]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/ceph/messenger.c
libceph: check authorizer reply/challenge length before reading
[mirror_ubuntu-bionic-kernel.git] / net / ceph / messenger.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
3
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
9 #include <linux/net.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
15 #ifdef CONFIG_BLOCK
16 #include <linux/bio.h>
17 #endif /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
19 #include <net/tcp.h>
20
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
27
28 /*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37 /*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85 /*
86 * connection states
87 */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
94
95 /*
96 * ceph_connection flag bits
97 */
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
116 }
117 }
118
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 BUG_ON(!con_flag_valid(con_flag));
122
123 clear_bit(con_flag, &con->flags);
124 }
125
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 BUG_ON(!con_flag_valid(con_flag));
129
130 set_bit(con_flag, &con->flags);
131 }
132
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 BUG_ON(!con_flag_valid(con_flag));
136
137 return test_bit(con_flag, &con->flags);
138 }
139
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
142 {
143 BUG_ON(!con_flag_valid(con_flag));
144
145 return test_and_clear_bit(con_flag, &con->flags);
146 }
147
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
150 {
151 BUG_ON(!con_flag_valid(con_flag));
152
153 return test_and_set_bit(con_flag, &con->flags);
154 }
155
156 /* Slab caches for frequently-allocated structures */
157
158 static struct kmem_cache *ceph_msg_cache;
159 static struct kmem_cache *ceph_msg_data_cache;
160
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165 static char tag_keepalive2 = CEPH_MSGR_TAG_KEEPALIVE2;
166
167 #ifdef CONFIG_LOCKDEP
168 static struct lock_class_key socket_class;
169 #endif
170
171 /*
172 * When skipping (ignoring) a block of input we read it into a "skip
173 * buffer," which is this many bytes in size.
174 */
175 #define SKIP_BUF_SIZE 1024
176
177 static void queue_con(struct ceph_connection *con);
178 static void cancel_con(struct ceph_connection *con);
179 static void ceph_con_workfn(struct work_struct *);
180 static void con_fault(struct ceph_connection *con);
181
182 /*
183 * Nicely render a sockaddr as a string. An array of formatted
184 * strings is used, to approximate reentrancy.
185 */
186 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
187 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
188 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
189 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
190
191 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
192 static atomic_t addr_str_seq = ATOMIC_INIT(0);
193
194 static struct page *zero_page; /* used in certain error cases */
195
196 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
197 {
198 int i;
199 char *s;
200 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
201 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
202
203 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
204 s = addr_str[i];
205
206 switch (ss->ss_family) {
207 case AF_INET:
208 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
209 ntohs(in4->sin_port));
210 break;
211
212 case AF_INET6:
213 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
214 ntohs(in6->sin6_port));
215 break;
216
217 default:
218 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
219 ss->ss_family);
220 }
221
222 return s;
223 }
224 EXPORT_SYMBOL(ceph_pr_addr);
225
226 static void encode_my_addr(struct ceph_messenger *msgr)
227 {
228 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
229 ceph_encode_addr(&msgr->my_enc_addr);
230 }
231
232 /*
233 * work queue for all reading and writing to/from the socket.
234 */
235 static struct workqueue_struct *ceph_msgr_wq;
236
237 static int ceph_msgr_slab_init(void)
238 {
239 BUG_ON(ceph_msg_cache);
240 ceph_msg_cache = KMEM_CACHE(ceph_msg, 0);
241 if (!ceph_msg_cache)
242 return -ENOMEM;
243
244 BUG_ON(ceph_msg_data_cache);
245 ceph_msg_data_cache = KMEM_CACHE(ceph_msg_data, 0);
246 if (ceph_msg_data_cache)
247 return 0;
248
249 kmem_cache_destroy(ceph_msg_cache);
250 ceph_msg_cache = NULL;
251
252 return -ENOMEM;
253 }
254
255 static void ceph_msgr_slab_exit(void)
256 {
257 BUG_ON(!ceph_msg_data_cache);
258 kmem_cache_destroy(ceph_msg_data_cache);
259 ceph_msg_data_cache = NULL;
260
261 BUG_ON(!ceph_msg_cache);
262 kmem_cache_destroy(ceph_msg_cache);
263 ceph_msg_cache = NULL;
264 }
265
266 static void _ceph_msgr_exit(void)
267 {
268 if (ceph_msgr_wq) {
269 destroy_workqueue(ceph_msgr_wq);
270 ceph_msgr_wq = NULL;
271 }
272
273 BUG_ON(zero_page == NULL);
274 put_page(zero_page);
275 zero_page = NULL;
276
277 ceph_msgr_slab_exit();
278 }
279
280 int ceph_msgr_init(void)
281 {
282 if (ceph_msgr_slab_init())
283 return -ENOMEM;
284
285 BUG_ON(zero_page != NULL);
286 zero_page = ZERO_PAGE(0);
287 get_page(zero_page);
288
289 /*
290 * The number of active work items is limited by the number of
291 * connections, so leave @max_active at default.
292 */
293 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM, 0);
294 if (ceph_msgr_wq)
295 return 0;
296
297 pr_err("msgr_init failed to create workqueue\n");
298 _ceph_msgr_exit();
299
300 return -ENOMEM;
301 }
302 EXPORT_SYMBOL(ceph_msgr_init);
303
304 void ceph_msgr_exit(void)
305 {
306 BUG_ON(ceph_msgr_wq == NULL);
307
308 _ceph_msgr_exit();
309 }
310 EXPORT_SYMBOL(ceph_msgr_exit);
311
312 void ceph_msgr_flush(void)
313 {
314 flush_workqueue(ceph_msgr_wq);
315 }
316 EXPORT_SYMBOL(ceph_msgr_flush);
317
318 /* Connection socket state transition functions */
319
320 static void con_sock_state_init(struct ceph_connection *con)
321 {
322 int old_state;
323
324 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
325 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
326 printk("%s: unexpected old state %d\n", __func__, old_state);
327 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
328 CON_SOCK_STATE_CLOSED);
329 }
330
331 static void con_sock_state_connecting(struct ceph_connection *con)
332 {
333 int old_state;
334
335 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
336 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
337 printk("%s: unexpected old state %d\n", __func__, old_state);
338 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
339 CON_SOCK_STATE_CONNECTING);
340 }
341
342 static void con_sock_state_connected(struct ceph_connection *con)
343 {
344 int old_state;
345
346 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
347 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
348 printk("%s: unexpected old state %d\n", __func__, old_state);
349 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
350 CON_SOCK_STATE_CONNECTED);
351 }
352
353 static void con_sock_state_closing(struct ceph_connection *con)
354 {
355 int old_state;
356
357 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
358 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
359 old_state != CON_SOCK_STATE_CONNECTED &&
360 old_state != CON_SOCK_STATE_CLOSING))
361 printk("%s: unexpected old state %d\n", __func__, old_state);
362 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
363 CON_SOCK_STATE_CLOSING);
364 }
365
366 static void con_sock_state_closed(struct ceph_connection *con)
367 {
368 int old_state;
369
370 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
371 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
372 old_state != CON_SOCK_STATE_CLOSING &&
373 old_state != CON_SOCK_STATE_CONNECTING &&
374 old_state != CON_SOCK_STATE_CLOSED))
375 printk("%s: unexpected old state %d\n", __func__, old_state);
376 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
377 CON_SOCK_STATE_CLOSED);
378 }
379
380 /*
381 * socket callback functions
382 */
383
384 /* data available on socket, or listen socket received a connect */
385 static void ceph_sock_data_ready(struct sock *sk)
386 {
387 struct ceph_connection *con = sk->sk_user_data;
388 if (atomic_read(&con->msgr->stopping)) {
389 return;
390 }
391
392 if (sk->sk_state != TCP_CLOSE_WAIT) {
393 dout("%s on %p state = %lu, queueing work\n", __func__,
394 con, con->state);
395 queue_con(con);
396 }
397 }
398
399 /* socket has buffer space for writing */
400 static void ceph_sock_write_space(struct sock *sk)
401 {
402 struct ceph_connection *con = sk->sk_user_data;
403
404 /* only queue to workqueue if there is data we want to write,
405 * and there is sufficient space in the socket buffer to accept
406 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
407 * doesn't get called again until try_write() fills the socket
408 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
409 * and net/core/stream.c:sk_stream_write_space().
410 */
411 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
412 if (sk_stream_is_writeable(sk)) {
413 dout("%s %p queueing write work\n", __func__, con);
414 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
415 queue_con(con);
416 }
417 } else {
418 dout("%s %p nothing to write\n", __func__, con);
419 }
420 }
421
422 /* socket's state has changed */
423 static void ceph_sock_state_change(struct sock *sk)
424 {
425 struct ceph_connection *con = sk->sk_user_data;
426
427 dout("%s %p state = %lu sk_state = %u\n", __func__,
428 con, con->state, sk->sk_state);
429
430 switch (sk->sk_state) {
431 case TCP_CLOSE:
432 dout("%s TCP_CLOSE\n", __func__);
433 /* fall through */
434 case TCP_CLOSE_WAIT:
435 dout("%s TCP_CLOSE_WAIT\n", __func__);
436 con_sock_state_closing(con);
437 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
438 queue_con(con);
439 break;
440 case TCP_ESTABLISHED:
441 dout("%s TCP_ESTABLISHED\n", __func__);
442 con_sock_state_connected(con);
443 queue_con(con);
444 break;
445 default: /* Everything else is uninteresting */
446 break;
447 }
448 }
449
450 /*
451 * set up socket callbacks
452 */
453 static void set_sock_callbacks(struct socket *sock,
454 struct ceph_connection *con)
455 {
456 struct sock *sk = sock->sk;
457 sk->sk_user_data = con;
458 sk->sk_data_ready = ceph_sock_data_ready;
459 sk->sk_write_space = ceph_sock_write_space;
460 sk->sk_state_change = ceph_sock_state_change;
461 }
462
463
464 /*
465 * socket helpers
466 */
467
468 /*
469 * initiate connection to a remote socket.
470 */
471 static int ceph_tcp_connect(struct ceph_connection *con)
472 {
473 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
474 struct socket *sock;
475 unsigned int noio_flag;
476 int ret;
477
478 BUG_ON(con->sock);
479
480 /* sock_create_kern() allocates with GFP_KERNEL */
481 noio_flag = memalloc_noio_save();
482 ret = sock_create_kern(read_pnet(&con->msgr->net), paddr->ss_family,
483 SOCK_STREAM, IPPROTO_TCP, &sock);
484 memalloc_noio_restore(noio_flag);
485 if (ret)
486 return ret;
487 sock->sk->sk_allocation = GFP_NOFS;
488
489 #ifdef CONFIG_LOCKDEP
490 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
491 #endif
492
493 set_sock_callbacks(sock, con);
494
495 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
496
497 con_sock_state_connecting(con);
498 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
499 O_NONBLOCK);
500 if (ret == -EINPROGRESS) {
501 dout("connect %s EINPROGRESS sk_state = %u\n",
502 ceph_pr_addr(&con->peer_addr.in_addr),
503 sock->sk->sk_state);
504 } else if (ret < 0) {
505 pr_err("connect %s error %d\n",
506 ceph_pr_addr(&con->peer_addr.in_addr), ret);
507 sock_release(sock);
508 return ret;
509 }
510
511 if (ceph_test_opt(from_msgr(con->msgr), TCP_NODELAY)) {
512 int optval = 1;
513
514 ret = kernel_setsockopt(sock, SOL_TCP, TCP_NODELAY,
515 (char *)&optval, sizeof(optval));
516 if (ret)
517 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
518 ret);
519 }
520
521 con->sock = sock;
522 return 0;
523 }
524
525 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
526 {
527 struct kvec iov = {buf, len};
528 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
529 int r;
530
531 iov_iter_kvec(&msg.msg_iter, READ | ITER_KVEC, &iov, 1, len);
532 r = sock_recvmsg(sock, &msg, msg.msg_flags);
533 if (r == -EAGAIN)
534 r = 0;
535 return r;
536 }
537
538 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
539 int page_offset, size_t length)
540 {
541 struct bio_vec bvec = {
542 .bv_page = page,
543 .bv_offset = page_offset,
544 .bv_len = length
545 };
546 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
547 int r;
548
549 BUG_ON(page_offset + length > PAGE_SIZE);
550 iov_iter_bvec(&msg.msg_iter, READ | ITER_BVEC, &bvec, 1, length);
551 r = sock_recvmsg(sock, &msg, msg.msg_flags);
552 if (r == -EAGAIN)
553 r = 0;
554 return r;
555 }
556
557 /*
558 * write something. @more is true if caller will be sending more data
559 * shortly.
560 */
561 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
562 size_t kvlen, size_t len, int more)
563 {
564 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
565 int r;
566
567 if (more)
568 msg.msg_flags |= MSG_MORE;
569 else
570 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
571
572 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
573 if (r == -EAGAIN)
574 r = 0;
575 return r;
576 }
577
578 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
579 int offset, size_t size, bool more)
580 {
581 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
582 int ret;
583
584 ret = kernel_sendpage(sock, page, offset, size, flags);
585 if (ret == -EAGAIN)
586 ret = 0;
587
588 return ret;
589 }
590
591 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
592 int offset, size_t size, bool more)
593 {
594 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
595 struct bio_vec bvec;
596 int ret;
597
598 /*
599 * sendpage cannot properly handle pages with page_count == 0,
600 * we need to fall back to sendmsg if that's the case.
601 *
602 * Same goes for slab pages: skb_can_coalesce() allows
603 * coalescing neighboring slab objects into a single frag which
604 * triggers one of hardened usercopy checks.
605 */
606 if (page_count(page) >= 1 && !PageSlab(page))
607 return __ceph_tcp_sendpage(sock, page, offset, size, more);
608
609 bvec.bv_page = page;
610 bvec.bv_offset = offset;
611 bvec.bv_len = size;
612
613 if (more)
614 msg.msg_flags |= MSG_MORE;
615 else
616 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
617
618 iov_iter_bvec(&msg.msg_iter, WRITE | ITER_BVEC, &bvec, 1, size);
619 ret = sock_sendmsg(sock, &msg);
620 if (ret == -EAGAIN)
621 ret = 0;
622
623 return ret;
624 }
625
626 /*
627 * Shutdown/close the socket for the given connection.
628 */
629 static int con_close_socket(struct ceph_connection *con)
630 {
631 int rc = 0;
632
633 dout("con_close_socket on %p sock %p\n", con, con->sock);
634 if (con->sock) {
635 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
636 sock_release(con->sock);
637 con->sock = NULL;
638 }
639
640 /*
641 * Forcibly clear the SOCK_CLOSED flag. It gets set
642 * independent of the connection mutex, and we could have
643 * received a socket close event before we had the chance to
644 * shut the socket down.
645 */
646 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
647
648 con_sock_state_closed(con);
649 return rc;
650 }
651
652 /*
653 * Reset a connection. Discard all incoming and outgoing messages
654 * and clear *_seq state.
655 */
656 static void ceph_msg_remove(struct ceph_msg *msg)
657 {
658 list_del_init(&msg->list_head);
659
660 ceph_msg_put(msg);
661 }
662 static void ceph_msg_remove_list(struct list_head *head)
663 {
664 while (!list_empty(head)) {
665 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
666 list_head);
667 ceph_msg_remove(msg);
668 }
669 }
670
671 static void reset_connection(struct ceph_connection *con)
672 {
673 /* reset connection, out_queue, msg_ and connect_seq */
674 /* discard existing out_queue and msg_seq */
675 dout("reset_connection %p\n", con);
676 ceph_msg_remove_list(&con->out_queue);
677 ceph_msg_remove_list(&con->out_sent);
678
679 if (con->in_msg) {
680 BUG_ON(con->in_msg->con != con);
681 ceph_msg_put(con->in_msg);
682 con->in_msg = NULL;
683 }
684
685 con->connect_seq = 0;
686 con->out_seq = 0;
687 if (con->out_msg) {
688 BUG_ON(con->out_msg->con != con);
689 ceph_msg_put(con->out_msg);
690 con->out_msg = NULL;
691 }
692 con->in_seq = 0;
693 con->in_seq_acked = 0;
694
695 con->out_skip = 0;
696 }
697
698 /*
699 * mark a peer down. drop any open connections.
700 */
701 void ceph_con_close(struct ceph_connection *con)
702 {
703 mutex_lock(&con->mutex);
704 dout("con_close %p peer %s\n", con,
705 ceph_pr_addr(&con->peer_addr.in_addr));
706 con->state = CON_STATE_CLOSED;
707
708 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
709 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
710 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
711 con_flag_clear(con, CON_FLAG_BACKOFF);
712
713 reset_connection(con);
714 con->peer_global_seq = 0;
715 cancel_con(con);
716 con_close_socket(con);
717 mutex_unlock(&con->mutex);
718 }
719 EXPORT_SYMBOL(ceph_con_close);
720
721 /*
722 * Reopen a closed connection, with a new peer address.
723 */
724 void ceph_con_open(struct ceph_connection *con,
725 __u8 entity_type, __u64 entity_num,
726 struct ceph_entity_addr *addr)
727 {
728 mutex_lock(&con->mutex);
729 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
730
731 WARN_ON(con->state != CON_STATE_CLOSED);
732 con->state = CON_STATE_PREOPEN;
733
734 con->peer_name.type = (__u8) entity_type;
735 con->peer_name.num = cpu_to_le64(entity_num);
736
737 memcpy(&con->peer_addr, addr, sizeof(*addr));
738 con->delay = 0; /* reset backoff memory */
739 mutex_unlock(&con->mutex);
740 queue_con(con);
741 }
742 EXPORT_SYMBOL(ceph_con_open);
743
744 /*
745 * return true if this connection ever successfully opened
746 */
747 bool ceph_con_opened(struct ceph_connection *con)
748 {
749 return con->connect_seq > 0;
750 }
751
752 /*
753 * initialize a new connection.
754 */
755 void ceph_con_init(struct ceph_connection *con, void *private,
756 const struct ceph_connection_operations *ops,
757 struct ceph_messenger *msgr)
758 {
759 dout("con_init %p\n", con);
760 memset(con, 0, sizeof(*con));
761 con->private = private;
762 con->ops = ops;
763 con->msgr = msgr;
764
765 con_sock_state_init(con);
766
767 mutex_init(&con->mutex);
768 INIT_LIST_HEAD(&con->out_queue);
769 INIT_LIST_HEAD(&con->out_sent);
770 INIT_DELAYED_WORK(&con->work, ceph_con_workfn);
771
772 con->state = CON_STATE_CLOSED;
773 }
774 EXPORT_SYMBOL(ceph_con_init);
775
776
777 /*
778 * We maintain a global counter to order connection attempts. Get
779 * a unique seq greater than @gt.
780 */
781 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
782 {
783 u32 ret;
784
785 spin_lock(&msgr->global_seq_lock);
786 if (msgr->global_seq < gt)
787 msgr->global_seq = gt;
788 ret = ++msgr->global_seq;
789 spin_unlock(&msgr->global_seq_lock);
790 return ret;
791 }
792
793 static void con_out_kvec_reset(struct ceph_connection *con)
794 {
795 BUG_ON(con->out_skip);
796
797 con->out_kvec_left = 0;
798 con->out_kvec_bytes = 0;
799 con->out_kvec_cur = &con->out_kvec[0];
800 }
801
802 static void con_out_kvec_add(struct ceph_connection *con,
803 size_t size, void *data)
804 {
805 int index = con->out_kvec_left;
806
807 BUG_ON(con->out_skip);
808 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
809
810 con->out_kvec[index].iov_len = size;
811 con->out_kvec[index].iov_base = data;
812 con->out_kvec_left++;
813 con->out_kvec_bytes += size;
814 }
815
816 /*
817 * Chop off a kvec from the end. Return residual number of bytes for
818 * that kvec, i.e. how many bytes would have been written if the kvec
819 * hadn't been nuked.
820 */
821 static int con_out_kvec_skip(struct ceph_connection *con)
822 {
823 int off = con->out_kvec_cur - con->out_kvec;
824 int skip = 0;
825
826 if (con->out_kvec_bytes > 0) {
827 skip = con->out_kvec[off + con->out_kvec_left - 1].iov_len;
828 BUG_ON(con->out_kvec_bytes < skip);
829 BUG_ON(!con->out_kvec_left);
830 con->out_kvec_bytes -= skip;
831 con->out_kvec_left--;
832 }
833
834 return skip;
835 }
836
837 #ifdef CONFIG_BLOCK
838
839 /*
840 * For a bio data item, a piece is whatever remains of the next
841 * entry in the current bio iovec, or the first entry in the next
842 * bio in the list.
843 */
844 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
845 size_t length)
846 {
847 struct ceph_msg_data *data = cursor->data;
848 struct bio *bio;
849
850 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
851
852 bio = data->bio;
853 BUG_ON(!bio);
854
855 cursor->resid = min(length, data->bio_length);
856 cursor->bio = bio;
857 cursor->bvec_iter = bio->bi_iter;
858 cursor->last_piece =
859 cursor->resid <= bio_iter_len(bio, cursor->bvec_iter);
860 }
861
862 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
863 size_t *page_offset,
864 size_t *length)
865 {
866 struct ceph_msg_data *data = cursor->data;
867 struct bio *bio;
868 struct bio_vec bio_vec;
869
870 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
871
872 bio = cursor->bio;
873 BUG_ON(!bio);
874
875 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
876
877 *page_offset = (size_t) bio_vec.bv_offset;
878 BUG_ON(*page_offset >= PAGE_SIZE);
879 if (cursor->last_piece) /* pagelist offset is always 0 */
880 *length = cursor->resid;
881 else
882 *length = (size_t) bio_vec.bv_len;
883 BUG_ON(*length > cursor->resid);
884 BUG_ON(*page_offset + *length > PAGE_SIZE);
885
886 return bio_vec.bv_page;
887 }
888
889 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
890 size_t bytes)
891 {
892 struct bio *bio;
893 struct bio_vec bio_vec;
894
895 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
896
897 bio = cursor->bio;
898 BUG_ON(!bio);
899
900 bio_vec = bio_iter_iovec(bio, cursor->bvec_iter);
901
902 /* Advance the cursor offset */
903
904 BUG_ON(cursor->resid < bytes);
905 cursor->resid -= bytes;
906
907 bio_advance_iter(bio, &cursor->bvec_iter, bytes);
908
909 if (bytes < bio_vec.bv_len)
910 return false; /* more bytes to process in this segment */
911
912 /* Move on to the next segment, and possibly the next bio */
913
914 if (!cursor->bvec_iter.bi_size) {
915 bio = bio->bi_next;
916 cursor->bio = bio;
917 if (bio)
918 cursor->bvec_iter = bio->bi_iter;
919 else
920 memset(&cursor->bvec_iter, 0,
921 sizeof(cursor->bvec_iter));
922 }
923
924 if (!cursor->last_piece) {
925 BUG_ON(!cursor->resid);
926 BUG_ON(!bio);
927 /* A short read is OK, so use <= rather than == */
928 if (cursor->resid <= bio_iter_len(bio, cursor->bvec_iter))
929 cursor->last_piece = true;
930 }
931
932 return true;
933 }
934 #endif /* CONFIG_BLOCK */
935
936 /*
937 * For a page array, a piece comes from the first page in the array
938 * that has not already been fully consumed.
939 */
940 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
941 size_t length)
942 {
943 struct ceph_msg_data *data = cursor->data;
944 int page_count;
945
946 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
947
948 BUG_ON(!data->pages);
949 BUG_ON(!data->length);
950
951 cursor->resid = min(length, data->length);
952 page_count = calc_pages_for(data->alignment, (u64)data->length);
953 cursor->page_offset = data->alignment & ~PAGE_MASK;
954 cursor->page_index = 0;
955 BUG_ON(page_count > (int)USHRT_MAX);
956 cursor->page_count = (unsigned short)page_count;
957 BUG_ON(length > SIZE_MAX - cursor->page_offset);
958 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
959 }
960
961 static struct page *
962 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
963 size_t *page_offset, size_t *length)
964 {
965 struct ceph_msg_data *data = cursor->data;
966
967 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
968
969 BUG_ON(cursor->page_index >= cursor->page_count);
970 BUG_ON(cursor->page_offset >= PAGE_SIZE);
971
972 *page_offset = cursor->page_offset;
973 if (cursor->last_piece)
974 *length = cursor->resid;
975 else
976 *length = PAGE_SIZE - *page_offset;
977
978 return data->pages[cursor->page_index];
979 }
980
981 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
982 size_t bytes)
983 {
984 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
985
986 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
987
988 /* Advance the cursor page offset */
989
990 cursor->resid -= bytes;
991 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
992 if (!bytes || cursor->page_offset)
993 return false; /* more bytes to process in the current page */
994
995 if (!cursor->resid)
996 return false; /* no more data */
997
998 /* Move on to the next page; offset is already at 0 */
999
1000 BUG_ON(cursor->page_index >= cursor->page_count);
1001 cursor->page_index++;
1002 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1003
1004 return true;
1005 }
1006
1007 /*
1008 * For a pagelist, a piece is whatever remains to be consumed in the
1009 * first page in the list, or the front of the next page.
1010 */
1011 static void
1012 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
1013 size_t length)
1014 {
1015 struct ceph_msg_data *data = cursor->data;
1016 struct ceph_pagelist *pagelist;
1017 struct page *page;
1018
1019 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1020
1021 pagelist = data->pagelist;
1022 BUG_ON(!pagelist);
1023
1024 if (!length)
1025 return; /* pagelist can be assigned but empty */
1026
1027 BUG_ON(list_empty(&pagelist->head));
1028 page = list_first_entry(&pagelist->head, struct page, lru);
1029
1030 cursor->resid = min(length, pagelist->length);
1031 cursor->page = page;
1032 cursor->offset = 0;
1033 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1034 }
1035
1036 static struct page *
1037 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
1038 size_t *page_offset, size_t *length)
1039 {
1040 struct ceph_msg_data *data = cursor->data;
1041 struct ceph_pagelist *pagelist;
1042
1043 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1044
1045 pagelist = data->pagelist;
1046 BUG_ON(!pagelist);
1047
1048 BUG_ON(!cursor->page);
1049 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1050
1051 /* offset of first page in pagelist is always 0 */
1052 *page_offset = cursor->offset & ~PAGE_MASK;
1053 if (cursor->last_piece)
1054 *length = cursor->resid;
1055 else
1056 *length = PAGE_SIZE - *page_offset;
1057
1058 return cursor->page;
1059 }
1060
1061 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1062 size_t bytes)
1063 {
1064 struct ceph_msg_data *data = cursor->data;
1065 struct ceph_pagelist *pagelist;
1066
1067 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1068
1069 pagelist = data->pagelist;
1070 BUG_ON(!pagelist);
1071
1072 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1073 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1074
1075 /* Advance the cursor offset */
1076
1077 cursor->resid -= bytes;
1078 cursor->offset += bytes;
1079 /* offset of first page in pagelist is always 0 */
1080 if (!bytes || cursor->offset & ~PAGE_MASK)
1081 return false; /* more bytes to process in the current page */
1082
1083 if (!cursor->resid)
1084 return false; /* no more data */
1085
1086 /* Move on to the next page */
1087
1088 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1089 cursor->page = list_next_entry(cursor->page, lru);
1090 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1091
1092 return true;
1093 }
1094
1095 /*
1096 * Message data is handled (sent or received) in pieces, where each
1097 * piece resides on a single page. The network layer might not
1098 * consume an entire piece at once. A data item's cursor keeps
1099 * track of which piece is next to process and how much remains to
1100 * be processed in that piece. It also tracks whether the current
1101 * piece is the last one in the data item.
1102 */
1103 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1104 {
1105 size_t length = cursor->total_resid;
1106
1107 switch (cursor->data->type) {
1108 case CEPH_MSG_DATA_PAGELIST:
1109 ceph_msg_data_pagelist_cursor_init(cursor, length);
1110 break;
1111 case CEPH_MSG_DATA_PAGES:
1112 ceph_msg_data_pages_cursor_init(cursor, length);
1113 break;
1114 #ifdef CONFIG_BLOCK
1115 case CEPH_MSG_DATA_BIO:
1116 ceph_msg_data_bio_cursor_init(cursor, length);
1117 break;
1118 #endif /* CONFIG_BLOCK */
1119 case CEPH_MSG_DATA_NONE:
1120 default:
1121 /* BUG(); */
1122 break;
1123 }
1124 cursor->need_crc = true;
1125 }
1126
1127 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1128 {
1129 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1130 struct ceph_msg_data *data;
1131
1132 BUG_ON(!length);
1133 BUG_ON(length > msg->data_length);
1134 BUG_ON(list_empty(&msg->data));
1135
1136 cursor->data_head = &msg->data;
1137 cursor->total_resid = length;
1138 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1139 cursor->data = data;
1140
1141 __ceph_msg_data_cursor_init(cursor);
1142 }
1143
1144 /*
1145 * Return the page containing the next piece to process for a given
1146 * data item, and supply the page offset and length of that piece.
1147 * Indicate whether this is the last piece in this data item.
1148 */
1149 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1150 size_t *page_offset, size_t *length,
1151 bool *last_piece)
1152 {
1153 struct page *page;
1154
1155 switch (cursor->data->type) {
1156 case CEPH_MSG_DATA_PAGELIST:
1157 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1158 break;
1159 case CEPH_MSG_DATA_PAGES:
1160 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1161 break;
1162 #ifdef CONFIG_BLOCK
1163 case CEPH_MSG_DATA_BIO:
1164 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1165 break;
1166 #endif /* CONFIG_BLOCK */
1167 case CEPH_MSG_DATA_NONE:
1168 default:
1169 page = NULL;
1170 break;
1171 }
1172 BUG_ON(!page);
1173 BUG_ON(*page_offset + *length > PAGE_SIZE);
1174 BUG_ON(!*length);
1175 if (last_piece)
1176 *last_piece = cursor->last_piece;
1177
1178 return page;
1179 }
1180
1181 /*
1182 * Returns true if the result moves the cursor on to the next piece
1183 * of the data item.
1184 */
1185 static void ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1186 size_t bytes)
1187 {
1188 bool new_piece;
1189
1190 BUG_ON(bytes > cursor->resid);
1191 switch (cursor->data->type) {
1192 case CEPH_MSG_DATA_PAGELIST:
1193 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1194 break;
1195 case CEPH_MSG_DATA_PAGES:
1196 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1197 break;
1198 #ifdef CONFIG_BLOCK
1199 case CEPH_MSG_DATA_BIO:
1200 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1201 break;
1202 #endif /* CONFIG_BLOCK */
1203 case CEPH_MSG_DATA_NONE:
1204 default:
1205 BUG();
1206 break;
1207 }
1208 cursor->total_resid -= bytes;
1209
1210 if (!cursor->resid && cursor->total_resid) {
1211 WARN_ON(!cursor->last_piece);
1212 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1213 cursor->data = list_next_entry(cursor->data, links);
1214 __ceph_msg_data_cursor_init(cursor);
1215 new_piece = true;
1216 }
1217 cursor->need_crc = new_piece;
1218 }
1219
1220 static size_t sizeof_footer(struct ceph_connection *con)
1221 {
1222 return (con->peer_features & CEPH_FEATURE_MSG_AUTH) ?
1223 sizeof(struct ceph_msg_footer) :
1224 sizeof(struct ceph_msg_footer_old);
1225 }
1226
1227 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1228 {
1229 BUG_ON(!msg);
1230 BUG_ON(!data_len);
1231
1232 /* Initialize data cursor */
1233
1234 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1235 }
1236
1237 /*
1238 * Prepare footer for currently outgoing message, and finish things
1239 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1240 */
1241 static void prepare_write_message_footer(struct ceph_connection *con)
1242 {
1243 struct ceph_msg *m = con->out_msg;
1244
1245 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1246
1247 dout("prepare_write_message_footer %p\n", con);
1248 con_out_kvec_add(con, sizeof_footer(con), &m->footer);
1249 if (con->peer_features & CEPH_FEATURE_MSG_AUTH) {
1250 if (con->ops->sign_message)
1251 con->ops->sign_message(m);
1252 else
1253 m->footer.sig = 0;
1254 } else {
1255 m->old_footer.flags = m->footer.flags;
1256 }
1257 con->out_more = m->more_to_follow;
1258 con->out_msg_done = true;
1259 }
1260
1261 /*
1262 * Prepare headers for the next outgoing message.
1263 */
1264 static void prepare_write_message(struct ceph_connection *con)
1265 {
1266 struct ceph_msg *m;
1267 u32 crc;
1268
1269 con_out_kvec_reset(con);
1270 con->out_msg_done = false;
1271
1272 /* Sneak an ack in there first? If we can get it into the same
1273 * TCP packet that's a good thing. */
1274 if (con->in_seq > con->in_seq_acked) {
1275 con->in_seq_acked = con->in_seq;
1276 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1277 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1278 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1279 &con->out_temp_ack);
1280 }
1281
1282 BUG_ON(list_empty(&con->out_queue));
1283 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1284 con->out_msg = m;
1285 BUG_ON(m->con != con);
1286
1287 /* put message on sent list */
1288 ceph_msg_get(m);
1289 list_move_tail(&m->list_head, &con->out_sent);
1290
1291 /*
1292 * only assign outgoing seq # if we haven't sent this message
1293 * yet. if it is requeued, resend with it's original seq.
1294 */
1295 if (m->needs_out_seq) {
1296 m->hdr.seq = cpu_to_le64(++con->out_seq);
1297 m->needs_out_seq = false;
1298
1299 if (con->ops->reencode_message)
1300 con->ops->reencode_message(m);
1301 }
1302
1303 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1304 m, con->out_seq, le16_to_cpu(m->hdr.type),
1305 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1306 m->data_length);
1307 WARN_ON(m->front.iov_len != le32_to_cpu(m->hdr.front_len));
1308 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1309
1310 /* tag + hdr + front + middle */
1311 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1312 con_out_kvec_add(con, sizeof(con->out_hdr), &con->out_hdr);
1313 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1314
1315 if (m->middle)
1316 con_out_kvec_add(con, m->middle->vec.iov_len,
1317 m->middle->vec.iov_base);
1318
1319 /* fill in hdr crc and finalize hdr */
1320 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1321 con->out_msg->hdr.crc = cpu_to_le32(crc);
1322 memcpy(&con->out_hdr, &con->out_msg->hdr, sizeof(con->out_hdr));
1323
1324 /* fill in front and middle crc, footer */
1325 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1326 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1327 if (m->middle) {
1328 crc = crc32c(0, m->middle->vec.iov_base,
1329 m->middle->vec.iov_len);
1330 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1331 } else
1332 con->out_msg->footer.middle_crc = 0;
1333 dout("%s front_crc %u middle_crc %u\n", __func__,
1334 le32_to_cpu(con->out_msg->footer.front_crc),
1335 le32_to_cpu(con->out_msg->footer.middle_crc));
1336 con->out_msg->footer.flags = 0;
1337
1338 /* is there a data payload? */
1339 con->out_msg->footer.data_crc = 0;
1340 if (m->data_length) {
1341 prepare_message_data(con->out_msg, m->data_length);
1342 con->out_more = 1; /* data + footer will follow */
1343 } else {
1344 /* no, queue up footer too and be done */
1345 prepare_write_message_footer(con);
1346 }
1347
1348 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1349 }
1350
1351 /*
1352 * Prepare an ack.
1353 */
1354 static void prepare_write_ack(struct ceph_connection *con)
1355 {
1356 dout("prepare_write_ack %p %llu -> %llu\n", con,
1357 con->in_seq_acked, con->in_seq);
1358 con->in_seq_acked = con->in_seq;
1359
1360 con_out_kvec_reset(con);
1361
1362 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1363
1364 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1365 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1366 &con->out_temp_ack);
1367
1368 con->out_more = 1; /* more will follow.. eventually.. */
1369 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1370 }
1371
1372 /*
1373 * Prepare to share the seq during handshake
1374 */
1375 static void prepare_write_seq(struct ceph_connection *con)
1376 {
1377 dout("prepare_write_seq %p %llu -> %llu\n", con,
1378 con->in_seq_acked, con->in_seq);
1379 con->in_seq_acked = con->in_seq;
1380
1381 con_out_kvec_reset(con);
1382
1383 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1384 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1385 &con->out_temp_ack);
1386
1387 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1388 }
1389
1390 /*
1391 * Prepare to write keepalive byte.
1392 */
1393 static void prepare_write_keepalive(struct ceph_connection *con)
1394 {
1395 dout("prepare_write_keepalive %p\n", con);
1396 con_out_kvec_reset(con);
1397 if (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2) {
1398 struct timespec now;
1399
1400 ktime_get_real_ts(&now);
1401 con_out_kvec_add(con, sizeof(tag_keepalive2), &tag_keepalive2);
1402 ceph_encode_timespec(&con->out_temp_keepalive2, &now);
1403 con_out_kvec_add(con, sizeof(con->out_temp_keepalive2),
1404 &con->out_temp_keepalive2);
1405 } else {
1406 con_out_kvec_add(con, sizeof(tag_keepalive), &tag_keepalive);
1407 }
1408 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1409 }
1410
1411 /*
1412 * Connection negotiation.
1413 */
1414
1415 static int get_connect_authorizer(struct ceph_connection *con)
1416 {
1417 struct ceph_auth_handshake *auth;
1418 int auth_proto;
1419
1420 if (!con->ops->get_authorizer) {
1421 con->auth = NULL;
1422 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1423 con->out_connect.authorizer_len = 0;
1424 return 0;
1425 }
1426
1427 auth = con->ops->get_authorizer(con, &auth_proto, con->auth_retry);
1428 if (IS_ERR(auth))
1429 return PTR_ERR(auth);
1430
1431 con->auth = auth;
1432 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1433 con->out_connect.authorizer_len = cpu_to_le32(auth->authorizer_buf_len);
1434 return 0;
1435 }
1436
1437 /*
1438 * We connected to a peer and are saying hello.
1439 */
1440 static void prepare_write_banner(struct ceph_connection *con)
1441 {
1442 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1443 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1444 &con->msgr->my_enc_addr);
1445
1446 con->out_more = 0;
1447 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1448 }
1449
1450 static void __prepare_write_connect(struct ceph_connection *con)
1451 {
1452 con_out_kvec_add(con, sizeof(con->out_connect), &con->out_connect);
1453 if (con->auth)
1454 con_out_kvec_add(con, con->auth->authorizer_buf_len,
1455 con->auth->authorizer_buf);
1456
1457 con->out_more = 0;
1458 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1459 }
1460
1461 static int prepare_write_connect(struct ceph_connection *con)
1462 {
1463 unsigned int global_seq = get_global_seq(con->msgr, 0);
1464 int proto;
1465 int ret;
1466
1467 switch (con->peer_name.type) {
1468 case CEPH_ENTITY_TYPE_MON:
1469 proto = CEPH_MONC_PROTOCOL;
1470 break;
1471 case CEPH_ENTITY_TYPE_OSD:
1472 proto = CEPH_OSDC_PROTOCOL;
1473 break;
1474 case CEPH_ENTITY_TYPE_MDS:
1475 proto = CEPH_MDSC_PROTOCOL;
1476 break;
1477 default:
1478 BUG();
1479 }
1480
1481 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1482 con->connect_seq, global_seq, proto);
1483
1484 con->out_connect.features =
1485 cpu_to_le64(from_msgr(con->msgr)->supported_features);
1486 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1487 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1488 con->out_connect.global_seq = cpu_to_le32(global_seq);
1489 con->out_connect.protocol_version = cpu_to_le32(proto);
1490 con->out_connect.flags = 0;
1491
1492 ret = get_connect_authorizer(con);
1493 if (ret)
1494 return ret;
1495
1496 __prepare_write_connect(con);
1497 return 0;
1498 }
1499
1500 /*
1501 * write as much of pending kvecs to the socket as we can.
1502 * 1 -> done
1503 * 0 -> socket full, but more to do
1504 * <0 -> error
1505 */
1506 static int write_partial_kvec(struct ceph_connection *con)
1507 {
1508 int ret;
1509
1510 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1511 while (con->out_kvec_bytes > 0) {
1512 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1513 con->out_kvec_left, con->out_kvec_bytes,
1514 con->out_more);
1515 if (ret <= 0)
1516 goto out;
1517 con->out_kvec_bytes -= ret;
1518 if (con->out_kvec_bytes == 0)
1519 break; /* done */
1520
1521 /* account for full iov entries consumed */
1522 while (ret >= con->out_kvec_cur->iov_len) {
1523 BUG_ON(!con->out_kvec_left);
1524 ret -= con->out_kvec_cur->iov_len;
1525 con->out_kvec_cur++;
1526 con->out_kvec_left--;
1527 }
1528 /* and for a partially-consumed entry */
1529 if (ret) {
1530 con->out_kvec_cur->iov_len -= ret;
1531 con->out_kvec_cur->iov_base += ret;
1532 }
1533 }
1534 con->out_kvec_left = 0;
1535 ret = 1;
1536 out:
1537 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1538 con->out_kvec_bytes, con->out_kvec_left, ret);
1539 return ret; /* done! */
1540 }
1541
1542 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1543 unsigned int page_offset,
1544 unsigned int length)
1545 {
1546 char *kaddr;
1547
1548 kaddr = kmap(page);
1549 BUG_ON(kaddr == NULL);
1550 crc = crc32c(crc, kaddr + page_offset, length);
1551 kunmap(page);
1552
1553 return crc;
1554 }
1555 /*
1556 * Write as much message data payload as we can. If we finish, queue
1557 * up the footer.
1558 * 1 -> done, footer is now queued in out_kvec[].
1559 * 0 -> socket full, but more to do
1560 * <0 -> error
1561 */
1562 static int write_partial_message_data(struct ceph_connection *con)
1563 {
1564 struct ceph_msg *msg = con->out_msg;
1565 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1566 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
1567 u32 crc;
1568
1569 dout("%s %p msg %p\n", __func__, con, msg);
1570
1571 if (list_empty(&msg->data))
1572 return -EINVAL;
1573
1574 /*
1575 * Iterate through each page that contains data to be
1576 * written, and send as much as possible for each.
1577 *
1578 * If we are calculating the data crc (the default), we will
1579 * need to map the page. If we have no pages, they have
1580 * been revoked, so use the zero page.
1581 */
1582 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1583 while (cursor->resid) {
1584 struct page *page;
1585 size_t page_offset;
1586 size_t length;
1587 bool last_piece;
1588 int ret;
1589
1590 page = ceph_msg_data_next(cursor, &page_offset, &length,
1591 &last_piece);
1592 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1593 length, !last_piece);
1594 if (ret <= 0) {
1595 if (do_datacrc)
1596 msg->footer.data_crc = cpu_to_le32(crc);
1597
1598 return ret;
1599 }
1600 if (do_datacrc && cursor->need_crc)
1601 crc = ceph_crc32c_page(crc, page, page_offset, length);
1602 ceph_msg_data_advance(cursor, (size_t)ret);
1603 }
1604
1605 dout("%s %p msg %p done\n", __func__, con, msg);
1606
1607 /* prepare and queue up footer, too */
1608 if (do_datacrc)
1609 msg->footer.data_crc = cpu_to_le32(crc);
1610 else
1611 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1612 con_out_kvec_reset(con);
1613 prepare_write_message_footer(con);
1614
1615 return 1; /* must return > 0 to indicate success */
1616 }
1617
1618 /*
1619 * write some zeros
1620 */
1621 static int write_partial_skip(struct ceph_connection *con)
1622 {
1623 int ret;
1624
1625 dout("%s %p %d left\n", __func__, con, con->out_skip);
1626 while (con->out_skip > 0) {
1627 size_t size = min(con->out_skip, (int) PAGE_SIZE);
1628
1629 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1630 if (ret <= 0)
1631 goto out;
1632 con->out_skip -= ret;
1633 }
1634 ret = 1;
1635 out:
1636 return ret;
1637 }
1638
1639 /*
1640 * Prepare to read connection handshake, or an ack.
1641 */
1642 static void prepare_read_banner(struct ceph_connection *con)
1643 {
1644 dout("prepare_read_banner %p\n", con);
1645 con->in_base_pos = 0;
1646 }
1647
1648 static void prepare_read_connect(struct ceph_connection *con)
1649 {
1650 dout("prepare_read_connect %p\n", con);
1651 con->in_base_pos = 0;
1652 }
1653
1654 static void prepare_read_ack(struct ceph_connection *con)
1655 {
1656 dout("prepare_read_ack %p\n", con);
1657 con->in_base_pos = 0;
1658 }
1659
1660 static void prepare_read_seq(struct ceph_connection *con)
1661 {
1662 dout("prepare_read_seq %p\n", con);
1663 con->in_base_pos = 0;
1664 con->in_tag = CEPH_MSGR_TAG_SEQ;
1665 }
1666
1667 static void prepare_read_tag(struct ceph_connection *con)
1668 {
1669 dout("prepare_read_tag %p\n", con);
1670 con->in_base_pos = 0;
1671 con->in_tag = CEPH_MSGR_TAG_READY;
1672 }
1673
1674 static void prepare_read_keepalive_ack(struct ceph_connection *con)
1675 {
1676 dout("prepare_read_keepalive_ack %p\n", con);
1677 con->in_base_pos = 0;
1678 }
1679
1680 /*
1681 * Prepare to read a message.
1682 */
1683 static int prepare_read_message(struct ceph_connection *con)
1684 {
1685 dout("prepare_read_message %p\n", con);
1686 BUG_ON(con->in_msg != NULL);
1687 con->in_base_pos = 0;
1688 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1689 return 0;
1690 }
1691
1692
1693 static int read_partial(struct ceph_connection *con,
1694 int end, int size, void *object)
1695 {
1696 while (con->in_base_pos < end) {
1697 int left = end - con->in_base_pos;
1698 int have = size - left;
1699 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1700 if (ret <= 0)
1701 return ret;
1702 con->in_base_pos += ret;
1703 }
1704 return 1;
1705 }
1706
1707
1708 /*
1709 * Read all or part of the connect-side handshake on a new connection
1710 */
1711 static int read_partial_banner(struct ceph_connection *con)
1712 {
1713 int size;
1714 int end;
1715 int ret;
1716
1717 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1718
1719 /* peer's banner */
1720 size = strlen(CEPH_BANNER);
1721 end = size;
1722 ret = read_partial(con, end, size, con->in_banner);
1723 if (ret <= 0)
1724 goto out;
1725
1726 size = sizeof (con->actual_peer_addr);
1727 end += size;
1728 ret = read_partial(con, end, size, &con->actual_peer_addr);
1729 if (ret <= 0)
1730 goto out;
1731
1732 size = sizeof (con->peer_addr_for_me);
1733 end += size;
1734 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1735 if (ret <= 0)
1736 goto out;
1737
1738 out:
1739 return ret;
1740 }
1741
1742 static int read_partial_connect(struct ceph_connection *con)
1743 {
1744 int size;
1745 int end;
1746 int ret;
1747
1748 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1749
1750 size = sizeof (con->in_reply);
1751 end = size;
1752 ret = read_partial(con, end, size, &con->in_reply);
1753 if (ret <= 0)
1754 goto out;
1755
1756 if (con->auth) {
1757 size = le32_to_cpu(con->in_reply.authorizer_len);
1758 if (size > con->auth->authorizer_reply_buf_len) {
1759 pr_err("authorizer reply too big: %d > %zu\n", size,
1760 con->auth->authorizer_reply_buf_len);
1761 ret = -EINVAL;
1762 goto out;
1763 }
1764
1765 end += size;
1766 ret = read_partial(con, end, size,
1767 con->auth->authorizer_reply_buf);
1768 if (ret <= 0)
1769 goto out;
1770 }
1771
1772 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1773 con, (int)con->in_reply.tag,
1774 le32_to_cpu(con->in_reply.connect_seq),
1775 le32_to_cpu(con->in_reply.global_seq));
1776 out:
1777 return ret;
1778 }
1779
1780 /*
1781 * Verify the hello banner looks okay.
1782 */
1783 static int verify_hello(struct ceph_connection *con)
1784 {
1785 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1786 pr_err("connect to %s got bad banner\n",
1787 ceph_pr_addr(&con->peer_addr.in_addr));
1788 con->error_msg = "protocol error, bad banner";
1789 return -1;
1790 }
1791 return 0;
1792 }
1793
1794 static bool addr_is_blank(struct sockaddr_storage *ss)
1795 {
1796 struct in_addr *addr = &((struct sockaddr_in *)ss)->sin_addr;
1797 struct in6_addr *addr6 = &((struct sockaddr_in6 *)ss)->sin6_addr;
1798
1799 switch (ss->ss_family) {
1800 case AF_INET:
1801 return addr->s_addr == htonl(INADDR_ANY);
1802 case AF_INET6:
1803 return ipv6_addr_any(addr6);
1804 default:
1805 return true;
1806 }
1807 }
1808
1809 static int addr_port(struct sockaddr_storage *ss)
1810 {
1811 switch (ss->ss_family) {
1812 case AF_INET:
1813 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1814 case AF_INET6:
1815 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1816 }
1817 return 0;
1818 }
1819
1820 static void addr_set_port(struct sockaddr_storage *ss, int p)
1821 {
1822 switch (ss->ss_family) {
1823 case AF_INET:
1824 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1825 break;
1826 case AF_INET6:
1827 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1828 break;
1829 }
1830 }
1831
1832 /*
1833 * Unlike other *_pton function semantics, zero indicates success.
1834 */
1835 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1836 char delim, const char **ipend)
1837 {
1838 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1839 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1840
1841 memset(ss, 0, sizeof(*ss));
1842
1843 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1844 ss->ss_family = AF_INET;
1845 return 0;
1846 }
1847
1848 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1849 ss->ss_family = AF_INET6;
1850 return 0;
1851 }
1852
1853 return -EINVAL;
1854 }
1855
1856 /*
1857 * Extract hostname string and resolve using kernel DNS facility.
1858 */
1859 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1860 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1861 struct sockaddr_storage *ss, char delim, const char **ipend)
1862 {
1863 const char *end, *delim_p;
1864 char *colon_p, *ip_addr = NULL;
1865 int ip_len, ret;
1866
1867 /*
1868 * The end of the hostname occurs immediately preceding the delimiter or
1869 * the port marker (':') where the delimiter takes precedence.
1870 */
1871 delim_p = memchr(name, delim, namelen);
1872 colon_p = memchr(name, ':', namelen);
1873
1874 if (delim_p && colon_p)
1875 end = delim_p < colon_p ? delim_p : colon_p;
1876 else if (!delim_p && colon_p)
1877 end = colon_p;
1878 else {
1879 end = delim_p;
1880 if (!end) /* case: hostname:/ */
1881 end = name + namelen;
1882 }
1883
1884 if (end <= name)
1885 return -EINVAL;
1886
1887 /* do dns_resolve upcall */
1888 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1889 if (ip_len > 0)
1890 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1891 else
1892 ret = -ESRCH;
1893
1894 kfree(ip_addr);
1895
1896 *ipend = end;
1897
1898 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1899 ret, ret ? "failed" : ceph_pr_addr(ss));
1900
1901 return ret;
1902 }
1903 #else
1904 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1905 struct sockaddr_storage *ss, char delim, const char **ipend)
1906 {
1907 return -EINVAL;
1908 }
1909 #endif
1910
1911 /*
1912 * Parse a server name (IP or hostname). If a valid IP address is not found
1913 * then try to extract a hostname to resolve using userspace DNS upcall.
1914 */
1915 static int ceph_parse_server_name(const char *name, size_t namelen,
1916 struct sockaddr_storage *ss, char delim, const char **ipend)
1917 {
1918 int ret;
1919
1920 ret = ceph_pton(name, namelen, ss, delim, ipend);
1921 if (ret)
1922 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1923
1924 return ret;
1925 }
1926
1927 /*
1928 * Parse an ip[:port] list into an addr array. Use the default
1929 * monitor port if a port isn't specified.
1930 */
1931 int ceph_parse_ips(const char *c, const char *end,
1932 struct ceph_entity_addr *addr,
1933 int max_count, int *count)
1934 {
1935 int i, ret = -EINVAL;
1936 const char *p = c;
1937
1938 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1939 for (i = 0; i < max_count; i++) {
1940 const char *ipend;
1941 struct sockaddr_storage *ss = &addr[i].in_addr;
1942 int port;
1943 char delim = ',';
1944
1945 if (*p == '[') {
1946 delim = ']';
1947 p++;
1948 }
1949
1950 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1951 if (ret)
1952 goto bad;
1953 ret = -EINVAL;
1954
1955 p = ipend;
1956
1957 if (delim == ']') {
1958 if (*p != ']') {
1959 dout("missing matching ']'\n");
1960 goto bad;
1961 }
1962 p++;
1963 }
1964
1965 /* port? */
1966 if (p < end && *p == ':') {
1967 port = 0;
1968 p++;
1969 while (p < end && *p >= '0' && *p <= '9') {
1970 port = (port * 10) + (*p - '0');
1971 p++;
1972 }
1973 if (port == 0)
1974 port = CEPH_MON_PORT;
1975 else if (port > 65535)
1976 goto bad;
1977 } else {
1978 port = CEPH_MON_PORT;
1979 }
1980
1981 addr_set_port(ss, port);
1982
1983 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1984
1985 if (p == end)
1986 break;
1987 if (*p != ',')
1988 goto bad;
1989 p++;
1990 }
1991
1992 if (p != end)
1993 goto bad;
1994
1995 if (count)
1996 *count = i + 1;
1997 return 0;
1998
1999 bad:
2000 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
2001 return ret;
2002 }
2003 EXPORT_SYMBOL(ceph_parse_ips);
2004
2005 static int process_banner(struct ceph_connection *con)
2006 {
2007 dout("process_banner on %p\n", con);
2008
2009 if (verify_hello(con) < 0)
2010 return -1;
2011
2012 ceph_decode_addr(&con->actual_peer_addr);
2013 ceph_decode_addr(&con->peer_addr_for_me);
2014
2015 /*
2016 * Make sure the other end is who we wanted. note that the other
2017 * end may not yet know their ip address, so if it's 0.0.0.0, give
2018 * them the benefit of the doubt.
2019 */
2020 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
2021 sizeof(con->peer_addr)) != 0 &&
2022 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
2023 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
2024 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2025 ceph_pr_addr(&con->peer_addr.in_addr),
2026 (int)le32_to_cpu(con->peer_addr.nonce),
2027 ceph_pr_addr(&con->actual_peer_addr.in_addr),
2028 (int)le32_to_cpu(con->actual_peer_addr.nonce));
2029 con->error_msg = "wrong peer at address";
2030 return -1;
2031 }
2032
2033 /*
2034 * did we learn our address?
2035 */
2036 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
2037 int port = addr_port(&con->msgr->inst.addr.in_addr);
2038
2039 memcpy(&con->msgr->inst.addr.in_addr,
2040 &con->peer_addr_for_me.in_addr,
2041 sizeof(con->peer_addr_for_me.in_addr));
2042 addr_set_port(&con->msgr->inst.addr.in_addr, port);
2043 encode_my_addr(con->msgr);
2044 dout("process_banner learned my addr is %s\n",
2045 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
2046 }
2047
2048 return 0;
2049 }
2050
2051 static int process_connect(struct ceph_connection *con)
2052 {
2053 u64 sup_feat = from_msgr(con->msgr)->supported_features;
2054 u64 req_feat = from_msgr(con->msgr)->required_features;
2055 u64 server_feat = le64_to_cpu(con->in_reply.features);
2056 int ret;
2057
2058 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
2059
2060 if (con->auth) {
2061 /*
2062 * Any connection that defines ->get_authorizer()
2063 * should also define ->add_authorizer_challenge() and
2064 * ->verify_authorizer_reply().
2065 *
2066 * See get_connect_authorizer().
2067 */
2068 if (con->in_reply.tag == CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER) {
2069 ret = con->ops->add_authorizer_challenge(
2070 con, con->auth->authorizer_reply_buf,
2071 le32_to_cpu(con->in_reply.authorizer_len));
2072 if (ret < 0)
2073 return ret;
2074
2075 con_out_kvec_reset(con);
2076 __prepare_write_connect(con);
2077 prepare_read_connect(con);
2078 return 0;
2079 }
2080
2081 ret = con->ops->verify_authorizer_reply(con);
2082 if (ret < 0) {
2083 con->error_msg = "bad authorize reply";
2084 return ret;
2085 }
2086 }
2087
2088 switch (con->in_reply.tag) {
2089 case CEPH_MSGR_TAG_FEATURES:
2090 pr_err("%s%lld %s feature set mismatch,"
2091 " my %llx < server's %llx, missing %llx\n",
2092 ENTITY_NAME(con->peer_name),
2093 ceph_pr_addr(&con->peer_addr.in_addr),
2094 sup_feat, server_feat, server_feat & ~sup_feat);
2095 con->error_msg = "missing required protocol features";
2096 reset_connection(con);
2097 return -1;
2098
2099 case CEPH_MSGR_TAG_BADPROTOVER:
2100 pr_err("%s%lld %s protocol version mismatch,"
2101 " my %d != server's %d\n",
2102 ENTITY_NAME(con->peer_name),
2103 ceph_pr_addr(&con->peer_addr.in_addr),
2104 le32_to_cpu(con->out_connect.protocol_version),
2105 le32_to_cpu(con->in_reply.protocol_version));
2106 con->error_msg = "protocol version mismatch";
2107 reset_connection(con);
2108 return -1;
2109
2110 case CEPH_MSGR_TAG_BADAUTHORIZER:
2111 con->auth_retry++;
2112 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2113 con->auth_retry);
2114 if (con->auth_retry == 2) {
2115 con->error_msg = "connect authorization failure";
2116 return -1;
2117 }
2118 con_out_kvec_reset(con);
2119 ret = prepare_write_connect(con);
2120 if (ret < 0)
2121 return ret;
2122 prepare_read_connect(con);
2123 break;
2124
2125 case CEPH_MSGR_TAG_RESETSESSION:
2126 /*
2127 * If we connected with a large connect_seq but the peer
2128 * has no record of a session with us (no connection, or
2129 * connect_seq == 0), they will send RESETSESION to indicate
2130 * that they must have reset their session, and may have
2131 * dropped messages.
2132 */
2133 dout("process_connect got RESET peer seq %u\n",
2134 le32_to_cpu(con->in_reply.connect_seq));
2135 pr_err("%s%lld %s connection reset\n",
2136 ENTITY_NAME(con->peer_name),
2137 ceph_pr_addr(&con->peer_addr.in_addr));
2138 reset_connection(con);
2139 con_out_kvec_reset(con);
2140 ret = prepare_write_connect(con);
2141 if (ret < 0)
2142 return ret;
2143 prepare_read_connect(con);
2144
2145 /* Tell ceph about it. */
2146 mutex_unlock(&con->mutex);
2147 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2148 if (con->ops->peer_reset)
2149 con->ops->peer_reset(con);
2150 mutex_lock(&con->mutex);
2151 if (con->state != CON_STATE_NEGOTIATING)
2152 return -EAGAIN;
2153 break;
2154
2155 case CEPH_MSGR_TAG_RETRY_SESSION:
2156 /*
2157 * If we sent a smaller connect_seq than the peer has, try
2158 * again with a larger value.
2159 */
2160 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2161 le32_to_cpu(con->out_connect.connect_seq),
2162 le32_to_cpu(con->in_reply.connect_seq));
2163 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2164 con_out_kvec_reset(con);
2165 ret = prepare_write_connect(con);
2166 if (ret < 0)
2167 return ret;
2168 prepare_read_connect(con);
2169 break;
2170
2171 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2172 /*
2173 * If we sent a smaller global_seq than the peer has, try
2174 * again with a larger value.
2175 */
2176 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2177 con->peer_global_seq,
2178 le32_to_cpu(con->in_reply.global_seq));
2179 get_global_seq(con->msgr,
2180 le32_to_cpu(con->in_reply.global_seq));
2181 con_out_kvec_reset(con);
2182 ret = prepare_write_connect(con);
2183 if (ret < 0)
2184 return ret;
2185 prepare_read_connect(con);
2186 break;
2187
2188 case CEPH_MSGR_TAG_SEQ:
2189 case CEPH_MSGR_TAG_READY:
2190 if (req_feat & ~server_feat) {
2191 pr_err("%s%lld %s protocol feature mismatch,"
2192 " my required %llx > server's %llx, need %llx\n",
2193 ENTITY_NAME(con->peer_name),
2194 ceph_pr_addr(&con->peer_addr.in_addr),
2195 req_feat, server_feat, req_feat & ~server_feat);
2196 con->error_msg = "missing required protocol features";
2197 reset_connection(con);
2198 return -1;
2199 }
2200
2201 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2202 con->state = CON_STATE_OPEN;
2203 con->auth_retry = 0; /* we authenticated; clear flag */
2204 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2205 con->connect_seq++;
2206 con->peer_features = server_feat;
2207 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2208 con->peer_global_seq,
2209 le32_to_cpu(con->in_reply.connect_seq),
2210 con->connect_seq);
2211 WARN_ON(con->connect_seq !=
2212 le32_to_cpu(con->in_reply.connect_seq));
2213
2214 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2215 con_flag_set(con, CON_FLAG_LOSSYTX);
2216
2217 con->delay = 0; /* reset backoff memory */
2218
2219 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2220 prepare_write_seq(con);
2221 prepare_read_seq(con);
2222 } else {
2223 prepare_read_tag(con);
2224 }
2225 break;
2226
2227 case CEPH_MSGR_TAG_WAIT:
2228 /*
2229 * If there is a connection race (we are opening
2230 * connections to each other), one of us may just have
2231 * to WAIT. This shouldn't happen if we are the
2232 * client.
2233 */
2234 con->error_msg = "protocol error, got WAIT as client";
2235 return -1;
2236
2237 default:
2238 con->error_msg = "protocol error, garbage tag during connect";
2239 return -1;
2240 }
2241 return 0;
2242 }
2243
2244
2245 /*
2246 * read (part of) an ack
2247 */
2248 static int read_partial_ack(struct ceph_connection *con)
2249 {
2250 int size = sizeof (con->in_temp_ack);
2251 int end = size;
2252
2253 return read_partial(con, end, size, &con->in_temp_ack);
2254 }
2255
2256 /*
2257 * We can finally discard anything that's been acked.
2258 */
2259 static void process_ack(struct ceph_connection *con)
2260 {
2261 struct ceph_msg *m;
2262 u64 ack = le64_to_cpu(con->in_temp_ack);
2263 u64 seq;
2264 bool reconnect = (con->in_tag == CEPH_MSGR_TAG_SEQ);
2265 struct list_head *list = reconnect ? &con->out_queue : &con->out_sent;
2266
2267 /*
2268 * In the reconnect case, con_fault() has requeued messages
2269 * in out_sent. We should cleanup old messages according to
2270 * the reconnect seq.
2271 */
2272 while (!list_empty(list)) {
2273 m = list_first_entry(list, struct ceph_msg, list_head);
2274 if (reconnect && m->needs_out_seq)
2275 break;
2276 seq = le64_to_cpu(m->hdr.seq);
2277 if (seq > ack)
2278 break;
2279 dout("got ack for seq %llu type %d at %p\n", seq,
2280 le16_to_cpu(m->hdr.type), m);
2281 m->ack_stamp = jiffies;
2282 ceph_msg_remove(m);
2283 }
2284
2285 prepare_read_tag(con);
2286 }
2287
2288
2289 static int read_partial_message_section(struct ceph_connection *con,
2290 struct kvec *section,
2291 unsigned int sec_len, u32 *crc)
2292 {
2293 int ret, left;
2294
2295 BUG_ON(!section);
2296
2297 while (section->iov_len < sec_len) {
2298 BUG_ON(section->iov_base == NULL);
2299 left = sec_len - section->iov_len;
2300 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2301 section->iov_len, left);
2302 if (ret <= 0)
2303 return ret;
2304 section->iov_len += ret;
2305 }
2306 if (section->iov_len == sec_len)
2307 *crc = crc32c(0, section->iov_base, section->iov_len);
2308
2309 return 1;
2310 }
2311
2312 static int read_partial_msg_data(struct ceph_connection *con)
2313 {
2314 struct ceph_msg *msg = con->in_msg;
2315 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2316 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2317 struct page *page;
2318 size_t page_offset;
2319 size_t length;
2320 u32 crc = 0;
2321 int ret;
2322
2323 BUG_ON(!msg);
2324 if (list_empty(&msg->data))
2325 return -EIO;
2326
2327 if (do_datacrc)
2328 crc = con->in_data_crc;
2329 while (cursor->resid) {
2330 page = ceph_msg_data_next(cursor, &page_offset, &length, NULL);
2331 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2332 if (ret <= 0) {
2333 if (do_datacrc)
2334 con->in_data_crc = crc;
2335
2336 return ret;
2337 }
2338
2339 if (do_datacrc)
2340 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2341 ceph_msg_data_advance(cursor, (size_t)ret);
2342 }
2343 if (do_datacrc)
2344 con->in_data_crc = crc;
2345
2346 return 1; /* must return > 0 to indicate success */
2347 }
2348
2349 /*
2350 * read (part of) a message.
2351 */
2352 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2353
2354 static int read_partial_message(struct ceph_connection *con)
2355 {
2356 struct ceph_msg *m = con->in_msg;
2357 int size;
2358 int end;
2359 int ret;
2360 unsigned int front_len, middle_len, data_len;
2361 bool do_datacrc = !ceph_test_opt(from_msgr(con->msgr), NOCRC);
2362 bool need_sign = (con->peer_features & CEPH_FEATURE_MSG_AUTH);
2363 u64 seq;
2364 u32 crc;
2365
2366 dout("read_partial_message con %p msg %p\n", con, m);
2367
2368 /* header */
2369 size = sizeof (con->in_hdr);
2370 end = size;
2371 ret = read_partial(con, end, size, &con->in_hdr);
2372 if (ret <= 0)
2373 return ret;
2374
2375 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2376 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2377 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2378 crc, con->in_hdr.crc);
2379 return -EBADMSG;
2380 }
2381
2382 front_len = le32_to_cpu(con->in_hdr.front_len);
2383 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2384 return -EIO;
2385 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2386 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2387 return -EIO;
2388 data_len = le32_to_cpu(con->in_hdr.data_len);
2389 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2390 return -EIO;
2391
2392 /* verify seq# */
2393 seq = le64_to_cpu(con->in_hdr.seq);
2394 if ((s64)seq - (s64)con->in_seq < 1) {
2395 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2396 ENTITY_NAME(con->peer_name),
2397 ceph_pr_addr(&con->peer_addr.in_addr),
2398 seq, con->in_seq + 1);
2399 con->in_base_pos = -front_len - middle_len - data_len -
2400 sizeof_footer(con);
2401 con->in_tag = CEPH_MSGR_TAG_READY;
2402 return 1;
2403 } else if ((s64)seq - (s64)con->in_seq > 1) {
2404 pr_err("read_partial_message bad seq %lld expected %lld\n",
2405 seq, con->in_seq + 1);
2406 con->error_msg = "bad message sequence # for incoming message";
2407 return -EBADE;
2408 }
2409
2410 /* allocate message? */
2411 if (!con->in_msg) {
2412 int skip = 0;
2413
2414 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2415 front_len, data_len);
2416 ret = ceph_con_in_msg_alloc(con, &skip);
2417 if (ret < 0)
2418 return ret;
2419
2420 BUG_ON(!con->in_msg ^ skip);
2421 if (skip) {
2422 /* skip this message */
2423 dout("alloc_msg said skip message\n");
2424 con->in_base_pos = -front_len - middle_len - data_len -
2425 sizeof_footer(con);
2426 con->in_tag = CEPH_MSGR_TAG_READY;
2427 con->in_seq++;
2428 return 1;
2429 }
2430
2431 BUG_ON(!con->in_msg);
2432 BUG_ON(con->in_msg->con != con);
2433 m = con->in_msg;
2434 m->front.iov_len = 0; /* haven't read it yet */
2435 if (m->middle)
2436 m->middle->vec.iov_len = 0;
2437
2438 /* prepare for data payload, if any */
2439
2440 if (data_len)
2441 prepare_message_data(con->in_msg, data_len);
2442 }
2443
2444 /* front */
2445 ret = read_partial_message_section(con, &m->front, front_len,
2446 &con->in_front_crc);
2447 if (ret <= 0)
2448 return ret;
2449
2450 /* middle */
2451 if (m->middle) {
2452 ret = read_partial_message_section(con, &m->middle->vec,
2453 middle_len,
2454 &con->in_middle_crc);
2455 if (ret <= 0)
2456 return ret;
2457 }
2458
2459 /* (page) data */
2460 if (data_len) {
2461 ret = read_partial_msg_data(con);
2462 if (ret <= 0)
2463 return ret;
2464 }
2465
2466 /* footer */
2467 size = sizeof_footer(con);
2468 end += size;
2469 ret = read_partial(con, end, size, &m->footer);
2470 if (ret <= 0)
2471 return ret;
2472
2473 if (!need_sign) {
2474 m->footer.flags = m->old_footer.flags;
2475 m->footer.sig = 0;
2476 }
2477
2478 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2479 m, front_len, m->footer.front_crc, middle_len,
2480 m->footer.middle_crc, data_len, m->footer.data_crc);
2481
2482 /* crc ok? */
2483 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2484 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2485 m, con->in_front_crc, m->footer.front_crc);
2486 return -EBADMSG;
2487 }
2488 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2489 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2490 m, con->in_middle_crc, m->footer.middle_crc);
2491 return -EBADMSG;
2492 }
2493 if (do_datacrc &&
2494 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2495 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2496 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2497 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2498 return -EBADMSG;
2499 }
2500
2501 if (need_sign && con->ops->check_message_signature &&
2502 con->ops->check_message_signature(m)) {
2503 pr_err("read_partial_message %p signature check failed\n", m);
2504 return -EBADMSG;
2505 }
2506
2507 return 1; /* done! */
2508 }
2509
2510 /*
2511 * Process message. This happens in the worker thread. The callback should
2512 * be careful not to do anything that waits on other incoming messages or it
2513 * may deadlock.
2514 */
2515 static void process_message(struct ceph_connection *con)
2516 {
2517 struct ceph_msg *msg = con->in_msg;
2518
2519 BUG_ON(con->in_msg->con != con);
2520 con->in_msg = NULL;
2521
2522 /* if first message, set peer_name */
2523 if (con->peer_name.type == 0)
2524 con->peer_name = msg->hdr.src;
2525
2526 con->in_seq++;
2527 mutex_unlock(&con->mutex);
2528
2529 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2530 msg, le64_to_cpu(msg->hdr.seq),
2531 ENTITY_NAME(msg->hdr.src),
2532 le16_to_cpu(msg->hdr.type),
2533 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2534 le32_to_cpu(msg->hdr.front_len),
2535 le32_to_cpu(msg->hdr.data_len),
2536 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2537 con->ops->dispatch(con, msg);
2538
2539 mutex_lock(&con->mutex);
2540 }
2541
2542 static int read_keepalive_ack(struct ceph_connection *con)
2543 {
2544 struct ceph_timespec ceph_ts;
2545 size_t size = sizeof(ceph_ts);
2546 int ret = read_partial(con, size, size, &ceph_ts);
2547 if (ret <= 0)
2548 return ret;
2549 ceph_decode_timespec(&con->last_keepalive_ack, &ceph_ts);
2550 prepare_read_tag(con);
2551 return 1;
2552 }
2553
2554 /*
2555 * Write something to the socket. Called in a worker thread when the
2556 * socket appears to be writeable and we have something ready to send.
2557 */
2558 static int try_write(struct ceph_connection *con)
2559 {
2560 int ret = 1;
2561
2562 dout("try_write start %p state %lu\n", con, con->state);
2563 if (con->state != CON_STATE_PREOPEN &&
2564 con->state != CON_STATE_CONNECTING &&
2565 con->state != CON_STATE_NEGOTIATING &&
2566 con->state != CON_STATE_OPEN)
2567 return 0;
2568
2569 more:
2570 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2571
2572 /* open the socket first? */
2573 if (con->state == CON_STATE_PREOPEN) {
2574 BUG_ON(con->sock);
2575 con->state = CON_STATE_CONNECTING;
2576
2577 con_out_kvec_reset(con);
2578 prepare_write_banner(con);
2579 prepare_read_banner(con);
2580
2581 BUG_ON(con->in_msg);
2582 con->in_tag = CEPH_MSGR_TAG_READY;
2583 dout("try_write initiating connect on %p new state %lu\n",
2584 con, con->state);
2585 ret = ceph_tcp_connect(con);
2586 if (ret < 0) {
2587 con->error_msg = "connect error";
2588 goto out;
2589 }
2590 }
2591
2592 more_kvec:
2593 BUG_ON(!con->sock);
2594
2595 /* kvec data queued? */
2596 if (con->out_kvec_left) {
2597 ret = write_partial_kvec(con);
2598 if (ret <= 0)
2599 goto out;
2600 }
2601 if (con->out_skip) {
2602 ret = write_partial_skip(con);
2603 if (ret <= 0)
2604 goto out;
2605 }
2606
2607 /* msg pages? */
2608 if (con->out_msg) {
2609 if (con->out_msg_done) {
2610 ceph_msg_put(con->out_msg);
2611 con->out_msg = NULL; /* we're done with this one */
2612 goto do_next;
2613 }
2614
2615 ret = write_partial_message_data(con);
2616 if (ret == 1)
2617 goto more_kvec; /* we need to send the footer, too! */
2618 if (ret == 0)
2619 goto out;
2620 if (ret < 0) {
2621 dout("try_write write_partial_message_data err %d\n",
2622 ret);
2623 goto out;
2624 }
2625 }
2626
2627 do_next:
2628 if (con->state == CON_STATE_OPEN) {
2629 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2630 prepare_write_keepalive(con);
2631 goto more;
2632 }
2633 /* is anything else pending? */
2634 if (!list_empty(&con->out_queue)) {
2635 prepare_write_message(con);
2636 goto more;
2637 }
2638 if (con->in_seq > con->in_seq_acked) {
2639 prepare_write_ack(con);
2640 goto more;
2641 }
2642 }
2643
2644 /* Nothing to do! */
2645 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2646 dout("try_write nothing else to write.\n");
2647 ret = 0;
2648 out:
2649 dout("try_write done on %p ret %d\n", con, ret);
2650 return ret;
2651 }
2652
2653
2654
2655 /*
2656 * Read what we can from the socket.
2657 */
2658 static int try_read(struct ceph_connection *con)
2659 {
2660 int ret = -1;
2661
2662 more:
2663 dout("try_read start on %p state %lu\n", con, con->state);
2664 if (con->state != CON_STATE_CONNECTING &&
2665 con->state != CON_STATE_NEGOTIATING &&
2666 con->state != CON_STATE_OPEN)
2667 return 0;
2668
2669 BUG_ON(!con->sock);
2670
2671 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2672 con->in_base_pos);
2673
2674 if (con->state == CON_STATE_CONNECTING) {
2675 dout("try_read connecting\n");
2676 ret = read_partial_banner(con);
2677 if (ret <= 0)
2678 goto out;
2679 ret = process_banner(con);
2680 if (ret < 0)
2681 goto out;
2682
2683 con->state = CON_STATE_NEGOTIATING;
2684
2685 /*
2686 * Received banner is good, exchange connection info.
2687 * Do not reset out_kvec, as sending our banner raced
2688 * with receiving peer banner after connect completed.
2689 */
2690 ret = prepare_write_connect(con);
2691 if (ret < 0)
2692 goto out;
2693 prepare_read_connect(con);
2694
2695 /* Send connection info before awaiting response */
2696 goto out;
2697 }
2698
2699 if (con->state == CON_STATE_NEGOTIATING) {
2700 dout("try_read negotiating\n");
2701 ret = read_partial_connect(con);
2702 if (ret <= 0)
2703 goto out;
2704 ret = process_connect(con);
2705 if (ret < 0)
2706 goto out;
2707 goto more;
2708 }
2709
2710 WARN_ON(con->state != CON_STATE_OPEN);
2711
2712 if (con->in_base_pos < 0) {
2713 /*
2714 * skipping + discarding content.
2715 *
2716 * FIXME: there must be a better way to do this!
2717 */
2718 static char buf[SKIP_BUF_SIZE];
2719 int skip = min((int) sizeof (buf), -con->in_base_pos);
2720
2721 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2722 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2723 if (ret <= 0)
2724 goto out;
2725 con->in_base_pos += ret;
2726 if (con->in_base_pos)
2727 goto more;
2728 }
2729 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2730 /*
2731 * what's next?
2732 */
2733 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2734 if (ret <= 0)
2735 goto out;
2736 dout("try_read got tag %d\n", (int)con->in_tag);
2737 switch (con->in_tag) {
2738 case CEPH_MSGR_TAG_MSG:
2739 prepare_read_message(con);
2740 break;
2741 case CEPH_MSGR_TAG_ACK:
2742 prepare_read_ack(con);
2743 break;
2744 case CEPH_MSGR_TAG_KEEPALIVE2_ACK:
2745 prepare_read_keepalive_ack(con);
2746 break;
2747 case CEPH_MSGR_TAG_CLOSE:
2748 con_close_socket(con);
2749 con->state = CON_STATE_CLOSED;
2750 goto out;
2751 default:
2752 goto bad_tag;
2753 }
2754 }
2755 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2756 ret = read_partial_message(con);
2757 if (ret <= 0) {
2758 switch (ret) {
2759 case -EBADMSG:
2760 con->error_msg = "bad crc/signature";
2761 /* fall through */
2762 case -EBADE:
2763 ret = -EIO;
2764 break;
2765 case -EIO:
2766 con->error_msg = "io error";
2767 break;
2768 }
2769 goto out;
2770 }
2771 if (con->in_tag == CEPH_MSGR_TAG_READY)
2772 goto more;
2773 process_message(con);
2774 if (con->state == CON_STATE_OPEN)
2775 prepare_read_tag(con);
2776 goto more;
2777 }
2778 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2779 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2780 /*
2781 * the final handshake seq exchange is semantically
2782 * equivalent to an ACK
2783 */
2784 ret = read_partial_ack(con);
2785 if (ret <= 0)
2786 goto out;
2787 process_ack(con);
2788 goto more;
2789 }
2790 if (con->in_tag == CEPH_MSGR_TAG_KEEPALIVE2_ACK) {
2791 ret = read_keepalive_ack(con);
2792 if (ret <= 0)
2793 goto out;
2794 goto more;
2795 }
2796
2797 out:
2798 dout("try_read done on %p ret %d\n", con, ret);
2799 return ret;
2800
2801 bad_tag:
2802 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2803 con->error_msg = "protocol error, garbage tag";
2804 ret = -1;
2805 goto out;
2806 }
2807
2808
2809 /*
2810 * Atomically queue work on a connection after the specified delay.
2811 * Bump @con reference to avoid races with connection teardown.
2812 * Returns 0 if work was queued, or an error code otherwise.
2813 */
2814 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2815 {
2816 if (!con->ops->get(con)) {
2817 dout("%s %p ref count 0\n", __func__, con);
2818 return -ENOENT;
2819 }
2820
2821 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2822 dout("%s %p - already queued\n", __func__, con);
2823 con->ops->put(con);
2824 return -EBUSY;
2825 }
2826
2827 dout("%s %p %lu\n", __func__, con, delay);
2828 return 0;
2829 }
2830
2831 static void queue_con(struct ceph_connection *con)
2832 {
2833 (void) queue_con_delay(con, 0);
2834 }
2835
2836 static void cancel_con(struct ceph_connection *con)
2837 {
2838 if (cancel_delayed_work(&con->work)) {
2839 dout("%s %p\n", __func__, con);
2840 con->ops->put(con);
2841 }
2842 }
2843
2844 static bool con_sock_closed(struct ceph_connection *con)
2845 {
2846 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2847 return false;
2848
2849 #define CASE(x) \
2850 case CON_STATE_ ## x: \
2851 con->error_msg = "socket closed (con state " #x ")"; \
2852 break;
2853
2854 switch (con->state) {
2855 CASE(CLOSED);
2856 CASE(PREOPEN);
2857 CASE(CONNECTING);
2858 CASE(NEGOTIATING);
2859 CASE(OPEN);
2860 CASE(STANDBY);
2861 default:
2862 pr_warn("%s con %p unrecognized state %lu\n",
2863 __func__, con, con->state);
2864 con->error_msg = "unrecognized con state";
2865 BUG();
2866 break;
2867 }
2868 #undef CASE
2869
2870 return true;
2871 }
2872
2873 static bool con_backoff(struct ceph_connection *con)
2874 {
2875 int ret;
2876
2877 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2878 return false;
2879
2880 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2881 if (ret) {
2882 dout("%s: con %p FAILED to back off %lu\n", __func__,
2883 con, con->delay);
2884 BUG_ON(ret == -ENOENT);
2885 con_flag_set(con, CON_FLAG_BACKOFF);
2886 }
2887
2888 return true;
2889 }
2890
2891 /* Finish fault handling; con->mutex must *not* be held here */
2892
2893 static void con_fault_finish(struct ceph_connection *con)
2894 {
2895 dout("%s %p\n", __func__, con);
2896
2897 /*
2898 * in case we faulted due to authentication, invalidate our
2899 * current tickets so that we can get new ones.
2900 */
2901 if (con->auth_retry) {
2902 dout("auth_retry %d, invalidating\n", con->auth_retry);
2903 if (con->ops->invalidate_authorizer)
2904 con->ops->invalidate_authorizer(con);
2905 con->auth_retry = 0;
2906 }
2907
2908 if (con->ops->fault)
2909 con->ops->fault(con);
2910 }
2911
2912 /*
2913 * Do some work on a connection. Drop a connection ref when we're done.
2914 */
2915 static void ceph_con_workfn(struct work_struct *work)
2916 {
2917 struct ceph_connection *con = container_of(work, struct ceph_connection,
2918 work.work);
2919 bool fault;
2920
2921 mutex_lock(&con->mutex);
2922 while (true) {
2923 int ret;
2924
2925 if ((fault = con_sock_closed(con))) {
2926 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2927 break;
2928 }
2929 if (con_backoff(con)) {
2930 dout("%s: con %p BACKOFF\n", __func__, con);
2931 break;
2932 }
2933 if (con->state == CON_STATE_STANDBY) {
2934 dout("%s: con %p STANDBY\n", __func__, con);
2935 break;
2936 }
2937 if (con->state == CON_STATE_CLOSED) {
2938 dout("%s: con %p CLOSED\n", __func__, con);
2939 BUG_ON(con->sock);
2940 break;
2941 }
2942 if (con->state == CON_STATE_PREOPEN) {
2943 dout("%s: con %p PREOPEN\n", __func__, con);
2944 BUG_ON(con->sock);
2945 }
2946
2947 ret = try_read(con);
2948 if (ret < 0) {
2949 if (ret == -EAGAIN)
2950 continue;
2951 if (!con->error_msg)
2952 con->error_msg = "socket error on read";
2953 fault = true;
2954 break;
2955 }
2956
2957 ret = try_write(con);
2958 if (ret < 0) {
2959 if (ret == -EAGAIN)
2960 continue;
2961 if (!con->error_msg)
2962 con->error_msg = "socket error on write";
2963 fault = true;
2964 }
2965
2966 break; /* If we make it to here, we're done */
2967 }
2968 if (fault)
2969 con_fault(con);
2970 mutex_unlock(&con->mutex);
2971
2972 if (fault)
2973 con_fault_finish(con);
2974
2975 con->ops->put(con);
2976 }
2977
2978 /*
2979 * Generic error/fault handler. A retry mechanism is used with
2980 * exponential backoff
2981 */
2982 static void con_fault(struct ceph_connection *con)
2983 {
2984 dout("fault %p state %lu to peer %s\n",
2985 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2986
2987 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2988 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2989 con->error_msg = NULL;
2990
2991 WARN_ON(con->state != CON_STATE_CONNECTING &&
2992 con->state != CON_STATE_NEGOTIATING &&
2993 con->state != CON_STATE_OPEN);
2994
2995 con_close_socket(con);
2996
2997 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2998 dout("fault on LOSSYTX channel, marking CLOSED\n");
2999 con->state = CON_STATE_CLOSED;
3000 return;
3001 }
3002
3003 if (con->in_msg) {
3004 BUG_ON(con->in_msg->con != con);
3005 ceph_msg_put(con->in_msg);
3006 con->in_msg = NULL;
3007 }
3008
3009 /* Requeue anything that hasn't been acked */
3010 list_splice_init(&con->out_sent, &con->out_queue);
3011
3012 /* If there are no messages queued or keepalive pending, place
3013 * the connection in a STANDBY state */
3014 if (list_empty(&con->out_queue) &&
3015 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
3016 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
3017 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
3018 con->state = CON_STATE_STANDBY;
3019 } else {
3020 /* retry after a delay. */
3021 con->state = CON_STATE_PREOPEN;
3022 if (con->delay == 0)
3023 con->delay = BASE_DELAY_INTERVAL;
3024 else if (con->delay < MAX_DELAY_INTERVAL)
3025 con->delay *= 2;
3026 con_flag_set(con, CON_FLAG_BACKOFF);
3027 queue_con(con);
3028 }
3029 }
3030
3031
3032
3033 /*
3034 * initialize a new messenger instance
3035 */
3036 void ceph_messenger_init(struct ceph_messenger *msgr,
3037 struct ceph_entity_addr *myaddr)
3038 {
3039 spin_lock_init(&msgr->global_seq_lock);
3040
3041 if (myaddr)
3042 msgr->inst.addr = *myaddr;
3043
3044 /* select a random nonce */
3045 msgr->inst.addr.type = 0;
3046 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
3047 encode_my_addr(msgr);
3048
3049 atomic_set(&msgr->stopping, 0);
3050 write_pnet(&msgr->net, get_net(current->nsproxy->net_ns));
3051
3052 dout("%s %p\n", __func__, msgr);
3053 }
3054 EXPORT_SYMBOL(ceph_messenger_init);
3055
3056 void ceph_messenger_fini(struct ceph_messenger *msgr)
3057 {
3058 put_net(read_pnet(&msgr->net));
3059 }
3060 EXPORT_SYMBOL(ceph_messenger_fini);
3061
3062 static void msg_con_set(struct ceph_msg *msg, struct ceph_connection *con)
3063 {
3064 if (msg->con)
3065 msg->con->ops->put(msg->con);
3066
3067 msg->con = con ? con->ops->get(con) : NULL;
3068 BUG_ON(msg->con != con);
3069 }
3070
3071 static void clear_standby(struct ceph_connection *con)
3072 {
3073 /* come back from STANDBY? */
3074 if (con->state == CON_STATE_STANDBY) {
3075 dout("clear_standby %p and ++connect_seq\n", con);
3076 con->state = CON_STATE_PREOPEN;
3077 con->connect_seq++;
3078 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
3079 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
3080 }
3081 }
3082
3083 /*
3084 * Queue up an outgoing message on the given connection.
3085 */
3086 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
3087 {
3088 /* set src+dst */
3089 msg->hdr.src = con->msgr->inst.name;
3090 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
3091 msg->needs_out_seq = true;
3092
3093 mutex_lock(&con->mutex);
3094
3095 if (con->state == CON_STATE_CLOSED) {
3096 dout("con_send %p closed, dropping %p\n", con, msg);
3097 ceph_msg_put(msg);
3098 mutex_unlock(&con->mutex);
3099 return;
3100 }
3101
3102 msg_con_set(msg, con);
3103
3104 BUG_ON(!list_empty(&msg->list_head));
3105 list_add_tail(&msg->list_head, &con->out_queue);
3106 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
3107 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
3108 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
3109 le32_to_cpu(msg->hdr.front_len),
3110 le32_to_cpu(msg->hdr.middle_len),
3111 le32_to_cpu(msg->hdr.data_len));
3112
3113 clear_standby(con);
3114 mutex_unlock(&con->mutex);
3115
3116 /* if there wasn't anything waiting to send before, queue
3117 * new work */
3118 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3119 queue_con(con);
3120 }
3121 EXPORT_SYMBOL(ceph_con_send);
3122
3123 /*
3124 * Revoke a message that was previously queued for send
3125 */
3126 void ceph_msg_revoke(struct ceph_msg *msg)
3127 {
3128 struct ceph_connection *con = msg->con;
3129
3130 if (!con) {
3131 dout("%s msg %p null con\n", __func__, msg);
3132 return; /* Message not in our possession */
3133 }
3134
3135 mutex_lock(&con->mutex);
3136 if (!list_empty(&msg->list_head)) {
3137 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
3138 list_del_init(&msg->list_head);
3139 msg->hdr.seq = 0;
3140
3141 ceph_msg_put(msg);
3142 }
3143 if (con->out_msg == msg) {
3144 BUG_ON(con->out_skip);
3145 /* footer */
3146 if (con->out_msg_done) {
3147 con->out_skip += con_out_kvec_skip(con);
3148 } else {
3149 BUG_ON(!msg->data_length);
3150 con->out_skip += sizeof_footer(con);
3151 }
3152 /* data, middle, front */
3153 if (msg->data_length)
3154 con->out_skip += msg->cursor.total_resid;
3155 if (msg->middle)
3156 con->out_skip += con_out_kvec_skip(con);
3157 con->out_skip += con_out_kvec_skip(con);
3158
3159 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3160 __func__, con, msg, con->out_kvec_bytes, con->out_skip);
3161 msg->hdr.seq = 0;
3162 con->out_msg = NULL;
3163 ceph_msg_put(msg);
3164 }
3165
3166 mutex_unlock(&con->mutex);
3167 }
3168
3169 /*
3170 * Revoke a message that we may be reading data into
3171 */
3172 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3173 {
3174 struct ceph_connection *con = msg->con;
3175
3176 if (!con) {
3177 dout("%s msg %p null con\n", __func__, msg);
3178 return; /* Message not in our possession */
3179 }
3180
3181 mutex_lock(&con->mutex);
3182 if (con->in_msg == msg) {
3183 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3184 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3185 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3186
3187 /* skip rest of message */
3188 dout("%s %p msg %p revoked\n", __func__, con, msg);
3189 con->in_base_pos = con->in_base_pos -
3190 sizeof(struct ceph_msg_header) -
3191 front_len -
3192 middle_len -
3193 data_len -
3194 sizeof(struct ceph_msg_footer);
3195 ceph_msg_put(con->in_msg);
3196 con->in_msg = NULL;
3197 con->in_tag = CEPH_MSGR_TAG_READY;
3198 con->in_seq++;
3199 } else {
3200 dout("%s %p in_msg %p msg %p no-op\n",
3201 __func__, con, con->in_msg, msg);
3202 }
3203 mutex_unlock(&con->mutex);
3204 }
3205
3206 /*
3207 * Queue a keepalive byte to ensure the tcp connection is alive.
3208 */
3209 void ceph_con_keepalive(struct ceph_connection *con)
3210 {
3211 dout("con_keepalive %p\n", con);
3212 mutex_lock(&con->mutex);
3213 clear_standby(con);
3214 mutex_unlock(&con->mutex);
3215 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3216 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3217 queue_con(con);
3218 }
3219 EXPORT_SYMBOL(ceph_con_keepalive);
3220
3221 bool ceph_con_keepalive_expired(struct ceph_connection *con,
3222 unsigned long interval)
3223 {
3224 if (interval > 0 &&
3225 (con->peer_features & CEPH_FEATURE_MSGR_KEEPALIVE2)) {
3226 struct timespec now;
3227 struct timespec ts;
3228 ktime_get_real_ts(&now);
3229 jiffies_to_timespec(interval, &ts);
3230 ts = timespec_add(con->last_keepalive_ack, ts);
3231 return timespec_compare(&now, &ts) >= 0;
3232 }
3233 return false;
3234 }
3235
3236 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3237 {
3238 struct ceph_msg_data *data;
3239
3240 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3241 return NULL;
3242
3243 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3244 if (!data)
3245 return NULL;
3246
3247 data->type = type;
3248 INIT_LIST_HEAD(&data->links);
3249
3250 return data;
3251 }
3252
3253 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3254 {
3255 if (!data)
3256 return;
3257
3258 WARN_ON(!list_empty(&data->links));
3259 if (data->type == CEPH_MSG_DATA_PAGELIST)
3260 ceph_pagelist_release(data->pagelist);
3261 kmem_cache_free(ceph_msg_data_cache, data);
3262 }
3263
3264 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3265 size_t length, size_t alignment)
3266 {
3267 struct ceph_msg_data *data;
3268
3269 BUG_ON(!pages);
3270 BUG_ON(!length);
3271
3272 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3273 BUG_ON(!data);
3274 data->pages = pages;
3275 data->length = length;
3276 data->alignment = alignment & ~PAGE_MASK;
3277
3278 list_add_tail(&data->links, &msg->data);
3279 msg->data_length += length;
3280 }
3281 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3282
3283 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3284 struct ceph_pagelist *pagelist)
3285 {
3286 struct ceph_msg_data *data;
3287
3288 BUG_ON(!pagelist);
3289 BUG_ON(!pagelist->length);
3290
3291 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3292 BUG_ON(!data);
3293 data->pagelist = pagelist;
3294
3295 list_add_tail(&data->links, &msg->data);
3296 msg->data_length += pagelist->length;
3297 }
3298 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3299
3300 #ifdef CONFIG_BLOCK
3301 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3302 size_t length)
3303 {
3304 struct ceph_msg_data *data;
3305
3306 BUG_ON(!bio);
3307
3308 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3309 BUG_ON(!data);
3310 data->bio = bio;
3311 data->bio_length = length;
3312
3313 list_add_tail(&data->links, &msg->data);
3314 msg->data_length += length;
3315 }
3316 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3317 #endif /* CONFIG_BLOCK */
3318
3319 /*
3320 * construct a new message with given type, size
3321 * the new msg has a ref count of 1.
3322 */
3323 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3324 bool can_fail)
3325 {
3326 struct ceph_msg *m;
3327
3328 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3329 if (m == NULL)
3330 goto out;
3331
3332 m->hdr.type = cpu_to_le16(type);
3333 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3334 m->hdr.front_len = cpu_to_le32(front_len);
3335
3336 INIT_LIST_HEAD(&m->list_head);
3337 kref_init(&m->kref);
3338 INIT_LIST_HEAD(&m->data);
3339
3340 /* front */
3341 if (front_len) {
3342 m->front.iov_base = ceph_kvmalloc(front_len, flags);
3343 if (m->front.iov_base == NULL) {
3344 dout("ceph_msg_new can't allocate %d bytes\n",
3345 front_len);
3346 goto out2;
3347 }
3348 } else {
3349 m->front.iov_base = NULL;
3350 }
3351 m->front_alloc_len = m->front.iov_len = front_len;
3352
3353 dout("ceph_msg_new %p front %d\n", m, front_len);
3354 return m;
3355
3356 out2:
3357 ceph_msg_put(m);
3358 out:
3359 if (!can_fail) {
3360 pr_err("msg_new can't create type %d front %d\n", type,
3361 front_len);
3362 WARN_ON(1);
3363 } else {
3364 dout("msg_new can't create type %d front %d\n", type,
3365 front_len);
3366 }
3367 return NULL;
3368 }
3369 EXPORT_SYMBOL(ceph_msg_new);
3370
3371 /*
3372 * Allocate "middle" portion of a message, if it is needed and wasn't
3373 * allocated by alloc_msg. This allows us to read a small fixed-size
3374 * per-type header in the front and then gracefully fail (i.e.,
3375 * propagate the error to the caller based on info in the front) when
3376 * the middle is too large.
3377 */
3378 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3379 {
3380 int type = le16_to_cpu(msg->hdr.type);
3381 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3382
3383 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3384 ceph_msg_type_name(type), middle_len);
3385 BUG_ON(!middle_len);
3386 BUG_ON(msg->middle);
3387
3388 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3389 if (!msg->middle)
3390 return -ENOMEM;
3391 return 0;
3392 }
3393
3394 /*
3395 * Allocate a message for receiving an incoming message on a
3396 * connection, and save the result in con->in_msg. Uses the
3397 * connection's private alloc_msg op if available.
3398 *
3399 * Returns 0 on success, or a negative error code.
3400 *
3401 * On success, if we set *skip = 1:
3402 * - the next message should be skipped and ignored.
3403 * - con->in_msg == NULL
3404 * or if we set *skip = 0:
3405 * - con->in_msg is non-null.
3406 * On error (ENOMEM, EAGAIN, ...),
3407 * - con->in_msg == NULL
3408 */
3409 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3410 {
3411 struct ceph_msg_header *hdr = &con->in_hdr;
3412 int middle_len = le32_to_cpu(hdr->middle_len);
3413 struct ceph_msg *msg;
3414 int ret = 0;
3415
3416 BUG_ON(con->in_msg != NULL);
3417 BUG_ON(!con->ops->alloc_msg);
3418
3419 mutex_unlock(&con->mutex);
3420 msg = con->ops->alloc_msg(con, hdr, skip);
3421 mutex_lock(&con->mutex);
3422 if (con->state != CON_STATE_OPEN) {
3423 if (msg)
3424 ceph_msg_put(msg);
3425 return -EAGAIN;
3426 }
3427 if (msg) {
3428 BUG_ON(*skip);
3429 msg_con_set(msg, con);
3430 con->in_msg = msg;
3431 } else {
3432 /*
3433 * Null message pointer means either we should skip
3434 * this message or we couldn't allocate memory. The
3435 * former is not an error.
3436 */
3437 if (*skip)
3438 return 0;
3439
3440 con->error_msg = "error allocating memory for incoming message";
3441 return -ENOMEM;
3442 }
3443 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3444
3445 if (middle_len && !con->in_msg->middle) {
3446 ret = ceph_alloc_middle(con, con->in_msg);
3447 if (ret < 0) {
3448 ceph_msg_put(con->in_msg);
3449 con->in_msg = NULL;
3450 }
3451 }
3452
3453 return ret;
3454 }
3455
3456
3457 /*
3458 * Free a generically kmalloc'd message.
3459 */
3460 static void ceph_msg_free(struct ceph_msg *m)
3461 {
3462 dout("%s %p\n", __func__, m);
3463 kvfree(m->front.iov_base);
3464 kmem_cache_free(ceph_msg_cache, m);
3465 }
3466
3467 static void ceph_msg_release(struct kref *kref)
3468 {
3469 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3470 struct ceph_msg_data *data, *next;
3471
3472 dout("%s %p\n", __func__, m);
3473 WARN_ON(!list_empty(&m->list_head));
3474
3475 msg_con_set(m, NULL);
3476
3477 /* drop middle, data, if any */
3478 if (m->middle) {
3479 ceph_buffer_put(m->middle);
3480 m->middle = NULL;
3481 }
3482
3483 list_for_each_entry_safe(data, next, &m->data, links) {
3484 list_del_init(&data->links);
3485 ceph_msg_data_destroy(data);
3486 }
3487 m->data_length = 0;
3488
3489 if (m->pool)
3490 ceph_msgpool_put(m->pool, m);
3491 else
3492 ceph_msg_free(m);
3493 }
3494
3495 struct ceph_msg *ceph_msg_get(struct ceph_msg *msg)
3496 {
3497 dout("%s %p (was %d)\n", __func__, msg,
3498 kref_read(&msg->kref));
3499 kref_get(&msg->kref);
3500 return msg;
3501 }
3502 EXPORT_SYMBOL(ceph_msg_get);
3503
3504 void ceph_msg_put(struct ceph_msg *msg)
3505 {
3506 dout("%s %p (was %d)\n", __func__, msg,
3507 kref_read(&msg->kref));
3508 kref_put(&msg->kref, ceph_msg_release);
3509 }
3510 EXPORT_SYMBOL(ceph_msg_put);
3511
3512 void ceph_msg_dump(struct ceph_msg *msg)
3513 {
3514 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3515 msg->front_alloc_len, msg->data_length);
3516 print_hex_dump(KERN_DEBUG, "header: ",
3517 DUMP_PREFIX_OFFSET, 16, 1,
3518 &msg->hdr, sizeof(msg->hdr), true);
3519 print_hex_dump(KERN_DEBUG, " front: ",
3520 DUMP_PREFIX_OFFSET, 16, 1,
3521 msg->front.iov_base, msg->front.iov_len, true);
3522 if (msg->middle)
3523 print_hex_dump(KERN_DEBUG, "middle: ",
3524 DUMP_PREFIX_OFFSET, 16, 1,
3525 msg->middle->vec.iov_base,
3526 msg->middle->vec.iov_len, true);
3527 print_hex_dump(KERN_DEBUG, "footer: ",
3528 DUMP_PREFIX_OFFSET, 16, 1,
3529 &msg->footer, sizeof(msg->footer), true);
3530 }
3531 EXPORT_SYMBOL(ceph_msg_dump);