]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/ceph/messenger.c
Merge branch 'x86/boot' into x86/mm, to avoid conflict
[mirror_ubuntu-focal-kernel.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/nsproxy.h>
10 #include <linux/sched/mm.h>
11 #include <linux/slab.h>
12 #include <linux/socket.h>
13 #include <linux/string.h>
14 #ifdef CONFIG_BLOCK
15 #include <linux/bio.h>
16 #endif /* CONFIG_BLOCK */
17 #include <linux/dns_resolver.h>
18 #include <net/tcp.h>
19
20 #include <linux/ceph/ceph_features.h>
21 #include <linux/ceph/libceph.h>
22 #include <linux/ceph/messenger.h>
23 #include <linux/ceph/decode.h>
24 #include <linux/ceph/pagelist.h>
25 #include <linux/export.h>
26
27 /*
28 * Ceph uses the messenger to exchange ceph_msg messages with other
29 * hosts in the system. The messenger provides ordered and reliable
30 * delivery. We tolerate TCP disconnects by reconnecting (with
31 * exponential backoff) in the case of a fault (disconnection, bad
32 * crc, protocol error). Acks allow sent messages to be discarded by
33 * the sender.
34 */
35
36 /*
37 * We track the state of the socket on a given connection using
38 * values defined below. The transition to a new socket state is
39 * handled by a function which verifies we aren't coming from an
40 * unexpected state.
41 *
42 * --------
43 * | NEW* | transient initial state
44 * --------
45 * | con_sock_state_init()
46 * v
47 * ----------
48 * | CLOSED | initialized, but no socket (and no
49 * ---------- TCP connection)
50 * ^ \
51 * | \ con_sock_state_connecting()
52 * | ----------------------
53 * | \
54 * + con_sock_state_closed() \
55 * |+--------------------------- \
56 * | \ \ \
57 * | ----------- \ \
58 * | | CLOSING | socket event; \ \
59 * | ----------- await close \ \
60 * | ^ \ |
61 * | | \ |
62 * | + con_sock_state_closing() \ |
63 * | / \ | |
64 * | / --------------- | |
65 * | / \ v v
66 * | / --------------
67 * | / -----------------| CONNECTING | socket created, TCP
68 * | | / -------------- connect initiated
69 * | | | con_sock_state_connected()
70 * | | v
71 * -------------
72 * | CONNECTED | TCP connection established
73 * -------------
74 *
75 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
76 */
77
78 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
79 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
80 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
81 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
82 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
83
84 /*
85 * connection states
86 */
87 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
88 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
89 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
90 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
91 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
92 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
93
94 /*
95 * ceph_connection flag bits
96 */
97 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
98 * messages on errors */
99 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
100 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
101 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
102 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
103
104 static bool con_flag_valid(unsigned long con_flag)
105 {
106 switch (con_flag) {
107 case CON_FLAG_LOSSYTX:
108 case CON_FLAG_KEEPALIVE_PENDING:
109 case CON_FLAG_WRITE_PENDING:
110 case CON_FLAG_SOCK_CLOSED:
111 case CON_FLAG_BACKOFF:
112 return true;
113 default:
114 return false;
115 }
116 }
117
118 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
119 {
120 BUG_ON(!con_flag_valid(con_flag));
121
122 clear_bit(con_flag, &con->flags);
123 }
124
125 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
126 {
127 BUG_ON(!con_flag_valid(con_flag));
128
129 set_bit(con_flag, &con->flags);
130 }
131
132 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
133 {
134 BUG_ON(!con_flag_valid(con_flag));
135
136 return test_bit(con_flag, &con->flags);
137 }
138
139 static bool con_flag_test_and_clear(struct ceph_connection *con,
140 unsigned long con_flag)
141 {
142 BUG_ON(!con_flag_valid(con_flag));
143
144 return test_and_clear_bit(con_flag, &con->flags);
145 }
146
147 static bool con_flag_test_and_set(struct ceph_connection *con,
148 unsigned long con_flag)
149 {
150 BUG_ON(!con_flag_valid(con_flag));
151
152 return test_and_set_bit(con_flag, &con->flags);
153 }
154
155 /* Slab caches for frequently-allocated structures */
156
157 static struct kmem_cache *ceph_msg_cache;
158 static struct kmem_cache *ceph_msg_data_cache;
159
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg = CEPH_MSGR_TAG_MSG;
162 static char tag_ack = CEPH_MSGR_TAG_ACK;
163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
165
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169
170 /*
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
173 */
174 #define SKIP_BUF_SIZE 1024
175
176 static void queue_con(struct ceph_connection *con);
177 static void cancel_con(struct ceph_connection *con);
178 static void ceph_con_workfn(struct work_struct *);
179 static void con_fault(struct ceph_connection *con);
180
181 /*
182 * Nicely render a sockaddr as a string. An array of formatted
183 * strings is used, to approximate reentrancy.
184 */
185 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
186 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
187 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
188 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
189
190 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
191 static atomic_t addr_str_seq = ATOMIC_INIT(0);
192
193 static struct page *zero_page; /* used in certain error cases */
194
195 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
196 {
197 int i;
198 char *s;
199 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
200 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
201
202 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
203 s = addr_str[i];
204
205 switch (ss->ss_family) {
206 case AF_INET:
207 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
208 ntohs(in4->sin_port));
209 break;
210
211 case AF_INET6:
212 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
213 ntohs(in6->sin6_port));
214 break;
215
216 default:
217 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
218 ss->ss_family);
219 }
220
221 return s;
222 }
223 EXPORT_SYMBOL(ceph_pr_addr);
224
225 static void encode_my_addr(struct ceph_messenger *msgr)
226 {
227 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
228 ceph_encode_addr(&msgr->my_enc_addr);
229 }
230
231 /*
232 * work queue for all reading and writing to/from the socket.
233 */
234 static struct workqueue_struct *ceph_msgr_wq;
235
236 static int ceph_msgr_slab_init(void)
237 {
238 BUG_ON(ceph_msg_cache);
239 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
240 if (!ceph_msg_cache)
241 return -ENOMEM;
242
243 BUG_ON(ceph_msg_data_cache);
244 ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
245 if (ceph_msg_data_cache)
246 return 0;
247
248 kmem_cache_destroy(ceph_msg_cache);
249 ceph_msg_cache = NULL;
250
251 return -ENOMEM;
252 }
253
254 static void ceph_msgr_slab_exit(void)
255 {
256 BUG_ON(!ceph_msg_data_cache);
257 kmem_cache_destroy(ceph_msg_data_cache);
258 ceph_msg_data_cache = NULL;
259
260 BUG_ON(!ceph_msg_cache);
261 kmem_cache_destroy(ceph_msg_cache);
262 ceph_msg_cache = NULL;
263 }
264
265 static void _ceph_msgr_exit(void)
266 {
267 if (ceph_msgr_wq) {
268 destroy_workqueue(ceph_msgr_wq);
269 ceph_msgr_wq = NULL;
270 }
271
272 BUG_ON(zero_page == NULL);
273 put_page(zero_page);
274 zero_page = NULL;
275
276 ceph_msgr_slab_exit();
277 }
278
279 int ceph_msgr_init(void)
280 {
281 if (ceph_msgr_slab_init())
282 return -ENOMEM;
283
284 BUG_ON(zero_page != NULL);
285 zero_page = ZERO_PAGE(0);
286 get_page(zero_page);
287
288 /*
289 * The number of active work items is limited by the number of
290 * connections, so leave @max_active at default.
291 */
292 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
293 if (ceph_msgr_wq)
294 return 0;
295
296 pr_err("msgr_init failed to create workqueue\n");
297 _ceph_msgr_exit();
298
299 return -ENOMEM;
300 }
301 EXPORT_SYMBOL(ceph_msgr_init);
302
303 void ceph_msgr_exit(void)
304 {
305 BUG_ON(ceph_msgr_wq == NULL);
306
307 _ceph_msgr_exit();
308 }
309 EXPORT_SYMBOL(ceph_msgr_exit);
310
311 void ceph_msgr_flush(void)
312 {
313 flush_workqueue(ceph_msgr_wq);
314 }
315 EXPORT_SYMBOL(ceph_msgr_flush);
316
317 /* Connection socket state transition functions */
318
319 static void con_sock_state_init(struct ceph_connection *con)
320 {
321 int old_state;
322
323 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
324 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
325 printk("%s: unexpected old state %d\n", __func__, old_state);
326 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
327 CON_SOCK_STATE_CLOSED);
328 }
329
330 static void con_sock_state_connecting(struct ceph_connection *con)
331 {
332 int old_state;
333
334 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
335 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
336 printk("%s: unexpected old state %d\n", __func__, old_state);
337 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
338 CON_SOCK_STATE_CONNECTING);
339 }
340
341 static void con_sock_state_connected(struct ceph_connection *con)
342 {
343 int old_state;
344
345 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
346 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
347 printk("%s: unexpected old state %d\n", __func__, old_state);
348 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
349 CON_SOCK_STATE_CONNECTED);
350 }
351
352 static void con_sock_state_closing(struct ceph_connection *con)
353 {
354 int old_state;
355
356 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
357 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
358 old_state != CON_SOCK_STATE_CONNECTED &&
359 old_state != CON_SOCK_STATE_CLOSING))
360 printk("%s: unexpected old state %d\n", __func__, old_state);
361 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
362 CON_SOCK_STATE_CLOSING);
363 }
364
365 static void con_sock_state_closed(struct ceph_connection *con)
366 {
367 int old_state;
368
369 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
370 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
371 old_state != CON_SOCK_STATE_CLOSING &&
372 old_state != CON_SOCK_STATE_CONNECTING &&
373 old_state != CON_SOCK_STATE_CLOSED))
374 printk("%s: unexpected old state %d\n", __func__, old_state);
375 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
376 CON_SOCK_STATE_CLOSED);
377 }
378
379 /*
380 * socket callback functions
381 */
382
383 /* data available on socket, or listen socket received a connect */
384 static void ceph_sock_data_ready(struct sock *sk)
385 {
386 struct ceph_connection *con = sk->sk_user_data;
387 if (atomic_read(&con->msgr->stopping)) {
388 return;
389 }
390
391 if (sk->sk_state != TCP_CLOSE_WAIT) {
392 dout("%s on %p state = %lu, queueing work\n", __func__,
393 con, con->state);
394 queue_con(con);
395 }
396 }
397
398 /* socket has buffer space for writing */
399 static void ceph_sock_write_space(struct sock *sk)
400 {
401 struct ceph_connection *con = sk->sk_user_data;
402
403 /* only queue to workqueue if there is data we want to write,
404 * and there is sufficient space in the socket buffer to accept
405 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
406 * doesn't get called again until try_write() fills the socket
407 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
408 * and net/core/stream.c:sk_stream_write_space().
409 */
410 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
411 if (sk_stream_is_writeable(sk)) {
412 dout("%s %p queueing write work\n", __func__, con);
413 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
414 queue_con(con);
415 }
416 } else {
417 dout("%s %p nothing to write\n", __func__, con);
418 }
419 }
420
421 /* socket's state has changed */
422 static void ceph_sock_state_change(struct sock *sk)
423 {
424 struct ceph_connection *con = sk->sk_user_data;
425
426 dout("%s %p state = %lu sk_state = %u\n", __func__,
427 con, con->state, sk->sk_state);
428
429 switch (sk->sk_state) {
430 case TCP_CLOSE:
431 dout("%s TCP_CLOSE\n", __func__);
432 case TCP_CLOSE_WAIT:
433 dout("%s TCP_CLOSE_WAIT\n", __func__);
434 con_sock_state_closing(con);
435 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
436 queue_con(con);
437 break;
438 case TCP_ESTABLISHED:
439 dout("%s TCP_ESTABLISHED\n", __func__);
440 con_sock_state_connected(con);
441 queue_con(con);
442 break;
443 default: /* Everything else is uninteresting */
444 break;
445 }
446 }
447
448 /*
449 * set up socket callbacks
450 */
451 static void set_sock_callbacks(struct socket *sock,
452 struct ceph_connection *con)
453 {
454 struct sock *sk = sock->sk;
455 sk->sk_user_data = con;
456 sk->sk_data_ready = ceph_sock_data_ready;
457 sk->sk_write_space = ceph_sock_write_space;
458 sk->sk_state_change = ceph_sock_state_change;
459 }
460
461
462 /*
463 * socket helpers
464 */
465
466 /*
467 * initiate connection to a remote socket.
468 */
469 static int ceph_tcp_connect(struct ceph_connection *con)
470 {
471 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
472 struct socket *sock;
473 unsigned int noio_flag;
474 int ret;
475
476 BUG_ON(con->sock);
477
478 /* sock_create_kern() allocates with GFP_KERNEL */
479 noio_flag = memalloc_noio_save();
480 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
481 SOCK_STREAM, IPPROTO_TCP, &sock);
482 memalloc_noio_restore(noio_flag);
483 if (ret)
484 return ret;
485 sock->sk->sk_allocation = GFP_NOFS;
486
487 #ifdef CONFIG_LOCKDEP
488 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
489 #endif
490
491 set_sock_callbacks(sock, con);
492
493 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
494
495 con_sock_state_connecting(con);
496 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
497 O_NONBLOCK);
498 if (ret == -EINPROGRESS) {
499 dout("connect %s EINPROGRESS sk_state = %u\n",
500 ceph_pr_addr(&con->peer_addr.in_addr),
501 sock->sk->sk_state);
502 } else if (ret < 0) {
503 pr_err("connect %s error %d\n",
504 ceph_pr_addr(&con->peer_addr.in_addr), ret);
505 sock_release(sock);
506 return ret;
507 }
508
509 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
510 int optval = 1;
511
512 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
513 (char *)&optval, sizeof(optval));
514 if (ret)
515 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
516 ret);
517 }
518
519 con->sock = sock;
520 return 0;
521 }
522
523 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
524 {
525 struct kvec iov = {buf, len};
526 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
527 int r;
528
529 iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
530 r = sock_recvmsg(sock, &msg, msg.msg_flags);
531 if (r == -EAGAIN)
532 r = 0;
533 return r;
534 }
535
536 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
537 int page_offset, size_t length)
538 {
539 struct bio_vec bvec = {
540 .bv_page = page,
541 .bv_offset = page_offset,
542 .bv_len = length
543 };
544 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
545 int r;
546
547 BUG_ON(page_offset + length > PAGE_SIZE);
548 iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
549 r = sock_recvmsg(sock, &msg, msg.msg_flags);
550 if (r == -EAGAIN)
551 r = 0;
552 return r;
553 }
554
555 /*
556 * write something. @more is true if caller will be sending more data
557 * shortly.
558 */
559 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
560 size_t kvlen, size_t len, int more)
561 {
562 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
563 int r;
564
565 if (more)
566 msg.msg_flags |= MSG_MORE;
567 else
568 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
569
570 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
571 if (r == -EAGAIN)
572 r = 0;
573 return r;
574 }
575
576 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
577 int offset, size_t size, bool more)
578 {
579 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
580 int ret;
581
582 ret = kernel_sendpage(sock, page, offset, size, flags);
583 if (ret == -EAGAIN)
584 ret = 0;
585
586 return ret;
587 }
588
589 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
590 int offset, size_t size, bool more)
591 {
592 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
593 struct bio_vec bvec;
594 int ret;
595
596 /* sendpage cannot properly handle pages with page_count == 0,
597 * we need to fallback to sendmsg if that's the case */
598 if (page_count(page) >= 1)
599 return __ceph_tcp_sendpage(sock, page, offset, size, more);
600
601 bvec.bv_page = page;
602 bvec.bv_offset = offset;
603 bvec.bv_len = size;
604
605 if (more)
606 msg.msg_flags |= MSG_MORE;
607 else
608 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
609
610 iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
611 ret = sock_sendmsg(sock, &msg);
612 if (ret == -EAGAIN)
613 ret = 0;
614
615 return ret;
616 }
617
618 /*
619 * Shutdown/close the socket for the given connection.
620 */
621 static int con_close_socket(struct ceph_connection *con)
622 {
623 int rc = 0;
624
625 dout("con_close_socket on %p sock %p\n", con, con->sock);
626 if (con->sock) {
627 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
628 sock_release(con->sock);
629 con->sock = NULL;
630 }
631
632 /*
633 * Forcibly clear the SOCK_CLOSED flag. It gets set
634 * independent of the connection mutex, and we could have
635 * received a socket close event before we had the chance to
636 * shut the socket down.
637 */
638 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
639
640 con_sock_state_closed(con);
641 return rc;
642 }
643
644 /*
645 * Reset a connection. Discard all incoming and outgoing messages
646 * and clear *_seq state.
647 */
648 static void ceph_msg_remove(struct ceph_msg *msg)
649 {
650 list_del_init(&msg->list_head);
651
652 ceph_msg_put(msg);
653 }
654 static void ceph_msg_remove_list(struct list_head *head)
655 {
656 while (!list_empty(head)) {
657 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
658 list_head);
659 ceph_msg_remove(msg);
660 }
661 }
662
663 static void reset_connection(struct ceph_connection *con)
664 {
665 /* reset connection, out_queue, msg_ and connect_seq */
666 /* discard existing out_queue and msg_seq */
667 dout("reset_connection %p\n", con);
668 ceph_msg_remove_list(&con->out_queue);
669 ceph_msg_remove_list(&con->out_sent);
670
671 if (con->in_msg) {
672 BUG_ON(con->in_msg->con != con);
673 ceph_msg_put(con->in_msg);
674 con->in_msg = NULL;
675 }
676
677 con->connect_seq = 0;
678 con->out_seq = 0;
679 if (con->out_msg) {
680 BUG_ON(con->out_msg->con != con);
681 ceph_msg_put(con->out_msg);
682 con->out_msg = NULL;
683 }
684 con->in_seq = 0;
685 con->in_seq_acked = 0;
686
687 con->out_skip = 0;
688 }
689
690 /*
691 * mark a peer down. drop any open connections.
692 */
693 void ceph_con_close(struct ceph_connection *con)
694 {
695 mutex_lock(&con->mutex);
696 dout("con_close %p peer %s\n", con,
697 ceph_pr_addr(&con->peer_addr.in_addr));
698 con->state = CON_STATE_CLOSED;
699
700 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
701 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
702 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
703 con_flag_clear(con, CON_FLAG_BACKOFF);
704
705 reset_connection(con);
706 con->peer_global_seq = 0;
707 cancel_con(con);
708 con_close_socket(con);
709 mutex_unlock(&con->mutex);
710 }
711 EXPORT_SYMBOL(ceph_con_close);
712
713 /*
714 * Reopen a closed connection, with a new peer address.
715 */
716 void ceph_con_open(struct ceph_connection *con,
717 __u8 entity_type, __u64 entity_num,
718 struct ceph_entity_addr *addr)
719 {
720 mutex_lock(&con->mutex);
721 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
722
723 WARN_ON(con->state != CON_STATE_CLOSED);
724 con->state = CON_STATE_PREOPEN;
725
726 con->peer_name.type = (__u8) entity_type;
727 con->peer_name.num = cpu_to_le64(entity_num);
728
729 memcpy(&con->peer_addr, addr, sizeof(*addr));
730 con->delay = 0; /* reset backoff memory */
731 mutex_unlock(&con->mutex);
732 queue_con(con);
733 }
734 EXPORT_SYMBOL(ceph_con_open);
735
736 /*
737 * return true if this connection ever successfully opened
738 */
739 bool ceph_con_opened(struct ceph_connection *con)
740 {
741 return con->connect_seq > 0;
742 }
743
744 /*
745 * initialize a new connection.
746 */
747 void ceph_con_init(struct ceph_connection *con, void *private,
748 const struct ceph_connection_operations *ops,
749 struct ceph_messenger *msgr)
750 {
751 dout("con_init %p\n", con);
752 memset(con, 0, sizeof(*con));
753 con->private = private;
754 con->ops = ops;
755 con->msgr = msgr;
756
757 con_sock_state_init(con);
758
759 mutex_init(&con->mutex);
760 INIT_LIST_HEAD(&con->out_queue);
761 INIT_LIST_HEAD(&con->out_sent);
762 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
763
764 con->state = CON_STATE_CLOSED;
765 }
766 EXPORT_SYMBOL(ceph_con_init);
767
768
769 /*
770 * We maintain a global counter to order connection attempts. Get
771 * a unique seq greater than @gt.
772 */
773 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
774 {
775 u32 ret;
776
777 spin_lock(&msgr->global_seq_lock);
778 if (msgr->global_seq < gt)
779 msgr->global_seq = gt;
780 ret = ++msgr->global_seq;
781 spin_unlock(&msgr->global_seq_lock);
782 return ret;
783 }
784
785 static void con_out_kvec_reset(struct ceph_connection *con)
786 {
787 BUG_ON(con->out_skip);
788
789 con->out_kvec_left = 0;
790 con->out_kvec_bytes = 0;
791 con->out_kvec_cur = &con->out_kvec[0];
792 }
793
794 static void con_out_kvec_add(struct ceph_connection *con,
795 size_t size, void *data)
796 {
797 int index = con->out_kvec_left;
798
799 BUG_ON(con->out_skip);
800 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
801
802 con->out_kvec[index].iov_len = size;
803 con->out_kvec[index].iov_base = data;
804 con->out_kvec_left++;
805 con->out_kvec_bytes += size;
806 }
807
808 /*
809 * Chop off a kvec from the end. Return residual number of bytes for
810 * that kvec, i.e. how many bytes would have been written if the kvec
811 * hadn't been nuked.
812 */
813 static int con_out_kvec_skip(struct ceph_connection *con)
814 {
815 int off = con->out_kvec_cur - con->out_kvec;
816 int skip = 0;
817
818 if (con->out_kvec_bytes > 0) {
819 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
820 BUG_ON(con->out_kvec_bytes < skip);
821 BUG_ON(!con->out_kvec_left);
822 con->out_kvec_bytes -= skip;
823 con->out_kvec_left--;
824 }
825
826 return skip;
827 }
828
829 #ifdef CONFIG_BLOCK
830
831 /*
832 * For a bio data item, a piece is whatever remains of the next
833 * entry in the current bio iovec, or the first entry in the next
834 * bio in the list.
835 */
836 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
837 size_t length)
838 {
839 struct ceph_msg_data *data = cursor->data;
840 struct bio *bio;
841
842 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
843
844 bio = data->bio;
845 BUG_ON(!bio);
846
847 cursor->resid = min(length, data->bio_length);
848 cursor->bio = bio;
849 cursor->bvec_iter = bio->bi_iter;
850 cursor->last_piece =
851 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
852 }
853
854 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
855 size_t *page_offset,
856 size_t *length)
857 {
858 struct ceph_msg_data *data = cursor->data;
859 struct bio *bio;
860 struct bio_vec bio_vec;
861
862 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
863
864 bio = cursor->bio;
865 BUG_ON(!bio);
866
867 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
868
869 *page_offset = (size_t) bio_vec.bv_offset;
870 BUG_ON(*page_offset >= PAGE_SIZE);
871 if (cursor->last_piece) /* pagelist offset is always 0 */
872 *length = cursor->resid;
873 else
874 *length = (size_t) bio_vec.bv_len;
875 BUG_ON(*length > cursor->resid);
876 BUG_ON(*page_offset + *length > PAGE_SIZE);
877
878 return bio_vec.bv_page;
879 }
880
881 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
882 size_t bytes)
883 {
884 struct bio *bio;
885 struct bio_vec bio_vec;
886
887 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
888
889 bio = cursor->bio;
890 BUG_ON(!bio);
891
892 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
893
894 /* Advance the cursor offset */
895
896 BUG_ON(cursor->resid < bytes);
897 cursor->resid -= bytes;
898
899 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
900
901 if (bytes < bio_vec.bv_len)
902 return false; /* more bytes to process in this segment */
903
904 /* Move on to the next segment, and possibly the next bio */
905
906 if (!cursor->bvec_iter.bi_size) {
907 bio = bio->bi_next;
908 cursor->bio = bio;
909 if (bio)
910 cursor->bvec_iter = bio->bi_iter;
911 else
912 memset(&cursor->bvec_iter, 0,
913 sizeof(cursor->bvec_iter));
914 }
915
916 if (!cursor->last_piece) {
917 BUG_ON(!cursor->resid);
918 BUG_ON(!bio);
919 /* A short read is OK, so use <= rather than == */
920 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
921 cursor->last_piece = true;
922 }
923
924 return true;
925 }
926 #endif /* CONFIG_BLOCK */
927
928 /*
929 * For a page array, a piece comes from the first page in the array
930 * that has not already been fully consumed.
931 */
932 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
933 size_t length)
934 {
935 struct ceph_msg_data *data = cursor->data;
936 int page_count;
937
938 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
939
940 BUG_ON(!data->pages);
941 BUG_ON(!data->length);
942
943 cursor->resid = min(length, data->length);
944 page_count = calc_pages_for(data->alignment, (u64)data->length);
945 cursor->page_offset = data->alignment & ~PAGE_MASK;
946 cursor->page_index = 0;
947 BUG_ON(page_count > (int)USHRT_MAX);
948 cursor->page_count = (unsigned short)page_count;
949 BUG_ON(length > SIZE_MAX - cursor->page_offset);
950 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
951 }
952
953 static struct page *
954 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
955 size_t *page_offset, size_t *length)
956 {
957 struct ceph_msg_data *data = cursor->data;
958
959 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
960
961 BUG_ON(cursor->page_index >= cursor->page_count);
962 BUG_ON(cursor->page_offset >= PAGE_SIZE);
963
964 *page_offset = cursor->page_offset;
965 if (cursor->last_piece)
966 *length = cursor->resid;
967 else
968 *length = PAGE_SIZE - *page_offset;
969
970 return data->pages[cursor->page_index];
971 }
972
973 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
974 size_t bytes)
975 {
976 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
977
978 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
979
980 /* Advance the cursor page offset */
981
982 cursor->resid -= bytes;
983 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
984 if (!bytes || cursor->page_offset)
985 return false; /* more bytes to process in the current page */
986
987 if (!cursor->resid)
988 return false; /* no more data */
989
990 /* Move on to the next page; offset is already at 0 */
991
992 BUG_ON(cursor->page_index >= cursor->page_count);
993 cursor->page_index++;
994 cursor->last_piece = cursor->resid <= PAGE_SIZE;
995
996 return true;
997 }
998
999 /*
1000 * For a pagelist, a piece is whatever remains to be consumed in the
1001 * first page in the list, or the front of the next page.
1002 */
1003 static void
1004 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1005 size_t length)
1006 {
1007 struct ceph_msg_data *data = cursor->data;
1008 struct ceph_pagelist *pagelist;
1009 struct page *page;
1010
1011 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1012
1013 pagelist = data->pagelist;
1014 BUG_ON(!pagelist);
1015
1016 if (!length)
1017 return; /* pagelist can be assigned but empty */
1018
1019 BUG_ON(list_empty(&pagelist->head));
1020 page = list_first_entry(&pagelist->head, struct page, lru);
1021
1022 cursor->resid = min(length, pagelist->length);
1023 cursor->page = page;
1024 cursor->offset = 0;
1025 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1026 }
1027
1028 static struct page *
1029 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1030 size_t *page_offset, size_t *length)
1031 {
1032 struct ceph_msg_data *data = cursor->data;
1033 struct ceph_pagelist *pagelist;
1034
1035 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1036
1037 pagelist = data->pagelist;
1038 BUG_ON(!pagelist);
1039
1040 BUG_ON(!cursor->page);
1041 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1042
1043 /* offset of first page in pagelist is always 0 */
1044 *page_offset = cursor->offset & ~PAGE_MASK;
1045 if (cursor->last_piece)
1046 *length = cursor->resid;
1047 else
1048 *length = PAGE_SIZE - *page_offset;
1049
1050 return cursor->page;
1051 }
1052
1053 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1054 size_t bytes)
1055 {
1056 struct ceph_msg_data *data = cursor->data;
1057 struct ceph_pagelist *pagelist;
1058
1059 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1060
1061 pagelist = data->pagelist;
1062 BUG_ON(!pagelist);
1063
1064 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1065 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1066
1067 /* Advance the cursor offset */
1068
1069 cursor->resid -= bytes;
1070 cursor->offset += bytes;
1071 /* offset of first page in pagelist is always 0 */
1072 if (!bytes || cursor->offset & ~PAGE_MASK)
1073 return false; /* more bytes to process in the current page */
1074
1075 if (!cursor->resid)
1076 return false; /* no more data */
1077
1078 /* Move on to the next page */
1079
1080 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1081 cursor->page = list_next_entry(cursor->page, lru);
1082 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1083
1084 return true;
1085 }
1086
1087 /*
1088 * Message data is handled (sent or received) in pieces, where each
1089 * piece resides on a single page. The network layer might not
1090 * consume an entire piece at once. A data item's cursor keeps
1091 * track of which piece is next to process and how much remains to
1092 * be processed in that piece. It also tracks whether the current
1093 * piece is the last one in the data item.
1094 */
1095 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1096 {
1097 size_t length = cursor->total_resid;
1098
1099 switch (cursor->data->type) {
1100 case CEPH_MSG_DATA_PAGELIST:
1101 ceph_msg_data_pagelist_cursor_init(cursor, length);
1102 break;
1103 case CEPH_MSG_DATA_PAGES:
1104 ceph_msg_data_pages_cursor_init(cursor, length);
1105 break;
1106 #ifdef CONFIG_BLOCK
1107 case CEPH_MSG_DATA_BIO:
1108 ceph_msg_data_bio_cursor_init(cursor, length);
1109 break;
1110 #endif /* CONFIG_BLOCK */
1111 case CEPH_MSG_DATA_NONE:
1112 default:
1113 /* BUG(); */
1114 break;
1115 }
1116 cursor->need_crc = true;
1117 }
1118
1119 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1120 {
1121 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1122 struct ceph_msg_data *data;
1123
1124 BUG_ON(!length);
1125 BUG_ON(length > msg->data_length);
1126 BUG_ON(list_empty(&msg->data));
1127
1128 cursor->data_head = &msg->data;
1129 cursor->total_resid = length;
1130 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1131 cursor->data = data;
1132
1133 __ceph_msg_data_cursor_init(cursor);
1134 }
1135
1136 /*
1137 * Return the page containing the next piece to process for a given
1138 * data item, and supply the page offset and length of that piece.
1139 * Indicate whether this is the last piece in this data item.
1140 */
1141 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1142 size_t *page_offset, size_t *length,
1143 bool *last_piece)
1144 {
1145 struct page *page;
1146
1147 switch (cursor->data->type) {
1148 case CEPH_MSG_DATA_PAGELIST:
1149 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1150 break;
1151 case CEPH_MSG_DATA_PAGES:
1152 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1153 break;
1154 #ifdef CONFIG_BLOCK
1155 case CEPH_MSG_DATA_BIO:
1156 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1157 break;
1158 #endif /* CONFIG_BLOCK */
1159 case CEPH_MSG_DATA_NONE:
1160 default:
1161 page = NULL;
1162 break;
1163 }
1164 BUG_ON(!page);
1165 BUG_ON(*page_offset + *length > PAGE_SIZE);
1166 BUG_ON(!*length);
1167 if (last_piece)
1168 *last_piece = cursor->last_piece;
1169
1170 return page;
1171 }
1172
1173 /*
1174 * Returns true if the result moves the cursor on to the next piece
1175 * of the data item.
1176 */
1177 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1178 size_t bytes)
1179 {
1180 bool new_piece;
1181
1182 BUG_ON(bytes > cursor->resid);
1183 switch (cursor->data->type) {
1184 case CEPH_MSG_DATA_PAGELIST:
1185 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1186 break;
1187 case CEPH_MSG_DATA_PAGES:
1188 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1189 break;
1190 #ifdef CONFIG_BLOCK
1191 case CEPH_MSG_DATA_BIO:
1192 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1193 break;
1194 #endif /* CONFIG_BLOCK */
1195 case CEPH_MSG_DATA_NONE:
1196 default:
1197 BUG();
1198 break;
1199 }
1200 cursor->total_resid -= bytes;
1201
1202 if (!cursor->resid && cursor->total_resid) {
1203 WARN_ON(!cursor->last_piece);
1204 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1205 cursor->data = list_next_entry(cursor->data, links);
1206 __ceph_msg_data_cursor_init(cursor);
1207 new_piece = true;
1208 }
1209 cursor->need_crc = new_piece;
1210
1211 return new_piece;
1212 }
1213
1214 static size_t sizeof_footer(struct ceph_connection *con)
1215 {
1216 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1217 sizeof(struct ceph_msg_footer) :
1218 sizeof(struct ceph_msg_footer_old);
1219 }
1220
1221 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1222 {
1223 BUG_ON(!msg);
1224 BUG_ON(!data_len);
1225
1226 /* Initialize data cursor */
1227
1228 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1229 }
1230
1231 /*
1232 * Prepare footer for currently outgoing message, and finish things
1233 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1234 */
1235 static void prepare_write_message_footer(struct ceph_connection *con)
1236 {
1237 struct ceph_msg *m = con->out_msg;
1238
1239 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1240
1241 dout("prepare_write_message_footer %p\n", con);
1242 con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1243 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1244 if (con->ops->sign_message)
1245 con->ops->sign_message(m);
1246 else
1247 m->footer.sig = 0;
1248 } else {
1249 m->old_footer.flags = m->footer.flags;
1250 }
1251 con->out_more = m->more_to_follow;
1252 con->out_msg_done = true;
1253 }
1254
1255 /*
1256 * Prepare headers for the next outgoing message.
1257 */
1258 static void prepare_write_message(struct ceph_connection *con)
1259 {
1260 struct ceph_msg *m;
1261 u32 crc;
1262
1263 con_out_kvec_reset(con);
1264 con->out_msg_done = false;
1265
1266 /* Sneak an ack in there first? If we can get it into the same
1267 * TCP packet that's a good thing. */
1268 if (con->in_seq > con->in_seq_acked) {
1269 con->in_seq_acked = con->in_seq;
1270 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1271 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1272 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1273 &con->out_temp_ack);
1274 }
1275
1276 BUG_ON(list_empty(&con->out_queue));
1277 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1278 con->out_msg = m;
1279 BUG_ON(m->con != con);
1280
1281 /* put message on sent list */
1282 ceph_msg_get(m);
1283 list_move_tail(&m->list_head, &con->out_sent);
1284
1285 /*
1286 * only assign outgoing seq # if we haven't sent this message
1287 * yet. if it is requeued, resend with it's original seq.
1288 */
1289 if (m->needs_out_seq) {
1290 m->hdr.seq = cpu_to_le64(++con->out_seq);
1291 m->needs_out_seq = false;
1292 }
1293 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1294
1295 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1296 m, con->out_seq, le16_to_cpu(m->hdr.type),
1297 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1298 m->data_length);
1299 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1300
1301 /* tag + hdr + front + middle */
1302 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1303 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1304 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1305
1306 if (m->middle)
1307 con_out_kvec_add(con, m->middle->vec.iov_len,
1308 m->middle->vec.iov_base);
1309
1310 /* fill in hdr crc and finalize hdr */
1311 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1312 con->out_msg->hdr.crc = cpu_to_le32(crc);
1313 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1314
1315 /* fill in front and middle crc, footer */
1316 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1317 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1318 if (m->middle) {
1319 crc = crc32c(0, m->middle->vec.iov_base,
1320 m->middle->vec.iov_len);
1321 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1322 } else
1323 con->out_msg->footer.middle_crc = 0;
1324 dout("%s front_crc %u middle_crc %u\n", __func__,
1325 le32_to_cpu(con->out_msg->footer.front_crc),
1326 le32_to_cpu(con->out_msg->footer.middle_crc));
1327 con->out_msg->footer.flags = 0;
1328
1329 /* is there a data payload? */
1330 con->out_msg->footer.data_crc = 0;
1331 if (m->data_length) {
1332 prepare_message_data(con->out_msg, m->data_length);
1333 con->out_more = 1; /* data + footer will follow */
1334 } else {
1335 /* no, queue up footer too and be done */
1336 prepare_write_message_footer(con);
1337 }
1338
1339 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1340 }
1341
1342 /*
1343 * Prepare an ack.
1344 */
1345 static void prepare_write_ack(struct ceph_connection *con)
1346 {
1347 dout("prepare_write_ack %p %llu -> %llu\n", con,
1348 con->in_seq_acked, con->in_seq);
1349 con->in_seq_acked = con->in_seq;
1350
1351 con_out_kvec_reset(con);
1352
1353 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1354
1355 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1356 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1357 &con->out_temp_ack);
1358
1359 con->out_more = 1; /* more will follow.. eventually.. */
1360 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1361 }
1362
1363 /*
1364 * Prepare to share the seq during handshake
1365 */
1366 static void prepare_write_seq(struct ceph_connection *con)
1367 {
1368 dout("prepare_write_seq %p %llu -> %llu\n", con,
1369 con->in_seq_acked, con->in_seq);
1370 con->in_seq_acked = con->in_seq;
1371
1372 con_out_kvec_reset(con);
1373
1374 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1375 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1376 &con->out_temp_ack);
1377
1378 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1379 }
1380
1381 /*
1382 * Prepare to write keepalive byte.
1383 */
1384 static void prepare_write_keepalive(struct ceph_connection *con)
1385 {
1386 dout("prepare_write_keepalive %p\n", con);
1387 con_out_kvec_reset(con);
1388 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1389 struct timespec now = CURRENT_TIME;
1390
1391 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1392 ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1393 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1394 &con->out_temp_keepalive2);
1395 } else {
1396 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1397 }
1398 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1399 }
1400
1401 /*
1402 * Connection negotiation.
1403 */
1404
1405 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1406 int *auth_proto)
1407 {
1408 struct ceph_auth_handshake *auth;
1409
1410 if (!con->ops->get_authorizer) {
1411 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1412 con->out_connect.authorizer_len = 0;
1413 return NULL;
1414 }
1415
1416 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1417 if (IS_ERR(auth))
1418 return auth;
1419
1420 con->auth_reply_buf = auth->authorizer_reply_buf;
1421 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1422 return auth;
1423 }
1424
1425 /*
1426 * We connected to a peer and are saying hello.
1427 */
1428 static void prepare_write_banner(struct ceph_connection *con)
1429 {
1430 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1431 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1432 &con->msgr->my_enc_addr);
1433
1434 con->out_more = 0;
1435 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1436 }
1437
1438 static int prepare_write_connect(struct ceph_connection *con)
1439 {
1440 unsigned int global_seq = get_global_seq(con->msgr, 0);
1441 int proto;
1442 int auth_proto;
1443 struct ceph_auth_handshake *auth;
1444
1445 switch (con->peer_name.type) {
1446 case CEPH_ENTITY_TYPE_MON:
1447 proto = CEPH_MONC_PROTOCOL;
1448 break;
1449 case CEPH_ENTITY_TYPE_OSD:
1450 proto = CEPH_OSDC_PROTOCOL;
1451 break;
1452 case CEPH_ENTITY_TYPE_MDS:
1453 proto = CEPH_MDSC_PROTOCOL;
1454 break;
1455 default:
1456 BUG();
1457 }
1458
1459 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1460 con->connect_seq, global_seq, proto);
1461
1462 con->out_connect.features =
1463 cpu_to_le64(from_msgr(con->msgr)->supported_features);
1464 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1465 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1466 con->out_connect.global_seq = cpu_to_le32(global_seq);
1467 con->out_connect.protocol_version = cpu_to_le32(proto);
1468 con->out_connect.flags = 0;
1469
1470 auth_proto = CEPH_AUTH_UNKNOWN;
1471 auth = get_connect_authorizer(con, &auth_proto);
1472 if (IS_ERR(auth))
1473 return PTR_ERR(auth);
1474
1475 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1476 con->out_connect.authorizer_len = auth ?
1477 cpu_to_le32(auth->authorizer_buf_len) : 0;
1478
1479 con_out_kvec_add(con, sizeof (con->out_connect),
1480 &con->out_connect);
1481 if (auth && auth->authorizer_buf_len)
1482 con_out_kvec_add(con, auth->authorizer_buf_len,
1483 auth->authorizer_buf);
1484
1485 con->out_more = 0;
1486 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1487
1488 return 0;
1489 }
1490
1491 /*
1492 * write as much of pending kvecs to the socket as we can.
1493 * 1 -> done
1494 * 0 -> socket full, but more to do
1495 * <0 -> error
1496 */
1497 static int write_partial_kvec(struct ceph_connection *con)
1498 {
1499 int ret;
1500
1501 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1502 while (con->out_kvec_bytes > 0) {
1503 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1504 con->out_kvec_left, con->out_kvec_bytes,
1505 con->out_more);
1506 if (ret <= 0)
1507 goto out;
1508 con->out_kvec_bytes -= ret;
1509 if (con->out_kvec_bytes == 0)
1510 break; /* done */
1511
1512 /* account for full iov entries consumed */
1513 while (ret >= con->out_kvec_cur->iov_len) {
1514 BUG_ON(!con->out_kvec_left);
1515 ret -= con->out_kvec_cur->iov_len;
1516 con->out_kvec_cur++;
1517 con->out_kvec_left--;
1518 }
1519 /* and for a partially-consumed entry */
1520 if (ret) {
1521 con->out_kvec_cur->iov_len -= ret;
1522 con->out_kvec_cur->iov_base += ret;
1523 }
1524 }
1525 con->out_kvec_left = 0;
1526 ret = 1;
1527 out:
1528 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1529 con->out_kvec_bytes, con->out_kvec_left, ret);
1530 return ret; /* done! */
1531 }
1532
1533 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1534 unsigned int page_offset,
1535 unsigned int length)
1536 {
1537 char *kaddr;
1538
1539 kaddr = kmap(page);
1540 BUG_ON(kaddr == NULL);
1541 crc = crc32c(crc, kaddr + page_offset, length);
1542 kunmap(page);
1543
1544 return crc;
1545 }
1546 /*
1547 * Write as much message data payload as we can. If we finish, queue
1548 * up the footer.
1549 * 1 -> done, footer is now queued in out_kvec[].
1550 * 0 -> socket full, but more to do
1551 * <0 -> error
1552 */
1553 static int write_partial_message_data(struct ceph_connection *con)
1554 {
1555 struct ceph_msg *msg = con->out_msg;
1556 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1557 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1558 u32 crc;
1559
1560 dout("%s %p msg %p\n", __func__, con, msg);
1561
1562 if (list_empty(&msg->data))
1563 return -EINVAL;
1564
1565 /*
1566 * Iterate through each page that contains data to be
1567 * written, and send as much as possible for each.
1568 *
1569 * If we are calculating the data crc (the default), we will
1570 * need to map the page. If we have no pages, they have
1571 * been revoked, so use the zero page.
1572 */
1573 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1574 while (cursor->resid) {
1575 struct page *page;
1576 size_t page_offset;
1577 size_t length;
1578 bool last_piece;
1579 bool need_crc;
1580 int ret;
1581
1582 page = ceph_msg_data_next(cursor, &page_offset, &length,
1583 &last_piece);
1584 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1585 length, !last_piece);
1586 if (ret <= 0) {
1587 if (do_datacrc)
1588 msg->footer.data_crc = cpu_to_le32(crc);
1589
1590 return ret;
1591 }
1592 if (do_datacrc && cursor->need_crc)
1593 crc = ceph_crc32c_page(crc, page, page_offset, length);
1594 need_crc = ceph_msg_data_advance(cursor, (size_t)ret);
1595 }
1596
1597 dout("%s %p msg %p done\n", __func__, con, msg);
1598
1599 /* prepare and queue up footer, too */
1600 if (do_datacrc)
1601 msg->footer.data_crc = cpu_to_le32(crc);
1602 else
1603 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1604 con_out_kvec_reset(con);
1605 prepare_write_message_footer(con);
1606
1607 return 1; /* must return > 0 to indicate success */
1608 }
1609
1610 /*
1611 * write some zeros
1612 */
1613 static int write_partial_skip(struct ceph_connection *con)
1614 {
1615 int ret;
1616
1617 dout("%s %p %d left\n", __func__, con, con->out_skip);
1618 while (con->out_skip > 0) {
1619 size_t size = min(con->out_skip, (int) PAGE_SIZE);
1620
1621 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1622 if (ret <= 0)
1623 goto out;
1624 con->out_skip -= ret;
1625 }
1626 ret = 1;
1627 out:
1628 return ret;
1629 }
1630
1631 /*
1632 * Prepare to read connection handshake, or an ack.
1633 */
1634 static void prepare_read_banner(struct ceph_connection *con)
1635 {
1636 dout("prepare_read_banner %p\n", con);
1637 con->in_base_pos = 0;
1638 }
1639
1640 static void prepare_read_connect(struct ceph_connection *con)
1641 {
1642 dout("prepare_read_connect %p\n", con);
1643 con->in_base_pos = 0;
1644 }
1645
1646 static void prepare_read_ack(struct ceph_connection *con)
1647 {
1648 dout("prepare_read_ack %p\n", con);
1649 con->in_base_pos = 0;
1650 }
1651
1652 static void prepare_read_seq(struct ceph_connection *con)
1653 {
1654 dout("prepare_read_seq %p\n", con);
1655 con->in_base_pos = 0;
1656 con->in_tag = CEPH_MSGR_TAG_SEQ;
1657 }
1658
1659 static void prepare_read_tag(struct ceph_connection *con)
1660 {
1661 dout("prepare_read_tag %p\n", con);
1662 con->in_base_pos = 0;
1663 con->in_tag = CEPH_MSGR_TAG_READY;
1664 }
1665
1666 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1667 {
1668 dout("prepare_read_keepalive_ack %p\n", con);
1669 con->in_base_pos = 0;
1670 }
1671
1672 /*
1673 * Prepare to read a message.
1674 */
1675 static int prepare_read_message(struct ceph_connection *con)
1676 {
1677 dout("prepare_read_message %p\n", con);
1678 BUG_ON(con->in_msg != NULL);
1679 con->in_base_pos = 0;
1680 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1681 return 0;
1682 }
1683
1684
1685 static int read_partial(struct ceph_connection *con,
1686 int end, int size, void *object)
1687 {
1688 while (con->in_base_pos < end) {
1689 int left = end - con->in_base_pos;
1690 int have = size - left;
1691 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1692 if (ret <= 0)
1693 return ret;
1694 con->in_base_pos += ret;
1695 }
1696 return 1;
1697 }
1698
1699
1700 /*
1701 * Read all or part of the connect-side handshake on a new connection
1702 */
1703 static int read_partial_banner(struct ceph_connection *con)
1704 {
1705 int size;
1706 int end;
1707 int ret;
1708
1709 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1710
1711 /* peer's banner */
1712 size = strlen(CEPH_BANNER);
1713 end = size;
1714 ret = read_partial(con, end, size, con->in_banner);
1715 if (ret <= 0)
1716 goto out;
1717
1718 size = sizeof (con->actual_peer_addr);
1719 end += size;
1720 ret = read_partial(con, end, size, &con->actual_peer_addr);
1721 if (ret <= 0)
1722 goto out;
1723
1724 size = sizeof (con->peer_addr_for_me);
1725 end += size;
1726 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1727 if (ret <= 0)
1728 goto out;
1729
1730 out:
1731 return ret;
1732 }
1733
1734 static int read_partial_connect(struct ceph_connection *con)
1735 {
1736 int size;
1737 int end;
1738 int ret;
1739
1740 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1741
1742 size = sizeof (con->in_reply);
1743 end = size;
1744 ret = read_partial(con, end, size, &con->in_reply);
1745 if (ret <= 0)
1746 goto out;
1747
1748 size = le32_to_cpu(con->in_reply.authorizer_len);
1749 end += size;
1750 ret = read_partial(con, end, size, con->auth_reply_buf);
1751 if (ret <= 0)
1752 goto out;
1753
1754 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1755 con, (int)con->in_reply.tag,
1756 le32_to_cpu(con->in_reply.connect_seq),
1757 le32_to_cpu(con->in_reply.global_seq));
1758 out:
1759 return ret;
1760
1761 }
1762
1763 /*
1764 * Verify the hello banner looks okay.
1765 */
1766 static int verify_hello(struct ceph_connection *con)
1767 {
1768 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1769 pr_err("connect to %s got bad banner\n",
1770 ceph_pr_addr(&con->peer_addr.in_addr));
1771 con->error_msg = "protocol error, bad banner";
1772 return -1;
1773 }
1774 return 0;
1775 }
1776
1777 static bool addr_is_blank(struct sockaddr_storage *ss)
1778 {
1779 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1780 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1781
1782 switch (ss->ss_family) {
1783 case AF_INET:
1784 return addr->s_addr == htonl(INADDR_ANY);
1785 case AF_INET6:
1786 return ipv6_addr_any(addr6);
1787 default:
1788 return true;
1789 }
1790 }
1791
1792 static int addr_port(struct sockaddr_storage *ss)
1793 {
1794 switch (ss->ss_family) {
1795 case AF_INET:
1796 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1797 case AF_INET6:
1798 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1799 }
1800 return 0;
1801 }
1802
1803 static void addr_set_port(struct sockaddr_storage *ss, int p)
1804 {
1805 switch (ss->ss_family) {
1806 case AF_INET:
1807 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1808 break;
1809 case AF_INET6:
1810 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1811 break;
1812 }
1813 }
1814
1815 /*
1816 * Unlike other *_pton function semantics, zero indicates success.
1817 */
1818 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1819 char delim, const char **ipend)
1820 {
1821 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1822 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1823
1824 memset(ss, 0, sizeof(*ss));
1825
1826 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1827 ss->ss_family = AF_INET;
1828 return 0;
1829 }
1830
1831 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1832 ss->ss_family = AF_INET6;
1833 return 0;
1834 }
1835
1836 return -EINVAL;
1837 }
1838
1839 /*
1840 * Extract hostname string and resolve using kernel DNS facility.
1841 */
1842 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1843 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1844 struct sockaddr_storage *ss, char delim, const char **ipend)
1845 {
1846 const char *end, *delim_p;
1847 char *colon_p, *ip_addr = NULL;
1848 int ip_len, ret;
1849
1850 /*
1851 * The end of the hostname occurs immediately preceding the delimiter or
1852 * the port marker (':') where the delimiter takes precedence.
1853 */
1854 delim_p = memchr(name, delim, namelen);
1855 colon_p = memchr(name, ':', namelen);
1856
1857 if (delim_p && colon_p)
1858 end = delim_p < colon_p ? delim_p : colon_p;
1859 else if (!delim_p && colon_p)
1860 end = colon_p;
1861 else {
1862 end = delim_p;
1863 if (!end) /* case: hostname:/ */
1864 end = name + namelen;
1865 }
1866
1867 if (end <= name)
1868 return -EINVAL;
1869
1870 /* do dns_resolve upcall */
1871 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1872 if (ip_len > 0)
1873 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1874 else
1875 ret = -ESRCH;
1876
1877 kfree(ip_addr);
1878
1879 *ipend = end;
1880
1881 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1882 ret, ret ? "failed" : ceph_pr_addr(ss));
1883
1884 return ret;
1885 }
1886 #else
1887 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1888 struct sockaddr_storage *ss, char delim, const char **ipend)
1889 {
1890 return -EINVAL;
1891 }
1892 #endif
1893
1894 /*
1895 * Parse a server name (IP or hostname). If a valid IP address is not found
1896 * then try to extract a hostname to resolve using userspace DNS upcall.
1897 */
1898 static int ceph_parse_server_name(const char *name, size_t namelen,
1899 struct sockaddr_storage *ss, char delim, const char **ipend)
1900 {
1901 int ret;
1902
1903 ret = ceph_pton(name, namelen, ss, delim, ipend);
1904 if (ret)
1905 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1906
1907 return ret;
1908 }
1909
1910 /*
1911 * Parse an ip[:port] list into an addr array. Use the default
1912 * monitor port if a port isn't specified.
1913 */
1914 int ceph_parse_ips(const char *c, const char *end,
1915 struct ceph_entity_addr *addr,
1916 int max_count, int *count)
1917 {
1918 int i, ret = -EINVAL;
1919 const char *p = c;
1920
1921 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1922 for (i = 0; i < max_count; i++) {
1923 const char *ipend;
1924 struct sockaddr_storage *ss = &addr[i].in_addr;
1925 int port;
1926 char delim = ',';
1927
1928 if (*p == '[') {
1929 delim = ']';
1930 p++;
1931 }
1932
1933 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1934 if (ret)
1935 goto bad;
1936 ret = -EINVAL;
1937
1938 p = ipend;
1939
1940 if (delim == ']') {
1941 if (*p != ']') {
1942 dout("missing matching ']'\n");
1943 goto bad;
1944 }
1945 p++;
1946 }
1947
1948 /* port? */
1949 if (p < end && *p == ':') {
1950 port = 0;
1951 p++;
1952 while (p < end && *p >= '0' && *p <= '9') {
1953 port = (port * 10) + (*p - '0');
1954 p++;
1955 }
1956 if (port == 0)
1957 port = CEPH_MON_PORT;
1958 else if (port > 65535)
1959 goto bad;
1960 } else {
1961 port = CEPH_MON_PORT;
1962 }
1963
1964 addr_set_port(ss, port);
1965
1966 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1967
1968 if (p == end)
1969 break;
1970 if (*p != ',')
1971 goto bad;
1972 p++;
1973 }
1974
1975 if (p != end)
1976 goto bad;
1977
1978 if (count)
1979 *count = i + 1;
1980 return 0;
1981
1982 bad:
1983 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1984 return ret;
1985 }
1986 EXPORT_SYMBOL(ceph_parse_ips);
1987
1988 static int process_banner(struct ceph_connection *con)
1989 {
1990 dout("process_banner on %p\n", con);
1991
1992 if (verify_hello(con) < 0)
1993 return -1;
1994
1995 ceph_decode_addr(&con->actual_peer_addr);
1996 ceph_decode_addr(&con->peer_addr_for_me);
1997
1998 /*
1999 * Make sure the other end is who we wanted. note that the other
2000 * end may not yet know their ip address, so if it's 0.0.0.0, give
2001 * them the benefit of the doubt.
2002 */
2003 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2004 sizeof(con->peer_addr)) != 0 &&
2005 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2006 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2007 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2008 ceph_pr_addr(&con->peer_addr.in_addr),
2009 (int)le32_to_cpu(con->peer_addr.nonce),
2010 ceph_pr_addr(&con->actual_peer_addr.in_addr),
2011 (int)le32_to_cpu(con->actual_peer_addr.nonce));
2012 con->error_msg = "wrong peer at address";
2013 return -1;
2014 }
2015
2016 /*
2017 * did we learn our address?
2018 */
2019 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2020 int port = addr_port(&con->msgr->inst.addr.in_addr);
2021
2022 memcpy(&con->msgr->inst.addr.in_addr,
2023 &con->peer_addr_for_me.in_addr,
2024 sizeof(con->peer_addr_for_me.in_addr));
2025 addr_set_port(&con->msgr->inst.addr.in_addr, port);
2026 encode_my_addr(con->msgr);
2027 dout("process_banner learned my addr is %s\n",
2028 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2029 }
2030
2031 return 0;
2032 }
2033
2034 static int process_connect(struct ceph_connection *con)
2035 {
2036 u64 sup_feat = from_msgr(con->msgr)->supported_features;
2037 u64 req_feat = from_msgr(con->msgr)->required_features;
2038 u64 server_feat = ceph_sanitize_features(
2039 le64_to_cpu(con->in_reply.features));
2040 int ret;
2041
2042 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2043
2044 if (con->auth_reply_buf) {
2045 /*
2046 * Any connection that defines ->get_authorizer()
2047 * should also define ->verify_authorizer_reply().
2048 * See get_connect_authorizer().
2049 */
2050 ret = con->ops->verify_authorizer_reply(con);
2051 if (ret < 0) {
2052 con->error_msg = "bad authorize reply";
2053 return ret;
2054 }
2055 }
2056
2057 switch (con->in_reply.tag) {
2058 case CEPH_MSGR_TAG_FEATURES:
2059 pr_err("%s%lld %s feature set mismatch,"
2060 " my %llx < server's %llx, missing %llx\n",
2061 ENTITY_NAME(con->peer_name),
2062 ceph_pr_addr(&con->peer_addr.in_addr),
2063 sup_feat, server_feat, server_feat & ~sup_feat);
2064 con->error_msg = "missing required protocol features";
2065 reset_connection(con);
2066 return -1;
2067
2068 case CEPH_MSGR_TAG_BADPROTOVER:
2069 pr_err("%s%lld %s protocol version mismatch,"
2070 " my %d != server's %d\n",
2071 ENTITY_NAME(con->peer_name),
2072 ceph_pr_addr(&con->peer_addr.in_addr),
2073 le32_to_cpu(con->out_connect.protocol_version),
2074 le32_to_cpu(con->in_reply.protocol_version));
2075 con->error_msg = "protocol version mismatch";
2076 reset_connection(con);
2077 return -1;
2078
2079 case CEPH_MSGR_TAG_BADAUTHORIZER:
2080 con->auth_retry++;
2081 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2082 con->auth_retry);
2083 if (con->auth_retry == 2) {
2084 con->error_msg = "connect authorization failure";
2085 return -1;
2086 }
2087 con_out_kvec_reset(con);
2088 ret = prepare_write_connect(con);
2089 if (ret < 0)
2090 return ret;
2091 prepare_read_connect(con);
2092 break;
2093
2094 case CEPH_MSGR_TAG_RESETSESSION:
2095 /*
2096 * If we connected with a large connect_seq but the peer
2097 * has no record of a session with us (no connection, or
2098 * connect_seq == 0), they will send RESETSESION to indicate
2099 * that they must have reset their session, and may have
2100 * dropped messages.
2101 */
2102 dout("process_connect got RESET peer seq %u\n",
2103 le32_to_cpu(con->in_reply.connect_seq));
2104 pr_err("%s%lld %s connection reset\n",
2105 ENTITY_NAME(con->peer_name),
2106 ceph_pr_addr(&con->peer_addr.in_addr));
2107 reset_connection(con);
2108 con_out_kvec_reset(con);
2109 ret = prepare_write_connect(con);
2110 if (ret < 0)
2111 return ret;
2112 prepare_read_connect(con);
2113
2114 /* Tell ceph about it. */
2115 mutex_unlock(&con->mutex);
2116 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2117 if (con->ops->peer_reset)
2118 con->ops->peer_reset(con);
2119 mutex_lock(&con->mutex);
2120 if (con->state != CON_STATE_NEGOTIATING)
2121 return -EAGAIN;
2122 break;
2123
2124 case CEPH_MSGR_TAG_RETRY_SESSION:
2125 /*
2126 * If we sent a smaller connect_seq than the peer has, try
2127 * again with a larger value.
2128 */
2129 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2130 le32_to_cpu(con->out_connect.connect_seq),
2131 le32_to_cpu(con->in_reply.connect_seq));
2132 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2133 con_out_kvec_reset(con);
2134 ret = prepare_write_connect(con);
2135 if (ret < 0)
2136 return ret;
2137 prepare_read_connect(con);
2138 break;
2139
2140 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2141 /*
2142 * If we sent a smaller global_seq than the peer has, try
2143 * again with a larger value.
2144 */
2145 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2146 con->peer_global_seq,
2147 le32_to_cpu(con->in_reply.global_seq));
2148 get_global_seq(con->msgr,
2149 le32_to_cpu(con->in_reply.global_seq));
2150 con_out_kvec_reset(con);
2151 ret = prepare_write_connect(con);
2152 if (ret < 0)
2153 return ret;
2154 prepare_read_connect(con);
2155 break;
2156
2157 case CEPH_MSGR_TAG_SEQ:
2158 case CEPH_MSGR_TAG_READY:
2159 if (req_feat & ~server_feat) {
2160 pr_err("%s%lld %s protocol feature mismatch,"
2161 " my required %llx > server's %llx, need %llx\n",
2162 ENTITY_NAME(con->peer_name),
2163 ceph_pr_addr(&con->peer_addr.in_addr),
2164 req_feat, server_feat, req_feat & ~server_feat);
2165 con->error_msg = "missing required protocol features";
2166 reset_connection(con);
2167 return -1;
2168 }
2169
2170 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2171 con->state = CON_STATE_OPEN;
2172 con->auth_retry = 0; /* we authenticated; clear flag */
2173 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2174 con->connect_seq++;
2175 con->peer_features = server_feat;
2176 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2177 con->peer_global_seq,
2178 le32_to_cpu(con->in_reply.connect_seq),
2179 con->connect_seq);
2180 WARN_ON(con->connect_seq !=
2181 le32_to_cpu(con->in_reply.connect_seq));
2182
2183 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2184 con_flag_set(con, CON_FLAG_LOSSYTX);
2185
2186 con->delay = 0; /* reset backoff memory */
2187
2188 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2189 prepare_write_seq(con);
2190 prepare_read_seq(con);
2191 } else {
2192 prepare_read_tag(con);
2193 }
2194 break;
2195
2196 case CEPH_MSGR_TAG_WAIT:
2197 /*
2198 * If there is a connection race (we are opening
2199 * connections to each other), one of us may just have
2200 * to WAIT. This shouldn't happen if we are the
2201 * client.
2202 */
2203 con->error_msg = "protocol error, got WAIT as client";
2204 return -1;
2205
2206 default:
2207 con->error_msg = "protocol error, garbage tag during connect";
2208 return -1;
2209 }
2210 return 0;
2211 }
2212
2213
2214 /*
2215 * read (part of) an ack
2216 */
2217 static int read_partial_ack(struct ceph_connection *con)
2218 {
2219 int size = sizeof (con->in_temp_ack);
2220 int end = size;
2221
2222 return read_partial(con, end, size, &con->in_temp_ack);
2223 }
2224
2225 /*
2226 * We can finally discard anything that's been acked.
2227 */
2228 static void process_ack(struct ceph_connection *con)
2229 {
2230 struct ceph_msg *m;
2231 u64 ack = le64_to_cpu(con->in_temp_ack);
2232 u64 seq;
2233
2234 while (!list_empty(&con->out_sent)) {
2235 m = list_first_entry(&con->out_sent, struct ceph_msg,
2236 list_head);
2237 seq = le64_to_cpu(m->hdr.seq);
2238 if (seq > ack)
2239 break;
2240 dout("got ack for seq %llu type %d at %p\n", seq,
2241 le16_to_cpu(m->hdr.type), m);
2242 m->ack_stamp = jiffies;
2243 ceph_msg_remove(m);
2244 }
2245 prepare_read_tag(con);
2246 }
2247
2248
2249 static int read_partial_message_section(struct ceph_connection *con,
2250 struct kvec *section,
2251 unsigned int sec_len, u32 *crc)
2252 {
2253 int ret, left;
2254
2255 BUG_ON(!section);
2256
2257 while (section->iov_len < sec_len) {
2258 BUG_ON(section->iov_base == NULL);
2259 left = sec_len - section->iov_len;
2260 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2261 section->iov_len, left);
2262 if (ret <= 0)
2263 return ret;
2264 section->iov_len += ret;
2265 }
2266 if (section->iov_len == sec_len)
2267 *crc = crc32c(0, section->iov_base, section->iov_len);
2268
2269 return 1;
2270 }
2271
2272 static int read_partial_msg_data(struct ceph_connection *con)
2273 {
2274 struct ceph_msg *msg = con->in_msg;
2275 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2276 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2277 struct page *page;
2278 size_t page_offset;
2279 size_t length;
2280 u32 crc = 0;
2281 int ret;
2282
2283 BUG_ON(!msg);
2284 if (list_empty(&msg->data))
2285 return -EIO;
2286
2287 if (do_datacrc)
2288 crc = con->in_data_crc;
2289 while (cursor->resid) {
2290 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2291 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2292 if (ret <= 0) {
2293 if (do_datacrc)
2294 con->in_data_crc = crc;
2295
2296 return ret;
2297 }
2298
2299 if (do_datacrc)
2300 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2301 (void) ceph_msg_data_advance(cursor, (size_t)ret);
2302 }
2303 if (do_datacrc)
2304 con->in_data_crc = crc;
2305
2306 return 1; /* must return > 0 to indicate success */
2307 }
2308
2309 /*
2310 * read (part of) a message.
2311 */
2312 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2313
2314 static int read_partial_message(struct ceph_connection *con)
2315 {
2316 struct ceph_msg *m = con->in_msg;
2317 int size;
2318 int end;
2319 int ret;
2320 unsigned int front_len, middle_len, data_len;
2321 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2322 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2323 u64 seq;
2324 u32 crc;
2325
2326 dout("read_partial_message con %p msg %p\n", con, m);
2327
2328 /* header */
2329 size = sizeof (con->in_hdr);
2330 end = size;
2331 ret = read_partial(con, end, size, &con->in_hdr);
2332 if (ret <= 0)
2333 return ret;
2334
2335 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2336 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2337 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2338 crc, con->in_hdr.crc);
2339 return -EBADMSG;
2340 }
2341
2342 front_len = le32_to_cpu(con->in_hdr.front_len);
2343 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2344 return -EIO;
2345 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2346 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2347 return -EIO;
2348 data_len = le32_to_cpu(con->in_hdr.data_len);
2349 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2350 return -EIO;
2351
2352 /* verify seq# */
2353 seq = le64_to_cpu(con->in_hdr.seq);
2354 if ((s64)seq - (s64)con->in_seq < 1) {
2355 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2356 ENTITY_NAME(con->peer_name),
2357 ceph_pr_addr(&con->peer_addr.in_addr),
2358 seq, con->in_seq + 1);
2359 con->in_base_pos = -front_len - middle_len - data_len -
2360 sizeof_footer(con);
2361 con->in_tag = CEPH_MSGR_TAG_READY;
2362 return 1;
2363 } else if ((s64)seq - (s64)con->in_seq > 1) {
2364 pr_err("read_partial_message bad seq %lld expected %lld\n",
2365 seq, con->in_seq + 1);
2366 con->error_msg = "bad message sequence # for incoming message";
2367 return -EBADE;
2368 }
2369
2370 /* allocate message? */
2371 if (!con->in_msg) {
2372 int skip = 0;
2373
2374 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2375 front_len, data_len);
2376 ret = ceph_con_in_msg_alloc(con, &skip);
2377 if (ret < 0)
2378 return ret;
2379
2380 BUG_ON(!con->in_msg ^ skip);
2381 if (skip) {
2382 /* skip this message */
2383 dout("alloc_msg said skip message\n");
2384 con->in_base_pos = -front_len - middle_len - data_len -
2385 sizeof_footer(con);
2386 con->in_tag = CEPH_MSGR_TAG_READY;
2387 con->in_seq++;
2388 return 1;
2389 }
2390
2391 BUG_ON(!con->in_msg);
2392 BUG_ON(con->in_msg->con != con);
2393 m = con->in_msg;
2394 m->front.iov_len = 0; /* haven't read it yet */
2395 if (m->middle)
2396 m->middle->vec.iov_len = 0;
2397
2398 /* prepare for data payload, if any */
2399
2400 if (data_len)
2401 prepare_message_data(con->in_msg, data_len);
2402 }
2403
2404 /* front */
2405 ret = read_partial_message_section(con, &m->front, front_len,
2406 &con->in_front_crc);
2407 if (ret <= 0)
2408 return ret;
2409
2410 /* middle */
2411 if (m->middle) {
2412 ret = read_partial_message_section(con, &m->middle->vec,
2413 middle_len,
2414 &con->in_middle_crc);
2415 if (ret <= 0)
2416 return ret;
2417 }
2418
2419 /* (page) data */
2420 if (data_len) {
2421 ret = read_partial_msg_data(con);
2422 if (ret <= 0)
2423 return ret;
2424 }
2425
2426 /* footer */
2427 size = sizeof_footer(con);
2428 end += size;
2429 ret = read_partial(con, end, size, &m->footer);
2430 if (ret <= 0)
2431 return ret;
2432
2433 if (!need_sign) {
2434 m->footer.flags = m->old_footer.flags;
2435 m->footer.sig = 0;
2436 }
2437
2438 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2439 m, front_len, m->footer.front_crc, middle_len,
2440 m->footer.middle_crc, data_len, m->footer.data_crc);
2441
2442 /* crc ok? */
2443 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2444 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2445 m, con->in_front_crc, m->footer.front_crc);
2446 return -EBADMSG;
2447 }
2448 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2449 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2450 m, con->in_middle_crc, m->footer.middle_crc);
2451 return -EBADMSG;
2452 }
2453 if (do_datacrc &&
2454 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2455 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2456 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2457 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2458 return -EBADMSG;
2459 }
2460
2461 if (need_sign && con->ops->check_message_signature &&
2462 con->ops->check_message_signature(m)) {
2463 pr_err("read_partial_message %p signature check failed\n", m);
2464 return -EBADMSG;
2465 }
2466
2467 return 1; /* done! */
2468 }
2469
2470 /*
2471 * Process message. This happens in the worker thread. The callback should
2472 * be careful not to do anything that waits on other incoming messages or it
2473 * may deadlock.
2474 */
2475 static void process_message(struct ceph_connection *con)
2476 {
2477 struct ceph_msg *msg = con->in_msg;
2478
2479 BUG_ON(con->in_msg->con != con);
2480 con->in_msg = NULL;
2481
2482 /* if first message, set peer_name */
2483 if (con->peer_name.type == 0)
2484 con->peer_name = msg->hdr.src;
2485
2486 con->in_seq++;
2487 mutex_unlock(&con->mutex);
2488
2489 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2490 msg, le64_to_cpu(msg->hdr.seq),
2491 ENTITY_NAME(msg->hdr.src),
2492 le16_to_cpu(msg->hdr.type),
2493 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2494 le32_to_cpu(msg->hdr.front_len),
2495 le32_to_cpu(msg->hdr.data_len),
2496 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2497 con->ops->dispatch(con, msg);
2498
2499 mutex_lock(&con->mutex);
2500 }
2501
2502 static int read_keepalive_ack(struct ceph_connection *con)
2503 {
2504 struct ceph_timespec ceph_ts;
2505 size_t size = sizeof(ceph_ts);
2506 int ret = read_partial(con, size, size, &ceph_ts);
2507 if (ret <= 0)
2508 return ret;
2509 ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2510 prepare_read_tag(con);
2511 return 1;
2512 }
2513
2514 /*
2515 * Write something to the socket. Called in a worker thread when the
2516 * socket appears to be writeable and we have something ready to send.
2517 */
2518 static int try_write(struct ceph_connection *con)
2519 {
2520 int ret = 1;
2521
2522 dout("try_write start %p state %lu\n", con, con->state);
2523
2524 more:
2525 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2526
2527 /* open the socket first? */
2528 if (con->state == CON_STATE_PREOPEN) {
2529 BUG_ON(con->sock);
2530 con->state = CON_STATE_CONNECTING;
2531
2532 con_out_kvec_reset(con);
2533 prepare_write_banner(con);
2534 prepare_read_banner(con);
2535
2536 BUG_ON(con->in_msg);
2537 con->in_tag = CEPH_MSGR_TAG_READY;
2538 dout("try_write initiating connect on %p new state %lu\n",
2539 con, con->state);
2540 ret = ceph_tcp_connect(con);
2541 if (ret < 0) {
2542 con->error_msg = "connect error";
2543 goto out;
2544 }
2545 }
2546
2547 more_kvec:
2548 /* kvec data queued? */
2549 if (con->out_kvec_left) {
2550 ret = write_partial_kvec(con);
2551 if (ret <= 0)
2552 goto out;
2553 }
2554 if (con->out_skip) {
2555 ret = write_partial_skip(con);
2556 if (ret <= 0)
2557 goto out;
2558 }
2559
2560 /* msg pages? */
2561 if (con->out_msg) {
2562 if (con->out_msg_done) {
2563 ceph_msg_put(con->out_msg);
2564 con->out_msg = NULL; /* we're done with this one */
2565 goto do_next;
2566 }
2567
2568 ret = write_partial_message_data(con);
2569 if (ret == 1)
2570 goto more_kvec; /* we need to send the footer, too! */
2571 if (ret == 0)
2572 goto out;
2573 if (ret < 0) {
2574 dout("try_write write_partial_message_data err %d\n",
2575 ret);
2576 goto out;
2577 }
2578 }
2579
2580 do_next:
2581 if (con->state == CON_STATE_OPEN) {
2582 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2583 prepare_write_keepalive(con);
2584 goto more;
2585 }
2586 /* is anything else pending? */
2587 if (!list_empty(&con->out_queue)) {
2588 prepare_write_message(con);
2589 goto more;
2590 }
2591 if (con->in_seq > con->in_seq_acked) {
2592 prepare_write_ack(con);
2593 goto more;
2594 }
2595 }
2596
2597 /* Nothing to do! */
2598 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2599 dout("try_write nothing else to write.\n");
2600 ret = 0;
2601 out:
2602 dout("try_write done on %p ret %d\n", con, ret);
2603 return ret;
2604 }
2605
2606
2607
2608 /*
2609 * Read what we can from the socket.
2610 */
2611 static int try_read(struct ceph_connection *con)
2612 {
2613 int ret = -1;
2614
2615 more:
2616 dout("try_read start on %p state %lu\n", con, con->state);
2617 if (con->state != CON_STATE_CONNECTING &&
2618 con->state != CON_STATE_NEGOTIATING &&
2619 con->state != CON_STATE_OPEN)
2620 return 0;
2621
2622 BUG_ON(!con->sock);
2623
2624 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2625 con->in_base_pos);
2626
2627 if (con->state == CON_STATE_CONNECTING) {
2628 dout("try_read connecting\n");
2629 ret = read_partial_banner(con);
2630 if (ret <= 0)
2631 goto out;
2632 ret = process_banner(con);
2633 if (ret < 0)
2634 goto out;
2635
2636 con->state = CON_STATE_NEGOTIATING;
2637
2638 /*
2639 * Received banner is good, exchange connection info.
2640 * Do not reset out_kvec, as sending our banner raced
2641 * with receiving peer banner after connect completed.
2642 */
2643 ret = prepare_write_connect(con);
2644 if (ret < 0)
2645 goto out;
2646 prepare_read_connect(con);
2647
2648 /* Send connection info before awaiting response */
2649 goto out;
2650 }
2651
2652 if (con->state == CON_STATE_NEGOTIATING) {
2653 dout("try_read negotiating\n");
2654 ret = read_partial_connect(con);
2655 if (ret <= 0)
2656 goto out;
2657 ret = process_connect(con);
2658 if (ret < 0)
2659 goto out;
2660 goto more;
2661 }
2662
2663 WARN_ON(con->state != CON_STATE_OPEN);
2664
2665 if (con->in_base_pos < 0) {
2666 /*
2667 * skipping + discarding content.
2668 *
2669 * FIXME: there must be a better way to do this!
2670 */
2671 static char buf[SKIP_BUF_SIZE];
2672 int skip = min((int) sizeof (buf), -con->in_base_pos);
2673
2674 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2675 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2676 if (ret <= 0)
2677 goto out;
2678 con->in_base_pos += ret;
2679 if (con->in_base_pos)
2680 goto more;
2681 }
2682 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2683 /*
2684 * what's next?
2685 */
2686 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2687 if (ret <= 0)
2688 goto out;
2689 dout("try_read got tag %d\n", (int)con->in_tag);
2690 switch (con->in_tag) {
2691 case CEPH_MSGR_TAG_MSG:
2692 prepare_read_message(con);
2693 break;
2694 case CEPH_MSGR_TAG_ACK:
2695 prepare_read_ack(con);
2696 break;
2697 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2698 prepare_read_keepalive_ack(con);
2699 break;
2700 case CEPH_MSGR_TAG_CLOSE:
2701 con_close_socket(con);
2702 con->state = CON_STATE_CLOSED;
2703 goto out;
2704 default:
2705 goto bad_tag;
2706 }
2707 }
2708 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2709 ret = read_partial_message(con);
2710 if (ret <= 0) {
2711 switch (ret) {
2712 case -EBADMSG:
2713 con->error_msg = "bad crc/signature";
2714 /* fall through */
2715 case -EBADE:
2716 ret = -EIO;
2717 break;
2718 case -EIO:
2719 con->error_msg = "io error";
2720 break;
2721 }
2722 goto out;
2723 }
2724 if (con->in_tag == CEPH_MSGR_TAG_READY)
2725 goto more;
2726 process_message(con);
2727 if (con->state == CON_STATE_OPEN)
2728 prepare_read_tag(con);
2729 goto more;
2730 }
2731 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2732 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2733 /*
2734 * the final handshake seq exchange is semantically
2735 * equivalent to an ACK
2736 */
2737 ret = read_partial_ack(con);
2738 if (ret <= 0)
2739 goto out;
2740 process_ack(con);
2741 goto more;
2742 }
2743 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2744 ret = read_keepalive_ack(con);
2745 if (ret <= 0)
2746 goto out;
2747 goto more;
2748 }
2749
2750 out:
2751 dout("try_read done on %p ret %d\n", con, ret);
2752 return ret;
2753
2754 bad_tag:
2755 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2756 con->error_msg = "protocol error, garbage tag";
2757 ret = -1;
2758 goto out;
2759 }
2760
2761
2762 /*
2763 * Atomically queue work on a connection after the specified delay.
2764 * Bump @con reference to avoid races with connection teardown.
2765 * Returns 0 if work was queued, or an error code otherwise.
2766 */
2767 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2768 {
2769 if (!con->ops->get(con)) {
2770 dout("%s %p ref count 0\n", __func__, con);
2771 return -ENOENT;
2772 }
2773
2774 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2775 dout("%s %p - already queued\n", __func__, con);
2776 con->ops->put(con);
2777 return -EBUSY;
2778 }
2779
2780 dout("%s %p %lu\n", __func__, con, delay);
2781 return 0;
2782 }
2783
2784 static void queue_con(struct ceph_connection *con)
2785 {
2786 (void) queue_con_delay(con, 0);
2787 }
2788
2789 static void cancel_con(struct ceph_connection *con)
2790 {
2791 if (cancel_delayed_work(&con->work)) {
2792 dout("%s %p\n", __func__, con);
2793 con->ops->put(con);
2794 }
2795 }
2796
2797 static bool con_sock_closed(struct ceph_connection *con)
2798 {
2799 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2800 return false;
2801
2802 #define CASE(x) \
2803 case CON_STATE_ ## x: \
2804 con->error_msg = "socket closed (con state " #x ")"; \
2805 break;
2806
2807 switch (con->state) {
2808 CASE(CLOSED);
2809 CASE(PREOPEN);
2810 CASE(CONNECTING);
2811 CASE(NEGOTIATING);
2812 CASE(OPEN);
2813 CASE(STANDBY);
2814 default:
2815 pr_warn("%s con %p unrecognized state %lu\n",
2816 __func__, con, con->state);
2817 con->error_msg = "unrecognized con state";
2818 BUG();
2819 break;
2820 }
2821 #undef CASE
2822
2823 return true;
2824 }
2825
2826 static bool con_backoff(struct ceph_connection *con)
2827 {
2828 int ret;
2829
2830 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2831 return false;
2832
2833 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2834 if (ret) {
2835 dout("%s: con %p FAILED to back off %lu\n", __func__,
2836 con, con->delay);
2837 BUG_ON(ret == -ENOENT);
2838 con_flag_set(con, CON_FLAG_BACKOFF);
2839 }
2840
2841 return true;
2842 }
2843
2844 /* Finish fault handling; con->mutex must *not* be held here */
2845
2846 static void con_fault_finish(struct ceph_connection *con)
2847 {
2848 dout("%s %p\n", __func__, con);
2849
2850 /*
2851 * in case we faulted due to authentication, invalidate our
2852 * current tickets so that we can get new ones.
2853 */
2854 if (con->auth_retry) {
2855 dout("auth_retry %d, invalidating\n", con->auth_retry);
2856 if (con->ops->invalidate_authorizer)
2857 con->ops->invalidate_authorizer(con);
2858 con->auth_retry = 0;
2859 }
2860
2861 if (con->ops->fault)
2862 con->ops->fault(con);
2863 }
2864
2865 /*
2866 * Do some work on a connection. Drop a connection ref when we're done.
2867 */
2868 static void ceph_con_workfn(struct work_struct *work)
2869 {
2870 struct ceph_connection *con = container_of(work, struct ceph_connection,
2871 work.work);
2872 bool fault;
2873
2874 mutex_lock(&con->mutex);
2875 while (true) {
2876 int ret;
2877
2878 if ((fault = con_sock_closed(con))) {
2879 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2880 break;
2881 }
2882 if (con_backoff(con)) {
2883 dout("%s: con %p BACKOFF\n", __func__, con);
2884 break;
2885 }
2886 if (con->state == CON_STATE_STANDBY) {
2887 dout("%s: con %p STANDBY\n", __func__, con);
2888 break;
2889 }
2890 if (con->state == CON_STATE_CLOSED) {
2891 dout("%s: con %p CLOSED\n", __func__, con);
2892 BUG_ON(con->sock);
2893 break;
2894 }
2895 if (con->state == CON_STATE_PREOPEN) {
2896 dout("%s: con %p PREOPEN\n", __func__, con);
2897 BUG_ON(con->sock);
2898 }
2899
2900 ret = try_read(con);
2901 if (ret < 0) {
2902 if (ret == -EAGAIN)
2903 continue;
2904 if (!con->error_msg)
2905 con->error_msg = "socket error on read";
2906 fault = true;
2907 break;
2908 }
2909
2910 ret = try_write(con);
2911 if (ret < 0) {
2912 if (ret == -EAGAIN)
2913 continue;
2914 if (!con->error_msg)
2915 con->error_msg = "socket error on write";
2916 fault = true;
2917 }
2918
2919 break; /* If we make it to here, we're done */
2920 }
2921 if (fault)
2922 con_fault(con);
2923 mutex_unlock(&con->mutex);
2924
2925 if (fault)
2926 con_fault_finish(con);
2927
2928 con->ops->put(con);
2929 }
2930
2931 /*
2932 * Generic error/fault handler. A retry mechanism is used with
2933 * exponential backoff
2934 */
2935 static void con_fault(struct ceph_connection *con)
2936 {
2937 dout("fault %p state %lu to peer %s\n",
2938 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2939
2940 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2941 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2942 con->error_msg = NULL;
2943
2944 WARN_ON(con->state != CON_STATE_CONNECTING &&
2945 con->state != CON_STATE_NEGOTIATING &&
2946 con->state != CON_STATE_OPEN);
2947
2948 con_close_socket(con);
2949
2950 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2951 dout("fault on LOSSYTX channel, marking CLOSED\n");
2952 con->state = CON_STATE_CLOSED;
2953 return;
2954 }
2955
2956 if (con->in_msg) {
2957 BUG_ON(con->in_msg->con != con);
2958 ceph_msg_put(con->in_msg);
2959 con->in_msg = NULL;
2960 }
2961
2962 /* Requeue anything that hasn't been acked */
2963 list_splice_init(&con->out_sent, &con->out_queue);
2964
2965 /* If there are no messages queued or keepalive pending, place
2966 * the connection in a STANDBY state */
2967 if (list_empty(&con->out_queue) &&
2968 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2969 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2970 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2971 con->state = CON_STATE_STANDBY;
2972 } else {
2973 /* retry after a delay. */
2974 con->state = CON_STATE_PREOPEN;
2975 if (con->delay == 0)
2976 con->delay = BASE_DELAY_INTERVAL;
2977 else if (con->delay < MAX_DELAY_INTERVAL)
2978 con->delay *= 2;
2979 con_flag_set(con, CON_FLAG_BACKOFF);
2980 queue_con(con);
2981 }
2982 }
2983
2984
2985
2986 /*
2987 * initialize a new messenger instance
2988 */
2989 void ceph_messenger_init(struct ceph_messenger *msgr,
2990 struct ceph_entity_addr *myaddr)
2991 {
2992 spin_lock_init(&msgr->global_seq_lock);
2993
2994 if (myaddr)
2995 msgr->inst.addr = *myaddr;
2996
2997 /* select a random nonce */
2998 msgr->inst.addr.type = 0;
2999 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3000 encode_my_addr(msgr);
3001
3002 atomic_set(&msgr->stopping, 0);
3003 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3004
3005 dout("%s %p\n", __func__, msgr);
3006 }
3007 EXPORT_SYMBOL(ceph_messenger_init);
3008
3009 void ceph_messenger_fini(struct ceph_messenger *msgr)
3010 {
3011 put_net(read_pnet(&msgr->net));
3012 }
3013 EXPORT_SYMBOL(ceph_messenger_fini);
3014
3015 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3016 {
3017 if (msg->con)
3018 msg->con->ops->put(msg->con);
3019
3020 msg->con = con ? con->ops->get(con) : NULL;
3021 BUG_ON(msg->con != con);
3022 }
3023
3024 static void clear_standby(struct ceph_connection *con)
3025 {
3026 /* come back from STANDBY? */
3027 if (con->state == CON_STATE_STANDBY) {
3028 dout("clear_standby %p and ++connect_seq\n", con);
3029 con->state = CON_STATE_PREOPEN;
3030 con->connect_seq++;
3031 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3032 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3033 }
3034 }
3035
3036 /*
3037 * Queue up an outgoing message on the given connection.
3038 */
3039 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3040 {
3041 /* set src+dst */
3042 msg->hdr.src = con->msgr->inst.name;
3043 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3044 msg->needs_out_seq = true;
3045
3046 mutex_lock(&con->mutex);
3047
3048 if (con->state == CON_STATE_CLOSED) {
3049 dout("con_send %p closed, dropping %p\n", con, msg);
3050 ceph_msg_put(msg);
3051 mutex_unlock(&con->mutex);
3052 return;
3053 }
3054
3055 msg_con_set(msg, con);
3056
3057 BUG_ON(!list_empty(&msg->list_head));
3058 list_add_tail(&msg->list_head, &con->out_queue);
3059 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3060 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3061 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3062 le32_to_cpu(msg->hdr.front_len),
3063 le32_to_cpu(msg->hdr.middle_len),
3064 le32_to_cpu(msg->hdr.data_len));
3065
3066 clear_standby(con);
3067 mutex_unlock(&con->mutex);
3068
3069 /* if there wasn't anything waiting to send before, queue
3070 * new work */
3071 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3072 queue_con(con);
3073 }
3074 EXPORT_SYMBOL(ceph_con_send);
3075
3076 /*
3077 * Revoke a message that was previously queued for send
3078 */
3079 void ceph_msg_revoke(struct ceph_msg *msg)
3080 {
3081 struct ceph_connection *con = msg->con;
3082
3083 if (!con) {
3084 dout("%s msg %p null con\n", __func__, msg);
3085 return; /* Message not in our possession */
3086 }
3087
3088 mutex_lock(&con->mutex);
3089 if (!list_empty(&msg->list_head)) {
3090 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3091 list_del_init(&msg->list_head);
3092 msg->hdr.seq = 0;
3093
3094 ceph_msg_put(msg);
3095 }
3096 if (con->out_msg == msg) {
3097 BUG_ON(con->out_skip);
3098 /* footer */
3099 if (con->out_msg_done) {
3100 con->out_skip += con_out_kvec_skip(con);
3101 } else {
3102 BUG_ON(!msg->data_length);
3103 con->out_skip += sizeof_footer(con);
3104 }
3105 /* data, middle, front */
3106 if (msg->data_length)
3107 con->out_skip += msg->cursor.total_resid;
3108 if (msg->middle)
3109 con->out_skip += con_out_kvec_skip(con);
3110 con->out_skip += con_out_kvec_skip(con);
3111
3112 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3113 __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3114 msg->hdr.seq = 0;
3115 con->out_msg = NULL;
3116 ceph_msg_put(msg);
3117 }
3118
3119 mutex_unlock(&con->mutex);
3120 }
3121
3122 /*
3123 * Revoke a message that we may be reading data into
3124 */
3125 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3126 {
3127 struct ceph_connection *con = msg->con;
3128
3129 if (!con) {
3130 dout("%s msg %p null con\n", __func__, msg);
3131 return; /* Message not in our possession */
3132 }
3133
3134 mutex_lock(&con->mutex);
3135 if (con->in_msg == msg) {
3136 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3137 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3138 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3139
3140 /* skip rest of message */
3141 dout("%s %p msg %p revoked\n", __func__, con, msg);
3142 con->in_base_pos = con->in_base_pos -
3143 sizeof(struct ceph_msg_header) -
3144 front_len -
3145 middle_len -
3146 data_len -
3147 sizeof(struct ceph_msg_footer);
3148 ceph_msg_put(con->in_msg);
3149 con->in_msg = NULL;
3150 con->in_tag = CEPH_MSGR_TAG_READY;
3151 con->in_seq++;
3152 } else {
3153 dout("%s %p in_msg %p msg %p no-op\n",
3154 __func__, con, con->in_msg, msg);
3155 }
3156 mutex_unlock(&con->mutex);
3157 }
3158
3159 /*
3160 * Queue a keepalive byte to ensure the tcp connection is alive.
3161 */
3162 void ceph_con_keepalive(struct ceph_connection *con)
3163 {
3164 dout("con_keepalive %p\n", con);
3165 mutex_lock(&con->mutex);
3166 clear_standby(con);
3167 mutex_unlock(&con->mutex);
3168 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3169 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3170 queue_con(con);
3171 }
3172 EXPORT_SYMBOL(ceph_con_keepalive);
3173
3174 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3175 unsigned long interval)
3176 {
3177 if (interval > 0 &&
3178 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3179 struct timespec now = CURRENT_TIME;
3180 struct timespec ts;
3181 jiffies_to_timespec(interval, &ts);
3182 ts = timespec_add(con->last_keepalive_ack, ts);
3183 return timespec_compare(&now, &ts) >= 0;
3184 }
3185 return false;
3186 }
3187
3188 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3189 {
3190 struct ceph_msg_data *data;
3191
3192 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3193 return NULL;
3194
3195 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3196 if (data)
3197 data->type = type;
3198 INIT_LIST_HEAD(&data->links);
3199
3200 return data;
3201 }
3202
3203 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3204 {
3205 if (!data)
3206 return;
3207
3208 WARN_ON(!list_empty(&data->links));
3209 if (data->type == CEPH_MSG_DATA_PAGELIST)
3210 ceph_pagelist_release(data->pagelist);
3211 kmem_cache_free(ceph_msg_data_cache, data);
3212 }
3213
3214 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3215 size_t length, size_t alignment)
3216 {
3217 struct ceph_msg_data *data;
3218
3219 BUG_ON(!pages);
3220 BUG_ON(!length);
3221
3222 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3223 BUG_ON(!data);
3224 data->pages = pages;
3225 data->length = length;
3226 data->alignment = alignment & ~PAGE_MASK;
3227
3228 list_add_tail(&data->links, &msg->data);
3229 msg->data_length += length;
3230 }
3231 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3232
3233 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3234 struct ceph_pagelist *pagelist)
3235 {
3236 struct ceph_msg_data *data;
3237
3238 BUG_ON(!pagelist);
3239 BUG_ON(!pagelist->length);
3240
3241 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3242 BUG_ON(!data);
3243 data->pagelist = pagelist;
3244
3245 list_add_tail(&data->links, &msg->data);
3246 msg->data_length += pagelist->length;
3247 }
3248 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3249
3250 #ifdef CONFIG_BLOCK
3251 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3252 size_t length)
3253 {
3254 struct ceph_msg_data *data;
3255
3256 BUG_ON(!bio);
3257
3258 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3259 BUG_ON(!data);
3260 data->bio = bio;
3261 data->bio_length = length;
3262
3263 list_add_tail(&data->links, &msg->data);
3264 msg->data_length += length;
3265 }
3266 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3267 #endif /* CONFIG_BLOCK */
3268
3269 /*
3270 * construct a new message with given type, size
3271 * the new msg has a ref count of 1.
3272 */
3273 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3274 bool can_fail)
3275 {
3276 struct ceph_msg *m;
3277
3278 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3279 if (m == NULL)
3280 goto out;
3281
3282 m->hdr.type = cpu_to_le16(type);
3283 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3284 m->hdr.front_len = cpu_to_le32(front_len);
3285
3286 INIT_LIST_HEAD(&m->list_head);
3287 kref_init(&m->kref);
3288 INIT_LIST_HEAD(&m->data);
3289
3290 /* front */
3291 if (front_len) {
3292 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3293 if (m->front.iov_base == NULL) {
3294 dout("ceph_msg_new can't allocate %d bytes\n",
3295 front_len);
3296 goto out2;
3297 }
3298 } else {
3299 m->front.iov_base = NULL;
3300 }
3301 m->front_alloc_len = m->front.iov_len = front_len;
3302
3303 dout("ceph_msg_new %p front %d\n", m, front_len);
3304 return m;
3305
3306 out2:
3307 ceph_msg_put(m);
3308 out:
3309 if (!can_fail) {
3310 pr_err("msg_new can't create type %d front %d\n", type,
3311 front_len);
3312 WARN_ON(1);
3313 } else {
3314 dout("msg_new can't create type %d front %d\n", type,
3315 front_len);
3316 }
3317 return NULL;
3318 }
3319 EXPORT_SYMBOL(ceph_msg_new);
3320
3321 /*
3322 * Allocate "middle" portion of a message, if it is needed and wasn't
3323 * allocated by alloc_msg. This allows us to read a small fixed-size
3324 * per-type header in the front and then gracefully fail (i.e.,
3325 * propagate the error to the caller based on info in the front) when
3326 * the middle is too large.
3327 */
3328 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3329 {
3330 int type = le16_to_cpu(msg->hdr.type);
3331 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3332
3333 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3334 ceph_msg_type_name(type), middle_len);
3335 BUG_ON(!middle_len);
3336 BUG_ON(msg->middle);
3337
3338 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3339 if (!msg->middle)
3340 return -ENOMEM;
3341 return 0;
3342 }
3343
3344 /*
3345 * Allocate a message for receiving an incoming message on a
3346 * connection, and save the result in con->in_msg. Uses the
3347 * connection's private alloc_msg op if available.
3348 *
3349 * Returns 0 on success, or a negative error code.
3350 *
3351 * On success, if we set *skip = 1:
3352 * - the next message should be skipped and ignored.
3353 * - con->in_msg == NULL
3354 * or if we set *skip = 0:
3355 * - con->in_msg is non-null.
3356 * On error (ENOMEM, EAGAIN, ...),
3357 * - con->in_msg == NULL
3358 */
3359 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3360 {
3361 struct ceph_msg_header *hdr = &con->in_hdr;
3362 int middle_len = le32_to_cpu(hdr->middle_len);
3363 struct ceph_msg *msg;
3364 int ret = 0;
3365
3366 BUG_ON(con->in_msg != NULL);
3367 BUG_ON(!con->ops->alloc_msg);
3368
3369 mutex_unlock(&con->mutex);
3370 msg = con->ops->alloc_msg(con, hdr, skip);
3371 mutex_lock(&con->mutex);
3372 if (con->state != CON_STATE_OPEN) {
3373 if (msg)
3374 ceph_msg_put(msg);
3375 return -EAGAIN;
3376 }
3377 if (msg) {
3378 BUG_ON(*skip);
3379 msg_con_set(msg, con);
3380 con->in_msg = msg;
3381 } else {
3382 /*
3383 * Null message pointer means either we should skip
3384 * this message or we couldn't allocate memory. The
3385 * former is not an error.
3386 */
3387 if (*skip)
3388 return 0;
3389
3390 con->error_msg = "error allocating memory for incoming message";
3391 return -ENOMEM;
3392 }
3393 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3394
3395 if (middle_len && !con->in_msg->middle) {
3396 ret = ceph_alloc_middle(con, con->in_msg);
3397 if (ret < 0) {
3398 ceph_msg_put(con->in_msg);
3399 con->in_msg = NULL;
3400 }
3401 }
3402
3403 return ret;
3404 }
3405
3406
3407 /*
3408 * Free a generically kmalloc'd message.
3409 */
3410 static void ceph_msg_free(struct ceph_msg *m)
3411 {
3412 dout("%s %p\n", __func__, m);
3413 kvfree(m->front.iov_base);
3414 kmem_cache_free(ceph_msg_cache, m);
3415 }
3416
3417 static void ceph_msg_release(struct kref *kref)
3418 {
3419 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3420 struct ceph_msg_data *data, *next;
3421
3422 dout("%s %p\n", __func__, m);
3423 WARN_ON(!list_empty(&m->list_head));
3424
3425 msg_con_set(m, NULL);
3426
3427 /* drop middle, data, if any */
3428 if (m->middle) {
3429 ceph_buffer_put(m->middle);
3430 m->middle = NULL;
3431 }
3432
3433 list_for_each_entry_safe(data, next, &m->data, links) {
3434 list_del_init(&data->links);
3435 ceph_msg_data_destroy(data);
3436 }
3437 m->data_length = 0;
3438
3439 if (m->pool)
3440 ceph_msgpool_put(m->pool, m);
3441 else
3442 ceph_msg_free(m);
3443 }
3444
3445 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3446 {
3447 dout("%s %p (was %d)\n", __func__, msg,
3448 kref_read(&msg->kref));
3449 kref_get(&msg->kref);
3450 return msg;
3451 }
3452 EXPORT_SYMBOL(ceph_msg_get);
3453
3454 void ceph_msg_put(struct ceph_msg *msg)
3455 {
3456 dout("%s %p (was %d)\n", __func__, msg,
3457 kref_read(&msg->kref));
3458 kref_put(&msg->kref, ceph_msg_release);
3459 }
3460 EXPORT_SYMBOL(ceph_msg_put);
3461
3462 void ceph_msg_dump(struct ceph_msg *msg)
3463 {
3464 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3465 msg->front_alloc_len, msg->data_length);
3466 print_hex_dump(KERN_DEBUG, "header: ",
3467 DUMP_PREFIX_OFFSET, 16, 1,
3468 &msg->hdr, sizeof(msg->hdr), true);
3469 print_hex_dump(KERN_DEBUG, " front: ",
3470 DUMP_PREFIX_OFFSET, 16, 1,
3471 msg->front.iov_base, msg->front.iov_len, true);
3472 if (msg->middle)
3473 print_hex_dump(KERN_DEBUG, "middle: ",
3474 DUMP_PREFIX_OFFSET, 16, 1,
3475 msg->middle->vec.iov_base,
3476 msg->middle->vec.iov_len, true);
3477 print_hex_dump(KERN_DEBUG, "footer: ",
3478 DUMP_PREFIX_OFFSET, 16, 1,
3479 &msg->footer, sizeof(msg->footer), true);
3480 }
3481 EXPORT_SYMBOL(ceph_msg_dump);