]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ceph/messenger.c
libceph: some simple changes
[mirror_ubuntu-bionic-kernel.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
30 */
31
32 /* static tag bytes (protocol control messages) */
33 static char tag_msg = CEPH_MSGR_TAG_MSG;
34 static char tag_ack = CEPH_MSGR_TAG_ACK;
35 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
36
37 #ifdef CONFIG_LOCKDEP
38 static struct lock_class_key socket_class;
39 #endif
40
41 /*
42 * When skipping (ignoring) a block of input we read it into a "skip
43 * buffer," which is this many bytes in size.
44 */
45 #define SKIP_BUF_SIZE 1024
46
47 static void queue_con(struct ceph_connection *con);
48 static void con_work(struct work_struct *);
49 static void ceph_fault(struct ceph_connection *con);
50
51 /*
52 * Nicely render a sockaddr as a string. An array of formatted
53 * strings is used, to approximate reentrancy.
54 */
55 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
56 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
57 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
58 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
59
60 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
61 static atomic_t addr_str_seq = ATOMIC_INIT(0);
62
63 static struct page *zero_page; /* used in certain error cases */
64 static void *zero_page_address; /* kernel virtual addr of zero_page */
65
66 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
67 {
68 int i;
69 char *s;
70 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
71 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
72
73 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
74 s = addr_str[i];
75
76 switch (ss->ss_family) {
77 case AF_INET:
78 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
79 ntohs(in4->sin_port));
80 break;
81
82 case AF_INET6:
83 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
84 ntohs(in6->sin6_port));
85 break;
86
87 default:
88 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
89 ss->ss_family);
90 }
91
92 return s;
93 }
94 EXPORT_SYMBOL(ceph_pr_addr);
95
96 static void encode_my_addr(struct ceph_messenger *msgr)
97 {
98 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
99 ceph_encode_addr(&msgr->my_enc_addr);
100 }
101
102 /*
103 * work queue for all reading and writing to/from the socket.
104 */
105 static struct workqueue_struct *ceph_msgr_wq;
106
107 void _ceph_msgr_exit(void)
108 {
109 if (ceph_msgr_wq) {
110 destroy_workqueue(ceph_msgr_wq);
111 ceph_msgr_wq = NULL;
112 }
113
114 BUG_ON(zero_page_address == NULL);
115 zero_page_address = NULL;
116
117 BUG_ON(zero_page == NULL);
118 kunmap(zero_page);
119 page_cache_release(zero_page);
120 zero_page = NULL;
121 }
122
123 int ceph_msgr_init(void)
124 {
125 BUG_ON(zero_page != NULL);
126 zero_page = ZERO_PAGE(0);
127 page_cache_get(zero_page);
128
129 BUG_ON(zero_page_address != NULL);
130 zero_page_address = kmap(zero_page);
131
132 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
133 if (ceph_msgr_wq)
134 return 0;
135
136 pr_err("msgr_init failed to create workqueue\n");
137 _ceph_msgr_exit();
138
139 return -ENOMEM;
140 }
141 EXPORT_SYMBOL(ceph_msgr_init);
142
143 void ceph_msgr_exit(void)
144 {
145 BUG_ON(ceph_msgr_wq == NULL);
146
147 _ceph_msgr_exit();
148 }
149 EXPORT_SYMBOL(ceph_msgr_exit);
150
151 void ceph_msgr_flush(void)
152 {
153 flush_workqueue(ceph_msgr_wq);
154 }
155 EXPORT_SYMBOL(ceph_msgr_flush);
156
157
158 /*
159 * socket callback functions
160 */
161
162 /* data available on socket, or listen socket received a connect */
163 static void ceph_data_ready(struct sock *sk, int count_unused)
164 {
165 struct ceph_connection *con = sk->sk_user_data;
166
167 if (sk->sk_state != TCP_CLOSE_WAIT) {
168 dout("ceph_data_ready on %p state = %lu, queueing work\n",
169 con, con->state);
170 queue_con(con);
171 }
172 }
173
174 /* socket has buffer space for writing */
175 static void ceph_write_space(struct sock *sk)
176 {
177 struct ceph_connection *con = sk->sk_user_data;
178
179 /* only queue to workqueue if there is data we want to write,
180 * and there is sufficient space in the socket buffer to accept
181 * more data. clear SOCK_NOSPACE so that ceph_write_space()
182 * doesn't get called again until try_write() fills the socket
183 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
184 * and net/core/stream.c:sk_stream_write_space().
185 */
186 if (test_bit(WRITE_PENDING, &con->state)) {
187 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
188 dout("ceph_write_space %p queueing write work\n", con);
189 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
190 queue_con(con);
191 }
192 } else {
193 dout("ceph_write_space %p nothing to write\n", con);
194 }
195 }
196
197 /* socket's state has changed */
198 static void ceph_state_change(struct sock *sk)
199 {
200 struct ceph_connection *con = sk->sk_user_data;
201
202 dout("ceph_state_change %p state = %lu sk_state = %u\n",
203 con, con->state, sk->sk_state);
204
205 if (test_bit(CLOSED, &con->state))
206 return;
207
208 switch (sk->sk_state) {
209 case TCP_CLOSE:
210 dout("ceph_state_change TCP_CLOSE\n");
211 case TCP_CLOSE_WAIT:
212 dout("ceph_state_change TCP_CLOSE_WAIT\n");
213 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
214 if (test_bit(CONNECTING, &con->state))
215 con->error_msg = "connection failed";
216 else
217 con->error_msg = "socket closed";
218 queue_con(con);
219 }
220 break;
221 case TCP_ESTABLISHED:
222 dout("ceph_state_change TCP_ESTABLISHED\n");
223 queue_con(con);
224 break;
225 default: /* Everything else is uninteresting */
226 break;
227 }
228 }
229
230 /*
231 * set up socket callbacks
232 */
233 static void set_sock_callbacks(struct socket *sock,
234 struct ceph_connection *con)
235 {
236 struct sock *sk = sock->sk;
237 sk->sk_user_data = con;
238 sk->sk_data_ready = ceph_data_ready;
239 sk->sk_write_space = ceph_write_space;
240 sk->sk_state_change = ceph_state_change;
241 }
242
243
244 /*
245 * socket helpers
246 */
247
248 /*
249 * initiate connection to a remote socket.
250 */
251 static int ceph_tcp_connect(struct ceph_connection *con)
252 {
253 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
254 struct socket *sock;
255 int ret;
256
257 BUG_ON(con->sock);
258 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
259 IPPROTO_TCP, &sock);
260 if (ret)
261 return ret;
262 sock->sk->sk_allocation = GFP_NOFS;
263
264 #ifdef CONFIG_LOCKDEP
265 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
266 #endif
267
268 set_sock_callbacks(sock, con);
269
270 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
271
272 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
273 O_NONBLOCK);
274 if (ret == -EINPROGRESS) {
275 dout("connect %s EINPROGRESS sk_state = %u\n",
276 ceph_pr_addr(&con->peer_addr.in_addr),
277 sock->sk->sk_state);
278 } else if (ret < 0) {
279 pr_err("connect %s error %d\n",
280 ceph_pr_addr(&con->peer_addr.in_addr), ret);
281 sock_release(sock);
282 con->error_msg = "connect error";
283
284 return ret;
285 }
286 con->sock = sock;
287
288 return 0;
289 }
290
291 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
292 {
293 struct kvec iov = {buf, len};
294 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
295 int r;
296
297 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
298 if (r == -EAGAIN)
299 r = 0;
300 return r;
301 }
302
303 /*
304 * write something. @more is true if caller will be sending more data
305 * shortly.
306 */
307 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
308 size_t kvlen, size_t len, int more)
309 {
310 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
311 int r;
312
313 if (more)
314 msg.msg_flags |= MSG_MORE;
315 else
316 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
317
318 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
319 if (r == -EAGAIN)
320 r = 0;
321 return r;
322 }
323
324
325 /*
326 * Shutdown/close the socket for the given connection.
327 */
328 static int con_close_socket(struct ceph_connection *con)
329 {
330 int rc;
331
332 dout("con_close_socket on %p sock %p\n", con, con->sock);
333 if (!con->sock)
334 return 0;
335 set_bit(SOCK_CLOSED, &con->state);
336 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
337 sock_release(con->sock);
338 con->sock = NULL;
339 clear_bit(SOCK_CLOSED, &con->state);
340 return rc;
341 }
342
343 /*
344 * Reset a connection. Discard all incoming and outgoing messages
345 * and clear *_seq state.
346 */
347 static void ceph_msg_remove(struct ceph_msg *msg)
348 {
349 list_del_init(&msg->list_head);
350 ceph_msg_put(msg);
351 }
352 static void ceph_msg_remove_list(struct list_head *head)
353 {
354 while (!list_empty(head)) {
355 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
356 list_head);
357 ceph_msg_remove(msg);
358 }
359 }
360
361 static void reset_connection(struct ceph_connection *con)
362 {
363 /* reset connection, out_queue, msg_ and connect_seq */
364 /* discard existing out_queue and msg_seq */
365 ceph_msg_remove_list(&con->out_queue);
366 ceph_msg_remove_list(&con->out_sent);
367
368 if (con->in_msg) {
369 ceph_msg_put(con->in_msg);
370 con->in_msg = NULL;
371 }
372
373 con->connect_seq = 0;
374 con->out_seq = 0;
375 if (con->out_msg) {
376 ceph_msg_put(con->out_msg);
377 con->out_msg = NULL;
378 }
379 con->in_seq = 0;
380 con->in_seq_acked = 0;
381 }
382
383 /*
384 * mark a peer down. drop any open connections.
385 */
386 void ceph_con_close(struct ceph_connection *con)
387 {
388 dout("con_close %p peer %s\n", con,
389 ceph_pr_addr(&con->peer_addr.in_addr));
390 set_bit(CLOSED, &con->state); /* in case there's queued work */
391 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
392 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
393 clear_bit(KEEPALIVE_PENDING, &con->state);
394 clear_bit(WRITE_PENDING, &con->state);
395 mutex_lock(&con->mutex);
396 reset_connection(con);
397 con->peer_global_seq = 0;
398 cancel_delayed_work(&con->work);
399 mutex_unlock(&con->mutex);
400 queue_con(con);
401 }
402 EXPORT_SYMBOL(ceph_con_close);
403
404 /*
405 * Reopen a closed connection, with a new peer address.
406 */
407 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
408 {
409 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
410 set_bit(OPENING, &con->state);
411 clear_bit(CLOSED, &con->state);
412 memcpy(&con->peer_addr, addr, sizeof(*addr));
413 con->delay = 0; /* reset backoff memory */
414 queue_con(con);
415 }
416 EXPORT_SYMBOL(ceph_con_open);
417
418 /*
419 * return true if this connection ever successfully opened
420 */
421 bool ceph_con_opened(struct ceph_connection *con)
422 {
423 return con->connect_seq > 0;
424 }
425
426 /*
427 * generic get/put
428 */
429 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
430 {
431 int nref = __atomic_add_unless(&con->nref, 1, 0);
432
433 dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
434
435 return nref ? con : NULL;
436 }
437
438 void ceph_con_put(struct ceph_connection *con)
439 {
440 int nref = atomic_dec_return(&con->nref);
441
442 BUG_ON(nref < 0);
443 if (nref == 0) {
444 BUG_ON(con->sock);
445 kfree(con);
446 }
447 dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
448 }
449
450 /*
451 * initialize a new connection.
452 */
453 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
454 {
455 dout("con_init %p\n", con);
456 memset(con, 0, sizeof(*con));
457 atomic_set(&con->nref, 1);
458 con->msgr = msgr;
459 mutex_init(&con->mutex);
460 INIT_LIST_HEAD(&con->out_queue);
461 INIT_LIST_HEAD(&con->out_sent);
462 INIT_DELAYED_WORK(&con->work, con_work);
463 }
464 EXPORT_SYMBOL(ceph_con_init);
465
466
467 /*
468 * We maintain a global counter to order connection attempts. Get
469 * a unique seq greater than @gt.
470 */
471 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
472 {
473 u32 ret;
474
475 spin_lock(&msgr->global_seq_lock);
476 if (msgr->global_seq < gt)
477 msgr->global_seq = gt;
478 ret = ++msgr->global_seq;
479 spin_unlock(&msgr->global_seq_lock);
480 return ret;
481 }
482
483 static void ceph_con_out_kvec_reset(struct ceph_connection *con)
484 {
485 con->out_kvec_left = 0;
486 con->out_kvec_bytes = 0;
487 con->out_kvec_cur = &con->out_kvec[0];
488 }
489
490 static void ceph_con_out_kvec_add(struct ceph_connection *con,
491 size_t size, void *data)
492 {
493 int index;
494
495 index = con->out_kvec_left;
496 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
497
498 con->out_kvec[index].iov_len = size;
499 con->out_kvec[index].iov_base = data;
500 con->out_kvec_left++;
501 con->out_kvec_bytes += size;
502 }
503
504 /*
505 * Prepare footer for currently outgoing message, and finish things
506 * off. Assumes out_kvec* are already valid.. we just add on to the end.
507 */
508 static void prepare_write_message_footer(struct ceph_connection *con)
509 {
510 struct ceph_msg *m = con->out_msg;
511 int v = con->out_kvec_left;
512
513 dout("prepare_write_message_footer %p\n", con);
514 con->out_kvec_is_msg = true;
515 con->out_kvec[v].iov_base = &m->footer;
516 con->out_kvec[v].iov_len = sizeof(m->footer);
517 con->out_kvec_bytes += sizeof(m->footer);
518 con->out_kvec_left++;
519 con->out_more = m->more_to_follow;
520 con->out_msg_done = true;
521 }
522
523 /*
524 * Prepare headers for the next outgoing message.
525 */
526 static void prepare_write_message(struct ceph_connection *con)
527 {
528 struct ceph_msg *m;
529 u32 crc;
530
531 ceph_con_out_kvec_reset(con);
532 con->out_kvec_is_msg = true;
533 con->out_msg_done = false;
534
535 /* Sneak an ack in there first? If we can get it into the same
536 * TCP packet that's a good thing. */
537 if (con->in_seq > con->in_seq_acked) {
538 con->in_seq_acked = con->in_seq;
539 ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
540 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
541 ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
542 &con->out_temp_ack);
543 }
544
545 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
546 con->out_msg = m;
547
548 /* put message on sent list */
549 ceph_msg_get(m);
550 list_move_tail(&m->list_head, &con->out_sent);
551
552 /*
553 * only assign outgoing seq # if we haven't sent this message
554 * yet. if it is requeued, resend with it's original seq.
555 */
556 if (m->needs_out_seq) {
557 m->hdr.seq = cpu_to_le64(++con->out_seq);
558 m->needs_out_seq = false;
559 }
560
561 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
562 m, con->out_seq, le16_to_cpu(m->hdr.type),
563 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
564 le32_to_cpu(m->hdr.data_len),
565 m->nr_pages);
566 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
567
568 /* tag + hdr + front + middle */
569 ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
570 ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
571 ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
572
573 if (m->middle)
574 ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
575 m->middle->vec.iov_base);
576
577 /* fill in crc (except data pages), footer */
578 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
579 con->out_msg->hdr.crc = cpu_to_le32(crc);
580 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
581
582 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
583 con->out_msg->footer.front_crc = cpu_to_le32(crc);
584 if (m->middle) {
585 crc = crc32c(0, m->middle->vec.iov_base,
586 m->middle->vec.iov_len);
587 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
588 } else
589 con->out_msg->footer.middle_crc = 0;
590 con->out_msg->footer.data_crc = 0;
591 dout("prepare_write_message front_crc %u data_crc %u\n",
592 le32_to_cpu(con->out_msg->footer.front_crc),
593 le32_to_cpu(con->out_msg->footer.middle_crc));
594
595 /* is there a data payload? */
596 if (le32_to_cpu(m->hdr.data_len) > 0) {
597 /* initialize page iterator */
598 con->out_msg_pos.page = 0;
599 if (m->pages)
600 con->out_msg_pos.page_pos = m->page_alignment;
601 else
602 con->out_msg_pos.page_pos = 0;
603 con->out_msg_pos.data_pos = 0;
604 con->out_msg_pos.did_page_crc = false;
605 con->out_more = 1; /* data + footer will follow */
606 } else {
607 /* no, queue up footer too and be done */
608 prepare_write_message_footer(con);
609 }
610
611 set_bit(WRITE_PENDING, &con->state);
612 }
613
614 /*
615 * Prepare an ack.
616 */
617 static void prepare_write_ack(struct ceph_connection *con)
618 {
619 dout("prepare_write_ack %p %llu -> %llu\n", con,
620 con->in_seq_acked, con->in_seq);
621 con->in_seq_acked = con->in_seq;
622
623 ceph_con_out_kvec_reset(con);
624
625 ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
626
627 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
628 ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
629 &con->out_temp_ack);
630
631 con->out_more = 1; /* more will follow.. eventually.. */
632 set_bit(WRITE_PENDING, &con->state);
633 }
634
635 /*
636 * Prepare to write keepalive byte.
637 */
638 static void prepare_write_keepalive(struct ceph_connection *con)
639 {
640 dout("prepare_write_keepalive %p\n", con);
641 ceph_con_out_kvec_reset(con);
642 ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
643 set_bit(WRITE_PENDING, &con->state);
644 }
645
646 /*
647 * Connection negotiation.
648 */
649
650 static int prepare_connect_authorizer(struct ceph_connection *con)
651 {
652 void *auth_buf;
653 int auth_len = 0;
654 int auth_protocol = 0;
655
656 mutex_unlock(&con->mutex);
657 if (con->ops->get_authorizer)
658 con->ops->get_authorizer(con, &auth_buf, &auth_len,
659 &auth_protocol, &con->auth_reply_buf,
660 &con->auth_reply_buf_len,
661 con->auth_retry);
662 mutex_lock(&con->mutex);
663
664 if (test_bit(CLOSED, &con->state) ||
665 test_bit(OPENING, &con->state))
666 return -EAGAIN;
667
668 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
669 con->out_connect.authorizer_len = cpu_to_le32(auth_len);
670
671 if (auth_len)
672 ceph_con_out_kvec_add(con, auth_len, auth_buf);
673
674 return 0;
675 }
676
677 /*
678 * We connected to a peer and are saying hello.
679 */
680 static void prepare_write_banner(struct ceph_messenger *msgr,
681 struct ceph_connection *con)
682 {
683 ceph_con_out_kvec_reset(con);
684 ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
685 ceph_con_out_kvec_add(con, sizeof (msgr->my_enc_addr),
686 &msgr->my_enc_addr);
687
688 con->out_more = 0;
689 set_bit(WRITE_PENDING, &con->state);
690 }
691
692 static int prepare_write_connect(struct ceph_messenger *msgr,
693 struct ceph_connection *con,
694 int include_banner)
695 {
696 unsigned global_seq = get_global_seq(con->msgr, 0);
697 int proto;
698
699 switch (con->peer_name.type) {
700 case CEPH_ENTITY_TYPE_MON:
701 proto = CEPH_MONC_PROTOCOL;
702 break;
703 case CEPH_ENTITY_TYPE_OSD:
704 proto = CEPH_OSDC_PROTOCOL;
705 break;
706 case CEPH_ENTITY_TYPE_MDS:
707 proto = CEPH_MDSC_PROTOCOL;
708 break;
709 default:
710 BUG();
711 }
712
713 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
714 con->connect_seq, global_seq, proto);
715
716 con->out_connect.features = cpu_to_le64(msgr->supported_features);
717 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
718 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
719 con->out_connect.global_seq = cpu_to_le32(global_seq);
720 con->out_connect.protocol_version = cpu_to_le32(proto);
721 con->out_connect.flags = 0;
722
723 if (include_banner)
724 prepare_write_banner(msgr, con);
725 else
726 ceph_con_out_kvec_reset(con);
727 ceph_con_out_kvec_add(con, sizeof (con->out_connect), &con->out_connect);
728
729 con->out_more = 0;
730 set_bit(WRITE_PENDING, &con->state);
731
732 return prepare_connect_authorizer(con);
733 }
734
735 /*
736 * write as much of pending kvecs to the socket as we can.
737 * 1 -> done
738 * 0 -> socket full, but more to do
739 * <0 -> error
740 */
741 static int write_partial_kvec(struct ceph_connection *con)
742 {
743 int ret;
744
745 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
746 while (con->out_kvec_bytes > 0) {
747 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
748 con->out_kvec_left, con->out_kvec_bytes,
749 con->out_more);
750 if (ret <= 0)
751 goto out;
752 con->out_kvec_bytes -= ret;
753 if (con->out_kvec_bytes == 0)
754 break; /* done */
755
756 /* account for full iov entries consumed */
757 while (ret >= con->out_kvec_cur->iov_len) {
758 BUG_ON(!con->out_kvec_left);
759 ret -= con->out_kvec_cur->iov_len;
760 con->out_kvec_cur++;
761 con->out_kvec_left--;
762 }
763 /* and for a partially-consumed entry */
764 if (ret) {
765 con->out_kvec_cur->iov_len -= ret;
766 con->out_kvec_cur->iov_base += ret;
767 }
768 }
769 con->out_kvec_left = 0;
770 con->out_kvec_is_msg = false;
771 ret = 1;
772 out:
773 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
774 con->out_kvec_bytes, con->out_kvec_left, ret);
775 return ret; /* done! */
776 }
777
778 #ifdef CONFIG_BLOCK
779 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
780 {
781 if (!bio) {
782 *iter = NULL;
783 *seg = 0;
784 return;
785 }
786 *iter = bio;
787 *seg = bio->bi_idx;
788 }
789
790 static void iter_bio_next(struct bio **bio_iter, int *seg)
791 {
792 if (*bio_iter == NULL)
793 return;
794
795 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
796
797 (*seg)++;
798 if (*seg == (*bio_iter)->bi_vcnt)
799 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
800 }
801 #endif
802
803 /*
804 * Write as much message data payload as we can. If we finish, queue
805 * up the footer.
806 * 1 -> done, footer is now queued in out_kvec[].
807 * 0 -> socket full, but more to do
808 * <0 -> error
809 */
810 static int write_partial_msg_pages(struct ceph_connection *con)
811 {
812 struct ceph_msg *msg = con->out_msg;
813 unsigned data_len = le32_to_cpu(msg->hdr.data_len);
814 size_t len;
815 bool do_crc = con->msgr->nocrc;
816 int ret;
817 int total_max_write;
818 int in_trail = 0;
819 size_t trail_len = (msg->trail ? msg->trail->length : 0);
820
821 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
822 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
823 con->out_msg_pos.page_pos);
824
825 #ifdef CONFIG_BLOCK
826 if (msg->bio && !msg->bio_iter)
827 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
828 #endif
829
830 while (data_len > con->out_msg_pos.data_pos) {
831 struct page *page = NULL;
832 void *kaddr = NULL;
833 int max_write = PAGE_SIZE;
834 int page_shift = 0;
835
836 total_max_write = data_len - trail_len -
837 con->out_msg_pos.data_pos;
838
839 /*
840 * if we are calculating the data crc (the default), we need
841 * to map the page. if our pages[] has been revoked, use the
842 * zero page.
843 */
844
845 /* have we reached the trail part of the data? */
846 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
847 in_trail = 1;
848
849 total_max_write = data_len - con->out_msg_pos.data_pos;
850
851 page = list_first_entry(&msg->trail->head,
852 struct page, lru);
853 if (do_crc)
854 kaddr = kmap(page);
855 max_write = PAGE_SIZE;
856 } else if (msg->pages) {
857 page = msg->pages[con->out_msg_pos.page];
858 if (do_crc)
859 kaddr = kmap(page);
860 } else if (msg->pagelist) {
861 page = list_first_entry(&msg->pagelist->head,
862 struct page, lru);
863 if (do_crc)
864 kaddr = kmap(page);
865 #ifdef CONFIG_BLOCK
866 } else if (msg->bio) {
867 struct bio_vec *bv;
868
869 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
870 page = bv->bv_page;
871 page_shift = bv->bv_offset;
872 if (do_crc)
873 kaddr = kmap(page) + page_shift;
874 max_write = bv->bv_len;
875 #endif
876 } else {
877 page = zero_page;
878 if (do_crc)
879 kaddr = zero_page_address;
880 }
881 len = min_t(int, max_write - con->out_msg_pos.page_pos,
882 total_max_write);
883
884 if (do_crc && !con->out_msg_pos.did_page_crc) {
885 u32 crc;
886 void *base = kaddr + con->out_msg_pos.page_pos;
887 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
888
889 BUG_ON(kaddr == NULL);
890 crc = crc32c(tmpcrc, base, len);
891 con->out_msg->footer.data_crc = cpu_to_le32(crc);
892 con->out_msg_pos.did_page_crc = true;
893 }
894 ret = kernel_sendpage(con->sock, page,
895 con->out_msg_pos.page_pos + page_shift,
896 len,
897 MSG_DONTWAIT | MSG_NOSIGNAL |
898 MSG_MORE);
899
900 if (do_crc && kaddr != zero_page_address)
901 kunmap(page);
902
903 if (ret == -EAGAIN)
904 ret = 0;
905 if (ret <= 0)
906 goto out;
907
908 con->out_msg_pos.data_pos += ret;
909 con->out_msg_pos.page_pos += ret;
910 if (ret == len) {
911 con->out_msg_pos.page_pos = 0;
912 con->out_msg_pos.page++;
913 con->out_msg_pos.did_page_crc = false;
914 if (in_trail)
915 list_move_tail(&page->lru,
916 &msg->trail->head);
917 else if (msg->pagelist)
918 list_move_tail(&page->lru,
919 &msg->pagelist->head);
920 #ifdef CONFIG_BLOCK
921 else if (msg->bio)
922 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
923 #endif
924 }
925 }
926
927 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
928
929 /* prepare and queue up footer, too */
930 if (!do_crc)
931 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
932 ceph_con_out_kvec_reset(con);
933 prepare_write_message_footer(con);
934 ret = 1;
935 out:
936 return ret;
937 }
938
939 /*
940 * write some zeros
941 */
942 static int write_partial_skip(struct ceph_connection *con)
943 {
944 int ret;
945
946 while (con->out_skip > 0) {
947 struct kvec iov = {
948 .iov_base = zero_page_address,
949 .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
950 };
951
952 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
953 if (ret <= 0)
954 goto out;
955 con->out_skip -= ret;
956 }
957 ret = 1;
958 out:
959 return ret;
960 }
961
962 /*
963 * Prepare to read connection handshake, or an ack.
964 */
965 static void prepare_read_banner(struct ceph_connection *con)
966 {
967 dout("prepare_read_banner %p\n", con);
968 con->in_base_pos = 0;
969 }
970
971 static void prepare_read_connect(struct ceph_connection *con)
972 {
973 dout("prepare_read_connect %p\n", con);
974 con->in_base_pos = 0;
975 }
976
977 static void prepare_read_ack(struct ceph_connection *con)
978 {
979 dout("prepare_read_ack %p\n", con);
980 con->in_base_pos = 0;
981 }
982
983 static void prepare_read_tag(struct ceph_connection *con)
984 {
985 dout("prepare_read_tag %p\n", con);
986 con->in_base_pos = 0;
987 con->in_tag = CEPH_MSGR_TAG_READY;
988 }
989
990 /*
991 * Prepare to read a message.
992 */
993 static int prepare_read_message(struct ceph_connection *con)
994 {
995 dout("prepare_read_message %p\n", con);
996 BUG_ON(con->in_msg != NULL);
997 con->in_base_pos = 0;
998 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
999 return 0;
1000 }
1001
1002
1003 static int read_partial(struct ceph_connection *con,
1004 int *to, int size, void *object)
1005 {
1006 *to += size;
1007 while (con->in_base_pos < *to) {
1008 int left = *to - con->in_base_pos;
1009 int have = size - left;
1010 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1011 if (ret <= 0)
1012 return ret;
1013 con->in_base_pos += ret;
1014 }
1015 return 1;
1016 }
1017
1018
1019 /*
1020 * Read all or part of the connect-side handshake on a new connection
1021 */
1022 static int read_partial_banner(struct ceph_connection *con)
1023 {
1024 int ret, to = 0;
1025
1026 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1027
1028 /* peer's banner */
1029 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
1030 if (ret <= 0)
1031 goto out;
1032 ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
1033 &con->actual_peer_addr);
1034 if (ret <= 0)
1035 goto out;
1036 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
1037 &con->peer_addr_for_me);
1038 if (ret <= 0)
1039 goto out;
1040 out:
1041 return ret;
1042 }
1043
1044 static int read_partial_connect(struct ceph_connection *con)
1045 {
1046 int ret, to = 0;
1047
1048 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1049
1050 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1051 if (ret <= 0)
1052 goto out;
1053 ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1054 con->auth_reply_buf);
1055 if (ret <= 0)
1056 goto out;
1057
1058 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1059 con, (int)con->in_reply.tag,
1060 le32_to_cpu(con->in_reply.connect_seq),
1061 le32_to_cpu(con->in_reply.global_seq));
1062 out:
1063 return ret;
1064
1065 }
1066
1067 /*
1068 * Verify the hello banner looks okay.
1069 */
1070 static int verify_hello(struct ceph_connection *con)
1071 {
1072 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1073 pr_err("connect to %s got bad banner\n",
1074 ceph_pr_addr(&con->peer_addr.in_addr));
1075 con->error_msg = "protocol error, bad banner";
1076 return -1;
1077 }
1078 return 0;
1079 }
1080
1081 static bool addr_is_blank(struct sockaddr_storage *ss)
1082 {
1083 switch (ss->ss_family) {
1084 case AF_INET:
1085 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1086 case AF_INET6:
1087 return
1088 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1089 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1090 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1091 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1092 }
1093 return false;
1094 }
1095
1096 static int addr_port(struct sockaddr_storage *ss)
1097 {
1098 switch (ss->ss_family) {
1099 case AF_INET:
1100 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1101 case AF_INET6:
1102 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1103 }
1104 return 0;
1105 }
1106
1107 static void addr_set_port(struct sockaddr_storage *ss, int p)
1108 {
1109 switch (ss->ss_family) {
1110 case AF_INET:
1111 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1112 break;
1113 case AF_INET6:
1114 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1115 break;
1116 }
1117 }
1118
1119 /*
1120 * Unlike other *_pton function semantics, zero indicates success.
1121 */
1122 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1123 char delim, const char **ipend)
1124 {
1125 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1126 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1127
1128 memset(ss, 0, sizeof(*ss));
1129
1130 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1131 ss->ss_family = AF_INET;
1132 return 0;
1133 }
1134
1135 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1136 ss->ss_family = AF_INET6;
1137 return 0;
1138 }
1139
1140 return -EINVAL;
1141 }
1142
1143 /*
1144 * Extract hostname string and resolve using kernel DNS facility.
1145 */
1146 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1147 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1148 struct sockaddr_storage *ss, char delim, const char **ipend)
1149 {
1150 const char *end, *delim_p;
1151 char *colon_p, *ip_addr = NULL;
1152 int ip_len, ret;
1153
1154 /*
1155 * The end of the hostname occurs immediately preceding the delimiter or
1156 * the port marker (':') where the delimiter takes precedence.
1157 */
1158 delim_p = memchr(name, delim, namelen);
1159 colon_p = memchr(name, ':', namelen);
1160
1161 if (delim_p && colon_p)
1162 end = delim_p < colon_p ? delim_p : colon_p;
1163 else if (!delim_p && colon_p)
1164 end = colon_p;
1165 else {
1166 end = delim_p;
1167 if (!end) /* case: hostname:/ */
1168 end = name + namelen;
1169 }
1170
1171 if (end <= name)
1172 return -EINVAL;
1173
1174 /* do dns_resolve upcall */
1175 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1176 if (ip_len > 0)
1177 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1178 else
1179 ret = -ESRCH;
1180
1181 kfree(ip_addr);
1182
1183 *ipend = end;
1184
1185 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1186 ret, ret ? "failed" : ceph_pr_addr(ss));
1187
1188 return ret;
1189 }
1190 #else
1191 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1192 struct sockaddr_storage *ss, char delim, const char **ipend)
1193 {
1194 return -EINVAL;
1195 }
1196 #endif
1197
1198 /*
1199 * Parse a server name (IP or hostname). If a valid IP address is not found
1200 * then try to extract a hostname to resolve using userspace DNS upcall.
1201 */
1202 static int ceph_parse_server_name(const char *name, size_t namelen,
1203 struct sockaddr_storage *ss, char delim, const char **ipend)
1204 {
1205 int ret;
1206
1207 ret = ceph_pton(name, namelen, ss, delim, ipend);
1208 if (ret)
1209 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1210
1211 return ret;
1212 }
1213
1214 /*
1215 * Parse an ip[:port] list into an addr array. Use the default
1216 * monitor port if a port isn't specified.
1217 */
1218 int ceph_parse_ips(const char *c, const char *end,
1219 struct ceph_entity_addr *addr,
1220 int max_count, int *count)
1221 {
1222 int i, ret = -EINVAL;
1223 const char *p = c;
1224
1225 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1226 for (i = 0; i < max_count; i++) {
1227 const char *ipend;
1228 struct sockaddr_storage *ss = &addr[i].in_addr;
1229 int port;
1230 char delim = ',';
1231
1232 if (*p == '[') {
1233 delim = ']';
1234 p++;
1235 }
1236
1237 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1238 if (ret)
1239 goto bad;
1240 ret = -EINVAL;
1241
1242 p = ipend;
1243
1244 if (delim == ']') {
1245 if (*p != ']') {
1246 dout("missing matching ']'\n");
1247 goto bad;
1248 }
1249 p++;
1250 }
1251
1252 /* port? */
1253 if (p < end && *p == ':') {
1254 port = 0;
1255 p++;
1256 while (p < end && *p >= '0' && *p <= '9') {
1257 port = (port * 10) + (*p - '0');
1258 p++;
1259 }
1260 if (port > 65535 || port == 0)
1261 goto bad;
1262 } else {
1263 port = CEPH_MON_PORT;
1264 }
1265
1266 addr_set_port(ss, port);
1267
1268 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1269
1270 if (p == end)
1271 break;
1272 if (*p != ',')
1273 goto bad;
1274 p++;
1275 }
1276
1277 if (p != end)
1278 goto bad;
1279
1280 if (count)
1281 *count = i + 1;
1282 return 0;
1283
1284 bad:
1285 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1286 return ret;
1287 }
1288 EXPORT_SYMBOL(ceph_parse_ips);
1289
1290 static int process_banner(struct ceph_connection *con)
1291 {
1292 dout("process_banner on %p\n", con);
1293
1294 if (verify_hello(con) < 0)
1295 return -1;
1296
1297 ceph_decode_addr(&con->actual_peer_addr);
1298 ceph_decode_addr(&con->peer_addr_for_me);
1299
1300 /*
1301 * Make sure the other end is who we wanted. note that the other
1302 * end may not yet know their ip address, so if it's 0.0.0.0, give
1303 * them the benefit of the doubt.
1304 */
1305 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1306 sizeof(con->peer_addr)) != 0 &&
1307 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1308 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1309 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1310 ceph_pr_addr(&con->peer_addr.in_addr),
1311 (int)le32_to_cpu(con->peer_addr.nonce),
1312 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1313 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1314 con->error_msg = "wrong peer at address";
1315 return -1;
1316 }
1317
1318 /*
1319 * did we learn our address?
1320 */
1321 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1322 int port = addr_port(&con->msgr->inst.addr.in_addr);
1323
1324 memcpy(&con->msgr->inst.addr.in_addr,
1325 &con->peer_addr_for_me.in_addr,
1326 sizeof(con->peer_addr_for_me.in_addr));
1327 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1328 encode_my_addr(con->msgr);
1329 dout("process_banner learned my addr is %s\n",
1330 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1331 }
1332
1333 set_bit(NEGOTIATING, &con->state);
1334 prepare_read_connect(con);
1335 return 0;
1336 }
1337
1338 static void fail_protocol(struct ceph_connection *con)
1339 {
1340 reset_connection(con);
1341 set_bit(CLOSED, &con->state); /* in case there's queued work */
1342
1343 mutex_unlock(&con->mutex);
1344 if (con->ops->bad_proto)
1345 con->ops->bad_proto(con);
1346 mutex_lock(&con->mutex);
1347 }
1348
1349 static int process_connect(struct ceph_connection *con)
1350 {
1351 u64 sup_feat = con->msgr->supported_features;
1352 u64 req_feat = con->msgr->required_features;
1353 u64 server_feat = le64_to_cpu(con->in_reply.features);
1354 int ret;
1355
1356 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1357
1358 switch (con->in_reply.tag) {
1359 case CEPH_MSGR_TAG_FEATURES:
1360 pr_err("%s%lld %s feature set mismatch,"
1361 " my %llx < server's %llx, missing %llx\n",
1362 ENTITY_NAME(con->peer_name),
1363 ceph_pr_addr(&con->peer_addr.in_addr),
1364 sup_feat, server_feat, server_feat & ~sup_feat);
1365 con->error_msg = "missing required protocol features";
1366 fail_protocol(con);
1367 return -1;
1368
1369 case CEPH_MSGR_TAG_BADPROTOVER:
1370 pr_err("%s%lld %s protocol version mismatch,"
1371 " my %d != server's %d\n",
1372 ENTITY_NAME(con->peer_name),
1373 ceph_pr_addr(&con->peer_addr.in_addr),
1374 le32_to_cpu(con->out_connect.protocol_version),
1375 le32_to_cpu(con->in_reply.protocol_version));
1376 con->error_msg = "protocol version mismatch";
1377 fail_protocol(con);
1378 return -1;
1379
1380 case CEPH_MSGR_TAG_BADAUTHORIZER:
1381 con->auth_retry++;
1382 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1383 con->auth_retry);
1384 if (con->auth_retry == 2) {
1385 con->error_msg = "connect authorization failure";
1386 return -1;
1387 }
1388 con->auth_retry = 1;
1389 ret = prepare_write_connect(con->msgr, con, 0);
1390 if (ret < 0)
1391 return ret;
1392 prepare_read_connect(con);
1393 break;
1394
1395 case CEPH_MSGR_TAG_RESETSESSION:
1396 /*
1397 * If we connected with a large connect_seq but the peer
1398 * has no record of a session with us (no connection, or
1399 * connect_seq == 0), they will send RESETSESION to indicate
1400 * that they must have reset their session, and may have
1401 * dropped messages.
1402 */
1403 dout("process_connect got RESET peer seq %u\n",
1404 le32_to_cpu(con->in_connect.connect_seq));
1405 pr_err("%s%lld %s connection reset\n",
1406 ENTITY_NAME(con->peer_name),
1407 ceph_pr_addr(&con->peer_addr.in_addr));
1408 reset_connection(con);
1409 prepare_write_connect(con->msgr, con, 0);
1410 prepare_read_connect(con);
1411
1412 /* Tell ceph about it. */
1413 mutex_unlock(&con->mutex);
1414 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1415 if (con->ops->peer_reset)
1416 con->ops->peer_reset(con);
1417 mutex_lock(&con->mutex);
1418 if (test_bit(CLOSED, &con->state) ||
1419 test_bit(OPENING, &con->state))
1420 return -EAGAIN;
1421 break;
1422
1423 case CEPH_MSGR_TAG_RETRY_SESSION:
1424 /*
1425 * If we sent a smaller connect_seq than the peer has, try
1426 * again with a larger value.
1427 */
1428 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1429 le32_to_cpu(con->out_connect.connect_seq),
1430 le32_to_cpu(con->in_connect.connect_seq));
1431 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1432 prepare_write_connect(con->msgr, con, 0);
1433 prepare_read_connect(con);
1434 break;
1435
1436 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1437 /*
1438 * If we sent a smaller global_seq than the peer has, try
1439 * again with a larger value.
1440 */
1441 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1442 con->peer_global_seq,
1443 le32_to_cpu(con->in_connect.global_seq));
1444 get_global_seq(con->msgr,
1445 le32_to_cpu(con->in_connect.global_seq));
1446 prepare_write_connect(con->msgr, con, 0);
1447 prepare_read_connect(con);
1448 break;
1449
1450 case CEPH_MSGR_TAG_READY:
1451 if (req_feat & ~server_feat) {
1452 pr_err("%s%lld %s protocol feature mismatch,"
1453 " my required %llx > server's %llx, need %llx\n",
1454 ENTITY_NAME(con->peer_name),
1455 ceph_pr_addr(&con->peer_addr.in_addr),
1456 req_feat, server_feat, req_feat & ~server_feat);
1457 con->error_msg = "missing required protocol features";
1458 fail_protocol(con);
1459 return -1;
1460 }
1461 clear_bit(CONNECTING, &con->state);
1462 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1463 con->connect_seq++;
1464 con->peer_features = server_feat;
1465 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1466 con->peer_global_seq,
1467 le32_to_cpu(con->in_reply.connect_seq),
1468 con->connect_seq);
1469 WARN_ON(con->connect_seq !=
1470 le32_to_cpu(con->in_reply.connect_seq));
1471
1472 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1473 set_bit(LOSSYTX, &con->state);
1474
1475 prepare_read_tag(con);
1476 break;
1477
1478 case CEPH_MSGR_TAG_WAIT:
1479 /*
1480 * If there is a connection race (we are opening
1481 * connections to each other), one of us may just have
1482 * to WAIT. This shouldn't happen if we are the
1483 * client.
1484 */
1485 pr_err("process_connect got WAIT as client\n");
1486 con->error_msg = "protocol error, got WAIT as client";
1487 return -1;
1488
1489 default:
1490 pr_err("connect protocol error, will retry\n");
1491 con->error_msg = "protocol error, garbage tag during connect";
1492 return -1;
1493 }
1494 return 0;
1495 }
1496
1497
1498 /*
1499 * read (part of) an ack
1500 */
1501 static int read_partial_ack(struct ceph_connection *con)
1502 {
1503 int to = 0;
1504
1505 return read_partial(con, &to, sizeof(con->in_temp_ack),
1506 &con->in_temp_ack);
1507 }
1508
1509
1510 /*
1511 * We can finally discard anything that's been acked.
1512 */
1513 static void process_ack(struct ceph_connection *con)
1514 {
1515 struct ceph_msg *m;
1516 u64 ack = le64_to_cpu(con->in_temp_ack);
1517 u64 seq;
1518
1519 while (!list_empty(&con->out_sent)) {
1520 m = list_first_entry(&con->out_sent, struct ceph_msg,
1521 list_head);
1522 seq = le64_to_cpu(m->hdr.seq);
1523 if (seq > ack)
1524 break;
1525 dout("got ack for seq %llu type %d at %p\n", seq,
1526 le16_to_cpu(m->hdr.type), m);
1527 m->ack_stamp = jiffies;
1528 ceph_msg_remove(m);
1529 }
1530 prepare_read_tag(con);
1531 }
1532
1533
1534
1535
1536 static int read_partial_message_section(struct ceph_connection *con,
1537 struct kvec *section,
1538 unsigned int sec_len, u32 *crc)
1539 {
1540 int ret, left;
1541
1542 BUG_ON(!section);
1543
1544 while (section->iov_len < sec_len) {
1545 BUG_ON(section->iov_base == NULL);
1546 left = sec_len - section->iov_len;
1547 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1548 section->iov_len, left);
1549 if (ret <= 0)
1550 return ret;
1551 section->iov_len += ret;
1552 }
1553 if (section->iov_len == sec_len)
1554 *crc = crc32c(0, section->iov_base, section->iov_len);
1555
1556 return 1;
1557 }
1558
1559 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1560 struct ceph_msg_header *hdr,
1561 int *skip);
1562
1563
1564 static int read_partial_message_pages(struct ceph_connection *con,
1565 struct page **pages,
1566 unsigned data_len, bool do_datacrc)
1567 {
1568 void *p;
1569 int ret;
1570 int left;
1571
1572 left = min((int)(data_len - con->in_msg_pos.data_pos),
1573 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1574 /* (page) data */
1575 BUG_ON(pages == NULL);
1576 p = kmap(pages[con->in_msg_pos.page]);
1577 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1578 left);
1579 if (ret > 0 && do_datacrc)
1580 con->in_data_crc =
1581 crc32c(con->in_data_crc,
1582 p + con->in_msg_pos.page_pos, ret);
1583 kunmap(pages[con->in_msg_pos.page]);
1584 if (ret <= 0)
1585 return ret;
1586 con->in_msg_pos.data_pos += ret;
1587 con->in_msg_pos.page_pos += ret;
1588 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1589 con->in_msg_pos.page_pos = 0;
1590 con->in_msg_pos.page++;
1591 }
1592
1593 return ret;
1594 }
1595
1596 #ifdef CONFIG_BLOCK
1597 static int read_partial_message_bio(struct ceph_connection *con,
1598 struct bio **bio_iter, int *bio_seg,
1599 unsigned data_len, bool do_datacrc)
1600 {
1601 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1602 void *p;
1603 int ret, left;
1604
1605 if (IS_ERR(bv))
1606 return PTR_ERR(bv);
1607
1608 left = min((int)(data_len - con->in_msg_pos.data_pos),
1609 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1610
1611 p = kmap(bv->bv_page) + bv->bv_offset;
1612
1613 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1614 left);
1615 if (ret > 0 && do_datacrc)
1616 con->in_data_crc =
1617 crc32c(con->in_data_crc,
1618 p + con->in_msg_pos.page_pos, ret);
1619 kunmap(bv->bv_page);
1620 if (ret <= 0)
1621 return ret;
1622 con->in_msg_pos.data_pos += ret;
1623 con->in_msg_pos.page_pos += ret;
1624 if (con->in_msg_pos.page_pos == bv->bv_len) {
1625 con->in_msg_pos.page_pos = 0;
1626 iter_bio_next(bio_iter, bio_seg);
1627 }
1628
1629 return ret;
1630 }
1631 #endif
1632
1633 /*
1634 * read (part of) a message.
1635 */
1636 static int read_partial_message(struct ceph_connection *con)
1637 {
1638 struct ceph_msg *m = con->in_msg;
1639 int ret;
1640 int to, left;
1641 unsigned front_len, middle_len, data_len;
1642 bool do_datacrc = con->msgr->nocrc;
1643 int skip;
1644 u64 seq;
1645 u32 crc;
1646
1647 dout("read_partial_message con %p msg %p\n", con, m);
1648
1649 /* header */
1650 while (con->in_base_pos < sizeof(con->in_hdr)) {
1651 left = sizeof(con->in_hdr) - con->in_base_pos;
1652 ret = ceph_tcp_recvmsg(con->sock,
1653 (char *)&con->in_hdr + con->in_base_pos,
1654 left);
1655 if (ret <= 0)
1656 return ret;
1657 con->in_base_pos += ret;
1658 }
1659
1660 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1661 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1662 pr_err("read_partial_message bad hdr "
1663 " crc %u != expected %u\n",
1664 crc, con->in_hdr.crc);
1665 return -EBADMSG;
1666 }
1667
1668 front_len = le32_to_cpu(con->in_hdr.front_len);
1669 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1670 return -EIO;
1671 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1672 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1673 return -EIO;
1674 data_len = le32_to_cpu(con->in_hdr.data_len);
1675 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1676 return -EIO;
1677
1678 /* verify seq# */
1679 seq = le64_to_cpu(con->in_hdr.seq);
1680 if ((s64)seq - (s64)con->in_seq < 1) {
1681 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1682 ENTITY_NAME(con->peer_name),
1683 ceph_pr_addr(&con->peer_addr.in_addr),
1684 seq, con->in_seq + 1);
1685 con->in_base_pos = -front_len - middle_len - data_len -
1686 sizeof(m->footer);
1687 con->in_tag = CEPH_MSGR_TAG_READY;
1688 return 0;
1689 } else if ((s64)seq - (s64)con->in_seq > 1) {
1690 pr_err("read_partial_message bad seq %lld expected %lld\n",
1691 seq, con->in_seq + 1);
1692 con->error_msg = "bad message sequence # for incoming message";
1693 return -EBADMSG;
1694 }
1695
1696 /* allocate message? */
1697 if (!con->in_msg) {
1698 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1699 con->in_hdr.front_len, con->in_hdr.data_len);
1700 skip = 0;
1701 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1702 if (skip) {
1703 /* skip this message */
1704 dout("alloc_msg said skip message\n");
1705 BUG_ON(con->in_msg);
1706 con->in_base_pos = -front_len - middle_len - data_len -
1707 sizeof(m->footer);
1708 con->in_tag = CEPH_MSGR_TAG_READY;
1709 con->in_seq++;
1710 return 0;
1711 }
1712 if (!con->in_msg) {
1713 con->error_msg =
1714 "error allocating memory for incoming message";
1715 return -ENOMEM;
1716 }
1717 m = con->in_msg;
1718 m->front.iov_len = 0; /* haven't read it yet */
1719 if (m->middle)
1720 m->middle->vec.iov_len = 0;
1721
1722 con->in_msg_pos.page = 0;
1723 if (m->pages)
1724 con->in_msg_pos.page_pos = m->page_alignment;
1725 else
1726 con->in_msg_pos.page_pos = 0;
1727 con->in_msg_pos.data_pos = 0;
1728 }
1729
1730 /* front */
1731 ret = read_partial_message_section(con, &m->front, front_len,
1732 &con->in_front_crc);
1733 if (ret <= 0)
1734 return ret;
1735
1736 /* middle */
1737 if (m->middle) {
1738 ret = read_partial_message_section(con, &m->middle->vec,
1739 middle_len,
1740 &con->in_middle_crc);
1741 if (ret <= 0)
1742 return ret;
1743 }
1744 #ifdef CONFIG_BLOCK
1745 if (m->bio && !m->bio_iter)
1746 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1747 #endif
1748
1749 /* (page) data */
1750 while (con->in_msg_pos.data_pos < data_len) {
1751 if (m->pages) {
1752 ret = read_partial_message_pages(con, m->pages,
1753 data_len, do_datacrc);
1754 if (ret <= 0)
1755 return ret;
1756 #ifdef CONFIG_BLOCK
1757 } else if (m->bio) {
1758
1759 ret = read_partial_message_bio(con,
1760 &m->bio_iter, &m->bio_seg,
1761 data_len, do_datacrc);
1762 if (ret <= 0)
1763 return ret;
1764 #endif
1765 } else {
1766 BUG_ON(1);
1767 }
1768 }
1769
1770 /* footer */
1771 to = sizeof(m->hdr) + sizeof(m->footer);
1772 while (con->in_base_pos < to) {
1773 left = to - con->in_base_pos;
1774 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1775 (con->in_base_pos - sizeof(m->hdr)),
1776 left);
1777 if (ret <= 0)
1778 return ret;
1779 con->in_base_pos += ret;
1780 }
1781 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1782 m, front_len, m->footer.front_crc, middle_len,
1783 m->footer.middle_crc, data_len, m->footer.data_crc);
1784
1785 /* crc ok? */
1786 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1787 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1788 m, con->in_front_crc, m->footer.front_crc);
1789 return -EBADMSG;
1790 }
1791 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1792 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1793 m, con->in_middle_crc, m->footer.middle_crc);
1794 return -EBADMSG;
1795 }
1796 if (do_datacrc &&
1797 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1798 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1799 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1800 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1801 return -EBADMSG;
1802 }
1803
1804 return 1; /* done! */
1805 }
1806
1807 /*
1808 * Process message. This happens in the worker thread. The callback should
1809 * be careful not to do anything that waits on other incoming messages or it
1810 * may deadlock.
1811 */
1812 static void process_message(struct ceph_connection *con)
1813 {
1814 struct ceph_msg *msg;
1815
1816 msg = con->in_msg;
1817 con->in_msg = NULL;
1818
1819 /* if first message, set peer_name */
1820 if (con->peer_name.type == 0)
1821 con->peer_name = msg->hdr.src;
1822
1823 con->in_seq++;
1824 mutex_unlock(&con->mutex);
1825
1826 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1827 msg, le64_to_cpu(msg->hdr.seq),
1828 ENTITY_NAME(msg->hdr.src),
1829 le16_to_cpu(msg->hdr.type),
1830 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1831 le32_to_cpu(msg->hdr.front_len),
1832 le32_to_cpu(msg->hdr.data_len),
1833 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1834 con->ops->dispatch(con, msg);
1835
1836 mutex_lock(&con->mutex);
1837 prepare_read_tag(con);
1838 }
1839
1840
1841 /*
1842 * Write something to the socket. Called in a worker thread when the
1843 * socket appears to be writeable and we have something ready to send.
1844 */
1845 static int try_write(struct ceph_connection *con)
1846 {
1847 struct ceph_messenger *msgr = con->msgr;
1848 int ret = 1;
1849
1850 dout("try_write start %p state %lu nref %d\n", con, con->state,
1851 atomic_read(&con->nref));
1852
1853 more:
1854 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1855
1856 /* open the socket first? */
1857 if (con->sock == NULL) {
1858 prepare_write_connect(msgr, con, 1);
1859 prepare_read_banner(con);
1860 set_bit(CONNECTING, &con->state);
1861 clear_bit(NEGOTIATING, &con->state);
1862
1863 BUG_ON(con->in_msg);
1864 con->in_tag = CEPH_MSGR_TAG_READY;
1865 dout("try_write initiating connect on %p new state %lu\n",
1866 con, con->state);
1867 ret = ceph_tcp_connect(con);
1868 if (ret < 0) {
1869 con->error_msg = "connect error";
1870 goto out;
1871 }
1872 }
1873
1874 more_kvec:
1875 /* kvec data queued? */
1876 if (con->out_skip) {
1877 ret = write_partial_skip(con);
1878 if (ret <= 0)
1879 goto out;
1880 }
1881 if (con->out_kvec_left) {
1882 ret = write_partial_kvec(con);
1883 if (ret <= 0)
1884 goto out;
1885 }
1886
1887 /* msg pages? */
1888 if (con->out_msg) {
1889 if (con->out_msg_done) {
1890 ceph_msg_put(con->out_msg);
1891 con->out_msg = NULL; /* we're done with this one */
1892 goto do_next;
1893 }
1894
1895 ret = write_partial_msg_pages(con);
1896 if (ret == 1)
1897 goto more_kvec; /* we need to send the footer, too! */
1898 if (ret == 0)
1899 goto out;
1900 if (ret < 0) {
1901 dout("try_write write_partial_msg_pages err %d\n",
1902 ret);
1903 goto out;
1904 }
1905 }
1906
1907 do_next:
1908 if (!test_bit(CONNECTING, &con->state)) {
1909 /* is anything else pending? */
1910 if (!list_empty(&con->out_queue)) {
1911 prepare_write_message(con);
1912 goto more;
1913 }
1914 if (con->in_seq > con->in_seq_acked) {
1915 prepare_write_ack(con);
1916 goto more;
1917 }
1918 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1919 prepare_write_keepalive(con);
1920 goto more;
1921 }
1922 }
1923
1924 /* Nothing to do! */
1925 clear_bit(WRITE_PENDING, &con->state);
1926 dout("try_write nothing else to write.\n");
1927 ret = 0;
1928 out:
1929 dout("try_write done on %p ret %d\n", con, ret);
1930 return ret;
1931 }
1932
1933
1934
1935 /*
1936 * Read what we can from the socket.
1937 */
1938 static int try_read(struct ceph_connection *con)
1939 {
1940 int ret = -1;
1941
1942 if (!con->sock)
1943 return 0;
1944
1945 if (test_bit(STANDBY, &con->state))
1946 return 0;
1947
1948 dout("try_read start on %p\n", con);
1949
1950 more:
1951 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1952 con->in_base_pos);
1953
1954 /*
1955 * process_connect and process_message drop and re-take
1956 * con->mutex. make sure we handle a racing close or reopen.
1957 */
1958 if (test_bit(CLOSED, &con->state) ||
1959 test_bit(OPENING, &con->state)) {
1960 ret = -EAGAIN;
1961 goto out;
1962 }
1963
1964 if (test_bit(CONNECTING, &con->state)) {
1965 if (!test_bit(NEGOTIATING, &con->state)) {
1966 dout("try_read connecting\n");
1967 ret = read_partial_banner(con);
1968 if (ret <= 0)
1969 goto out;
1970 ret = process_banner(con);
1971 if (ret < 0)
1972 goto out;
1973 }
1974 ret = read_partial_connect(con);
1975 if (ret <= 0)
1976 goto out;
1977 ret = process_connect(con);
1978 if (ret < 0)
1979 goto out;
1980 goto more;
1981 }
1982
1983 if (con->in_base_pos < 0) {
1984 /*
1985 * skipping + discarding content.
1986 *
1987 * FIXME: there must be a better way to do this!
1988 */
1989 static char buf[SKIP_BUF_SIZE];
1990 int skip = min((int) sizeof (buf), -con->in_base_pos);
1991
1992 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1993 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1994 if (ret <= 0)
1995 goto out;
1996 con->in_base_pos += ret;
1997 if (con->in_base_pos)
1998 goto more;
1999 }
2000 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2001 /*
2002 * what's next?
2003 */
2004 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2005 if (ret <= 0)
2006 goto out;
2007 dout("try_read got tag %d\n", (int)con->in_tag);
2008 switch (con->in_tag) {
2009 case CEPH_MSGR_TAG_MSG:
2010 prepare_read_message(con);
2011 break;
2012 case CEPH_MSGR_TAG_ACK:
2013 prepare_read_ack(con);
2014 break;
2015 case CEPH_MSGR_TAG_CLOSE:
2016 set_bit(CLOSED, &con->state); /* fixme */
2017 goto out;
2018 default:
2019 goto bad_tag;
2020 }
2021 }
2022 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2023 ret = read_partial_message(con);
2024 if (ret <= 0) {
2025 switch (ret) {
2026 case -EBADMSG:
2027 con->error_msg = "bad crc";
2028 ret = -EIO;
2029 break;
2030 case -EIO:
2031 con->error_msg = "io error";
2032 break;
2033 }
2034 goto out;
2035 }
2036 if (con->in_tag == CEPH_MSGR_TAG_READY)
2037 goto more;
2038 process_message(con);
2039 goto more;
2040 }
2041 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2042 ret = read_partial_ack(con);
2043 if (ret <= 0)
2044 goto out;
2045 process_ack(con);
2046 goto more;
2047 }
2048
2049 out:
2050 dout("try_read done on %p ret %d\n", con, ret);
2051 return ret;
2052
2053 bad_tag:
2054 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2055 con->error_msg = "protocol error, garbage tag";
2056 ret = -1;
2057 goto out;
2058 }
2059
2060
2061 /*
2062 * Atomically queue work on a connection. Bump @con reference to
2063 * avoid races with connection teardown.
2064 */
2065 static void queue_con(struct ceph_connection *con)
2066 {
2067 if (test_bit(DEAD, &con->state)) {
2068 dout("queue_con %p ignoring: DEAD\n",
2069 con);
2070 return;
2071 }
2072
2073 if (!con->ops->get(con)) {
2074 dout("queue_con %p ref count 0\n", con);
2075 return;
2076 }
2077
2078 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2079 dout("queue_con %p - already queued\n", con);
2080 con->ops->put(con);
2081 } else {
2082 dout("queue_con %p\n", con);
2083 }
2084 }
2085
2086 /*
2087 * Do some work on a connection. Drop a connection ref when we're done.
2088 */
2089 static void con_work(struct work_struct *work)
2090 {
2091 struct ceph_connection *con = container_of(work, struct ceph_connection,
2092 work.work);
2093 int ret;
2094
2095 mutex_lock(&con->mutex);
2096 restart:
2097 if (test_and_clear_bit(BACKOFF, &con->state)) {
2098 dout("con_work %p backing off\n", con);
2099 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2100 round_jiffies_relative(con->delay))) {
2101 dout("con_work %p backoff %lu\n", con, con->delay);
2102 mutex_unlock(&con->mutex);
2103 return;
2104 } else {
2105 con->ops->put(con);
2106 dout("con_work %p FAILED to back off %lu\n", con,
2107 con->delay);
2108 }
2109 }
2110
2111 if (test_bit(STANDBY, &con->state)) {
2112 dout("con_work %p STANDBY\n", con);
2113 goto done;
2114 }
2115 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2116 dout("con_work CLOSED\n");
2117 con_close_socket(con);
2118 goto done;
2119 }
2120 if (test_and_clear_bit(OPENING, &con->state)) {
2121 /* reopen w/ new peer */
2122 dout("con_work OPENING\n");
2123 con_close_socket(con);
2124 }
2125
2126 if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2127 goto fault;
2128
2129 ret = try_read(con);
2130 if (ret == -EAGAIN)
2131 goto restart;
2132 if (ret < 0)
2133 goto fault;
2134
2135 ret = try_write(con);
2136 if (ret == -EAGAIN)
2137 goto restart;
2138 if (ret < 0)
2139 goto fault;
2140
2141 done:
2142 mutex_unlock(&con->mutex);
2143 done_unlocked:
2144 con->ops->put(con);
2145 return;
2146
2147 fault:
2148 mutex_unlock(&con->mutex);
2149 ceph_fault(con); /* error/fault path */
2150 goto done_unlocked;
2151 }
2152
2153
2154 /*
2155 * Generic error/fault handler. A retry mechanism is used with
2156 * exponential backoff
2157 */
2158 static void ceph_fault(struct ceph_connection *con)
2159 {
2160 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2161 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2162 dout("fault %p state %lu to peer %s\n",
2163 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2164
2165 if (test_bit(LOSSYTX, &con->state)) {
2166 dout("fault on LOSSYTX channel\n");
2167 goto out;
2168 }
2169
2170 mutex_lock(&con->mutex);
2171 if (test_bit(CLOSED, &con->state))
2172 goto out_unlock;
2173
2174 con_close_socket(con);
2175
2176 if (con->in_msg) {
2177 ceph_msg_put(con->in_msg);
2178 con->in_msg = NULL;
2179 }
2180
2181 /* Requeue anything that hasn't been acked */
2182 list_splice_init(&con->out_sent, &con->out_queue);
2183
2184 /* If there are no messages queued or keepalive pending, place
2185 * the connection in a STANDBY state */
2186 if (list_empty(&con->out_queue) &&
2187 !test_bit(KEEPALIVE_PENDING, &con->state)) {
2188 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2189 clear_bit(WRITE_PENDING, &con->state);
2190 set_bit(STANDBY, &con->state);
2191 } else {
2192 /* retry after a delay. */
2193 if (con->delay == 0)
2194 con->delay = BASE_DELAY_INTERVAL;
2195 else if (con->delay < MAX_DELAY_INTERVAL)
2196 con->delay *= 2;
2197 con->ops->get(con);
2198 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2199 round_jiffies_relative(con->delay))) {
2200 dout("fault queued %p delay %lu\n", con, con->delay);
2201 } else {
2202 con->ops->put(con);
2203 dout("fault failed to queue %p delay %lu, backoff\n",
2204 con, con->delay);
2205 /*
2206 * In many cases we see a socket state change
2207 * while con_work is running and end up
2208 * queuing (non-delayed) work, such that we
2209 * can't backoff with a delay. Set a flag so
2210 * that when con_work restarts we schedule the
2211 * delay then.
2212 */
2213 set_bit(BACKOFF, &con->state);
2214 }
2215 }
2216
2217 out_unlock:
2218 mutex_unlock(&con->mutex);
2219 out:
2220 /*
2221 * in case we faulted due to authentication, invalidate our
2222 * current tickets so that we can get new ones.
2223 */
2224 if (con->auth_retry && con->ops->invalidate_authorizer) {
2225 dout("calling invalidate_authorizer()\n");
2226 con->ops->invalidate_authorizer(con);
2227 }
2228
2229 if (con->ops->fault)
2230 con->ops->fault(con);
2231 }
2232
2233
2234
2235 /*
2236 * create a new messenger instance
2237 */
2238 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2239 u32 supported_features,
2240 u32 required_features)
2241 {
2242 struct ceph_messenger *msgr;
2243
2244 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2245 if (msgr == NULL)
2246 return ERR_PTR(-ENOMEM);
2247
2248 msgr->supported_features = supported_features;
2249 msgr->required_features = required_features;
2250
2251 spin_lock_init(&msgr->global_seq_lock);
2252
2253 if (myaddr)
2254 msgr->inst.addr = *myaddr;
2255
2256 /* select a random nonce */
2257 msgr->inst.addr.type = 0;
2258 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2259 encode_my_addr(msgr);
2260
2261 dout("messenger_create %p\n", msgr);
2262 return msgr;
2263 }
2264 EXPORT_SYMBOL(ceph_messenger_create);
2265
2266 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2267 {
2268 dout("destroy %p\n", msgr);
2269 kfree(msgr);
2270 dout("destroyed messenger %p\n", msgr);
2271 }
2272 EXPORT_SYMBOL(ceph_messenger_destroy);
2273
2274 static void clear_standby(struct ceph_connection *con)
2275 {
2276 /* come back from STANDBY? */
2277 if (test_and_clear_bit(STANDBY, &con->state)) {
2278 mutex_lock(&con->mutex);
2279 dout("clear_standby %p and ++connect_seq\n", con);
2280 con->connect_seq++;
2281 WARN_ON(test_bit(WRITE_PENDING, &con->state));
2282 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2283 mutex_unlock(&con->mutex);
2284 }
2285 }
2286
2287 /*
2288 * Queue up an outgoing message on the given connection.
2289 */
2290 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2291 {
2292 if (test_bit(CLOSED, &con->state)) {
2293 dout("con_send %p closed, dropping %p\n", con, msg);
2294 ceph_msg_put(msg);
2295 return;
2296 }
2297
2298 /* set src+dst */
2299 msg->hdr.src = con->msgr->inst.name;
2300
2301 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2302
2303 msg->needs_out_seq = true;
2304
2305 /* queue */
2306 mutex_lock(&con->mutex);
2307 BUG_ON(!list_empty(&msg->list_head));
2308 list_add_tail(&msg->list_head, &con->out_queue);
2309 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2310 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2311 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2312 le32_to_cpu(msg->hdr.front_len),
2313 le32_to_cpu(msg->hdr.middle_len),
2314 le32_to_cpu(msg->hdr.data_len));
2315 mutex_unlock(&con->mutex);
2316
2317 /* if there wasn't anything waiting to send before, queue
2318 * new work */
2319 clear_standby(con);
2320 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2321 queue_con(con);
2322 }
2323 EXPORT_SYMBOL(ceph_con_send);
2324
2325 /*
2326 * Revoke a message that was previously queued for send
2327 */
2328 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2329 {
2330 mutex_lock(&con->mutex);
2331 if (!list_empty(&msg->list_head)) {
2332 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2333 list_del_init(&msg->list_head);
2334 ceph_msg_put(msg);
2335 msg->hdr.seq = 0;
2336 }
2337 if (con->out_msg == msg) {
2338 dout("con_revoke %p msg %p - was sending\n", con, msg);
2339 con->out_msg = NULL;
2340 if (con->out_kvec_is_msg) {
2341 con->out_skip = con->out_kvec_bytes;
2342 con->out_kvec_is_msg = false;
2343 }
2344 ceph_msg_put(msg);
2345 msg->hdr.seq = 0;
2346 }
2347 mutex_unlock(&con->mutex);
2348 }
2349
2350 /*
2351 * Revoke a message that we may be reading data into
2352 */
2353 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2354 {
2355 mutex_lock(&con->mutex);
2356 if (con->in_msg && con->in_msg == msg) {
2357 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2358 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2359 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2360
2361 /* skip rest of message */
2362 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2363 con->in_base_pos = con->in_base_pos -
2364 sizeof(struct ceph_msg_header) -
2365 front_len -
2366 middle_len -
2367 data_len -
2368 sizeof(struct ceph_msg_footer);
2369 ceph_msg_put(con->in_msg);
2370 con->in_msg = NULL;
2371 con->in_tag = CEPH_MSGR_TAG_READY;
2372 con->in_seq++;
2373 } else {
2374 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2375 con, con->in_msg, msg);
2376 }
2377 mutex_unlock(&con->mutex);
2378 }
2379
2380 /*
2381 * Queue a keepalive byte to ensure the tcp connection is alive.
2382 */
2383 void ceph_con_keepalive(struct ceph_connection *con)
2384 {
2385 dout("con_keepalive %p\n", con);
2386 clear_standby(con);
2387 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2388 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2389 queue_con(con);
2390 }
2391 EXPORT_SYMBOL(ceph_con_keepalive);
2392
2393
2394 /*
2395 * construct a new message with given type, size
2396 * the new msg has a ref count of 1.
2397 */
2398 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2399 bool can_fail)
2400 {
2401 struct ceph_msg *m;
2402
2403 m = kmalloc(sizeof(*m), flags);
2404 if (m == NULL)
2405 goto out;
2406 kref_init(&m->kref);
2407 INIT_LIST_HEAD(&m->list_head);
2408
2409 m->hdr.tid = 0;
2410 m->hdr.type = cpu_to_le16(type);
2411 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2412 m->hdr.version = 0;
2413 m->hdr.front_len = cpu_to_le32(front_len);
2414 m->hdr.middle_len = 0;
2415 m->hdr.data_len = 0;
2416 m->hdr.data_off = 0;
2417 m->hdr.reserved = 0;
2418 m->footer.front_crc = 0;
2419 m->footer.middle_crc = 0;
2420 m->footer.data_crc = 0;
2421 m->footer.flags = 0;
2422 m->front_max = front_len;
2423 m->front_is_vmalloc = false;
2424 m->more_to_follow = false;
2425 m->ack_stamp = 0;
2426 m->pool = NULL;
2427
2428 /* middle */
2429 m->middle = NULL;
2430
2431 /* data */
2432 m->nr_pages = 0;
2433 m->page_alignment = 0;
2434 m->pages = NULL;
2435 m->pagelist = NULL;
2436 m->bio = NULL;
2437 m->bio_iter = NULL;
2438 m->bio_seg = 0;
2439 m->trail = NULL;
2440
2441 /* front */
2442 if (front_len) {
2443 if (front_len > PAGE_CACHE_SIZE) {
2444 m->front.iov_base = __vmalloc(front_len, flags,
2445 PAGE_KERNEL);
2446 m->front_is_vmalloc = true;
2447 } else {
2448 m->front.iov_base = kmalloc(front_len, flags);
2449 }
2450 if (m->front.iov_base == NULL) {
2451 dout("ceph_msg_new can't allocate %d bytes\n",
2452 front_len);
2453 goto out2;
2454 }
2455 } else {
2456 m->front.iov_base = NULL;
2457 }
2458 m->front.iov_len = front_len;
2459
2460 dout("ceph_msg_new %p front %d\n", m, front_len);
2461 return m;
2462
2463 out2:
2464 ceph_msg_put(m);
2465 out:
2466 if (!can_fail) {
2467 pr_err("msg_new can't create type %d front %d\n", type,
2468 front_len);
2469 WARN_ON(1);
2470 } else {
2471 dout("msg_new can't create type %d front %d\n", type,
2472 front_len);
2473 }
2474 return NULL;
2475 }
2476 EXPORT_SYMBOL(ceph_msg_new);
2477
2478 /*
2479 * Allocate "middle" portion of a message, if it is needed and wasn't
2480 * allocated by alloc_msg. This allows us to read a small fixed-size
2481 * per-type header in the front and then gracefully fail (i.e.,
2482 * propagate the error to the caller based on info in the front) when
2483 * the middle is too large.
2484 */
2485 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2486 {
2487 int type = le16_to_cpu(msg->hdr.type);
2488 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2489
2490 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2491 ceph_msg_type_name(type), middle_len);
2492 BUG_ON(!middle_len);
2493 BUG_ON(msg->middle);
2494
2495 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2496 if (!msg->middle)
2497 return -ENOMEM;
2498 return 0;
2499 }
2500
2501 /*
2502 * Generic message allocator, for incoming messages.
2503 */
2504 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2505 struct ceph_msg_header *hdr,
2506 int *skip)
2507 {
2508 int type = le16_to_cpu(hdr->type);
2509 int front_len = le32_to_cpu(hdr->front_len);
2510 int middle_len = le32_to_cpu(hdr->middle_len);
2511 struct ceph_msg *msg = NULL;
2512 int ret;
2513
2514 if (con->ops->alloc_msg) {
2515 mutex_unlock(&con->mutex);
2516 msg = con->ops->alloc_msg(con, hdr, skip);
2517 mutex_lock(&con->mutex);
2518 if (!msg || *skip)
2519 return NULL;
2520 }
2521 if (!msg) {
2522 *skip = 0;
2523 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2524 if (!msg) {
2525 pr_err("unable to allocate msg type %d len %d\n",
2526 type, front_len);
2527 return NULL;
2528 }
2529 msg->page_alignment = le16_to_cpu(hdr->data_off);
2530 }
2531 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2532
2533 if (middle_len && !msg->middle) {
2534 ret = ceph_alloc_middle(con, msg);
2535 if (ret < 0) {
2536 ceph_msg_put(msg);
2537 return NULL;
2538 }
2539 }
2540
2541 return msg;
2542 }
2543
2544
2545 /*
2546 * Free a generically kmalloc'd message.
2547 */
2548 void ceph_msg_kfree(struct ceph_msg *m)
2549 {
2550 dout("msg_kfree %p\n", m);
2551 if (m->front_is_vmalloc)
2552 vfree(m->front.iov_base);
2553 else
2554 kfree(m->front.iov_base);
2555 kfree(m);
2556 }
2557
2558 /*
2559 * Drop a msg ref. Destroy as needed.
2560 */
2561 void ceph_msg_last_put(struct kref *kref)
2562 {
2563 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2564
2565 dout("ceph_msg_put last one on %p\n", m);
2566 WARN_ON(!list_empty(&m->list_head));
2567
2568 /* drop middle, data, if any */
2569 if (m->middle) {
2570 ceph_buffer_put(m->middle);
2571 m->middle = NULL;
2572 }
2573 m->nr_pages = 0;
2574 m->pages = NULL;
2575
2576 if (m->pagelist) {
2577 ceph_pagelist_release(m->pagelist);
2578 kfree(m->pagelist);
2579 m->pagelist = NULL;
2580 }
2581
2582 m->trail = NULL;
2583
2584 if (m->pool)
2585 ceph_msgpool_put(m->pool, m);
2586 else
2587 ceph_msg_kfree(m);
2588 }
2589 EXPORT_SYMBOL(ceph_msg_last_put);
2590
2591 void ceph_msg_dump(struct ceph_msg *msg)
2592 {
2593 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2594 msg->front_max, msg->nr_pages);
2595 print_hex_dump(KERN_DEBUG, "header: ",
2596 DUMP_PREFIX_OFFSET, 16, 1,
2597 &msg->hdr, sizeof(msg->hdr), true);
2598 print_hex_dump(KERN_DEBUG, " front: ",
2599 DUMP_PREFIX_OFFSET, 16, 1,
2600 msg->front.iov_base, msg->front.iov_len, true);
2601 if (msg->middle)
2602 print_hex_dump(KERN_DEBUG, "middle: ",
2603 DUMP_PREFIX_OFFSET, 16, 1,
2604 msg->middle->vec.iov_base,
2605 msg->middle->vec.iov_len, true);
2606 print_hex_dump(KERN_DEBUG, "footer: ",
2607 DUMP_PREFIX_OFFSET, 16, 1,
2608 &msg->footer, sizeof(msg->footer), true);
2609 }
2610 EXPORT_SYMBOL(ceph_msg_dump);