]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/ceph/messenger.c
ceph: don't set WRITE_PENDING too early
[mirror_ubuntu-artful-kernel.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
30 */
31
32 /* static tag bytes (protocol control messages) */
33 static char tag_msg = CEPH_MSGR_TAG_MSG;
34 static char tag_ack = CEPH_MSGR_TAG_ACK;
35 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
36
37 #ifdef CONFIG_LOCKDEP
38 static struct lock_class_key socket_class;
39 #endif
40
41 /*
42 * When skipping (ignoring) a block of input we read it into a "skip
43 * buffer," which is this many bytes in size.
44 */
45 #define SKIP_BUF_SIZE 1024
46
47 static void queue_con(struct ceph_connection *con);
48 static void con_work(struct work_struct *);
49 static void ceph_fault(struct ceph_connection *con);
50
51 /*
52 * Nicely render a sockaddr as a string. An array of formatted
53 * strings is used, to approximate reentrancy.
54 */
55 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
56 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
57 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
58 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
59
60 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
61 static atomic_t addr_str_seq = ATOMIC_INIT(0);
62
63 static struct page *zero_page; /* used in certain error cases */
64
65 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
66 {
67 int i;
68 char *s;
69 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
70 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
71
72 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
73 s = addr_str[i];
74
75 switch (ss->ss_family) {
76 case AF_INET:
77 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
78 ntohs(in4->sin_port));
79 break;
80
81 case AF_INET6:
82 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
83 ntohs(in6->sin6_port));
84 break;
85
86 default:
87 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
88 ss->ss_family);
89 }
90
91 return s;
92 }
93 EXPORT_SYMBOL(ceph_pr_addr);
94
95 static void encode_my_addr(struct ceph_messenger *msgr)
96 {
97 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
98 ceph_encode_addr(&msgr->my_enc_addr);
99 }
100
101 /*
102 * work queue for all reading and writing to/from the socket.
103 */
104 static struct workqueue_struct *ceph_msgr_wq;
105
106 void _ceph_msgr_exit(void)
107 {
108 if (ceph_msgr_wq) {
109 destroy_workqueue(ceph_msgr_wq);
110 ceph_msgr_wq = NULL;
111 }
112
113 BUG_ON(zero_page == NULL);
114 kunmap(zero_page);
115 page_cache_release(zero_page);
116 zero_page = NULL;
117 }
118
119 int ceph_msgr_init(void)
120 {
121 BUG_ON(zero_page != NULL);
122 zero_page = ZERO_PAGE(0);
123 page_cache_get(zero_page);
124
125 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
126 if (ceph_msgr_wq)
127 return 0;
128
129 pr_err("msgr_init failed to create workqueue\n");
130 _ceph_msgr_exit();
131
132 return -ENOMEM;
133 }
134 EXPORT_SYMBOL(ceph_msgr_init);
135
136 void ceph_msgr_exit(void)
137 {
138 BUG_ON(ceph_msgr_wq == NULL);
139
140 _ceph_msgr_exit();
141 }
142 EXPORT_SYMBOL(ceph_msgr_exit);
143
144 void ceph_msgr_flush(void)
145 {
146 flush_workqueue(ceph_msgr_wq);
147 }
148 EXPORT_SYMBOL(ceph_msgr_flush);
149
150
151 /*
152 * socket callback functions
153 */
154
155 /* data available on socket, or listen socket received a connect */
156 static void ceph_data_ready(struct sock *sk, int count_unused)
157 {
158 struct ceph_connection *con = sk->sk_user_data;
159
160 if (sk->sk_state != TCP_CLOSE_WAIT) {
161 dout("ceph_data_ready on %p state = %lu, queueing work\n",
162 con, con->state);
163 queue_con(con);
164 }
165 }
166
167 /* socket has buffer space for writing */
168 static void ceph_write_space(struct sock *sk)
169 {
170 struct ceph_connection *con = sk->sk_user_data;
171
172 /* only queue to workqueue if there is data we want to write,
173 * and there is sufficient space in the socket buffer to accept
174 * more data. clear SOCK_NOSPACE so that ceph_write_space()
175 * doesn't get called again until try_write() fills the socket
176 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
177 * and net/core/stream.c:sk_stream_write_space().
178 */
179 if (test_bit(WRITE_PENDING, &con->state)) {
180 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
181 dout("ceph_write_space %p queueing write work\n", con);
182 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
183 queue_con(con);
184 }
185 } else {
186 dout("ceph_write_space %p nothing to write\n", con);
187 }
188 }
189
190 /* socket's state has changed */
191 static void ceph_state_change(struct sock *sk)
192 {
193 struct ceph_connection *con = sk->sk_user_data;
194
195 dout("ceph_state_change %p state = %lu sk_state = %u\n",
196 con, con->state, sk->sk_state);
197
198 if (test_bit(CLOSED, &con->state))
199 return;
200
201 switch (sk->sk_state) {
202 case TCP_CLOSE:
203 dout("ceph_state_change TCP_CLOSE\n");
204 case TCP_CLOSE_WAIT:
205 dout("ceph_state_change TCP_CLOSE_WAIT\n");
206 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
207 if (test_bit(CONNECTING, &con->state))
208 con->error_msg = "connection failed";
209 else
210 con->error_msg = "socket closed";
211 queue_con(con);
212 }
213 break;
214 case TCP_ESTABLISHED:
215 dout("ceph_state_change TCP_ESTABLISHED\n");
216 queue_con(con);
217 break;
218 default: /* Everything else is uninteresting */
219 break;
220 }
221 }
222
223 /*
224 * set up socket callbacks
225 */
226 static void set_sock_callbacks(struct socket *sock,
227 struct ceph_connection *con)
228 {
229 struct sock *sk = sock->sk;
230 sk->sk_user_data = con;
231 sk->sk_data_ready = ceph_data_ready;
232 sk->sk_write_space = ceph_write_space;
233 sk->sk_state_change = ceph_state_change;
234 }
235
236
237 /*
238 * socket helpers
239 */
240
241 /*
242 * initiate connection to a remote socket.
243 */
244 static int ceph_tcp_connect(struct ceph_connection *con)
245 {
246 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
247 struct socket *sock;
248 int ret;
249
250 BUG_ON(con->sock);
251 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
252 IPPROTO_TCP, &sock);
253 if (ret)
254 return ret;
255 sock->sk->sk_allocation = GFP_NOFS;
256
257 #ifdef CONFIG_LOCKDEP
258 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
259 #endif
260
261 set_sock_callbacks(sock, con);
262
263 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
264
265 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
266 O_NONBLOCK);
267 if (ret == -EINPROGRESS) {
268 dout("connect %s EINPROGRESS sk_state = %u\n",
269 ceph_pr_addr(&con->peer_addr.in_addr),
270 sock->sk->sk_state);
271 } else if (ret < 0) {
272 pr_err("connect %s error %d\n",
273 ceph_pr_addr(&con->peer_addr.in_addr), ret);
274 sock_release(sock);
275 con->error_msg = "connect error";
276
277 return ret;
278 }
279 con->sock = sock;
280
281 return 0;
282 }
283
284 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
285 {
286 struct kvec iov = {buf, len};
287 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
288 int r;
289
290 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
291 if (r == -EAGAIN)
292 r = 0;
293 return r;
294 }
295
296 /*
297 * write something. @more is true if caller will be sending more data
298 * shortly.
299 */
300 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
301 size_t kvlen, size_t len, int more)
302 {
303 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
304 int r;
305
306 if (more)
307 msg.msg_flags |= MSG_MORE;
308 else
309 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
310
311 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
312 if (r == -EAGAIN)
313 r = 0;
314 return r;
315 }
316
317 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
318 int offset, size_t size, int more)
319 {
320 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
321 int ret;
322
323 ret = kernel_sendpage(sock, page, offset, size, flags);
324 if (ret == -EAGAIN)
325 ret = 0;
326
327 return ret;
328 }
329
330
331 /*
332 * Shutdown/close the socket for the given connection.
333 */
334 static int con_close_socket(struct ceph_connection *con)
335 {
336 int rc;
337
338 dout("con_close_socket on %p sock %p\n", con, con->sock);
339 if (!con->sock)
340 return 0;
341 set_bit(SOCK_CLOSED, &con->state);
342 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
343 sock_release(con->sock);
344 con->sock = NULL;
345 clear_bit(SOCK_CLOSED, &con->state);
346 return rc;
347 }
348
349 /*
350 * Reset a connection. Discard all incoming and outgoing messages
351 * and clear *_seq state.
352 */
353 static void ceph_msg_remove(struct ceph_msg *msg)
354 {
355 list_del_init(&msg->list_head);
356 ceph_msg_put(msg);
357 }
358 static void ceph_msg_remove_list(struct list_head *head)
359 {
360 while (!list_empty(head)) {
361 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
362 list_head);
363 ceph_msg_remove(msg);
364 }
365 }
366
367 static void reset_connection(struct ceph_connection *con)
368 {
369 /* reset connection, out_queue, msg_ and connect_seq */
370 /* discard existing out_queue and msg_seq */
371 ceph_msg_remove_list(&con->out_queue);
372 ceph_msg_remove_list(&con->out_sent);
373
374 if (con->in_msg) {
375 ceph_msg_put(con->in_msg);
376 con->in_msg = NULL;
377 }
378
379 con->connect_seq = 0;
380 con->out_seq = 0;
381 if (con->out_msg) {
382 ceph_msg_put(con->out_msg);
383 con->out_msg = NULL;
384 }
385 con->in_seq = 0;
386 con->in_seq_acked = 0;
387 }
388
389 /*
390 * mark a peer down. drop any open connections.
391 */
392 void ceph_con_close(struct ceph_connection *con)
393 {
394 dout("con_close %p peer %s\n", con,
395 ceph_pr_addr(&con->peer_addr.in_addr));
396 set_bit(CLOSED, &con->state); /* in case there's queued work */
397 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
398 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
399 clear_bit(KEEPALIVE_PENDING, &con->state);
400 clear_bit(WRITE_PENDING, &con->state);
401 mutex_lock(&con->mutex);
402 reset_connection(con);
403 con->peer_global_seq = 0;
404 cancel_delayed_work(&con->work);
405 mutex_unlock(&con->mutex);
406 queue_con(con);
407 }
408 EXPORT_SYMBOL(ceph_con_close);
409
410 /*
411 * Reopen a closed connection, with a new peer address.
412 */
413 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
414 {
415 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
416 set_bit(OPENING, &con->state);
417 clear_bit(CLOSED, &con->state);
418 memcpy(&con->peer_addr, addr, sizeof(*addr));
419 con->delay = 0; /* reset backoff memory */
420 queue_con(con);
421 }
422 EXPORT_SYMBOL(ceph_con_open);
423
424 /*
425 * return true if this connection ever successfully opened
426 */
427 bool ceph_con_opened(struct ceph_connection *con)
428 {
429 return con->connect_seq > 0;
430 }
431
432 /*
433 * generic get/put
434 */
435 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
436 {
437 int nref = __atomic_add_unless(&con->nref, 1, 0);
438
439 dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
440
441 return nref ? con : NULL;
442 }
443
444 void ceph_con_put(struct ceph_connection *con)
445 {
446 int nref = atomic_dec_return(&con->nref);
447
448 BUG_ON(nref < 0);
449 if (nref == 0) {
450 BUG_ON(con->sock);
451 kfree(con);
452 }
453 dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
454 }
455
456 /*
457 * initialize a new connection.
458 */
459 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
460 {
461 dout("con_init %p\n", con);
462 memset(con, 0, sizeof(*con));
463 atomic_set(&con->nref, 1);
464 con->msgr = msgr;
465 mutex_init(&con->mutex);
466 INIT_LIST_HEAD(&con->out_queue);
467 INIT_LIST_HEAD(&con->out_sent);
468 INIT_DELAYED_WORK(&con->work, con_work);
469 }
470 EXPORT_SYMBOL(ceph_con_init);
471
472
473 /*
474 * We maintain a global counter to order connection attempts. Get
475 * a unique seq greater than @gt.
476 */
477 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
478 {
479 u32 ret;
480
481 spin_lock(&msgr->global_seq_lock);
482 if (msgr->global_seq < gt)
483 msgr->global_seq = gt;
484 ret = ++msgr->global_seq;
485 spin_unlock(&msgr->global_seq_lock);
486 return ret;
487 }
488
489 static void ceph_con_out_kvec_reset(struct ceph_connection *con)
490 {
491 con->out_kvec_left = 0;
492 con->out_kvec_bytes = 0;
493 con->out_kvec_cur = &con->out_kvec[0];
494 }
495
496 static void ceph_con_out_kvec_add(struct ceph_connection *con,
497 size_t size, void *data)
498 {
499 int index;
500
501 index = con->out_kvec_left;
502 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
503
504 con->out_kvec[index].iov_len = size;
505 con->out_kvec[index].iov_base = data;
506 con->out_kvec_left++;
507 con->out_kvec_bytes += size;
508 }
509
510 /*
511 * Prepare footer for currently outgoing message, and finish things
512 * off. Assumes out_kvec* are already valid.. we just add on to the end.
513 */
514 static void prepare_write_message_footer(struct ceph_connection *con)
515 {
516 struct ceph_msg *m = con->out_msg;
517 int v = con->out_kvec_left;
518
519 dout("prepare_write_message_footer %p\n", con);
520 con->out_kvec_is_msg = true;
521 con->out_kvec[v].iov_base = &m->footer;
522 con->out_kvec[v].iov_len = sizeof(m->footer);
523 con->out_kvec_bytes += sizeof(m->footer);
524 con->out_kvec_left++;
525 con->out_more = m->more_to_follow;
526 con->out_msg_done = true;
527 }
528
529 /*
530 * Prepare headers for the next outgoing message.
531 */
532 static void prepare_write_message(struct ceph_connection *con)
533 {
534 struct ceph_msg *m;
535 u32 crc;
536
537 ceph_con_out_kvec_reset(con);
538 con->out_kvec_is_msg = true;
539 con->out_msg_done = false;
540
541 /* Sneak an ack in there first? If we can get it into the same
542 * TCP packet that's a good thing. */
543 if (con->in_seq > con->in_seq_acked) {
544 con->in_seq_acked = con->in_seq;
545 ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
546 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
547 ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
548 &con->out_temp_ack);
549 }
550
551 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
552 con->out_msg = m;
553
554 /* put message on sent list */
555 ceph_msg_get(m);
556 list_move_tail(&m->list_head, &con->out_sent);
557
558 /*
559 * only assign outgoing seq # if we haven't sent this message
560 * yet. if it is requeued, resend with it's original seq.
561 */
562 if (m->needs_out_seq) {
563 m->hdr.seq = cpu_to_le64(++con->out_seq);
564 m->needs_out_seq = false;
565 }
566
567 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
568 m, con->out_seq, le16_to_cpu(m->hdr.type),
569 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
570 le32_to_cpu(m->hdr.data_len),
571 m->nr_pages);
572 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
573
574 /* tag + hdr + front + middle */
575 ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
576 ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
577 ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
578
579 if (m->middle)
580 ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
581 m->middle->vec.iov_base);
582
583 /* fill in crc (except data pages), footer */
584 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
585 con->out_msg->hdr.crc = cpu_to_le32(crc);
586 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
587
588 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
589 con->out_msg->footer.front_crc = cpu_to_le32(crc);
590 if (m->middle) {
591 crc = crc32c(0, m->middle->vec.iov_base,
592 m->middle->vec.iov_len);
593 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
594 } else
595 con->out_msg->footer.middle_crc = 0;
596 con->out_msg->footer.data_crc = 0;
597 dout("prepare_write_message front_crc %u data_crc %u\n",
598 le32_to_cpu(con->out_msg->footer.front_crc),
599 le32_to_cpu(con->out_msg->footer.middle_crc));
600
601 /* is there a data payload? */
602 if (le32_to_cpu(m->hdr.data_len) > 0) {
603 /* initialize page iterator */
604 con->out_msg_pos.page = 0;
605 if (m->pages)
606 con->out_msg_pos.page_pos = m->page_alignment;
607 else
608 con->out_msg_pos.page_pos = 0;
609 con->out_msg_pos.data_pos = 0;
610 con->out_msg_pos.did_page_crc = false;
611 con->out_more = 1; /* data + footer will follow */
612 } else {
613 /* no, queue up footer too and be done */
614 prepare_write_message_footer(con);
615 }
616
617 set_bit(WRITE_PENDING, &con->state);
618 }
619
620 /*
621 * Prepare an ack.
622 */
623 static void prepare_write_ack(struct ceph_connection *con)
624 {
625 dout("prepare_write_ack %p %llu -> %llu\n", con,
626 con->in_seq_acked, con->in_seq);
627 con->in_seq_acked = con->in_seq;
628
629 ceph_con_out_kvec_reset(con);
630
631 ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
632
633 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
634 ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
635 &con->out_temp_ack);
636
637 con->out_more = 1; /* more will follow.. eventually.. */
638 set_bit(WRITE_PENDING, &con->state);
639 }
640
641 /*
642 * Prepare to write keepalive byte.
643 */
644 static void prepare_write_keepalive(struct ceph_connection *con)
645 {
646 dout("prepare_write_keepalive %p\n", con);
647 ceph_con_out_kvec_reset(con);
648 ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
649 set_bit(WRITE_PENDING, &con->state);
650 }
651
652 /*
653 * Connection negotiation.
654 */
655
656 static int prepare_connect_authorizer(struct ceph_connection *con)
657 {
658 void *auth_buf;
659 int auth_len = 0;
660 int auth_protocol = 0;
661
662 mutex_unlock(&con->mutex);
663 if (con->ops->get_authorizer)
664 con->ops->get_authorizer(con, &auth_buf, &auth_len,
665 &auth_protocol, &con->auth_reply_buf,
666 &con->auth_reply_buf_len,
667 con->auth_retry);
668 mutex_lock(&con->mutex);
669
670 if (test_bit(CLOSED, &con->state) ||
671 test_bit(OPENING, &con->state))
672 return -EAGAIN;
673
674 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
675 con->out_connect.authorizer_len = cpu_to_le32(auth_len);
676
677 if (auth_len)
678 ceph_con_out_kvec_add(con, auth_len, auth_buf);
679
680 return 0;
681 }
682
683 /*
684 * We connected to a peer and are saying hello.
685 */
686 static void prepare_write_banner(struct ceph_connection *con)
687 {
688 ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
689 ceph_con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
690 &con->msgr->my_enc_addr);
691
692 con->out_more = 0;
693 set_bit(WRITE_PENDING, &con->state);
694 }
695
696 static int prepare_write_connect(struct ceph_connection *con)
697 {
698 unsigned global_seq = get_global_seq(con->msgr, 0);
699 int proto;
700 int ret;
701
702 switch (con->peer_name.type) {
703 case CEPH_ENTITY_TYPE_MON:
704 proto = CEPH_MONC_PROTOCOL;
705 break;
706 case CEPH_ENTITY_TYPE_OSD:
707 proto = CEPH_OSDC_PROTOCOL;
708 break;
709 case CEPH_ENTITY_TYPE_MDS:
710 proto = CEPH_MDSC_PROTOCOL;
711 break;
712 default:
713 BUG();
714 }
715
716 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
717 con->connect_seq, global_seq, proto);
718
719 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
720 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
721 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
722 con->out_connect.global_seq = cpu_to_le32(global_seq);
723 con->out_connect.protocol_version = cpu_to_le32(proto);
724 con->out_connect.flags = 0;
725
726 ceph_con_out_kvec_add(con, sizeof (con->out_connect), &con->out_connect);
727 ret = prepare_connect_authorizer(con);
728 if (ret)
729 return ret;
730
731 con->out_more = 0;
732 set_bit(WRITE_PENDING, &con->state);
733
734 return 0;
735 }
736
737 /*
738 * write as much of pending kvecs to the socket as we can.
739 * 1 -> done
740 * 0 -> socket full, but more to do
741 * <0 -> error
742 */
743 static int write_partial_kvec(struct ceph_connection *con)
744 {
745 int ret;
746
747 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
748 while (con->out_kvec_bytes > 0) {
749 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
750 con->out_kvec_left, con->out_kvec_bytes,
751 con->out_more);
752 if (ret <= 0)
753 goto out;
754 con->out_kvec_bytes -= ret;
755 if (con->out_kvec_bytes == 0)
756 break; /* done */
757
758 /* account for full iov entries consumed */
759 while (ret >= con->out_kvec_cur->iov_len) {
760 BUG_ON(!con->out_kvec_left);
761 ret -= con->out_kvec_cur->iov_len;
762 con->out_kvec_cur++;
763 con->out_kvec_left--;
764 }
765 /* and for a partially-consumed entry */
766 if (ret) {
767 con->out_kvec_cur->iov_len -= ret;
768 con->out_kvec_cur->iov_base += ret;
769 }
770 }
771 con->out_kvec_left = 0;
772 con->out_kvec_is_msg = false;
773 ret = 1;
774 out:
775 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
776 con->out_kvec_bytes, con->out_kvec_left, ret);
777 return ret; /* done! */
778 }
779
780 #ifdef CONFIG_BLOCK
781 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
782 {
783 if (!bio) {
784 *iter = NULL;
785 *seg = 0;
786 return;
787 }
788 *iter = bio;
789 *seg = bio->bi_idx;
790 }
791
792 static void iter_bio_next(struct bio **bio_iter, int *seg)
793 {
794 if (*bio_iter == NULL)
795 return;
796
797 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
798
799 (*seg)++;
800 if (*seg == (*bio_iter)->bi_vcnt)
801 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
802 }
803 #endif
804
805 /*
806 * Write as much message data payload as we can. If we finish, queue
807 * up the footer.
808 * 1 -> done, footer is now queued in out_kvec[].
809 * 0 -> socket full, but more to do
810 * <0 -> error
811 */
812 static int write_partial_msg_pages(struct ceph_connection *con)
813 {
814 struct ceph_msg *msg = con->out_msg;
815 unsigned data_len = le32_to_cpu(msg->hdr.data_len);
816 size_t len;
817 bool do_datacrc = !con->msgr->nocrc;
818 int ret;
819 int total_max_write;
820 int in_trail = 0;
821 size_t trail_len = (msg->trail ? msg->trail->length : 0);
822
823 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
824 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
825 con->out_msg_pos.page_pos);
826
827 #ifdef CONFIG_BLOCK
828 if (msg->bio && !msg->bio_iter)
829 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
830 #endif
831
832 while (data_len > con->out_msg_pos.data_pos) {
833 struct page *page = NULL;
834 int max_write = PAGE_SIZE;
835 int bio_offset = 0;
836
837 total_max_write = data_len - trail_len -
838 con->out_msg_pos.data_pos;
839
840 /*
841 * if we are calculating the data crc (the default), we need
842 * to map the page. if our pages[] has been revoked, use the
843 * zero page.
844 */
845
846 /* have we reached the trail part of the data? */
847 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
848 in_trail = 1;
849
850 total_max_write = data_len - con->out_msg_pos.data_pos;
851
852 page = list_first_entry(&msg->trail->head,
853 struct page, lru);
854 max_write = PAGE_SIZE;
855 } else if (msg->pages) {
856 page = msg->pages[con->out_msg_pos.page];
857 } else if (msg->pagelist) {
858 page = list_first_entry(&msg->pagelist->head,
859 struct page, lru);
860 #ifdef CONFIG_BLOCK
861 } else if (msg->bio) {
862 struct bio_vec *bv;
863
864 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
865 page = bv->bv_page;
866 bio_offset = bv->bv_offset;
867 max_write = bv->bv_len;
868 #endif
869 } else {
870 page = zero_page;
871 }
872 len = min_t(int, max_write - con->out_msg_pos.page_pos,
873 total_max_write);
874
875 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
876 void *base;
877 u32 crc;
878 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
879 char *kaddr;
880
881 kaddr = kmap(page);
882 BUG_ON(kaddr == NULL);
883 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
884 crc = crc32c(tmpcrc, base, len);
885 con->out_msg->footer.data_crc = cpu_to_le32(crc);
886 con->out_msg_pos.did_page_crc = true;
887 }
888 ret = ceph_tcp_sendpage(con->sock, page,
889 con->out_msg_pos.page_pos + bio_offset,
890 len, 1);
891
892 if (do_datacrc)
893 kunmap(page);
894
895 if (ret <= 0)
896 goto out;
897
898 con->out_msg_pos.data_pos += ret;
899 con->out_msg_pos.page_pos += ret;
900 if (ret == len) {
901 con->out_msg_pos.page_pos = 0;
902 con->out_msg_pos.page++;
903 con->out_msg_pos.did_page_crc = false;
904 if (in_trail)
905 list_move_tail(&page->lru,
906 &msg->trail->head);
907 else if (msg->pagelist)
908 list_move_tail(&page->lru,
909 &msg->pagelist->head);
910 #ifdef CONFIG_BLOCK
911 else if (msg->bio)
912 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
913 #endif
914 }
915 }
916
917 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
918
919 /* prepare and queue up footer, too */
920 if (!do_datacrc)
921 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
922 ceph_con_out_kvec_reset(con);
923 prepare_write_message_footer(con);
924 ret = 1;
925 out:
926 return ret;
927 }
928
929 /*
930 * write some zeros
931 */
932 static int write_partial_skip(struct ceph_connection *con)
933 {
934 int ret;
935
936 while (con->out_skip > 0) {
937 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
938
939 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
940 if (ret <= 0)
941 goto out;
942 con->out_skip -= ret;
943 }
944 ret = 1;
945 out:
946 return ret;
947 }
948
949 /*
950 * Prepare to read connection handshake, or an ack.
951 */
952 static void prepare_read_banner(struct ceph_connection *con)
953 {
954 dout("prepare_read_banner %p\n", con);
955 con->in_base_pos = 0;
956 }
957
958 static void prepare_read_connect(struct ceph_connection *con)
959 {
960 dout("prepare_read_connect %p\n", con);
961 con->in_base_pos = 0;
962 }
963
964 static void prepare_read_ack(struct ceph_connection *con)
965 {
966 dout("prepare_read_ack %p\n", con);
967 con->in_base_pos = 0;
968 }
969
970 static void prepare_read_tag(struct ceph_connection *con)
971 {
972 dout("prepare_read_tag %p\n", con);
973 con->in_base_pos = 0;
974 con->in_tag = CEPH_MSGR_TAG_READY;
975 }
976
977 /*
978 * Prepare to read a message.
979 */
980 static int prepare_read_message(struct ceph_connection *con)
981 {
982 dout("prepare_read_message %p\n", con);
983 BUG_ON(con->in_msg != NULL);
984 con->in_base_pos = 0;
985 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
986 return 0;
987 }
988
989
990 static int read_partial(struct ceph_connection *con,
991 int end, int size, void *object)
992 {
993 while (con->in_base_pos < end) {
994 int left = end - con->in_base_pos;
995 int have = size - left;
996 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
997 if (ret <= 0)
998 return ret;
999 con->in_base_pos += ret;
1000 }
1001 return 1;
1002 }
1003
1004
1005 /*
1006 * Read all or part of the connect-side handshake on a new connection
1007 */
1008 static int read_partial_banner(struct ceph_connection *con)
1009 {
1010 int size;
1011 int end;
1012 int ret;
1013
1014 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1015
1016 /* peer's banner */
1017 size = strlen(CEPH_BANNER);
1018 end = size;
1019 ret = read_partial(con, end, size, con->in_banner);
1020 if (ret <= 0)
1021 goto out;
1022
1023 size = sizeof (con->actual_peer_addr);
1024 end += size;
1025 ret = read_partial(con, end, size, &con->actual_peer_addr);
1026 if (ret <= 0)
1027 goto out;
1028
1029 size = sizeof (con->peer_addr_for_me);
1030 end += size;
1031 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1032 if (ret <= 0)
1033 goto out;
1034
1035 out:
1036 return ret;
1037 }
1038
1039 static int read_partial_connect(struct ceph_connection *con)
1040 {
1041 int size;
1042 int end;
1043 int ret;
1044
1045 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1046
1047 size = sizeof (con->in_reply);
1048 end = size;
1049 ret = read_partial(con, end, size, &con->in_reply);
1050 if (ret <= 0)
1051 goto out;
1052
1053 size = le32_to_cpu(con->in_reply.authorizer_len);
1054 end += size;
1055 ret = read_partial(con, end, size, con->auth_reply_buf);
1056 if (ret <= 0)
1057 goto out;
1058
1059 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1060 con, (int)con->in_reply.tag,
1061 le32_to_cpu(con->in_reply.connect_seq),
1062 le32_to_cpu(con->in_reply.global_seq));
1063 out:
1064 return ret;
1065
1066 }
1067
1068 /*
1069 * Verify the hello banner looks okay.
1070 */
1071 static int verify_hello(struct ceph_connection *con)
1072 {
1073 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1074 pr_err("connect to %s got bad banner\n",
1075 ceph_pr_addr(&con->peer_addr.in_addr));
1076 con->error_msg = "protocol error, bad banner";
1077 return -1;
1078 }
1079 return 0;
1080 }
1081
1082 static bool addr_is_blank(struct sockaddr_storage *ss)
1083 {
1084 switch (ss->ss_family) {
1085 case AF_INET:
1086 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1087 case AF_INET6:
1088 return
1089 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1090 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1091 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1092 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1093 }
1094 return false;
1095 }
1096
1097 static int addr_port(struct sockaddr_storage *ss)
1098 {
1099 switch (ss->ss_family) {
1100 case AF_INET:
1101 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1102 case AF_INET6:
1103 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1104 }
1105 return 0;
1106 }
1107
1108 static void addr_set_port(struct sockaddr_storage *ss, int p)
1109 {
1110 switch (ss->ss_family) {
1111 case AF_INET:
1112 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1113 break;
1114 case AF_INET6:
1115 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1116 break;
1117 }
1118 }
1119
1120 /*
1121 * Unlike other *_pton function semantics, zero indicates success.
1122 */
1123 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1124 char delim, const char **ipend)
1125 {
1126 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1127 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1128
1129 memset(ss, 0, sizeof(*ss));
1130
1131 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1132 ss->ss_family = AF_INET;
1133 return 0;
1134 }
1135
1136 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1137 ss->ss_family = AF_INET6;
1138 return 0;
1139 }
1140
1141 return -EINVAL;
1142 }
1143
1144 /*
1145 * Extract hostname string and resolve using kernel DNS facility.
1146 */
1147 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1148 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1149 struct sockaddr_storage *ss, char delim, const char **ipend)
1150 {
1151 const char *end, *delim_p;
1152 char *colon_p, *ip_addr = NULL;
1153 int ip_len, ret;
1154
1155 /*
1156 * The end of the hostname occurs immediately preceding the delimiter or
1157 * the port marker (':') where the delimiter takes precedence.
1158 */
1159 delim_p = memchr(name, delim, namelen);
1160 colon_p = memchr(name, ':', namelen);
1161
1162 if (delim_p && colon_p)
1163 end = delim_p < colon_p ? delim_p : colon_p;
1164 else if (!delim_p && colon_p)
1165 end = colon_p;
1166 else {
1167 end = delim_p;
1168 if (!end) /* case: hostname:/ */
1169 end = name + namelen;
1170 }
1171
1172 if (end <= name)
1173 return -EINVAL;
1174
1175 /* do dns_resolve upcall */
1176 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1177 if (ip_len > 0)
1178 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1179 else
1180 ret = -ESRCH;
1181
1182 kfree(ip_addr);
1183
1184 *ipend = end;
1185
1186 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1187 ret, ret ? "failed" : ceph_pr_addr(ss));
1188
1189 return ret;
1190 }
1191 #else
1192 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1193 struct sockaddr_storage *ss, char delim, const char **ipend)
1194 {
1195 return -EINVAL;
1196 }
1197 #endif
1198
1199 /*
1200 * Parse a server name (IP or hostname). If a valid IP address is not found
1201 * then try to extract a hostname to resolve using userspace DNS upcall.
1202 */
1203 static int ceph_parse_server_name(const char *name, size_t namelen,
1204 struct sockaddr_storage *ss, char delim, const char **ipend)
1205 {
1206 int ret;
1207
1208 ret = ceph_pton(name, namelen, ss, delim, ipend);
1209 if (ret)
1210 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1211
1212 return ret;
1213 }
1214
1215 /*
1216 * Parse an ip[:port] list into an addr array. Use the default
1217 * monitor port if a port isn't specified.
1218 */
1219 int ceph_parse_ips(const char *c, const char *end,
1220 struct ceph_entity_addr *addr,
1221 int max_count, int *count)
1222 {
1223 int i, ret = -EINVAL;
1224 const char *p = c;
1225
1226 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1227 for (i = 0; i < max_count; i++) {
1228 const char *ipend;
1229 struct sockaddr_storage *ss = &addr[i].in_addr;
1230 int port;
1231 char delim = ',';
1232
1233 if (*p == '[') {
1234 delim = ']';
1235 p++;
1236 }
1237
1238 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1239 if (ret)
1240 goto bad;
1241 ret = -EINVAL;
1242
1243 p = ipend;
1244
1245 if (delim == ']') {
1246 if (*p != ']') {
1247 dout("missing matching ']'\n");
1248 goto bad;
1249 }
1250 p++;
1251 }
1252
1253 /* port? */
1254 if (p < end && *p == ':') {
1255 port = 0;
1256 p++;
1257 while (p < end && *p >= '0' && *p <= '9') {
1258 port = (port * 10) + (*p - '0');
1259 p++;
1260 }
1261 if (port > 65535 || port == 0)
1262 goto bad;
1263 } else {
1264 port = CEPH_MON_PORT;
1265 }
1266
1267 addr_set_port(ss, port);
1268
1269 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1270
1271 if (p == end)
1272 break;
1273 if (*p != ',')
1274 goto bad;
1275 p++;
1276 }
1277
1278 if (p != end)
1279 goto bad;
1280
1281 if (count)
1282 *count = i + 1;
1283 return 0;
1284
1285 bad:
1286 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1287 return ret;
1288 }
1289 EXPORT_SYMBOL(ceph_parse_ips);
1290
1291 static int process_banner(struct ceph_connection *con)
1292 {
1293 dout("process_banner on %p\n", con);
1294
1295 if (verify_hello(con) < 0)
1296 return -1;
1297
1298 ceph_decode_addr(&con->actual_peer_addr);
1299 ceph_decode_addr(&con->peer_addr_for_me);
1300
1301 /*
1302 * Make sure the other end is who we wanted. note that the other
1303 * end may not yet know their ip address, so if it's 0.0.0.0, give
1304 * them the benefit of the doubt.
1305 */
1306 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1307 sizeof(con->peer_addr)) != 0 &&
1308 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1309 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1310 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1311 ceph_pr_addr(&con->peer_addr.in_addr),
1312 (int)le32_to_cpu(con->peer_addr.nonce),
1313 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1314 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1315 con->error_msg = "wrong peer at address";
1316 return -1;
1317 }
1318
1319 /*
1320 * did we learn our address?
1321 */
1322 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1323 int port = addr_port(&con->msgr->inst.addr.in_addr);
1324
1325 memcpy(&con->msgr->inst.addr.in_addr,
1326 &con->peer_addr_for_me.in_addr,
1327 sizeof(con->peer_addr_for_me.in_addr));
1328 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1329 encode_my_addr(con->msgr);
1330 dout("process_banner learned my addr is %s\n",
1331 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1332 }
1333
1334 set_bit(NEGOTIATING, &con->state);
1335 prepare_read_connect(con);
1336 return 0;
1337 }
1338
1339 static void fail_protocol(struct ceph_connection *con)
1340 {
1341 reset_connection(con);
1342 set_bit(CLOSED, &con->state); /* in case there's queued work */
1343
1344 mutex_unlock(&con->mutex);
1345 if (con->ops->bad_proto)
1346 con->ops->bad_proto(con);
1347 mutex_lock(&con->mutex);
1348 }
1349
1350 static int process_connect(struct ceph_connection *con)
1351 {
1352 u64 sup_feat = con->msgr->supported_features;
1353 u64 req_feat = con->msgr->required_features;
1354 u64 server_feat = le64_to_cpu(con->in_reply.features);
1355 int ret;
1356
1357 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1358
1359 switch (con->in_reply.tag) {
1360 case CEPH_MSGR_TAG_FEATURES:
1361 pr_err("%s%lld %s feature set mismatch,"
1362 " my %llx < server's %llx, missing %llx\n",
1363 ENTITY_NAME(con->peer_name),
1364 ceph_pr_addr(&con->peer_addr.in_addr),
1365 sup_feat, server_feat, server_feat & ~sup_feat);
1366 con->error_msg = "missing required protocol features";
1367 fail_protocol(con);
1368 return -1;
1369
1370 case CEPH_MSGR_TAG_BADPROTOVER:
1371 pr_err("%s%lld %s protocol version mismatch,"
1372 " my %d != server's %d\n",
1373 ENTITY_NAME(con->peer_name),
1374 ceph_pr_addr(&con->peer_addr.in_addr),
1375 le32_to_cpu(con->out_connect.protocol_version),
1376 le32_to_cpu(con->in_reply.protocol_version));
1377 con->error_msg = "protocol version mismatch";
1378 fail_protocol(con);
1379 return -1;
1380
1381 case CEPH_MSGR_TAG_BADAUTHORIZER:
1382 con->auth_retry++;
1383 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1384 con->auth_retry);
1385 if (con->auth_retry == 2) {
1386 con->error_msg = "connect authorization failure";
1387 return -1;
1388 }
1389 con->auth_retry = 1;
1390 ceph_con_out_kvec_reset(con);
1391 ret = prepare_write_connect(con);
1392 if (ret < 0)
1393 return ret;
1394 prepare_read_connect(con);
1395 break;
1396
1397 case CEPH_MSGR_TAG_RESETSESSION:
1398 /*
1399 * If we connected with a large connect_seq but the peer
1400 * has no record of a session with us (no connection, or
1401 * connect_seq == 0), they will send RESETSESION to indicate
1402 * that they must have reset their session, and may have
1403 * dropped messages.
1404 */
1405 dout("process_connect got RESET peer seq %u\n",
1406 le32_to_cpu(con->in_connect.connect_seq));
1407 pr_err("%s%lld %s connection reset\n",
1408 ENTITY_NAME(con->peer_name),
1409 ceph_pr_addr(&con->peer_addr.in_addr));
1410 reset_connection(con);
1411 ceph_con_out_kvec_reset(con);
1412 prepare_write_connect(con);
1413 prepare_read_connect(con);
1414
1415 /* Tell ceph about it. */
1416 mutex_unlock(&con->mutex);
1417 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1418 if (con->ops->peer_reset)
1419 con->ops->peer_reset(con);
1420 mutex_lock(&con->mutex);
1421 if (test_bit(CLOSED, &con->state) ||
1422 test_bit(OPENING, &con->state))
1423 return -EAGAIN;
1424 break;
1425
1426 case CEPH_MSGR_TAG_RETRY_SESSION:
1427 /*
1428 * If we sent a smaller connect_seq than the peer has, try
1429 * again with a larger value.
1430 */
1431 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1432 le32_to_cpu(con->out_connect.connect_seq),
1433 le32_to_cpu(con->in_connect.connect_seq));
1434 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1435 ceph_con_out_kvec_reset(con);
1436 prepare_write_connect(con);
1437 prepare_read_connect(con);
1438 break;
1439
1440 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1441 /*
1442 * If we sent a smaller global_seq than the peer has, try
1443 * again with a larger value.
1444 */
1445 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1446 con->peer_global_seq,
1447 le32_to_cpu(con->in_connect.global_seq));
1448 get_global_seq(con->msgr,
1449 le32_to_cpu(con->in_connect.global_seq));
1450 ceph_con_out_kvec_reset(con);
1451 prepare_write_connect(con);
1452 prepare_read_connect(con);
1453 break;
1454
1455 case CEPH_MSGR_TAG_READY:
1456 if (req_feat & ~server_feat) {
1457 pr_err("%s%lld %s protocol feature mismatch,"
1458 " my required %llx > server's %llx, need %llx\n",
1459 ENTITY_NAME(con->peer_name),
1460 ceph_pr_addr(&con->peer_addr.in_addr),
1461 req_feat, server_feat, req_feat & ~server_feat);
1462 con->error_msg = "missing required protocol features";
1463 fail_protocol(con);
1464 return -1;
1465 }
1466 clear_bit(CONNECTING, &con->state);
1467 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1468 con->connect_seq++;
1469 con->peer_features = server_feat;
1470 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1471 con->peer_global_seq,
1472 le32_to_cpu(con->in_reply.connect_seq),
1473 con->connect_seq);
1474 WARN_ON(con->connect_seq !=
1475 le32_to_cpu(con->in_reply.connect_seq));
1476
1477 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1478 set_bit(LOSSYTX, &con->state);
1479
1480 prepare_read_tag(con);
1481 break;
1482
1483 case CEPH_MSGR_TAG_WAIT:
1484 /*
1485 * If there is a connection race (we are opening
1486 * connections to each other), one of us may just have
1487 * to WAIT. This shouldn't happen if we are the
1488 * client.
1489 */
1490 pr_err("process_connect got WAIT as client\n");
1491 con->error_msg = "protocol error, got WAIT as client";
1492 return -1;
1493
1494 default:
1495 pr_err("connect protocol error, will retry\n");
1496 con->error_msg = "protocol error, garbage tag during connect";
1497 return -1;
1498 }
1499 return 0;
1500 }
1501
1502
1503 /*
1504 * read (part of) an ack
1505 */
1506 static int read_partial_ack(struct ceph_connection *con)
1507 {
1508 int size = sizeof (con->in_temp_ack);
1509 int end = size;
1510
1511 return read_partial(con, end, size, &con->in_temp_ack);
1512 }
1513
1514
1515 /*
1516 * We can finally discard anything that's been acked.
1517 */
1518 static void process_ack(struct ceph_connection *con)
1519 {
1520 struct ceph_msg *m;
1521 u64 ack = le64_to_cpu(con->in_temp_ack);
1522 u64 seq;
1523
1524 while (!list_empty(&con->out_sent)) {
1525 m = list_first_entry(&con->out_sent, struct ceph_msg,
1526 list_head);
1527 seq = le64_to_cpu(m->hdr.seq);
1528 if (seq > ack)
1529 break;
1530 dout("got ack for seq %llu type %d at %p\n", seq,
1531 le16_to_cpu(m->hdr.type), m);
1532 m->ack_stamp = jiffies;
1533 ceph_msg_remove(m);
1534 }
1535 prepare_read_tag(con);
1536 }
1537
1538
1539
1540
1541 static int read_partial_message_section(struct ceph_connection *con,
1542 struct kvec *section,
1543 unsigned int sec_len, u32 *crc)
1544 {
1545 int ret, left;
1546
1547 BUG_ON(!section);
1548
1549 while (section->iov_len < sec_len) {
1550 BUG_ON(section->iov_base == NULL);
1551 left = sec_len - section->iov_len;
1552 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1553 section->iov_len, left);
1554 if (ret <= 0)
1555 return ret;
1556 section->iov_len += ret;
1557 }
1558 if (section->iov_len == sec_len)
1559 *crc = crc32c(0, section->iov_base, section->iov_len);
1560
1561 return 1;
1562 }
1563
1564 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1565 struct ceph_msg_header *hdr,
1566 int *skip);
1567
1568
1569 static int read_partial_message_pages(struct ceph_connection *con,
1570 struct page **pages,
1571 unsigned data_len, bool do_datacrc)
1572 {
1573 void *p;
1574 int ret;
1575 int left;
1576
1577 left = min((int)(data_len - con->in_msg_pos.data_pos),
1578 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1579 /* (page) data */
1580 BUG_ON(pages == NULL);
1581 p = kmap(pages[con->in_msg_pos.page]);
1582 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1583 left);
1584 if (ret > 0 && do_datacrc)
1585 con->in_data_crc =
1586 crc32c(con->in_data_crc,
1587 p + con->in_msg_pos.page_pos, ret);
1588 kunmap(pages[con->in_msg_pos.page]);
1589 if (ret <= 0)
1590 return ret;
1591 con->in_msg_pos.data_pos += ret;
1592 con->in_msg_pos.page_pos += ret;
1593 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1594 con->in_msg_pos.page_pos = 0;
1595 con->in_msg_pos.page++;
1596 }
1597
1598 return ret;
1599 }
1600
1601 #ifdef CONFIG_BLOCK
1602 static int read_partial_message_bio(struct ceph_connection *con,
1603 struct bio **bio_iter, int *bio_seg,
1604 unsigned data_len, bool do_datacrc)
1605 {
1606 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1607 void *p;
1608 int ret, left;
1609
1610 if (IS_ERR(bv))
1611 return PTR_ERR(bv);
1612
1613 left = min((int)(data_len - con->in_msg_pos.data_pos),
1614 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1615
1616 p = kmap(bv->bv_page) + bv->bv_offset;
1617
1618 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1619 left);
1620 if (ret > 0 && do_datacrc)
1621 con->in_data_crc =
1622 crc32c(con->in_data_crc,
1623 p + con->in_msg_pos.page_pos, ret);
1624 kunmap(bv->bv_page);
1625 if (ret <= 0)
1626 return ret;
1627 con->in_msg_pos.data_pos += ret;
1628 con->in_msg_pos.page_pos += ret;
1629 if (con->in_msg_pos.page_pos == bv->bv_len) {
1630 con->in_msg_pos.page_pos = 0;
1631 iter_bio_next(bio_iter, bio_seg);
1632 }
1633
1634 return ret;
1635 }
1636 #endif
1637
1638 /*
1639 * read (part of) a message.
1640 */
1641 static int read_partial_message(struct ceph_connection *con)
1642 {
1643 struct ceph_msg *m = con->in_msg;
1644 int size;
1645 int end;
1646 int ret;
1647 unsigned front_len, middle_len, data_len;
1648 bool do_datacrc = !con->msgr->nocrc;
1649 int skip;
1650 u64 seq;
1651 u32 crc;
1652
1653 dout("read_partial_message con %p msg %p\n", con, m);
1654
1655 /* header */
1656 size = sizeof (con->in_hdr);
1657 end = size;
1658 ret = read_partial(con, end, size, &con->in_hdr);
1659 if (ret <= 0)
1660 return ret;
1661
1662 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1663 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1664 pr_err("read_partial_message bad hdr "
1665 " crc %u != expected %u\n",
1666 crc, con->in_hdr.crc);
1667 return -EBADMSG;
1668 }
1669
1670 front_len = le32_to_cpu(con->in_hdr.front_len);
1671 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1672 return -EIO;
1673 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1674 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1675 return -EIO;
1676 data_len = le32_to_cpu(con->in_hdr.data_len);
1677 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1678 return -EIO;
1679
1680 /* verify seq# */
1681 seq = le64_to_cpu(con->in_hdr.seq);
1682 if ((s64)seq - (s64)con->in_seq < 1) {
1683 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1684 ENTITY_NAME(con->peer_name),
1685 ceph_pr_addr(&con->peer_addr.in_addr),
1686 seq, con->in_seq + 1);
1687 con->in_base_pos = -front_len - middle_len - data_len -
1688 sizeof(m->footer);
1689 con->in_tag = CEPH_MSGR_TAG_READY;
1690 return 0;
1691 } else if ((s64)seq - (s64)con->in_seq > 1) {
1692 pr_err("read_partial_message bad seq %lld expected %lld\n",
1693 seq, con->in_seq + 1);
1694 con->error_msg = "bad message sequence # for incoming message";
1695 return -EBADMSG;
1696 }
1697
1698 /* allocate message? */
1699 if (!con->in_msg) {
1700 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1701 con->in_hdr.front_len, con->in_hdr.data_len);
1702 skip = 0;
1703 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1704 if (skip) {
1705 /* skip this message */
1706 dout("alloc_msg said skip message\n");
1707 BUG_ON(con->in_msg);
1708 con->in_base_pos = -front_len - middle_len - data_len -
1709 sizeof(m->footer);
1710 con->in_tag = CEPH_MSGR_TAG_READY;
1711 con->in_seq++;
1712 return 0;
1713 }
1714 if (!con->in_msg) {
1715 con->error_msg =
1716 "error allocating memory for incoming message";
1717 return -ENOMEM;
1718 }
1719 m = con->in_msg;
1720 m->front.iov_len = 0; /* haven't read it yet */
1721 if (m->middle)
1722 m->middle->vec.iov_len = 0;
1723
1724 con->in_msg_pos.page = 0;
1725 if (m->pages)
1726 con->in_msg_pos.page_pos = m->page_alignment;
1727 else
1728 con->in_msg_pos.page_pos = 0;
1729 con->in_msg_pos.data_pos = 0;
1730 }
1731
1732 /* front */
1733 ret = read_partial_message_section(con, &m->front, front_len,
1734 &con->in_front_crc);
1735 if (ret <= 0)
1736 return ret;
1737
1738 /* middle */
1739 if (m->middle) {
1740 ret = read_partial_message_section(con, &m->middle->vec,
1741 middle_len,
1742 &con->in_middle_crc);
1743 if (ret <= 0)
1744 return ret;
1745 }
1746 #ifdef CONFIG_BLOCK
1747 if (m->bio && !m->bio_iter)
1748 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1749 #endif
1750
1751 /* (page) data */
1752 while (con->in_msg_pos.data_pos < data_len) {
1753 if (m->pages) {
1754 ret = read_partial_message_pages(con, m->pages,
1755 data_len, do_datacrc);
1756 if (ret <= 0)
1757 return ret;
1758 #ifdef CONFIG_BLOCK
1759 } else if (m->bio) {
1760
1761 ret = read_partial_message_bio(con,
1762 &m->bio_iter, &m->bio_seg,
1763 data_len, do_datacrc);
1764 if (ret <= 0)
1765 return ret;
1766 #endif
1767 } else {
1768 BUG_ON(1);
1769 }
1770 }
1771
1772 /* footer */
1773 size = sizeof (m->footer);
1774 end += size;
1775 ret = read_partial(con, end, size, &m->footer);
1776 if (ret <= 0)
1777 return ret;
1778
1779 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1780 m, front_len, m->footer.front_crc, middle_len,
1781 m->footer.middle_crc, data_len, m->footer.data_crc);
1782
1783 /* crc ok? */
1784 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1785 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1786 m, con->in_front_crc, m->footer.front_crc);
1787 return -EBADMSG;
1788 }
1789 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1790 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1791 m, con->in_middle_crc, m->footer.middle_crc);
1792 return -EBADMSG;
1793 }
1794 if (do_datacrc &&
1795 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1796 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1797 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1798 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1799 return -EBADMSG;
1800 }
1801
1802 return 1; /* done! */
1803 }
1804
1805 /*
1806 * Process message. This happens in the worker thread. The callback should
1807 * be careful not to do anything that waits on other incoming messages or it
1808 * may deadlock.
1809 */
1810 static void process_message(struct ceph_connection *con)
1811 {
1812 struct ceph_msg *msg;
1813
1814 msg = con->in_msg;
1815 con->in_msg = NULL;
1816
1817 /* if first message, set peer_name */
1818 if (con->peer_name.type == 0)
1819 con->peer_name = msg->hdr.src;
1820
1821 con->in_seq++;
1822 mutex_unlock(&con->mutex);
1823
1824 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1825 msg, le64_to_cpu(msg->hdr.seq),
1826 ENTITY_NAME(msg->hdr.src),
1827 le16_to_cpu(msg->hdr.type),
1828 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1829 le32_to_cpu(msg->hdr.front_len),
1830 le32_to_cpu(msg->hdr.data_len),
1831 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1832 con->ops->dispatch(con, msg);
1833
1834 mutex_lock(&con->mutex);
1835 prepare_read_tag(con);
1836 }
1837
1838
1839 /*
1840 * Write something to the socket. Called in a worker thread when the
1841 * socket appears to be writeable and we have something ready to send.
1842 */
1843 static int try_write(struct ceph_connection *con)
1844 {
1845 int ret = 1;
1846
1847 dout("try_write start %p state %lu nref %d\n", con, con->state,
1848 atomic_read(&con->nref));
1849
1850 more:
1851 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1852
1853 /* open the socket first? */
1854 if (con->sock == NULL) {
1855 ceph_con_out_kvec_reset(con);
1856 prepare_write_banner(con);
1857 prepare_write_connect(con);
1858 prepare_read_banner(con);
1859 set_bit(CONNECTING, &con->state);
1860 clear_bit(NEGOTIATING, &con->state);
1861
1862 BUG_ON(con->in_msg);
1863 con->in_tag = CEPH_MSGR_TAG_READY;
1864 dout("try_write initiating connect on %p new state %lu\n",
1865 con, con->state);
1866 ret = ceph_tcp_connect(con);
1867 if (ret < 0) {
1868 con->error_msg = "connect error";
1869 goto out;
1870 }
1871 }
1872
1873 more_kvec:
1874 /* kvec data queued? */
1875 if (con->out_skip) {
1876 ret = write_partial_skip(con);
1877 if (ret <= 0)
1878 goto out;
1879 }
1880 if (con->out_kvec_left) {
1881 ret = write_partial_kvec(con);
1882 if (ret <= 0)
1883 goto out;
1884 }
1885
1886 /* msg pages? */
1887 if (con->out_msg) {
1888 if (con->out_msg_done) {
1889 ceph_msg_put(con->out_msg);
1890 con->out_msg = NULL; /* we're done with this one */
1891 goto do_next;
1892 }
1893
1894 ret = write_partial_msg_pages(con);
1895 if (ret == 1)
1896 goto more_kvec; /* we need to send the footer, too! */
1897 if (ret == 0)
1898 goto out;
1899 if (ret < 0) {
1900 dout("try_write write_partial_msg_pages err %d\n",
1901 ret);
1902 goto out;
1903 }
1904 }
1905
1906 do_next:
1907 if (!test_bit(CONNECTING, &con->state)) {
1908 /* is anything else pending? */
1909 if (!list_empty(&con->out_queue)) {
1910 prepare_write_message(con);
1911 goto more;
1912 }
1913 if (con->in_seq > con->in_seq_acked) {
1914 prepare_write_ack(con);
1915 goto more;
1916 }
1917 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1918 prepare_write_keepalive(con);
1919 goto more;
1920 }
1921 }
1922
1923 /* Nothing to do! */
1924 clear_bit(WRITE_PENDING, &con->state);
1925 dout("try_write nothing else to write.\n");
1926 ret = 0;
1927 out:
1928 dout("try_write done on %p ret %d\n", con, ret);
1929 return ret;
1930 }
1931
1932
1933
1934 /*
1935 * Read what we can from the socket.
1936 */
1937 static int try_read(struct ceph_connection *con)
1938 {
1939 int ret = -1;
1940
1941 if (!con->sock)
1942 return 0;
1943
1944 if (test_bit(STANDBY, &con->state))
1945 return 0;
1946
1947 dout("try_read start on %p\n", con);
1948
1949 more:
1950 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1951 con->in_base_pos);
1952
1953 /*
1954 * process_connect and process_message drop and re-take
1955 * con->mutex. make sure we handle a racing close or reopen.
1956 */
1957 if (test_bit(CLOSED, &con->state) ||
1958 test_bit(OPENING, &con->state)) {
1959 ret = -EAGAIN;
1960 goto out;
1961 }
1962
1963 if (test_bit(CONNECTING, &con->state)) {
1964 if (!test_bit(NEGOTIATING, &con->state)) {
1965 dout("try_read connecting\n");
1966 ret = read_partial_banner(con);
1967 if (ret <= 0)
1968 goto out;
1969 ret = process_banner(con);
1970 if (ret < 0)
1971 goto out;
1972 }
1973 ret = read_partial_connect(con);
1974 if (ret <= 0)
1975 goto out;
1976 ret = process_connect(con);
1977 if (ret < 0)
1978 goto out;
1979 goto more;
1980 }
1981
1982 if (con->in_base_pos < 0) {
1983 /*
1984 * skipping + discarding content.
1985 *
1986 * FIXME: there must be a better way to do this!
1987 */
1988 static char buf[SKIP_BUF_SIZE];
1989 int skip = min((int) sizeof (buf), -con->in_base_pos);
1990
1991 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1992 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1993 if (ret <= 0)
1994 goto out;
1995 con->in_base_pos += ret;
1996 if (con->in_base_pos)
1997 goto more;
1998 }
1999 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2000 /*
2001 * what's next?
2002 */
2003 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2004 if (ret <= 0)
2005 goto out;
2006 dout("try_read got tag %d\n", (int)con->in_tag);
2007 switch (con->in_tag) {
2008 case CEPH_MSGR_TAG_MSG:
2009 prepare_read_message(con);
2010 break;
2011 case CEPH_MSGR_TAG_ACK:
2012 prepare_read_ack(con);
2013 break;
2014 case CEPH_MSGR_TAG_CLOSE:
2015 set_bit(CLOSED, &con->state); /* fixme */
2016 goto out;
2017 default:
2018 goto bad_tag;
2019 }
2020 }
2021 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2022 ret = read_partial_message(con);
2023 if (ret <= 0) {
2024 switch (ret) {
2025 case -EBADMSG:
2026 con->error_msg = "bad crc";
2027 ret = -EIO;
2028 break;
2029 case -EIO:
2030 con->error_msg = "io error";
2031 break;
2032 }
2033 goto out;
2034 }
2035 if (con->in_tag == CEPH_MSGR_TAG_READY)
2036 goto more;
2037 process_message(con);
2038 goto more;
2039 }
2040 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2041 ret = read_partial_ack(con);
2042 if (ret <= 0)
2043 goto out;
2044 process_ack(con);
2045 goto more;
2046 }
2047
2048 out:
2049 dout("try_read done on %p ret %d\n", con, ret);
2050 return ret;
2051
2052 bad_tag:
2053 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2054 con->error_msg = "protocol error, garbage tag";
2055 ret = -1;
2056 goto out;
2057 }
2058
2059
2060 /*
2061 * Atomically queue work on a connection. Bump @con reference to
2062 * avoid races with connection teardown.
2063 */
2064 static void queue_con(struct ceph_connection *con)
2065 {
2066 if (test_bit(DEAD, &con->state)) {
2067 dout("queue_con %p ignoring: DEAD\n",
2068 con);
2069 return;
2070 }
2071
2072 if (!con->ops->get(con)) {
2073 dout("queue_con %p ref count 0\n", con);
2074 return;
2075 }
2076
2077 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2078 dout("queue_con %p - already queued\n", con);
2079 con->ops->put(con);
2080 } else {
2081 dout("queue_con %p\n", con);
2082 }
2083 }
2084
2085 /*
2086 * Do some work on a connection. Drop a connection ref when we're done.
2087 */
2088 static void con_work(struct work_struct *work)
2089 {
2090 struct ceph_connection *con = container_of(work, struct ceph_connection,
2091 work.work);
2092 int ret;
2093
2094 mutex_lock(&con->mutex);
2095 restart:
2096 if (test_and_clear_bit(BACKOFF, &con->state)) {
2097 dout("con_work %p backing off\n", con);
2098 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2099 round_jiffies_relative(con->delay))) {
2100 dout("con_work %p backoff %lu\n", con, con->delay);
2101 mutex_unlock(&con->mutex);
2102 return;
2103 } else {
2104 con->ops->put(con);
2105 dout("con_work %p FAILED to back off %lu\n", con,
2106 con->delay);
2107 }
2108 }
2109
2110 if (test_bit(STANDBY, &con->state)) {
2111 dout("con_work %p STANDBY\n", con);
2112 goto done;
2113 }
2114 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2115 dout("con_work CLOSED\n");
2116 con_close_socket(con);
2117 goto done;
2118 }
2119 if (test_and_clear_bit(OPENING, &con->state)) {
2120 /* reopen w/ new peer */
2121 dout("con_work OPENING\n");
2122 con_close_socket(con);
2123 }
2124
2125 if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2126 goto fault;
2127
2128 ret = try_read(con);
2129 if (ret == -EAGAIN)
2130 goto restart;
2131 if (ret < 0)
2132 goto fault;
2133
2134 ret = try_write(con);
2135 if (ret == -EAGAIN)
2136 goto restart;
2137 if (ret < 0)
2138 goto fault;
2139
2140 done:
2141 mutex_unlock(&con->mutex);
2142 done_unlocked:
2143 con->ops->put(con);
2144 return;
2145
2146 fault:
2147 mutex_unlock(&con->mutex);
2148 ceph_fault(con); /* error/fault path */
2149 goto done_unlocked;
2150 }
2151
2152
2153 /*
2154 * Generic error/fault handler. A retry mechanism is used with
2155 * exponential backoff
2156 */
2157 static void ceph_fault(struct ceph_connection *con)
2158 {
2159 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2160 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2161 dout("fault %p state %lu to peer %s\n",
2162 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2163
2164 if (test_bit(LOSSYTX, &con->state)) {
2165 dout("fault on LOSSYTX channel\n");
2166 goto out;
2167 }
2168
2169 mutex_lock(&con->mutex);
2170 if (test_bit(CLOSED, &con->state))
2171 goto out_unlock;
2172
2173 con_close_socket(con);
2174
2175 if (con->in_msg) {
2176 ceph_msg_put(con->in_msg);
2177 con->in_msg = NULL;
2178 }
2179
2180 /* Requeue anything that hasn't been acked */
2181 list_splice_init(&con->out_sent, &con->out_queue);
2182
2183 /* If there are no messages queued or keepalive pending, place
2184 * the connection in a STANDBY state */
2185 if (list_empty(&con->out_queue) &&
2186 !test_bit(KEEPALIVE_PENDING, &con->state)) {
2187 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2188 clear_bit(WRITE_PENDING, &con->state);
2189 set_bit(STANDBY, &con->state);
2190 } else {
2191 /* retry after a delay. */
2192 if (con->delay == 0)
2193 con->delay = BASE_DELAY_INTERVAL;
2194 else if (con->delay < MAX_DELAY_INTERVAL)
2195 con->delay *= 2;
2196 con->ops->get(con);
2197 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2198 round_jiffies_relative(con->delay))) {
2199 dout("fault queued %p delay %lu\n", con, con->delay);
2200 } else {
2201 con->ops->put(con);
2202 dout("fault failed to queue %p delay %lu, backoff\n",
2203 con, con->delay);
2204 /*
2205 * In many cases we see a socket state change
2206 * while con_work is running and end up
2207 * queuing (non-delayed) work, such that we
2208 * can't backoff with a delay. Set a flag so
2209 * that when con_work restarts we schedule the
2210 * delay then.
2211 */
2212 set_bit(BACKOFF, &con->state);
2213 }
2214 }
2215
2216 out_unlock:
2217 mutex_unlock(&con->mutex);
2218 out:
2219 /*
2220 * in case we faulted due to authentication, invalidate our
2221 * current tickets so that we can get new ones.
2222 */
2223 if (con->auth_retry && con->ops->invalidate_authorizer) {
2224 dout("calling invalidate_authorizer()\n");
2225 con->ops->invalidate_authorizer(con);
2226 }
2227
2228 if (con->ops->fault)
2229 con->ops->fault(con);
2230 }
2231
2232
2233
2234 /*
2235 * create a new messenger instance
2236 */
2237 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2238 u32 supported_features,
2239 u32 required_features)
2240 {
2241 struct ceph_messenger *msgr;
2242
2243 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2244 if (msgr == NULL)
2245 return ERR_PTR(-ENOMEM);
2246
2247 msgr->supported_features = supported_features;
2248 msgr->required_features = required_features;
2249
2250 spin_lock_init(&msgr->global_seq_lock);
2251
2252 if (myaddr)
2253 msgr->inst.addr = *myaddr;
2254
2255 /* select a random nonce */
2256 msgr->inst.addr.type = 0;
2257 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2258 encode_my_addr(msgr);
2259
2260 dout("messenger_create %p\n", msgr);
2261 return msgr;
2262 }
2263 EXPORT_SYMBOL(ceph_messenger_create);
2264
2265 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2266 {
2267 dout("destroy %p\n", msgr);
2268 kfree(msgr);
2269 dout("destroyed messenger %p\n", msgr);
2270 }
2271 EXPORT_SYMBOL(ceph_messenger_destroy);
2272
2273 static void clear_standby(struct ceph_connection *con)
2274 {
2275 /* come back from STANDBY? */
2276 if (test_and_clear_bit(STANDBY, &con->state)) {
2277 mutex_lock(&con->mutex);
2278 dout("clear_standby %p and ++connect_seq\n", con);
2279 con->connect_seq++;
2280 WARN_ON(test_bit(WRITE_PENDING, &con->state));
2281 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2282 mutex_unlock(&con->mutex);
2283 }
2284 }
2285
2286 /*
2287 * Queue up an outgoing message on the given connection.
2288 */
2289 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2290 {
2291 if (test_bit(CLOSED, &con->state)) {
2292 dout("con_send %p closed, dropping %p\n", con, msg);
2293 ceph_msg_put(msg);
2294 return;
2295 }
2296
2297 /* set src+dst */
2298 msg->hdr.src = con->msgr->inst.name;
2299
2300 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2301
2302 msg->needs_out_seq = true;
2303
2304 /* queue */
2305 mutex_lock(&con->mutex);
2306 BUG_ON(!list_empty(&msg->list_head));
2307 list_add_tail(&msg->list_head, &con->out_queue);
2308 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2309 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2310 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2311 le32_to_cpu(msg->hdr.front_len),
2312 le32_to_cpu(msg->hdr.middle_len),
2313 le32_to_cpu(msg->hdr.data_len));
2314 mutex_unlock(&con->mutex);
2315
2316 /* if there wasn't anything waiting to send before, queue
2317 * new work */
2318 clear_standby(con);
2319 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2320 queue_con(con);
2321 }
2322 EXPORT_SYMBOL(ceph_con_send);
2323
2324 /*
2325 * Revoke a message that was previously queued for send
2326 */
2327 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2328 {
2329 mutex_lock(&con->mutex);
2330 if (!list_empty(&msg->list_head)) {
2331 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2332 list_del_init(&msg->list_head);
2333 ceph_msg_put(msg);
2334 msg->hdr.seq = 0;
2335 }
2336 if (con->out_msg == msg) {
2337 dout("con_revoke %p msg %p - was sending\n", con, msg);
2338 con->out_msg = NULL;
2339 if (con->out_kvec_is_msg) {
2340 con->out_skip = con->out_kvec_bytes;
2341 con->out_kvec_is_msg = false;
2342 }
2343 ceph_msg_put(msg);
2344 msg->hdr.seq = 0;
2345 }
2346 mutex_unlock(&con->mutex);
2347 }
2348
2349 /*
2350 * Revoke a message that we may be reading data into
2351 */
2352 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2353 {
2354 mutex_lock(&con->mutex);
2355 if (con->in_msg && con->in_msg == msg) {
2356 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2357 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2358 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2359
2360 /* skip rest of message */
2361 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2362 con->in_base_pos = con->in_base_pos -
2363 sizeof(struct ceph_msg_header) -
2364 front_len -
2365 middle_len -
2366 data_len -
2367 sizeof(struct ceph_msg_footer);
2368 ceph_msg_put(con->in_msg);
2369 con->in_msg = NULL;
2370 con->in_tag = CEPH_MSGR_TAG_READY;
2371 con->in_seq++;
2372 } else {
2373 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2374 con, con->in_msg, msg);
2375 }
2376 mutex_unlock(&con->mutex);
2377 }
2378
2379 /*
2380 * Queue a keepalive byte to ensure the tcp connection is alive.
2381 */
2382 void ceph_con_keepalive(struct ceph_connection *con)
2383 {
2384 dout("con_keepalive %p\n", con);
2385 clear_standby(con);
2386 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2387 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2388 queue_con(con);
2389 }
2390 EXPORT_SYMBOL(ceph_con_keepalive);
2391
2392
2393 /*
2394 * construct a new message with given type, size
2395 * the new msg has a ref count of 1.
2396 */
2397 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2398 bool can_fail)
2399 {
2400 struct ceph_msg *m;
2401
2402 m = kmalloc(sizeof(*m), flags);
2403 if (m == NULL)
2404 goto out;
2405 kref_init(&m->kref);
2406 INIT_LIST_HEAD(&m->list_head);
2407
2408 m->hdr.tid = 0;
2409 m->hdr.type = cpu_to_le16(type);
2410 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2411 m->hdr.version = 0;
2412 m->hdr.front_len = cpu_to_le32(front_len);
2413 m->hdr.middle_len = 0;
2414 m->hdr.data_len = 0;
2415 m->hdr.data_off = 0;
2416 m->hdr.reserved = 0;
2417 m->footer.front_crc = 0;
2418 m->footer.middle_crc = 0;
2419 m->footer.data_crc = 0;
2420 m->footer.flags = 0;
2421 m->front_max = front_len;
2422 m->front_is_vmalloc = false;
2423 m->more_to_follow = false;
2424 m->ack_stamp = 0;
2425 m->pool = NULL;
2426
2427 /* middle */
2428 m->middle = NULL;
2429
2430 /* data */
2431 m->nr_pages = 0;
2432 m->page_alignment = 0;
2433 m->pages = NULL;
2434 m->pagelist = NULL;
2435 m->bio = NULL;
2436 m->bio_iter = NULL;
2437 m->bio_seg = 0;
2438 m->trail = NULL;
2439
2440 /* front */
2441 if (front_len) {
2442 if (front_len > PAGE_CACHE_SIZE) {
2443 m->front.iov_base = __vmalloc(front_len, flags,
2444 PAGE_KERNEL);
2445 m->front_is_vmalloc = true;
2446 } else {
2447 m->front.iov_base = kmalloc(front_len, flags);
2448 }
2449 if (m->front.iov_base == NULL) {
2450 dout("ceph_msg_new can't allocate %d bytes\n",
2451 front_len);
2452 goto out2;
2453 }
2454 } else {
2455 m->front.iov_base = NULL;
2456 }
2457 m->front.iov_len = front_len;
2458
2459 dout("ceph_msg_new %p front %d\n", m, front_len);
2460 return m;
2461
2462 out2:
2463 ceph_msg_put(m);
2464 out:
2465 if (!can_fail) {
2466 pr_err("msg_new can't create type %d front %d\n", type,
2467 front_len);
2468 WARN_ON(1);
2469 } else {
2470 dout("msg_new can't create type %d front %d\n", type,
2471 front_len);
2472 }
2473 return NULL;
2474 }
2475 EXPORT_SYMBOL(ceph_msg_new);
2476
2477 /*
2478 * Allocate "middle" portion of a message, if it is needed and wasn't
2479 * allocated by alloc_msg. This allows us to read a small fixed-size
2480 * per-type header in the front and then gracefully fail (i.e.,
2481 * propagate the error to the caller based on info in the front) when
2482 * the middle is too large.
2483 */
2484 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2485 {
2486 int type = le16_to_cpu(msg->hdr.type);
2487 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2488
2489 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2490 ceph_msg_type_name(type), middle_len);
2491 BUG_ON(!middle_len);
2492 BUG_ON(msg->middle);
2493
2494 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2495 if (!msg->middle)
2496 return -ENOMEM;
2497 return 0;
2498 }
2499
2500 /*
2501 * Generic message allocator, for incoming messages.
2502 */
2503 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2504 struct ceph_msg_header *hdr,
2505 int *skip)
2506 {
2507 int type = le16_to_cpu(hdr->type);
2508 int front_len = le32_to_cpu(hdr->front_len);
2509 int middle_len = le32_to_cpu(hdr->middle_len);
2510 struct ceph_msg *msg = NULL;
2511 int ret;
2512
2513 if (con->ops->alloc_msg) {
2514 mutex_unlock(&con->mutex);
2515 msg = con->ops->alloc_msg(con, hdr, skip);
2516 mutex_lock(&con->mutex);
2517 if (!msg || *skip)
2518 return NULL;
2519 }
2520 if (!msg) {
2521 *skip = 0;
2522 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2523 if (!msg) {
2524 pr_err("unable to allocate msg type %d len %d\n",
2525 type, front_len);
2526 return NULL;
2527 }
2528 msg->page_alignment = le16_to_cpu(hdr->data_off);
2529 }
2530 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2531
2532 if (middle_len && !msg->middle) {
2533 ret = ceph_alloc_middle(con, msg);
2534 if (ret < 0) {
2535 ceph_msg_put(msg);
2536 return NULL;
2537 }
2538 }
2539
2540 return msg;
2541 }
2542
2543
2544 /*
2545 * Free a generically kmalloc'd message.
2546 */
2547 void ceph_msg_kfree(struct ceph_msg *m)
2548 {
2549 dout("msg_kfree %p\n", m);
2550 if (m->front_is_vmalloc)
2551 vfree(m->front.iov_base);
2552 else
2553 kfree(m->front.iov_base);
2554 kfree(m);
2555 }
2556
2557 /*
2558 * Drop a msg ref. Destroy as needed.
2559 */
2560 void ceph_msg_last_put(struct kref *kref)
2561 {
2562 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2563
2564 dout("ceph_msg_put last one on %p\n", m);
2565 WARN_ON(!list_empty(&m->list_head));
2566
2567 /* drop middle, data, if any */
2568 if (m->middle) {
2569 ceph_buffer_put(m->middle);
2570 m->middle = NULL;
2571 }
2572 m->nr_pages = 0;
2573 m->pages = NULL;
2574
2575 if (m->pagelist) {
2576 ceph_pagelist_release(m->pagelist);
2577 kfree(m->pagelist);
2578 m->pagelist = NULL;
2579 }
2580
2581 m->trail = NULL;
2582
2583 if (m->pool)
2584 ceph_msgpool_put(m->pool, m);
2585 else
2586 ceph_msg_kfree(m);
2587 }
2588 EXPORT_SYMBOL(ceph_msg_last_put);
2589
2590 void ceph_msg_dump(struct ceph_msg *msg)
2591 {
2592 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2593 msg->front_max, msg->nr_pages);
2594 print_hex_dump(KERN_DEBUG, "header: ",
2595 DUMP_PREFIX_OFFSET, 16, 1,
2596 &msg->hdr, sizeof(msg->hdr), true);
2597 print_hex_dump(KERN_DEBUG, " front: ",
2598 DUMP_PREFIX_OFFSET, 16, 1,
2599 msg->front.iov_base, msg->front.iov_len, true);
2600 if (msg->middle)
2601 print_hex_dump(KERN_DEBUG, "middle: ",
2602 DUMP_PREFIX_OFFSET, 16, 1,
2603 msg->middle->vec.iov_base,
2604 msg->middle->vec.iov_len, true);
2605 print_hex_dump(KERN_DEBUG, "footer: ",
2606 DUMP_PREFIX_OFFSET, 16, 1,
2607 &msg->footer, sizeof(msg->footer), true);
2608 }
2609 EXPORT_SYMBOL(ceph_msg_dump);