]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ceph/messenger.c
Merge tag 'drm-for-v4.15-part2-fixes' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-bionic-kernel.git] / net / ceph / messenger.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27
28 /*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37 /*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85 /*
86 * connection states
87 */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
94
95 /*
96 * ceph_connection flag bits
97 */
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
116 }
117 }
118
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 BUG_ON(!con_flag_valid(con_flag));
122
123 clear_bit(con_flag, &con->flags);
124 }
125
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 BUG_ON(!con_flag_valid(con_flag));
129
130 set_bit(con_flag, &con->flags);
131 }
132
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 BUG_ON(!con_flag_valid(con_flag));
136
137 return test_bit(con_flag, &con->flags);
138 }
139
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
142 {
143 BUG_ON(!con_flag_valid(con_flag));
144
145 return test_and_clear_bit(con_flag, &con->flags);
146 }
147
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
150 {
151 BUG_ON(!con_flag_valid(con_flag));
152
153 return test_and_set_bit(con_flag, &con->flags);
154 }
155
156 /* Slab caches for frequently-allocated structures */
157
158 static struct kmem_cache *ceph_msg_cache;
159 static struct kmem_cache *ceph_msg_data_cache;
160
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
166
167 #ifdef CONFIG_LOCKDEP
168 static struct lock_class_key socket_class;
169 #endif
170
171 /*
172 * When skipping (ignoring) a block of input we read it into a "skip
173 * buffer," which is this many bytes in size.
174 */
175 #define SKIP_BUF_SIZE 1024
176
177 static void queue_con(struct ceph_connection *con);
178 static void cancel_con(struct ceph_connection *con);
179 static void ceph_con_workfn(struct work_struct *);
180 static void con_fault(struct ceph_connection *con);
181
182 /*
183 * Nicely render a sockaddr as a string. An array of formatted
184 * strings is used, to approximate reentrancy.
185 */
186 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
187 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
188 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
189 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
190
191 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
192 static atomic_t addr_str_seq = ATOMIC_INIT(0);
193
194 static struct page *zero_page; /* used in certain error cases */
195
196 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
197 {
198 int i;
199 char *s;
200 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
201 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
202
203 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
204 s = addr_str[i];
205
206 switch (ss->ss_family) {
207 case AF_INET:
208 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
209 ntohs(in4->sin_port));
210 break;
211
212 case AF_INET6:
213 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
214 ntohs(in6->sin6_port));
215 break;
216
217 default:
218 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
219 ss->ss_family);
220 }
221
222 return s;
223 }
224 EXPORT_SYMBOL(ceph_pr_addr);
225
226 static void encode_my_addr(struct ceph_messenger *msgr)
227 {
228 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
229 ceph_encode_addr(&msgr->my_enc_addr);
230 }
231
232 /*
233 * work queue for all reading and writing to/from the socket.
234 */
235 static struct workqueue_struct *ceph_msgr_wq;
236
237 static int ceph_msgr_slab_init(void)
238 {
239 BUG_ON(ceph_msg_cache);
240 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
241 if (!ceph_msg_cache)
242 return -ENOMEM;
243
244 BUG_ON(ceph_msg_data_cache);
245 ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
246 if (ceph_msg_data_cache)
247 return 0;
248
249 kmem_cache_destroy(ceph_msg_cache);
250 ceph_msg_cache = NULL;
251
252 return -ENOMEM;
253 }
254
255 static void ceph_msgr_slab_exit(void)
256 {
257 BUG_ON(!ceph_msg_data_cache);
258 kmem_cache_destroy(ceph_msg_data_cache);
259 ceph_msg_data_cache = NULL;
260
261 BUG_ON(!ceph_msg_cache);
262 kmem_cache_destroy(ceph_msg_cache);
263 ceph_msg_cache = NULL;
264 }
265
266 static void _ceph_msgr_exit(void)
267 {
268 if (ceph_msgr_wq) {
269 destroy_workqueue(ceph_msgr_wq);
270 ceph_msgr_wq = NULL;
271 }
272
273 BUG_ON(zero_page == NULL);
274 put_page(zero_page);
275 zero_page = NULL;
276
277 ceph_msgr_slab_exit();
278 }
279
280 int ceph_msgr_init(void)
281 {
282 if (ceph_msgr_slab_init())
283 return -ENOMEM;
284
285 BUG_ON(zero_page != NULL);
286 zero_page = ZERO_PAGE(0);
287 get_page(zero_page);
288
289 /*
290 * The number of active work items is limited by the number of
291 * connections, so leave @max_active at default.
292 */
293 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
294 if (ceph_msgr_wq)
295 return 0;
296
297 pr_err("msgr_init failed to create workqueue\n");
298 _ceph_msgr_exit();
299
300 return -ENOMEM;
301 }
302 EXPORT_SYMBOL(ceph_msgr_init);
303
304 void ceph_msgr_exit(void)
305 {
306 BUG_ON(ceph_msgr_wq == NULL);
307
308 _ceph_msgr_exit();
309 }
310 EXPORT_SYMBOL(ceph_msgr_exit);
311
312 void ceph_msgr_flush(void)
313 {
314 flush_workqueue(ceph_msgr_wq);
315 }
316 EXPORT_SYMBOL(ceph_msgr_flush);
317
318 /* Connection socket state transition functions */
319
320 static void con_sock_state_init(struct ceph_connection *con)
321 {
322 int old_state;
323
324 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
325 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
326 printk("%s: unexpected old state %d\n", __func__, old_state);
327 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
328 CON_SOCK_STATE_CLOSED);
329 }
330
331 static void con_sock_state_connecting(struct ceph_connection *con)
332 {
333 int old_state;
334
335 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
336 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
337 printk("%s: unexpected old state %d\n", __func__, old_state);
338 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
339 CON_SOCK_STATE_CONNECTING);
340 }
341
342 static void con_sock_state_connected(struct ceph_connection *con)
343 {
344 int old_state;
345
346 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
347 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
348 printk("%s: unexpected old state %d\n", __func__, old_state);
349 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
350 CON_SOCK_STATE_CONNECTED);
351 }
352
353 static void con_sock_state_closing(struct ceph_connection *con)
354 {
355 int old_state;
356
357 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
358 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
359 old_state != CON_SOCK_STATE_CONNECTED &&
360 old_state != CON_SOCK_STATE_CLOSING))
361 printk("%s: unexpected old state %d\n", __func__, old_state);
362 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
363 CON_SOCK_STATE_CLOSING);
364 }
365
366 static void con_sock_state_closed(struct ceph_connection *con)
367 {
368 int old_state;
369
370 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
371 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
372 old_state != CON_SOCK_STATE_CLOSING &&
373 old_state != CON_SOCK_STATE_CONNECTING &&
374 old_state != CON_SOCK_STATE_CLOSED))
375 printk("%s: unexpected old state %d\n", __func__, old_state);
376 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
377 CON_SOCK_STATE_CLOSED);
378 }
379
380 /*
381 * socket callback functions
382 */
383
384 /* data available on socket, or listen socket received a connect */
385 static void ceph_sock_data_ready(struct sock *sk)
386 {
387 struct ceph_connection *con = sk->sk_user_data;
388 if (atomic_read(&con->msgr->stopping)) {
389 return;
390 }
391
392 if (sk->sk_state != TCP_CLOSE_WAIT) {
393 dout("%s on %p state = %lu, queueing work\n", __func__,
394 con, con->state);
395 queue_con(con);
396 }
397 }
398
399 /* socket has buffer space for writing */
400 static void ceph_sock_write_space(struct sock *sk)
401 {
402 struct ceph_connection *con = sk->sk_user_data;
403
404 /* only queue to workqueue if there is data we want to write,
405 * and there is sufficient space in the socket buffer to accept
406 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
407 * doesn't get called again until try_write() fills the socket
408 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
409 * and net/core/stream.c:sk_stream_write_space().
410 */
411 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
412 if (sk_stream_is_writeable(sk)) {
413 dout("%s %p queueing write work\n", __func__, con);
414 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
415 queue_con(con);
416 }
417 } else {
418 dout("%s %p nothing to write\n", __func__, con);
419 }
420 }
421
422 /* socket's state has changed */
423 static void ceph_sock_state_change(struct sock *sk)
424 {
425 struct ceph_connection *con = sk->sk_user_data;
426
427 dout("%s %p state = %lu sk_state = %u\n", __func__,
428 con, con->state, sk->sk_state);
429
430 switch (sk->sk_state) {
431 case TCP_CLOSE:
432 dout("%s TCP_CLOSE\n", __func__);
433 /* fall through */
434 case TCP_CLOSE_WAIT:
435 dout("%s TCP_CLOSE_WAIT\n", __func__);
436 con_sock_state_closing(con);
437 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
438 queue_con(con);
439 break;
440 case TCP_ESTABLISHED:
441 dout("%s TCP_ESTABLISHED\n", __func__);
442 con_sock_state_connected(con);
443 queue_con(con);
444 break;
445 default: /* Everything else is uninteresting */
446 break;
447 }
448 }
449
450 /*
451 * set up socket callbacks
452 */
453 static void set_sock_callbacks(struct socket *sock,
454 struct ceph_connection *con)
455 {
456 struct sock *sk = sock->sk;
457 sk->sk_user_data = con;
458 sk->sk_data_ready = ceph_sock_data_ready;
459 sk->sk_write_space = ceph_sock_write_space;
460 sk->sk_state_change = ceph_sock_state_change;
461 }
462
463
464 /*
465 * socket helpers
466 */
467
468 /*
469 * initiate connection to a remote socket.
470 */
471 static int ceph_tcp_connect(struct ceph_connection *con)
472 {
473 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
474 struct socket *sock;
475 unsigned int noio_flag;
476 int ret;
477
478 BUG_ON(con->sock);
479
480 /* sock_create_kern() allocates with GFP_KERNEL */
481 noio_flag = memalloc_noio_save();
482 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
483 SOCK_STREAM, IPPROTO_TCP, &sock);
484 memalloc_noio_restore(noio_flag);
485 if (ret)
486 return ret;
487 sock->sk->sk_allocation = GFP_NOFS;
488
489 #ifdef CONFIG_LOCKDEP
490 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
491 #endif
492
493 set_sock_callbacks(sock, con);
494
495 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
496
497 con_sock_state_connecting(con);
498 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
499 O_NONBLOCK);
500 if (ret == -EINPROGRESS) {
501 dout("connect %s EINPROGRESS sk_state = %u\n",
502 ceph_pr_addr(&con->peer_addr.in_addr),
503 sock->sk->sk_state);
504 } else if (ret < 0) {
505 pr_err("connect %s error %d\n",
506 ceph_pr_addr(&con->peer_addr.in_addr), ret);
507 sock_release(sock);
508 return ret;
509 }
510
511 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
512 int optval = 1;
513
514 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
515 (char *)&optval, sizeof(optval));
516 if (ret)
517 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
518 ret);
519 }
520
521 con->sock = sock;
522 return 0;
523 }
524
525 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
526 {
527 struct kvec iov = {buf, len};
528 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
529 int r;
530
531 iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
532 r = sock_recvmsg(sock, &msg, msg.msg_flags);
533 if (r == -EAGAIN)
534 r = 0;
535 return r;
536 }
537
538 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
539 int page_offset, size_t length)
540 {
541 struct bio_vec bvec = {
542 .bv_page = page,
543 .bv_offset = page_offset,
544 .bv_len = length
545 };
546 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
547 int r;
548
549 BUG_ON(page_offset + length > PAGE_SIZE);
550 iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
551 r = sock_recvmsg(sock, &msg, msg.msg_flags);
552 if (r == -EAGAIN)
553 r = 0;
554 return r;
555 }
556
557 /*
558 * write something. @more is true if caller will be sending more data
559 * shortly.
560 */
561 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
562 size_t kvlen, size_t len, int more)
563 {
564 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
565 int r;
566
567 if (more)
568 msg.msg_flags |= MSG_MORE;
569 else
570 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
571
572 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
573 if (r == -EAGAIN)
574 r = 0;
575 return r;
576 }
577
578 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
579 int offset, size_t size, bool more)
580 {
581 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
582 int ret;
583
584 ret = kernel_sendpage(sock, page, offset, size, flags);
585 if (ret == -EAGAIN)
586 ret = 0;
587
588 return ret;
589 }
590
591 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
592 int offset, size_t size, bool more)
593 {
594 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
595 struct bio_vec bvec;
596 int ret;
597
598 /* sendpage cannot properly handle pages with page_count == 0,
599 * we need to fallback to sendmsg if that's the case */
600 if (page_count(page) >= 1)
601 return __ceph_tcp_sendpage(sock, page, offset, size, more);
602
603 bvec.bv_page = page;
604 bvec.bv_offset = offset;
605 bvec.bv_len = size;
606
607 if (more)
608 msg.msg_flags |= MSG_MORE;
609 else
610 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
611
612 iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
613 ret = sock_sendmsg(sock, &msg);
614 if (ret == -EAGAIN)
615 ret = 0;
616
617 return ret;
618 }
619
620 /*
621 * Shutdown/close the socket for the given connection.
622 */
623 static int con_close_socket(struct ceph_connection *con)
624 {
625 int rc = 0;
626
627 dout("con_close_socket on %p sock %p\n", con, con->sock);
628 if (con->sock) {
629 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
630 sock_release(con->sock);
631 con->sock = NULL;
632 }
633
634 /*
635 * Forcibly clear the SOCK_CLOSED flag. It gets set
636 * independent of the connection mutex, and we could have
637 * received a socket close event before we had the chance to
638 * shut the socket down.
639 */
640 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
641
642 con_sock_state_closed(con);
643 return rc;
644 }
645
646 /*
647 * Reset a connection. Discard all incoming and outgoing messages
648 * and clear *_seq state.
649 */
650 static void ceph_msg_remove(struct ceph_msg *msg)
651 {
652 list_del_init(&msg->list_head);
653
654 ceph_msg_put(msg);
655 }
656 static void ceph_msg_remove_list(struct list_head *head)
657 {
658 while (!list_empty(head)) {
659 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
660 list_head);
661 ceph_msg_remove(msg);
662 }
663 }
664
665 static void reset_connection(struct ceph_connection *con)
666 {
667 /* reset connection, out_queue, msg_ and connect_seq */
668 /* discard existing out_queue and msg_seq */
669 dout("reset_connection %p\n", con);
670 ceph_msg_remove_list(&con->out_queue);
671 ceph_msg_remove_list(&con->out_sent);
672
673 if (con->in_msg) {
674 BUG_ON(con->in_msg->con != con);
675 ceph_msg_put(con->in_msg);
676 con->in_msg = NULL;
677 }
678
679 con->connect_seq = 0;
680 con->out_seq = 0;
681 if (con->out_msg) {
682 BUG_ON(con->out_msg->con != con);
683 ceph_msg_put(con->out_msg);
684 con->out_msg = NULL;
685 }
686 con->in_seq = 0;
687 con->in_seq_acked = 0;
688
689 con->out_skip = 0;
690 }
691
692 /*
693 * mark a peer down. drop any open connections.
694 */
695 void ceph_con_close(struct ceph_connection *con)
696 {
697 mutex_lock(&con->mutex);
698 dout("con_close %p peer %s\n", con,
699 ceph_pr_addr(&con->peer_addr.in_addr));
700 con->state = CON_STATE_CLOSED;
701
702 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
703 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
704 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
705 con_flag_clear(con, CON_FLAG_BACKOFF);
706
707 reset_connection(con);
708 con->peer_global_seq = 0;
709 cancel_con(con);
710 con_close_socket(con);
711 mutex_unlock(&con->mutex);
712 }
713 EXPORT_SYMBOL(ceph_con_close);
714
715 /*
716 * Reopen a closed connection, with a new peer address.
717 */
718 void ceph_con_open(struct ceph_connection *con,
719 __u8 entity_type, __u64 entity_num,
720 struct ceph_entity_addr *addr)
721 {
722 mutex_lock(&con->mutex);
723 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
724
725 WARN_ON(con->state != CON_STATE_CLOSED);
726 con->state = CON_STATE_PREOPEN;
727
728 con->peer_name.type = (__u8) entity_type;
729 con->peer_name.num = cpu_to_le64(entity_num);
730
731 memcpy(&con->peer_addr, addr, sizeof(*addr));
732 con->delay = 0; /* reset backoff memory */
733 mutex_unlock(&con->mutex);
734 queue_con(con);
735 }
736 EXPORT_SYMBOL(ceph_con_open);
737
738 /*
739 * return true if this connection ever successfully opened
740 */
741 bool ceph_con_opened(struct ceph_connection *con)
742 {
743 return con->connect_seq > 0;
744 }
745
746 /*
747 * initialize a new connection.
748 */
749 void ceph_con_init(struct ceph_connection *con, void *private,
750 const struct ceph_connection_operations *ops,
751 struct ceph_messenger *msgr)
752 {
753 dout("con_init %p\n", con);
754 memset(con, 0, sizeof(*con));
755 con->private = private;
756 con->ops = ops;
757 con->msgr = msgr;
758
759 con_sock_state_init(con);
760
761 mutex_init(&con->mutex);
762 INIT_LIST_HEAD(&con->out_queue);
763 INIT_LIST_HEAD(&con->out_sent);
764 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
765
766 con->state = CON_STATE_CLOSED;
767 }
768 EXPORT_SYMBOL(ceph_con_init);
769
770
771 /*
772 * We maintain a global counter to order connection attempts. Get
773 * a unique seq greater than @gt.
774 */
775 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
776 {
777 u32 ret;
778
779 spin_lock(&msgr->global_seq_lock);
780 if (msgr->global_seq < gt)
781 msgr->global_seq = gt;
782 ret = ++msgr->global_seq;
783 spin_unlock(&msgr->global_seq_lock);
784 return ret;
785 }
786
787 static void con_out_kvec_reset(struct ceph_connection *con)
788 {
789 BUG_ON(con->out_skip);
790
791 con->out_kvec_left = 0;
792 con->out_kvec_bytes = 0;
793 con->out_kvec_cur = &con->out_kvec[0];
794 }
795
796 static void con_out_kvec_add(struct ceph_connection *con,
797 size_t size, void *data)
798 {
799 int index = con->out_kvec_left;
800
801 BUG_ON(con->out_skip);
802 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
803
804 con->out_kvec[index].iov_len = size;
805 con->out_kvec[index].iov_base = data;
806 con->out_kvec_left++;
807 con->out_kvec_bytes += size;
808 }
809
810 /*
811 * Chop off a kvec from the end. Return residual number of bytes for
812 * that kvec, i.e. how many bytes would have been written if the kvec
813 * hadn't been nuked.
814 */
815 static int con_out_kvec_skip(struct ceph_connection *con)
816 {
817 int off = con->out_kvec_cur - con->out_kvec;
818 int skip = 0;
819
820 if (con->out_kvec_bytes > 0) {
821 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
822 BUG_ON(con->out_kvec_bytes < skip);
823 BUG_ON(!con->out_kvec_left);
824 con->out_kvec_bytes -= skip;
825 con->out_kvec_left--;
826 }
827
828 return skip;
829 }
830
831 #ifdef CONFIG_BLOCK
832
833 /*
834 * For a bio data item, a piece is whatever remains of the next
835 * entry in the current bio iovec, or the first entry in the next
836 * bio in the list.
837 */
838 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
839 size_t length)
840 {
841 struct ceph_msg_data *data = cursor->data;
842 struct bio *bio;
843
844 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
845
846 bio = data->bio;
847 BUG_ON(!bio);
848
849 cursor->resid = min(length, data->bio_length);
850 cursor->bio = bio;
851 cursor->bvec_iter = bio->bi_iter;
852 cursor->last_piece =
853 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
854 }
855
856 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
857 size_t *page_offset,
858 size_t *length)
859 {
860 struct ceph_msg_data *data = cursor->data;
861 struct bio *bio;
862 struct bio_vec bio_vec;
863
864 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
865
866 bio = cursor->bio;
867 BUG_ON(!bio);
868
869 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
870
871 *page_offset = (size_t) bio_vec.bv_offset;
872 BUG_ON(*page_offset >= PAGE_SIZE);
873 if (cursor->last_piece) /* pagelist offset is always 0 */
874 *length = cursor->resid;
875 else
876 *length = (size_t) bio_vec.bv_len;
877 BUG_ON(*length > cursor->resid);
878 BUG_ON(*page_offset + *length > PAGE_SIZE);
879
880 return bio_vec.bv_page;
881 }
882
883 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
884 size_t bytes)
885 {
886 struct bio *bio;
887 struct bio_vec bio_vec;
888
889 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
890
891 bio = cursor->bio;
892 BUG_ON(!bio);
893
894 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
895
896 /* Advance the cursor offset */
897
898 BUG_ON(cursor->resid < bytes);
899 cursor->resid -= bytes;
900
901 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
902
903 if (bytes < bio_vec.bv_len)
904 return false; /* more bytes to process in this segment */
905
906 /* Move on to the next segment, and possibly the next bio */
907
908 if (!cursor->bvec_iter.bi_size) {
909 bio = bio->bi_next;
910 cursor->bio = bio;
911 if (bio)
912 cursor->bvec_iter = bio->bi_iter;
913 else
914 memset(&cursor->bvec_iter, 0,
915 sizeof(cursor->bvec_iter));
916 }
917
918 if (!cursor->last_piece) {
919 BUG_ON(!cursor->resid);
920 BUG_ON(!bio);
921 /* A short read is OK, so use <= rather than == */
922 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
923 cursor->last_piece = true;
924 }
925
926 return true;
927 }
928 #endif /* CONFIG_BLOCK */
929
930 /*
931 * For a page array, a piece comes from the first page in the array
932 * that has not already been fully consumed.
933 */
934 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
935 size_t length)
936 {
937 struct ceph_msg_data *data = cursor->data;
938 int page_count;
939
940 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
941
942 BUG_ON(!data->pages);
943 BUG_ON(!data->length);
944
945 cursor->resid = min(length, data->length);
946 page_count = calc_pages_for(data->alignment, (u64)data->length);
947 cursor->page_offset = data->alignment & ~PAGE_MASK;
948 cursor->page_index = 0;
949 BUG_ON(page_count > (int)USHRT_MAX);
950 cursor->page_count = (unsigned short)page_count;
951 BUG_ON(length > SIZE_MAX - cursor->page_offset);
952 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
953 }
954
955 static struct page *
956 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
957 size_t *page_offset, size_t *length)
958 {
959 struct ceph_msg_data *data = cursor->data;
960
961 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
962
963 BUG_ON(cursor->page_index >= cursor->page_count);
964 BUG_ON(cursor->page_offset >= PAGE_SIZE);
965
966 *page_offset = cursor->page_offset;
967 if (cursor->last_piece)
968 *length = cursor->resid;
969 else
970 *length = PAGE_SIZE - *page_offset;
971
972 return data->pages[cursor->page_index];
973 }
974
975 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
976 size_t bytes)
977 {
978 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
979
980 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
981
982 /* Advance the cursor page offset */
983
984 cursor->resid -= bytes;
985 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
986 if (!bytes || cursor->page_offset)
987 return false; /* more bytes to process in the current page */
988
989 if (!cursor->resid)
990 return false; /* no more data */
991
992 /* Move on to the next page; offset is already at 0 */
993
994 BUG_ON(cursor->page_index >= cursor->page_count);
995 cursor->page_index++;
996 cursor->last_piece = cursor->resid <= PAGE_SIZE;
997
998 return true;
999 }
1000
1001 /*
1002 * For a pagelist, a piece is whatever remains to be consumed in the
1003 * first page in the list, or the front of the next page.
1004 */
1005 static void
1006 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1007 size_t length)
1008 {
1009 struct ceph_msg_data *data = cursor->data;
1010 struct ceph_pagelist *pagelist;
1011 struct page *page;
1012
1013 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1014
1015 pagelist = data->pagelist;
1016 BUG_ON(!pagelist);
1017
1018 if (!length)
1019 return; /* pagelist can be assigned but empty */
1020
1021 BUG_ON(list_empty(&pagelist->head));
1022 page = list_first_entry(&pagelist->head, struct page, lru);
1023
1024 cursor->resid = min(length, pagelist->length);
1025 cursor->page = page;
1026 cursor->offset = 0;
1027 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1028 }
1029
1030 static struct page *
1031 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1032 size_t *page_offset, size_t *length)
1033 {
1034 struct ceph_msg_data *data = cursor->data;
1035 struct ceph_pagelist *pagelist;
1036
1037 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1038
1039 pagelist = data->pagelist;
1040 BUG_ON(!pagelist);
1041
1042 BUG_ON(!cursor->page);
1043 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1044
1045 /* offset of first page in pagelist is always 0 */
1046 *page_offset = cursor->offset & ~PAGE_MASK;
1047 if (cursor->last_piece)
1048 *length = cursor->resid;
1049 else
1050 *length = PAGE_SIZE - *page_offset;
1051
1052 return cursor->page;
1053 }
1054
1055 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1056 size_t bytes)
1057 {
1058 struct ceph_msg_data *data = cursor->data;
1059 struct ceph_pagelist *pagelist;
1060
1061 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1062
1063 pagelist = data->pagelist;
1064 BUG_ON(!pagelist);
1065
1066 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1067 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1068
1069 /* Advance the cursor offset */
1070
1071 cursor->resid -= bytes;
1072 cursor->offset += bytes;
1073 /* offset of first page in pagelist is always 0 */
1074 if (!bytes || cursor->offset & ~PAGE_MASK)
1075 return false; /* more bytes to process in the current page */
1076
1077 if (!cursor->resid)
1078 return false; /* no more data */
1079
1080 /* Move on to the next page */
1081
1082 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1083 cursor->page = list_next_entry(cursor->page, lru);
1084 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1085
1086 return true;
1087 }
1088
1089 /*
1090 * Message data is handled (sent or received) in pieces, where each
1091 * piece resides on a single page. The network layer might not
1092 * consume an entire piece at once. A data item's cursor keeps
1093 * track of which piece is next to process and how much remains to
1094 * be processed in that piece. It also tracks whether the current
1095 * piece is the last one in the data item.
1096 */
1097 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1098 {
1099 size_t length = cursor->total_resid;
1100
1101 switch (cursor->data->type) {
1102 case CEPH_MSG_DATA_PAGELIST:
1103 ceph_msg_data_pagelist_cursor_init(cursor, length);
1104 break;
1105 case CEPH_MSG_DATA_PAGES:
1106 ceph_msg_data_pages_cursor_init(cursor, length);
1107 break;
1108 #ifdef CONFIG_BLOCK
1109 case CEPH_MSG_DATA_BIO:
1110 ceph_msg_data_bio_cursor_init(cursor, length);
1111 break;
1112 #endif /* CONFIG_BLOCK */
1113 case CEPH_MSG_DATA_NONE:
1114 default:
1115 /* BUG(); */
1116 break;
1117 }
1118 cursor->need_crc = true;
1119 }
1120
1121 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1122 {
1123 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1124 struct ceph_msg_data *data;
1125
1126 BUG_ON(!length);
1127 BUG_ON(length > msg->data_length);
1128 BUG_ON(list_empty(&msg->data));
1129
1130 cursor->data_head = &msg->data;
1131 cursor->total_resid = length;
1132 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1133 cursor->data = data;
1134
1135 __ceph_msg_data_cursor_init(cursor);
1136 }
1137
1138 /*
1139 * Return the page containing the next piece to process for a given
1140 * data item, and supply the page offset and length of that piece.
1141 * Indicate whether this is the last piece in this data item.
1142 */
1143 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1144 size_t *page_offset, size_t *length,
1145 bool *last_piece)
1146 {
1147 struct page *page;
1148
1149 switch (cursor->data->type) {
1150 case CEPH_MSG_DATA_PAGELIST:
1151 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1152 break;
1153 case CEPH_MSG_DATA_PAGES:
1154 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1155 break;
1156 #ifdef CONFIG_BLOCK
1157 case CEPH_MSG_DATA_BIO:
1158 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1159 break;
1160 #endif /* CONFIG_BLOCK */
1161 case CEPH_MSG_DATA_NONE:
1162 default:
1163 page = NULL;
1164 break;
1165 }
1166 BUG_ON(!page);
1167 BUG_ON(*page_offset + *length > PAGE_SIZE);
1168 BUG_ON(!*length);
1169 if (last_piece)
1170 *last_piece = cursor->last_piece;
1171
1172 return page;
1173 }
1174
1175 /*
1176 * Returns true if the result moves the cursor on to the next piece
1177 * of the data item.
1178 */
1179 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1180 size_t bytes)
1181 {
1182 bool new_piece;
1183
1184 BUG_ON(bytes > cursor->resid);
1185 switch (cursor->data->type) {
1186 case CEPH_MSG_DATA_PAGELIST:
1187 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1188 break;
1189 case CEPH_MSG_DATA_PAGES:
1190 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1191 break;
1192 #ifdef CONFIG_BLOCK
1193 case CEPH_MSG_DATA_BIO:
1194 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1195 break;
1196 #endif /* CONFIG_BLOCK */
1197 case CEPH_MSG_DATA_NONE:
1198 default:
1199 BUG();
1200 break;
1201 }
1202 cursor->total_resid -= bytes;
1203
1204 if (!cursor->resid && cursor->total_resid) {
1205 WARN_ON(!cursor->last_piece);
1206 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1207 cursor->data = list_next_entry(cursor->data, links);
1208 __ceph_msg_data_cursor_init(cursor);
1209 new_piece = true;
1210 }
1211 cursor->need_crc = new_piece;
1212 }
1213
1214 static size_t sizeof_footer(struct ceph_connection *con)
1215 {
1216 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1217 sizeof(struct ceph_msg_footer) :
1218 sizeof(struct ceph_msg_footer_old);
1219 }
1220
1221 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1222 {
1223 BUG_ON(!msg);
1224 BUG_ON(!data_len);
1225
1226 /* Initialize data cursor */
1227
1228 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1229 }
1230
1231 /*
1232 * Prepare footer for currently outgoing message, and finish things
1233 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1234 */
1235 static void prepare_write_message_footer(struct ceph_connection *con)
1236 {
1237 struct ceph_msg *m = con->out_msg;
1238
1239 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1240
1241 dout("prepare_write_message_footer %p\n", con);
1242 con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1243 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1244 if (con->ops->sign_message)
1245 con->ops->sign_message(m);
1246 else
1247 m->footer.sig = 0;
1248 } else {
1249 m->old_footer.flags = m->footer.flags;
1250 }
1251 con->out_more = m->more_to_follow;
1252 con->out_msg_done = true;
1253 }
1254
1255 /*
1256 * Prepare headers for the next outgoing message.
1257 */
1258 static void prepare_write_message(struct ceph_connection *con)
1259 {
1260 struct ceph_msg *m;
1261 u32 crc;
1262
1263 con_out_kvec_reset(con);
1264 con->out_msg_done = false;
1265
1266 /* Sneak an ack in there first? If we can get it into the same
1267 * TCP packet that's a good thing. */
1268 if (con->in_seq > con->in_seq_acked) {
1269 con->in_seq_acked = con->in_seq;
1270 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1271 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1272 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1273 &con->out_temp_ack);
1274 }
1275
1276 BUG_ON(list_empty(&con->out_queue));
1277 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1278 con->out_msg = m;
1279 BUG_ON(m->con != con);
1280
1281 /* put message on sent list */
1282 ceph_msg_get(m);
1283 list_move_tail(&m->list_head, &con->out_sent);
1284
1285 /*
1286 * only assign outgoing seq # if we haven't sent this message
1287 * yet. if it is requeued, resend with it's original seq.
1288 */
1289 if (m->needs_out_seq) {
1290 m->hdr.seq = cpu_to_le64(++con->out_seq);
1291 m->needs_out_seq = false;
1292
1293 if (con->ops->reencode_message)
1294 con->ops->reencode_message(m);
1295 }
1296
1297 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1298 m, con->out_seq, le16_to_cpu(m->hdr.type),
1299 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1300 m->data_length);
1301 WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1302 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1303
1304 /* tag + hdr + front + middle */
1305 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1306 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1307 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1308
1309 if (m->middle)
1310 con_out_kvec_add(con, m->middle->vec.iov_len,
1311 m->middle->vec.iov_base);
1312
1313 /* fill in hdr crc and finalize hdr */
1314 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1315 con->out_msg->hdr.crc = cpu_to_le32(crc);
1316 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1317
1318 /* fill in front and middle crc, footer */
1319 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1320 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1321 if (m->middle) {
1322 crc = crc32c(0, m->middle->vec.iov_base,
1323 m->middle->vec.iov_len);
1324 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1325 } else
1326 con->out_msg->footer.middle_crc = 0;
1327 dout("%s front_crc %u middle_crc %u\n", __func__,
1328 le32_to_cpu(con->out_msg->footer.front_crc),
1329 le32_to_cpu(con->out_msg->footer.middle_crc));
1330 con->out_msg->footer.flags = 0;
1331
1332 /* is there a data payload? */
1333 con->out_msg->footer.data_crc = 0;
1334 if (m->data_length) {
1335 prepare_message_data(con->out_msg, m->data_length);
1336 con->out_more = 1; /* data + footer will follow */
1337 } else {
1338 /* no, queue up footer too and be done */
1339 prepare_write_message_footer(con);
1340 }
1341
1342 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1343 }
1344
1345 /*
1346 * Prepare an ack.
1347 */
1348 static void prepare_write_ack(struct ceph_connection *con)
1349 {
1350 dout("prepare_write_ack %p %llu -> %llu\n", con,
1351 con->in_seq_acked, con->in_seq);
1352 con->in_seq_acked = con->in_seq;
1353
1354 con_out_kvec_reset(con);
1355
1356 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1357
1358 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1359 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1360 &con->out_temp_ack);
1361
1362 con->out_more = 1; /* more will follow.. eventually.. */
1363 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1364 }
1365
1366 /*
1367 * Prepare to share the seq during handshake
1368 */
1369 static void prepare_write_seq(struct ceph_connection *con)
1370 {
1371 dout("prepare_write_seq %p %llu -> %llu\n", con,
1372 con->in_seq_acked, con->in_seq);
1373 con->in_seq_acked = con->in_seq;
1374
1375 con_out_kvec_reset(con);
1376
1377 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1378 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1379 &con->out_temp_ack);
1380
1381 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1382 }
1383
1384 /*
1385 * Prepare to write keepalive byte.
1386 */
1387 static void prepare_write_keepalive(struct ceph_connection *con)
1388 {
1389 dout("prepare_write_keepalive %p\n", con);
1390 con_out_kvec_reset(con);
1391 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1392 struct timespec now;
1393
1394 ktime_get_real_ts(&now);
1395 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1396 ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1397 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1398 &con->out_temp_keepalive2);
1399 } else {
1400 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1401 }
1402 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1403 }
1404
1405 /*
1406 * Connection negotiation.
1407 */
1408
1409 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1410 int *auth_proto)
1411 {
1412 struct ceph_auth_handshake *auth;
1413
1414 if (!con->ops->get_authorizer) {
1415 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1416 con->out_connect.authorizer_len = 0;
1417 return NULL;
1418 }
1419
1420 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1421 if (IS_ERR(auth))
1422 return auth;
1423
1424 con->auth_reply_buf = auth->authorizer_reply_buf;
1425 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1426 return auth;
1427 }
1428
1429 /*
1430 * We connected to a peer and are saying hello.
1431 */
1432 static void prepare_write_banner(struct ceph_connection *con)
1433 {
1434 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1435 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1436 &con->msgr->my_enc_addr);
1437
1438 con->out_more = 0;
1439 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1440 }
1441
1442 static int prepare_write_connect(struct ceph_connection *con)
1443 {
1444 unsigned int global_seq = get_global_seq(con->msgr, 0);
1445 int proto;
1446 int auth_proto;
1447 struct ceph_auth_handshake *auth;
1448
1449 switch (con->peer_name.type) {
1450 case CEPH_ENTITY_TYPE_MON:
1451 proto = CEPH_MONC_PROTOCOL;
1452 break;
1453 case CEPH_ENTITY_TYPE_OSD:
1454 proto = CEPH_OSDC_PROTOCOL;
1455 break;
1456 case CEPH_ENTITY_TYPE_MDS:
1457 proto = CEPH_MDSC_PROTOCOL;
1458 break;
1459 default:
1460 BUG();
1461 }
1462
1463 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1464 con->connect_seq, global_seq, proto);
1465
1466 con->out_connect.features =
1467 cpu_to_le64(from_msgr(con->msgr)->supported_features);
1468 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1469 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1470 con->out_connect.global_seq = cpu_to_le32(global_seq);
1471 con->out_connect.protocol_version = cpu_to_le32(proto);
1472 con->out_connect.flags = 0;
1473
1474 auth_proto = CEPH_AUTH_UNKNOWN;
1475 auth = get_connect_authorizer(con, &auth_proto);
1476 if (IS_ERR(auth))
1477 return PTR_ERR(auth);
1478
1479 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1480 con->out_connect.authorizer_len = auth ?
1481 cpu_to_le32(auth->authorizer_buf_len) : 0;
1482
1483 con_out_kvec_add(con, sizeof (con->out_connect),
1484 &con->out_connect);
1485 if (auth && auth->authorizer_buf_len)
1486 con_out_kvec_add(con, auth->authorizer_buf_len,
1487 auth->authorizer_buf);
1488
1489 con->out_more = 0;
1490 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1491
1492 return 0;
1493 }
1494
1495 /*
1496 * write as much of pending kvecs to the socket as we can.
1497 * 1 -> done
1498 * 0 -> socket full, but more to do
1499 * <0 -> error
1500 */
1501 static int write_partial_kvec(struct ceph_connection *con)
1502 {
1503 int ret;
1504
1505 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1506 while (con->out_kvec_bytes > 0) {
1507 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1508 con->out_kvec_left, con->out_kvec_bytes,
1509 con->out_more);
1510 if (ret <= 0)
1511 goto out;
1512 con->out_kvec_bytes -= ret;
1513 if (con->out_kvec_bytes == 0)
1514 break; /* done */
1515
1516 /* account for full iov entries consumed */
1517 while (ret >= con->out_kvec_cur->iov_len) {
1518 BUG_ON(!con->out_kvec_left);
1519 ret -= con->out_kvec_cur->iov_len;
1520 con->out_kvec_cur++;
1521 con->out_kvec_left--;
1522 }
1523 /* and for a partially-consumed entry */
1524 if (ret) {
1525 con->out_kvec_cur->iov_len -= ret;
1526 con->out_kvec_cur->iov_base += ret;
1527 }
1528 }
1529 con->out_kvec_left = 0;
1530 ret = 1;
1531 out:
1532 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1533 con->out_kvec_bytes, con->out_kvec_left, ret);
1534 return ret; /* done! */
1535 }
1536
1537 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1538 unsigned int page_offset,
1539 unsigned int length)
1540 {
1541 char *kaddr;
1542
1543 kaddr = kmap(page);
1544 BUG_ON(kaddr == NULL);
1545 crc = crc32c(crc, kaddr + page_offset, length);
1546 kunmap(page);
1547
1548 return crc;
1549 }
1550 /*
1551 * Write as much message data payload as we can. If we finish, queue
1552 * up the footer.
1553 * 1 -> done, footer is now queued in out_kvec[].
1554 * 0 -> socket full, but more to do
1555 * <0 -> error
1556 */
1557 static int write_partial_message_data(struct ceph_connection *con)
1558 {
1559 struct ceph_msg *msg = con->out_msg;
1560 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1561 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1562 u32 crc;
1563
1564 dout("%s %p msg %p\n", __func__, con, msg);
1565
1566 if (list_empty(&msg->data))
1567 return -EINVAL;
1568
1569 /*
1570 * Iterate through each page that contains data to be
1571 * written, and send as much as possible for each.
1572 *
1573 * If we are calculating the data crc (the default), we will
1574 * need to map the page. If we have no pages, they have
1575 * been revoked, so use the zero page.
1576 */
1577 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1578 while (cursor->resid) {
1579 struct page *page;
1580 size_t page_offset;
1581 size_t length;
1582 bool last_piece;
1583 int ret;
1584
1585 page = ceph_msg_data_next(cursor, &page_offset, &length,
1586 &last_piece);
1587 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1588 length, !last_piece);
1589 if (ret <= 0) {
1590 if (do_datacrc)
1591 msg->footer.data_crc = cpu_to_le32(crc);
1592
1593 return ret;
1594 }
1595 if (do_datacrc && cursor->need_crc)
1596 crc = ceph_crc32c_page(crc, page, page_offset, length);
1597 ceph_msg_data_advance(cursor, (size_t)ret);
1598 }
1599
1600 dout("%s %p msg %p done\n", __func__, con, msg);
1601
1602 /* prepare and queue up footer, too */
1603 if (do_datacrc)
1604 msg->footer.data_crc = cpu_to_le32(crc);
1605 else
1606 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1607 con_out_kvec_reset(con);
1608 prepare_write_message_footer(con);
1609
1610 return 1; /* must return > 0 to indicate success */
1611 }
1612
1613 /*
1614 * write some zeros
1615 */
1616 static int write_partial_skip(struct ceph_connection *con)
1617 {
1618 int ret;
1619
1620 dout("%s %p %d left\n", __func__, con, con->out_skip);
1621 while (con->out_skip > 0) {
1622 size_t size = min(con->out_skip, (int) PAGE_SIZE);
1623
1624 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1625 if (ret <= 0)
1626 goto out;
1627 con->out_skip -= ret;
1628 }
1629 ret = 1;
1630 out:
1631 return ret;
1632 }
1633
1634 /*
1635 * Prepare to read connection handshake, or an ack.
1636 */
1637 static void prepare_read_banner(struct ceph_connection *con)
1638 {
1639 dout("prepare_read_banner %p\n", con);
1640 con->in_base_pos = 0;
1641 }
1642
1643 static void prepare_read_connect(struct ceph_connection *con)
1644 {
1645 dout("prepare_read_connect %p\n", con);
1646 con->in_base_pos = 0;
1647 }
1648
1649 static void prepare_read_ack(struct ceph_connection *con)
1650 {
1651 dout("prepare_read_ack %p\n", con);
1652 con->in_base_pos = 0;
1653 }
1654
1655 static void prepare_read_seq(struct ceph_connection *con)
1656 {
1657 dout("prepare_read_seq %p\n", con);
1658 con->in_base_pos = 0;
1659 con->in_tag = CEPH_MSGR_TAG_SEQ;
1660 }
1661
1662 static void prepare_read_tag(struct ceph_connection *con)
1663 {
1664 dout("prepare_read_tag %p\n", con);
1665 con->in_base_pos = 0;
1666 con->in_tag = CEPH_MSGR_TAG_READY;
1667 }
1668
1669 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1670 {
1671 dout("prepare_read_keepalive_ack %p\n", con);
1672 con->in_base_pos = 0;
1673 }
1674
1675 /*
1676 * Prepare to read a message.
1677 */
1678 static int prepare_read_message(struct ceph_connection *con)
1679 {
1680 dout("prepare_read_message %p\n", con);
1681 BUG_ON(con->in_msg != NULL);
1682 con->in_base_pos = 0;
1683 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1684 return 0;
1685 }
1686
1687
1688 static int read_partial(struct ceph_connection *con,
1689 int end, int size, void *object)
1690 {
1691 while (con->in_base_pos < end) {
1692 int left = end - con->in_base_pos;
1693 int have = size - left;
1694 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1695 if (ret <= 0)
1696 return ret;
1697 con->in_base_pos += ret;
1698 }
1699 return 1;
1700 }
1701
1702
1703 /*
1704 * Read all or part of the connect-side handshake on a new connection
1705 */
1706 static int read_partial_banner(struct ceph_connection *con)
1707 {
1708 int size;
1709 int end;
1710 int ret;
1711
1712 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1713
1714 /* peer's banner */
1715 size = strlen(CEPH_BANNER);
1716 end = size;
1717 ret = read_partial(con, end, size, con->in_banner);
1718 if (ret <= 0)
1719 goto out;
1720
1721 size = sizeof (con->actual_peer_addr);
1722 end += size;
1723 ret = read_partial(con, end, size, &con->actual_peer_addr);
1724 if (ret <= 0)
1725 goto out;
1726
1727 size = sizeof (con->peer_addr_for_me);
1728 end += size;
1729 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1730 if (ret <= 0)
1731 goto out;
1732
1733 out:
1734 return ret;
1735 }
1736
1737 static int read_partial_connect(struct ceph_connection *con)
1738 {
1739 int size;
1740 int end;
1741 int ret;
1742
1743 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1744
1745 size = sizeof (con->in_reply);
1746 end = size;
1747 ret = read_partial(con, end, size, &con->in_reply);
1748 if (ret <= 0)
1749 goto out;
1750
1751 size = le32_to_cpu(con->in_reply.authorizer_len);
1752 end += size;
1753 ret = read_partial(con, end, size, con->auth_reply_buf);
1754 if (ret <= 0)
1755 goto out;
1756
1757 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1758 con, (int)con->in_reply.tag,
1759 le32_to_cpu(con->in_reply.connect_seq),
1760 le32_to_cpu(con->in_reply.global_seq));
1761 out:
1762 return ret;
1763
1764 }
1765
1766 /*
1767 * Verify the hello banner looks okay.
1768 */
1769 static int verify_hello(struct ceph_connection *con)
1770 {
1771 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1772 pr_err("connect to %s got bad banner\n",
1773 ceph_pr_addr(&con->peer_addr.in_addr));
1774 con->error_msg = "protocol error, bad banner";
1775 return -1;
1776 }
1777 return 0;
1778 }
1779
1780 static bool addr_is_blank(struct sockaddr_storage *ss)
1781 {
1782 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1783 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1784
1785 switch (ss->ss_family) {
1786 case AF_INET:
1787 return addr->s_addr == htonl(INADDR_ANY);
1788 case AF_INET6:
1789 return ipv6_addr_any(addr6);
1790 default:
1791 return true;
1792 }
1793 }
1794
1795 static int addr_port(struct sockaddr_storage *ss)
1796 {
1797 switch (ss->ss_family) {
1798 case AF_INET:
1799 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1800 case AF_INET6:
1801 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1802 }
1803 return 0;
1804 }
1805
1806 static void addr_set_port(struct sockaddr_storage *ss, int p)
1807 {
1808 switch (ss->ss_family) {
1809 case AF_INET:
1810 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1811 break;
1812 case AF_INET6:
1813 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1814 break;
1815 }
1816 }
1817
1818 /*
1819 * Unlike other *_pton function semantics, zero indicates success.
1820 */
1821 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1822 char delim, const char **ipend)
1823 {
1824 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1825 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1826
1827 memset(ss, 0, sizeof(*ss));
1828
1829 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1830 ss->ss_family = AF_INET;
1831 return 0;
1832 }
1833
1834 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1835 ss->ss_family = AF_INET6;
1836 return 0;
1837 }
1838
1839 return -EINVAL;
1840 }
1841
1842 /*
1843 * Extract hostname string and resolve using kernel DNS facility.
1844 */
1845 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1846 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1847 struct sockaddr_storage *ss, char delim, const char **ipend)
1848 {
1849 const char *end, *delim_p;
1850 char *colon_p, *ip_addr = NULL;
1851 int ip_len, ret;
1852
1853 /*
1854 * The end of the hostname occurs immediately preceding the delimiter or
1855 * the port marker (':') where the delimiter takes precedence.
1856 */
1857 delim_p = memchr(name, delim, namelen);
1858 colon_p = memchr(name, ':', namelen);
1859
1860 if (delim_p && colon_p)
1861 end = delim_p < colon_p ? delim_p : colon_p;
1862 else if (!delim_p && colon_p)
1863 end = colon_p;
1864 else {
1865 end = delim_p;
1866 if (!end) /* case: hostname:/ */
1867 end = name + namelen;
1868 }
1869
1870 if (end <= name)
1871 return -EINVAL;
1872
1873 /* do dns_resolve upcall */
1874 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1875 if (ip_len > 0)
1876 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1877 else
1878 ret = -ESRCH;
1879
1880 kfree(ip_addr);
1881
1882 *ipend = end;
1883
1884 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1885 ret, ret ? "failed" : ceph_pr_addr(ss));
1886
1887 return ret;
1888 }
1889 #else
1890 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1891 struct sockaddr_storage *ss, char delim, const char **ipend)
1892 {
1893 return -EINVAL;
1894 }
1895 #endif
1896
1897 /*
1898 * Parse a server name (IP or hostname). If a valid IP address is not found
1899 * then try to extract a hostname to resolve using userspace DNS upcall.
1900 */
1901 static int ceph_parse_server_name(const char *name, size_t namelen,
1902 struct sockaddr_storage *ss, char delim, const char **ipend)
1903 {
1904 int ret;
1905
1906 ret = ceph_pton(name, namelen, ss, delim, ipend);
1907 if (ret)
1908 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1909
1910 return ret;
1911 }
1912
1913 /*
1914 * Parse an ip[:port] list into an addr array. Use the default
1915 * monitor port if a port isn't specified.
1916 */
1917 int ceph_parse_ips(const char *c, const char *end,
1918 struct ceph_entity_addr *addr,
1919 int max_count, int *count)
1920 {
1921 int i, ret = -EINVAL;
1922 const char *p = c;
1923
1924 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1925 for (i = 0; i < max_count; i++) {
1926 const char *ipend;
1927 struct sockaddr_storage *ss = &addr[i].in_addr;
1928 int port;
1929 char delim = ',';
1930
1931 if (*p == '[') {
1932 delim = ']';
1933 p++;
1934 }
1935
1936 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1937 if (ret)
1938 goto bad;
1939 ret = -EINVAL;
1940
1941 p = ipend;
1942
1943 if (delim == ']') {
1944 if (*p != ']') {
1945 dout("missing matching ']'\n");
1946 goto bad;
1947 }
1948 p++;
1949 }
1950
1951 /* port? */
1952 if (p < end && *p == ':') {
1953 port = 0;
1954 p++;
1955 while (p < end && *p >= '0' && *p <= '9') {
1956 port = (port * 10) + (*p - '0');
1957 p++;
1958 }
1959 if (port == 0)
1960 port = CEPH_MON_PORT;
1961 else if (port > 65535)
1962 goto bad;
1963 } else {
1964 port = CEPH_MON_PORT;
1965 }
1966
1967 addr_set_port(ss, port);
1968
1969 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1970
1971 if (p == end)
1972 break;
1973 if (*p != ',')
1974 goto bad;
1975 p++;
1976 }
1977
1978 if (p != end)
1979 goto bad;
1980
1981 if (count)
1982 *count = i + 1;
1983 return 0;
1984
1985 bad:
1986 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1987 return ret;
1988 }
1989 EXPORT_SYMBOL(ceph_parse_ips);
1990
1991 static int process_banner(struct ceph_connection *con)
1992 {
1993 dout("process_banner on %p\n", con);
1994
1995 if (verify_hello(con) < 0)
1996 return -1;
1997
1998 ceph_decode_addr(&con->actual_peer_addr);
1999 ceph_decode_addr(&con->peer_addr_for_me);
2000
2001 /*
2002 * Make sure the other end is who we wanted. note that the other
2003 * end may not yet know their ip address, so if it's 0.0.0.0, give
2004 * them the benefit of the doubt.
2005 */
2006 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2007 sizeof(con->peer_addr)) != 0 &&
2008 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2009 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2010 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2011 ceph_pr_addr(&con->peer_addr.in_addr),
2012 (int)le32_to_cpu(con->peer_addr.nonce),
2013 ceph_pr_addr(&con->actual_peer_addr.in_addr),
2014 (int)le32_to_cpu(con->actual_peer_addr.nonce));
2015 con->error_msg = "wrong peer at address";
2016 return -1;
2017 }
2018
2019 /*
2020 * did we learn our address?
2021 */
2022 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2023 int port = addr_port(&con->msgr->inst.addr.in_addr);
2024
2025 memcpy(&con->msgr->inst.addr.in_addr,
2026 &con->peer_addr_for_me.in_addr,
2027 sizeof(con->peer_addr_for_me.in_addr));
2028 addr_set_port(&con->msgr->inst.addr.in_addr, port);
2029 encode_my_addr(con->msgr);
2030 dout("process_banner learned my addr is %s\n",
2031 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2032 }
2033
2034 return 0;
2035 }
2036
2037 static int process_connect(struct ceph_connection *con)
2038 {
2039 u64 sup_feat = from_msgr(con->msgr)->supported_features;
2040 u64 req_feat = from_msgr(con->msgr)->required_features;
2041 u64 server_feat = le64_to_cpu(con->in_reply.features);
2042 int ret;
2043
2044 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2045
2046 if (con->auth_reply_buf) {
2047 /*
2048 * Any connection that defines ->get_authorizer()
2049 * should also define ->verify_authorizer_reply().
2050 * See get_connect_authorizer().
2051 */
2052 ret = con->ops->verify_authorizer_reply(con);
2053 if (ret < 0) {
2054 con->error_msg = "bad authorize reply";
2055 return ret;
2056 }
2057 }
2058
2059 switch (con->in_reply.tag) {
2060 case CEPH_MSGR_TAG_FEATURES:
2061 pr_err("%s%lld %s feature set mismatch,"
2062 " my %llx < server's %llx, missing %llx\n",
2063 ENTITY_NAME(con->peer_name),
2064 ceph_pr_addr(&con->peer_addr.in_addr),
2065 sup_feat, server_feat, server_feat & ~sup_feat);
2066 con->error_msg = "missing required protocol features";
2067 reset_connection(con);
2068 return -1;
2069
2070 case CEPH_MSGR_TAG_BADPROTOVER:
2071 pr_err("%s%lld %s protocol version mismatch,"
2072 " my %d != server's %d\n",
2073 ENTITY_NAME(con->peer_name),
2074 ceph_pr_addr(&con->peer_addr.in_addr),
2075 le32_to_cpu(con->out_connect.protocol_version),
2076 le32_to_cpu(con->in_reply.protocol_version));
2077 con->error_msg = "protocol version mismatch";
2078 reset_connection(con);
2079 return -1;
2080
2081 case CEPH_MSGR_TAG_BADAUTHORIZER:
2082 con->auth_retry++;
2083 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2084 con->auth_retry);
2085 if (con->auth_retry == 2) {
2086 con->error_msg = "connect authorization failure";
2087 return -1;
2088 }
2089 con_out_kvec_reset(con);
2090 ret = prepare_write_connect(con);
2091 if (ret < 0)
2092 return ret;
2093 prepare_read_connect(con);
2094 break;
2095
2096 case CEPH_MSGR_TAG_RESETSESSION:
2097 /*
2098 * If we connected with a large connect_seq but the peer
2099 * has no record of a session with us (no connection, or
2100 * connect_seq == 0), they will send RESETSESION to indicate
2101 * that they must have reset their session, and may have
2102 * dropped messages.
2103 */
2104 dout("process_connect got RESET peer seq %u\n",
2105 le32_to_cpu(con->in_reply.connect_seq));
2106 pr_err("%s%lld %s connection reset\n",
2107 ENTITY_NAME(con->peer_name),
2108 ceph_pr_addr(&con->peer_addr.in_addr));
2109 reset_connection(con);
2110 con_out_kvec_reset(con);
2111 ret = prepare_write_connect(con);
2112 if (ret < 0)
2113 return ret;
2114 prepare_read_connect(con);
2115
2116 /* Tell ceph about it. */
2117 mutex_unlock(&con->mutex);
2118 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2119 if (con->ops->peer_reset)
2120 con->ops->peer_reset(con);
2121 mutex_lock(&con->mutex);
2122 if (con->state != CON_STATE_NEGOTIATING)
2123 return -EAGAIN;
2124 break;
2125
2126 case CEPH_MSGR_TAG_RETRY_SESSION:
2127 /*
2128 * If we sent a smaller connect_seq than the peer has, try
2129 * again with a larger value.
2130 */
2131 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2132 le32_to_cpu(con->out_connect.connect_seq),
2133 le32_to_cpu(con->in_reply.connect_seq));
2134 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2135 con_out_kvec_reset(con);
2136 ret = prepare_write_connect(con);
2137 if (ret < 0)
2138 return ret;
2139 prepare_read_connect(con);
2140 break;
2141
2142 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2143 /*
2144 * If we sent a smaller global_seq than the peer has, try
2145 * again with a larger value.
2146 */
2147 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2148 con->peer_global_seq,
2149 le32_to_cpu(con->in_reply.global_seq));
2150 get_global_seq(con->msgr,
2151 le32_to_cpu(con->in_reply.global_seq));
2152 con_out_kvec_reset(con);
2153 ret = prepare_write_connect(con);
2154 if (ret < 0)
2155 return ret;
2156 prepare_read_connect(con);
2157 break;
2158
2159 case CEPH_MSGR_TAG_SEQ:
2160 case CEPH_MSGR_TAG_READY:
2161 if (req_feat & ~server_feat) {
2162 pr_err("%s%lld %s protocol feature mismatch,"
2163 " my required %llx > server's %llx, need %llx\n",
2164 ENTITY_NAME(con->peer_name),
2165 ceph_pr_addr(&con->peer_addr.in_addr),
2166 req_feat, server_feat, req_feat & ~server_feat);
2167 con->error_msg = "missing required protocol features";
2168 reset_connection(con);
2169 return -1;
2170 }
2171
2172 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2173 con->state = CON_STATE_OPEN;
2174 con->auth_retry = 0; /* we authenticated; clear flag */
2175 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2176 con->connect_seq++;
2177 con->peer_features = server_feat;
2178 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2179 con->peer_global_seq,
2180 le32_to_cpu(con->in_reply.connect_seq),
2181 con->connect_seq);
2182 WARN_ON(con->connect_seq !=
2183 le32_to_cpu(con->in_reply.connect_seq));
2184
2185 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2186 con_flag_set(con, CON_FLAG_LOSSYTX);
2187
2188 con->delay = 0; /* reset backoff memory */
2189
2190 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2191 prepare_write_seq(con);
2192 prepare_read_seq(con);
2193 } else {
2194 prepare_read_tag(con);
2195 }
2196 break;
2197
2198 case CEPH_MSGR_TAG_WAIT:
2199 /*
2200 * If there is a connection race (we are opening
2201 * connections to each other), one of us may just have
2202 * to WAIT. This shouldn't happen if we are the
2203 * client.
2204 */
2205 con->error_msg = "protocol error, got WAIT as client";
2206 return -1;
2207
2208 default:
2209 con->error_msg = "protocol error, garbage tag during connect";
2210 return -1;
2211 }
2212 return 0;
2213 }
2214
2215
2216 /*
2217 * read (part of) an ack
2218 */
2219 static int read_partial_ack(struct ceph_connection *con)
2220 {
2221 int size = sizeof (con->in_temp_ack);
2222 int end = size;
2223
2224 return read_partial(con, end, size, &con->in_temp_ack);
2225 }
2226
2227 /*
2228 * We can finally discard anything that's been acked.
2229 */
2230 static void process_ack(struct ceph_connection *con)
2231 {
2232 struct ceph_msg *m;
2233 u64 ack = le64_to_cpu(con->in_temp_ack);
2234 u64 seq;
2235 bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2236 struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2237
2238 /*
2239 * In the reconnect case, con_fault() has requeued messages
2240 * in out_sent. We should cleanup old messages according to
2241 * the reconnect seq.
2242 */
2243 while (!list_empty(list)) {
2244 m = list_first_entry(list, struct ceph_msg, list_head);
2245 if (reconnect && m->needs_out_seq)
2246 break;
2247 seq = le64_to_cpu(m->hdr.seq);
2248 if (seq > ack)
2249 break;
2250 dout("got ack for seq %llu type %d at %p\n", seq,
2251 le16_to_cpu(m->hdr.type), m);
2252 m->ack_stamp = jiffies;
2253 ceph_msg_remove(m);
2254 }
2255
2256 prepare_read_tag(con);
2257 }
2258
2259
2260 static int read_partial_message_section(struct ceph_connection *con,
2261 struct kvec *section,
2262 unsigned int sec_len, u32 *crc)
2263 {
2264 int ret, left;
2265
2266 BUG_ON(!section);
2267
2268 while (section->iov_len < sec_len) {
2269 BUG_ON(section->iov_base == NULL);
2270 left = sec_len - section->iov_len;
2271 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2272 section->iov_len, left);
2273 if (ret <= 0)
2274 return ret;
2275 section->iov_len += ret;
2276 }
2277 if (section->iov_len == sec_len)
2278 *crc = crc32c(0, section->iov_base, section->iov_len);
2279
2280 return 1;
2281 }
2282
2283 static int read_partial_msg_data(struct ceph_connection *con)
2284 {
2285 struct ceph_msg *msg = con->in_msg;
2286 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2287 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2288 struct page *page;
2289 size_t page_offset;
2290 size_t length;
2291 u32 crc = 0;
2292 int ret;
2293
2294 BUG_ON(!msg);
2295 if (list_empty(&msg->data))
2296 return -EIO;
2297
2298 if (do_datacrc)
2299 crc = con->in_data_crc;
2300 while (cursor->resid) {
2301 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2302 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2303 if (ret <= 0) {
2304 if (do_datacrc)
2305 con->in_data_crc = crc;
2306
2307 return ret;
2308 }
2309
2310 if (do_datacrc)
2311 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2312 ceph_msg_data_advance(cursor, (size_t)ret);
2313 }
2314 if (do_datacrc)
2315 con->in_data_crc = crc;
2316
2317 return 1; /* must return > 0 to indicate success */
2318 }
2319
2320 /*
2321 * read (part of) a message.
2322 */
2323 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2324
2325 static int read_partial_message(struct ceph_connection *con)
2326 {
2327 struct ceph_msg *m = con->in_msg;
2328 int size;
2329 int end;
2330 int ret;
2331 unsigned int front_len, middle_len, data_len;
2332 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2333 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2334 u64 seq;
2335 u32 crc;
2336
2337 dout("read_partial_message con %p msg %p\n", con, m);
2338
2339 /* header */
2340 size = sizeof (con->in_hdr);
2341 end = size;
2342 ret = read_partial(con, end, size, &con->in_hdr);
2343 if (ret <= 0)
2344 return ret;
2345
2346 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2347 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2348 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2349 crc, con->in_hdr.crc);
2350 return -EBADMSG;
2351 }
2352
2353 front_len = le32_to_cpu(con->in_hdr.front_len);
2354 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2355 return -EIO;
2356 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2357 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2358 return -EIO;
2359 data_len = le32_to_cpu(con->in_hdr.data_len);
2360 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2361 return -EIO;
2362
2363 /* verify seq# */
2364 seq = le64_to_cpu(con->in_hdr.seq);
2365 if ((s64)seq - (s64)con->in_seq < 1) {
2366 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2367 ENTITY_NAME(con->peer_name),
2368 ceph_pr_addr(&con->peer_addr.in_addr),
2369 seq, con->in_seq + 1);
2370 con->in_base_pos = -front_len - middle_len - data_len -
2371 sizeof_footer(con);
2372 con->in_tag = CEPH_MSGR_TAG_READY;
2373 return 1;
2374 } else if ((s64)seq - (s64)con->in_seq > 1) {
2375 pr_err("read_partial_message bad seq %lld expected %lld\n",
2376 seq, con->in_seq + 1);
2377 con->error_msg = "bad message sequence # for incoming message";
2378 return -EBADE;
2379 }
2380
2381 /* allocate message? */
2382 if (!con->in_msg) {
2383 int skip = 0;
2384
2385 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2386 front_len, data_len);
2387 ret = ceph_con_in_msg_alloc(con, &skip);
2388 if (ret < 0)
2389 return ret;
2390
2391 BUG_ON(!con->in_msg ^ skip);
2392 if (skip) {
2393 /* skip this message */
2394 dout("alloc_msg said skip message\n");
2395 con->in_base_pos = -front_len - middle_len - data_len -
2396 sizeof_footer(con);
2397 con->in_tag = CEPH_MSGR_TAG_READY;
2398 con->in_seq++;
2399 return 1;
2400 }
2401
2402 BUG_ON(!con->in_msg);
2403 BUG_ON(con->in_msg->con != con);
2404 m = con->in_msg;
2405 m->front.iov_len = 0; /* haven't read it yet */
2406 if (m->middle)
2407 m->middle->vec.iov_len = 0;
2408
2409 /* prepare for data payload, if any */
2410
2411 if (data_len)
2412 prepare_message_data(con->in_msg, data_len);
2413 }
2414
2415 /* front */
2416 ret = read_partial_message_section(con, &m->front, front_len,
2417 &con->in_front_crc);
2418 if (ret <= 0)
2419 return ret;
2420
2421 /* middle */
2422 if (m->middle) {
2423 ret = read_partial_message_section(con, &m->middle->vec,
2424 middle_len,
2425 &con->in_middle_crc);
2426 if (ret <= 0)
2427 return ret;
2428 }
2429
2430 /* (page) data */
2431 if (data_len) {
2432 ret = read_partial_msg_data(con);
2433 if (ret <= 0)
2434 return ret;
2435 }
2436
2437 /* footer */
2438 size = sizeof_footer(con);
2439 end += size;
2440 ret = read_partial(con, end, size, &m->footer);
2441 if (ret <= 0)
2442 return ret;
2443
2444 if (!need_sign) {
2445 m->footer.flags = m->old_footer.flags;
2446 m->footer.sig = 0;
2447 }
2448
2449 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2450 m, front_len, m->footer.front_crc, middle_len,
2451 m->footer.middle_crc, data_len, m->footer.data_crc);
2452
2453 /* crc ok? */
2454 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2455 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2456 m, con->in_front_crc, m->footer.front_crc);
2457 return -EBADMSG;
2458 }
2459 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2460 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2461 m, con->in_middle_crc, m->footer.middle_crc);
2462 return -EBADMSG;
2463 }
2464 if (do_datacrc &&
2465 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2466 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2467 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2468 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2469 return -EBADMSG;
2470 }
2471
2472 if (need_sign && con->ops->check_message_signature &&
2473 con->ops->check_message_signature(m)) {
2474 pr_err("read_partial_message %p signature check failed\n", m);
2475 return -EBADMSG;
2476 }
2477
2478 return 1; /* done! */
2479 }
2480
2481 /*
2482 * Process message. This happens in the worker thread. The callback should
2483 * be careful not to do anything that waits on other incoming messages or it
2484 * may deadlock.
2485 */
2486 static void process_message(struct ceph_connection *con)
2487 {
2488 struct ceph_msg *msg = con->in_msg;
2489
2490 BUG_ON(con->in_msg->con != con);
2491 con->in_msg = NULL;
2492
2493 /* if first message, set peer_name */
2494 if (con->peer_name.type == 0)
2495 con->peer_name = msg->hdr.src;
2496
2497 con->in_seq++;
2498 mutex_unlock(&con->mutex);
2499
2500 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2501 msg, le64_to_cpu(msg->hdr.seq),
2502 ENTITY_NAME(msg->hdr.src),
2503 le16_to_cpu(msg->hdr.type),
2504 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2505 le32_to_cpu(msg->hdr.front_len),
2506 le32_to_cpu(msg->hdr.data_len),
2507 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2508 con->ops->dispatch(con, msg);
2509
2510 mutex_lock(&con->mutex);
2511 }
2512
2513 static int read_keepalive_ack(struct ceph_connection *con)
2514 {
2515 struct ceph_timespec ceph_ts;
2516 size_t size = sizeof(ceph_ts);
2517 int ret = read_partial(con, size, size, &ceph_ts);
2518 if (ret <= 0)
2519 return ret;
2520 ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2521 prepare_read_tag(con);
2522 return 1;
2523 }
2524
2525 /*
2526 * Write something to the socket. Called in a worker thread when the
2527 * socket appears to be writeable and we have something ready to send.
2528 */
2529 static int try_write(struct ceph_connection *con)
2530 {
2531 int ret = 1;
2532
2533 dout("try_write start %p state %lu\n", con, con->state);
2534
2535 more:
2536 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2537
2538 /* open the socket first? */
2539 if (con->state == CON_STATE_PREOPEN) {
2540 BUG_ON(con->sock);
2541 con->state = CON_STATE_CONNECTING;
2542
2543 con_out_kvec_reset(con);
2544 prepare_write_banner(con);
2545 prepare_read_banner(con);
2546
2547 BUG_ON(con->in_msg);
2548 con->in_tag = CEPH_MSGR_TAG_READY;
2549 dout("try_write initiating connect on %p new state %lu\n",
2550 con, con->state);
2551 ret = ceph_tcp_connect(con);
2552 if (ret < 0) {
2553 con->error_msg = "connect error";
2554 goto out;
2555 }
2556 }
2557
2558 more_kvec:
2559 /* kvec data queued? */
2560 if (con->out_kvec_left) {
2561 ret = write_partial_kvec(con);
2562 if (ret <= 0)
2563 goto out;
2564 }
2565 if (con->out_skip) {
2566 ret = write_partial_skip(con);
2567 if (ret <= 0)
2568 goto out;
2569 }
2570
2571 /* msg pages? */
2572 if (con->out_msg) {
2573 if (con->out_msg_done) {
2574 ceph_msg_put(con->out_msg);
2575 con->out_msg = NULL; /* we're done with this one */
2576 goto do_next;
2577 }
2578
2579 ret = write_partial_message_data(con);
2580 if (ret == 1)
2581 goto more_kvec; /* we need to send the footer, too! */
2582 if (ret == 0)
2583 goto out;
2584 if (ret < 0) {
2585 dout("try_write write_partial_message_data err %d\n",
2586 ret);
2587 goto out;
2588 }
2589 }
2590
2591 do_next:
2592 if (con->state == CON_STATE_OPEN) {
2593 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2594 prepare_write_keepalive(con);
2595 goto more;
2596 }
2597 /* is anything else pending? */
2598 if (!list_empty(&con->out_queue)) {
2599 prepare_write_message(con);
2600 goto more;
2601 }
2602 if (con->in_seq > con->in_seq_acked) {
2603 prepare_write_ack(con);
2604 goto more;
2605 }
2606 }
2607
2608 /* Nothing to do! */
2609 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2610 dout("try_write nothing else to write.\n");
2611 ret = 0;
2612 out:
2613 dout("try_write done on %p ret %d\n", con, ret);
2614 return ret;
2615 }
2616
2617
2618
2619 /*
2620 * Read what we can from the socket.
2621 */
2622 static int try_read(struct ceph_connection *con)
2623 {
2624 int ret = -1;
2625
2626 more:
2627 dout("try_read start on %p state %lu\n", con, con->state);
2628 if (con->state != CON_STATE_CONNECTING &&
2629 con->state != CON_STATE_NEGOTIATING &&
2630 con->state != CON_STATE_OPEN)
2631 return 0;
2632
2633 BUG_ON(!con->sock);
2634
2635 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2636 con->in_base_pos);
2637
2638 if (con->state == CON_STATE_CONNECTING) {
2639 dout("try_read connecting\n");
2640 ret = read_partial_banner(con);
2641 if (ret <= 0)
2642 goto out;
2643 ret = process_banner(con);
2644 if (ret < 0)
2645 goto out;
2646
2647 con->state = CON_STATE_NEGOTIATING;
2648
2649 /*
2650 * Received banner is good, exchange connection info.
2651 * Do not reset out_kvec, as sending our banner raced
2652 * with receiving peer banner after connect completed.
2653 */
2654 ret = prepare_write_connect(con);
2655 if (ret < 0)
2656 goto out;
2657 prepare_read_connect(con);
2658
2659 /* Send connection info before awaiting response */
2660 goto out;
2661 }
2662
2663 if (con->state == CON_STATE_NEGOTIATING) {
2664 dout("try_read negotiating\n");
2665 ret = read_partial_connect(con);
2666 if (ret <= 0)
2667 goto out;
2668 ret = process_connect(con);
2669 if (ret < 0)
2670 goto out;
2671 goto more;
2672 }
2673
2674 WARN_ON(con->state != CON_STATE_OPEN);
2675
2676 if (con->in_base_pos < 0) {
2677 /*
2678 * skipping + discarding content.
2679 *
2680 * FIXME: there must be a better way to do this!
2681 */
2682 static char buf[SKIP_BUF_SIZE];
2683 int skip = min((int) sizeof (buf), -con->in_base_pos);
2684
2685 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2686 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2687 if (ret <= 0)
2688 goto out;
2689 con->in_base_pos += ret;
2690 if (con->in_base_pos)
2691 goto more;
2692 }
2693 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2694 /*
2695 * what's next?
2696 */
2697 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2698 if (ret <= 0)
2699 goto out;
2700 dout("try_read got tag %d\n", (int)con->in_tag);
2701 switch (con->in_tag) {
2702 case CEPH_MSGR_TAG_MSG:
2703 prepare_read_message(con);
2704 break;
2705 case CEPH_MSGR_TAG_ACK:
2706 prepare_read_ack(con);
2707 break;
2708 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2709 prepare_read_keepalive_ack(con);
2710 break;
2711 case CEPH_MSGR_TAG_CLOSE:
2712 con_close_socket(con);
2713 con->state = CON_STATE_CLOSED;
2714 goto out;
2715 default:
2716 goto bad_tag;
2717 }
2718 }
2719 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2720 ret = read_partial_message(con);
2721 if (ret <= 0) {
2722 switch (ret) {
2723 case -EBADMSG:
2724 con->error_msg = "bad crc/signature";
2725 /* fall through */
2726 case -EBADE:
2727 ret = -EIO;
2728 break;
2729 case -EIO:
2730 con->error_msg = "io error";
2731 break;
2732 }
2733 goto out;
2734 }
2735 if (con->in_tag == CEPH_MSGR_TAG_READY)
2736 goto more;
2737 process_message(con);
2738 if (con->state == CON_STATE_OPEN)
2739 prepare_read_tag(con);
2740 goto more;
2741 }
2742 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2743 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2744 /*
2745 * the final handshake seq exchange is semantically
2746 * equivalent to an ACK
2747 */
2748 ret = read_partial_ack(con);
2749 if (ret <= 0)
2750 goto out;
2751 process_ack(con);
2752 goto more;
2753 }
2754 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2755 ret = read_keepalive_ack(con);
2756 if (ret <= 0)
2757 goto out;
2758 goto more;
2759 }
2760
2761 out:
2762 dout("try_read done on %p ret %d\n", con, ret);
2763 return ret;
2764
2765 bad_tag:
2766 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2767 con->error_msg = "protocol error, garbage tag";
2768 ret = -1;
2769 goto out;
2770 }
2771
2772
2773 /*
2774 * Atomically queue work on a connection after the specified delay.
2775 * Bump @con reference to avoid races with connection teardown.
2776 * Returns 0 if work was queued, or an error code otherwise.
2777 */
2778 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2779 {
2780 if (!con->ops->get(con)) {
2781 dout("%s %p ref count 0\n", __func__, con);
2782 return -ENOENT;
2783 }
2784
2785 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2786 dout("%s %p - already queued\n", __func__, con);
2787 con->ops->put(con);
2788 return -EBUSY;
2789 }
2790
2791 dout("%s %p %lu\n", __func__, con, delay);
2792 return 0;
2793 }
2794
2795 static void queue_con(struct ceph_connection *con)
2796 {
2797 (void) queue_con_delay(con, 0);
2798 }
2799
2800 static void cancel_con(struct ceph_connection *con)
2801 {
2802 if (cancel_delayed_work(&con->work)) {
2803 dout("%s %p\n", __func__, con);
2804 con->ops->put(con);
2805 }
2806 }
2807
2808 static bool con_sock_closed(struct ceph_connection *con)
2809 {
2810 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2811 return false;
2812
2813 #define CASE(x) \
2814 case CON_STATE_ ## x: \
2815 con->error_msg = "socket closed (con state " #x ")"; \
2816 break;
2817
2818 switch (con->state) {
2819 CASE(CLOSED);
2820 CASE(PREOPEN);
2821 CASE(CONNECTING);
2822 CASE(NEGOTIATING);
2823 CASE(OPEN);
2824 CASE(STANDBY);
2825 default:
2826 pr_warn("%s con %p unrecognized state %lu\n",
2827 __func__, con, con->state);
2828 con->error_msg = "unrecognized con state";
2829 BUG();
2830 break;
2831 }
2832 #undef CASE
2833
2834 return true;
2835 }
2836
2837 static bool con_backoff(struct ceph_connection *con)
2838 {
2839 int ret;
2840
2841 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2842 return false;
2843
2844 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2845 if (ret) {
2846 dout("%s: con %p FAILED to back off %lu\n", __func__,
2847 con, con->delay);
2848 BUG_ON(ret == -ENOENT);
2849 con_flag_set(con, CON_FLAG_BACKOFF);
2850 }
2851
2852 return true;
2853 }
2854
2855 /* Finish fault handling; con->mutex must *not* be held here */
2856
2857 static void con_fault_finish(struct ceph_connection *con)
2858 {
2859 dout("%s %p\n", __func__, con);
2860
2861 /*
2862 * in case we faulted due to authentication, invalidate our
2863 * current tickets so that we can get new ones.
2864 */
2865 if (con->auth_retry) {
2866 dout("auth_retry %d, invalidating\n", con->auth_retry);
2867 if (con->ops->invalidate_authorizer)
2868 con->ops->invalidate_authorizer(con);
2869 con->auth_retry = 0;
2870 }
2871
2872 if (con->ops->fault)
2873 con->ops->fault(con);
2874 }
2875
2876 /*
2877 * Do some work on a connection. Drop a connection ref when we're done.
2878 */
2879 static void ceph_con_workfn(struct work_struct *work)
2880 {
2881 struct ceph_connection *con = container_of(work, struct ceph_connection,
2882 work.work);
2883 bool fault;
2884
2885 mutex_lock(&con->mutex);
2886 while (true) {
2887 int ret;
2888
2889 if ((fault = con_sock_closed(con))) {
2890 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2891 break;
2892 }
2893 if (con_backoff(con)) {
2894 dout("%s: con %p BACKOFF\n", __func__, con);
2895 break;
2896 }
2897 if (con->state == CON_STATE_STANDBY) {
2898 dout("%s: con %p STANDBY\n", __func__, con);
2899 break;
2900 }
2901 if (con->state == CON_STATE_CLOSED) {
2902 dout("%s: con %p CLOSED\n", __func__, con);
2903 BUG_ON(con->sock);
2904 break;
2905 }
2906 if (con->state == CON_STATE_PREOPEN) {
2907 dout("%s: con %p PREOPEN\n", __func__, con);
2908 BUG_ON(con->sock);
2909 }
2910
2911 ret = try_read(con);
2912 if (ret < 0) {
2913 if (ret == -EAGAIN)
2914 continue;
2915 if (!con->error_msg)
2916 con->error_msg = "socket error on read";
2917 fault = true;
2918 break;
2919 }
2920
2921 ret = try_write(con);
2922 if (ret < 0) {
2923 if (ret == -EAGAIN)
2924 continue;
2925 if (!con->error_msg)
2926 con->error_msg = "socket error on write";
2927 fault = true;
2928 }
2929
2930 break; /* If we make it to here, we're done */
2931 }
2932 if (fault)
2933 con_fault(con);
2934 mutex_unlock(&con->mutex);
2935
2936 if (fault)
2937 con_fault_finish(con);
2938
2939 con->ops->put(con);
2940 }
2941
2942 /*
2943 * Generic error/fault handler. A retry mechanism is used with
2944 * exponential backoff
2945 */
2946 static void con_fault(struct ceph_connection *con)
2947 {
2948 dout("fault %p state %lu to peer %s\n",
2949 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2950
2951 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2952 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2953 con->error_msg = NULL;
2954
2955 WARN_ON(con->state != CON_STATE_CONNECTING &&
2956 con->state != CON_STATE_NEGOTIATING &&
2957 con->state != CON_STATE_OPEN);
2958
2959 con_close_socket(con);
2960
2961 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2962 dout("fault on LOSSYTX channel, marking CLOSED\n");
2963 con->state = CON_STATE_CLOSED;
2964 return;
2965 }
2966
2967 if (con->in_msg) {
2968 BUG_ON(con->in_msg->con != con);
2969 ceph_msg_put(con->in_msg);
2970 con->in_msg = NULL;
2971 }
2972
2973 /* Requeue anything that hasn't been acked */
2974 list_splice_init(&con->out_sent, &con->out_queue);
2975
2976 /* If there are no messages queued or keepalive pending, place
2977 * the connection in a STANDBY state */
2978 if (list_empty(&con->out_queue) &&
2979 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2980 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2981 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2982 con->state = CON_STATE_STANDBY;
2983 } else {
2984 /* retry after a delay. */
2985 con->state = CON_STATE_PREOPEN;
2986 if (con->delay == 0)
2987 con->delay = BASE_DELAY_INTERVAL;
2988 else if (con->delay < MAX_DELAY_INTERVAL)
2989 con->delay *= 2;
2990 con_flag_set(con, CON_FLAG_BACKOFF);
2991 queue_con(con);
2992 }
2993 }
2994
2995
2996
2997 /*
2998 * initialize a new messenger instance
2999 */
3000 void ceph_messenger_init(struct ceph_messenger *msgr,
3001 struct ceph_entity_addr *myaddr)
3002 {
3003 spin_lock_init(&msgr->global_seq_lock);
3004
3005 if (myaddr)
3006 msgr->inst.addr = *myaddr;
3007
3008 /* select a random nonce */
3009 msgr->inst.addr.type = 0;
3010 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3011 encode_my_addr(msgr);
3012
3013 atomic_set(&msgr->stopping, 0);
3014 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3015
3016 dout("%s %p\n", __func__, msgr);
3017 }
3018 EXPORT_SYMBOL(ceph_messenger_init);
3019
3020 void ceph_messenger_fini(struct ceph_messenger *msgr)
3021 {
3022 put_net(read_pnet(&msgr->net));
3023 }
3024 EXPORT_SYMBOL(ceph_messenger_fini);
3025
3026 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3027 {
3028 if (msg->con)
3029 msg->con->ops->put(msg->con);
3030
3031 msg->con = con ? con->ops->get(con) : NULL;
3032 BUG_ON(msg->con != con);
3033 }
3034
3035 static void clear_standby(struct ceph_connection *con)
3036 {
3037 /* come back from STANDBY? */
3038 if (con->state == CON_STATE_STANDBY) {
3039 dout("clear_standby %p and ++connect_seq\n", con);
3040 con->state = CON_STATE_PREOPEN;
3041 con->connect_seq++;
3042 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3043 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3044 }
3045 }
3046
3047 /*
3048 * Queue up an outgoing message on the given connection.
3049 */
3050 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3051 {
3052 /* set src+dst */
3053 msg->hdr.src = con->msgr->inst.name;
3054 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3055 msg->needs_out_seq = true;
3056
3057 mutex_lock(&con->mutex);
3058
3059 if (con->state == CON_STATE_CLOSED) {
3060 dout("con_send %p closed, dropping %p\n", con, msg);
3061 ceph_msg_put(msg);
3062 mutex_unlock(&con->mutex);
3063 return;
3064 }
3065
3066 msg_con_set(msg, con);
3067
3068 BUG_ON(!list_empty(&msg->list_head));
3069 list_add_tail(&msg->list_head, &con->out_queue);
3070 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3071 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3072 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3073 le32_to_cpu(msg->hdr.front_len),
3074 le32_to_cpu(msg->hdr.middle_len),
3075 le32_to_cpu(msg->hdr.data_len));
3076
3077 clear_standby(con);
3078 mutex_unlock(&con->mutex);
3079
3080 /* if there wasn't anything waiting to send before, queue
3081 * new work */
3082 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3083 queue_con(con);
3084 }
3085 EXPORT_SYMBOL(ceph_con_send);
3086
3087 /*
3088 * Revoke a message that was previously queued for send
3089 */
3090 void ceph_msg_revoke(struct ceph_msg *msg)
3091 {
3092 struct ceph_connection *con = msg->con;
3093
3094 if (!con) {
3095 dout("%s msg %p null con\n", __func__, msg);
3096 return; /* Message not in our possession */
3097 }
3098
3099 mutex_lock(&con->mutex);
3100 if (!list_empty(&msg->list_head)) {
3101 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3102 list_del_init(&msg->list_head);
3103 msg->hdr.seq = 0;
3104
3105 ceph_msg_put(msg);
3106 }
3107 if (con->out_msg == msg) {
3108 BUG_ON(con->out_skip);
3109 /* footer */
3110 if (con->out_msg_done) {
3111 con->out_skip += con_out_kvec_skip(con);
3112 } else {
3113 BUG_ON(!msg->data_length);
3114 con->out_skip += sizeof_footer(con);
3115 }
3116 /* data, middle, front */
3117 if (msg->data_length)
3118 con->out_skip += msg->cursor.total_resid;
3119 if (msg->middle)
3120 con->out_skip += con_out_kvec_skip(con);
3121 con->out_skip += con_out_kvec_skip(con);
3122
3123 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3124 __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3125 msg->hdr.seq = 0;
3126 con->out_msg = NULL;
3127 ceph_msg_put(msg);
3128 }
3129
3130 mutex_unlock(&con->mutex);
3131 }
3132
3133 /*
3134 * Revoke a message that we may be reading data into
3135 */
3136 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3137 {
3138 struct ceph_connection *con = msg->con;
3139
3140 if (!con) {
3141 dout("%s msg %p null con\n", __func__, msg);
3142 return; /* Message not in our possession */
3143 }
3144
3145 mutex_lock(&con->mutex);
3146 if (con->in_msg == msg) {
3147 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3148 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3149 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3150
3151 /* skip rest of message */
3152 dout("%s %p msg %p revoked\n", __func__, con, msg);
3153 con->in_base_pos = con->in_base_pos -
3154 sizeof(struct ceph_msg_header) -
3155 front_len -
3156 middle_len -
3157 data_len -
3158 sizeof(struct ceph_msg_footer);
3159 ceph_msg_put(con->in_msg);
3160 con->in_msg = NULL;
3161 con->in_tag = CEPH_MSGR_TAG_READY;
3162 con->in_seq++;
3163 } else {
3164 dout("%s %p in_msg %p msg %p no-op\n",
3165 __func__, con, con->in_msg, msg);
3166 }
3167 mutex_unlock(&con->mutex);
3168 }
3169
3170 /*
3171 * Queue a keepalive byte to ensure the tcp connection is alive.
3172 */
3173 void ceph_con_keepalive(struct ceph_connection *con)
3174 {
3175 dout("con_keepalive %p\n", con);
3176 mutex_lock(&con->mutex);
3177 clear_standby(con);
3178 mutex_unlock(&con->mutex);
3179 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3180 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3181 queue_con(con);
3182 }
3183 EXPORT_SYMBOL(ceph_con_keepalive);
3184
3185 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3186 unsigned long interval)
3187 {
3188 if (interval > 0 &&
3189 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3190 struct timespec now;
3191 struct timespec ts;
3192 ktime_get_real_ts(&now);
3193 jiffies_to_timespec(interval, &ts);
3194 ts = timespec_add(con->last_keepalive_ack, ts);
3195 return timespec_compare(&now, &ts) >= 0;
3196 }
3197 return false;
3198 }
3199
3200 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3201 {
3202 struct ceph_msg_data *data;
3203
3204 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3205 return NULL;
3206
3207 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3208 if (!data)
3209 return NULL;
3210
3211 data->type = type;
3212 INIT_LIST_HEAD(&data->links);
3213
3214 return data;
3215 }
3216
3217 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3218 {
3219 if (!data)
3220 return;
3221
3222 WARN_ON(!list_empty(&data->links));
3223 if (data->type == CEPH_MSG_DATA_PAGELIST)
3224 ceph_pagelist_release(data->pagelist);
3225 kmem_cache_free(ceph_msg_data_cache, data);
3226 }
3227
3228 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3229 size_t length, size_t alignment)
3230 {
3231 struct ceph_msg_data *data;
3232
3233 BUG_ON(!pages);
3234 BUG_ON(!length);
3235
3236 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3237 BUG_ON(!data);
3238 data->pages = pages;
3239 data->length = length;
3240 data->alignment = alignment & ~PAGE_MASK;
3241
3242 list_add_tail(&data->links, &msg->data);
3243 msg->data_length += length;
3244 }
3245 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3246
3247 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3248 struct ceph_pagelist *pagelist)
3249 {
3250 struct ceph_msg_data *data;
3251
3252 BUG_ON(!pagelist);
3253 BUG_ON(!pagelist->length);
3254
3255 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3256 BUG_ON(!data);
3257 data->pagelist = pagelist;
3258
3259 list_add_tail(&data->links, &msg->data);
3260 msg->data_length += pagelist->length;
3261 }
3262 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3263
3264 #ifdef CONFIG_BLOCK
3265 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3266 size_t length)
3267 {
3268 struct ceph_msg_data *data;
3269
3270 BUG_ON(!bio);
3271
3272 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3273 BUG_ON(!data);
3274 data->bio = bio;
3275 data->bio_length = length;
3276
3277 list_add_tail(&data->links, &msg->data);
3278 msg->data_length += length;
3279 }
3280 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3281 #endif /* CONFIG_BLOCK */
3282
3283 /*
3284 * construct a new message with given type, size
3285 * the new msg has a ref count of 1.
3286 */
3287 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3288 bool can_fail)
3289 {
3290 struct ceph_msg *m;
3291
3292 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3293 if (m == NULL)
3294 goto out;
3295
3296 m->hdr.type = cpu_to_le16(type);
3297 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3298 m->hdr.front_len = cpu_to_le32(front_len);
3299
3300 INIT_LIST_HEAD(&m->list_head);
3301 kref_init(&m->kref);
3302 INIT_LIST_HEAD(&m->data);
3303
3304 /* front */
3305 if (front_len) {
3306 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3307 if (m->front.iov_base == NULL) {
3308 dout("ceph_msg_new can't allocate %d bytes\n",
3309 front_len);
3310 goto out2;
3311 }
3312 } else {
3313 m->front.iov_base = NULL;
3314 }
3315 m->front_alloc_len = m->front.iov_len = front_len;
3316
3317 dout("ceph_msg_new %p front %d\n", m, front_len);
3318 return m;
3319
3320 out2:
3321 ceph_msg_put(m);
3322 out:
3323 if (!can_fail) {
3324 pr_err("msg_new can't create type %d front %d\n", type,
3325 front_len);
3326 WARN_ON(1);
3327 } else {
3328 dout("msg_new can't create type %d front %d\n", type,
3329 front_len);
3330 }
3331 return NULL;
3332 }
3333 EXPORT_SYMBOL(ceph_msg_new);
3334
3335 /*
3336 * Allocate "middle" portion of a message, if it is needed and wasn't
3337 * allocated by alloc_msg. This allows us to read a small fixed-size
3338 * per-type header in the front and then gracefully fail (i.e.,
3339 * propagate the error to the caller based on info in the front) when
3340 * the middle is too large.
3341 */
3342 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3343 {
3344 int type = le16_to_cpu(msg->hdr.type);
3345 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3346
3347 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3348 ceph_msg_type_name(type), middle_len);
3349 BUG_ON(!middle_len);
3350 BUG_ON(msg->middle);
3351
3352 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3353 if (!msg->middle)
3354 return -ENOMEM;
3355 return 0;
3356 }
3357
3358 /*
3359 * Allocate a message for receiving an incoming message on a
3360 * connection, and save the result in con->in_msg. Uses the
3361 * connection's private alloc_msg op if available.
3362 *
3363 * Returns 0 on success, or a negative error code.
3364 *
3365 * On success, if we set *skip = 1:
3366 * - the next message should be skipped and ignored.
3367 * - con->in_msg == NULL
3368 * or if we set *skip = 0:
3369 * - con->in_msg is non-null.
3370 * On error (ENOMEM, EAGAIN, ...),
3371 * - con->in_msg == NULL
3372 */
3373 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3374 {
3375 struct ceph_msg_header *hdr = &con->in_hdr;
3376 int middle_len = le32_to_cpu(hdr->middle_len);
3377 struct ceph_msg *msg;
3378 int ret = 0;
3379
3380 BUG_ON(con->in_msg != NULL);
3381 BUG_ON(!con->ops->alloc_msg);
3382
3383 mutex_unlock(&con->mutex);
3384 msg = con->ops->alloc_msg(con, hdr, skip);
3385 mutex_lock(&con->mutex);
3386 if (con->state != CON_STATE_OPEN) {
3387 if (msg)
3388 ceph_msg_put(msg);
3389 return -EAGAIN;
3390 }
3391 if (msg) {
3392 BUG_ON(*skip);
3393 msg_con_set(msg, con);
3394 con->in_msg = msg;
3395 } else {
3396 /*
3397 * Null message pointer means either we should skip
3398 * this message or we couldn't allocate memory. The
3399 * former is not an error.
3400 */
3401 if (*skip)
3402 return 0;
3403
3404 con->error_msg = "error allocating memory for incoming message";
3405 return -ENOMEM;
3406 }
3407 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3408
3409 if (middle_len && !con->in_msg->middle) {
3410 ret = ceph_alloc_middle(con, con->in_msg);
3411 if (ret < 0) {
3412 ceph_msg_put(con->in_msg);
3413 con->in_msg = NULL;
3414 }
3415 }
3416
3417 return ret;
3418 }
3419
3420
3421 /*
3422 * Free a generically kmalloc'd message.
3423 */
3424 static void ceph_msg_free(struct ceph_msg *m)
3425 {
3426 dout("%s %p\n", __func__, m);
3427 kvfree(m->front.iov_base);
3428 kmem_cache_free(ceph_msg_cache, m);
3429 }
3430
3431 static void ceph_msg_release(struct kref *kref)
3432 {
3433 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3434 struct ceph_msg_data *data, *next;
3435
3436 dout("%s %p\n", __func__, m);
3437 WARN_ON(!list_empty(&m->list_head));
3438
3439 msg_con_set(m, NULL);
3440
3441 /* drop middle, data, if any */
3442 if (m->middle) {
3443 ceph_buffer_put(m->middle);
3444 m->middle = NULL;
3445 }
3446
3447 list_for_each_entry_safe(data, next, &m->data, links) {
3448 list_del_init(&data->links);
3449 ceph_msg_data_destroy(data);
3450 }
3451 m->data_length = 0;
3452
3453 if (m->pool)
3454 ceph_msgpool_put(m->pool, m);
3455 else
3456 ceph_msg_free(m);
3457 }
3458
3459 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3460 {
3461 dout("%s %p (was %d)\n", __func__, msg,
3462 kref_read(&msg->kref));
3463 kref_get(&msg->kref);
3464 return msg;
3465 }
3466 EXPORT_SYMBOL(ceph_msg_get);
3467
3468 void ceph_msg_put(struct ceph_msg *msg)
3469 {
3470 dout("%s %p (was %d)\n", __func__, msg,
3471 kref_read(&msg->kref));
3472 kref_put(&msg->kref, ceph_msg_release);
3473 }
3474 EXPORT_SYMBOL(ceph_msg_put);
3475
3476 void ceph_msg_dump(struct ceph_msg *msg)
3477 {
3478 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3479 msg->front_alloc_len, msg->data_length);
3480 print_hex_dump(KERN_DEBUG, "header: ",
3481 DUMP_PREFIX_OFFSET, 16, 1,
3482 &msg->hdr, sizeof(msg->hdr), true);
3483 print_hex_dump(KERN_DEBUG, " front: ",
3484 DUMP_PREFIX_OFFSET, 16, 1,
3485 msg->front.iov_base, msg->front.iov_len, true);
3486 if (msg->middle)
3487 print_hex_dump(KERN_DEBUG, "middle: ",
3488 DUMP_PREFIX_OFFSET, 16, 1,
3489 msg->middle->vec.iov_base,
3490 msg->middle->vec.iov_len, true);
3491 print_hex_dump(KERN_DEBUG, "footer: ",
3492 DUMP_PREFIX_OFFSET, 16, 1,
3493 &msg->footer, sizeof(msg->footer), true);
3494 }
3495 EXPORT_SYMBOL(ceph_msg_dump);