]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/ceph/messenger.c
pinctrl: sh-pfc: r8a77965: Add DRIF pins, groups and functions
[mirror_ubuntu-focal-kernel.git] / net / ceph / messenger.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27
28 /*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37 /*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85 /*
86 * connection states
87 */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
94
95 /*
96 * ceph_connection flag bits
97 */
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
116 }
117 }
118
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 BUG_ON(!con_flag_valid(con_flag));
122
123 clear_bit(con_flag, &con->flags);
124 }
125
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 BUG_ON(!con_flag_valid(con_flag));
129
130 set_bit(con_flag, &con->flags);
131 }
132
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 BUG_ON(!con_flag_valid(con_flag));
136
137 return test_bit(con_flag, &con->flags);
138 }
139
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
142 {
143 BUG_ON(!con_flag_valid(con_flag));
144
145 return test_and_clear_bit(con_flag, &con->flags);
146 }
147
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
150 {
151 BUG_ON(!con_flag_valid(con_flag));
152
153 return test_and_set_bit(con_flag, &con->flags);
154 }
155
156 /* Slab caches for frequently-allocated structures */
157
158 static struct kmem_cache *ceph_msg_cache;
159
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg = CEPH_MSGR_TAG_MSG;
162 static char tag_ack = CEPH_MSGR_TAG_ACK;
163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
165
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169
170 static void queue_con(struct ceph_connection *con);
171 static void cancel_con(struct ceph_connection *con);
172 static void ceph_con_workfn(struct work_struct *);
173 static void con_fault(struct ceph_connection *con);
174
175 /*
176 * Nicely render a sockaddr as a string. An array of formatted
177 * strings is used, to approximate reentrancy.
178 */
179 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
180 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
181 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
182 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
183
184 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
185 static atomic_t addr_str_seq = ATOMIC_INIT(0);
186
187 static struct page *zero_page; /* used in certain error cases */
188
189 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
190 {
191 int i;
192 char *s;
193 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
194 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
195
196 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
197 s = addr_str[i];
198
199 switch (ss->ss_family) {
200 case AF_INET:
201 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
202 ntohs(in4->sin_port));
203 break;
204
205 case AF_INET6:
206 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
207 ntohs(in6->sin6_port));
208 break;
209
210 default:
211 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
212 ss->ss_family);
213 }
214
215 return s;
216 }
217 EXPORT_SYMBOL(ceph_pr_addr);
218
219 static void encode_my_addr(struct ceph_messenger *msgr)
220 {
221 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
222 ceph_encode_addr(&msgr->my_enc_addr);
223 }
224
225 /*
226 * work queue for all reading and writing to/from the socket.
227 */
228 static struct workqueue_struct *ceph_msgr_wq;
229
230 static int ceph_msgr_slab_init(void)
231 {
232 BUG_ON(ceph_msg_cache);
233 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
234 if (!ceph_msg_cache)
235 return -ENOMEM;
236
237 return 0;
238 }
239
240 static void ceph_msgr_slab_exit(void)
241 {
242 BUG_ON(!ceph_msg_cache);
243 kmem_cache_destroy(ceph_msg_cache);
244 ceph_msg_cache = NULL;
245 }
246
247 static void _ceph_msgr_exit(void)
248 {
249 if (ceph_msgr_wq) {
250 destroy_workqueue(ceph_msgr_wq);
251 ceph_msgr_wq = NULL;
252 }
253
254 BUG_ON(zero_page == NULL);
255 put_page(zero_page);
256 zero_page = NULL;
257
258 ceph_msgr_slab_exit();
259 }
260
261 int __init ceph_msgr_init(void)
262 {
263 if (ceph_msgr_slab_init())
264 return -ENOMEM;
265
266 BUG_ON(zero_page != NULL);
267 zero_page = ZERO_PAGE(0);
268 get_page(zero_page);
269
270 /*
271 * The number of active work items is limited by the number of
272 * connections, so leave @max_active at default.
273 */
274 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
275 if (ceph_msgr_wq)
276 return 0;
277
278 pr_err("msgr_init failed to create workqueue\n");
279 _ceph_msgr_exit();
280
281 return -ENOMEM;
282 }
283
284 void ceph_msgr_exit(void)
285 {
286 BUG_ON(ceph_msgr_wq == NULL);
287
288 _ceph_msgr_exit();
289 }
290
291 void ceph_msgr_flush(void)
292 {
293 flush_workqueue(ceph_msgr_wq);
294 }
295 EXPORT_SYMBOL(ceph_msgr_flush);
296
297 /* Connection socket state transition functions */
298
299 static void con_sock_state_init(struct ceph_connection *con)
300 {
301 int old_state;
302
303 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
304 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
305 printk("%s: unexpected old state %d\n", __func__, old_state);
306 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
307 CON_SOCK_STATE_CLOSED);
308 }
309
310 static void con_sock_state_connecting(struct ceph_connection *con)
311 {
312 int old_state;
313
314 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
315 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
316 printk("%s: unexpected old state %d\n", __func__, old_state);
317 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
318 CON_SOCK_STATE_CONNECTING);
319 }
320
321 static void con_sock_state_connected(struct ceph_connection *con)
322 {
323 int old_state;
324
325 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
326 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
327 printk("%s: unexpected old state %d\n", __func__, old_state);
328 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
329 CON_SOCK_STATE_CONNECTED);
330 }
331
332 static void con_sock_state_closing(struct ceph_connection *con)
333 {
334 int old_state;
335
336 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
337 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
338 old_state != CON_SOCK_STATE_CONNECTED &&
339 old_state != CON_SOCK_STATE_CLOSING))
340 printk("%s: unexpected old state %d\n", __func__, old_state);
341 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
342 CON_SOCK_STATE_CLOSING);
343 }
344
345 static void con_sock_state_closed(struct ceph_connection *con)
346 {
347 int old_state;
348
349 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
350 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
351 old_state != CON_SOCK_STATE_CLOSING &&
352 old_state != CON_SOCK_STATE_CONNECTING &&
353 old_state != CON_SOCK_STATE_CLOSED))
354 printk("%s: unexpected old state %d\n", __func__, old_state);
355 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
356 CON_SOCK_STATE_CLOSED);
357 }
358
359 /*
360 * socket callback functions
361 */
362
363 /* data available on socket, or listen socket received a connect */
364 static void ceph_sock_data_ready(struct sock *sk)
365 {
366 struct ceph_connection *con = sk->sk_user_data;
367 if (atomic_read(&con->msgr->stopping)) {
368 return;
369 }
370
371 if (sk->sk_state != TCP_CLOSE_WAIT) {
372 dout("%s on %p state = %lu, queueing work\n", __func__,
373 con, con->state);
374 queue_con(con);
375 }
376 }
377
378 /* socket has buffer space for writing */
379 static void ceph_sock_write_space(struct sock *sk)
380 {
381 struct ceph_connection *con = sk->sk_user_data;
382
383 /* only queue to workqueue if there is data we want to write,
384 * and there is sufficient space in the socket buffer to accept
385 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
386 * doesn't get called again until try_write() fills the socket
387 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
388 * and net/core/stream.c:sk_stream_write_space().
389 */
390 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
391 if (sk_stream_is_writeable(sk)) {
392 dout("%s %p queueing write work\n", __func__, con);
393 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
394 queue_con(con);
395 }
396 } else {
397 dout("%s %p nothing to write\n", __func__, con);
398 }
399 }
400
401 /* socket's state has changed */
402 static void ceph_sock_state_change(struct sock *sk)
403 {
404 struct ceph_connection *con = sk->sk_user_data;
405
406 dout("%s %p state = %lu sk_state = %u\n", __func__,
407 con, con->state, sk->sk_state);
408
409 switch (sk->sk_state) {
410 case TCP_CLOSE:
411 dout("%s TCP_CLOSE\n", __func__);
412 /* fall through */
413 case TCP_CLOSE_WAIT:
414 dout("%s TCP_CLOSE_WAIT\n", __func__);
415 con_sock_state_closing(con);
416 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
417 queue_con(con);
418 break;
419 case TCP_ESTABLISHED:
420 dout("%s TCP_ESTABLISHED\n", __func__);
421 con_sock_state_connected(con);
422 queue_con(con);
423 break;
424 default: /* Everything else is uninteresting */
425 break;
426 }
427 }
428
429 /*
430 * set up socket callbacks
431 */
432 static void set_sock_callbacks(struct socket *sock,
433 struct ceph_connection *con)
434 {
435 struct sock *sk = sock->sk;
436 sk->sk_user_data = con;
437 sk->sk_data_ready = ceph_sock_data_ready;
438 sk->sk_write_space = ceph_sock_write_space;
439 sk->sk_state_change = ceph_sock_state_change;
440 }
441
442
443 /*
444 * socket helpers
445 */
446
447 /*
448 * initiate connection to a remote socket.
449 */
450 static int ceph_tcp_connect(struct ceph_connection *con)
451 {
452 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
453 struct socket *sock;
454 unsigned int noio_flag;
455 int ret;
456
457 BUG_ON(con->sock);
458
459 /* sock_create_kern() allocates with GFP_KERNEL */
460 noio_flag = memalloc_noio_save();
461 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
462 SOCK_STREAM, IPPROTO_TCP, &sock);
463 memalloc_noio_restore(noio_flag);
464 if (ret)
465 return ret;
466 sock->sk->sk_allocation = GFP_NOFS;
467
468 #ifdef CONFIG_LOCKDEP
469 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
470 #endif
471
472 set_sock_callbacks(sock, con);
473
474 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
475
476 con_sock_state_connecting(con);
477 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
478 O_NONBLOCK);
479 if (ret == -EINPROGRESS) {
480 dout("connect %s EINPROGRESS sk_state = %u\n",
481 ceph_pr_addr(&con->peer_addr.in_addr),
482 sock->sk->sk_state);
483 } else if (ret < 0) {
484 pr_err("connect %s error %d\n",
485 ceph_pr_addr(&con->peer_addr.in_addr), ret);
486 sock_release(sock);
487 return ret;
488 }
489
490 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
491 int optval = 1;
492
493 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
494 (char *)&optval, sizeof(optval));
495 if (ret)
496 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
497 ret);
498 }
499
500 con->sock = sock;
501 return 0;
502 }
503
504 /*
505 * If @buf is NULL, discard up to @len bytes.
506 */
507 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
508 {
509 struct kvec iov = {buf, len};
510 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
511 int r;
512
513 if (!buf)
514 msg.msg_flags |= MSG_TRUNC;
515
516 iov_iter_kvec(&msg.msg_iter, READ, &iov, 1, len);
517 r = sock_recvmsg(sock, &msg, msg.msg_flags);
518 if (r == -EAGAIN)
519 r = 0;
520 return r;
521 }
522
523 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
524 int page_offset, size_t length)
525 {
526 struct bio_vec bvec = {
527 .bv_page = page,
528 .bv_offset = page_offset,
529 .bv_len = length
530 };
531 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
532 int r;
533
534 BUG_ON(page_offset + length > PAGE_SIZE);
535 iov_iter_bvec(&msg.msg_iter, READ, &bvec, 1, length);
536 r = sock_recvmsg(sock, &msg, msg.msg_flags);
537 if (r == -EAGAIN)
538 r = 0;
539 return r;
540 }
541
542 /*
543 * write something. @more is true if caller will be sending more data
544 * shortly.
545 */
546 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
547 size_t kvlen, size_t len, bool more)
548 {
549 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
550 int r;
551
552 if (more)
553 msg.msg_flags |= MSG_MORE;
554 else
555 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
556
557 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
558 if (r == -EAGAIN)
559 r = 0;
560 return r;
561 }
562
563 /*
564 * @more: either or both of MSG_MORE and MSG_SENDPAGE_NOTLAST
565 */
566 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
567 int offset, size_t size, int more)
568 {
569 ssize_t (*sendpage)(struct socket *sock, struct page *page,
570 int offset, size_t size, int flags);
571 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | more;
572 int ret;
573
574 /*
575 * sendpage cannot properly handle pages with page_count == 0,
576 * we need to fall back to sendmsg if that's the case.
577 *
578 * Same goes for slab pages: skb_can_coalesce() allows
579 * coalescing neighboring slab objects into a single frag which
580 * triggers one of hardened usercopy checks.
581 */
582 if (page_count(page) >= 1 && !PageSlab(page))
583 sendpage = sock->ops->sendpage;
584 else
585 sendpage = sock_no_sendpage;
586
587 ret = sendpage(sock, page, offset, size, flags);
588 if (ret == -EAGAIN)
589 ret = 0;
590
591 return ret;
592 }
593
594 /*
595 * Shutdown/close the socket for the given connection.
596 */
597 static int con_close_socket(struct ceph_connection *con)
598 {
599 int rc = 0;
600
601 dout("con_close_socket on %p sock %p\n", con, con->sock);
602 if (con->sock) {
603 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
604 sock_release(con->sock);
605 con->sock = NULL;
606 }
607
608 /*
609 * Forcibly clear the SOCK_CLOSED flag. It gets set
610 * independent of the connection mutex, and we could have
611 * received a socket close event before we had the chance to
612 * shut the socket down.
613 */
614 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
615
616 con_sock_state_closed(con);
617 return rc;
618 }
619
620 /*
621 * Reset a connection. Discard all incoming and outgoing messages
622 * and clear *_seq state.
623 */
624 static void ceph_msg_remove(struct ceph_msg *msg)
625 {
626 list_del_init(&msg->list_head);
627
628 ceph_msg_put(msg);
629 }
630 static void ceph_msg_remove_list(struct list_head *head)
631 {
632 while (!list_empty(head)) {
633 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
634 list_head);
635 ceph_msg_remove(msg);
636 }
637 }
638
639 static void reset_connection(struct ceph_connection *con)
640 {
641 /* reset connection, out_queue, msg_ and connect_seq */
642 /* discard existing out_queue and msg_seq */
643 dout("reset_connection %p\n", con);
644 ceph_msg_remove_list(&con->out_queue);
645 ceph_msg_remove_list(&con->out_sent);
646
647 if (con->in_msg) {
648 BUG_ON(con->in_msg->con != con);
649 ceph_msg_put(con->in_msg);
650 con->in_msg = NULL;
651 }
652
653 con->connect_seq = 0;
654 con->out_seq = 0;
655 if (con->out_msg) {
656 BUG_ON(con->out_msg->con != con);
657 ceph_msg_put(con->out_msg);
658 con->out_msg = NULL;
659 }
660 con->in_seq = 0;
661 con->in_seq_acked = 0;
662
663 con->out_skip = 0;
664 }
665
666 /*
667 * mark a peer down. drop any open connections.
668 */
669 void ceph_con_close(struct ceph_connection *con)
670 {
671 mutex_lock(&con->mutex);
672 dout("con_close %p peer %s\n", con,
673 ceph_pr_addr(&con->peer_addr.in_addr));
674 con->state = CON_STATE_CLOSED;
675
676 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
677 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
678 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
679 con_flag_clear(con, CON_FLAG_BACKOFF);
680
681 reset_connection(con);
682 con->peer_global_seq = 0;
683 cancel_con(con);
684 con_close_socket(con);
685 mutex_unlock(&con->mutex);
686 }
687 EXPORT_SYMBOL(ceph_con_close);
688
689 /*
690 * Reopen a closed connection, with a new peer address.
691 */
692 void ceph_con_open(struct ceph_connection *con,
693 __u8 entity_type, __u64 entity_num,
694 struct ceph_entity_addr *addr)
695 {
696 mutex_lock(&con->mutex);
697 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
698
699 WARN_ON(con->state != CON_STATE_CLOSED);
700 con->state = CON_STATE_PREOPEN;
701
702 con->peer_name.type = (__u8) entity_type;
703 con->peer_name.num = cpu_to_le64(entity_num);
704
705 memcpy(&con->peer_addr, addr, sizeof(*addr));
706 con->delay = 0; /* reset backoff memory */
707 mutex_unlock(&con->mutex);
708 queue_con(con);
709 }
710 EXPORT_SYMBOL(ceph_con_open);
711
712 /*
713 * return true if this connection ever successfully opened
714 */
715 bool ceph_con_opened(struct ceph_connection *con)
716 {
717 return con->connect_seq > 0;
718 }
719
720 /*
721 * initialize a new connection.
722 */
723 void ceph_con_init(struct ceph_connection *con, void *private,
724 const struct ceph_connection_operations *ops,
725 struct ceph_messenger *msgr)
726 {
727 dout("con_init %p\n", con);
728 memset(con, 0, sizeof(*con));
729 con->private = private;
730 con->ops = ops;
731 con->msgr = msgr;
732
733 con_sock_state_init(con);
734
735 mutex_init(&con->mutex);
736 INIT_LIST_HEAD(&con->out_queue);
737 INIT_LIST_HEAD(&con->out_sent);
738 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
739
740 con->state = CON_STATE_CLOSED;
741 }
742 EXPORT_SYMBOL(ceph_con_init);
743
744
745 /*
746 * We maintain a global counter to order connection attempts. Get
747 * a unique seq greater than @gt.
748 */
749 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
750 {
751 u32 ret;
752
753 spin_lock(&msgr->global_seq_lock);
754 if (msgr->global_seq < gt)
755 msgr->global_seq = gt;
756 ret = ++msgr->global_seq;
757 spin_unlock(&msgr->global_seq_lock);
758 return ret;
759 }
760
761 static void con_out_kvec_reset(struct ceph_connection *con)
762 {
763 BUG_ON(con->out_skip);
764
765 con->out_kvec_left = 0;
766 con->out_kvec_bytes = 0;
767 con->out_kvec_cur = &con->out_kvec[0];
768 }
769
770 static void con_out_kvec_add(struct ceph_connection *con,
771 size_t size, void *data)
772 {
773 int index = con->out_kvec_left;
774
775 BUG_ON(con->out_skip);
776 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
777
778 con->out_kvec[index].iov_len = size;
779 con->out_kvec[index].iov_base = data;
780 con->out_kvec_left++;
781 con->out_kvec_bytes += size;
782 }
783
784 /*
785 * Chop off a kvec from the end. Return residual number of bytes for
786 * that kvec, i.e. how many bytes would have been written if the kvec
787 * hadn't been nuked.
788 */
789 static int con_out_kvec_skip(struct ceph_connection *con)
790 {
791 int off = con->out_kvec_cur - con->out_kvec;
792 int skip = 0;
793
794 if (con->out_kvec_bytes > 0) {
795 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
796 BUG_ON(con->out_kvec_bytes < skip);
797 BUG_ON(!con->out_kvec_left);
798 con->out_kvec_bytes -= skip;
799 con->out_kvec_left--;
800 }
801
802 return skip;
803 }
804
805 #ifdef CONFIG_BLOCK
806
807 /*
808 * For a bio data item, a piece is whatever remains of the next
809 * entry in the current bio iovec, or the first entry in the next
810 * bio in the list.
811 */
812 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
813 size_t length)
814 {
815 struct ceph_msg_data *data = cursor->data;
816 struct ceph_bio_iter *it = &cursor->bio_iter;
817
818 cursor->resid = min_t(size_t, length, data->bio_length);
819 *it = data->bio_pos;
820 if (cursor->resid < it->iter.bi_size)
821 it->iter.bi_size = cursor->resid;
822
823 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
824 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
825 }
826
827 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
828 size_t *page_offset,
829 size_t *length)
830 {
831 struct bio_vec bv = bio_iter_iovec(cursor->bio_iter.bio,
832 cursor->bio_iter.iter);
833
834 *page_offset = bv.bv_offset;
835 *length = bv.bv_len;
836 return bv.bv_page;
837 }
838
839 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
840 size_t bytes)
841 {
842 struct ceph_bio_iter *it = &cursor->bio_iter;
843
844 BUG_ON(bytes > cursor->resid);
845 BUG_ON(bytes > bio_iter_len(it->bio, it->iter));
846 cursor->resid -= bytes;
847 bio_advance_iter(it->bio, &it->iter, bytes);
848
849 if (!cursor->resid) {
850 BUG_ON(!cursor->last_piece);
851 return false; /* no more data */
852 }
853
854 if (!bytes || (it->iter.bi_size && it->iter.bi_bvec_done))
855 return false; /* more bytes to process in this segment */
856
857 if (!it->iter.bi_size) {
858 it->bio = it->bio->bi_next;
859 it->iter = it->bio->bi_iter;
860 if (cursor->resid < it->iter.bi_size)
861 it->iter.bi_size = cursor->resid;
862 }
863
864 BUG_ON(cursor->last_piece);
865 BUG_ON(cursor->resid < bio_iter_len(it->bio, it->iter));
866 cursor->last_piece = cursor->resid == bio_iter_len(it->bio, it->iter);
867 return true;
868 }
869 #endif /* CONFIG_BLOCK */
870
871 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor *cursor,
872 size_t length)
873 {
874 struct ceph_msg_data *data = cursor->data;
875 struct bio_vec *bvecs = data->bvec_pos.bvecs;
876
877 cursor->resid = min_t(size_t, length, data->bvec_pos.iter.bi_size);
878 cursor->bvec_iter = data->bvec_pos.iter;
879 cursor->bvec_iter.bi_size = cursor->resid;
880
881 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
882 cursor->last_piece =
883 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
884 }
885
886 static struct page *ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor *cursor,
887 size_t *page_offset,
888 size_t *length)
889 {
890 struct bio_vec bv = bvec_iter_bvec(cursor->data->bvec_pos.bvecs,
891 cursor->bvec_iter);
892
893 *page_offset = bv.bv_offset;
894 *length = bv.bv_len;
895 return bv.bv_page;
896 }
897
898 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor *cursor,
899 size_t bytes)
900 {
901 struct bio_vec *bvecs = cursor->data->bvec_pos.bvecs;
902
903 BUG_ON(bytes > cursor->resid);
904 BUG_ON(bytes > bvec_iter_len(bvecs, cursor->bvec_iter));
905 cursor->resid -= bytes;
906 bvec_iter_advance(bvecs, &cursor->bvec_iter, bytes);
907
908 if (!cursor->resid) {
909 BUG_ON(!cursor->last_piece);
910 return false; /* no more data */
911 }
912
913 if (!bytes || cursor->bvec_iter.bi_bvec_done)
914 return false; /* more bytes to process in this segment */
915
916 BUG_ON(cursor->last_piece);
917 BUG_ON(cursor->resid < bvec_iter_len(bvecs, cursor->bvec_iter));
918 cursor->last_piece =
919 cursor->resid == bvec_iter_len(bvecs, cursor->bvec_iter);
920 return true;
921 }
922
923 /*
924 * For a page array, a piece comes from the first page in the array
925 * that has not already been fully consumed.
926 */
927 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
928 size_t length)
929 {
930 struct ceph_msg_data *data = cursor->data;
931 int page_count;
932
933 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
934
935 BUG_ON(!data->pages);
936 BUG_ON(!data->length);
937
938 cursor->resid = min(length, data->length);
939 page_count = calc_pages_for(data->alignment, (u64)data->length);
940 cursor->page_offset = data->alignment & ~PAGE_MASK;
941 cursor->page_index = 0;
942 BUG_ON(page_count > (int)USHRT_MAX);
943 cursor->page_count = (unsigned short)page_count;
944 BUG_ON(length > SIZE_MAX - cursor->page_offset);
945 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
946 }
947
948 static struct page *
949 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
950 size_t *page_offset, size_t *length)
951 {
952 struct ceph_msg_data *data = cursor->data;
953
954 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
955
956 BUG_ON(cursor->page_index >= cursor->page_count);
957 BUG_ON(cursor->page_offset >= PAGE_SIZE);
958
959 *page_offset = cursor->page_offset;
960 if (cursor->last_piece)
961 *length = cursor->resid;
962 else
963 *length = PAGE_SIZE - *page_offset;
964
965 return data->pages[cursor->page_index];
966 }
967
968 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
969 size_t bytes)
970 {
971 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
972
973 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
974
975 /* Advance the cursor page offset */
976
977 cursor->resid -= bytes;
978 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
979 if (!bytes || cursor->page_offset)
980 return false; /* more bytes to process in the current page */
981
982 if (!cursor->resid)
983 return false; /* no more data */
984
985 /* Move on to the next page; offset is already at 0 */
986
987 BUG_ON(cursor->page_index >= cursor->page_count);
988 cursor->page_index++;
989 cursor->last_piece = cursor->resid <= PAGE_SIZE;
990
991 return true;
992 }
993
994 /*
995 * For a pagelist, a piece is whatever remains to be consumed in the
996 * first page in the list, or the front of the next page.
997 */
998 static void
999 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1000 size_t length)
1001 {
1002 struct ceph_msg_data *data = cursor->data;
1003 struct ceph_pagelist *pagelist;
1004 struct page *page;
1005
1006 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1007
1008 pagelist = data->pagelist;
1009 BUG_ON(!pagelist);
1010
1011 if (!length)
1012 return; /* pagelist can be assigned but empty */
1013
1014 BUG_ON(list_empty(&pagelist->head));
1015 page = list_first_entry(&pagelist->head, struct page, lru);
1016
1017 cursor->resid = min(length, pagelist->length);
1018 cursor->page = page;
1019 cursor->offset = 0;
1020 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1021 }
1022
1023 static struct page *
1024 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1025 size_t *page_offset, size_t *length)
1026 {
1027 struct ceph_msg_data *data = cursor->data;
1028 struct ceph_pagelist *pagelist;
1029
1030 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1031
1032 pagelist = data->pagelist;
1033 BUG_ON(!pagelist);
1034
1035 BUG_ON(!cursor->page);
1036 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1037
1038 /* offset of first page in pagelist is always 0 */
1039 *page_offset = cursor->offset & ~PAGE_MASK;
1040 if (cursor->last_piece)
1041 *length = cursor->resid;
1042 else
1043 *length = PAGE_SIZE - *page_offset;
1044
1045 return cursor->page;
1046 }
1047
1048 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1049 size_t bytes)
1050 {
1051 struct ceph_msg_data *data = cursor->data;
1052 struct ceph_pagelist *pagelist;
1053
1054 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1055
1056 pagelist = data->pagelist;
1057 BUG_ON(!pagelist);
1058
1059 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1060 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1061
1062 /* Advance the cursor offset */
1063
1064 cursor->resid -= bytes;
1065 cursor->offset += bytes;
1066 /* offset of first page in pagelist is always 0 */
1067 if (!bytes || cursor->offset & ~PAGE_MASK)
1068 return false; /* more bytes to process in the current page */
1069
1070 if (!cursor->resid)
1071 return false; /* no more data */
1072
1073 /* Move on to the next page */
1074
1075 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1076 cursor->page = list_next_entry(cursor->page, lru);
1077 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1078
1079 return true;
1080 }
1081
1082 /*
1083 * Message data is handled (sent or received) in pieces, where each
1084 * piece resides on a single page. The network layer might not
1085 * consume an entire piece at once. A data item's cursor keeps
1086 * track of which piece is next to process and how much remains to
1087 * be processed in that piece. It also tracks whether the current
1088 * piece is the last one in the data item.
1089 */
1090 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1091 {
1092 size_t length = cursor->total_resid;
1093
1094 switch (cursor->data->type) {
1095 case CEPH_MSG_DATA_PAGELIST:
1096 ceph_msg_data_pagelist_cursor_init(cursor, length);
1097 break;
1098 case CEPH_MSG_DATA_PAGES:
1099 ceph_msg_data_pages_cursor_init(cursor, length);
1100 break;
1101 #ifdef CONFIG_BLOCK
1102 case CEPH_MSG_DATA_BIO:
1103 ceph_msg_data_bio_cursor_init(cursor, length);
1104 break;
1105 #endif /* CONFIG_BLOCK */
1106 case CEPH_MSG_DATA_BVECS:
1107 ceph_msg_data_bvecs_cursor_init(cursor, length);
1108 break;
1109 case CEPH_MSG_DATA_NONE:
1110 default:
1111 /* BUG(); */
1112 break;
1113 }
1114 cursor->need_crc = true;
1115 }
1116
1117 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1118 {
1119 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1120
1121 BUG_ON(!length);
1122 BUG_ON(length > msg->data_length);
1123 BUG_ON(!msg->num_data_items);
1124
1125 cursor->total_resid = length;
1126 cursor->data = msg->data;
1127
1128 __ceph_msg_data_cursor_init(cursor);
1129 }
1130
1131 /*
1132 * Return the page containing the next piece to process for a given
1133 * data item, and supply the page offset and length of that piece.
1134 * Indicate whether this is the last piece in this data item.
1135 */
1136 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1137 size_t *page_offset, size_t *length,
1138 bool *last_piece)
1139 {
1140 struct page *page;
1141
1142 switch (cursor->data->type) {
1143 case CEPH_MSG_DATA_PAGELIST:
1144 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1145 break;
1146 case CEPH_MSG_DATA_PAGES:
1147 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1148 break;
1149 #ifdef CONFIG_BLOCK
1150 case CEPH_MSG_DATA_BIO:
1151 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1152 break;
1153 #endif /* CONFIG_BLOCK */
1154 case CEPH_MSG_DATA_BVECS:
1155 page = ceph_msg_data_bvecs_next(cursor, page_offset, length);
1156 break;
1157 case CEPH_MSG_DATA_NONE:
1158 default:
1159 page = NULL;
1160 break;
1161 }
1162
1163 BUG_ON(!page);
1164 BUG_ON(*page_offset + *length > PAGE_SIZE);
1165 BUG_ON(!*length);
1166 BUG_ON(*length > cursor->resid);
1167 if (last_piece)
1168 *last_piece = cursor->last_piece;
1169
1170 return page;
1171 }
1172
1173 /*
1174 * Returns true if the result moves the cursor on to the next piece
1175 * of the data item.
1176 */
1177 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1178 size_t bytes)
1179 {
1180 bool new_piece;
1181
1182 BUG_ON(bytes > cursor->resid);
1183 switch (cursor->data->type) {
1184 case CEPH_MSG_DATA_PAGELIST:
1185 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1186 break;
1187 case CEPH_MSG_DATA_PAGES:
1188 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1189 break;
1190 #ifdef CONFIG_BLOCK
1191 case CEPH_MSG_DATA_BIO:
1192 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1193 break;
1194 #endif /* CONFIG_BLOCK */
1195 case CEPH_MSG_DATA_BVECS:
1196 new_piece = ceph_msg_data_bvecs_advance(cursor, bytes);
1197 break;
1198 case CEPH_MSG_DATA_NONE:
1199 default:
1200 BUG();
1201 break;
1202 }
1203 cursor->total_resid -= bytes;
1204
1205 if (!cursor->resid && cursor->total_resid) {
1206 WARN_ON(!cursor->last_piece);
1207 cursor->data++;
1208 __ceph_msg_data_cursor_init(cursor);
1209 new_piece = true;
1210 }
1211 cursor->need_crc = new_piece;
1212 }
1213
1214 static size_t sizeof_footer(struct ceph_connection *con)
1215 {
1216 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1217 sizeof(struct ceph_msg_footer) :
1218 sizeof(struct ceph_msg_footer_old);
1219 }
1220
1221 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1222 {
1223 /* Initialize data cursor */
1224
1225 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1226 }
1227
1228 /*
1229 * Prepare footer for currently outgoing message, and finish things
1230 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1231 */
1232 static void prepare_write_message_footer(struct ceph_connection *con)
1233 {
1234 struct ceph_msg *m = con->out_msg;
1235
1236 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1237
1238 dout("prepare_write_message_footer %p\n", con);
1239 con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1240 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1241 if (con->ops->sign_message)
1242 con->ops->sign_message(m);
1243 else
1244 m->footer.sig = 0;
1245 } else {
1246 m->old_footer.flags = m->footer.flags;
1247 }
1248 con->out_more = m->more_to_follow;
1249 con->out_msg_done = true;
1250 }
1251
1252 /*
1253 * Prepare headers for the next outgoing message.
1254 */
1255 static void prepare_write_message(struct ceph_connection *con)
1256 {
1257 struct ceph_msg *m;
1258 u32 crc;
1259
1260 con_out_kvec_reset(con);
1261 con->out_msg_done = false;
1262
1263 /* Sneak an ack in there first? If we can get it into the same
1264 * TCP packet that's a good thing. */
1265 if (con->in_seq > con->in_seq_acked) {
1266 con->in_seq_acked = con->in_seq;
1267 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1268 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1269 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1270 &con->out_temp_ack);
1271 }
1272
1273 BUG_ON(list_empty(&con->out_queue));
1274 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1275 con->out_msg = m;
1276 BUG_ON(m->con != con);
1277
1278 /* put message on sent list */
1279 ceph_msg_get(m);
1280 list_move_tail(&m->list_head, &con->out_sent);
1281
1282 /*
1283 * only assign outgoing seq # if we haven't sent this message
1284 * yet. if it is requeued, resend with it's original seq.
1285 */
1286 if (m->needs_out_seq) {
1287 m->hdr.seq = cpu_to_le64(++con->out_seq);
1288 m->needs_out_seq = false;
1289
1290 if (con->ops->reencode_message)
1291 con->ops->reencode_message(m);
1292 }
1293
1294 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1295 m, con->out_seq, le16_to_cpu(m->hdr.type),
1296 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1297 m->data_length);
1298 WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1299 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1300
1301 /* tag + hdr + front + middle */
1302 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1303 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1304 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1305
1306 if (m->middle)
1307 con_out_kvec_add(con, m->middle->vec.iov_len,
1308 m->middle->vec.iov_base);
1309
1310 /* fill in hdr crc and finalize hdr */
1311 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1312 con->out_msg->hdr.crc = cpu_to_le32(crc);
1313 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1314
1315 /* fill in front and middle crc, footer */
1316 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1317 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1318 if (m->middle) {
1319 crc = crc32c(0, m->middle->vec.iov_base,
1320 m->middle->vec.iov_len);
1321 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1322 } else
1323 con->out_msg->footer.middle_crc = 0;
1324 dout("%s front_crc %u middle_crc %u\n", __func__,
1325 le32_to_cpu(con->out_msg->footer.front_crc),
1326 le32_to_cpu(con->out_msg->footer.middle_crc));
1327 con->out_msg->footer.flags = 0;
1328
1329 /* is there a data payload? */
1330 con->out_msg->footer.data_crc = 0;
1331 if (m->data_length) {
1332 prepare_message_data(con->out_msg, m->data_length);
1333 con->out_more = 1; /* data + footer will follow */
1334 } else {
1335 /* no, queue up footer too and be done */
1336 prepare_write_message_footer(con);
1337 }
1338
1339 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1340 }
1341
1342 /*
1343 * Prepare an ack.
1344 */
1345 static void prepare_write_ack(struct ceph_connection *con)
1346 {
1347 dout("prepare_write_ack %p %llu -> %llu\n", con,
1348 con->in_seq_acked, con->in_seq);
1349 con->in_seq_acked = con->in_seq;
1350
1351 con_out_kvec_reset(con);
1352
1353 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1354
1355 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1356 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1357 &con->out_temp_ack);
1358
1359 con->out_more = 1; /* more will follow.. eventually.. */
1360 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1361 }
1362
1363 /*
1364 * Prepare to share the seq during handshake
1365 */
1366 static void prepare_write_seq(struct ceph_connection *con)
1367 {
1368 dout("prepare_write_seq %p %llu -> %llu\n", con,
1369 con->in_seq_acked, con->in_seq);
1370 con->in_seq_acked = con->in_seq;
1371
1372 con_out_kvec_reset(con);
1373
1374 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1375 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1376 &con->out_temp_ack);
1377
1378 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1379 }
1380
1381 /*
1382 * Prepare to write keepalive byte.
1383 */
1384 static void prepare_write_keepalive(struct ceph_connection *con)
1385 {
1386 dout("prepare_write_keepalive %p\n", con);
1387 con_out_kvec_reset(con);
1388 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1389 struct timespec64 now;
1390
1391 ktime_get_real_ts64(&now);
1392 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1393 ceph_encode_timespec64(&con->out_temp_keepalive2, &now);
1394 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1395 &con->out_temp_keepalive2);
1396 } else {
1397 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1398 }
1399 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1400 }
1401
1402 /*
1403 * Connection negotiation.
1404 */
1405
1406 static int get_connect_authorizer(struct ceph_connection *con)
1407 {
1408 struct ceph_auth_handshake *auth;
1409 int auth_proto;
1410
1411 if (!con->ops->get_authorizer) {
1412 con->auth = NULL;
1413 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1414 con->out_connect.authorizer_len = 0;
1415 return 0;
1416 }
1417
1418 auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry);
1419 if (IS_ERR(auth))
1420 return PTR_ERR(auth);
1421
1422 con->auth = auth;
1423 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1424 con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len);
1425 return 0;
1426 }
1427
1428 /*
1429 * We connected to a peer and are saying hello.
1430 */
1431 static void prepare_write_banner(struct ceph_connection *con)
1432 {
1433 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1434 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1435 &con->msgr->my_enc_addr);
1436
1437 con->out_more = 0;
1438 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1439 }
1440
1441 static void __prepare_write_connect(struct ceph_connection *con)
1442 {
1443 con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect);
1444 if (con->auth)
1445 con_out_kvec_add(con, con->auth->authorizer_buf_len,
1446 con->auth->authorizer_buf);
1447
1448 con->out_more = 0;
1449 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1450 }
1451
1452 static int prepare_write_connect(struct ceph_connection *con)
1453 {
1454 unsigned int global_seq = get_global_seq(con->msgr, 0);
1455 int proto;
1456 int ret;
1457
1458 switch (con->peer_name.type) {
1459 case CEPH_ENTITY_TYPE_MON:
1460 proto = CEPH_MONC_PROTOCOL;
1461 break;
1462 case CEPH_ENTITY_TYPE_OSD:
1463 proto = CEPH_OSDC_PROTOCOL;
1464 break;
1465 case CEPH_ENTITY_TYPE_MDS:
1466 proto = CEPH_MDSC_PROTOCOL;
1467 break;
1468 default:
1469 BUG();
1470 }
1471
1472 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1473 con->connect_seq, global_seq, proto);
1474
1475 con->out_connect.features =
1476 cpu_to_le64(from_msgr(con->msgr)->supported_features);
1477 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1478 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1479 con->out_connect.global_seq = cpu_to_le32(global_seq);
1480 con->out_connect.protocol_version = cpu_to_le32(proto);
1481 con->out_connect.flags = 0;
1482
1483 ret = get_connect_authorizer(con);
1484 if (ret)
1485 return ret;
1486
1487 __prepare_write_connect(con);
1488 return 0;
1489 }
1490
1491 /*
1492 * write as much of pending kvecs to the socket as we can.
1493 * 1 -> done
1494 * 0 -> socket full, but more to do
1495 * <0 -> error
1496 */
1497 static int write_partial_kvec(struct ceph_connection *con)
1498 {
1499 int ret;
1500
1501 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1502 while (con->out_kvec_bytes > 0) {
1503 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1504 con->out_kvec_left, con->out_kvec_bytes,
1505 con->out_more);
1506 if (ret <= 0)
1507 goto out;
1508 con->out_kvec_bytes -= ret;
1509 if (con->out_kvec_bytes == 0)
1510 break; /* done */
1511
1512 /* account for full iov entries consumed */
1513 while (ret >= con->out_kvec_cur->iov_len) {
1514 BUG_ON(!con->out_kvec_left);
1515 ret -= con->out_kvec_cur->iov_len;
1516 con->out_kvec_cur++;
1517 con->out_kvec_left--;
1518 }
1519 /* and for a partially-consumed entry */
1520 if (ret) {
1521 con->out_kvec_cur->iov_len -= ret;
1522 con->out_kvec_cur->iov_base += ret;
1523 }
1524 }
1525 con->out_kvec_left = 0;
1526 ret = 1;
1527 out:
1528 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1529 con->out_kvec_bytes, con->out_kvec_left, ret);
1530 return ret; /* done! */
1531 }
1532
1533 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1534 unsigned int page_offset,
1535 unsigned int length)
1536 {
1537 char *kaddr;
1538
1539 kaddr = kmap(page);
1540 BUG_ON(kaddr == NULL);
1541 crc = crc32c(crc, kaddr + page_offset, length);
1542 kunmap(page);
1543
1544 return crc;
1545 }
1546 /*
1547 * Write as much message data payload as we can. If we finish, queue
1548 * up the footer.
1549 * 1 -> done, footer is now queued in out_kvec[].
1550 * 0 -> socket full, but more to do
1551 * <0 -> error
1552 */
1553 static int write_partial_message_data(struct ceph_connection *con)
1554 {
1555 struct ceph_msg *msg = con->out_msg;
1556 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1557 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1558 int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1559 u32 crc;
1560
1561 dout("%s %p msg %p\n", __func__, con, msg);
1562
1563 if (!msg->num_data_items)
1564 return -EINVAL;
1565
1566 /*
1567 * Iterate through each page that contains data to be
1568 * written, and send as much as possible for each.
1569 *
1570 * If we are calculating the data crc (the default), we will
1571 * need to map the page. If we have no pages, they have
1572 * been revoked, so use the zero page.
1573 */
1574 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1575 while (cursor->total_resid) {
1576 struct page *page;
1577 size_t page_offset;
1578 size_t length;
1579 int ret;
1580
1581 if (!cursor->resid) {
1582 ceph_msg_data_advance(cursor, 0);
1583 continue;
1584 }
1585
1586 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
1587 if (length == cursor->total_resid)
1588 more = MSG_MORE;
1589 ret = ceph_tcp_sendpage(con->sock, page, page_offset, length,
1590 more);
1591 if (ret <= 0) {
1592 if (do_datacrc)
1593 msg->footer.data_crc = cpu_to_le32(crc);
1594
1595 return ret;
1596 }
1597 if (do_datacrc && cursor->need_crc)
1598 crc = ceph_crc32c_page(crc, page, page_offset, length);
1599 ceph_msg_data_advance(cursor, (size_t)ret);
1600 }
1601
1602 dout("%s %p msg %p done\n", __func__, con, msg);
1603
1604 /* prepare and queue up footer, too */
1605 if (do_datacrc)
1606 msg->footer.data_crc = cpu_to_le32(crc);
1607 else
1608 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1609 con_out_kvec_reset(con);
1610 prepare_write_message_footer(con);
1611
1612 return 1; /* must return > 0 to indicate success */
1613 }
1614
1615 /*
1616 * write some zeros
1617 */
1618 static int write_partial_skip(struct ceph_connection *con)
1619 {
1620 int more = MSG_MORE | MSG_SENDPAGE_NOTLAST;
1621 int ret;
1622
1623 dout("%s %p %d left\n", __func__, con, con->out_skip);
1624 while (con->out_skip > 0) {
1625 size_t size = min(con->out_skip, (int) PAGE_SIZE);
1626
1627 if (size == con->out_skip)
1628 more = MSG_MORE;
1629 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, more);
1630 if (ret <= 0)
1631 goto out;
1632 con->out_skip -= ret;
1633 }
1634 ret = 1;
1635 out:
1636 return ret;
1637 }
1638
1639 /*
1640 * Prepare to read connection handshake, or an ack.
1641 */
1642 static void prepare_read_banner(struct ceph_connection *con)
1643 {
1644 dout("prepare_read_banner %p\n", con);
1645 con->in_base_pos = 0;
1646 }
1647
1648 static void prepare_read_connect(struct ceph_connection *con)
1649 {
1650 dout("prepare_read_connect %p\n", con);
1651 con->in_base_pos = 0;
1652 }
1653
1654 static void prepare_read_ack(struct ceph_connection *con)
1655 {
1656 dout("prepare_read_ack %p\n", con);
1657 con->in_base_pos = 0;
1658 }
1659
1660 static void prepare_read_seq(struct ceph_connection *con)
1661 {
1662 dout("prepare_read_seq %p\n", con);
1663 con->in_base_pos = 0;
1664 con->in_tag = CEPH_MSGR_TAG_SEQ;
1665 }
1666
1667 static void prepare_read_tag(struct ceph_connection *con)
1668 {
1669 dout("prepare_read_tag %p\n", con);
1670 con->in_base_pos = 0;
1671 con->in_tag = CEPH_MSGR_TAG_READY;
1672 }
1673
1674 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1675 {
1676 dout("prepare_read_keepalive_ack %p\n", con);
1677 con->in_base_pos = 0;
1678 }
1679
1680 /*
1681 * Prepare to read a message.
1682 */
1683 static int prepare_read_message(struct ceph_connection *con)
1684 {
1685 dout("prepare_read_message %p\n", con);
1686 BUG_ON(con->in_msg != NULL);
1687 con->in_base_pos = 0;
1688 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1689 return 0;
1690 }
1691
1692
1693 static int read_partial(struct ceph_connection *con,
1694 int end, int size, void *object)
1695 {
1696 while (con->in_base_pos < end) {
1697 int left = end - con->in_base_pos;
1698 int have = size - left;
1699 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1700 if (ret <= 0)
1701 return ret;
1702 con->in_base_pos += ret;
1703 }
1704 return 1;
1705 }
1706
1707
1708 /*
1709 * Read all or part of the connect-side handshake on a new connection
1710 */
1711 static int read_partial_banner(struct ceph_connection *con)
1712 {
1713 int size;
1714 int end;
1715 int ret;
1716
1717 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1718
1719 /* peer's banner */
1720 size = strlen(CEPH_BANNER);
1721 end = size;
1722 ret = read_partial(con, end, size, con->in_banner);
1723 if (ret <= 0)
1724 goto out;
1725
1726 size = sizeof (con->actual_peer_addr);
1727 end += size;
1728 ret = read_partial(con, end, size, &con->actual_peer_addr);
1729 if (ret <= 0)
1730 goto out;
1731
1732 size = sizeof (con->peer_addr_for_me);
1733 end += size;
1734 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1735 if (ret <= 0)
1736 goto out;
1737
1738 out:
1739 return ret;
1740 }
1741
1742 static int read_partial_connect(struct ceph_connection *con)
1743 {
1744 int size;
1745 int end;
1746 int ret;
1747
1748 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1749
1750 size = sizeof (con->in_reply);
1751 end = size;
1752 ret = read_partial(con, end, size, &con->in_reply);
1753 if (ret <= 0)
1754 goto out;
1755
1756 if (con->auth) {
1757 size = le32_to_cpu(con->in_reply.authorizer_len);
1758 if (size > con->auth->authorizer_reply_buf_len) {
1759 pr_err("authorizer reply too big: %d > %zu\n", size,
1760 con->auth->authorizer_reply_buf_len);
1761 ret = -EINVAL;
1762 goto out;
1763 }
1764
1765 end += size;
1766 ret = read_partial(con, end, size,
1767 con->auth->authorizer_reply_buf);
1768 if (ret <= 0)
1769 goto out;
1770 }
1771
1772 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1773 con, (int)con->in_reply.tag,
1774 le32_to_cpu(con->in_reply.connect_seq),
1775 le32_to_cpu(con->in_reply.global_seq));
1776 out:
1777 return ret;
1778 }
1779
1780 /*
1781 * Verify the hello banner looks okay.
1782 */
1783 static int verify_hello(struct ceph_connection *con)
1784 {
1785 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1786 pr_err("connect to %s got bad banner\n",
1787 ceph_pr_addr(&con->peer_addr.in_addr));
1788 con->error_msg = "protocol error, bad banner";
1789 return -1;
1790 }
1791 return 0;
1792 }
1793
1794 static bool addr_is_blank(struct sockaddr_storage *ss)
1795 {
1796 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1797 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1798
1799 switch (ss->ss_family) {
1800 case AF_INET:
1801 return addr->s_addr == htonl(INADDR_ANY);
1802 case AF_INET6:
1803 return ipv6_addr_any(addr6);
1804 default:
1805 return true;
1806 }
1807 }
1808
1809 static int addr_port(struct sockaddr_storage *ss)
1810 {
1811 switch (ss->ss_family) {
1812 case AF_INET:
1813 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1814 case AF_INET6:
1815 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1816 }
1817 return 0;
1818 }
1819
1820 static void addr_set_port(struct sockaddr_storage *ss, int p)
1821 {
1822 switch (ss->ss_family) {
1823 case AF_INET:
1824 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1825 break;
1826 case AF_INET6:
1827 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1828 break;
1829 }
1830 }
1831
1832 /*
1833 * Unlike other *_pton function semantics, zero indicates success.
1834 */
1835 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1836 char delim, const char **ipend)
1837 {
1838 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1839 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1840
1841 memset(ss, 0, sizeof(*ss));
1842
1843 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1844 ss->ss_family = AF_INET;
1845 return 0;
1846 }
1847
1848 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1849 ss->ss_family = AF_INET6;
1850 return 0;
1851 }
1852
1853 return -EINVAL;
1854 }
1855
1856 /*
1857 * Extract hostname string and resolve using kernel DNS facility.
1858 */
1859 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1860 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1861 struct sockaddr_storage *ss, char delim, const char **ipend)
1862 {
1863 const char *end, *delim_p;
1864 char *colon_p, *ip_addr = NULL;
1865 int ip_len, ret;
1866
1867 /*
1868 * The end of the hostname occurs immediately preceding the delimiter or
1869 * the port marker (':') where the delimiter takes precedence.
1870 */
1871 delim_p = memchr(name, delim, namelen);
1872 colon_p = memchr(name, ':', namelen);
1873
1874 if (delim_p && colon_p)
1875 end = delim_p < colon_p ? delim_p : colon_p;
1876 else if (!delim_p && colon_p)
1877 end = colon_p;
1878 else {
1879 end = delim_p;
1880 if (!end) /* case: hostname:/ */
1881 end = name + namelen;
1882 }
1883
1884 if (end <= name)
1885 return -EINVAL;
1886
1887 /* do dns_resolve upcall */
1888 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1889 if (ip_len > 0)
1890 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1891 else
1892 ret = -ESRCH;
1893
1894 kfree(ip_addr);
1895
1896 *ipend = end;
1897
1898 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1899 ret, ret ? "failed" : ceph_pr_addr(ss));
1900
1901 return ret;
1902 }
1903 #else
1904 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1905 struct sockaddr_storage *ss, char delim, const char **ipend)
1906 {
1907 return -EINVAL;
1908 }
1909 #endif
1910
1911 /*
1912 * Parse a server name (IP or hostname). If a valid IP address is not found
1913 * then try to extract a hostname to resolve using userspace DNS upcall.
1914 */
1915 static int ceph_parse_server_name(const char *name, size_t namelen,
1916 struct sockaddr_storage *ss, char delim, const char **ipend)
1917 {
1918 int ret;
1919
1920 ret = ceph_pton(name, namelen, ss, delim, ipend);
1921 if (ret)
1922 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1923
1924 return ret;
1925 }
1926
1927 /*
1928 * Parse an ip[:port] list into an addr array. Use the default
1929 * monitor port if a port isn't specified.
1930 */
1931 int ceph_parse_ips(const char *c, const char *end,
1932 struct ceph_entity_addr *addr,
1933 int max_count, int *count)
1934 {
1935 int i, ret = -EINVAL;
1936 const char *p = c;
1937
1938 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1939 for (i = 0; i < max_count; i++) {
1940 const char *ipend;
1941 struct sockaddr_storage *ss = &addr[i].in_addr;
1942 int port;
1943 char delim = ',';
1944
1945 if (*p == '[') {
1946 delim = ']';
1947 p++;
1948 }
1949
1950 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1951 if (ret)
1952 goto bad;
1953 ret = -EINVAL;
1954
1955 p = ipend;
1956
1957 if (delim == ']') {
1958 if (*p != ']') {
1959 dout("missing matching ']'\n");
1960 goto bad;
1961 }
1962 p++;
1963 }
1964
1965 /* port? */
1966 if (p < end && *p == ':') {
1967 port = 0;
1968 p++;
1969 while (p < end && *p >= '0' && *p <= '9') {
1970 port = (port * 10) + (*p - '0');
1971 p++;
1972 }
1973 if (port == 0)
1974 port = CEPH_MON_PORT;
1975 else if (port > 65535)
1976 goto bad;
1977 } else {
1978 port = CEPH_MON_PORT;
1979 }
1980
1981 addr_set_port(ss, port);
1982
1983 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1984
1985 if (p == end)
1986 break;
1987 if (*p != ',')
1988 goto bad;
1989 p++;
1990 }
1991
1992 if (p != end)
1993 goto bad;
1994
1995 if (count)
1996 *count = i + 1;
1997 return 0;
1998
1999 bad:
2000 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
2001 return ret;
2002 }
2003 EXPORT_SYMBOL(ceph_parse_ips);
2004
2005 static int process_banner(struct ceph_connection *con)
2006 {
2007 dout("process_banner on %p\n", con);
2008
2009 if (verify_hello(con) < 0)
2010 return -1;
2011
2012 ceph_decode_addr(&con->actual_peer_addr);
2013 ceph_decode_addr(&con->peer_addr_for_me);
2014
2015 /*
2016 * Make sure the other end is who we wanted. note that the other
2017 * end may not yet know their ip address, so if it's 0.0.0.0, give
2018 * them the benefit of the doubt.
2019 */
2020 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2021 sizeof(con->peer_addr)) != 0 &&
2022 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2023 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2024 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2025 ceph_pr_addr(&con->peer_addr.in_addr),
2026 (int)le32_to_cpu(con->peer_addr.nonce),
2027 ceph_pr_addr(&con->actual_peer_addr.in_addr),
2028 (int)le32_to_cpu(con->actual_peer_addr.nonce));
2029 con->error_msg = "wrong peer at address";
2030 return -1;
2031 }
2032
2033 /*
2034 * did we learn our address?
2035 */
2036 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2037 int port = addr_port(&con->msgr->inst.addr.in_addr);
2038
2039 memcpy(&con->msgr->inst.addr.in_addr,
2040 &con->peer_addr_for_me.in_addr,
2041 sizeof(con->peer_addr_for_me.in_addr));
2042 addr_set_port(&con->msgr->inst.addr.in_addr, port);
2043 encode_my_addr(con->msgr);
2044 dout("process_banner learned my addr is %s\n",
2045 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2046 }
2047
2048 return 0;
2049 }
2050
2051 static int process_connect(struct ceph_connection *con)
2052 {
2053 u64 sup_feat = from_msgr(con->msgr)->supported_features;
2054 u64 req_feat = from_msgr(con->msgr)->required_features;
2055 u64 server_feat = le64_to_cpu(con->in_reply.features);
2056 int ret;
2057
2058 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2059
2060 if (con->auth) {
2061 /*
2062 * Any connection that defines ->get_authorizer()
2063 * should also define ->add_authorizer_challenge() and
2064 * ->verify_authorizer_reply().
2065 *
2066 * See get_connect_authorizer().
2067 */
2068 if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
2069 ret = con->ops->add_authorizer_challenge(
2070 con, con->auth->authorizer_reply_buf,
2071 le32_to_cpu(con->in_reply.authorizer_len));
2072 if (ret < 0)
2073 return ret;
2074
2075 con_out_kvec_reset(con);
2076 __prepare_write_connect(con);
2077 prepare_read_connect(con);
2078 return 0;
2079 }
2080
2081 ret = con->ops->verify_authorizer_reply(con);
2082 if (ret < 0) {
2083 con->error_msg = "bad authorize reply";
2084 return ret;
2085 }
2086 }
2087
2088 switch (con->in_reply.tag) {
2089 case CEPH_MSGR_TAG_FEATURES:
2090 pr_err("%s%lld %s feature set mismatch,"
2091 " my %llx < server's %llx, missing %llx\n",
2092 ENTITY_NAME(con->peer_name),
2093 ceph_pr_addr(&con->peer_addr.in_addr),
2094 sup_feat, server_feat, server_feat & ~sup_feat);
2095 con->error_msg = "missing required protocol features";
2096 reset_connection(con);
2097 return -1;
2098
2099 case CEPH_MSGR_TAG_BADPROTOVER:
2100 pr_err("%s%lld %s protocol version mismatch,"
2101 " my %d != server's %d\n",
2102 ENTITY_NAME(con->peer_name),
2103 ceph_pr_addr(&con->peer_addr.in_addr),
2104 le32_to_cpu(con->out_connect.protocol_version),
2105 le32_to_cpu(con->in_reply.protocol_version));
2106 con->error_msg = "protocol version mismatch";
2107 reset_connection(con);
2108 return -1;
2109
2110 case CEPH_MSGR_TAG_BADAUTHORIZER:
2111 con->auth_retry++;
2112 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2113 con->auth_retry);
2114 if (con->auth_retry == 2) {
2115 con->error_msg = "connect authorization failure";
2116 return -1;
2117 }
2118 con_out_kvec_reset(con);
2119 ret = prepare_write_connect(con);
2120 if (ret < 0)
2121 return ret;
2122 prepare_read_connect(con);
2123 break;
2124
2125 case CEPH_MSGR_TAG_RESETSESSION:
2126 /*
2127 * If we connected with a large connect_seq but the peer
2128 * has no record of a session with us (no connection, or
2129 * connect_seq == 0), they will send RESETSESION to indicate
2130 * that they must have reset their session, and may have
2131 * dropped messages.
2132 */
2133 dout("process_connect got RESET peer seq %u\n",
2134 le32_to_cpu(con->in_reply.connect_seq));
2135 pr_err("%s%lld %s connection reset\n",
2136 ENTITY_NAME(con->peer_name),
2137 ceph_pr_addr(&con->peer_addr.in_addr));
2138 reset_connection(con);
2139 con_out_kvec_reset(con);
2140 ret = prepare_write_connect(con);
2141 if (ret < 0)
2142 return ret;
2143 prepare_read_connect(con);
2144
2145 /* Tell ceph about it. */
2146 mutex_unlock(&con->mutex);
2147 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2148 if (con->ops->peer_reset)
2149 con->ops->peer_reset(con);
2150 mutex_lock(&con->mutex);
2151 if (con->state != CON_STATE_NEGOTIATING)
2152 return -EAGAIN;
2153 break;
2154
2155 case CEPH_MSGR_TAG_RETRY_SESSION:
2156 /*
2157 * If we sent a smaller connect_seq than the peer has, try
2158 * again with a larger value.
2159 */
2160 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2161 le32_to_cpu(con->out_connect.connect_seq),
2162 le32_to_cpu(con->in_reply.connect_seq));
2163 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2164 con_out_kvec_reset(con);
2165 ret = prepare_write_connect(con);
2166 if (ret < 0)
2167 return ret;
2168 prepare_read_connect(con);
2169 break;
2170
2171 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2172 /*
2173 * If we sent a smaller global_seq than the peer has, try
2174 * again with a larger value.
2175 */
2176 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2177 con->peer_global_seq,
2178 le32_to_cpu(con->in_reply.global_seq));
2179 get_global_seq(con->msgr,
2180 le32_to_cpu(con->in_reply.global_seq));
2181 con_out_kvec_reset(con);
2182 ret = prepare_write_connect(con);
2183 if (ret < 0)
2184 return ret;
2185 prepare_read_connect(con);
2186 break;
2187
2188 case CEPH_MSGR_TAG_SEQ:
2189 case CEPH_MSGR_TAG_READY:
2190 if (req_feat & ~server_feat) {
2191 pr_err("%s%lld %s protocol feature mismatch,"
2192 " my required %llx > server's %llx, need %llx\n",
2193 ENTITY_NAME(con->peer_name),
2194 ceph_pr_addr(&con->peer_addr.in_addr),
2195 req_feat, server_feat, req_feat & ~server_feat);
2196 con->error_msg = "missing required protocol features";
2197 reset_connection(con);
2198 return -1;
2199 }
2200
2201 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2202 con->state = CON_STATE_OPEN;
2203 con->auth_retry = 0; /* we authenticated; clear flag */
2204 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2205 con->connect_seq++;
2206 con->peer_features = server_feat;
2207 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2208 con->peer_global_seq,
2209 le32_to_cpu(con->in_reply.connect_seq),
2210 con->connect_seq);
2211 WARN_ON(con->connect_seq !=
2212 le32_to_cpu(con->in_reply.connect_seq));
2213
2214 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2215 con_flag_set(con, CON_FLAG_LOSSYTX);
2216
2217 con->delay = 0; /* reset backoff memory */
2218
2219 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2220 prepare_write_seq(con);
2221 prepare_read_seq(con);
2222 } else {
2223 prepare_read_tag(con);
2224 }
2225 break;
2226
2227 case CEPH_MSGR_TAG_WAIT:
2228 /*
2229 * If there is a connection race (we are opening
2230 * connections to each other), one of us may just have
2231 * to WAIT. This shouldn't happen if we are the
2232 * client.
2233 */
2234 con->error_msg = "protocol error, got WAIT as client";
2235 return -1;
2236
2237 default:
2238 con->error_msg = "protocol error, garbage tag during connect";
2239 return -1;
2240 }
2241 return 0;
2242 }
2243
2244
2245 /*
2246 * read (part of) an ack
2247 */
2248 static int read_partial_ack(struct ceph_connection *con)
2249 {
2250 int size = sizeof (con->in_temp_ack);
2251 int end = size;
2252
2253 return read_partial(con, end, size, &con->in_temp_ack);
2254 }
2255
2256 /*
2257 * We can finally discard anything that's been acked.
2258 */
2259 static void process_ack(struct ceph_connection *con)
2260 {
2261 struct ceph_msg *m;
2262 u64 ack = le64_to_cpu(con->in_temp_ack);
2263 u64 seq;
2264 bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2265 struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2266
2267 /*
2268 * In the reconnect case, con_fault() has requeued messages
2269 * in out_sent. We should cleanup old messages according to
2270 * the reconnect seq.
2271 */
2272 while (!list_empty(list)) {
2273 m = list_first_entry(list, struct ceph_msg, list_head);
2274 if (reconnect && m->needs_out_seq)
2275 break;
2276 seq = le64_to_cpu(m->hdr.seq);
2277 if (seq > ack)
2278 break;
2279 dout("got ack for seq %llu type %d at %p\n", seq,
2280 le16_to_cpu(m->hdr.type), m);
2281 m->ack_stamp = jiffies;
2282 ceph_msg_remove(m);
2283 }
2284
2285 prepare_read_tag(con);
2286 }
2287
2288
2289 static int read_partial_message_section(struct ceph_connection *con,
2290 struct kvec *section,
2291 unsigned int sec_len, u32 *crc)
2292 {
2293 int ret, left;
2294
2295 BUG_ON(!section);
2296
2297 while (section->iov_len < sec_len) {
2298 BUG_ON(section->iov_base == NULL);
2299 left = sec_len - section->iov_len;
2300 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2301 section->iov_len, left);
2302 if (ret <= 0)
2303 return ret;
2304 section->iov_len += ret;
2305 }
2306 if (section->iov_len == sec_len)
2307 *crc = crc32c(0, section->iov_base, section->iov_len);
2308
2309 return 1;
2310 }
2311
2312 static int read_partial_msg_data(struct ceph_connection *con)
2313 {
2314 struct ceph_msg *msg = con->in_msg;
2315 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2316 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2317 struct page *page;
2318 size_t page_offset;
2319 size_t length;
2320 u32 crc = 0;
2321 int ret;
2322
2323 if (!msg->num_data_items)
2324 return -EIO;
2325
2326 if (do_datacrc)
2327 crc = con->in_data_crc;
2328 while (cursor->total_resid) {
2329 if (!cursor->resid) {
2330 ceph_msg_data_advance(cursor, 0);
2331 continue;
2332 }
2333
2334 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2335 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2336 if (ret <= 0) {
2337 if (do_datacrc)
2338 con->in_data_crc = crc;
2339
2340 return ret;
2341 }
2342
2343 if (do_datacrc)
2344 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2345 ceph_msg_data_advance(cursor, (size_t)ret);
2346 }
2347 if (do_datacrc)
2348 con->in_data_crc = crc;
2349
2350 return 1; /* must return > 0 to indicate success */
2351 }
2352
2353 /*
2354 * read (part of) a message.
2355 */
2356 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2357
2358 static int read_partial_message(struct ceph_connection *con)
2359 {
2360 struct ceph_msg *m = con->in_msg;
2361 int size;
2362 int end;
2363 int ret;
2364 unsigned int front_len, middle_len, data_len;
2365 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2366 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2367 u64 seq;
2368 u32 crc;
2369
2370 dout("read_partial_message con %p msg %p\n", con, m);
2371
2372 /* header */
2373 size = sizeof (con->in_hdr);
2374 end = size;
2375 ret = read_partial(con, end, size, &con->in_hdr);
2376 if (ret <= 0)
2377 return ret;
2378
2379 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2380 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2381 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2382 crc, con->in_hdr.crc);
2383 return -EBADMSG;
2384 }
2385
2386 front_len = le32_to_cpu(con->in_hdr.front_len);
2387 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2388 return -EIO;
2389 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2390 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2391 return -EIO;
2392 data_len = le32_to_cpu(con->in_hdr.data_len);
2393 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2394 return -EIO;
2395
2396 /* verify seq# */
2397 seq = le64_to_cpu(con->in_hdr.seq);
2398 if ((s64)seq - (s64)con->in_seq < 1) {
2399 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2400 ENTITY_NAME(con->peer_name),
2401 ceph_pr_addr(&con->peer_addr.in_addr),
2402 seq, con->in_seq + 1);
2403 con->in_base_pos = -front_len - middle_len - data_len -
2404 sizeof_footer(con);
2405 con->in_tag = CEPH_MSGR_TAG_READY;
2406 return 1;
2407 } else if ((s64)seq - (s64)con->in_seq > 1) {
2408 pr_err("read_partial_message bad seq %lld expected %lld\n",
2409 seq, con->in_seq + 1);
2410 con->error_msg = "bad message sequence # for incoming message";
2411 return -EBADE;
2412 }
2413
2414 /* allocate message? */
2415 if (!con->in_msg) {
2416 int skip = 0;
2417
2418 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2419 front_len, data_len);
2420 ret = ceph_con_in_msg_alloc(con, &skip);
2421 if (ret < 0)
2422 return ret;
2423
2424 BUG_ON(!con->in_msg ^ skip);
2425 if (skip) {
2426 /* skip this message */
2427 dout("alloc_msg said skip message\n");
2428 con->in_base_pos = -front_len - middle_len - data_len -
2429 sizeof_footer(con);
2430 con->in_tag = CEPH_MSGR_TAG_READY;
2431 con->in_seq++;
2432 return 1;
2433 }
2434
2435 BUG_ON(!con->in_msg);
2436 BUG_ON(con->in_msg->con != con);
2437 m = con->in_msg;
2438 m->front.iov_len = 0; /* haven't read it yet */
2439 if (m->middle)
2440 m->middle->vec.iov_len = 0;
2441
2442 /* prepare for data payload, if any */
2443
2444 if (data_len)
2445 prepare_message_data(con->in_msg, data_len);
2446 }
2447
2448 /* front */
2449 ret = read_partial_message_section(con, &m->front, front_len,
2450 &con->in_front_crc);
2451 if (ret <= 0)
2452 return ret;
2453
2454 /* middle */
2455 if (m->middle) {
2456 ret = read_partial_message_section(con, &m->middle->vec,
2457 middle_len,
2458 &con->in_middle_crc);
2459 if (ret <= 0)
2460 return ret;
2461 }
2462
2463 /* (page) data */
2464 if (data_len) {
2465 ret = read_partial_msg_data(con);
2466 if (ret <= 0)
2467 return ret;
2468 }
2469
2470 /* footer */
2471 size = sizeof_footer(con);
2472 end += size;
2473 ret = read_partial(con, end, size, &m->footer);
2474 if (ret <= 0)
2475 return ret;
2476
2477 if (!need_sign) {
2478 m->footer.flags = m->old_footer.flags;
2479 m->footer.sig = 0;
2480 }
2481
2482 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2483 m, front_len, m->footer.front_crc, middle_len,
2484 m->footer.middle_crc, data_len, m->footer.data_crc);
2485
2486 /* crc ok? */
2487 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2488 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2489 m, con->in_front_crc, m->footer.front_crc);
2490 return -EBADMSG;
2491 }
2492 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2493 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2494 m, con->in_middle_crc, m->footer.middle_crc);
2495 return -EBADMSG;
2496 }
2497 if (do_datacrc &&
2498 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2499 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2500 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2501 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2502 return -EBADMSG;
2503 }
2504
2505 if (need_sign && con->ops->check_message_signature &&
2506 con->ops->check_message_signature(m)) {
2507 pr_err("read_partial_message %p signature check failed\n", m);
2508 return -EBADMSG;
2509 }
2510
2511 return 1; /* done! */
2512 }
2513
2514 /*
2515 * Process message. This happens in the worker thread. The callback should
2516 * be careful not to do anything that waits on other incoming messages or it
2517 * may deadlock.
2518 */
2519 static void process_message(struct ceph_connection *con)
2520 {
2521 struct ceph_msg *msg = con->in_msg;
2522
2523 BUG_ON(con->in_msg->con != con);
2524 con->in_msg = NULL;
2525
2526 /* if first message, set peer_name */
2527 if (con->peer_name.type == 0)
2528 con->peer_name = msg->hdr.src;
2529
2530 con->in_seq++;
2531 mutex_unlock(&con->mutex);
2532
2533 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2534 msg, le64_to_cpu(msg->hdr.seq),
2535 ENTITY_NAME(msg->hdr.src),
2536 le16_to_cpu(msg->hdr.type),
2537 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2538 le32_to_cpu(msg->hdr.front_len),
2539 le32_to_cpu(msg->hdr.data_len),
2540 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2541 con->ops->dispatch(con, msg);
2542
2543 mutex_lock(&con->mutex);
2544 }
2545
2546 static int read_keepalive_ack(struct ceph_connection *con)
2547 {
2548 struct ceph_timespec ceph_ts;
2549 size_t size = sizeof(ceph_ts);
2550 int ret = read_partial(con, size, size, &ceph_ts);
2551 if (ret <= 0)
2552 return ret;
2553 ceph_decode_timespec64(&con->last_keepalive_ack, &ceph_ts);
2554 prepare_read_tag(con);
2555 return 1;
2556 }
2557
2558 /*
2559 * Write something to the socket. Called in a worker thread when the
2560 * socket appears to be writeable and we have something ready to send.
2561 */
2562 static int try_write(struct ceph_connection *con)
2563 {
2564 int ret = 1;
2565
2566 dout("try_write start %p state %lu\n", con, con->state);
2567 if (con->state != CON_STATE_PREOPEN &&
2568 con->state != CON_STATE_CONNECTING &&
2569 con->state != CON_STATE_NEGOTIATING &&
2570 con->state != CON_STATE_OPEN)
2571 return 0;
2572
2573 /* open the socket first? */
2574 if (con->state == CON_STATE_PREOPEN) {
2575 BUG_ON(con->sock);
2576 con->state = CON_STATE_CONNECTING;
2577
2578 con_out_kvec_reset(con);
2579 prepare_write_banner(con);
2580 prepare_read_banner(con);
2581
2582 BUG_ON(con->in_msg);
2583 con->in_tag = CEPH_MSGR_TAG_READY;
2584 dout("try_write initiating connect on %p new state %lu\n",
2585 con, con->state);
2586 ret = ceph_tcp_connect(con);
2587 if (ret < 0) {
2588 con->error_msg = "connect error";
2589 goto out;
2590 }
2591 }
2592
2593 more:
2594 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2595 BUG_ON(!con->sock);
2596
2597 /* kvec data queued? */
2598 if (con->out_kvec_left) {
2599 ret = write_partial_kvec(con);
2600 if (ret <= 0)
2601 goto out;
2602 }
2603 if (con->out_skip) {
2604 ret = write_partial_skip(con);
2605 if (ret <= 0)
2606 goto out;
2607 }
2608
2609 /* msg pages? */
2610 if (con->out_msg) {
2611 if (con->out_msg_done) {
2612 ceph_msg_put(con->out_msg);
2613 con->out_msg = NULL; /* we're done with this one */
2614 goto do_next;
2615 }
2616
2617 ret = write_partial_message_data(con);
2618 if (ret == 1)
2619 goto more; /* we need to send the footer, too! */
2620 if (ret == 0)
2621 goto out;
2622 if (ret < 0) {
2623 dout("try_write write_partial_message_data err %d\n",
2624 ret);
2625 goto out;
2626 }
2627 }
2628
2629 do_next:
2630 if (con->state == CON_STATE_OPEN) {
2631 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2632 prepare_write_keepalive(con);
2633 goto more;
2634 }
2635 /* is anything else pending? */
2636 if (!list_empty(&con->out_queue)) {
2637 prepare_write_message(con);
2638 goto more;
2639 }
2640 if (con->in_seq > con->in_seq_acked) {
2641 prepare_write_ack(con);
2642 goto more;
2643 }
2644 }
2645
2646 /* Nothing to do! */
2647 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2648 dout("try_write nothing else to write.\n");
2649 ret = 0;
2650 out:
2651 dout("try_write done on %p ret %d\n", con, ret);
2652 return ret;
2653 }
2654
2655 /*
2656 * Read what we can from the socket.
2657 */
2658 static int try_read(struct ceph_connection *con)
2659 {
2660 int ret = -1;
2661
2662 more:
2663 dout("try_read start on %p state %lu\n", con, con->state);
2664 if (con->state != CON_STATE_CONNECTING &&
2665 con->state != CON_STATE_NEGOTIATING &&
2666 con->state != CON_STATE_OPEN)
2667 return 0;
2668
2669 BUG_ON(!con->sock);
2670
2671 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2672 con->in_base_pos);
2673
2674 if (con->state == CON_STATE_CONNECTING) {
2675 dout("try_read connecting\n");
2676 ret = read_partial_banner(con);
2677 if (ret <= 0)
2678 goto out;
2679 ret = process_banner(con);
2680 if (ret < 0)
2681 goto out;
2682
2683 con->state = CON_STATE_NEGOTIATING;
2684
2685 /*
2686 * Received banner is good, exchange connection info.
2687 * Do not reset out_kvec, as sending our banner raced
2688 * with receiving peer banner after connect completed.
2689 */
2690 ret = prepare_write_connect(con);
2691 if (ret < 0)
2692 goto out;
2693 prepare_read_connect(con);
2694
2695 /* Send connection info before awaiting response */
2696 goto out;
2697 }
2698
2699 if (con->state == CON_STATE_NEGOTIATING) {
2700 dout("try_read negotiating\n");
2701 ret = read_partial_connect(con);
2702 if (ret <= 0)
2703 goto out;
2704 ret = process_connect(con);
2705 if (ret < 0)
2706 goto out;
2707 goto more;
2708 }
2709
2710 WARN_ON(con->state != CON_STATE_OPEN);
2711
2712 if (con->in_base_pos < 0) {
2713 /*
2714 * skipping + discarding content.
2715 */
2716 ret = ceph_tcp_recvmsg(con->sock, NULL, -con->in_base_pos);
2717 if (ret <= 0)
2718 goto out;
2719 dout("skipped %d / %d bytes\n", ret, -con->in_base_pos);
2720 con->in_base_pos += ret;
2721 if (con->in_base_pos)
2722 goto more;
2723 }
2724 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2725 /*
2726 * what's next?
2727 */
2728 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2729 if (ret <= 0)
2730 goto out;
2731 dout("try_read got tag %d\n", (int)con->in_tag);
2732 switch (con->in_tag) {
2733 case CEPH_MSGR_TAG_MSG:
2734 prepare_read_message(con);
2735 break;
2736 case CEPH_MSGR_TAG_ACK:
2737 prepare_read_ack(con);
2738 break;
2739 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2740 prepare_read_keepalive_ack(con);
2741 break;
2742 case CEPH_MSGR_TAG_CLOSE:
2743 con_close_socket(con);
2744 con->state = CON_STATE_CLOSED;
2745 goto out;
2746 default:
2747 goto bad_tag;
2748 }
2749 }
2750 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2751 ret = read_partial_message(con);
2752 if (ret <= 0) {
2753 switch (ret) {
2754 case -EBADMSG:
2755 con->error_msg = "bad crc/signature";
2756 /* fall through */
2757 case -EBADE:
2758 ret = -EIO;
2759 break;
2760 case -EIO:
2761 con->error_msg = "io error";
2762 break;
2763 }
2764 goto out;
2765 }
2766 if (con->in_tag == CEPH_MSGR_TAG_READY)
2767 goto more;
2768 process_message(con);
2769 if (con->state == CON_STATE_OPEN)
2770 prepare_read_tag(con);
2771 goto more;
2772 }
2773 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2774 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2775 /*
2776 * the final handshake seq exchange is semantically
2777 * equivalent to an ACK
2778 */
2779 ret = read_partial_ack(con);
2780 if (ret <= 0)
2781 goto out;
2782 process_ack(con);
2783 goto more;
2784 }
2785 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2786 ret = read_keepalive_ack(con);
2787 if (ret <= 0)
2788 goto out;
2789 goto more;
2790 }
2791
2792 out:
2793 dout("try_read done on %p ret %d\n", con, ret);
2794 return ret;
2795
2796 bad_tag:
2797 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2798 con->error_msg = "protocol error, garbage tag";
2799 ret = -1;
2800 goto out;
2801 }
2802
2803
2804 /*
2805 * Atomically queue work on a connection after the specified delay.
2806 * Bump @con reference to avoid races with connection teardown.
2807 * Returns 0 if work was queued, or an error code otherwise.
2808 */
2809 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2810 {
2811 if (!con->ops->get(con)) {
2812 dout("%s %p ref count 0\n", __func__, con);
2813 return -ENOENT;
2814 }
2815
2816 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2817 dout("%s %p - already queued\n", __func__, con);
2818 con->ops->put(con);
2819 return -EBUSY;
2820 }
2821
2822 dout("%s %p %lu\n", __func__, con, delay);
2823 return 0;
2824 }
2825
2826 static void queue_con(struct ceph_connection *con)
2827 {
2828 (void) queue_con_delay(con, 0);
2829 }
2830
2831 static void cancel_con(struct ceph_connection *con)
2832 {
2833 if (cancel_delayed_work(&con->work)) {
2834 dout("%s %p\n", __func__, con);
2835 con->ops->put(con);
2836 }
2837 }
2838
2839 static bool con_sock_closed(struct ceph_connection *con)
2840 {
2841 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2842 return false;
2843
2844 #define CASE(x) \
2845 case CON_STATE_ ## x: \
2846 con->error_msg = "socket closed (con state " #x ")"; \
2847 break;
2848
2849 switch (con->state) {
2850 CASE(CLOSED);
2851 CASE(PREOPEN);
2852 CASE(CONNECTING);
2853 CASE(NEGOTIATING);
2854 CASE(OPEN);
2855 CASE(STANDBY);
2856 default:
2857 pr_warn("%s con %p unrecognized state %lu\n",
2858 __func__, con, con->state);
2859 con->error_msg = "unrecognized con state";
2860 BUG();
2861 break;
2862 }
2863 #undef CASE
2864
2865 return true;
2866 }
2867
2868 static bool con_backoff(struct ceph_connection *con)
2869 {
2870 int ret;
2871
2872 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2873 return false;
2874
2875 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2876 if (ret) {
2877 dout("%s: con %p FAILED to back off %lu\n", __func__,
2878 con, con->delay);
2879 BUG_ON(ret == -ENOENT);
2880 con_flag_set(con, CON_FLAG_BACKOFF);
2881 }
2882
2883 return true;
2884 }
2885
2886 /* Finish fault handling; con->mutex must *not* be held here */
2887
2888 static void con_fault_finish(struct ceph_connection *con)
2889 {
2890 dout("%s %p\n", __func__, con);
2891
2892 /*
2893 * in case we faulted due to authentication, invalidate our
2894 * current tickets so that we can get new ones.
2895 */
2896 if (con->auth_retry) {
2897 dout("auth_retry %d, invalidating\n", con->auth_retry);
2898 if (con->ops->invalidate_authorizer)
2899 con->ops->invalidate_authorizer(con);
2900 con->auth_retry = 0;
2901 }
2902
2903 if (con->ops->fault)
2904 con->ops->fault(con);
2905 }
2906
2907 /*
2908 * Do some work on a connection. Drop a connection ref when we're done.
2909 */
2910 static void ceph_con_workfn(struct work_struct *work)
2911 {
2912 struct ceph_connection *con = container_of(work, struct ceph_connection,
2913 work.work);
2914 bool fault;
2915
2916 mutex_lock(&con->mutex);
2917 while (true) {
2918 int ret;
2919
2920 if ((fault = con_sock_closed(con))) {
2921 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2922 break;
2923 }
2924 if (con_backoff(con)) {
2925 dout("%s: con %p BACKOFF\n", __func__, con);
2926 break;
2927 }
2928 if (con->state == CON_STATE_STANDBY) {
2929 dout("%s: con %p STANDBY\n", __func__, con);
2930 break;
2931 }
2932 if (con->state == CON_STATE_CLOSED) {
2933 dout("%s: con %p CLOSED\n", __func__, con);
2934 BUG_ON(con->sock);
2935 break;
2936 }
2937 if (con->state == CON_STATE_PREOPEN) {
2938 dout("%s: con %p PREOPEN\n", __func__, con);
2939 BUG_ON(con->sock);
2940 }
2941
2942 ret = try_read(con);
2943 if (ret < 0) {
2944 if (ret == -EAGAIN)
2945 continue;
2946 if (!con->error_msg)
2947 con->error_msg = "socket error on read";
2948 fault = true;
2949 break;
2950 }
2951
2952 ret = try_write(con);
2953 if (ret < 0) {
2954 if (ret == -EAGAIN)
2955 continue;
2956 if (!con->error_msg)
2957 con->error_msg = "socket error on write";
2958 fault = true;
2959 }
2960
2961 break; /* If we make it to here, we're done */
2962 }
2963 if (fault)
2964 con_fault(con);
2965 mutex_unlock(&con->mutex);
2966
2967 if (fault)
2968 con_fault_finish(con);
2969
2970 con->ops->put(con);
2971 }
2972
2973 /*
2974 * Generic error/fault handler. A retry mechanism is used with
2975 * exponential backoff
2976 */
2977 static void con_fault(struct ceph_connection *con)
2978 {
2979 dout("fault %p state %lu to peer %s\n",
2980 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2981
2982 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2983 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2984 con->error_msg = NULL;
2985
2986 WARN_ON(con->state != CON_STATE_CONNECTING &&
2987 con->state != CON_STATE_NEGOTIATING &&
2988 con->state != CON_STATE_OPEN);
2989
2990 con_close_socket(con);
2991
2992 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2993 dout("fault on LOSSYTX channel, marking CLOSED\n");
2994 con->state = CON_STATE_CLOSED;
2995 return;
2996 }
2997
2998 if (con->in_msg) {
2999 BUG_ON(con->in_msg->con != con);
3000 ceph_msg_put(con->in_msg);
3001 con->in_msg = NULL;
3002 }
3003
3004 /* Requeue anything that hasn't been acked */
3005 list_splice_init(&con->out_sent, &con->out_queue);
3006
3007 /* If there are no messages queued or keepalive pending, place
3008 * the connection in a STANDBY state */
3009 if (list_empty(&con->out_queue) &&
3010 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3011 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3012 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3013 con->state = CON_STATE_STANDBY;
3014 } else {
3015 /* retry after a delay. */
3016 con->state = CON_STATE_PREOPEN;
3017 if (con->delay == 0)
3018 con->delay = BASE_DELAY_INTERVAL;
3019 else if (con->delay < MAX_DELAY_INTERVAL)
3020 con->delay *= 2;
3021 con_flag_set(con, CON_FLAG_BACKOFF);
3022 queue_con(con);
3023 }
3024 }
3025
3026
3027
3028 /*
3029 * initialize a new messenger instance
3030 */
3031 void ceph_messenger_init(struct ceph_messenger *msgr,
3032 struct ceph_entity_addr *myaddr)
3033 {
3034 spin_lock_init(&msgr->global_seq_lock);
3035
3036 if (myaddr)
3037 msgr->inst.addr = *myaddr;
3038
3039 /* select a random nonce */
3040 msgr->inst.addr.type = 0;
3041 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3042 encode_my_addr(msgr);
3043
3044 atomic_set(&msgr->stopping, 0);
3045 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3046
3047 dout("%s %p\n", __func__, msgr);
3048 }
3049 EXPORT_SYMBOL(ceph_messenger_init);
3050
3051 void ceph_messenger_fini(struct ceph_messenger *msgr)
3052 {
3053 put_net(read_pnet(&msgr->net));
3054 }
3055 EXPORT_SYMBOL(ceph_messenger_fini);
3056
3057 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3058 {
3059 if (msg->con)
3060 msg->con->ops->put(msg->con);
3061
3062 msg->con = con ? con->ops->get(con) : NULL;
3063 BUG_ON(msg->con != con);
3064 }
3065
3066 static void clear_standby(struct ceph_connection *con)
3067 {
3068 /* come back from STANDBY? */
3069 if (con->state == CON_STATE_STANDBY) {
3070 dout("clear_standby %p and ++connect_seq\n", con);
3071 con->state = CON_STATE_PREOPEN;
3072 con->connect_seq++;
3073 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3074 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3075 }
3076 }
3077
3078 /*
3079 * Queue up an outgoing message on the given connection.
3080 */
3081 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3082 {
3083 /* set src+dst */
3084 msg->hdr.src = con->msgr->inst.name;
3085 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3086 msg->needs_out_seq = true;
3087
3088 mutex_lock(&con->mutex);
3089
3090 if (con->state == CON_STATE_CLOSED) {
3091 dout("con_send %p closed, dropping %p\n", con, msg);
3092 ceph_msg_put(msg);
3093 mutex_unlock(&con->mutex);
3094 return;
3095 }
3096
3097 msg_con_set(msg, con);
3098
3099 BUG_ON(!list_empty(&msg->list_head));
3100 list_add_tail(&msg->list_head, &con->out_queue);
3101 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3102 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3103 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3104 le32_to_cpu(msg->hdr.front_len),
3105 le32_to_cpu(msg->hdr.middle_len),
3106 le32_to_cpu(msg->hdr.data_len));
3107
3108 clear_standby(con);
3109 mutex_unlock(&con->mutex);
3110
3111 /* if there wasn't anything waiting to send before, queue
3112 * new work */
3113 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3114 queue_con(con);
3115 }
3116 EXPORT_SYMBOL(ceph_con_send);
3117
3118 /*
3119 * Revoke a message that was previously queued for send
3120 */
3121 void ceph_msg_revoke(struct ceph_msg *msg)
3122 {
3123 struct ceph_connection *con = msg->con;
3124
3125 if (!con) {
3126 dout("%s msg %p null con\n", __func__, msg);
3127 return; /* Message not in our possession */
3128 }
3129
3130 mutex_lock(&con->mutex);
3131 if (!list_empty(&msg->list_head)) {
3132 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3133 list_del_init(&msg->list_head);
3134 msg->hdr.seq = 0;
3135
3136 ceph_msg_put(msg);
3137 }
3138 if (con->out_msg == msg) {
3139 BUG_ON(con->out_skip);
3140 /* footer */
3141 if (con->out_msg_done) {
3142 con->out_skip += con_out_kvec_skip(con);
3143 } else {
3144 BUG_ON(!msg->data_length);
3145 con->out_skip += sizeof_footer(con);
3146 }
3147 /* data, middle, front */
3148 if (msg->data_length)
3149 con->out_skip += msg->cursor.total_resid;
3150 if (msg->middle)
3151 con->out_skip += con_out_kvec_skip(con);
3152 con->out_skip += con_out_kvec_skip(con);
3153
3154 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3155 __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3156 msg->hdr.seq = 0;
3157 con->out_msg = NULL;
3158 ceph_msg_put(msg);
3159 }
3160
3161 mutex_unlock(&con->mutex);
3162 }
3163
3164 /*
3165 * Revoke a message that we may be reading data into
3166 */
3167 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3168 {
3169 struct ceph_connection *con = msg->con;
3170
3171 if (!con) {
3172 dout("%s msg %p null con\n", __func__, msg);
3173 return; /* Message not in our possession */
3174 }
3175
3176 mutex_lock(&con->mutex);
3177 if (con->in_msg == msg) {
3178 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3179 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3180 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3181
3182 /* skip rest of message */
3183 dout("%s %p msg %p revoked\n", __func__, con, msg);
3184 con->in_base_pos = con->in_base_pos -
3185 sizeof(struct ceph_msg_header) -
3186 front_len -
3187 middle_len -
3188 data_len -
3189 sizeof(struct ceph_msg_footer);
3190 ceph_msg_put(con->in_msg);
3191 con->in_msg = NULL;
3192 con->in_tag = CEPH_MSGR_TAG_READY;
3193 con->in_seq++;
3194 } else {
3195 dout("%s %p in_msg %p msg %p no-op\n",
3196 __func__, con, con->in_msg, msg);
3197 }
3198 mutex_unlock(&con->mutex);
3199 }
3200
3201 /*
3202 * Queue a keepalive byte to ensure the tcp connection is alive.
3203 */
3204 void ceph_con_keepalive(struct ceph_connection *con)
3205 {
3206 dout("con_keepalive %p\n", con);
3207 mutex_lock(&con->mutex);
3208 clear_standby(con);
3209 mutex_unlock(&con->mutex);
3210 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3211 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3212 queue_con(con);
3213 }
3214 EXPORT_SYMBOL(ceph_con_keepalive);
3215
3216 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3217 unsigned long interval)
3218 {
3219 if (interval > 0 &&
3220 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3221 struct timespec64 now;
3222 struct timespec64 ts;
3223 ktime_get_real_ts64(&now);
3224 jiffies_to_timespec64(interval, &ts);
3225 ts = timespec64_add(con->last_keepalive_ack, ts);
3226 return timespec64_compare(&now, &ts) >= 0;
3227 }
3228 return false;
3229 }
3230
3231 static struct ceph_msg_data *ceph_msg_data_add(struct ceph_msg *msg)
3232 {
3233 BUG_ON(msg->num_data_items >= msg->max_data_items);
3234 return &msg->data[msg->num_data_items++];
3235 }
3236
3237 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3238 {
3239 if (data->type == CEPH_MSG_DATA_PAGELIST)
3240 ceph_pagelist_release(data->pagelist);
3241 }
3242
3243 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3244 size_t length, size_t alignment)
3245 {
3246 struct ceph_msg_data *data;
3247
3248 BUG_ON(!pages);
3249 BUG_ON(!length);
3250
3251 data = ceph_msg_data_add(msg);
3252 data->type = CEPH_MSG_DATA_PAGES;
3253 data->pages = pages;
3254 data->length = length;
3255 data->alignment = alignment & ~PAGE_MASK;
3256
3257 msg->data_length += length;
3258 }
3259 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3260
3261 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3262 struct ceph_pagelist *pagelist)
3263 {
3264 struct ceph_msg_data *data;
3265
3266 BUG_ON(!pagelist);
3267 BUG_ON(!pagelist->length);
3268
3269 data = ceph_msg_data_add(msg);
3270 data->type = CEPH_MSG_DATA_PAGELIST;
3271 refcount_inc(&pagelist->refcnt);
3272 data->pagelist = pagelist;
3273
3274 msg->data_length += pagelist->length;
3275 }
3276 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3277
3278 #ifdef CONFIG_BLOCK
3279 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct ceph_bio_iter *bio_pos,
3280 u32 length)
3281 {
3282 struct ceph_msg_data *data;
3283
3284 data = ceph_msg_data_add(msg);
3285 data->type = CEPH_MSG_DATA_BIO;
3286 data->bio_pos = *bio_pos;
3287 data->bio_length = length;
3288
3289 msg->data_length += length;
3290 }
3291 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3292 #endif /* CONFIG_BLOCK */
3293
3294 void ceph_msg_data_add_bvecs(struct ceph_msg *msg,
3295 struct ceph_bvec_iter *bvec_pos)
3296 {
3297 struct ceph_msg_data *data;
3298
3299 data = ceph_msg_data_add(msg);
3300 data->type = CEPH_MSG_DATA_BVECS;
3301 data->bvec_pos = *bvec_pos;
3302
3303 msg->data_length += bvec_pos->iter.bi_size;
3304 }
3305 EXPORT_SYMBOL(ceph_msg_data_add_bvecs);
3306
3307 /*
3308 * construct a new message with given type, size
3309 * the new msg has a ref count of 1.
3310 */
3311 struct ceph_msg *ceph_msg_new2(int type, int front_len, int max_data_items,
3312 gfp_t flags, bool can_fail)
3313 {
3314 struct ceph_msg *m;
3315
3316 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3317 if (m == NULL)
3318 goto out;
3319
3320 m->hdr.type = cpu_to_le16(type);
3321 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3322 m->hdr.front_len = cpu_to_le32(front_len);
3323
3324 INIT_LIST_HEAD(&m->list_head);
3325 kref_init(&m->kref);
3326
3327 /* front */
3328 if (front_len) {
3329 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3330 if (m->front.iov_base == NULL) {
3331 dout("ceph_msg_new can't allocate %d bytes\n",
3332 front_len);
3333 goto out2;
3334 }
3335 } else {
3336 m->front.iov_base = NULL;
3337 }
3338 m->front_alloc_len = m->front.iov_len = front_len;
3339
3340 if (max_data_items) {
3341 m->data = kmalloc_array(max_data_items, sizeof(*m->data),
3342 flags);
3343 if (!m->data)
3344 goto out2;
3345
3346 m->max_data_items = max_data_items;
3347 }
3348
3349 dout("ceph_msg_new %p front %d\n", m, front_len);
3350 return m;
3351
3352 out2:
3353 ceph_msg_put(m);
3354 out:
3355 if (!can_fail) {
3356 pr_err("msg_new can't create type %d front %d\n", type,
3357 front_len);
3358 WARN_ON(1);
3359 } else {
3360 dout("msg_new can't create type %d front %d\n", type,
3361 front_len);
3362 }
3363 return NULL;
3364 }
3365 EXPORT_SYMBOL(ceph_msg_new2);
3366
3367 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3368 bool can_fail)
3369 {
3370 return ceph_msg_new2(type, front_len, 0, flags, can_fail);
3371 }
3372 EXPORT_SYMBOL(ceph_msg_new);
3373
3374 /*
3375 * Allocate "middle" portion of a message, if it is needed and wasn't
3376 * allocated by alloc_msg. This allows us to read a small fixed-size
3377 * per-type header in the front and then gracefully fail (i.e.,
3378 * propagate the error to the caller based on info in the front) when
3379 * the middle is too large.
3380 */
3381 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3382 {
3383 int type = le16_to_cpu(msg->hdr.type);
3384 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3385
3386 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3387 ceph_msg_type_name(type), middle_len);
3388 BUG_ON(!middle_len);
3389 BUG_ON(msg->middle);
3390
3391 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3392 if (!msg->middle)
3393 return -ENOMEM;
3394 return 0;
3395 }
3396
3397 /*
3398 * Allocate a message for receiving an incoming message on a
3399 * connection, and save the result in con->in_msg. Uses the
3400 * connection's private alloc_msg op if available.
3401 *
3402 * Returns 0 on success, or a negative error code.
3403 *
3404 * On success, if we set *skip = 1:
3405 * - the next message should be skipped and ignored.
3406 * - con->in_msg == NULL
3407 * or if we set *skip = 0:
3408 * - con->in_msg is non-null.
3409 * On error (ENOMEM, EAGAIN, ...),
3410 * - con->in_msg == NULL
3411 */
3412 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3413 {
3414 struct ceph_msg_header *hdr = &con->in_hdr;
3415 int middle_len = le32_to_cpu(hdr->middle_len);
3416 struct ceph_msg *msg;
3417 int ret = 0;
3418
3419 BUG_ON(con->in_msg != NULL);
3420 BUG_ON(!con->ops->alloc_msg);
3421
3422 mutex_unlock(&con->mutex);
3423 msg = con->ops->alloc_msg(con, hdr, skip);
3424 mutex_lock(&con->mutex);
3425 if (con->state != CON_STATE_OPEN) {
3426 if (msg)
3427 ceph_msg_put(msg);
3428 return -EAGAIN;
3429 }
3430 if (msg) {
3431 BUG_ON(*skip);
3432 msg_con_set(msg, con);
3433 con->in_msg = msg;
3434 } else {
3435 /*
3436 * Null message pointer means either we should skip
3437 * this message or we couldn't allocate memory. The
3438 * former is not an error.
3439 */
3440 if (*skip)
3441 return 0;
3442
3443 con->error_msg = "error allocating memory for incoming message";
3444 return -ENOMEM;
3445 }
3446 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3447
3448 if (middle_len && !con->in_msg->middle) {
3449 ret = ceph_alloc_middle(con, con->in_msg);
3450 if (ret < 0) {
3451 ceph_msg_put(con->in_msg);
3452 con->in_msg = NULL;
3453 }
3454 }
3455
3456 return ret;
3457 }
3458
3459
3460 /*
3461 * Free a generically kmalloc'd message.
3462 */
3463 static void ceph_msg_free(struct ceph_msg *m)
3464 {
3465 dout("%s %p\n", __func__, m);
3466 kvfree(m->front.iov_base);
3467 kfree(m->data);
3468 kmem_cache_free(ceph_msg_cache, m);
3469 }
3470
3471 static void ceph_msg_release(struct kref *kref)
3472 {
3473 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3474 int i;
3475
3476 dout("%s %p\n", __func__, m);
3477 WARN_ON(!list_empty(&m->list_head));
3478
3479 msg_con_set(m, NULL);
3480
3481 /* drop middle, data, if any */
3482 if (m->middle) {
3483 ceph_buffer_put(m->middle);
3484 m->middle = NULL;
3485 }
3486
3487 for (i = 0; i < m->num_data_items; i++)
3488 ceph_msg_data_destroy(&m->data[i]);
3489
3490 if (m->pool)
3491 ceph_msgpool_put(m->pool, m);
3492 else
3493 ceph_msg_free(m);
3494 }
3495
3496 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3497 {
3498 dout("%s %p (was %d)\n", __func__, msg,
3499 kref_read(&msg->kref));
3500 kref_get(&msg->kref);
3501 return msg;
3502 }
3503 EXPORT_SYMBOL(ceph_msg_get);
3504
3505 void ceph_msg_put(struct ceph_msg *msg)
3506 {
3507 dout("%s %p (was %d)\n", __func__, msg,
3508 kref_read(&msg->kref));
3509 kref_put(&msg->kref, ceph_msg_release);
3510 }
3511 EXPORT_SYMBOL(ceph_msg_put);
3512
3513 void ceph_msg_dump(struct ceph_msg *msg)
3514 {
3515 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3516 msg->front_alloc_len, msg->data_length);
3517 print_hex_dump(KERN_DEBUG, "header: ",
3518 DUMP_PREFIX_OFFSET, 16, 1,
3519 &msg->hdr, sizeof(msg->hdr), true);
3520 print_hex_dump(KERN_DEBUG, " front: ",
3521 DUMP_PREFIX_OFFSET, 16, 1,
3522 msg->front.iov_base, msg->front.iov_len, true);
3523 if (msg->middle)
3524 print_hex_dump(KERN_DEBUG, "middle: ",
3525 DUMP_PREFIX_OFFSET, 16, 1,
3526 msg->middle->vec.iov_base,
3527 msg->middle->vec.iov_len, true);
3528 print_hex_dump(KERN_DEBUG, "footer: ",
3529 DUMP_PREFIX_OFFSET, 16, 1,
3530 &msg->footer, sizeof(msg->footer), true);
3531 }
3532 EXPORT_SYMBOL(ceph_msg_dump);