP_BUF_SIZE];
2624 int skip = min((int) sizeof (buf), -con->in_base_pos);
2625
2626 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2627 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2628 if (ret <= 0)
2629 goto out;
2630 con->in_base_pos += ret;
2631 if (con->in_base_pos)
2632 goto more;
2633 }
2634 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2635 /*
2636 * what's next?
2637 */
2638 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2639 if (ret <= 0)
2640 goto out;
2641 dout("try_read got tag %d\n", (int)con->in_tag);
2642 switch (con->in_tag) {
2643 case CEPH_MSGR_TAG_MSG:
2644 prepare_read_message(con);
2645 break;
2646 case CEPH_MSGR_TAG_ACK:
2647 prepare_read_ack(con);
2648 break;
2649 case CEPH_MSGR_TAG_CLOSE:
2650 con_close_socket(con);
2651 con->state = CON_STATE_CLOSED;
2652 goto out;
2653 default:
2654 goto bad_tag;
2655 }
2656 }
2657 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2658 ret = read_partial_message(con);
2659 if (ret <= 0) {
2660 switch (ret) {
2661 case -EBADMSG:
2662 con->error_msg = "bad crc";
2663 ret = -EIO;
2664 break;
2665 case -EIO:
2666 con->error_msg = "io error";
2667 break;
2668 }
2669 goto out;
2670 }
2671 if (con->in_tag == CEPH_MSGR_TAG_READY)
2672 goto more;
2673 process_message(con);
2674 if (con->state == CON_STATE_OPEN)
2675 prepare_read_tag(con);
2676 goto more;
2677 }
2678 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2679 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2680 /*
2681 * the final handshake seq exchange is semantically
2682 * equivalent to an ACK
2683 */
2684 ret = read_partial_ack(con);
2685 if (ret <= 0)
2686 goto out;
2687 process_ack(con);
2688 goto more;
2689 }
2690
2691 out:
2692 dout("try_read done on %p ret %d\n", con, ret);
2693 return ret;
2694
2695 bad_tag:
2696 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2697 con->error_msg = "protocol error, garbage tag";
2698 ret = -1;
2699 goto out;
2700 }
2701
2702
2703 /*
2704 * Atomically queue work on a connection after the specified delay.
2705 * Bump @con reference to avoid races with connection teardown.
2706 * Returns 0 if work was queued, or an error code otherwise.
2707 */
2708 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2709 {
2710 if (!con->ops->get(con)) {
2711 dout("%s %p ref count 0\n", __func__, con);
2712 return -ENOENT;
2713 }
2714
2715 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2716 dout("%s %p - already queued\n", __func__, con);
2717 con->ops->put(con);
2718 return -EBUSY;
2719 }
2720
2721 dout("%s %p %lu\n", __func__, con, delay);
2722 return 0;
2723 }
2724
2725 static void queue_con(struct ceph_connection *con)
2726 {
2727 (void) queue_con_delay(con, 0);
2728 }
2729
2730 static void cancel_con(struct ceph_connection *con)
2731 {
2732 if (cancel_delayed_work(&con->work)) {
2733 dout("%s %p\n", __func__, con);
2734 con->ops->put(con);
2735 }
2736 }
2737
2738 static bool con_sock_closed(struct ceph_connection *con)
2739 {
2740 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2741 return false;
2742
2743 #define CASE(x) \
2744 case CON_STATE_ ## x: \
2745 con->error_msg = "socket closed (con state " #x ")"; \
2746 break;
2747
2748 switch (con->state) {
2749 CASE(CLOSED);
2750 CASE(PREOPEN);
2751 CASE(CONNECTING);
2752 CASE(NEGOTIATING);
2753 CASE(OPEN);
2754 CASE(STANDBY);
2755 default:
2756 pr_warn("%s con %p unrecognized state %lu\n",
2757 __func__, con, con->state);
2758 con->error_msg = "unrecognized con state";
2759 BUG();
2760 break;
2761 }
2762 #undef CASE
2763
2764 return true;
2765 }
2766
2767 static bool con_backoff(struct ceph_connection *con)
2768 {
2769 int ret;
2770
2771 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2772 return false;
2773
2774 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2775 if (ret) {
2776 dout("%s: con %p FAILED to back off %lu\n", __func__,
2777 con, con->delay);
2778 BUG_ON(ret == -ENOENT);
2779 con_flag_set(con, CON_FLAG_BACKOFF);
2780 }
2781
2782 return true;
2783 }
2784
2785 /* Finish fault handling; con->mutex must *not* be held here */
2786
2787 static void con_fault_finish(struct ceph_connection *con)
2788 {
2789 /*
2790 * in case we faulted due to authentication, invalidate our
2791 * current tickets so that we can get new ones.
2792 */
2793 if (con->auth_retry && con->ops->invalidate_authorizer) {
2794 dout("calling invalidate_authorizer()\n");
2795 con->ops->invalidate_authorizer(con);
2796 }
2797
2798 if (con->ops->fault)
2799 con->ops->fault(con);
2800 }
2801
2802 /*
2803 * Do some work on a connection. Drop a connection ref when we're done.
2804 */
2805 static void con_work(struct work_struct *work)
2806 {
2807 struct ceph_connection *con = container_of(work, struct ceph_connection,
2808 work.work);
2809 bool fault;
2810
2811 mutex_lock(&con->mutex);
2812 while (true) {
2813 int ret;
2814
2815 if ((fault = con_sock_closed(con))) {
2816 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2817 break;
2818 }
2819 if (con_backoff(con)) {
2820 dout("%s: con %p BACKOFF\n", __func__, con);
2821 break;
2822 }
2823 if (con->state == CON_STATE_STANDBY) {
2824 dout("%s: con %p STANDBY\n", __func__, con);
2825 break;
2826 }
2827 if (con->state == CON_STATE_CLOSED) {
2828 dout("%s: con %p CLOSED\n", __func__, con);
2829 BUG_ON(con->sock);
2830 break;
2831 }
2832 if (con->state == CON_STATE_PREOPEN) {
2833 dout("%s: con %p PREOPEN\n", __func__, con);
2834 BUG_ON(con->sock);
2835 }
2836
2837 ret = try_read(con);
2838 if (ret < 0) {
2839 if (ret == -EAGAIN)
2840 continue;
2841 con->error_msg = "socket error on read";
2842 fault = true;
2843 break;
2844 }
2845
2846 ret = try_write(con);
2847 if (ret < 0) {
2848 if (ret == -EAGAIN)
2849 continue;
2850 con->error_msg = "socket error on write";
2851 fault = true;
2852 }
2853
2854 break; /* If we make it to here, we're done */
2855 }
2856 if (fault)
2857 con_fault(con);
2858 mutex_unlock(&con->mutex);
2859
2860 if (fault)
2861 con_fault_finish(con);
2862
2863 con->ops->put(con);
2864 }
2865
2866 /*
2867 * Generic error/fault handler. A retry mechanism is used with
2868 * exponential backoff
2869 */
2870 static void con_fault(struct ceph_connection *con)
2871 {
2872 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2873 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2874 dout("fault %p state %lu to peer %s\n",
2875 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2876
2877 WARN_ON(con->state != CON_STATE_CONNECTING &&
2878 con->state != CON_STATE_NEGOTIATING &&
2879 con->state != CON_STATE_OPEN);
2880
2881 con_close_socket(con);
2882
2883 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2884 dout("fault on LOSSYTX channel, marking CLOSED\n");
2885 con->state = CON_STATE_CLOSED;
2886 return;
2887 }
2888
2889 if (con->in_msg) {
2890 BUG_ON(con->in_msg->con != con);
2891 con->in_msg->con = NULL;
2892 ceph_msg_put(con->in_msg);
2893 con->in_msg = NULL;
2894 con->ops->put(con);
2895 }
2896
2897 /* Requeue anything that hasn't been acked */
2898 list_splice_init(&con->out_sent, &con->out_queue);
2899
2900 /* If there are no messages queued or keepalive pending, place
2901 * the connection in a STANDBY state */
2902 if (list_empty(&con->out_queue) &&
2903 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2904 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2905 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2906 con->state = CON_STATE_STANDBY;
2907 } else {
2908 /* retry after a delay. */
2909 con->state = CON_STATE_PREOPEN;
2910 if (con->delay == 0)
2911 con->delay = BASE_DELAY_INTERVAL;
2912 else if (con->delay < MAX_DELAY_INTERVAL)
2913 con->delay *= 2;
2914 con_flag_set(con, CON_FLAG_BACKOFF);
2915 queue_con(con);
2916 }
2917 }
2918
2919
2920
2921 /*
2922 * initialize a new messenger instance
2923 */
2924 void ceph_messenger_init(struct ceph_messenger *msgr,
2925 struct ceph_entity_addr *myaddr,
2926 u64 supported_features,
2927 u64 required_features,
2928 bool nocrc,
2929 bool tcp_nodelay)
2930 {
2931 msgr->supported_features = supported_features;
2932 msgr->required_features = required_features;
2933
2934 spin_lock_init(&msgr->global_seq_lock);
2935
2936 if (myaddr)
2937 msgr->inst.addr = *myaddr;
2938
2939 /* select a random nonce */
2940 msgr->inst.addr.type = 0;
2941 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2942 encode_my_addr(msgr);
2943 msgr->nocrc = nocrc;
2944 msgr->tcp_nodelay = tcp_nodelay;
2945
2946 atomic_set(&msgr->stopping, 0);
2947
2948 dout("%s %p\n", __func__, msgr);
2949 }
2950 EXPORT_SYMBOL(ceph_messenger_init);
2951
2952 static void clear_standby(struct ceph_connection *con)
2953 {
2954 /* come back from STANDBY? */
2955 if (con->state == CON_STATE_STANDBY) {
2956 dout("clear_standby %p and ++connect_seq\n", con);
2957 con->state = CON_STATE_PREOPEN;
2958 con->connect_seq++;
2959 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2960 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2961 }
2962 }
2963
2964 /*
2965 * Queue up an outgoing message on the given connection.
2966 */
2967 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2968 {
2969 /* set src+dst */
2970 msg->hdr.src = con->msgr->inst.name;
2971 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2972 msg->needs_out_seq = true;
2973
2974 mutex_lock(&con->mutex);
2975
2976 if (con->state == CON_STATE_CLOSED) {
2977 dout("con_send %p closed, dropping %p\n", con, msg);
2978 ceph_msg_put(msg);
2979 mutex_unlock(&con->mutex);
2980 return;
2981 }
2982
2983 BUG_ON(msg->con != NULL);
2984 msg->con = con->ops->get(con);
2985 BUG_ON(msg->con == NULL);
2986
2987 BUG_ON(!list_empty(&msg->list_head));
2988 list_add_tail(&msg->list_head, &con->out_queue);
2989 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2990 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2991 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2992 le32_to_cpu(msg->hdr.front_len),
2993 le32_to_cpu(msg->hdr.middle_len),
2994 le32_to_cpu(msg->hdr.data_len));
2995
2996 clear_standby(con);
2997 mutex_unlock(&con->mutex);
2998
2999 /* if there wasn't anything waiting to send before, queue
3000 * new work */
3001 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3002 queue_con(con);
3003 }
3004 EXPORT_SYMBOL(ceph_con_send);
3005
3006 /*
3007 * Revoke a message that was previously queued for send
3008 */
3009 void ceph_msg_revoke(struct ceph_msg *msg)
3010 {
3011 struct ceph_connection *con = msg->con;
3012
3013 if (!con)
3014 return; /* Message not in our possession */
3015
3016 mutex_lock(&con->mutex);
3017 if (!list_empty(&msg->list_head)) {
3018 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3019 list_del_init(&msg->list_head);
3020 BUG_ON(msg->con == NULL);
3021 msg->con->ops->put(msg->con);
3022 msg->con = NULL;
3023 msg->hdr.seq = 0;
3024
3025 ceph_msg_put(msg);
3026 }
3027 if (con->out_msg == msg) {
3028 dout("%s %p msg %p - was sending\n", __func__, con, msg);
3029 con->out_msg = NULL;
3030 if (con->out_kvec_is_msg) {
3031 con->out_skip = con->out_kvec_bytes;
3032 con->out_kvec_is_msg = false;
3033 }
3034 msg->hdr.seq = 0;
3035
3036 ceph_msg_put(msg);
3037 }
3038 mutex_unlock(&con->mutex);
3039 }
3040
3041 /*
3042 * Revoke a message that we may be reading data into
3043 */
3044 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3045 {
3046 struct ceph_connection *con;
3047
3048 BUG_ON(msg == NULL);
3049 if (!msg->con) {
3050 dout("%s msg %p null con\n", __func__, msg);
3051
3052 return; /* Message not in our possession */
3053 }
3054
3055 con = msg->con;
3056 mutex_lock(&con->mutex);
3057 if (con->in_msg == msg) {
3058 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3059 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3060 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3061
3062 /* skip rest of message */
3063 dout("%s %p msg %p revoked\n", __func__, con, msg);
3064 con->in_base_pos = con->in_base_pos -
3065 sizeof(struct ceph_msg_header) -
3066 front_len -
3067 middle_len -
3068 data_len -
3069 sizeof(struct ceph_msg_footer);
3070 ceph_msg_put(con->in_msg);
3071 con->in_msg = NULL;
3072 con->in_tag = CEPH_MSGR_TAG_READY;
3073 con->in_seq++;
3074 } else {
3075 dout("%s %p in_msg %p msg %p no-op\n",
3076 __func__, con, con->in_msg, msg);
3077 }
3078 mutex_unlock(&con->mutex);
3079 }
3080
3081 /*
3082 * Queue a keepalive byte to ensure the tcp connection is alive.
3083 */
3084 void ceph_con_keepalive(struct ceph_connection *con)
3085 {
3086 dout("con_keepalive %p\n", con);
3087 mutex_lock(&con->mutex);
3088 clear_standby(con);
3089 mutex_unlock(&con->mutex);
3090 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3091 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3092 queue_con(con);
3093 }
3094 EXPORT_SYMBOL(ceph_con_keepalive);
3095
3096 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3097 {
3098 struct ceph_msg_data *data;
3099
3100 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3101 return NULL;
3102
3103 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3104 if (data)
3105 data->type = type;
3106 INIT_LIST_HEAD(&data->links);
3107
3108 return data;
3109 }
3110
3111 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3112 {
3113 if (!data)
3114 return;
3115
3116 WARN_ON(!list_empty(&data->links));
3117 if (data->type == CEPH_MSG_DATA_PAGELIST)
3118 ceph_pagelist_release(data->pagelist);
3119 kmem_cache_free(ceph_msg_data_cache, data);
3120 }
3121
3122 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3123 size_t length, size_t alignment)
3124 {
3125 struct ceph_msg_data *data;
3126
3127 BUG_ON(!pages);
3128 BUG_ON(!length);
3129
3130 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3131 BUG_ON(!data);
3132 data->pages = pages;
3133 data->length = length;
3134 data->alignment = alignment & ~PAGE_MASK;
3135
3136 list_add_tail(&data->links, &msg->data);
3137 msg->data_length += length;
3138 }
3139 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3140
3141 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3142 struct ceph_pagelist *pagelist)
3143 {
3144 struct ceph_msg_data *data;
3145
3146 BUG_ON(!pagelist);
3147 BUG_ON(!pagelist->length);
3148
3149 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3150 BUG_ON(!data);
3151 data->pagelist = pagelist;
3152
3153 list_add_tail(&data->links, &msg->data);
3154 msg->data_length += pagelist->length;
3155 }
3156 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3157
3158 #ifdef CONFIG_BLOCK
3159 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3160 size_t length)
3161 {
3162 struct ceph_msg_data *data;
3163
3164 BUG_ON(!bio);
3165
3166 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3167 BUG_ON(!data);
3168 data->bio = bio;
3169 data->bio_length = length;
3170
3171 list_add_tail(&data->links, &msg->data);
3172 msg->data_length += length;
3173 }
3174 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3175 #endif /* CONFIG_BLOCK */
3176
3177 /*
3178 * construct a new message with given type, size
3179 * the new msg has a ref count of 1.
3180 */
3181 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3182 bool can_fail)
3183 {
3184 struct ceph_msg *m;
3185
3186 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3187 if (m == NULL)
3188 goto out;
3189
3190 m->hdr.type = cpu_to_le16(type);
3191 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3192 m->hdr.front_len = cpu_to_le32(front_len);
3193
3194 INIT_LIST_HEAD(&m->list_head);
3195 kref_init(&m->kref);
3196 INIT_LIST_HEAD(&m->data);
3197
3198 /* front */
3199 if (front_len) {
3200 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3201 if (m->front.iov_base == NULL) {
3202 dout("ceph_msg_new can't allocate %d bytes\n",
3203 front_len);
3204 goto out2;
3205 }
3206 } else {
3207 m->front.iov_base = NULL;
3208 }
3209 m->front_alloc_len = m->front.iov_len = front_len;
3210
3211 dout("ceph_msg_new %p front %d\n", m, front_len);
3212 return m;
3213
3214 out2:
3215 ceph_msg_put(m);
3216 out:
3217 if (!can_fail) {
3218 pr_err("msg_new can't create type %d front %d\n", type,
3219 front_len);
3220 WARN_ON(1);
3221 } else {
3222 dout("msg_new can't create type %d front %d\n", type,
3223 front_len);
3224 }
3225 return NULL;
3226 }
3227 EXPORT_SYMBOL(ceph_msg_new);
3228
3229 /*
3230 * Allocate "middle" portion of a message, if it is needed and wasn't
3231 * allocated by alloc_msg. This allows us to read a small fixed-size
3232 * per-type header in the front and then gracefully fail (i.e.,
3233 * propagate the error to the caller based on info in the front) when
3234 * the middle is too large.
3235 */
3236 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3237 {
3238 int type = le16_to_cpu(msg->hdr.type);
3239 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3240
3241 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3242 ceph_msg_type_name(type), middle_len);
3243 BUG_ON(!middle_len);
3244 BUG_ON(msg->middle);
3245
3246 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3247 if (!msg->middle)
3248 return -ENOMEM;
3249 return 0;
3250 }
3251
3252 /*
3253 * Allocate a message for receiving an incoming message on a
3254 * connection, and save the result in con->in_msg. Uses the
3255 * connection's private alloc_msg op if available.
3256 *
3257 * Returns 0 on success, or a negative error code.
3258 *
3259 * On success, if we set *skip = 1:
3260 * - the next message should be skipped and ignored.
3261 * - con->in_msg == NULL
3262 * or if we set *skip = 0:
3263 * - con->in_msg is non-null.
3264 * On error (ENOMEM, EAGAIN, ...),
3265 * - con->in_msg == NULL
3266 */
3267 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3268 {
3269 struct ceph_msg_header *hdr = &con->in_hdr;
3270 int middle_len = le32_to_cpu(hdr->middle_len);
3271 struct ceph_msg *msg;
3272 int ret = 0;
3273
3274 BUG_ON(con->in_msg != NULL);
3275 BUG_ON(!con->ops->alloc_msg);
3276
3277 mutex_unlock(&con->mutex);
3278 msg = con->ops->alloc_msg(con, hdr, skip);
3279 mutex_lock(&con->mutex);
3280 if (con->state != CON_STATE_OPEN) {
3281 if (msg)
3282 ceph_msg_put(msg);
3283 return -EAGAIN;
3284 }
3285 if (msg) {
3286 BUG_ON(*skip);
3287 con->in_msg = msg;
3288 con->in_msg->con = con->ops->get(con);
3289 BUG_ON(con->in_msg->con == NULL);
3290 } else {
3291 /*
3292 * Null message pointer means either we should skip
3293 * this message or we couldn't allocate memory. The
3294 * former is not an error.
3295 */
3296 if (*skip)
3297 return 0;
3298 con->error_msg = "error allocating memory for incoming message";
3299
3300 return -ENOMEM;
3301 }
3302 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3303
3304 if (middle_len && !con->in_msg->middle) {
3305 ret = ceph_alloc_middle(con, con->in_msg);
3306 if (ret < 0) {
3307 ceph_msg_put(con->in_msg);
3308 con->in_msg = NULL;
3309 }
3310 }
3311
3312 return ret;
3313 }
3314
3315
3316 /*
3317 * Free a generically kmalloc'd message.
3318 */
3319 static void ceph_msg_free(struct ceph_msg *m)
3320 {
3321 dout("%s %p\n", __func__, m);
3322 kvfree(m->front.iov_base);
3323 kmem_cache_free(ceph_msg_cache, m);
3324 }
3325
3326 static void ceph_msg_release(struct kref *kref)
3327 {
3328 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3329 LIST_HEAD(data);
3330 struct list_head *links;
3331 struct list_head *next;
3332
3333 dout("%s %p\n", __func__, m);
3334 WARN_ON(!list_empty(&m->list_head));
3335
3336 /* drop middle, data, if any */
3337 if (m->middle) {
3338 ceph_buffer_put(m->middle);
3339 m->middle = NULL;
3340 }
3341
3342 list_splice_init(&m->data, &data);
3343 list_for_each_safe(links, next, &data) {
3344 struct ceph_msg_data *data;
3345
3346 data = list_entry(links, struct ceph_msg_data, links);
3347 list_del_init(links);
3348 ceph_msg_data_destroy(data);
3349 }
3350 m->data_length = 0;
3351
3352 if (m->pool)
3353 ceph_msgpool_put(m->pool, m);
3354 else
3355 ceph_msg_free(m);
3356 }
3357
3358 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3359 {
3360 dout("%s %p (was %d)\n", __func__, msg,
3361 atomic_read(&msg->kref.refcount));
3362 kref_get(&msg->kref);
3363 return msg;
3364 }
3365 EXPORT_SYMBOL(ceph_msg_get);
3366
3367 void ceph_msg_put(struct ceph_msg *msg)
3368 {
3369 dout("%s %p (was %d)\n", __func__, msg,
3370 atomic_read(&msg->kref.refcount));
3371 kref_put(&msg->kref, ceph_msg_release);
3372 }
3373 EXPORT_SYMBOL(ceph_msg_put);
3374
3375 void ceph_msg_dump(struct ceph_msg *msg)
3376 {
3377 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3378 msg->front_alloc_len, msg->data_length);
3379 print_hex_dump(KERN_DEBUG, "header: ",
3380 DUMP_PREFIX_OFFSET, 16, 1,
3381 &msg->hdr, sizeof(msg->hdr), true);
3382 print_hex_dump(KERN_DEBUG, " front: ",
3383 DUMP_PREFIX_OFFSET, 16, 1,
3384 msg->front.iov_base, msg->front.iov_len, true);
3385 if (msg->middle)
3386 print_hex_dump(KERN_DEBUG, "middle: ",
3387 DUMP_PREFIX_OFFSET, 16, 1,
3388 msg->middle->vec.iov_base,
3389 msg->middle->vec.iov_len, true);
3390 print_hex_dump(KERN_DEBUG, "footer: ",
3391 DUMP_PREFIX_OFFSET, 16, 1,
3392 &msg->footer, sizeof(msg->footer), true);
3393 }
3394 EXPORT_SYMBOL(ceph_msg_dump);