1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
32 /* static tag bytes (protocol control messages) */
33 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
34 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
35 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
38 static struct lock_class_key socket_class
;
42 * When skipping (ignoring) a block of input we read it into a "skip
43 * buffer," which is this many bytes in size.
45 #define SKIP_BUF_SIZE 1024
47 static void queue_con(struct ceph_connection
*con
);
48 static void con_work(struct work_struct
*);
49 static void ceph_fault(struct ceph_connection
*con
);
52 * Nicely render a sockaddr as a string. An array of formatted
53 * strings is used, to approximate reentrancy.
55 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
56 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
57 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
58 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
60 static char addr_str
[ADDR_STR_COUNT
][MAX_ADDR_STR_LEN
];
61 static atomic_t addr_str_seq
= ATOMIC_INIT(0);
63 static struct page
*zero_page
; /* used in certain error cases */
65 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
69 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
70 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
72 i
= atomic_inc_return(&addr_str_seq
) & ADDR_STR_COUNT_MASK
;
75 switch (ss
->ss_family
) {
77 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%hu", &in4
->sin_addr
,
78 ntohs(in4
->sin_port
));
82 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%hu", &in6
->sin6_addr
,
83 ntohs(in6
->sin6_port
));
87 snprintf(s
, MAX_ADDR_STR_LEN
, "(unknown sockaddr family %hu)",
93 EXPORT_SYMBOL(ceph_pr_addr
);
95 static void encode_my_addr(struct ceph_messenger
*msgr
)
97 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
98 ceph_encode_addr(&msgr
->my_enc_addr
);
102 * work queue for all reading and writing to/from the socket.
104 static struct workqueue_struct
*ceph_msgr_wq
;
106 void _ceph_msgr_exit(void)
109 destroy_workqueue(ceph_msgr_wq
);
113 BUG_ON(zero_page
== NULL
);
115 page_cache_release(zero_page
);
119 int ceph_msgr_init(void)
121 BUG_ON(zero_page
!= NULL
);
122 zero_page
= ZERO_PAGE(0);
123 page_cache_get(zero_page
);
125 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT
, 0);
129 pr_err("msgr_init failed to create workqueue\n");
134 EXPORT_SYMBOL(ceph_msgr_init
);
136 void ceph_msgr_exit(void)
138 BUG_ON(ceph_msgr_wq
== NULL
);
142 EXPORT_SYMBOL(ceph_msgr_exit
);
144 void ceph_msgr_flush(void)
146 flush_workqueue(ceph_msgr_wq
);
148 EXPORT_SYMBOL(ceph_msgr_flush
);
152 * socket callback functions
155 /* data available on socket, or listen socket received a connect */
156 static void ceph_data_ready(struct sock
*sk
, int count_unused
)
158 struct ceph_connection
*con
= sk
->sk_user_data
;
160 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
161 dout("ceph_data_ready on %p state = %lu, queueing work\n",
167 /* socket has buffer space for writing */
168 static void ceph_write_space(struct sock
*sk
)
170 struct ceph_connection
*con
= sk
->sk_user_data
;
172 /* only queue to workqueue if there is data we want to write,
173 * and there is sufficient space in the socket buffer to accept
174 * more data. clear SOCK_NOSPACE so that ceph_write_space()
175 * doesn't get called again until try_write() fills the socket
176 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
177 * and net/core/stream.c:sk_stream_write_space().
179 if (test_bit(WRITE_PENDING
, &con
->state
)) {
180 if (sk_stream_wspace(sk
) >= sk_stream_min_wspace(sk
)) {
181 dout("ceph_write_space %p queueing write work\n", con
);
182 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
186 dout("ceph_write_space %p nothing to write\n", con
);
190 /* socket's state has changed */
191 static void ceph_state_change(struct sock
*sk
)
193 struct ceph_connection
*con
= sk
->sk_user_data
;
195 dout("ceph_state_change %p state = %lu sk_state = %u\n",
196 con
, con
->state
, sk
->sk_state
);
198 if (test_bit(CLOSED
, &con
->state
))
201 switch (sk
->sk_state
) {
203 dout("ceph_state_change TCP_CLOSE\n");
205 dout("ceph_state_change TCP_CLOSE_WAIT\n");
206 if (test_and_set_bit(SOCK_CLOSED
, &con
->state
) == 0) {
207 if (test_bit(CONNECTING
, &con
->state
))
208 con
->error_msg
= "connection failed";
210 con
->error_msg
= "socket closed";
214 case TCP_ESTABLISHED
:
215 dout("ceph_state_change TCP_ESTABLISHED\n");
218 default: /* Everything else is uninteresting */
224 * set up socket callbacks
226 static void set_sock_callbacks(struct socket
*sock
,
227 struct ceph_connection
*con
)
229 struct sock
*sk
= sock
->sk
;
230 sk
->sk_user_data
= con
;
231 sk
->sk_data_ready
= ceph_data_ready
;
232 sk
->sk_write_space
= ceph_write_space
;
233 sk
->sk_state_change
= ceph_state_change
;
242 * initiate connection to a remote socket.
244 static int ceph_tcp_connect(struct ceph_connection
*con
)
246 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
251 ret
= sock_create_kern(con
->peer_addr
.in_addr
.ss_family
, SOCK_STREAM
,
255 sock
->sk
->sk_allocation
= GFP_NOFS
;
257 #ifdef CONFIG_LOCKDEP
258 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
261 set_sock_callbacks(sock
, con
);
263 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
265 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
267 if (ret
== -EINPROGRESS
) {
268 dout("connect %s EINPROGRESS sk_state = %u\n",
269 ceph_pr_addr(&con
->peer_addr
.in_addr
),
271 } else if (ret
< 0) {
272 pr_err("connect %s error %d\n",
273 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
275 con
->error_msg
= "connect error";
284 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
286 struct kvec iov
= {buf
, len
};
287 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
290 r
= kernel_recvmsg(sock
, &msg
, &iov
, 1, len
, msg
.msg_flags
);
297 * write something. @more is true if caller will be sending more data
300 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
301 size_t kvlen
, size_t len
, int more
)
303 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
307 msg
.msg_flags
|= MSG_MORE
;
309 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
311 r
= kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
317 static int ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
318 int offset
, size_t size
, int more
)
320 int flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
| (more
? MSG_MORE
: MSG_EOR
);
323 ret
= kernel_sendpage(sock
, page
, offset
, size
, flags
);
332 * Shutdown/close the socket for the given connection.
334 static int con_close_socket(struct ceph_connection
*con
)
338 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
341 set_bit(SOCK_CLOSED
, &con
->state
);
342 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
343 sock_release(con
->sock
);
345 clear_bit(SOCK_CLOSED
, &con
->state
);
350 * Reset a connection. Discard all incoming and outgoing messages
351 * and clear *_seq state.
353 static void ceph_msg_remove(struct ceph_msg
*msg
)
355 list_del_init(&msg
->list_head
);
358 static void ceph_msg_remove_list(struct list_head
*head
)
360 while (!list_empty(head
)) {
361 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
363 ceph_msg_remove(msg
);
367 static void reset_connection(struct ceph_connection
*con
)
369 /* reset connection, out_queue, msg_ and connect_seq */
370 /* discard existing out_queue and msg_seq */
371 ceph_msg_remove_list(&con
->out_queue
);
372 ceph_msg_remove_list(&con
->out_sent
);
375 ceph_msg_put(con
->in_msg
);
379 con
->connect_seq
= 0;
382 ceph_msg_put(con
->out_msg
);
386 con
->in_seq_acked
= 0;
390 * mark a peer down. drop any open connections.
392 void ceph_con_close(struct ceph_connection
*con
)
394 dout("con_close %p peer %s\n", con
,
395 ceph_pr_addr(&con
->peer_addr
.in_addr
));
396 set_bit(CLOSED
, &con
->state
); /* in case there's queued work */
397 clear_bit(STANDBY
, &con
->state
); /* avoid connect_seq bump */
398 clear_bit(LOSSYTX
, &con
->state
); /* so we retry next connect */
399 clear_bit(KEEPALIVE_PENDING
, &con
->state
);
400 clear_bit(WRITE_PENDING
, &con
->state
);
401 mutex_lock(&con
->mutex
);
402 reset_connection(con
);
403 con
->peer_global_seq
= 0;
404 cancel_delayed_work(&con
->work
);
405 mutex_unlock(&con
->mutex
);
408 EXPORT_SYMBOL(ceph_con_close
);
411 * Reopen a closed connection, with a new peer address.
413 void ceph_con_open(struct ceph_connection
*con
, struct ceph_entity_addr
*addr
)
415 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
416 set_bit(OPENING
, &con
->state
);
417 clear_bit(CLOSED
, &con
->state
);
418 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
419 con
->delay
= 0; /* reset backoff memory */
422 EXPORT_SYMBOL(ceph_con_open
);
425 * return true if this connection ever successfully opened
427 bool ceph_con_opened(struct ceph_connection
*con
)
429 return con
->connect_seq
> 0;
435 struct ceph_connection
*ceph_con_get(struct ceph_connection
*con
)
437 int nref
= __atomic_add_unless(&con
->nref
, 1, 0);
439 dout("con_get %p nref = %d -> %d\n", con
, nref
, nref
+ 1);
441 return nref
? con
: NULL
;
444 void ceph_con_put(struct ceph_connection
*con
)
446 int nref
= atomic_dec_return(&con
->nref
);
453 dout("con_put %p nref = %d -> %d\n", con
, nref
+ 1, nref
);
457 * initialize a new connection.
459 void ceph_con_init(struct ceph_messenger
*msgr
, struct ceph_connection
*con
)
461 dout("con_init %p\n", con
);
462 memset(con
, 0, sizeof(*con
));
463 atomic_set(&con
->nref
, 1);
465 mutex_init(&con
->mutex
);
466 INIT_LIST_HEAD(&con
->out_queue
);
467 INIT_LIST_HEAD(&con
->out_sent
);
468 INIT_DELAYED_WORK(&con
->work
, con_work
);
470 EXPORT_SYMBOL(ceph_con_init
);
474 * We maintain a global counter to order connection attempts. Get
475 * a unique seq greater than @gt.
477 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
481 spin_lock(&msgr
->global_seq_lock
);
482 if (msgr
->global_seq
< gt
)
483 msgr
->global_seq
= gt
;
484 ret
= ++msgr
->global_seq
;
485 spin_unlock(&msgr
->global_seq_lock
);
489 static void ceph_con_out_kvec_reset(struct ceph_connection
*con
)
491 con
->out_kvec_left
= 0;
492 con
->out_kvec_bytes
= 0;
493 con
->out_kvec_cur
= &con
->out_kvec
[0];
496 static void ceph_con_out_kvec_add(struct ceph_connection
*con
,
497 size_t size
, void *data
)
501 index
= con
->out_kvec_left
;
502 BUG_ON(index
>= ARRAY_SIZE(con
->out_kvec
));
504 con
->out_kvec
[index
].iov_len
= size
;
505 con
->out_kvec
[index
].iov_base
= data
;
506 con
->out_kvec_left
++;
507 con
->out_kvec_bytes
+= size
;
511 * Prepare footer for currently outgoing message, and finish things
512 * off. Assumes out_kvec* are already valid.. we just add on to the end.
514 static void prepare_write_message_footer(struct ceph_connection
*con
)
516 struct ceph_msg
*m
= con
->out_msg
;
517 int v
= con
->out_kvec_left
;
519 dout("prepare_write_message_footer %p\n", con
);
520 con
->out_kvec_is_msg
= true;
521 con
->out_kvec
[v
].iov_base
= &m
->footer
;
522 con
->out_kvec
[v
].iov_len
= sizeof(m
->footer
);
523 con
->out_kvec_bytes
+= sizeof(m
->footer
);
524 con
->out_kvec_left
++;
525 con
->out_more
= m
->more_to_follow
;
526 con
->out_msg_done
= true;
530 * Prepare headers for the next outgoing message.
532 static void prepare_write_message(struct ceph_connection
*con
)
537 ceph_con_out_kvec_reset(con
);
538 con
->out_kvec_is_msg
= true;
539 con
->out_msg_done
= false;
541 /* Sneak an ack in there first? If we can get it into the same
542 * TCP packet that's a good thing. */
543 if (con
->in_seq
> con
->in_seq_acked
) {
544 con
->in_seq_acked
= con
->in_seq
;
545 ceph_con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
546 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
547 ceph_con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
551 m
= list_first_entry(&con
->out_queue
, struct ceph_msg
, list_head
);
554 /* put message on sent list */
556 list_move_tail(&m
->list_head
, &con
->out_sent
);
559 * only assign outgoing seq # if we haven't sent this message
560 * yet. if it is requeued, resend with it's original seq.
562 if (m
->needs_out_seq
) {
563 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
564 m
->needs_out_seq
= false;
567 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
568 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
569 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
570 le32_to_cpu(m
->hdr
.data_len
),
572 BUG_ON(le32_to_cpu(m
->hdr
.front_len
) != m
->front
.iov_len
);
574 /* tag + hdr + front + middle */
575 ceph_con_out_kvec_add(con
, sizeof (tag_msg
), &tag_msg
);
576 ceph_con_out_kvec_add(con
, sizeof (m
->hdr
), &m
->hdr
);
577 ceph_con_out_kvec_add(con
, m
->front
.iov_len
, m
->front
.iov_base
);
580 ceph_con_out_kvec_add(con
, m
->middle
->vec
.iov_len
,
581 m
->middle
->vec
.iov_base
);
583 /* fill in crc (except data pages), footer */
584 crc
= crc32c(0, &m
->hdr
, offsetof(struct ceph_msg_header
, crc
));
585 con
->out_msg
->hdr
.crc
= cpu_to_le32(crc
);
586 con
->out_msg
->footer
.flags
= CEPH_MSG_FOOTER_COMPLETE
;
588 crc
= crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
);
589 con
->out_msg
->footer
.front_crc
= cpu_to_le32(crc
);
591 crc
= crc32c(0, m
->middle
->vec
.iov_base
,
592 m
->middle
->vec
.iov_len
);
593 con
->out_msg
->footer
.middle_crc
= cpu_to_le32(crc
);
595 con
->out_msg
->footer
.middle_crc
= 0;
596 con
->out_msg
->footer
.data_crc
= 0;
597 dout("prepare_write_message front_crc %u data_crc %u\n",
598 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
599 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
601 /* is there a data payload? */
602 if (le32_to_cpu(m
->hdr
.data_len
) > 0) {
603 /* initialize page iterator */
604 con
->out_msg_pos
.page
= 0;
606 con
->out_msg_pos
.page_pos
= m
->page_alignment
;
608 con
->out_msg_pos
.page_pos
= 0;
609 con
->out_msg_pos
.data_pos
= 0;
610 con
->out_msg_pos
.did_page_crc
= false;
611 con
->out_more
= 1; /* data + footer will follow */
613 /* no, queue up footer too and be done */
614 prepare_write_message_footer(con
);
617 set_bit(WRITE_PENDING
, &con
->state
);
623 static void prepare_write_ack(struct ceph_connection
*con
)
625 dout("prepare_write_ack %p %llu -> %llu\n", con
,
626 con
->in_seq_acked
, con
->in_seq
);
627 con
->in_seq_acked
= con
->in_seq
;
629 ceph_con_out_kvec_reset(con
);
631 ceph_con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
633 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
634 ceph_con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
637 con
->out_more
= 1; /* more will follow.. eventually.. */
638 set_bit(WRITE_PENDING
, &con
->state
);
642 * Prepare to write keepalive byte.
644 static void prepare_write_keepalive(struct ceph_connection
*con
)
646 dout("prepare_write_keepalive %p\n", con
);
647 ceph_con_out_kvec_reset(con
);
648 ceph_con_out_kvec_add(con
, sizeof (tag_keepalive
), &tag_keepalive
);
649 set_bit(WRITE_PENDING
, &con
->state
);
653 * Connection negotiation.
656 static int prepare_connect_authorizer(struct ceph_connection
*con
)
660 int auth_protocol
= 0;
662 mutex_unlock(&con
->mutex
);
663 if (con
->ops
->get_authorizer
)
664 con
->ops
->get_authorizer(con
, &auth_buf
, &auth_len
,
665 &auth_protocol
, &con
->auth_reply_buf
,
666 &con
->auth_reply_buf_len
,
668 mutex_lock(&con
->mutex
);
670 if (test_bit(CLOSED
, &con
->state
) ||
671 test_bit(OPENING
, &con
->state
))
674 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_protocol
);
675 con
->out_connect
.authorizer_len
= cpu_to_le32(auth_len
);
678 ceph_con_out_kvec_add(con
, auth_len
, auth_buf
);
684 * We connected to a peer and are saying hello.
686 static void prepare_write_banner(struct ceph_connection
*con
)
688 ceph_con_out_kvec_add(con
, strlen(CEPH_BANNER
), CEPH_BANNER
);
689 ceph_con_out_kvec_add(con
, sizeof (con
->msgr
->my_enc_addr
),
690 &con
->msgr
->my_enc_addr
);
693 set_bit(WRITE_PENDING
, &con
->state
);
696 static int prepare_write_connect(struct ceph_connection
*con
)
698 unsigned global_seq
= get_global_seq(con
->msgr
, 0);
702 switch (con
->peer_name
.type
) {
703 case CEPH_ENTITY_TYPE_MON
:
704 proto
= CEPH_MONC_PROTOCOL
;
706 case CEPH_ENTITY_TYPE_OSD
:
707 proto
= CEPH_OSDC_PROTOCOL
;
709 case CEPH_ENTITY_TYPE_MDS
:
710 proto
= CEPH_MDSC_PROTOCOL
;
716 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
717 con
->connect_seq
, global_seq
, proto
);
719 con
->out_connect
.features
= cpu_to_le64(con
->msgr
->supported_features
);
720 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
721 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
722 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
723 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
724 con
->out_connect
.flags
= 0;
726 ceph_con_out_kvec_add(con
, sizeof (con
->out_connect
), &con
->out_connect
);
727 ret
= prepare_connect_authorizer(con
);
732 set_bit(WRITE_PENDING
, &con
->state
);
738 * write as much of pending kvecs to the socket as we can.
740 * 0 -> socket full, but more to do
743 static int write_partial_kvec(struct ceph_connection
*con
)
747 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
748 while (con
->out_kvec_bytes
> 0) {
749 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
750 con
->out_kvec_left
, con
->out_kvec_bytes
,
754 con
->out_kvec_bytes
-= ret
;
755 if (con
->out_kvec_bytes
== 0)
758 /* account for full iov entries consumed */
759 while (ret
>= con
->out_kvec_cur
->iov_len
) {
760 BUG_ON(!con
->out_kvec_left
);
761 ret
-= con
->out_kvec_cur
->iov_len
;
763 con
->out_kvec_left
--;
765 /* and for a partially-consumed entry */
767 con
->out_kvec_cur
->iov_len
-= ret
;
768 con
->out_kvec_cur
->iov_base
+= ret
;
771 con
->out_kvec_left
= 0;
772 con
->out_kvec_is_msg
= false;
775 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
776 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
777 return ret
; /* done! */
781 static void init_bio_iter(struct bio
*bio
, struct bio
**iter
, int *seg
)
792 static void iter_bio_next(struct bio
**bio_iter
, int *seg
)
794 if (*bio_iter
== NULL
)
797 BUG_ON(*seg
>= (*bio_iter
)->bi_vcnt
);
800 if (*seg
== (*bio_iter
)->bi_vcnt
)
801 init_bio_iter((*bio_iter
)->bi_next
, bio_iter
, seg
);
806 * Write as much message data payload as we can. If we finish, queue
808 * 1 -> done, footer is now queued in out_kvec[].
809 * 0 -> socket full, but more to do
812 static int write_partial_msg_pages(struct ceph_connection
*con
)
814 struct ceph_msg
*msg
= con
->out_msg
;
815 unsigned data_len
= le32_to_cpu(msg
->hdr
.data_len
);
817 bool do_datacrc
= !con
->msgr
->nocrc
;
821 size_t trail_len
= (msg
->trail
? msg
->trail
->length
: 0);
823 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
824 con
, con
->out_msg
, con
->out_msg_pos
.page
, con
->out_msg
->nr_pages
,
825 con
->out_msg_pos
.page_pos
);
828 if (msg
->bio
&& !msg
->bio_iter
)
829 init_bio_iter(msg
->bio
, &msg
->bio_iter
, &msg
->bio_seg
);
832 while (data_len
> con
->out_msg_pos
.data_pos
) {
833 struct page
*page
= NULL
;
834 int max_write
= PAGE_SIZE
;
837 total_max_write
= data_len
- trail_len
-
838 con
->out_msg_pos
.data_pos
;
841 * if we are calculating the data crc (the default), we need
842 * to map the page. if our pages[] has been revoked, use the
846 /* have we reached the trail part of the data? */
847 if (con
->out_msg_pos
.data_pos
>= data_len
- trail_len
) {
850 total_max_write
= data_len
- con
->out_msg_pos
.data_pos
;
852 page
= list_first_entry(&msg
->trail
->head
,
854 max_write
= PAGE_SIZE
;
855 } else if (msg
->pages
) {
856 page
= msg
->pages
[con
->out_msg_pos
.page
];
857 } else if (msg
->pagelist
) {
858 page
= list_first_entry(&msg
->pagelist
->head
,
861 } else if (msg
->bio
) {
864 bv
= bio_iovec_idx(msg
->bio_iter
, msg
->bio_seg
);
866 bio_offset
= bv
->bv_offset
;
867 max_write
= bv
->bv_len
;
872 len
= min_t(int, max_write
- con
->out_msg_pos
.page_pos
,
875 if (do_datacrc
&& !con
->out_msg_pos
.did_page_crc
) {
878 u32 tmpcrc
= le32_to_cpu(con
->out_msg
->footer
.data_crc
);
882 BUG_ON(kaddr
== NULL
);
883 base
= kaddr
+ con
->out_msg_pos
.page_pos
+ bio_offset
;
884 crc
= crc32c(tmpcrc
, base
, len
);
885 con
->out_msg
->footer
.data_crc
= cpu_to_le32(crc
);
886 con
->out_msg_pos
.did_page_crc
= true;
888 ret
= ceph_tcp_sendpage(con
->sock
, page
,
889 con
->out_msg_pos
.page_pos
+ bio_offset
,
898 con
->out_msg_pos
.data_pos
+= ret
;
899 con
->out_msg_pos
.page_pos
+= ret
;
901 con
->out_msg_pos
.page_pos
= 0;
902 con
->out_msg_pos
.page
++;
903 con
->out_msg_pos
.did_page_crc
= false;
905 list_move_tail(&page
->lru
,
907 else if (msg
->pagelist
)
908 list_move_tail(&page
->lru
,
909 &msg
->pagelist
->head
);
912 iter_bio_next(&msg
->bio_iter
, &msg
->bio_seg
);
917 dout("write_partial_msg_pages %p msg %p done\n", con
, msg
);
919 /* prepare and queue up footer, too */
921 con
->out_msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
922 ceph_con_out_kvec_reset(con
);
923 prepare_write_message_footer(con
);
932 static int write_partial_skip(struct ceph_connection
*con
)
936 while (con
->out_skip
> 0) {
937 size_t size
= min(con
->out_skip
, (int) PAGE_CACHE_SIZE
);
939 ret
= ceph_tcp_sendpage(con
->sock
, zero_page
, 0, size
, 1);
942 con
->out_skip
-= ret
;
950 * Prepare to read connection handshake, or an ack.
952 static void prepare_read_banner(struct ceph_connection
*con
)
954 dout("prepare_read_banner %p\n", con
);
955 con
->in_base_pos
= 0;
958 static void prepare_read_connect(struct ceph_connection
*con
)
960 dout("prepare_read_connect %p\n", con
);
961 con
->in_base_pos
= 0;
964 static void prepare_read_ack(struct ceph_connection
*con
)
966 dout("prepare_read_ack %p\n", con
);
967 con
->in_base_pos
= 0;
970 static void prepare_read_tag(struct ceph_connection
*con
)
972 dout("prepare_read_tag %p\n", con
);
973 con
->in_base_pos
= 0;
974 con
->in_tag
= CEPH_MSGR_TAG_READY
;
978 * Prepare to read a message.
980 static int prepare_read_message(struct ceph_connection
*con
)
982 dout("prepare_read_message %p\n", con
);
983 BUG_ON(con
->in_msg
!= NULL
);
984 con
->in_base_pos
= 0;
985 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
990 static int read_partial(struct ceph_connection
*con
,
991 int end
, int size
, void *object
)
993 while (con
->in_base_pos
< end
) {
994 int left
= end
- con
->in_base_pos
;
995 int have
= size
- left
;
996 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
999 con
->in_base_pos
+= ret
;
1006 * Read all or part of the connect-side handshake on a new connection
1008 static int read_partial_banner(struct ceph_connection
*con
)
1014 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
1017 size
= strlen(CEPH_BANNER
);
1019 ret
= read_partial(con
, end
, size
, con
->in_banner
);
1023 size
= sizeof (con
->actual_peer_addr
);
1025 ret
= read_partial(con
, end
, size
, &con
->actual_peer_addr
);
1029 size
= sizeof (con
->peer_addr_for_me
);
1031 ret
= read_partial(con
, end
, size
, &con
->peer_addr_for_me
);
1039 static int read_partial_connect(struct ceph_connection
*con
)
1045 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1047 size
= sizeof (con
->in_reply
);
1049 ret
= read_partial(con
, end
, size
, &con
->in_reply
);
1053 size
= le32_to_cpu(con
->in_reply
.authorizer_len
);
1055 ret
= read_partial(con
, end
, size
, con
->auth_reply_buf
);
1059 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1060 con
, (int)con
->in_reply
.tag
,
1061 le32_to_cpu(con
->in_reply
.connect_seq
),
1062 le32_to_cpu(con
->in_reply
.global_seq
));
1069 * Verify the hello banner looks okay.
1071 static int verify_hello(struct ceph_connection
*con
)
1073 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1074 pr_err("connect to %s got bad banner\n",
1075 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1076 con
->error_msg
= "protocol error, bad banner";
1082 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1084 switch (ss
->ss_family
) {
1086 return ((struct sockaddr_in
*)ss
)->sin_addr
.s_addr
== 0;
1089 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[0] == 0 &&
1090 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[1] == 0 &&
1091 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[2] == 0 &&
1092 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[3] == 0;
1097 static int addr_port(struct sockaddr_storage
*ss
)
1099 switch (ss
->ss_family
) {
1101 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1103 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1108 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1110 switch (ss
->ss_family
) {
1112 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1115 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1121 * Unlike other *_pton function semantics, zero indicates success.
1123 static int ceph_pton(const char *str
, size_t len
, struct sockaddr_storage
*ss
,
1124 char delim
, const char **ipend
)
1126 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
1127 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
1129 memset(ss
, 0, sizeof(*ss
));
1131 if (in4_pton(str
, len
, (u8
*)&in4
->sin_addr
.s_addr
, delim
, ipend
)) {
1132 ss
->ss_family
= AF_INET
;
1136 if (in6_pton(str
, len
, (u8
*)&in6
->sin6_addr
.s6_addr
, delim
, ipend
)) {
1137 ss
->ss_family
= AF_INET6
;
1145 * Extract hostname string and resolve using kernel DNS facility.
1147 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1148 static int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1149 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1151 const char *end
, *delim_p
;
1152 char *colon_p
, *ip_addr
= NULL
;
1156 * The end of the hostname occurs immediately preceding the delimiter or
1157 * the port marker (':') where the delimiter takes precedence.
1159 delim_p
= memchr(name
, delim
, namelen
);
1160 colon_p
= memchr(name
, ':', namelen
);
1162 if (delim_p
&& colon_p
)
1163 end
= delim_p
< colon_p
? delim_p
: colon_p
;
1164 else if (!delim_p
&& colon_p
)
1168 if (!end
) /* case: hostname:/ */
1169 end
= name
+ namelen
;
1175 /* do dns_resolve upcall */
1176 ip_len
= dns_query(NULL
, name
, end
- name
, NULL
, &ip_addr
, NULL
);
1178 ret
= ceph_pton(ip_addr
, ip_len
, ss
, -1, NULL
);
1186 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end
- name
), name
,
1187 ret
, ret
? "failed" : ceph_pr_addr(ss
));
1192 static inline int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1193 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1200 * Parse a server name (IP or hostname). If a valid IP address is not found
1201 * then try to extract a hostname to resolve using userspace DNS upcall.
1203 static int ceph_parse_server_name(const char *name
, size_t namelen
,
1204 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1208 ret
= ceph_pton(name
, namelen
, ss
, delim
, ipend
);
1210 ret
= ceph_dns_resolve_name(name
, namelen
, ss
, delim
, ipend
);
1216 * Parse an ip[:port] list into an addr array. Use the default
1217 * monitor port if a port isn't specified.
1219 int ceph_parse_ips(const char *c
, const char *end
,
1220 struct ceph_entity_addr
*addr
,
1221 int max_count
, int *count
)
1223 int i
, ret
= -EINVAL
;
1226 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1227 for (i
= 0; i
< max_count
; i
++) {
1229 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1238 ret
= ceph_parse_server_name(p
, end
- p
, ss
, delim
, &ipend
);
1247 dout("missing matching ']'\n");
1254 if (p
< end
&& *p
== ':') {
1257 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1258 port
= (port
* 10) + (*p
- '0');
1261 if (port
> 65535 || port
== 0)
1264 port
= CEPH_MON_PORT
;
1267 addr_set_port(ss
, port
);
1269 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
1286 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
1289 EXPORT_SYMBOL(ceph_parse_ips
);
1291 static int process_banner(struct ceph_connection
*con
)
1293 dout("process_banner on %p\n", con
);
1295 if (verify_hello(con
) < 0)
1298 ceph_decode_addr(&con
->actual_peer_addr
);
1299 ceph_decode_addr(&con
->peer_addr_for_me
);
1302 * Make sure the other end is who we wanted. note that the other
1303 * end may not yet know their ip address, so if it's 0.0.0.0, give
1304 * them the benefit of the doubt.
1306 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
1307 sizeof(con
->peer_addr
)) != 0 &&
1308 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
1309 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
1310 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1311 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1312 (int)le32_to_cpu(con
->peer_addr
.nonce
),
1313 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
1314 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
1315 con
->error_msg
= "wrong peer at address";
1320 * did we learn our address?
1322 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
1323 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
1325 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
1326 &con
->peer_addr_for_me
.in_addr
,
1327 sizeof(con
->peer_addr_for_me
.in_addr
));
1328 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
1329 encode_my_addr(con
->msgr
);
1330 dout("process_banner learned my addr is %s\n",
1331 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
1334 set_bit(NEGOTIATING
, &con
->state
);
1335 prepare_read_connect(con
);
1339 static void fail_protocol(struct ceph_connection
*con
)
1341 reset_connection(con
);
1342 set_bit(CLOSED
, &con
->state
); /* in case there's queued work */
1344 mutex_unlock(&con
->mutex
);
1345 if (con
->ops
->bad_proto
)
1346 con
->ops
->bad_proto(con
);
1347 mutex_lock(&con
->mutex
);
1350 static int process_connect(struct ceph_connection
*con
)
1352 u64 sup_feat
= con
->msgr
->supported_features
;
1353 u64 req_feat
= con
->msgr
->required_features
;
1354 u64 server_feat
= le64_to_cpu(con
->in_reply
.features
);
1357 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
1359 switch (con
->in_reply
.tag
) {
1360 case CEPH_MSGR_TAG_FEATURES
:
1361 pr_err("%s%lld %s feature set mismatch,"
1362 " my %llx < server's %llx, missing %llx\n",
1363 ENTITY_NAME(con
->peer_name
),
1364 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1365 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
1366 con
->error_msg
= "missing required protocol features";
1370 case CEPH_MSGR_TAG_BADPROTOVER
:
1371 pr_err("%s%lld %s protocol version mismatch,"
1372 " my %d != server's %d\n",
1373 ENTITY_NAME(con
->peer_name
),
1374 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1375 le32_to_cpu(con
->out_connect
.protocol_version
),
1376 le32_to_cpu(con
->in_reply
.protocol_version
));
1377 con
->error_msg
= "protocol version mismatch";
1381 case CEPH_MSGR_TAG_BADAUTHORIZER
:
1383 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
1385 if (con
->auth_retry
== 2) {
1386 con
->error_msg
= "connect authorization failure";
1389 con
->auth_retry
= 1;
1390 ceph_con_out_kvec_reset(con
);
1391 ret
= prepare_write_connect(con
);
1394 prepare_read_connect(con
);
1397 case CEPH_MSGR_TAG_RESETSESSION
:
1399 * If we connected with a large connect_seq but the peer
1400 * has no record of a session with us (no connection, or
1401 * connect_seq == 0), they will send RESETSESION to indicate
1402 * that they must have reset their session, and may have
1405 dout("process_connect got RESET peer seq %u\n",
1406 le32_to_cpu(con
->in_connect
.connect_seq
));
1407 pr_err("%s%lld %s connection reset\n",
1408 ENTITY_NAME(con
->peer_name
),
1409 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1410 reset_connection(con
);
1411 ceph_con_out_kvec_reset(con
);
1412 prepare_write_connect(con
);
1413 prepare_read_connect(con
);
1415 /* Tell ceph about it. */
1416 mutex_unlock(&con
->mutex
);
1417 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
1418 if (con
->ops
->peer_reset
)
1419 con
->ops
->peer_reset(con
);
1420 mutex_lock(&con
->mutex
);
1421 if (test_bit(CLOSED
, &con
->state
) ||
1422 test_bit(OPENING
, &con
->state
))
1426 case CEPH_MSGR_TAG_RETRY_SESSION
:
1428 * If we sent a smaller connect_seq than the peer has, try
1429 * again with a larger value.
1431 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1432 le32_to_cpu(con
->out_connect
.connect_seq
),
1433 le32_to_cpu(con
->in_connect
.connect_seq
));
1434 con
->connect_seq
= le32_to_cpu(con
->in_connect
.connect_seq
);
1435 ceph_con_out_kvec_reset(con
);
1436 prepare_write_connect(con
);
1437 prepare_read_connect(con
);
1440 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
1442 * If we sent a smaller global_seq than the peer has, try
1443 * again with a larger value.
1445 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1446 con
->peer_global_seq
,
1447 le32_to_cpu(con
->in_connect
.global_seq
));
1448 get_global_seq(con
->msgr
,
1449 le32_to_cpu(con
->in_connect
.global_seq
));
1450 ceph_con_out_kvec_reset(con
);
1451 prepare_write_connect(con
);
1452 prepare_read_connect(con
);
1455 case CEPH_MSGR_TAG_READY
:
1456 if (req_feat
& ~server_feat
) {
1457 pr_err("%s%lld %s protocol feature mismatch,"
1458 " my required %llx > server's %llx, need %llx\n",
1459 ENTITY_NAME(con
->peer_name
),
1460 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1461 req_feat
, server_feat
, req_feat
& ~server_feat
);
1462 con
->error_msg
= "missing required protocol features";
1466 clear_bit(CONNECTING
, &con
->state
);
1467 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
1469 con
->peer_features
= server_feat
;
1470 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1471 con
->peer_global_seq
,
1472 le32_to_cpu(con
->in_reply
.connect_seq
),
1474 WARN_ON(con
->connect_seq
!=
1475 le32_to_cpu(con
->in_reply
.connect_seq
));
1477 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
1478 set_bit(LOSSYTX
, &con
->state
);
1480 prepare_read_tag(con
);
1483 case CEPH_MSGR_TAG_WAIT
:
1485 * If there is a connection race (we are opening
1486 * connections to each other), one of us may just have
1487 * to WAIT. This shouldn't happen if we are the
1490 pr_err("process_connect got WAIT as client\n");
1491 con
->error_msg
= "protocol error, got WAIT as client";
1495 pr_err("connect protocol error, will retry\n");
1496 con
->error_msg
= "protocol error, garbage tag during connect";
1504 * read (part of) an ack
1506 static int read_partial_ack(struct ceph_connection
*con
)
1508 int size
= sizeof (con
->in_temp_ack
);
1511 return read_partial(con
, end
, size
, &con
->in_temp_ack
);
1516 * We can finally discard anything that's been acked.
1518 static void process_ack(struct ceph_connection
*con
)
1521 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
1524 while (!list_empty(&con
->out_sent
)) {
1525 m
= list_first_entry(&con
->out_sent
, struct ceph_msg
,
1527 seq
= le64_to_cpu(m
->hdr
.seq
);
1530 dout("got ack for seq %llu type %d at %p\n", seq
,
1531 le16_to_cpu(m
->hdr
.type
), m
);
1532 m
->ack_stamp
= jiffies
;
1535 prepare_read_tag(con
);
1541 static int read_partial_message_section(struct ceph_connection
*con
,
1542 struct kvec
*section
,
1543 unsigned int sec_len
, u32
*crc
)
1549 while (section
->iov_len
< sec_len
) {
1550 BUG_ON(section
->iov_base
== NULL
);
1551 left
= sec_len
- section
->iov_len
;
1552 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
1553 section
->iov_len
, left
);
1556 section
->iov_len
+= ret
;
1558 if (section
->iov_len
== sec_len
)
1559 *crc
= crc32c(0, section
->iov_base
, section
->iov_len
);
1564 static struct ceph_msg
*ceph_alloc_msg(struct ceph_connection
*con
,
1565 struct ceph_msg_header
*hdr
,
1569 static int read_partial_message_pages(struct ceph_connection
*con
,
1570 struct page
**pages
,
1571 unsigned data_len
, bool do_datacrc
)
1577 left
= min((int)(data_len
- con
->in_msg_pos
.data_pos
),
1578 (int)(PAGE_SIZE
- con
->in_msg_pos
.page_pos
));
1580 BUG_ON(pages
== NULL
);
1581 p
= kmap(pages
[con
->in_msg_pos
.page
]);
1582 ret
= ceph_tcp_recvmsg(con
->sock
, p
+ con
->in_msg_pos
.page_pos
,
1584 if (ret
> 0 && do_datacrc
)
1586 crc32c(con
->in_data_crc
,
1587 p
+ con
->in_msg_pos
.page_pos
, ret
);
1588 kunmap(pages
[con
->in_msg_pos
.page
]);
1591 con
->in_msg_pos
.data_pos
+= ret
;
1592 con
->in_msg_pos
.page_pos
+= ret
;
1593 if (con
->in_msg_pos
.page_pos
== PAGE_SIZE
) {
1594 con
->in_msg_pos
.page_pos
= 0;
1595 con
->in_msg_pos
.page
++;
1602 static int read_partial_message_bio(struct ceph_connection
*con
,
1603 struct bio
**bio_iter
, int *bio_seg
,
1604 unsigned data_len
, bool do_datacrc
)
1606 struct bio_vec
*bv
= bio_iovec_idx(*bio_iter
, *bio_seg
);
1613 left
= min((int)(data_len
- con
->in_msg_pos
.data_pos
),
1614 (int)(bv
->bv_len
- con
->in_msg_pos
.page_pos
));
1616 p
= kmap(bv
->bv_page
) + bv
->bv_offset
;
1618 ret
= ceph_tcp_recvmsg(con
->sock
, p
+ con
->in_msg_pos
.page_pos
,
1620 if (ret
> 0 && do_datacrc
)
1622 crc32c(con
->in_data_crc
,
1623 p
+ con
->in_msg_pos
.page_pos
, ret
);
1624 kunmap(bv
->bv_page
);
1627 con
->in_msg_pos
.data_pos
+= ret
;
1628 con
->in_msg_pos
.page_pos
+= ret
;
1629 if (con
->in_msg_pos
.page_pos
== bv
->bv_len
) {
1630 con
->in_msg_pos
.page_pos
= 0;
1631 iter_bio_next(bio_iter
, bio_seg
);
1639 * read (part of) a message.
1641 static int read_partial_message(struct ceph_connection
*con
)
1643 struct ceph_msg
*m
= con
->in_msg
;
1647 unsigned front_len
, middle_len
, data_len
;
1648 bool do_datacrc
= !con
->msgr
->nocrc
;
1653 dout("read_partial_message con %p msg %p\n", con
, m
);
1656 size
= sizeof (con
->in_hdr
);
1658 ret
= read_partial(con
, end
, size
, &con
->in_hdr
);
1662 crc
= crc32c(0, &con
->in_hdr
, offsetof(struct ceph_msg_header
, crc
));
1663 if (cpu_to_le32(crc
) != con
->in_hdr
.crc
) {
1664 pr_err("read_partial_message bad hdr "
1665 " crc %u != expected %u\n",
1666 crc
, con
->in_hdr
.crc
);
1670 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
1671 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
1673 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
1674 if (middle_len
> CEPH_MSG_MAX_DATA_LEN
)
1676 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
1677 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
1681 seq
= le64_to_cpu(con
->in_hdr
.seq
);
1682 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
1683 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1684 ENTITY_NAME(con
->peer_name
),
1685 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1686 seq
, con
->in_seq
+ 1);
1687 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
1689 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1691 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
1692 pr_err("read_partial_message bad seq %lld expected %lld\n",
1693 seq
, con
->in_seq
+ 1);
1694 con
->error_msg
= "bad message sequence # for incoming message";
1698 /* allocate message? */
1700 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
1701 con
->in_hdr
.front_len
, con
->in_hdr
.data_len
);
1703 con
->in_msg
= ceph_alloc_msg(con
, &con
->in_hdr
, &skip
);
1705 /* skip this message */
1706 dout("alloc_msg said skip message\n");
1707 BUG_ON(con
->in_msg
);
1708 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
1710 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1716 "error allocating memory for incoming message";
1720 m
->front
.iov_len
= 0; /* haven't read it yet */
1722 m
->middle
->vec
.iov_len
= 0;
1724 con
->in_msg_pos
.page
= 0;
1726 con
->in_msg_pos
.page_pos
= m
->page_alignment
;
1728 con
->in_msg_pos
.page_pos
= 0;
1729 con
->in_msg_pos
.data_pos
= 0;
1733 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
1734 &con
->in_front_crc
);
1740 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
1742 &con
->in_middle_crc
);
1747 if (m
->bio
&& !m
->bio_iter
)
1748 init_bio_iter(m
->bio
, &m
->bio_iter
, &m
->bio_seg
);
1752 while (con
->in_msg_pos
.data_pos
< data_len
) {
1754 ret
= read_partial_message_pages(con
, m
->pages
,
1755 data_len
, do_datacrc
);
1759 } else if (m
->bio
) {
1761 ret
= read_partial_message_bio(con
,
1762 &m
->bio_iter
, &m
->bio_seg
,
1763 data_len
, do_datacrc
);
1773 size
= sizeof (m
->footer
);
1775 ret
= read_partial(con
, end
, size
, &m
->footer
);
1779 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1780 m
, front_len
, m
->footer
.front_crc
, middle_len
,
1781 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
1784 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
1785 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1786 m
, con
->in_front_crc
, m
->footer
.front_crc
);
1789 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
1790 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1791 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
1795 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
1796 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
1797 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
1798 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
1802 return 1; /* done! */
1806 * Process message. This happens in the worker thread. The callback should
1807 * be careful not to do anything that waits on other incoming messages or it
1810 static void process_message(struct ceph_connection
*con
)
1812 struct ceph_msg
*msg
;
1817 /* if first message, set peer_name */
1818 if (con
->peer_name
.type
== 0)
1819 con
->peer_name
= msg
->hdr
.src
;
1822 mutex_unlock(&con
->mutex
);
1824 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1825 msg
, le64_to_cpu(msg
->hdr
.seq
),
1826 ENTITY_NAME(msg
->hdr
.src
),
1827 le16_to_cpu(msg
->hdr
.type
),
1828 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
1829 le32_to_cpu(msg
->hdr
.front_len
),
1830 le32_to_cpu(msg
->hdr
.data_len
),
1831 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
1832 con
->ops
->dispatch(con
, msg
);
1834 mutex_lock(&con
->mutex
);
1835 prepare_read_tag(con
);
1840 * Write something to the socket. Called in a worker thread when the
1841 * socket appears to be writeable and we have something ready to send.
1843 static int try_write(struct ceph_connection
*con
)
1847 dout("try_write start %p state %lu nref %d\n", con
, con
->state
,
1848 atomic_read(&con
->nref
));
1851 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
1853 /* open the socket first? */
1854 if (con
->sock
== NULL
) {
1855 ceph_con_out_kvec_reset(con
);
1856 prepare_write_banner(con
);
1857 prepare_write_connect(con
);
1858 prepare_read_banner(con
);
1859 set_bit(CONNECTING
, &con
->state
);
1860 clear_bit(NEGOTIATING
, &con
->state
);
1862 BUG_ON(con
->in_msg
);
1863 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1864 dout("try_write initiating connect on %p new state %lu\n",
1866 ret
= ceph_tcp_connect(con
);
1868 con
->error_msg
= "connect error";
1874 /* kvec data queued? */
1875 if (con
->out_skip
) {
1876 ret
= write_partial_skip(con
);
1880 if (con
->out_kvec_left
) {
1881 ret
= write_partial_kvec(con
);
1888 if (con
->out_msg_done
) {
1889 ceph_msg_put(con
->out_msg
);
1890 con
->out_msg
= NULL
; /* we're done with this one */
1894 ret
= write_partial_msg_pages(con
);
1896 goto more_kvec
; /* we need to send the footer, too! */
1900 dout("try_write write_partial_msg_pages err %d\n",
1907 if (!test_bit(CONNECTING
, &con
->state
)) {
1908 /* is anything else pending? */
1909 if (!list_empty(&con
->out_queue
)) {
1910 prepare_write_message(con
);
1913 if (con
->in_seq
> con
->in_seq_acked
) {
1914 prepare_write_ack(con
);
1917 if (test_and_clear_bit(KEEPALIVE_PENDING
, &con
->state
)) {
1918 prepare_write_keepalive(con
);
1923 /* Nothing to do! */
1924 clear_bit(WRITE_PENDING
, &con
->state
);
1925 dout("try_write nothing else to write.\n");
1928 dout("try_write done on %p ret %d\n", con
, ret
);
1935 * Read what we can from the socket.
1937 static int try_read(struct ceph_connection
*con
)
1944 if (test_bit(STANDBY
, &con
->state
))
1947 dout("try_read start on %p\n", con
);
1950 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
1954 * process_connect and process_message drop and re-take
1955 * con->mutex. make sure we handle a racing close or reopen.
1957 if (test_bit(CLOSED
, &con
->state
) ||
1958 test_bit(OPENING
, &con
->state
)) {
1963 if (test_bit(CONNECTING
, &con
->state
)) {
1964 if (!test_bit(NEGOTIATING
, &con
->state
)) {
1965 dout("try_read connecting\n");
1966 ret
= read_partial_banner(con
);
1969 ret
= process_banner(con
);
1973 ret
= read_partial_connect(con
);
1976 ret
= process_connect(con
);
1982 if (con
->in_base_pos
< 0) {
1984 * skipping + discarding content.
1986 * FIXME: there must be a better way to do this!
1988 static char buf
[SKIP_BUF_SIZE
];
1989 int skip
= min((int) sizeof (buf
), -con
->in_base_pos
);
1991 dout("skipping %d / %d bytes\n", skip
, -con
->in_base_pos
);
1992 ret
= ceph_tcp_recvmsg(con
->sock
, buf
, skip
);
1995 con
->in_base_pos
+= ret
;
1996 if (con
->in_base_pos
)
1999 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
2003 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
2006 dout("try_read got tag %d\n", (int)con
->in_tag
);
2007 switch (con
->in_tag
) {
2008 case CEPH_MSGR_TAG_MSG
:
2009 prepare_read_message(con
);
2011 case CEPH_MSGR_TAG_ACK
:
2012 prepare_read_ack(con
);
2014 case CEPH_MSGR_TAG_CLOSE
:
2015 set_bit(CLOSED
, &con
->state
); /* fixme */
2021 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
2022 ret
= read_partial_message(con
);
2026 con
->error_msg
= "bad crc";
2030 con
->error_msg
= "io error";
2035 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
2037 process_message(con
);
2040 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
) {
2041 ret
= read_partial_ack(con
);
2049 dout("try_read done on %p ret %d\n", con
, ret
);
2053 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
2054 con
->error_msg
= "protocol error, garbage tag";
2061 * Atomically queue work on a connection. Bump @con reference to
2062 * avoid races with connection teardown.
2064 static void queue_con(struct ceph_connection
*con
)
2066 if (test_bit(DEAD
, &con
->state
)) {
2067 dout("queue_con %p ignoring: DEAD\n",
2072 if (!con
->ops
->get(con
)) {
2073 dout("queue_con %p ref count 0\n", con
);
2077 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, 0)) {
2078 dout("queue_con %p - already queued\n", con
);
2081 dout("queue_con %p\n", con
);
2086 * Do some work on a connection. Drop a connection ref when we're done.
2088 static void con_work(struct work_struct
*work
)
2090 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
2094 mutex_lock(&con
->mutex
);
2096 if (test_and_clear_bit(BACKOFF
, &con
->state
)) {
2097 dout("con_work %p backing off\n", con
);
2098 if (queue_delayed_work(ceph_msgr_wq
, &con
->work
,
2099 round_jiffies_relative(con
->delay
))) {
2100 dout("con_work %p backoff %lu\n", con
, con
->delay
);
2101 mutex_unlock(&con
->mutex
);
2105 dout("con_work %p FAILED to back off %lu\n", con
,
2110 if (test_bit(STANDBY
, &con
->state
)) {
2111 dout("con_work %p STANDBY\n", con
);
2114 if (test_bit(CLOSED
, &con
->state
)) { /* e.g. if we are replaced */
2115 dout("con_work CLOSED\n");
2116 con_close_socket(con
);
2119 if (test_and_clear_bit(OPENING
, &con
->state
)) {
2120 /* reopen w/ new peer */
2121 dout("con_work OPENING\n");
2122 con_close_socket(con
);
2125 if (test_and_clear_bit(SOCK_CLOSED
, &con
->state
))
2128 ret
= try_read(con
);
2134 ret
= try_write(con
);
2141 mutex_unlock(&con
->mutex
);
2147 mutex_unlock(&con
->mutex
);
2148 ceph_fault(con
); /* error/fault path */
2154 * Generic error/fault handler. A retry mechanism is used with
2155 * exponential backoff
2157 static void ceph_fault(struct ceph_connection
*con
)
2159 pr_err("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
2160 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
2161 dout("fault %p state %lu to peer %s\n",
2162 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
2164 if (test_bit(LOSSYTX
, &con
->state
)) {
2165 dout("fault on LOSSYTX channel\n");
2169 mutex_lock(&con
->mutex
);
2170 if (test_bit(CLOSED
, &con
->state
))
2173 con_close_socket(con
);
2176 ceph_msg_put(con
->in_msg
);
2180 /* Requeue anything that hasn't been acked */
2181 list_splice_init(&con
->out_sent
, &con
->out_queue
);
2183 /* If there are no messages queued or keepalive pending, place
2184 * the connection in a STANDBY state */
2185 if (list_empty(&con
->out_queue
) &&
2186 !test_bit(KEEPALIVE_PENDING
, &con
->state
)) {
2187 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
2188 clear_bit(WRITE_PENDING
, &con
->state
);
2189 set_bit(STANDBY
, &con
->state
);
2191 /* retry after a delay. */
2192 if (con
->delay
== 0)
2193 con
->delay
= BASE_DELAY_INTERVAL
;
2194 else if (con
->delay
< MAX_DELAY_INTERVAL
)
2197 if (queue_delayed_work(ceph_msgr_wq
, &con
->work
,
2198 round_jiffies_relative(con
->delay
))) {
2199 dout("fault queued %p delay %lu\n", con
, con
->delay
);
2202 dout("fault failed to queue %p delay %lu, backoff\n",
2205 * In many cases we see a socket state change
2206 * while con_work is running and end up
2207 * queuing (non-delayed) work, such that we
2208 * can't backoff with a delay. Set a flag so
2209 * that when con_work restarts we schedule the
2212 set_bit(BACKOFF
, &con
->state
);
2217 mutex_unlock(&con
->mutex
);
2220 * in case we faulted due to authentication, invalidate our
2221 * current tickets so that we can get new ones.
2223 if (con
->auth_retry
&& con
->ops
->invalidate_authorizer
) {
2224 dout("calling invalidate_authorizer()\n");
2225 con
->ops
->invalidate_authorizer(con
);
2228 if (con
->ops
->fault
)
2229 con
->ops
->fault(con
);
2235 * create a new messenger instance
2237 struct ceph_messenger
*ceph_messenger_create(struct ceph_entity_addr
*myaddr
,
2238 u32 supported_features
,
2239 u32 required_features
)
2241 struct ceph_messenger
*msgr
;
2243 msgr
= kzalloc(sizeof(*msgr
), GFP_KERNEL
);
2245 return ERR_PTR(-ENOMEM
);
2247 msgr
->supported_features
= supported_features
;
2248 msgr
->required_features
= required_features
;
2250 spin_lock_init(&msgr
->global_seq_lock
);
2253 msgr
->inst
.addr
= *myaddr
;
2255 /* select a random nonce */
2256 msgr
->inst
.addr
.type
= 0;
2257 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
2258 encode_my_addr(msgr
);
2260 dout("messenger_create %p\n", msgr
);
2263 EXPORT_SYMBOL(ceph_messenger_create
);
2265 void ceph_messenger_destroy(struct ceph_messenger
*msgr
)
2267 dout("destroy %p\n", msgr
);
2269 dout("destroyed messenger %p\n", msgr
);
2271 EXPORT_SYMBOL(ceph_messenger_destroy
);
2273 static void clear_standby(struct ceph_connection
*con
)
2275 /* come back from STANDBY? */
2276 if (test_and_clear_bit(STANDBY
, &con
->state
)) {
2277 mutex_lock(&con
->mutex
);
2278 dout("clear_standby %p and ++connect_seq\n", con
);
2280 WARN_ON(test_bit(WRITE_PENDING
, &con
->state
));
2281 WARN_ON(test_bit(KEEPALIVE_PENDING
, &con
->state
));
2282 mutex_unlock(&con
->mutex
);
2287 * Queue up an outgoing message on the given connection.
2289 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2291 if (test_bit(CLOSED
, &con
->state
)) {
2292 dout("con_send %p closed, dropping %p\n", con
, msg
);
2298 msg
->hdr
.src
= con
->msgr
->inst
.name
;
2300 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
2302 msg
->needs_out_seq
= true;
2305 mutex_lock(&con
->mutex
);
2306 BUG_ON(!list_empty(&msg
->list_head
));
2307 list_add_tail(&msg
->list_head
, &con
->out_queue
);
2308 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
2309 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
2310 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2311 le32_to_cpu(msg
->hdr
.front_len
),
2312 le32_to_cpu(msg
->hdr
.middle_len
),
2313 le32_to_cpu(msg
->hdr
.data_len
));
2314 mutex_unlock(&con
->mutex
);
2316 /* if there wasn't anything waiting to send before, queue
2319 if (test_and_set_bit(WRITE_PENDING
, &con
->state
) == 0)
2322 EXPORT_SYMBOL(ceph_con_send
);
2325 * Revoke a message that was previously queued for send
2327 void ceph_con_revoke(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2329 mutex_lock(&con
->mutex
);
2330 if (!list_empty(&msg
->list_head
)) {
2331 dout("con_revoke %p msg %p - was on queue\n", con
, msg
);
2332 list_del_init(&msg
->list_head
);
2336 if (con
->out_msg
== msg
) {
2337 dout("con_revoke %p msg %p - was sending\n", con
, msg
);
2338 con
->out_msg
= NULL
;
2339 if (con
->out_kvec_is_msg
) {
2340 con
->out_skip
= con
->out_kvec_bytes
;
2341 con
->out_kvec_is_msg
= false;
2346 mutex_unlock(&con
->mutex
);
2350 * Revoke a message that we may be reading data into
2352 void ceph_con_revoke_message(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2354 mutex_lock(&con
->mutex
);
2355 if (con
->in_msg
&& con
->in_msg
== msg
) {
2356 unsigned front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2357 unsigned middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2358 unsigned data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2360 /* skip rest of message */
2361 dout("con_revoke_pages %p msg %p revoked\n", con
, msg
);
2362 con
->in_base_pos
= con
->in_base_pos
-
2363 sizeof(struct ceph_msg_header
) -
2367 sizeof(struct ceph_msg_footer
);
2368 ceph_msg_put(con
->in_msg
);
2370 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2373 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2374 con
, con
->in_msg
, msg
);
2376 mutex_unlock(&con
->mutex
);
2380 * Queue a keepalive byte to ensure the tcp connection is alive.
2382 void ceph_con_keepalive(struct ceph_connection
*con
)
2384 dout("con_keepalive %p\n", con
);
2386 if (test_and_set_bit(KEEPALIVE_PENDING
, &con
->state
) == 0 &&
2387 test_and_set_bit(WRITE_PENDING
, &con
->state
) == 0)
2390 EXPORT_SYMBOL(ceph_con_keepalive
);
2394 * construct a new message with given type, size
2395 * the new msg has a ref count of 1.
2397 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
,
2402 m
= kmalloc(sizeof(*m
), flags
);
2405 kref_init(&m
->kref
);
2406 INIT_LIST_HEAD(&m
->list_head
);
2409 m
->hdr
.type
= cpu_to_le16(type
);
2410 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
2412 m
->hdr
.front_len
= cpu_to_le32(front_len
);
2413 m
->hdr
.middle_len
= 0;
2414 m
->hdr
.data_len
= 0;
2415 m
->hdr
.data_off
= 0;
2416 m
->hdr
.reserved
= 0;
2417 m
->footer
.front_crc
= 0;
2418 m
->footer
.middle_crc
= 0;
2419 m
->footer
.data_crc
= 0;
2420 m
->footer
.flags
= 0;
2421 m
->front_max
= front_len
;
2422 m
->front_is_vmalloc
= false;
2423 m
->more_to_follow
= false;
2432 m
->page_alignment
= 0;
2442 if (front_len
> PAGE_CACHE_SIZE
) {
2443 m
->front
.iov_base
= __vmalloc(front_len
, flags
,
2445 m
->front_is_vmalloc
= true;
2447 m
->front
.iov_base
= kmalloc(front_len
, flags
);
2449 if (m
->front
.iov_base
== NULL
) {
2450 dout("ceph_msg_new can't allocate %d bytes\n",
2455 m
->front
.iov_base
= NULL
;
2457 m
->front
.iov_len
= front_len
;
2459 dout("ceph_msg_new %p front %d\n", m
, front_len
);
2466 pr_err("msg_new can't create type %d front %d\n", type
,
2470 dout("msg_new can't create type %d front %d\n", type
,
2475 EXPORT_SYMBOL(ceph_msg_new
);
2478 * Allocate "middle" portion of a message, if it is needed and wasn't
2479 * allocated by alloc_msg. This allows us to read a small fixed-size
2480 * per-type header in the front and then gracefully fail (i.e.,
2481 * propagate the error to the caller based on info in the front) when
2482 * the middle is too large.
2484 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2486 int type
= le16_to_cpu(msg
->hdr
.type
);
2487 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
2489 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
2490 ceph_msg_type_name(type
), middle_len
);
2491 BUG_ON(!middle_len
);
2492 BUG_ON(msg
->middle
);
2494 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
2501 * Generic message allocator, for incoming messages.
2503 static struct ceph_msg
*ceph_alloc_msg(struct ceph_connection
*con
,
2504 struct ceph_msg_header
*hdr
,
2507 int type
= le16_to_cpu(hdr
->type
);
2508 int front_len
= le32_to_cpu(hdr
->front_len
);
2509 int middle_len
= le32_to_cpu(hdr
->middle_len
);
2510 struct ceph_msg
*msg
= NULL
;
2513 if (con
->ops
->alloc_msg
) {
2514 mutex_unlock(&con
->mutex
);
2515 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
2516 mutex_lock(&con
->mutex
);
2522 msg
= ceph_msg_new(type
, front_len
, GFP_NOFS
, false);
2524 pr_err("unable to allocate msg type %d len %d\n",
2528 msg
->page_alignment
= le16_to_cpu(hdr
->data_off
);
2530 memcpy(&msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
2532 if (middle_len
&& !msg
->middle
) {
2533 ret
= ceph_alloc_middle(con
, msg
);
2545 * Free a generically kmalloc'd message.
2547 void ceph_msg_kfree(struct ceph_msg
*m
)
2549 dout("msg_kfree %p\n", m
);
2550 if (m
->front_is_vmalloc
)
2551 vfree(m
->front
.iov_base
);
2553 kfree(m
->front
.iov_base
);
2558 * Drop a msg ref. Destroy as needed.
2560 void ceph_msg_last_put(struct kref
*kref
)
2562 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
2564 dout("ceph_msg_put last one on %p\n", m
);
2565 WARN_ON(!list_empty(&m
->list_head
));
2567 /* drop middle, data, if any */
2569 ceph_buffer_put(m
->middle
);
2576 ceph_pagelist_release(m
->pagelist
);
2584 ceph_msgpool_put(m
->pool
, m
);
2588 EXPORT_SYMBOL(ceph_msg_last_put
);
2590 void ceph_msg_dump(struct ceph_msg
*msg
)
2592 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg
,
2593 msg
->front_max
, msg
->nr_pages
);
2594 print_hex_dump(KERN_DEBUG
, "header: ",
2595 DUMP_PREFIX_OFFSET
, 16, 1,
2596 &msg
->hdr
, sizeof(msg
->hdr
), true);
2597 print_hex_dump(KERN_DEBUG
, " front: ",
2598 DUMP_PREFIX_OFFSET
, 16, 1,
2599 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
2601 print_hex_dump(KERN_DEBUG
, "middle: ",
2602 DUMP_PREFIX_OFFSET
, 16, 1,
2603 msg
->middle
->vec
.iov_base
,
2604 msg
->middle
->vec
.iov_len
, true);
2605 print_hex_dump(KERN_DEBUG
, "footer: ",
2606 DUMP_PREFIX_OFFSET
, 16, 1,
2607 &msg
->footer
, sizeof(msg
->footer
), true);
2609 EXPORT_SYMBOL(ceph_msg_dump
);