]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ceph/messenger.c
Merge branch 'acpica'
[mirror_ubuntu-bionic-kernel.git] / net / ceph / messenger.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27
28 /*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37 /*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85 /*
86 * connection states
87 */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
94
95 /*
96 * ceph_connection flag bits
97 */
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
116 }
117 }
118
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 BUG_ON(!con_flag_valid(con_flag));
122
123 clear_bit(con_flag, &con->flags);
124 }
125
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 BUG_ON(!con_flag_valid(con_flag));
129
130 set_bit(con_flag, &con->flags);
131 }
132
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 BUG_ON(!con_flag_valid(con_flag));
136
137 return test_bit(con_flag, &con->flags);
138 }
139
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
142 {
143 BUG_ON(!con_flag_valid(con_flag));
144
145 return test_and_clear_bit(con_flag, &con->flags);
146 }
147
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
150 {
151 BUG_ON(!con_flag_valid(con_flag));
152
153 return test_and_set_bit(con_flag, &con->flags);
154 }
155
156 /* Slab caches for frequently-allocated structures */
157
158 static struct kmem_cache *ceph_msg_cache;
159 static struct kmem_cache *ceph_msg_data_cache;
160
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
166
167 #ifdef CONFIG_LOCKDEP
168 static struct lock_class_key socket_class;
169 #endif
170
171 /*
172 * When skipping (ignoring) a block of input we read it into a "skip
173 * buffer," which is this many bytes in size.
174 */
175 #define SKIP_BUF_SIZE 1024
176
177 static void queue_con(struct ceph_connection *con);
178 static void cancel_con(struct ceph_connection *con);
179 static void ceph_con_workfn(struct work_struct *);
180 static void con_fault(struct ceph_connection *con);
181
182 /*
183 * Nicely render a sockaddr as a string. An array of formatted
184 * strings is used, to approximate reentrancy.
185 */
186 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
187 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
188 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
189 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
190
191 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
192 static atomic_t addr_str_seq = ATOMIC_INIT(0);
193
194 static struct page *zero_page; /* used in certain error cases */
195
196 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
197 {
198 int i;
199 char *s;
200 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
201 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
202
203 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
204 s = addr_str[i];
205
206 switch (ss->ss_family) {
207 case AF_INET:
208 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
209 ntohs(in4->sin_port));
210 break;
211
212 case AF_INET6:
213 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
214 ntohs(in6->sin6_port));
215 break;
216
217 default:
218 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
219 ss->ss_family);
220 }
221
222 return s;
223 }
224 EXPORT_SYMBOL(ceph_pr_addr);
225
226 static void encode_my_addr(struct ceph_messenger *msgr)
227 {
228 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
229 ceph_encode_addr(&msgr->my_enc_addr);
230 }
231
232 /*
233 * work queue for all reading and writing to/from the socket.
234 */
235 static struct workqueue_struct *ceph_msgr_wq;
236
237 static int ceph_msgr_slab_init(void)
238 {
239 BUG_ON(ceph_msg_cache);
240 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
241 if (!ceph_msg_cache)
242 return -ENOMEM;
243
244 BUG_ON(ceph_msg_data_cache);
245 ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
246 if (ceph_msg_data_cache)
247 return 0;
248
249 kmem_cache_destroy(ceph_msg_cache);
250 ceph_msg_cache = NULL;
251
252 return -ENOMEM;
253 }
254
255 static void ceph_msgr_slab_exit(void)
256 {
257 BUG_ON(!ceph_msg_data_cache);
258 kmem_cache_destroy(ceph_msg_data_cache);
259 ceph_msg_data_cache = NULL;
260
261 BUG_ON(!ceph_msg_cache);
262 kmem_cache_destroy(ceph_msg_cache);
263 ceph_msg_cache = NULL;
264 }
265
266 static void _ceph_msgr_exit(void)
267 {
268 if (ceph_msgr_wq) {
269 destroy_workqueue(ceph_msgr_wq);
270 ceph_msgr_wq = NULL;
271 }
272
273 BUG_ON(zero_page == NULL);
274 put_page(zero_page);
275 zero_page = NULL;
276
277 ceph_msgr_slab_exit();
278 }
279
280 int ceph_msgr_init(void)
281 {
282 if (ceph_msgr_slab_init())
283 return -ENOMEM;
284
285 BUG_ON(zero_page != NULL);
286 zero_page = ZERO_PAGE(0);
287 get_page(zero_page);
288
289 /*
290 * The number of active work items is limited by the number of
291 * connections, so leave @max_active at default.
292 */
293 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
294 if (ceph_msgr_wq)
295 return 0;
296
297 pr_err("msgr_init failed to create workqueue\n");
298 _ceph_msgr_exit();
299
300 return -ENOMEM;
301 }
302 EXPORT_SYMBOL(ceph_msgr_init);
303
304 void ceph_msgr_exit(void)
305 {
306 BUG_ON(ceph_msgr_wq == NULL);
307
308 _ceph_msgr_exit();
309 }
310 EXPORT_SYMBOL(ceph_msgr_exit);
311
312 void ceph_msgr_flush(void)
313 {
314 flush_workqueue(ceph_msgr_wq);
315 }
316 EXPORT_SYMBOL(ceph_msgr_flush);
317
318 /* Connection socket state transition functions */
319
320 static void con_sock_state_init(struct ceph_connection *con)
321 {
322 int old_state;
323
324 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
325 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
326 printk("%s: unexpected old state %d\n", __func__, old_state);
327 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
328 CON_SOCK_STATE_CLOSED);
329 }
330
331 static void con_sock_state_connecting(struct ceph_connection *con)
332 {
333 int old_state;
334
335 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
336 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
337 printk("%s: unexpected old state %d\n", __func__, old_state);
338 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
339 CON_SOCK_STATE_CONNECTING);
340 }
341
342 static void con_sock_state_connected(struct ceph_connection *con)
343 {
344 int old_state;
345
346 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
347 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
348 printk("%s: unexpected old state %d\n", __func__, old_state);
349 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
350 CON_SOCK_STATE_CONNECTED);
351 }
352
353 static void con_sock_state_closing(struct ceph_connection *con)
354 {
355 int old_state;
356
357 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
358 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
359 old_state != CON_SOCK_STATE_CONNECTED &&
360 old_state != CON_SOCK_STATE_CLOSING))
361 printk("%s: unexpected old state %d\n", __func__, old_state);
362 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
363 CON_SOCK_STATE_CLOSING);
364 }
365
366 static void con_sock_state_closed(struct ceph_connection *con)
367 {
368 int old_state;
369
370 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
371 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
372 old_state != CON_SOCK_STATE_CLOSING &&
373 old_state != CON_SOCK_STATE_CONNECTING &&
374 old_state != CON_SOCK_STATE_CLOSED))
375 printk("%s: unexpected old state %d\n", __func__, old_state);
376 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
377 CON_SOCK_STATE_CLOSED);
378 }
379
380 /*
381 * socket callback functions
382 */
383
384 /* data available on socket, or listen socket received a connect */
385 static void ceph_sock_data_ready(struct sock *sk)
386 {
387 struct ceph_connection *con = sk->sk_user_data;
388 if (atomic_read(&con->msgr->stopping)) {
389 return;
390 }
391
392 if (sk->sk_state != TCP_CLOSE_WAIT) {
393 dout("%s on %p state = %lu, queueing work\n", __func__,
394 con, con->state);
395 queue_con(con);
396 }
397 }
398
399 /* socket has buffer space for writing */
400 static void ceph_sock_write_space(struct sock *sk)
401 {
402 struct ceph_connection *con = sk->sk_user_data;
403
404 /* only queue to workqueue if there is data we want to write,
405 * and there is sufficient space in the socket buffer to accept
406 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
407 * doesn't get called again until try_write() fills the socket
408 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
409 * and net/core/stream.c:sk_stream_write_space().
410 */
411 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
412 if (sk_stream_is_writeable(sk)) {
413 dout("%s %p queueing write work\n", __func__, con);
414 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
415 queue_con(con);
416 }
417 } else {
418 dout("%s %p nothing to write\n", __func__, con);
419 }
420 }
421
422 /* socket's state has changed */
423 static void ceph_sock_state_change(struct sock *sk)
424 {
425 struct ceph_connection *con = sk->sk_user_data;
426
427 dout("%s %p state = %lu sk_state = %u\n", __func__,
428 con, con->state, sk->sk_state);
429
430 switch (sk->sk_state) {
431 case TCP_CLOSE:
432 dout("%s TCP_CLOSE\n", __func__);
433 case TCP_CLOSE_WAIT:
434 dout("%s TCP_CLOSE_WAIT\n", __func__);
435 con_sock_state_closing(con);
436 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
437 queue_con(con);
438 break;
439 case TCP_ESTABLISHED:
440 dout("%s TCP_ESTABLISHED\n", __func__);
441 con_sock_state_connected(con);
442 queue_con(con);
443 break;
444 default: /* Everything else is uninteresting */
445 break;
446 }
447 }
448
449 /*
450 * set up socket callbacks
451 */
452 static void set_sock_callbacks(struct socket *sock,
453 struct ceph_connection *con)
454 {
455 struct sock *sk = sock->sk;
456 sk->sk_user_data = con;
457 sk->sk_data_ready = ceph_sock_data_ready;
458 sk->sk_write_space = ceph_sock_write_space;
459 sk->sk_state_change = ceph_sock_state_change;
460 }
461
462
463 /*
464 * socket helpers
465 */
466
467 /*
468 * initiate connection to a remote socket.
469 */
470 static int ceph_tcp_connect(struct ceph_connection *con)
471 {
472 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
473 struct socket *sock;
474 unsigned int noio_flag;
475 int ret;
476
477 BUG_ON(con->sock);
478
479 /* sock_create_kern() allocates with GFP_KERNEL */
480 noio_flag = memalloc_noio_save();
481 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
482 SOCK_STREAM, IPPROTO_TCP, &sock);
483 memalloc_noio_restore(noio_flag);
484 if (ret)
485 return ret;
486 sock->sk->sk_allocation = GFP_NOFS;
487
488 #ifdef CONFIG_LOCKDEP
489 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
490 #endif
491
492 set_sock_callbacks(sock, con);
493
494 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
495
496 con_sock_state_connecting(con);
497 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
498 O_NONBLOCK);
499 if (ret == -EINPROGRESS) {
500 dout("connect %s EINPROGRESS sk_state = %u\n",
501 ceph_pr_addr(&con->peer_addr.in_addr),
502 sock->sk->sk_state);
503 } else if (ret < 0) {
504 pr_err("connect %s error %d\n",
505 ceph_pr_addr(&con->peer_addr.in_addr), ret);
506 sock_release(sock);
507 return ret;
508 }
509
510 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
511 int optval = 1;
512
513 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
514 (char *)&optval, sizeof(optval));
515 if (ret)
516 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
517 ret);
518 }
519
520 con->sock = sock;
521 return 0;
522 }
523
524 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
525 {
526 struct kvec iov = {buf, len};
527 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
528 int r;
529
530 iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
531 r = sock_recvmsg(sock, &msg, msg.msg_flags);
532 if (r == -EAGAIN)
533 r = 0;
534 return r;
535 }
536
537 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
538 int page_offset, size_t length)
539 {
540 struct bio_vec bvec = {
541 .bv_page = page,
542 .bv_offset = page_offset,
543 .bv_len = length
544 };
545 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
546 int r;
547
548 BUG_ON(page_offset + length > PAGE_SIZE);
549 iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
550 r = sock_recvmsg(sock, &msg, msg.msg_flags);
551 if (r == -EAGAIN)
552 r = 0;
553 return r;
554 }
555
556 /*
557 * write something. @more is true if caller will be sending more data
558 * shortly.
559 */
560 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
561 size_t kvlen, size_t len, int more)
562 {
563 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
564 int r;
565
566 if (more)
567 msg.msg_flags |= MSG_MORE;
568 else
569 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
570
571 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
572 if (r == -EAGAIN)
573 r = 0;
574 return r;
575 }
576
577 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
578 int offset, size_t size, bool more)
579 {
580 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
581 int ret;
582
583 ret = kernel_sendpage(sock, page, offset, size, flags);
584 if (ret == -EAGAIN)
585 ret = 0;
586
587 return ret;
588 }
589
590 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
591 int offset, size_t size, bool more)
592 {
593 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
594 struct bio_vec bvec;
595 int ret;
596
597 /* sendpage cannot properly handle pages with page_count == 0,
598 * we need to fallback to sendmsg if that's the case */
599 if (page_count(page) >= 1)
600 return __ceph_tcp_sendpage(sock, page, offset, size, more);
601
602 bvec.bv_page = page;
603 bvec.bv_offset = offset;
604 bvec.bv_len = size;
605
606 if (more)
607 msg.msg_flags |= MSG_MORE;
608 else
609 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
610
611 iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
612 ret = sock_sendmsg(sock, &msg);
613 if (ret == -EAGAIN)
614 ret = 0;
615
616 return ret;
617 }
618
619 /*
620 * Shutdown/close the socket for the given connection.
621 */
622 static int con_close_socket(struct ceph_connection *con)
623 {
624 int rc = 0;
625
626 dout("con_close_socket on %p sock %p\n", con, con->sock);
627 if (con->sock) {
628 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
629 sock_release(con->sock);
630 con->sock = NULL;
631 }
632
633 /*
634 * Forcibly clear the SOCK_CLOSED flag. It gets set
635 * independent of the connection mutex, and we could have
636 * received a socket close event before we had the chance to
637 * shut the socket down.
638 */
639 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
640
641 con_sock_state_closed(con);
642 return rc;
643 }
644
645 /*
646 * Reset a connection. Discard all incoming and outgoing messages
647 * and clear *_seq state.
648 */
649 static void ceph_msg_remove(struct ceph_msg *msg)
650 {
651 list_del_init(&msg->list_head);
652
653 ceph_msg_put(msg);
654 }
655 static void ceph_msg_remove_list(struct list_head *head)
656 {
657 while (!list_empty(head)) {
658 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
659 list_head);
660 ceph_msg_remove(msg);
661 }
662 }
663
664 static void reset_connection(struct ceph_connection *con)
665 {
666 /* reset connection, out_queue, msg_ and connect_seq */
667 /* discard existing out_queue and msg_seq */
668 dout("reset_connection %p\n", con);
669 ceph_msg_remove_list(&con->out_queue);
670 ceph_msg_remove_list(&con->out_sent);
671
672 if (con->in_msg) {
673 BUG_ON(con->in_msg->con != con);
674 ceph_msg_put(con->in_msg);
675 con->in_msg = NULL;
676 }
677
678 con->connect_seq = 0;
679 con->out_seq = 0;
680 if (con->out_msg) {
681 BUG_ON(con->out_msg->con != con);
682 ceph_msg_put(con->out_msg);
683 con->out_msg = NULL;
684 }
685 con->in_seq = 0;
686 con->in_seq_acked = 0;
687
688 con->out_skip = 0;
689 }
690
691 /*
692 * mark a peer down. drop any open connections.
693 */
694 void ceph_con_close(struct ceph_connection *con)
695 {
696 mutex_lock(&con->mutex);
697 dout("con_close %p peer %s\n", con,
698 ceph_pr_addr(&con->peer_addr.in_addr));
699 con->state = CON_STATE_CLOSED;
700
701 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
702 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
703 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
704 con_flag_clear(con, CON_FLAG_BACKOFF);
705
706 reset_connection(con);
707 con->peer_global_seq = 0;
708 cancel_con(con);
709 con_close_socket(con);
710 mutex_unlock(&con->mutex);
711 }
712 EXPORT_SYMBOL(ceph_con_close);
713
714 /*
715 * Reopen a closed connection, with a new peer address.
716 */
717 void ceph_con_open(struct ceph_connection *con,
718 __u8 entity_type, __u64 entity_num,
719 struct ceph_entity_addr *addr)
720 {
721 mutex_lock(&con->mutex);
722 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
723
724 WARN_ON(con->state != CON_STATE_CLOSED);
725 con->state = CON_STATE_PREOPEN;
726
727 con->peer_name.type = (__u8) entity_type;
728 con->peer_name.num = cpu_to_le64(entity_num);
729
730 memcpy(&con->peer_addr, addr, sizeof(*addr));
731 con->delay = 0; /* reset backoff memory */
732 mutex_unlock(&con->mutex);
733 queue_con(con);
734 }
735 EXPORT_SYMBOL(ceph_con_open);
736
737 /*
738 * return true if this connection ever successfully opened
739 */
740 bool ceph_con_opened(struct ceph_connection *con)
741 {
742 return con->connect_seq > 0;
743 }
744
745 /*
746 * initialize a new connection.
747 */
748 void ceph_con_init(struct ceph_connection *con, void *private,
749 const struct ceph_connection_operations *ops,
750 struct ceph_messenger *msgr)
751 {
752 dout("con_init %p\n", con);
753 memset(con, 0, sizeof(*con));
754 con->private = private;
755 con->ops = ops;
756 con->msgr = msgr;
757
758 con_sock_state_init(con);
759
760 mutex_init(&con->mutex);
761 INIT_LIST_HEAD(&con->out_queue);
762 INIT_LIST_HEAD(&con->out_sent);
763 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
764
765 con->state = CON_STATE_CLOSED;
766 }
767 EXPORT_SYMBOL(ceph_con_init);
768
769
770 /*
771 * We maintain a global counter to order connection attempts. Get
772 * a unique seq greater than @gt.
773 */
774 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
775 {
776 u32 ret;
777
778 spin_lock(&msgr->global_seq_lock);
779 if (msgr->global_seq < gt)
780 msgr->global_seq = gt;
781 ret = ++msgr->global_seq;
782 spin_unlock(&msgr->global_seq_lock);
783 return ret;
784 }
785
786 static void con_out_kvec_reset(struct ceph_connection *con)
787 {
788 BUG_ON(con->out_skip);
789
790 con->out_kvec_left = 0;
791 con->out_kvec_bytes = 0;
792 con->out_kvec_cur = &con->out_kvec[0];
793 }
794
795 static void con_out_kvec_add(struct ceph_connection *con,
796 size_t size, void *data)
797 {
798 int index = con->out_kvec_left;
799
800 BUG_ON(con->out_skip);
801 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
802
803 con->out_kvec[index].iov_len = size;
804 con->out_kvec[index].iov_base = data;
805 con->out_kvec_left++;
806 con->out_kvec_bytes += size;
807 }
808
809 /*
810 * Chop off a kvec from the end. Return residual number of bytes for
811 * that kvec, i.e. how many bytes would have been written if the kvec
812 * hadn't been nuked.
813 */
814 static int con_out_kvec_skip(struct ceph_connection *con)
815 {
816 int off = con->out_kvec_cur - con->out_kvec;
817 int skip = 0;
818
819 if (con->out_kvec_bytes > 0) {
820 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
821 BUG_ON(con->out_kvec_bytes < skip);
822 BUG_ON(!con->out_kvec_left);
823 con->out_kvec_bytes -= skip;
824 con->out_kvec_left--;
825 }
826
827 return skip;
828 }
829
830 #ifdef CONFIG_BLOCK
831
832 /*
833 * For a bio data item, a piece is whatever remains of the next
834 * entry in the current bio iovec, or the first entry in the next
835 * bio in the list.
836 */
837 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
838 size_t length)
839 {
840 struct ceph_msg_data *data = cursor->data;
841 struct bio *bio;
842
843 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
844
845 bio = data->bio;
846 BUG_ON(!bio);
847
848 cursor->resid = min(length, data->bio_length);
849 cursor->bio = bio;
850 cursor->bvec_iter = bio->bi_iter;
851 cursor->last_piece =
852 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
853 }
854
855 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
856 size_t *page_offset,
857 size_t *length)
858 {
859 struct ceph_msg_data *data = cursor->data;
860 struct bio *bio;
861 struct bio_vec bio_vec;
862
863 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
864
865 bio = cursor->bio;
866 BUG_ON(!bio);
867
868 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
869
870 *page_offset = (size_t) bio_vec.bv_offset;
871 BUG_ON(*page_offset >= PAGE_SIZE);
872 if (cursor->last_piece) /* pagelist offset is always 0 */
873 *length = cursor->resid;
874 else
875 *length = (size_t) bio_vec.bv_len;
876 BUG_ON(*length > cursor->resid);
877 BUG_ON(*page_offset + *length > PAGE_SIZE);
878
879 return bio_vec.bv_page;
880 }
881
882 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
883 size_t bytes)
884 {
885 struct bio *bio;
886 struct bio_vec bio_vec;
887
888 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
889
890 bio = cursor->bio;
891 BUG_ON(!bio);
892
893 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
894
895 /* Advance the cursor offset */
896
897 BUG_ON(cursor->resid < bytes);
898 cursor->resid -= bytes;
899
900 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
901
902 if (bytes < bio_vec.bv_len)
903 return false; /* more bytes to process in this segment */
904
905 /* Move on to the next segment, and possibly the next bio */
906
907 if (!cursor->bvec_iter.bi_size) {
908 bio = bio->bi_next;
909 cursor->bio = bio;
910 if (bio)
911 cursor->bvec_iter = bio->bi_iter;
912 else
913 memset(&cursor->bvec_iter, 0,
914 sizeof(cursor->bvec_iter));
915 }
916
917 if (!cursor->last_piece) {
918 BUG_ON(!cursor->resid);
919 BUG_ON(!bio);
920 /* A short read is OK, so use <= rather than == */
921 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
922 cursor->last_piece = true;
923 }
924
925 return true;
926 }
927 #endif /* CONFIG_BLOCK */
928
929 /*
930 * For a page array, a piece comes from the first page in the array
931 * that has not already been fully consumed.
932 */
933 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
934 size_t length)
935 {
936 struct ceph_msg_data *data = cursor->data;
937 int page_count;
938
939 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
940
941 BUG_ON(!data->pages);
942 BUG_ON(!data->length);
943
944 cursor->resid = min(length, data->length);
945 page_count = calc_pages_for(data->alignment, (u64)data->length);
946 cursor->page_offset = data->alignment & ~PAGE_MASK;
947 cursor->page_index = 0;
948 BUG_ON(page_count > (int)USHRT_MAX);
949 cursor->page_count = (unsigned short)page_count;
950 BUG_ON(length > SIZE_MAX - cursor->page_offset);
951 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
952 }
953
954 static struct page *
955 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
956 size_t *page_offset, size_t *length)
957 {
958 struct ceph_msg_data *data = cursor->data;
959
960 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
961
962 BUG_ON(cursor->page_index >= cursor->page_count);
963 BUG_ON(cursor->page_offset >= PAGE_SIZE);
964
965 *page_offset = cursor->page_offset;
966 if (cursor->last_piece)
967 *length = cursor->resid;
968 else
969 *length = PAGE_SIZE - *page_offset;
970
971 return data->pages[cursor->page_index];
972 }
973
974 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
975 size_t bytes)
976 {
977 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
978
979 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
980
981 /* Advance the cursor page offset */
982
983 cursor->resid -= bytes;
984 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
985 if (!bytes || cursor->page_offset)
986 return false; /* more bytes to process in the current page */
987
988 if (!cursor->resid)
989 return false; /* no more data */
990
991 /* Move on to the next page; offset is already at 0 */
992
993 BUG_ON(cursor->page_index >= cursor->page_count);
994 cursor->page_index++;
995 cursor->last_piece = cursor->resid <= PAGE_SIZE;
996
997 return true;
998 }
999
1000 /*
1001 * For a pagelist, a piece is whatever remains to be consumed in the
1002 * first page in the list, or the front of the next page.
1003 */
1004 static void
1005 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1006 size_t length)
1007 {
1008 struct ceph_msg_data *data = cursor->data;
1009 struct ceph_pagelist *pagelist;
1010 struct page *page;
1011
1012 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1013
1014 pagelist = data->pagelist;
1015 BUG_ON(!pagelist);
1016
1017 if (!length)
1018 return; /* pagelist can be assigned but empty */
1019
1020 BUG_ON(list_empty(&pagelist->head));
1021 page = list_first_entry(&pagelist->head, struct page, lru);
1022
1023 cursor->resid = min(length, pagelist->length);
1024 cursor->page = page;
1025 cursor->offset = 0;
1026 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1027 }
1028
1029 static struct page *
1030 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1031 size_t *page_offset, size_t *length)
1032 {
1033 struct ceph_msg_data *data = cursor->data;
1034 struct ceph_pagelist *pagelist;
1035
1036 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1037
1038 pagelist = data->pagelist;
1039 BUG_ON(!pagelist);
1040
1041 BUG_ON(!cursor->page);
1042 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1043
1044 /* offset of first page in pagelist is always 0 */
1045 *page_offset = cursor->offset & ~PAGE_MASK;
1046 if (cursor->last_piece)
1047 *length = cursor->resid;
1048 else
1049 *length = PAGE_SIZE - *page_offset;
1050
1051 return cursor->page;
1052 }
1053
1054 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1055 size_t bytes)
1056 {
1057 struct ceph_msg_data *data = cursor->data;
1058 struct ceph_pagelist *pagelist;
1059
1060 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1061
1062 pagelist = data->pagelist;
1063 BUG_ON(!pagelist);
1064
1065 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1066 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1067
1068 /* Advance the cursor offset */
1069
1070 cursor->resid -= bytes;
1071 cursor->offset += bytes;
1072 /* offset of first page in pagelist is always 0 */
1073 if (!bytes || cursor->offset & ~PAGE_MASK)
1074 return false; /* more bytes to process in the current page */
1075
1076 if (!cursor->resid)
1077 return false; /* no more data */
1078
1079 /* Move on to the next page */
1080
1081 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1082 cursor->page = list_next_entry(cursor->page, lru);
1083 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1084
1085 return true;
1086 }
1087
1088 /*
1089 * Message data is handled (sent or received) in pieces, where each
1090 * piece resides on a single page. The network layer might not
1091 * consume an entire piece at once. A data item's cursor keeps
1092 * track of which piece is next to process and how much remains to
1093 * be processed in that piece. It also tracks whether the current
1094 * piece is the last one in the data item.
1095 */
1096 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1097 {
1098 size_t length = cursor->total_resid;
1099
1100 switch (cursor->data->type) {
1101 case CEPH_MSG_DATA_PAGELIST:
1102 ceph_msg_data_pagelist_cursor_init(cursor, length);
1103 break;
1104 case CEPH_MSG_DATA_PAGES:
1105 ceph_msg_data_pages_cursor_init(cursor, length);
1106 break;
1107 #ifdef CONFIG_BLOCK
1108 case CEPH_MSG_DATA_BIO:
1109 ceph_msg_data_bio_cursor_init(cursor, length);
1110 break;
1111 #endif /* CONFIG_BLOCK */
1112 case CEPH_MSG_DATA_NONE:
1113 default:
1114 /* BUG(); */
1115 break;
1116 }
1117 cursor->need_crc = true;
1118 }
1119
1120 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1121 {
1122 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1123 struct ceph_msg_data *data;
1124
1125 BUG_ON(!length);
1126 BUG_ON(length > msg->data_length);
1127 BUG_ON(list_empty(&msg->data));
1128
1129 cursor->data_head = &msg->data;
1130 cursor->total_resid = length;
1131 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1132 cursor->data = data;
1133
1134 __ceph_msg_data_cursor_init(cursor);
1135 }
1136
1137 /*
1138 * Return the page containing the next piece to process for a given
1139 * data item, and supply the page offset and length of that piece.
1140 * Indicate whether this is the last piece in this data item.
1141 */
1142 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1143 size_t *page_offset, size_t *length,
1144 bool *last_piece)
1145 {
1146 struct page *page;
1147
1148 switch (cursor->data->type) {
1149 case CEPH_MSG_DATA_PAGELIST:
1150 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1151 break;
1152 case CEPH_MSG_DATA_PAGES:
1153 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1154 break;
1155 #ifdef CONFIG_BLOCK
1156 case CEPH_MSG_DATA_BIO:
1157 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1158 break;
1159 #endif /* CONFIG_BLOCK */
1160 case CEPH_MSG_DATA_NONE:
1161 default:
1162 page = NULL;
1163 break;
1164 }
1165 BUG_ON(!page);
1166 BUG_ON(*page_offset + *length > PAGE_SIZE);
1167 BUG_ON(!*length);
1168 if (last_piece)
1169 *last_piece = cursor->last_piece;
1170
1171 return page;
1172 }
1173
1174 /*
1175 * Returns true if the result moves the cursor on to the next piece
1176 * of the data item.
1177 */
1178 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1179 size_t bytes)
1180 {
1181 bool new_piece;
1182
1183 BUG_ON(bytes > cursor->resid);
1184 switch (cursor->data->type) {
1185 case CEPH_MSG_DATA_PAGELIST:
1186 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1187 break;
1188 case CEPH_MSG_DATA_PAGES:
1189 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1190 break;
1191 #ifdef CONFIG_BLOCK
1192 case CEPH_MSG_DATA_BIO:
1193 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1194 break;
1195 #endif /* CONFIG_BLOCK */
1196 case CEPH_MSG_DATA_NONE:
1197 default:
1198 BUG();
1199 break;
1200 }
1201 cursor->total_resid -= bytes;
1202
1203 if (!cursor->resid && cursor->total_resid) {
1204 WARN_ON(!cursor->last_piece);
1205 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1206 cursor->data = list_next_entry(cursor->data, links);
1207 __ceph_msg_data_cursor_init(cursor);
1208 new_piece = true;
1209 }
1210 cursor->need_crc = new_piece;
1211 }
1212
1213 static size_t sizeof_footer(struct ceph_connection *con)
1214 {
1215 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1216 sizeof(struct ceph_msg_footer) :
1217 sizeof(struct ceph_msg_footer_old);
1218 }
1219
1220 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1221 {
1222 BUG_ON(!msg);
1223 BUG_ON(!data_len);
1224
1225 /* Initialize data cursor */
1226
1227 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1228 }
1229
1230 /*
1231 * Prepare footer for currently outgoing message, and finish things
1232 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1233 */
1234 static void prepare_write_message_footer(struct ceph_connection *con)
1235 {
1236 struct ceph_msg *m = con->out_msg;
1237
1238 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1239
1240 dout("prepare_write_message_footer %p\n", con);
1241 con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1242 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1243 if (con->ops->sign_message)
1244 con->ops->sign_message(m);
1245 else
1246 m->footer.sig = 0;
1247 } else {
1248 m->old_footer.flags = m->footer.flags;
1249 }
1250 con->out_more = m->more_to_follow;
1251 con->out_msg_done = true;
1252 }
1253
1254 /*
1255 * Prepare headers for the next outgoing message.
1256 */
1257 static void prepare_write_message(struct ceph_connection *con)
1258 {
1259 struct ceph_msg *m;
1260 u32 crc;
1261
1262 con_out_kvec_reset(con);
1263 con->out_msg_done = false;
1264
1265 /* Sneak an ack in there first? If we can get it into the same
1266 * TCP packet that's a good thing. */
1267 if (con->in_seq > con->in_seq_acked) {
1268 con->in_seq_acked = con->in_seq;
1269 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1270 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1271 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1272 &con->out_temp_ack);
1273 }
1274
1275 BUG_ON(list_empty(&con->out_queue));
1276 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1277 con->out_msg = m;
1278 BUG_ON(m->con != con);
1279
1280 /* put message on sent list */
1281 ceph_msg_get(m);
1282 list_move_tail(&m->list_head, &con->out_sent);
1283
1284 /*
1285 * only assign outgoing seq # if we haven't sent this message
1286 * yet. if it is requeued, resend with it's original seq.
1287 */
1288 if (m->needs_out_seq) {
1289 m->hdr.seq = cpu_to_le64(++con->out_seq);
1290 m->needs_out_seq = false;
1291
1292 if (con->ops->reencode_message)
1293 con->ops->reencode_message(m);
1294 }
1295
1296 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1297 m, con->out_seq, le16_to_cpu(m->hdr.type),
1298 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1299 m->data_length);
1300 WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1301 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1302
1303 /* tag + hdr + front + middle */
1304 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1305 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1306 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1307
1308 if (m->middle)
1309 con_out_kvec_add(con, m->middle->vec.iov_len,
1310 m->middle->vec.iov_base);
1311
1312 /* fill in hdr crc and finalize hdr */
1313 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1314 con->out_msg->hdr.crc = cpu_to_le32(crc);
1315 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1316
1317 /* fill in front and middle crc, footer */
1318 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1319 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1320 if (m->middle) {
1321 crc = crc32c(0, m->middle->vec.iov_base,
1322 m->middle->vec.iov_len);
1323 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1324 } else
1325 con->out_msg->footer.middle_crc = 0;
1326 dout("%s front_crc %u middle_crc %u\n", __func__,
1327 le32_to_cpu(con->out_msg->footer.front_crc),
1328 le32_to_cpu(con->out_msg->footer.middle_crc));
1329 con->out_msg->footer.flags = 0;
1330
1331 /* is there a data payload? */
1332 con->out_msg->footer.data_crc = 0;
1333 if (m->data_length) {
1334 prepare_message_data(con->out_msg, m->data_length);
1335 con->out_more = 1; /* data + footer will follow */
1336 } else {
1337 /* no, queue up footer too and be done */
1338 prepare_write_message_footer(con);
1339 }
1340
1341 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1342 }
1343
1344 /*
1345 * Prepare an ack.
1346 */
1347 static void prepare_write_ack(struct ceph_connection *con)
1348 {
1349 dout("prepare_write_ack %p %llu -> %llu\n", con,
1350 con->in_seq_acked, con->in_seq);
1351 con->in_seq_acked = con->in_seq;
1352
1353 con_out_kvec_reset(con);
1354
1355 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1356
1357 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1358 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1359 &con->out_temp_ack);
1360
1361 con->out_more = 1; /* more will follow.. eventually.. */
1362 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1363 }
1364
1365 /*
1366 * Prepare to share the seq during handshake
1367 */
1368 static void prepare_write_seq(struct ceph_connection *con)
1369 {
1370 dout("prepare_write_seq %p %llu -> %llu\n", con,
1371 con->in_seq_acked, con->in_seq);
1372 con->in_seq_acked = con->in_seq;
1373
1374 con_out_kvec_reset(con);
1375
1376 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1377 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1378 &con->out_temp_ack);
1379
1380 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1381 }
1382
1383 /*
1384 * Prepare to write keepalive byte.
1385 */
1386 static void prepare_write_keepalive(struct ceph_connection *con)
1387 {
1388 dout("prepare_write_keepalive %p\n", con);
1389 con_out_kvec_reset(con);
1390 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1391 struct timespec now;
1392
1393 ktime_get_real_ts(&now);
1394 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1395 ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1396 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1397 &con->out_temp_keepalive2);
1398 } else {
1399 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1400 }
1401 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1402 }
1403
1404 /*
1405 * Connection negotiation.
1406 */
1407
1408 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1409 int *auth_proto)
1410 {
1411 struct ceph_auth_handshake *auth;
1412
1413 if (!con->ops->get_authorizer) {
1414 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1415 con->out_connect.authorizer_len = 0;
1416 return NULL;
1417 }
1418
1419 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1420 if (IS_ERR(auth))
1421 return auth;
1422
1423 con->auth_reply_buf = auth->authorizer_reply_buf;
1424 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1425 return auth;
1426 }
1427
1428 /*
1429 * We connected to a peer and are saying hello.
1430 */
1431 static void prepare_write_banner(struct ceph_connection *con)
1432 {
1433 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1434 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1435 &con->msgr->my_enc_addr);
1436
1437 con->out_more = 0;
1438 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1439 }
1440
1441 static int prepare_write_connect(struct ceph_connection *con)
1442 {
1443 unsigned int global_seq = get_global_seq(con->msgr, 0);
1444 int proto;
1445 int auth_proto;
1446 struct ceph_auth_handshake *auth;
1447
1448 switch (con->peer_name.type) {
1449 case CEPH_ENTITY_TYPE_MON:
1450 proto = CEPH_MONC_PROTOCOL;
1451 break;
1452 case CEPH_ENTITY_TYPE_OSD:
1453 proto = CEPH_OSDC_PROTOCOL;
1454 break;
1455 case CEPH_ENTITY_TYPE_MDS:
1456 proto = CEPH_MDSC_PROTOCOL;
1457 break;
1458 default:
1459 BUG();
1460 }
1461
1462 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1463 con->connect_seq, global_seq, proto);
1464
1465 con->out_connect.features =
1466 cpu_to_le64(from_msgr(con->msgr)->supported_features);
1467 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1468 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1469 con->out_connect.global_seq = cpu_to_le32(global_seq);
1470 con->out_connect.protocol_version = cpu_to_le32(proto);
1471 con->out_connect.flags = 0;
1472
1473 auth_proto = CEPH_AUTH_UNKNOWN;
1474 auth = get_connect_authorizer(con, &auth_proto);
1475 if (IS_ERR(auth))
1476 return PTR_ERR(auth);
1477
1478 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1479 con->out_connect.authorizer_len = auth ?
1480 cpu_to_le32(auth->authorizer_buf_len) : 0;
1481
1482 con_out_kvec_add(con, sizeof (con->out_connect),
1483 &con->out_connect);
1484 if (auth && auth->authorizer_buf_len)
1485 con_out_kvec_add(con, auth->authorizer_buf_len,
1486 auth->authorizer_buf);
1487
1488 con->out_more = 0;
1489 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1490
1491 return 0;
1492 }
1493
1494 /*
1495 * write as much of pending kvecs to the socket as we can.
1496 * 1 -> done
1497 * 0 -> socket full, but more to do
1498 * <0 -> error
1499 */
1500 static int write_partial_kvec(struct ceph_connection *con)
1501 {
1502 int ret;
1503
1504 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1505 while (con->out_kvec_bytes > 0) {
1506 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1507 con->out_kvec_left, con->out_kvec_bytes,
1508 con->out_more);
1509 if (ret <= 0)
1510 goto out;
1511 con->out_kvec_bytes -= ret;
1512 if (con->out_kvec_bytes == 0)
1513 break; /* done */
1514
1515 /* account for full iov entries consumed */
1516 while (ret >= con->out_kvec_cur->iov_len) {
1517 BUG_ON(!con->out_kvec_left);
1518 ret -= con->out_kvec_cur->iov_len;
1519 con->out_kvec_cur++;
1520 con->out_kvec_left--;
1521 }
1522 /* and for a partially-consumed entry */
1523 if (ret) {
1524 con->out_kvec_cur->iov_len -= ret;
1525 con->out_kvec_cur->iov_base += ret;
1526 }
1527 }
1528 con->out_kvec_left = 0;
1529 ret = 1;
1530 out:
1531 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1532 con->out_kvec_bytes, con->out_kvec_left, ret);
1533 return ret; /* done! */
1534 }
1535
1536 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1537 unsigned int page_offset,
1538 unsigned int length)
1539 {
1540 char *kaddr;
1541
1542 kaddr = kmap(page);
1543 BUG_ON(kaddr == NULL);
1544 crc = crc32c(crc, kaddr + page_offset, length);
1545 kunmap(page);
1546
1547 return crc;
1548 }
1549 /*
1550 * Write as much message data payload as we can. If we finish, queue
1551 * up the footer.
1552 * 1 -> done, footer is now queued in out_kvec[].
1553 * 0 -> socket full, but more to do
1554 * <0 -> error
1555 */
1556 static int write_partial_message_data(struct ceph_connection *con)
1557 {
1558 struct ceph_msg *msg = con->out_msg;
1559 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1560 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1561 u32 crc;
1562
1563 dout("%s %p msg %p\n", __func__, con, msg);
1564
1565 if (list_empty(&msg->data))
1566 return -EINVAL;
1567
1568 /*
1569 * Iterate through each page that contains data to be
1570 * written, and send as much as possible for each.
1571 *
1572 * If we are calculating the data crc (the default), we will
1573 * need to map the page. If we have no pages, they have
1574 * been revoked, so use the zero page.
1575 */
1576 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1577 while (cursor->resid) {
1578 struct page *page;
1579 size_t page_offset;
1580 size_t length;
1581 bool last_piece;
1582 int ret;
1583
1584 page = ceph_msg_data_next(cursor, &page_offset, &length,
1585 &last_piece);
1586 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1587 length, !last_piece);
1588 if (ret <= 0) {
1589 if (do_datacrc)
1590 msg->footer.data_crc = cpu_to_le32(crc);
1591
1592 return ret;
1593 }
1594 if (do_datacrc && cursor->need_crc)
1595 crc = ceph_crc32c_page(crc, page, page_offset, length);
1596 ceph_msg_data_advance(cursor, (size_t)ret);
1597 }
1598
1599 dout("%s %p msg %p done\n", __func__, con, msg);
1600
1601 /* prepare and queue up footer, too */
1602 if (do_datacrc)
1603 msg->footer.data_crc = cpu_to_le32(crc);
1604 else
1605 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1606 con_out_kvec_reset(con);
1607 prepare_write_message_footer(con);
1608
1609 return 1; /* must return > 0 to indicate success */
1610 }
1611
1612 /*
1613 * write some zeros
1614 */
1615 static int write_partial_skip(struct ceph_connection *con)
1616 {
1617 int ret;
1618
1619 dout("%s %p %d left\n", __func__, con, con->out_skip);
1620 while (con->out_skip > 0) {
1621 size_t size = min(con->out_skip, (int) PAGE_SIZE);
1622
1623 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1624 if (ret <= 0)
1625 goto out;
1626 con->out_skip -= ret;
1627 }
1628 ret = 1;
1629 out:
1630 return ret;
1631 }
1632
1633 /*
1634 * Prepare to read connection handshake, or an ack.
1635 */
1636 static void prepare_read_banner(struct ceph_connection *con)
1637 {
1638 dout("prepare_read_banner %p\n", con);
1639 con->in_base_pos = 0;
1640 }
1641
1642 static void prepare_read_connect(struct ceph_connection *con)
1643 {
1644 dout("prepare_read_connect %p\n", con);
1645 con->in_base_pos = 0;
1646 }
1647
1648 static void prepare_read_ack(struct ceph_connection *con)
1649 {
1650 dout("prepare_read_ack %p\n", con);
1651 con->in_base_pos = 0;
1652 }
1653
1654 static void prepare_read_seq(struct ceph_connection *con)
1655 {
1656 dout("prepare_read_seq %p\n", con);
1657 con->in_base_pos = 0;
1658 con->in_tag = CEPH_MSGR_TAG_SEQ;
1659 }
1660
1661 static void prepare_read_tag(struct ceph_connection *con)
1662 {
1663 dout("prepare_read_tag %p\n", con);
1664 con->in_base_pos = 0;
1665 con->in_tag = CEPH_MSGR_TAG_READY;
1666 }
1667
1668 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1669 {
1670 dout("prepare_read_keepalive_ack %p\n", con);
1671 con->in_base_pos = 0;
1672 }
1673
1674 /*
1675 * Prepare to read a message.
1676 */
1677 static int prepare_read_message(struct ceph_connection *con)
1678 {
1679 dout("prepare_read_message %p\n", con);
1680 BUG_ON(con->in_msg != NULL);
1681 con->in_base_pos = 0;
1682 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1683 return 0;
1684 }
1685
1686
1687 static int read_partial(struct ceph_connection *con,
1688 int end, int size, void *object)
1689 {
1690 while (con->in_base_pos < end) {
1691 int left = end - con->in_base_pos;
1692 int have = size - left;
1693 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1694 if (ret <= 0)
1695 return ret;
1696 con->in_base_pos += ret;
1697 }
1698 return 1;
1699 }
1700
1701
1702 /*
1703 * Read all or part of the connect-side handshake on a new connection
1704 */
1705 static int read_partial_banner(struct ceph_connection *con)
1706 {
1707 int size;
1708 int end;
1709 int ret;
1710
1711 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1712
1713 /* peer's banner */
1714 size = strlen(CEPH_BANNER);
1715 end = size;
1716 ret = read_partial(con, end, size, con->in_banner);
1717 if (ret <= 0)
1718 goto out;
1719
1720 size = sizeof (con->actual_peer_addr);
1721 end += size;
1722 ret = read_partial(con, end, size, &con->actual_peer_addr);
1723 if (ret <= 0)
1724 goto out;
1725
1726 size = sizeof (con->peer_addr_for_me);
1727 end += size;
1728 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1729 if (ret <= 0)
1730 goto out;
1731
1732 out:
1733 return ret;
1734 }
1735
1736 static int read_partial_connect(struct ceph_connection *con)
1737 {
1738 int size;
1739 int end;
1740 int ret;
1741
1742 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1743
1744 size = sizeof (con->in_reply);
1745 end = size;
1746 ret = read_partial(con, end, size, &con->in_reply);
1747 if (ret <= 0)
1748 goto out;
1749
1750 size = le32_to_cpu(con->in_reply.authorizer_len);
1751 end += size;
1752 ret = read_partial(con, end, size, con->auth_reply_buf);
1753 if (ret <= 0)
1754 goto out;
1755
1756 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1757 con, (int)con->in_reply.tag,
1758 le32_to_cpu(con->in_reply.connect_seq),
1759 le32_to_cpu(con->in_reply.global_seq));
1760 out:
1761 return ret;
1762
1763 }
1764
1765 /*
1766 * Verify the hello banner looks okay.
1767 */
1768 static int verify_hello(struct ceph_connection *con)
1769 {
1770 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1771 pr_err("connect to %s got bad banner\n",
1772 ceph_pr_addr(&con->peer_addr.in_addr));
1773 con->error_msg = "protocol error, bad banner";
1774 return -1;
1775 }
1776 return 0;
1777 }
1778
1779 static bool addr_is_blank(struct sockaddr_storage *ss)
1780 {
1781 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1782 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1783
1784 switch (ss->ss_family) {
1785 case AF_INET:
1786 return addr->s_addr == htonl(INADDR_ANY);
1787 case AF_INET6:
1788 return ipv6_addr_any(addr6);
1789 default:
1790 return true;
1791 }
1792 }
1793
1794 static int addr_port(struct sockaddr_storage *ss)
1795 {
1796 switch (ss->ss_family) {
1797 case AF_INET:
1798 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1799 case AF_INET6:
1800 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1801 }
1802 return 0;
1803 }
1804
1805 static void addr_set_port(struct sockaddr_storage *ss, int p)
1806 {
1807 switch (ss->ss_family) {
1808 case AF_INET:
1809 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1810 break;
1811 case AF_INET6:
1812 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1813 break;
1814 }
1815 }
1816
1817 /*
1818 * Unlike other *_pton function semantics, zero indicates success.
1819 */
1820 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1821 char delim, const char **ipend)
1822 {
1823 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1824 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1825
1826 memset(ss, 0, sizeof(*ss));
1827
1828 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1829 ss->ss_family = AF_INET;
1830 return 0;
1831 }
1832
1833 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1834 ss->ss_family = AF_INET6;
1835 return 0;
1836 }
1837
1838 return -EINVAL;
1839 }
1840
1841 /*
1842 * Extract hostname string and resolve using kernel DNS facility.
1843 */
1844 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1845 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1846 struct sockaddr_storage *ss, char delim, const char **ipend)
1847 {
1848 const char *end, *delim_p;
1849 char *colon_p, *ip_addr = NULL;
1850 int ip_len, ret;
1851
1852 /*
1853 * The end of the hostname occurs immediately preceding the delimiter or
1854 * the port marker (':') where the delimiter takes precedence.
1855 */
1856 delim_p = memchr(name, delim, namelen);
1857 colon_p = memchr(name, ':', namelen);
1858
1859 if (delim_p && colon_p)
1860 end = delim_p < colon_p ? delim_p : colon_p;
1861 else if (!delim_p && colon_p)
1862 end = colon_p;
1863 else {
1864 end = delim_p;
1865 if (!end) /* case: hostname:/ */
1866 end = name + namelen;
1867 }
1868
1869 if (end <= name)
1870 return -EINVAL;
1871
1872 /* do dns_resolve upcall */
1873 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1874 if (ip_len > 0)
1875 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1876 else
1877 ret = -ESRCH;
1878
1879 kfree(ip_addr);
1880
1881 *ipend = end;
1882
1883 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1884 ret, ret ? "failed" : ceph_pr_addr(ss));
1885
1886 return ret;
1887 }
1888 #else
1889 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1890 struct sockaddr_storage *ss, char delim, const char **ipend)
1891 {
1892 return -EINVAL;
1893 }
1894 #endif
1895
1896 /*
1897 * Parse a server name (IP or hostname). If a valid IP address is not found
1898 * then try to extract a hostname to resolve using userspace DNS upcall.
1899 */
1900 static int ceph_parse_server_name(const char *name, size_t namelen,
1901 struct sockaddr_storage *ss, char delim, const char **ipend)
1902 {
1903 int ret;
1904
1905 ret = ceph_pton(name, namelen, ss, delim, ipend);
1906 if (ret)
1907 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1908
1909 return ret;
1910 }
1911
1912 /*
1913 * Parse an ip[:port] list into an addr array. Use the default
1914 * monitor port if a port isn't specified.
1915 */
1916 int ceph_parse_ips(const char *c, const char *end,
1917 struct ceph_entity_addr *addr,
1918 int max_count, int *count)
1919 {
1920 int i, ret = -EINVAL;
1921 const char *p = c;
1922
1923 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1924 for (i = 0; i < max_count; i++) {
1925 const char *ipend;
1926 struct sockaddr_storage *ss = &addr[i].in_addr;
1927 int port;
1928 char delim = ',';
1929
1930 if (*p == '[') {
1931 delim = ']';
1932 p++;
1933 }
1934
1935 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1936 if (ret)
1937 goto bad;
1938 ret = -EINVAL;
1939
1940 p = ipend;
1941
1942 if (delim == ']') {
1943 if (*p != ']') {
1944 dout("missing matching ']'\n");
1945 goto bad;
1946 }
1947 p++;
1948 }
1949
1950 /* port? */
1951 if (p < end && *p == ':') {
1952 port = 0;
1953 p++;
1954 while (p < end && *p >= '0' && *p <= '9') {
1955 port = (port * 10) + (*p - '0');
1956 p++;
1957 }
1958 if (port == 0)
1959 port = CEPH_MON_PORT;
1960 else if (port > 65535)
1961 goto bad;
1962 } else {
1963 port = CEPH_MON_PORT;
1964 }
1965
1966 addr_set_port(ss, port);
1967
1968 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1969
1970 if (p == end)
1971 break;
1972 if (*p != ',')
1973 goto bad;
1974 p++;
1975 }
1976
1977 if (p != end)
1978 goto bad;
1979
1980 if (count)
1981 *count = i + 1;
1982 return 0;
1983
1984 bad:
1985 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1986 return ret;
1987 }
1988 EXPORT_SYMBOL(ceph_parse_ips);
1989
1990 static int process_banner(struct ceph_connection *con)
1991 {
1992 dout("process_banner on %p\n", con);
1993
1994 if (verify_hello(con) < 0)
1995 return -1;
1996
1997 ceph_decode_addr(&con->actual_peer_addr);
1998 ceph_decode_addr(&con->peer_addr_for_me);
1999
2000 /*
2001 * Make sure the other end is who we wanted. note that the other
2002 * end may not yet know their ip address, so if it's 0.0.0.0, give
2003 * them the benefit of the doubt.
2004 */
2005 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2006 sizeof(con->peer_addr)) != 0 &&
2007 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2008 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2009 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2010 ceph_pr_addr(&con->peer_addr.in_addr),
2011 (int)le32_to_cpu(con->peer_addr.nonce),
2012 ceph_pr_addr(&con->actual_peer_addr.in_addr),
2013 (int)le32_to_cpu(con->actual_peer_addr.nonce));
2014 con->error_msg = "wrong peer at address";
2015 return -1;
2016 }
2017
2018 /*
2019 * did we learn our address?
2020 */
2021 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2022 int port = addr_port(&con->msgr->inst.addr.in_addr);
2023
2024 memcpy(&con->msgr->inst.addr.in_addr,
2025 &con->peer_addr_for_me.in_addr,
2026 sizeof(con->peer_addr_for_me.in_addr));
2027 addr_set_port(&con->msgr->inst.addr.in_addr, port);
2028 encode_my_addr(con->msgr);
2029 dout("process_banner learned my addr is %s\n",
2030 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2031 }
2032
2033 return 0;
2034 }
2035
2036 static int process_connect(struct ceph_connection *con)
2037 {
2038 u64 sup_feat = from_msgr(con->msgr)->supported_features;
2039 u64 req_feat = from_msgr(con->msgr)->required_features;
2040 u64 server_feat = le64_to_cpu(con->in_reply.features);
2041 int ret;
2042
2043 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2044
2045 if (con->auth_reply_buf) {
2046 /*
2047 * Any connection that defines ->get_authorizer()
2048 * should also define ->verify_authorizer_reply().
2049 * See get_connect_authorizer().
2050 */
2051 ret = con->ops->verify_authorizer_reply(con);
2052 if (ret < 0) {
2053 con->error_msg = "bad authorize reply";
2054 return ret;
2055 }
2056 }
2057
2058 switch (con->in_reply.tag) {
2059 case CEPH_MSGR_TAG_FEATURES:
2060 pr_err("%s%lld %s feature set mismatch,"
2061 " my %llx < server's %llx, missing %llx\n",
2062 ENTITY_NAME(con->peer_name),
2063 ceph_pr_addr(&con->peer_addr.in_addr),
2064 sup_feat, server_feat, server_feat & ~sup_feat);
2065 con->error_msg = "missing required protocol features";
2066 reset_connection(con);
2067 return -1;
2068
2069 case CEPH_MSGR_TAG_BADPROTOVER:
2070 pr_err("%s%lld %s protocol version mismatch,"
2071 " my %d != server's %d\n",
2072 ENTITY_NAME(con->peer_name),
2073 ceph_pr_addr(&con->peer_addr.in_addr),
2074 le32_to_cpu(con->out_connect.protocol_version),
2075 le32_to_cpu(con->in_reply.protocol_version));
2076 con->error_msg = "protocol version mismatch";
2077 reset_connection(con);
2078 return -1;
2079
2080 case CEPH_MSGR_TAG_BADAUTHORIZER:
2081 con->auth_retry++;
2082 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2083 con->auth_retry);
2084 if (con->auth_retry == 2) {
2085 con->error_msg = "connect authorization failure";
2086 return -1;
2087 }
2088 con_out_kvec_reset(con);
2089 ret = prepare_write_connect(con);
2090 if (ret < 0)
2091 return ret;
2092 prepare_read_connect(con);
2093 break;
2094
2095 case CEPH_MSGR_TAG_RESETSESSION:
2096 /*
2097 * If we connected with a large connect_seq but the peer
2098 * has no record of a session with us (no connection, or
2099 * connect_seq == 0), they will send RESETSESION to indicate
2100 * that they must have reset their session, and may have
2101 * dropped messages.
2102 */
2103 dout("process_connect got RESET peer seq %u\n",
2104 le32_to_cpu(con->in_reply.connect_seq));
2105 pr_err("%s%lld %s connection reset\n",
2106 ENTITY_NAME(con->peer_name),
2107 ceph_pr_addr(&con->peer_addr.in_addr));
2108 reset_connection(con);
2109 con_out_kvec_reset(con);
2110 ret = prepare_write_connect(con);
2111 if (ret < 0)
2112 return ret;
2113 prepare_read_connect(con);
2114
2115 /* Tell ceph about it. */
2116 mutex_unlock(&con->mutex);
2117 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2118 if (con->ops->peer_reset)
2119 con->ops->peer_reset(con);
2120 mutex_lock(&con->mutex);
2121 if (con->state != CON_STATE_NEGOTIATING)
2122 return -EAGAIN;
2123 break;
2124
2125 case CEPH_MSGR_TAG_RETRY_SESSION:
2126 /*
2127 * If we sent a smaller connect_seq than the peer has, try
2128 * again with a larger value.
2129 */
2130 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2131 le32_to_cpu(con->out_connect.connect_seq),
2132 le32_to_cpu(con->in_reply.connect_seq));
2133 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2134 con_out_kvec_reset(con);
2135 ret = prepare_write_connect(con);
2136 if (ret < 0)
2137 return ret;
2138 prepare_read_connect(con);
2139 break;
2140
2141 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2142 /*
2143 * If we sent a smaller global_seq than the peer has, try
2144 * again with a larger value.
2145 */
2146 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2147 con->peer_global_seq,
2148 le32_to_cpu(con->in_reply.global_seq));
2149 get_global_seq(con->msgr,
2150 le32_to_cpu(con->in_reply.global_seq));
2151 con_out_kvec_reset(con);
2152 ret = prepare_write_connect(con);
2153 if (ret < 0)
2154 return ret;
2155 prepare_read_connect(con);
2156 break;
2157
2158 case CEPH_MSGR_TAG_SEQ:
2159 case CEPH_MSGR_TAG_READY:
2160 if (req_feat & ~server_feat) {
2161 pr_err("%s%lld %s protocol feature mismatch,"
2162 " my required %llx > server's %llx, need %llx\n",
2163 ENTITY_NAME(con->peer_name),
2164 ceph_pr_addr(&con->peer_addr.in_addr),
2165 req_feat, server_feat, req_feat & ~server_feat);
2166 con->error_msg = "missing required protocol features";
2167 reset_connection(con);
2168 return -1;
2169 }
2170
2171 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2172 con->state = CON_STATE_OPEN;
2173 con->auth_retry = 0; /* we authenticated; clear flag */
2174 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2175 con->connect_seq++;
2176 con->peer_features = server_feat;
2177 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2178 con->peer_global_seq,
2179 le32_to_cpu(con->in_reply.connect_seq),
2180 con->connect_seq);
2181 WARN_ON(con->connect_seq !=
2182 le32_to_cpu(con->in_reply.connect_seq));
2183
2184 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2185 con_flag_set(con, CON_FLAG_LOSSYTX);
2186
2187 con->delay = 0; /* reset backoff memory */
2188
2189 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2190 prepare_write_seq(con);
2191 prepare_read_seq(con);
2192 } else {
2193 prepare_read_tag(con);
2194 }
2195 break;
2196
2197 case CEPH_MSGR_TAG_WAIT:
2198 /*
2199 * If there is a connection race (we are opening
2200 * connections to each other), one of us may just have
2201 * to WAIT. This shouldn't happen if we are the
2202 * client.
2203 */
2204 con->error_msg = "protocol error, got WAIT as client";
2205 return -1;
2206
2207 default:
2208 con->error_msg = "protocol error, garbage tag during connect";
2209 return -1;
2210 }
2211 return 0;
2212 }
2213
2214
2215 /*
2216 * read (part of) an ack
2217 */
2218 static int read_partial_ack(struct ceph_connection *con)
2219 {
2220 int size = sizeof (con->in_temp_ack);
2221 int end = size;
2222
2223 return read_partial(con, end, size, &con->in_temp_ack);
2224 }
2225
2226 /*
2227 * We can finally discard anything that's been acked.
2228 */
2229 static void process_ack(struct ceph_connection *con)
2230 {
2231 struct ceph_msg *m;
2232 u64 ack = le64_to_cpu(con->in_temp_ack);
2233 u64 seq;
2234 bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2235 struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2236
2237 /*
2238 * In the reconnect case, con_fault() has requeued messages
2239 * in out_sent. We should cleanup old messages according to
2240 * the reconnect seq.
2241 */
2242 while (!list_empty(list)) {
2243 m = list_first_entry(list, struct ceph_msg, list_head);
2244 if (reconnect && m->needs_out_seq)
2245 break;
2246 seq = le64_to_cpu(m->hdr.seq);
2247 if (seq > ack)
2248 break;
2249 dout("got ack for seq %llu type %d at %p\n", seq,
2250 le16_to_cpu(m->hdr.type), m);
2251 m->ack_stamp = jiffies;
2252 ceph_msg_remove(m);
2253 }
2254
2255 prepare_read_tag(con);
2256 }
2257
2258
2259 static int read_partial_message_section(struct ceph_connection *con,
2260 struct kvec *section,
2261 unsigned int sec_len, u32 *crc)
2262 {
2263 int ret, left;
2264
2265 BUG_ON(!section);
2266
2267 while (section->iov_len < sec_len) {
2268 BUG_ON(section->iov_base == NULL);
2269 left = sec_len - section->iov_len;
2270 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2271 section->iov_len, left);
2272 if (ret <= 0)
2273 return ret;
2274 section->iov_len += ret;
2275 }
2276 if (section->iov_len == sec_len)
2277 *crc = crc32c(0, section->iov_base, section->iov_len);
2278
2279 return 1;
2280 }
2281
2282 static int read_partial_msg_data(struct ceph_connection *con)
2283 {
2284 struct ceph_msg *msg = con->in_msg;
2285 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2286 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2287 struct page *page;
2288 size_t page_offset;
2289 size_t length;
2290 u32 crc = 0;
2291 int ret;
2292
2293 BUG_ON(!msg);
2294 if (list_empty(&msg->data))
2295 return -EIO;
2296
2297 if (do_datacrc)
2298 crc = con->in_data_crc;
2299 while (cursor->resid) {
2300 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2301 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2302 if (ret <= 0) {
2303 if (do_datacrc)
2304 con->in_data_crc = crc;
2305
2306 return ret;
2307 }
2308
2309 if (do_datacrc)
2310 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2311 ceph_msg_data_advance(cursor, (size_t)ret);
2312 }
2313 if (do_datacrc)
2314 con->in_data_crc = crc;
2315
2316 return 1; /* must return > 0 to indicate success */
2317 }
2318
2319 /*
2320 * read (part of) a message.
2321 */
2322 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2323
2324 static int read_partial_message(struct ceph_connection *con)
2325 {
2326 struct ceph_msg *m = con->in_msg;
2327 int size;
2328 int end;
2329 int ret;
2330 unsigned int front_len, middle_len, data_len;
2331 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2332 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2333 u64 seq;
2334 u32 crc;
2335
2336 dout("read_partial_message con %p msg %p\n", con, m);
2337
2338 /* header */
2339 size = sizeof (con->in_hdr);
2340 end = size;
2341 ret = read_partial(con, end, size, &con->in_hdr);
2342 if (ret <= 0)
2343 return ret;
2344
2345 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2346 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2347 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2348 crc, con->in_hdr.crc);
2349 return -EBADMSG;
2350 }
2351
2352 front_len = le32_to_cpu(con->in_hdr.front_len);
2353 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2354 return -EIO;
2355 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2356 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2357 return -EIO;
2358 data_len = le32_to_cpu(con->in_hdr.data_len);
2359 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2360 return -EIO;
2361
2362 /* verify seq# */
2363 seq = le64_to_cpu(con->in_hdr.seq);
2364 if ((s64)seq - (s64)con->in_seq < 1) {
2365 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2366 ENTITY_NAME(con->peer_name),
2367 ceph_pr_addr(&con->peer_addr.in_addr),
2368 seq, con->in_seq + 1);
2369 con->in_base_pos = -front_len - middle_len - data_len -
2370 sizeof_footer(con);
2371 con->in_tag = CEPH_MSGR_TAG_READY;
2372 return 1;
2373 } else if ((s64)seq - (s64)con->in_seq > 1) {
2374 pr_err("read_partial_message bad seq %lld expected %lld\n",
2375 seq, con->in_seq + 1);
2376 con->error_msg = "bad message sequence # for incoming message";
2377 return -EBADE;
2378 }
2379
2380 /* allocate message? */
2381 if (!con->in_msg) {
2382 int skip = 0;
2383
2384 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2385 front_len, data_len);
2386 ret = ceph_con_in_msg_alloc(con, &skip);
2387 if (ret < 0)
2388 return ret;
2389
2390 BUG_ON(!con->in_msg ^ skip);
2391 if (skip) {
2392 /* skip this message */
2393 dout("alloc_msg said skip message\n");
2394 con->in_base_pos = -front_len - middle_len - data_len -
2395 sizeof_footer(con);
2396 con->in_tag = CEPH_MSGR_TAG_READY;
2397 con->in_seq++;
2398 return 1;
2399 }
2400
2401 BUG_ON(!con->in_msg);
2402 BUG_ON(con->in_msg->con != con);
2403 m = con->in_msg;
2404 m->front.iov_len = 0; /* haven't read it yet */
2405 if (m->middle)
2406 m->middle->vec.iov_len = 0;
2407
2408 /* prepare for data payload, if any */
2409
2410 if (data_len)
2411 prepare_message_data(con->in_msg, data_len);
2412 }
2413
2414 /* front */
2415 ret = read_partial_message_section(con, &m->front, front_len,
2416 &con->in_front_crc);
2417 if (ret <= 0)
2418 return ret;
2419
2420 /* middle */
2421 if (m->middle) {
2422 ret = read_partial_message_section(con, &m->middle->vec,
2423 middle_len,
2424 &con->in_middle_crc);
2425 if (ret <= 0)
2426 return ret;
2427 }
2428
2429 /* (page) data */
2430 if (data_len) {
2431 ret = read_partial_msg_data(con);
2432 if (ret <= 0)
2433 return ret;
2434 }
2435
2436 /* footer */
2437 size = sizeof_footer(con);
2438 end += size;
2439 ret = read_partial(con, end, size, &m->footer);
2440 if (ret <= 0)
2441 return ret;
2442
2443 if (!need_sign) {
2444 m->footer.flags = m->old_footer.flags;
2445 m->footer.sig = 0;
2446 }
2447
2448 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2449 m, front_len, m->footer.front_crc, middle_len,
2450 m->footer.middle_crc, data_len, m->footer.data_crc);
2451
2452 /* crc ok? */
2453 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2454 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2455 m, con->in_front_crc, m->footer.front_crc);
2456 return -EBADMSG;
2457 }
2458 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2459 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2460 m, con->in_middle_crc, m->footer.middle_crc);
2461 return -EBADMSG;
2462 }
2463 if (do_datacrc &&
2464 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2465 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2466 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2467 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2468 return -EBADMSG;
2469 }
2470
2471 if (need_sign && con->ops->check_message_signature &&
2472 con->ops->check_message_signature(m)) {
2473 pr_err("read_partial_message %p signature check failed\n", m);
2474 return -EBADMSG;
2475 }
2476
2477 return 1; /* done! */
2478 }
2479
2480 /*
2481 * Process message. This happens in the worker thread. The callback should
2482 * be careful not to do anything that waits on other incoming messages or it
2483 * may deadlock.
2484 */
2485 static void process_message(struct ceph_connection *con)
2486 {
2487 struct ceph_msg *msg = con->in_msg;
2488
2489 BUG_ON(con->in_msg->con != con);
2490 con->in_msg = NULL;
2491
2492 /* if first message, set peer_name */
2493 if (con->peer_name.type == 0)
2494 con->peer_name = msg->hdr.src;
2495
2496 con->in_seq++;
2497 mutex_unlock(&con->mutex);
2498
2499 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2500 msg, le64_to_cpu(msg->hdr.seq),
2501 ENTITY_NAME(msg->hdr.src),
2502 le16_to_cpu(msg->hdr.type),
2503 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2504 le32_to_cpu(msg->hdr.front_len),
2505 le32_to_cpu(msg->hdr.data_len),
2506 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2507 con->ops->dispatch(con, msg);
2508
2509 mutex_lock(&con->mutex);
2510 }
2511
2512 static int read_keepalive_ack(struct ceph_connection *con)
2513 {
2514 struct ceph_timespec ceph_ts;
2515 size_t size = sizeof(ceph_ts);
2516 int ret = read_partial(con, size, size, &ceph_ts);
2517 if (ret <= 0)
2518 return ret;
2519 ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2520 prepare_read_tag(con);
2521 return 1;
2522 }
2523
2524 /*
2525 * Write something to the socket. Called in a worker thread when the
2526 * socket appears to be writeable and we have something ready to send.
2527 */
2528 static int try_write(struct ceph_connection *con)
2529 {
2530 int ret = 1;
2531
2532 dout("try_write start %p state %lu\n", con, con->state);
2533
2534 more:
2535 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2536
2537 /* open the socket first? */
2538 if (con->state == CON_STATE_PREOPEN) {
2539 BUG_ON(con->sock);
2540 con->state = CON_STATE_CONNECTING;
2541
2542 con_out_kvec_reset(con);
2543 prepare_write_banner(con);
2544 prepare_read_banner(con);
2545
2546 BUG_ON(con->in_msg);
2547 con->in_tag = CEPH_MSGR_TAG_READY;
2548 dout("try_write initiating connect on %p new state %lu\n",
2549 con, con->state);
2550 ret = ceph_tcp_connect(con);
2551 if (ret < 0) {
2552 con->error_msg = "connect error";
2553 goto out;
2554 }
2555 }
2556
2557 more_kvec:
2558 /* kvec data queued? */
2559 if (con->out_kvec_left) {
2560 ret = write_partial_kvec(con);
2561 if (ret <= 0)
2562 goto out;
2563 }
2564 if (con->out_skip) {
2565 ret = write_partial_skip(con);
2566 if (ret <= 0)
2567 goto out;
2568 }
2569
2570 /* msg pages? */
2571 if (con->out_msg) {
2572 if (con->out_msg_done) {
2573 ceph_msg_put(con->out_msg);
2574 con->out_msg = NULL; /* we're done with this one */
2575 goto do_next;
2576 }
2577
2578 ret = write_partial_message_data(con);
2579 if (ret == 1)
2580 goto more_kvec; /* we need to send the footer, too! */
2581 if (ret == 0)
2582 goto out;
2583 if (ret < 0) {
2584 dout("try_write write_partial_message_data err %d\n",
2585 ret);
2586 goto out;
2587 }
2588 }
2589
2590 do_next:
2591 if (con->state == CON_STATE_OPEN) {
2592 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2593 prepare_write_keepalive(con);
2594 goto more;
2595 }
2596 /* is anything else pending? */
2597 if (!list_empty(&con->out_queue)) {
2598 prepare_write_message(con);
2599 goto more;
2600 }
2601 if (con->in_seq > con->in_seq_acked) {
2602 prepare_write_ack(con);
2603 goto more;
2604 }
2605 }
2606
2607 /* Nothing to do! */
2608 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2609 dout("try_write nothing else to write.\n");
2610 ret = 0;
2611 out:
2612 dout("try_write done on %p ret %d\n", con, ret);
2613 return ret;
2614 }
2615
2616
2617
2618 /*
2619 * Read what we can from the socket.
2620 */
2621 static int try_read(struct ceph_connection *con)
2622 {
2623 int ret = -1;
2624
2625 more:
2626 dout("try_read start on %p state %lu\n", con, con->state);
2627 if (con->state != CON_STATE_CONNECTING &&
2628 con->state != CON_STATE_NEGOTIATING &&
2629 con->state != CON_STATE_OPEN)
2630 return 0;
2631
2632 BUG_ON(!con->sock);
2633
2634 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2635 con->in_base_pos);
2636
2637 if (con->state == CON_STATE_CONNECTING) {
2638 dout("try_read connecting\n");
2639 ret = read_partial_banner(con);
2640 if (ret <= 0)
2641 goto out;
2642 ret = process_banner(con);
2643 if (ret < 0)
2644 goto out;
2645
2646 con->state = CON_STATE_NEGOTIATING;
2647
2648 /*
2649 * Received banner is good, exchange connection info.
2650 * Do not reset out_kvec, as sending our banner raced
2651 * with receiving peer banner after connect completed.
2652 */
2653 ret = prepare_write_connect(con);
2654 if (ret < 0)
2655 goto out;
2656 prepare_read_connect(con);
2657
2658 /* Send connection info before awaiting response */
2659 goto out;
2660 }
2661
2662 if (con->state == CON_STATE_NEGOTIATING) {
2663 dout("try_read negotiating\n");
2664 ret = read_partial_connect(con);
2665 if (ret <= 0)
2666 goto out;
2667 ret = process_connect(con);
2668 if (ret < 0)
2669 goto out;
2670 goto more;
2671 }
2672
2673 WARN_ON(con->state != CON_STATE_OPEN);
2674
2675 if (con->in_base_pos < 0) {
2676 /*
2677 * skipping + discarding content.
2678 *
2679 * FIXME: there must be a better way to do this!
2680 */
2681 static char buf[SKIP_BUF_SIZE];
2682 int skip = min((int) sizeof (buf), -con->in_base_pos);
2683
2684 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2685 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2686 if (ret <= 0)
2687 goto out;
2688 con->in_base_pos += ret;
2689 if (con->in_base_pos)
2690 goto more;
2691 }
2692 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2693 /*
2694 * what's next?
2695 */
2696 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2697 if (ret <= 0)
2698 goto out;
2699 dout("try_read got tag %d\n", (int)con->in_tag);
2700 switch (con->in_tag) {
2701 case CEPH_MSGR_TAG_MSG:
2702 prepare_read_message(con);
2703 break;
2704 case CEPH_MSGR_TAG_ACK:
2705 prepare_read_ack(con);
2706 break;
2707 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2708 prepare_read_keepalive_ack(con);
2709 break;
2710 case CEPH_MSGR_TAG_CLOSE:
2711 con_close_socket(con);
2712 con->state = CON_STATE_CLOSED;
2713 goto out;
2714 default:
2715 goto bad_tag;
2716 }
2717 }
2718 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2719 ret = read_partial_message(con);
2720 if (ret <= 0) {
2721 switch (ret) {
2722 case -EBADMSG:
2723 con->error_msg = "bad crc/signature";
2724 /* fall through */
2725 case -EBADE:
2726 ret = -EIO;
2727 break;
2728 case -EIO:
2729 con->error_msg = "io error";
2730 break;
2731 }
2732 goto out;
2733 }
2734 if (con->in_tag == CEPH_MSGR_TAG_READY)
2735 goto more;
2736 process_message(con);
2737 if (con->state == CON_STATE_OPEN)
2738 prepare_read_tag(con);
2739 goto more;
2740 }
2741 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2742 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2743 /*
2744 * the final handshake seq exchange is semantically
2745 * equivalent to an ACK
2746 */
2747 ret = read_partial_ack(con);
2748 if (ret <= 0)
2749 goto out;
2750 process_ack(con);
2751 goto more;
2752 }
2753 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2754 ret = read_keepalive_ack(con);
2755 if (ret <= 0)
2756 goto out;
2757 goto more;
2758 }
2759
2760 out:
2761 dout("try_read done on %p ret %d\n", con, ret);
2762 return ret;
2763
2764 bad_tag:
2765 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2766 con->error_msg = "protocol error, garbage tag";
2767 ret = -1;
2768 goto out;
2769 }
2770
2771
2772 /*
2773 * Atomically queue work on a connection after the specified delay.
2774 * Bump @con reference to avoid races with connection teardown.
2775 * Returns 0 if work was queued, or an error code otherwise.
2776 */
2777 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2778 {
2779 if (!con->ops->get(con)) {
2780 dout("%s %p ref count 0\n", __func__, con);
2781 return -ENOENT;
2782 }
2783
2784 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2785 dout("%s %p - already queued\n", __func__, con);
2786 con->ops->put(con);
2787 return -EBUSY;
2788 }
2789
2790 dout("%s %p %lu\n", __func__, con, delay);
2791 return 0;
2792 }
2793
2794 static void queue_con(struct ceph_connection *con)
2795 {
2796 (void) queue_con_delay(con, 0);
2797 }
2798
2799 static void cancel_con(struct ceph_connection *con)
2800 {
2801 if (cancel_delayed_work(&con->work)) {
2802 dout("%s %p\n", __func__, con);
2803 con->ops->put(con);
2804 }
2805 }
2806
2807 static bool con_sock_closed(struct ceph_connection *con)
2808 {
2809 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2810 return false;
2811
2812 #define CASE(x) \
2813 case CON_STATE_ ## x: \
2814 con->error_msg = "socket closed (con state " #x ")"; \
2815 break;
2816
2817 switch (con->state) {
2818 CASE(CLOSED);
2819 CASE(PREOPEN);
2820 CASE(CONNECTING);
2821 CASE(NEGOTIATING);
2822 CASE(OPEN);
2823 CASE(STANDBY);
2824 default:
2825 pr_warn("%s con %p unrecognized state %lu\n",
2826 __func__, con, con->state);
2827 con->error_msg = "unrecognized con state";
2828 BUG();
2829 break;
2830 }
2831 #undef CASE
2832
2833 return true;
2834 }
2835
2836 static bool con_backoff(struct ceph_connection *con)
2837 {
2838 int ret;
2839
2840 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2841 return false;
2842
2843 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2844 if (ret) {
2845 dout("%s: con %p FAILED to back off %lu\n", __func__,
2846 con, con->delay);
2847 BUG_ON(ret == -ENOENT);
2848 con_flag_set(con, CON_FLAG_BACKOFF);
2849 }
2850
2851 return true;
2852 }
2853
2854 /* Finish fault handling; con->mutex must *not* be held here */
2855
2856 static void con_fault_finish(struct ceph_connection *con)
2857 {
2858 dout("%s %p\n", __func__, con);
2859
2860 /*
2861 * in case we faulted due to authentication, invalidate our
2862 * current tickets so that we can get new ones.
2863 */
2864 if (con->auth_retry) {
2865 dout("auth_retry %d, invalidating\n", con->auth_retry);
2866 if (con->ops->invalidate_authorizer)
2867 con->ops->invalidate_authorizer(con);
2868 con->auth_retry = 0;
2869 }
2870
2871 if (con->ops->fault)
2872 con->ops->fault(con);
2873 }
2874
2875 /*
2876 * Do some work on a connection. Drop a connection ref when we're done.
2877 */
2878 static void ceph_con_workfn(struct work_struct *work)
2879 {
2880 struct ceph_connection *con = container_of(work, struct ceph_connection,
2881 work.work);
2882 bool fault;
2883
2884 mutex_lock(&con->mutex);
2885 while (true) {
2886 int ret;
2887
2888 if ((fault = con_sock_closed(con))) {
2889 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2890 break;
2891 }
2892 if (con_backoff(con)) {
2893 dout("%s: con %p BACKOFF\n", __func__, con);
2894 break;
2895 }
2896 if (con->state == CON_STATE_STANDBY) {
2897 dout("%s: con %p STANDBY\n", __func__, con);
2898 break;
2899 }
2900 if (con->state == CON_STATE_CLOSED) {
2901 dout("%s: con %p CLOSED\n", __func__, con);
2902 BUG_ON(con->sock);
2903 break;
2904 }
2905 if (con->state == CON_STATE_PREOPEN) {
2906 dout("%s: con %p PREOPEN\n", __func__, con);
2907 BUG_ON(con->sock);
2908 }
2909
2910 ret = try_read(con);
2911 if (ret < 0) {
2912 if (ret == -EAGAIN)
2913 continue;
2914 if (!con->error_msg)
2915 con->error_msg = "socket error on read";
2916 fault = true;
2917 break;
2918 }
2919
2920 ret = try_write(con);
2921 if (ret < 0) {
2922 if (ret == -EAGAIN)
2923 continue;
2924 if (!con->error_msg)
2925 con->error_msg = "socket error on write";
2926 fault = true;
2927 }
2928
2929 break; /* If we make it to here, we're done */
2930 }
2931 if (fault)
2932 con_fault(con);
2933 mutex_unlock(&con->mutex);
2934
2935 if (fault)
2936 con_fault_finish(con);
2937
2938 con->ops->put(con);
2939 }
2940
2941 /*
2942 * Generic error/fault handler. A retry mechanism is used with
2943 * exponential backoff
2944 */
2945 static void con_fault(struct ceph_connection *con)
2946 {
2947 dout("fault %p state %lu to peer %s\n",
2948 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2949
2950 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2951 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2952 con->error_msg = NULL;
2953
2954 WARN_ON(con->state != CON_STATE_CONNECTING &&
2955 con->state != CON_STATE_NEGOTIATING &&
2956 con->state != CON_STATE_OPEN);
2957
2958 con_close_socket(con);
2959
2960 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2961 dout("fault on LOSSYTX channel, marking CLOSED\n");
2962 con->state = CON_STATE_CLOSED;
2963 return;
2964 }
2965
2966 if (con->in_msg) {
2967 BUG_ON(con->in_msg->con != con);
2968 ceph_msg_put(con->in_msg);
2969 con->in_msg = NULL;
2970 }
2971
2972 /* Requeue anything that hasn't been acked */
2973 list_splice_init(&con->out_sent, &con->out_queue);
2974
2975 /* If there are no messages queued or keepalive pending, place
2976 * the connection in a STANDBY state */
2977 if (list_empty(&con->out_queue) &&
2978 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2979 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2980 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2981 con->state = CON_STATE_STANDBY;
2982 } else {
2983 /* retry after a delay. */
2984 con->state = CON_STATE_PREOPEN;
2985 if (con->delay == 0)
2986 con->delay = BASE_DELAY_INTERVAL;
2987 else if (con->delay < MAX_DELAY_INTERVAL)
2988 con->delay *= 2;
2989 con_flag_set(con, CON_FLAG_BACKOFF);
2990 queue_con(con);
2991 }
2992 }
2993
2994
2995
2996 /*
2997 * initialize a new messenger instance
2998 */
2999 void ceph_messenger_init(struct ceph_messenger *msgr,
3000 struct ceph_entity_addr *myaddr)
3001 {
3002 spin_lock_init(&msgr->global_seq_lock);
3003
3004 if (myaddr)
3005 msgr->inst.addr = *myaddr;
3006
3007 /* select a random nonce */
3008 msgr->inst.addr.type = 0;
3009 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3010 encode_my_addr(msgr);
3011
3012 atomic_set(&msgr->stopping, 0);
3013 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3014
3015 dout("%s %p\n", __func__, msgr);
3016 }
3017 EXPORT_SYMBOL(ceph_messenger_init);
3018
3019 void ceph_messenger_fini(struct ceph_messenger *msgr)
3020 {
3021 put_net(read_pnet(&msgr->net));
3022 }
3023 EXPORT_SYMBOL(ceph_messenger_fini);
3024
3025 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3026 {
3027 if (msg->con)
3028 msg->con->ops->put(msg->con);
3029
3030 msg->con = con ? con->ops->get(con) : NULL;
3031 BUG_ON(msg->con != con);
3032 }
3033
3034 static void clear_standby(struct ceph_connection *con)
3035 {
3036 /* come back from STANDBY? */
3037 if (con->state == CON_STATE_STANDBY) {
3038 dout("clear_standby %p and ++connect_seq\n", con);
3039 con->state = CON_STATE_PREOPEN;
3040 con->connect_seq++;
3041 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3042 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3043 }
3044 }
3045
3046 /*
3047 * Queue up an outgoing message on the given connection.
3048 */
3049 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3050 {
3051 /* set src+dst */
3052 msg->hdr.src = con->msgr->inst.name;
3053 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3054 msg->needs_out_seq = true;
3055
3056 mutex_lock(&con->mutex);
3057
3058 if (con->state == CON_STATE_CLOSED) {
3059 dout("con_send %p closed, dropping %p\n", con, msg);
3060 ceph_msg_put(msg);
3061 mutex_unlock(&con->mutex);
3062 return;
3063 }
3064
3065 msg_con_set(msg, con);
3066
3067 BUG_ON(!list_empty(&msg->list_head));
3068 list_add_tail(&msg->list_head, &con->out_queue);
3069 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3070 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3071 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3072 le32_to_cpu(msg->hdr.front_len),
3073 le32_to_cpu(msg->hdr.middle_len),
3074 le32_to_cpu(msg->hdr.data_len));
3075
3076 clear_standby(con);
3077 mutex_unlock(&con->mutex);
3078
3079 /* if there wasn't anything waiting to send before, queue
3080 * new work */
3081 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3082 queue_con(con);
3083 }
3084 EXPORT_SYMBOL(ceph_con_send);
3085
3086 /*
3087 * Revoke a message that was previously queued for send
3088 */
3089 void ceph_msg_revoke(struct ceph_msg *msg)
3090 {
3091 struct ceph_connection *con = msg->con;
3092
3093 if (!con) {
3094 dout("%s msg %p null con\n", __func__, msg);
3095 return; /* Message not in our possession */
3096 }
3097
3098 mutex_lock(&con->mutex);
3099 if (!list_empty(&msg->list_head)) {
3100 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3101 list_del_init(&msg->list_head);
3102 msg->hdr.seq = 0;
3103
3104 ceph_msg_put(msg);
3105 }
3106 if (con->out_msg == msg) {
3107 BUG_ON(con->out_skip);
3108 /* footer */
3109 if (con->out_msg_done) {
3110 con->out_skip += con_out_kvec_skip(con);
3111 } else {
3112 BUG_ON(!msg->data_length);
3113 con->out_skip += sizeof_footer(con);
3114 }
3115 /* data, middle, front */
3116 if (msg->data_length)
3117 con->out_skip += msg->cursor.total_resid;
3118 if (msg->middle)
3119 con->out_skip += con_out_kvec_skip(con);
3120 con->out_skip += con_out_kvec_skip(con);
3121
3122 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3123 __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3124 msg->hdr.seq = 0;
3125 con->out_msg = NULL;
3126 ceph_msg_put(msg);
3127 }
3128
3129 mutex_unlock(&con->mutex);
3130 }
3131
3132 /*
3133 * Revoke a message that we may be reading data into
3134 */
3135 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3136 {
3137 struct ceph_connection *con = msg->con;
3138
3139 if (!con) {
3140 dout("%s msg %p null con\n", __func__, msg);
3141 return; /* Message not in our possession */
3142 }
3143
3144 mutex_lock(&con->mutex);
3145 if (con->in_msg == msg) {
3146 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3147 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3148 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3149
3150 /* skip rest of message */
3151 dout("%s %p msg %p revoked\n", __func__, con, msg);
3152 con->in_base_pos = con->in_base_pos -
3153 sizeof(struct ceph_msg_header) -
3154 front_len -
3155 middle_len -
3156 data_len -
3157 sizeof(struct ceph_msg_footer);
3158 ceph_msg_put(con->in_msg);
3159 con->in_msg = NULL;
3160 con->in_tag = CEPH_MSGR_TAG_READY;
3161 con->in_seq++;
3162 } else {
3163 dout("%s %p in_msg %p msg %p no-op\n",
3164 __func__, con, con->in_msg, msg);
3165 }
3166 mutex_unlock(&con->mutex);
3167 }
3168
3169 /*
3170 * Queue a keepalive byte to ensure the tcp connection is alive.
3171 */
3172 void ceph_con_keepalive(struct ceph_connection *con)
3173 {
3174 dout("con_keepalive %p\n", con);
3175 mutex_lock(&con->mutex);
3176 clear_standby(con);
3177 mutex_unlock(&con->mutex);
3178 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3179 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3180 queue_con(con);
3181 }
3182 EXPORT_SYMBOL(ceph_con_keepalive);
3183
3184 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3185 unsigned long interval)
3186 {
3187 if (interval > 0 &&
3188 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3189 struct timespec now;
3190 struct timespec ts;
3191 ktime_get_real_ts(&now);
3192 jiffies_to_timespec(interval, &ts);
3193 ts = timespec_add(con->last_keepalive_ack, ts);
3194 return timespec_compare(&now, &ts) >= 0;
3195 }
3196 return false;
3197 }
3198
3199 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3200 {
3201 struct ceph_msg_data *data;
3202
3203 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3204 return NULL;
3205
3206 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3207 if (!data)
3208 return NULL;
3209
3210 data->type = type;
3211 INIT_LIST_HEAD(&data->links);
3212
3213 return data;
3214 }
3215
3216 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3217 {
3218 if (!data)
3219 return;
3220
3221 WARN_ON(!list_empty(&data->links));
3222 if (data->type == CEPH_MSG_DATA_PAGELIST)
3223 ceph_pagelist_release(data->pagelist);
3224 kmem_cache_free(ceph_msg_data_cache, data);
3225 }
3226
3227 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3228 size_t length, size_t alignment)
3229 {
3230 struct ceph_msg_data *data;
3231
3232 BUG_ON(!pages);
3233 BUG_ON(!length);
3234
3235 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3236 BUG_ON(!data);
3237 data->pages = pages;
3238 data->length = length;
3239 data->alignment = alignment & ~PAGE_MASK;
3240
3241 list_add_tail(&data->links, &msg->data);
3242 msg->data_length += length;
3243 }
3244 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3245
3246 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3247 struct ceph_pagelist *pagelist)
3248 {
3249 struct ceph_msg_data *data;
3250
3251 BUG_ON(!pagelist);
3252 BUG_ON(!pagelist->length);
3253
3254 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3255 BUG_ON(!data);
3256 data->pagelist = pagelist;
3257
3258 list_add_tail(&data->links, &msg->data);
3259 msg->data_length += pagelist->length;
3260 }
3261 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3262
3263 #ifdef CONFIG_BLOCK
3264 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3265 size_t length)
3266 {
3267 struct ceph_msg_data *data;
3268
3269 BUG_ON(!bio);
3270
3271 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3272 BUG_ON(!data);
3273 data->bio = bio;
3274 data->bio_length = length;
3275
3276 list_add_tail(&data->links, &msg->data);
3277 msg->data_length += length;
3278 }
3279 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3280 #endif /* CONFIG_BLOCK */
3281
3282 /*
3283 * construct a new message with given type, size
3284 * the new msg has a ref count of 1.
3285 */
3286 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3287 bool can_fail)
3288 {
3289 struct ceph_msg *m;
3290
3291 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3292 if (m == NULL)
3293 goto out;
3294
3295 m->hdr.type = cpu_to_le16(type);
3296 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3297 m->hdr.front_len = cpu_to_le32(front_len);
3298
3299 INIT_LIST_HEAD(&m->list_head);
3300 kref_init(&m->kref);
3301 INIT_LIST_HEAD(&m->data);
3302
3303 /* front */
3304 if (front_len) {
3305 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3306 if (m->front.iov_base == NULL) {
3307 dout("ceph_msg_new can't allocate %d bytes\n",
3308 front_len);
3309 goto out2;
3310 }
3311 } else {
3312 m->front.iov_base = NULL;
3313 }
3314 m->front_alloc_len = m->front.iov_len = front_len;
3315
3316 dout("ceph_msg_new %p front %d\n", m, front_len);
3317 return m;
3318
3319 out2:
3320 ceph_msg_put(m);
3321 out:
3322 if (!can_fail) {
3323 pr_err("msg_new can't create type %d front %d\n", type,
3324 front_len);
3325 WARN_ON(1);
3326 } else {
3327 dout("msg_new can't create type %d front %d\n", type,
3328 front_len);
3329 }
3330 return NULL;
3331 }
3332 EXPORT_SYMBOL(ceph_msg_new);
3333
3334 /*
3335 * Allocate "middle" portion of a message, if it is needed and wasn't
3336 * allocated by alloc_msg. This allows us to read a small fixed-size
3337 * per-type header in the front and then gracefully fail (i.e.,
3338 * propagate the error to the caller based on info in the front) when
3339 * the middle is too large.
3340 */
3341 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3342 {
3343 int type = le16_to_cpu(msg->hdr.type);
3344 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3345
3346 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3347 ceph_msg_type_name(type), middle_len);
3348 BUG_ON(!middle_len);
3349 BUG_ON(msg->middle);
3350
3351 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3352 if (!msg->middle)
3353 return -ENOMEM;
3354 return 0;
3355 }
3356
3357 /*
3358 * Allocate a message for receiving an incoming message on a
3359 * connection, and save the result in con->in_msg. Uses the
3360 * connection's private alloc_msg op if available.
3361 *
3362 * Returns 0 on success, or a negative error code.
3363 *
3364 * On success, if we set *skip = 1:
3365 * - the next message should be skipped and ignored.
3366 * - con->in_msg == NULL
3367 * or if we set *skip = 0:
3368 * - con->in_msg is non-null.
3369 * On error (ENOMEM, EAGAIN, ...),
3370 * - con->in_msg == NULL
3371 */
3372 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3373 {
3374 struct ceph_msg_header *hdr = &con->in_hdr;
3375 int middle_len = le32_to_cpu(hdr->middle_len);
3376 struct ceph_msg *msg;
3377 int ret = 0;
3378
3379 BUG_ON(con->in_msg != NULL);
3380 BUG_ON(!con->ops->alloc_msg);
3381
3382 mutex_unlock(&con->mutex);
3383 msg = con->ops->alloc_msg(con, hdr, skip);
3384 mutex_lock(&con->mutex);
3385 if (con->state != CON_STATE_OPEN) {
3386 if (msg)
3387 ceph_msg_put(msg);
3388 return -EAGAIN;
3389 }
3390 if (msg) {
3391 BUG_ON(*skip);
3392 msg_con_set(msg, con);
3393 con->in_msg = msg;
3394 } else {
3395 /*
3396 * Null message pointer means either we should skip
3397 * this message or we couldn't allocate memory. The
3398 * former is not an error.
3399 */
3400 if (*skip)
3401 return 0;
3402
3403 con->error_msg = "error allocating memory for incoming message";
3404 return -ENOMEM;
3405 }
3406 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3407
3408 if (middle_len && !con->in_msg->middle) {
3409 ret = ceph_alloc_middle(con, con->in_msg);
3410 if (ret < 0) {
3411 ceph_msg_put(con->in_msg);
3412 con->in_msg = NULL;
3413 }
3414 }
3415
3416 return ret;
3417 }
3418
3419
3420 /*
3421 * Free a generically kmalloc'd message.
3422 */
3423 static void ceph_msg_free(struct ceph_msg *m)
3424 {
3425 dout("%s %p\n", __func__, m);
3426 kvfree(m->front.iov_base);
3427 kmem_cache_free(ceph_msg_cache, m);
3428 }
3429
3430 static void ceph_msg_release(struct kref *kref)
3431 {
3432 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3433 struct ceph_msg_data *data, *next;
3434
3435 dout("%s %p\n", __func__, m);
3436 WARN_ON(!list_empty(&m->list_head));
3437
3438 msg_con_set(m, NULL);
3439
3440 /* drop middle, data, if any */
3441 if (m->middle) {
3442 ceph_buffer_put(m->middle);
3443 m->middle = NULL;
3444 }
3445
3446 list_for_each_entry_safe(data, next, &m->data, links) {
3447 list_del_init(&data->links);
3448 ceph_msg_data_destroy(data);
3449 }
3450 m->data_length = 0;
3451
3452 if (m->pool)
3453 ceph_msgpool_put(m->pool, m);
3454 else
3455 ceph_msg_free(m);
3456 }
3457
3458 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3459 {
3460 dout("%s %p (was %d)\n", __func__, msg,
3461 kref_read(&msg->kref));
3462 kref_get(&msg->kref);
3463 return msg;
3464 }
3465 EXPORT_SYMBOL(ceph_msg_get);
3466
3467 void ceph_msg_put(struct ceph_msg *msg)
3468 {
3469 dout("%s %p (was %d)\n", __func__, msg,
3470 kref_read(&msg->kref));
3471 kref_put(&msg->kref, ceph_msg_release);
3472 }
3473 EXPORT_SYMBOL(ceph_msg_put);
3474
3475 void ceph_msg_dump(struct ceph_msg *msg)
3476 {
3477 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3478 msg->front_alloc_len, msg->data_length);
3479 print_hex_dump(KERN_DEBUG, "header: ",
3480 DUMP_PREFIX_OFFSET, 16, 1,
3481 &msg->hdr, sizeof(msg->hdr), true);
3482 print_hex_dump(KERN_DEBUG, " front: ",
3483 DUMP_PREFIX_OFFSET, 16, 1,
3484 msg->front.iov_base, msg->front.iov_len, true);
3485 if (msg->middle)
3486 print_hex_dump(KERN_DEBUG, "middle: ",
3487 DUMP_PREFIX_OFFSET, 16, 1,
3488 msg->middle->vec.iov_base,
3489 msg->middle->vec.iov_len, true);
3490 print_hex_dump(KERN_DEBUG, "footer: ",
3491 DUMP_PREFIX_OFFSET, 16, 1,
3492 &msg->footer, sizeof(msg->footer), true);
3493 }
3494 EXPORT_SYMBOL(ceph_msg_dump);