]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/ceph/osdmap.c
Merge tag 'for-5.14-rc7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-jammy-kernel.git] / net / ceph / osdmap.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/ceph/ceph_debug.h>
4
5 #include <linux/module.h>
6 #include <linux/slab.h>
7
8 #include <linux/ceph/libceph.h>
9 #include <linux/ceph/osdmap.h>
10 #include <linux/ceph/decode.h>
11 #include <linux/crush/hash.h>
12 #include <linux/crush/mapper.h>
13
14 char *ceph_osdmap_state_str(char *str, int len, u32 state)
15 {
16 if (!len)
17 return str;
18
19 if ((state & CEPH_OSD_EXISTS) && (state & CEPH_OSD_UP))
20 snprintf(str, len, "exists, up");
21 else if (state & CEPH_OSD_EXISTS)
22 snprintf(str, len, "exists");
23 else if (state & CEPH_OSD_UP)
24 snprintf(str, len, "up");
25 else
26 snprintf(str, len, "doesn't exist");
27
28 return str;
29 }
30
31 /* maps */
32
33 static int calc_bits_of(unsigned int t)
34 {
35 int b = 0;
36 while (t) {
37 t = t >> 1;
38 b++;
39 }
40 return b;
41 }
42
43 /*
44 * the foo_mask is the smallest value 2^n-1 that is >= foo.
45 */
46 static void calc_pg_masks(struct ceph_pg_pool_info *pi)
47 {
48 pi->pg_num_mask = (1 << calc_bits_of(pi->pg_num-1)) - 1;
49 pi->pgp_num_mask = (1 << calc_bits_of(pi->pgp_num-1)) - 1;
50 }
51
52 /*
53 * decode crush map
54 */
55 static int crush_decode_uniform_bucket(void **p, void *end,
56 struct crush_bucket_uniform *b)
57 {
58 dout("crush_decode_uniform_bucket %p to %p\n", *p, end);
59 ceph_decode_need(p, end, (1+b->h.size) * sizeof(u32), bad);
60 b->item_weight = ceph_decode_32(p);
61 return 0;
62 bad:
63 return -EINVAL;
64 }
65
66 static int crush_decode_list_bucket(void **p, void *end,
67 struct crush_bucket_list *b)
68 {
69 int j;
70 dout("crush_decode_list_bucket %p to %p\n", *p, end);
71 b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
72 if (b->item_weights == NULL)
73 return -ENOMEM;
74 b->sum_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
75 if (b->sum_weights == NULL)
76 return -ENOMEM;
77 ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
78 for (j = 0; j < b->h.size; j++) {
79 b->item_weights[j] = ceph_decode_32(p);
80 b->sum_weights[j] = ceph_decode_32(p);
81 }
82 return 0;
83 bad:
84 return -EINVAL;
85 }
86
87 static int crush_decode_tree_bucket(void **p, void *end,
88 struct crush_bucket_tree *b)
89 {
90 int j;
91 dout("crush_decode_tree_bucket %p to %p\n", *p, end);
92 ceph_decode_8_safe(p, end, b->num_nodes, bad);
93 b->node_weights = kcalloc(b->num_nodes, sizeof(u32), GFP_NOFS);
94 if (b->node_weights == NULL)
95 return -ENOMEM;
96 ceph_decode_need(p, end, b->num_nodes * sizeof(u32), bad);
97 for (j = 0; j < b->num_nodes; j++)
98 b->node_weights[j] = ceph_decode_32(p);
99 return 0;
100 bad:
101 return -EINVAL;
102 }
103
104 static int crush_decode_straw_bucket(void **p, void *end,
105 struct crush_bucket_straw *b)
106 {
107 int j;
108 dout("crush_decode_straw_bucket %p to %p\n", *p, end);
109 b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
110 if (b->item_weights == NULL)
111 return -ENOMEM;
112 b->straws = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
113 if (b->straws == NULL)
114 return -ENOMEM;
115 ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
116 for (j = 0; j < b->h.size; j++) {
117 b->item_weights[j] = ceph_decode_32(p);
118 b->straws[j] = ceph_decode_32(p);
119 }
120 return 0;
121 bad:
122 return -EINVAL;
123 }
124
125 static int crush_decode_straw2_bucket(void **p, void *end,
126 struct crush_bucket_straw2 *b)
127 {
128 int j;
129 dout("crush_decode_straw2_bucket %p to %p\n", *p, end);
130 b->item_weights = kcalloc(b->h.size, sizeof(u32), GFP_NOFS);
131 if (b->item_weights == NULL)
132 return -ENOMEM;
133 ceph_decode_need(p, end, b->h.size * sizeof(u32), bad);
134 for (j = 0; j < b->h.size; j++)
135 b->item_weights[j] = ceph_decode_32(p);
136 return 0;
137 bad:
138 return -EINVAL;
139 }
140
141 struct crush_name_node {
142 struct rb_node cn_node;
143 int cn_id;
144 char cn_name[];
145 };
146
147 static struct crush_name_node *alloc_crush_name(size_t name_len)
148 {
149 struct crush_name_node *cn;
150
151 cn = kmalloc(sizeof(*cn) + name_len + 1, GFP_NOIO);
152 if (!cn)
153 return NULL;
154
155 RB_CLEAR_NODE(&cn->cn_node);
156 return cn;
157 }
158
159 static void free_crush_name(struct crush_name_node *cn)
160 {
161 WARN_ON(!RB_EMPTY_NODE(&cn->cn_node));
162
163 kfree(cn);
164 }
165
166 DEFINE_RB_FUNCS(crush_name, struct crush_name_node, cn_id, cn_node)
167
168 static int decode_crush_names(void **p, void *end, struct rb_root *root)
169 {
170 u32 n;
171
172 ceph_decode_32_safe(p, end, n, e_inval);
173 while (n--) {
174 struct crush_name_node *cn;
175 int id;
176 u32 name_len;
177
178 ceph_decode_32_safe(p, end, id, e_inval);
179 ceph_decode_32_safe(p, end, name_len, e_inval);
180 ceph_decode_need(p, end, name_len, e_inval);
181
182 cn = alloc_crush_name(name_len);
183 if (!cn)
184 return -ENOMEM;
185
186 cn->cn_id = id;
187 memcpy(cn->cn_name, *p, name_len);
188 cn->cn_name[name_len] = '\0';
189 *p += name_len;
190
191 if (!__insert_crush_name(root, cn)) {
192 free_crush_name(cn);
193 return -EEXIST;
194 }
195 }
196
197 return 0;
198
199 e_inval:
200 return -EINVAL;
201 }
202
203 void clear_crush_names(struct rb_root *root)
204 {
205 while (!RB_EMPTY_ROOT(root)) {
206 struct crush_name_node *cn =
207 rb_entry(rb_first(root), struct crush_name_node, cn_node);
208
209 erase_crush_name(root, cn);
210 free_crush_name(cn);
211 }
212 }
213
214 static struct crush_choose_arg_map *alloc_choose_arg_map(void)
215 {
216 struct crush_choose_arg_map *arg_map;
217
218 arg_map = kzalloc(sizeof(*arg_map), GFP_NOIO);
219 if (!arg_map)
220 return NULL;
221
222 RB_CLEAR_NODE(&arg_map->node);
223 return arg_map;
224 }
225
226 static void free_choose_arg_map(struct crush_choose_arg_map *arg_map)
227 {
228 if (arg_map) {
229 int i, j;
230
231 WARN_ON(!RB_EMPTY_NODE(&arg_map->node));
232
233 for (i = 0; i < arg_map->size; i++) {
234 struct crush_choose_arg *arg = &arg_map->args[i];
235
236 for (j = 0; j < arg->weight_set_size; j++)
237 kfree(arg->weight_set[j].weights);
238 kfree(arg->weight_set);
239 kfree(arg->ids);
240 }
241 kfree(arg_map->args);
242 kfree(arg_map);
243 }
244 }
245
246 DEFINE_RB_FUNCS(choose_arg_map, struct crush_choose_arg_map, choose_args_index,
247 node);
248
249 void clear_choose_args(struct crush_map *c)
250 {
251 while (!RB_EMPTY_ROOT(&c->choose_args)) {
252 struct crush_choose_arg_map *arg_map =
253 rb_entry(rb_first(&c->choose_args),
254 struct crush_choose_arg_map, node);
255
256 erase_choose_arg_map(&c->choose_args, arg_map);
257 free_choose_arg_map(arg_map);
258 }
259 }
260
261 static u32 *decode_array_32_alloc(void **p, void *end, u32 *plen)
262 {
263 u32 *a = NULL;
264 u32 len;
265 int ret;
266
267 ceph_decode_32_safe(p, end, len, e_inval);
268 if (len) {
269 u32 i;
270
271 a = kmalloc_array(len, sizeof(u32), GFP_NOIO);
272 if (!a) {
273 ret = -ENOMEM;
274 goto fail;
275 }
276
277 ceph_decode_need(p, end, len * sizeof(u32), e_inval);
278 for (i = 0; i < len; i++)
279 a[i] = ceph_decode_32(p);
280 }
281
282 *plen = len;
283 return a;
284
285 e_inval:
286 ret = -EINVAL;
287 fail:
288 kfree(a);
289 return ERR_PTR(ret);
290 }
291
292 /*
293 * Assumes @arg is zero-initialized.
294 */
295 static int decode_choose_arg(void **p, void *end, struct crush_choose_arg *arg)
296 {
297 int ret;
298
299 ceph_decode_32_safe(p, end, arg->weight_set_size, e_inval);
300 if (arg->weight_set_size) {
301 u32 i;
302
303 arg->weight_set = kmalloc_array(arg->weight_set_size,
304 sizeof(*arg->weight_set),
305 GFP_NOIO);
306 if (!arg->weight_set)
307 return -ENOMEM;
308
309 for (i = 0; i < arg->weight_set_size; i++) {
310 struct crush_weight_set *w = &arg->weight_set[i];
311
312 w->weights = decode_array_32_alloc(p, end, &w->size);
313 if (IS_ERR(w->weights)) {
314 ret = PTR_ERR(w->weights);
315 w->weights = NULL;
316 return ret;
317 }
318 }
319 }
320
321 arg->ids = decode_array_32_alloc(p, end, &arg->ids_size);
322 if (IS_ERR(arg->ids)) {
323 ret = PTR_ERR(arg->ids);
324 arg->ids = NULL;
325 return ret;
326 }
327
328 return 0;
329
330 e_inval:
331 return -EINVAL;
332 }
333
334 static int decode_choose_args(void **p, void *end, struct crush_map *c)
335 {
336 struct crush_choose_arg_map *arg_map = NULL;
337 u32 num_choose_arg_maps, num_buckets;
338 int ret;
339
340 ceph_decode_32_safe(p, end, num_choose_arg_maps, e_inval);
341 while (num_choose_arg_maps--) {
342 arg_map = alloc_choose_arg_map();
343 if (!arg_map) {
344 ret = -ENOMEM;
345 goto fail;
346 }
347
348 ceph_decode_64_safe(p, end, arg_map->choose_args_index,
349 e_inval);
350 arg_map->size = c->max_buckets;
351 arg_map->args = kcalloc(arg_map->size, sizeof(*arg_map->args),
352 GFP_NOIO);
353 if (!arg_map->args) {
354 ret = -ENOMEM;
355 goto fail;
356 }
357
358 ceph_decode_32_safe(p, end, num_buckets, e_inval);
359 while (num_buckets--) {
360 struct crush_choose_arg *arg;
361 u32 bucket_index;
362
363 ceph_decode_32_safe(p, end, bucket_index, e_inval);
364 if (bucket_index >= arg_map->size)
365 goto e_inval;
366
367 arg = &arg_map->args[bucket_index];
368 ret = decode_choose_arg(p, end, arg);
369 if (ret)
370 goto fail;
371
372 if (arg->ids_size &&
373 arg->ids_size != c->buckets[bucket_index]->size)
374 goto e_inval;
375 }
376
377 insert_choose_arg_map(&c->choose_args, arg_map);
378 }
379
380 return 0;
381
382 e_inval:
383 ret = -EINVAL;
384 fail:
385 free_choose_arg_map(arg_map);
386 return ret;
387 }
388
389 static void crush_finalize(struct crush_map *c)
390 {
391 __s32 b;
392
393 /* Space for the array of pointers to per-bucket workspace */
394 c->working_size = sizeof(struct crush_work) +
395 c->max_buckets * sizeof(struct crush_work_bucket *);
396
397 for (b = 0; b < c->max_buckets; b++) {
398 if (!c->buckets[b])
399 continue;
400
401 switch (c->buckets[b]->alg) {
402 default:
403 /*
404 * The base case, permutation variables and
405 * the pointer to the permutation array.
406 */
407 c->working_size += sizeof(struct crush_work_bucket);
408 break;
409 }
410 /* Every bucket has a permutation array. */
411 c->working_size += c->buckets[b]->size * sizeof(__u32);
412 }
413 }
414
415 static struct crush_map *crush_decode(void *pbyval, void *end)
416 {
417 struct crush_map *c;
418 int err;
419 int i, j;
420 void **p = &pbyval;
421 void *start = pbyval;
422 u32 magic;
423
424 dout("crush_decode %p to %p len %d\n", *p, end, (int)(end - *p));
425
426 c = kzalloc(sizeof(*c), GFP_NOFS);
427 if (c == NULL)
428 return ERR_PTR(-ENOMEM);
429
430 c->type_names = RB_ROOT;
431 c->names = RB_ROOT;
432 c->choose_args = RB_ROOT;
433
434 /* set tunables to default values */
435 c->choose_local_tries = 2;
436 c->choose_local_fallback_tries = 5;
437 c->choose_total_tries = 19;
438 c->chooseleaf_descend_once = 0;
439
440 ceph_decode_need(p, end, 4*sizeof(u32), bad);
441 magic = ceph_decode_32(p);
442 if (magic != CRUSH_MAGIC) {
443 pr_err("crush_decode magic %x != current %x\n",
444 (unsigned int)magic, (unsigned int)CRUSH_MAGIC);
445 goto bad;
446 }
447 c->max_buckets = ceph_decode_32(p);
448 c->max_rules = ceph_decode_32(p);
449 c->max_devices = ceph_decode_32(p);
450
451 c->buckets = kcalloc(c->max_buckets, sizeof(*c->buckets), GFP_NOFS);
452 if (c->buckets == NULL)
453 goto badmem;
454 c->rules = kcalloc(c->max_rules, sizeof(*c->rules), GFP_NOFS);
455 if (c->rules == NULL)
456 goto badmem;
457
458 /* buckets */
459 for (i = 0; i < c->max_buckets; i++) {
460 int size = 0;
461 u32 alg;
462 struct crush_bucket *b;
463
464 ceph_decode_32_safe(p, end, alg, bad);
465 if (alg == 0) {
466 c->buckets[i] = NULL;
467 continue;
468 }
469 dout("crush_decode bucket %d off %x %p to %p\n",
470 i, (int)(*p-start), *p, end);
471
472 switch (alg) {
473 case CRUSH_BUCKET_UNIFORM:
474 size = sizeof(struct crush_bucket_uniform);
475 break;
476 case CRUSH_BUCKET_LIST:
477 size = sizeof(struct crush_bucket_list);
478 break;
479 case CRUSH_BUCKET_TREE:
480 size = sizeof(struct crush_bucket_tree);
481 break;
482 case CRUSH_BUCKET_STRAW:
483 size = sizeof(struct crush_bucket_straw);
484 break;
485 case CRUSH_BUCKET_STRAW2:
486 size = sizeof(struct crush_bucket_straw2);
487 break;
488 default:
489 goto bad;
490 }
491 BUG_ON(size == 0);
492 b = c->buckets[i] = kzalloc(size, GFP_NOFS);
493 if (b == NULL)
494 goto badmem;
495
496 ceph_decode_need(p, end, 4*sizeof(u32), bad);
497 b->id = ceph_decode_32(p);
498 b->type = ceph_decode_16(p);
499 b->alg = ceph_decode_8(p);
500 b->hash = ceph_decode_8(p);
501 b->weight = ceph_decode_32(p);
502 b->size = ceph_decode_32(p);
503
504 dout("crush_decode bucket size %d off %x %p to %p\n",
505 b->size, (int)(*p-start), *p, end);
506
507 b->items = kcalloc(b->size, sizeof(__s32), GFP_NOFS);
508 if (b->items == NULL)
509 goto badmem;
510
511 ceph_decode_need(p, end, b->size*sizeof(u32), bad);
512 for (j = 0; j < b->size; j++)
513 b->items[j] = ceph_decode_32(p);
514
515 switch (b->alg) {
516 case CRUSH_BUCKET_UNIFORM:
517 err = crush_decode_uniform_bucket(p, end,
518 (struct crush_bucket_uniform *)b);
519 if (err < 0)
520 goto fail;
521 break;
522 case CRUSH_BUCKET_LIST:
523 err = crush_decode_list_bucket(p, end,
524 (struct crush_bucket_list *)b);
525 if (err < 0)
526 goto fail;
527 break;
528 case CRUSH_BUCKET_TREE:
529 err = crush_decode_tree_bucket(p, end,
530 (struct crush_bucket_tree *)b);
531 if (err < 0)
532 goto fail;
533 break;
534 case CRUSH_BUCKET_STRAW:
535 err = crush_decode_straw_bucket(p, end,
536 (struct crush_bucket_straw *)b);
537 if (err < 0)
538 goto fail;
539 break;
540 case CRUSH_BUCKET_STRAW2:
541 err = crush_decode_straw2_bucket(p, end,
542 (struct crush_bucket_straw2 *)b);
543 if (err < 0)
544 goto fail;
545 break;
546 }
547 }
548
549 /* rules */
550 dout("rule vec is %p\n", c->rules);
551 for (i = 0; i < c->max_rules; i++) {
552 u32 yes;
553 struct crush_rule *r;
554
555 ceph_decode_32_safe(p, end, yes, bad);
556 if (!yes) {
557 dout("crush_decode NO rule %d off %x %p to %p\n",
558 i, (int)(*p-start), *p, end);
559 c->rules[i] = NULL;
560 continue;
561 }
562
563 dout("crush_decode rule %d off %x %p to %p\n",
564 i, (int)(*p-start), *p, end);
565
566 /* len */
567 ceph_decode_32_safe(p, end, yes, bad);
568 #if BITS_PER_LONG == 32
569 if (yes > (ULONG_MAX - sizeof(*r))
570 / sizeof(struct crush_rule_step))
571 goto bad;
572 #endif
573 r = kmalloc(struct_size(r, steps, yes), GFP_NOFS);
574 c->rules[i] = r;
575 if (r == NULL)
576 goto badmem;
577 dout(" rule %d is at %p\n", i, r);
578 r->len = yes;
579 ceph_decode_copy_safe(p, end, &r->mask, 4, bad); /* 4 u8's */
580 ceph_decode_need(p, end, r->len*3*sizeof(u32), bad);
581 for (j = 0; j < r->len; j++) {
582 r->steps[j].op = ceph_decode_32(p);
583 r->steps[j].arg1 = ceph_decode_32(p);
584 r->steps[j].arg2 = ceph_decode_32(p);
585 }
586 }
587
588 err = decode_crush_names(p, end, &c->type_names);
589 if (err)
590 goto fail;
591
592 err = decode_crush_names(p, end, &c->names);
593 if (err)
594 goto fail;
595
596 ceph_decode_skip_map(p, end, 32, string, bad); /* rule_name_map */
597
598 /* tunables */
599 ceph_decode_need(p, end, 3*sizeof(u32), done);
600 c->choose_local_tries = ceph_decode_32(p);
601 c->choose_local_fallback_tries = ceph_decode_32(p);
602 c->choose_total_tries = ceph_decode_32(p);
603 dout("crush decode tunable choose_local_tries = %d\n",
604 c->choose_local_tries);
605 dout("crush decode tunable choose_local_fallback_tries = %d\n",
606 c->choose_local_fallback_tries);
607 dout("crush decode tunable choose_total_tries = %d\n",
608 c->choose_total_tries);
609
610 ceph_decode_need(p, end, sizeof(u32), done);
611 c->chooseleaf_descend_once = ceph_decode_32(p);
612 dout("crush decode tunable chooseleaf_descend_once = %d\n",
613 c->chooseleaf_descend_once);
614
615 ceph_decode_need(p, end, sizeof(u8), done);
616 c->chooseleaf_vary_r = ceph_decode_8(p);
617 dout("crush decode tunable chooseleaf_vary_r = %d\n",
618 c->chooseleaf_vary_r);
619
620 /* skip straw_calc_version, allowed_bucket_algs */
621 ceph_decode_need(p, end, sizeof(u8) + sizeof(u32), done);
622 *p += sizeof(u8) + sizeof(u32);
623
624 ceph_decode_need(p, end, sizeof(u8), done);
625 c->chooseleaf_stable = ceph_decode_8(p);
626 dout("crush decode tunable chooseleaf_stable = %d\n",
627 c->chooseleaf_stable);
628
629 if (*p != end) {
630 /* class_map */
631 ceph_decode_skip_map(p, end, 32, 32, bad);
632 /* class_name */
633 ceph_decode_skip_map(p, end, 32, string, bad);
634 /* class_bucket */
635 ceph_decode_skip_map_of_map(p, end, 32, 32, 32, bad);
636 }
637
638 if (*p != end) {
639 err = decode_choose_args(p, end, c);
640 if (err)
641 goto fail;
642 }
643
644 done:
645 crush_finalize(c);
646 dout("crush_decode success\n");
647 return c;
648
649 badmem:
650 err = -ENOMEM;
651 fail:
652 dout("crush_decode fail %d\n", err);
653 crush_destroy(c);
654 return ERR_PTR(err);
655
656 bad:
657 err = -EINVAL;
658 goto fail;
659 }
660
661 int ceph_pg_compare(const struct ceph_pg *lhs, const struct ceph_pg *rhs)
662 {
663 if (lhs->pool < rhs->pool)
664 return -1;
665 if (lhs->pool > rhs->pool)
666 return 1;
667 if (lhs->seed < rhs->seed)
668 return -1;
669 if (lhs->seed > rhs->seed)
670 return 1;
671
672 return 0;
673 }
674
675 int ceph_spg_compare(const struct ceph_spg *lhs, const struct ceph_spg *rhs)
676 {
677 int ret;
678
679 ret = ceph_pg_compare(&lhs->pgid, &rhs->pgid);
680 if (ret)
681 return ret;
682
683 if (lhs->shard < rhs->shard)
684 return -1;
685 if (lhs->shard > rhs->shard)
686 return 1;
687
688 return 0;
689 }
690
691 static struct ceph_pg_mapping *alloc_pg_mapping(size_t payload_len)
692 {
693 struct ceph_pg_mapping *pg;
694
695 pg = kmalloc(sizeof(*pg) + payload_len, GFP_NOIO);
696 if (!pg)
697 return NULL;
698
699 RB_CLEAR_NODE(&pg->node);
700 return pg;
701 }
702
703 static void free_pg_mapping(struct ceph_pg_mapping *pg)
704 {
705 WARN_ON(!RB_EMPTY_NODE(&pg->node));
706
707 kfree(pg);
708 }
709
710 /*
711 * rbtree of pg_mapping for handling pg_temp (explicit mapping of pgid
712 * to a set of osds) and primary_temp (explicit primary setting)
713 */
714 DEFINE_RB_FUNCS2(pg_mapping, struct ceph_pg_mapping, pgid, ceph_pg_compare,
715 RB_BYPTR, const struct ceph_pg *, node)
716
717 /*
718 * rbtree of pg pool info
719 */
720 DEFINE_RB_FUNCS(pg_pool, struct ceph_pg_pool_info, id, node)
721
722 struct ceph_pg_pool_info *ceph_pg_pool_by_id(struct ceph_osdmap *map, u64 id)
723 {
724 return lookup_pg_pool(&map->pg_pools, id);
725 }
726
727 const char *ceph_pg_pool_name_by_id(struct ceph_osdmap *map, u64 id)
728 {
729 struct ceph_pg_pool_info *pi;
730
731 if (id == CEPH_NOPOOL)
732 return NULL;
733
734 if (WARN_ON_ONCE(id > (u64) INT_MAX))
735 return NULL;
736
737 pi = lookup_pg_pool(&map->pg_pools, id);
738 return pi ? pi->name : NULL;
739 }
740 EXPORT_SYMBOL(ceph_pg_pool_name_by_id);
741
742 int ceph_pg_poolid_by_name(struct ceph_osdmap *map, const char *name)
743 {
744 struct rb_node *rbp;
745
746 for (rbp = rb_first(&map->pg_pools); rbp; rbp = rb_next(rbp)) {
747 struct ceph_pg_pool_info *pi =
748 rb_entry(rbp, struct ceph_pg_pool_info, node);
749 if (pi->name && strcmp(pi->name, name) == 0)
750 return pi->id;
751 }
752 return -ENOENT;
753 }
754 EXPORT_SYMBOL(ceph_pg_poolid_by_name);
755
756 u64 ceph_pg_pool_flags(struct ceph_osdmap *map, u64 id)
757 {
758 struct ceph_pg_pool_info *pi;
759
760 pi = lookup_pg_pool(&map->pg_pools, id);
761 return pi ? pi->flags : 0;
762 }
763 EXPORT_SYMBOL(ceph_pg_pool_flags);
764
765 static void __remove_pg_pool(struct rb_root *root, struct ceph_pg_pool_info *pi)
766 {
767 erase_pg_pool(root, pi);
768 kfree(pi->name);
769 kfree(pi);
770 }
771
772 static int decode_pool(void **p, void *end, struct ceph_pg_pool_info *pi)
773 {
774 u8 ev, cv;
775 unsigned len, num;
776 void *pool_end;
777
778 ceph_decode_need(p, end, 2 + 4, bad);
779 ev = ceph_decode_8(p); /* encoding version */
780 cv = ceph_decode_8(p); /* compat version */
781 if (ev < 5) {
782 pr_warn("got v %d < 5 cv %d of ceph_pg_pool\n", ev, cv);
783 return -EINVAL;
784 }
785 if (cv > 9) {
786 pr_warn("got v %d cv %d > 9 of ceph_pg_pool\n", ev, cv);
787 return -EINVAL;
788 }
789 len = ceph_decode_32(p);
790 ceph_decode_need(p, end, len, bad);
791 pool_end = *p + len;
792
793 pi->type = ceph_decode_8(p);
794 pi->size = ceph_decode_8(p);
795 pi->crush_ruleset = ceph_decode_8(p);
796 pi->object_hash = ceph_decode_8(p);
797
798 pi->pg_num = ceph_decode_32(p);
799 pi->pgp_num = ceph_decode_32(p);
800
801 *p += 4 + 4; /* skip lpg* */
802 *p += 4; /* skip last_change */
803 *p += 8 + 4; /* skip snap_seq, snap_epoch */
804
805 /* skip snaps */
806 num = ceph_decode_32(p);
807 while (num--) {
808 *p += 8; /* snapid key */
809 *p += 1 + 1; /* versions */
810 len = ceph_decode_32(p);
811 *p += len;
812 }
813
814 /* skip removed_snaps */
815 num = ceph_decode_32(p);
816 *p += num * (8 + 8);
817
818 *p += 8; /* skip auid */
819 pi->flags = ceph_decode_64(p);
820 *p += 4; /* skip crash_replay_interval */
821
822 if (ev >= 7)
823 pi->min_size = ceph_decode_8(p);
824 else
825 pi->min_size = pi->size - pi->size / 2;
826
827 if (ev >= 8)
828 *p += 8 + 8; /* skip quota_max_* */
829
830 if (ev >= 9) {
831 /* skip tiers */
832 num = ceph_decode_32(p);
833 *p += num * 8;
834
835 *p += 8; /* skip tier_of */
836 *p += 1; /* skip cache_mode */
837
838 pi->read_tier = ceph_decode_64(p);
839 pi->write_tier = ceph_decode_64(p);
840 } else {
841 pi->read_tier = -1;
842 pi->write_tier = -1;
843 }
844
845 if (ev >= 10) {
846 /* skip properties */
847 num = ceph_decode_32(p);
848 while (num--) {
849 len = ceph_decode_32(p);
850 *p += len; /* key */
851 len = ceph_decode_32(p);
852 *p += len; /* val */
853 }
854 }
855
856 if (ev >= 11) {
857 /* skip hit_set_params */
858 *p += 1 + 1; /* versions */
859 len = ceph_decode_32(p);
860 *p += len;
861
862 *p += 4; /* skip hit_set_period */
863 *p += 4; /* skip hit_set_count */
864 }
865
866 if (ev >= 12)
867 *p += 4; /* skip stripe_width */
868
869 if (ev >= 13) {
870 *p += 8; /* skip target_max_bytes */
871 *p += 8; /* skip target_max_objects */
872 *p += 4; /* skip cache_target_dirty_ratio_micro */
873 *p += 4; /* skip cache_target_full_ratio_micro */
874 *p += 4; /* skip cache_min_flush_age */
875 *p += 4; /* skip cache_min_evict_age */
876 }
877
878 if (ev >= 14) {
879 /* skip erasure_code_profile */
880 len = ceph_decode_32(p);
881 *p += len;
882 }
883
884 /*
885 * last_force_op_resend_preluminous, will be overridden if the
886 * map was encoded with RESEND_ON_SPLIT
887 */
888 if (ev >= 15)
889 pi->last_force_request_resend = ceph_decode_32(p);
890 else
891 pi->last_force_request_resend = 0;
892
893 if (ev >= 16)
894 *p += 4; /* skip min_read_recency_for_promote */
895
896 if (ev >= 17)
897 *p += 8; /* skip expected_num_objects */
898
899 if (ev >= 19)
900 *p += 4; /* skip cache_target_dirty_high_ratio_micro */
901
902 if (ev >= 20)
903 *p += 4; /* skip min_write_recency_for_promote */
904
905 if (ev >= 21)
906 *p += 1; /* skip use_gmt_hitset */
907
908 if (ev >= 22)
909 *p += 1; /* skip fast_read */
910
911 if (ev >= 23) {
912 *p += 4; /* skip hit_set_grade_decay_rate */
913 *p += 4; /* skip hit_set_search_last_n */
914 }
915
916 if (ev >= 24) {
917 /* skip opts */
918 *p += 1 + 1; /* versions */
919 len = ceph_decode_32(p);
920 *p += len;
921 }
922
923 if (ev >= 25)
924 pi->last_force_request_resend = ceph_decode_32(p);
925
926 /* ignore the rest */
927
928 *p = pool_end;
929 calc_pg_masks(pi);
930 return 0;
931
932 bad:
933 return -EINVAL;
934 }
935
936 static int decode_pool_names(void **p, void *end, struct ceph_osdmap *map)
937 {
938 struct ceph_pg_pool_info *pi;
939 u32 num, len;
940 u64 pool;
941
942 ceph_decode_32_safe(p, end, num, bad);
943 dout(" %d pool names\n", num);
944 while (num--) {
945 ceph_decode_64_safe(p, end, pool, bad);
946 ceph_decode_32_safe(p, end, len, bad);
947 dout(" pool %llu len %d\n", pool, len);
948 ceph_decode_need(p, end, len, bad);
949 pi = lookup_pg_pool(&map->pg_pools, pool);
950 if (pi) {
951 char *name = kstrndup(*p, len, GFP_NOFS);
952
953 if (!name)
954 return -ENOMEM;
955 kfree(pi->name);
956 pi->name = name;
957 dout(" name is %s\n", pi->name);
958 }
959 *p += len;
960 }
961 return 0;
962
963 bad:
964 return -EINVAL;
965 }
966
967 /*
968 * CRUSH workspaces
969 *
970 * workspace_manager framework borrowed from fs/btrfs/compression.c.
971 * Two simplifications: there is only one type of workspace and there
972 * is always at least one workspace.
973 */
974 static struct crush_work *alloc_workspace(const struct crush_map *c)
975 {
976 struct crush_work *work;
977 size_t work_size;
978
979 WARN_ON(!c->working_size);
980 work_size = crush_work_size(c, CEPH_PG_MAX_SIZE);
981 dout("%s work_size %zu bytes\n", __func__, work_size);
982
983 work = ceph_kvmalloc(work_size, GFP_NOIO);
984 if (!work)
985 return NULL;
986
987 INIT_LIST_HEAD(&work->item);
988 crush_init_workspace(c, work);
989 return work;
990 }
991
992 static void free_workspace(struct crush_work *work)
993 {
994 WARN_ON(!list_empty(&work->item));
995 kvfree(work);
996 }
997
998 static void init_workspace_manager(struct workspace_manager *wsm)
999 {
1000 INIT_LIST_HEAD(&wsm->idle_ws);
1001 spin_lock_init(&wsm->ws_lock);
1002 atomic_set(&wsm->total_ws, 0);
1003 wsm->free_ws = 0;
1004 init_waitqueue_head(&wsm->ws_wait);
1005 }
1006
1007 static void add_initial_workspace(struct workspace_manager *wsm,
1008 struct crush_work *work)
1009 {
1010 WARN_ON(!list_empty(&wsm->idle_ws));
1011
1012 list_add(&work->item, &wsm->idle_ws);
1013 atomic_set(&wsm->total_ws, 1);
1014 wsm->free_ws = 1;
1015 }
1016
1017 static void cleanup_workspace_manager(struct workspace_manager *wsm)
1018 {
1019 struct crush_work *work;
1020
1021 while (!list_empty(&wsm->idle_ws)) {
1022 work = list_first_entry(&wsm->idle_ws, struct crush_work,
1023 item);
1024 list_del_init(&work->item);
1025 free_workspace(work);
1026 }
1027 atomic_set(&wsm->total_ws, 0);
1028 wsm->free_ws = 0;
1029 }
1030
1031 /*
1032 * Finds an available workspace or allocates a new one. If it's not
1033 * possible to allocate a new one, waits until there is one.
1034 */
1035 static struct crush_work *get_workspace(struct workspace_manager *wsm,
1036 const struct crush_map *c)
1037 {
1038 struct crush_work *work;
1039 int cpus = num_online_cpus();
1040
1041 again:
1042 spin_lock(&wsm->ws_lock);
1043 if (!list_empty(&wsm->idle_ws)) {
1044 work = list_first_entry(&wsm->idle_ws, struct crush_work,
1045 item);
1046 list_del_init(&work->item);
1047 wsm->free_ws--;
1048 spin_unlock(&wsm->ws_lock);
1049 return work;
1050
1051 }
1052 if (atomic_read(&wsm->total_ws) > cpus) {
1053 DEFINE_WAIT(wait);
1054
1055 spin_unlock(&wsm->ws_lock);
1056 prepare_to_wait(&wsm->ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1057 if (atomic_read(&wsm->total_ws) > cpus && !wsm->free_ws)
1058 schedule();
1059 finish_wait(&wsm->ws_wait, &wait);
1060 goto again;
1061 }
1062 atomic_inc(&wsm->total_ws);
1063 spin_unlock(&wsm->ws_lock);
1064
1065 work = alloc_workspace(c);
1066 if (!work) {
1067 atomic_dec(&wsm->total_ws);
1068 wake_up(&wsm->ws_wait);
1069
1070 /*
1071 * Do not return the error but go back to waiting. We
1072 * have the initial workspace and the CRUSH computation
1073 * time is bounded so we will get it eventually.
1074 */
1075 WARN_ON(atomic_read(&wsm->total_ws) < 1);
1076 goto again;
1077 }
1078 return work;
1079 }
1080
1081 /*
1082 * Puts a workspace back on the list or frees it if we have enough
1083 * idle ones sitting around.
1084 */
1085 static void put_workspace(struct workspace_manager *wsm,
1086 struct crush_work *work)
1087 {
1088 spin_lock(&wsm->ws_lock);
1089 if (wsm->free_ws <= num_online_cpus()) {
1090 list_add(&work->item, &wsm->idle_ws);
1091 wsm->free_ws++;
1092 spin_unlock(&wsm->ws_lock);
1093 goto wake;
1094 }
1095 spin_unlock(&wsm->ws_lock);
1096
1097 free_workspace(work);
1098 atomic_dec(&wsm->total_ws);
1099 wake:
1100 if (wq_has_sleeper(&wsm->ws_wait))
1101 wake_up(&wsm->ws_wait);
1102 }
1103
1104 /*
1105 * osd map
1106 */
1107 struct ceph_osdmap *ceph_osdmap_alloc(void)
1108 {
1109 struct ceph_osdmap *map;
1110
1111 map = kzalloc(sizeof(*map), GFP_NOIO);
1112 if (!map)
1113 return NULL;
1114
1115 map->pg_pools = RB_ROOT;
1116 map->pool_max = -1;
1117 map->pg_temp = RB_ROOT;
1118 map->primary_temp = RB_ROOT;
1119 map->pg_upmap = RB_ROOT;
1120 map->pg_upmap_items = RB_ROOT;
1121
1122 init_workspace_manager(&map->crush_wsm);
1123
1124 return map;
1125 }
1126
1127 void ceph_osdmap_destroy(struct ceph_osdmap *map)
1128 {
1129 dout("osdmap_destroy %p\n", map);
1130
1131 if (map->crush)
1132 crush_destroy(map->crush);
1133 cleanup_workspace_manager(&map->crush_wsm);
1134
1135 while (!RB_EMPTY_ROOT(&map->pg_temp)) {
1136 struct ceph_pg_mapping *pg =
1137 rb_entry(rb_first(&map->pg_temp),
1138 struct ceph_pg_mapping, node);
1139 erase_pg_mapping(&map->pg_temp, pg);
1140 free_pg_mapping(pg);
1141 }
1142 while (!RB_EMPTY_ROOT(&map->primary_temp)) {
1143 struct ceph_pg_mapping *pg =
1144 rb_entry(rb_first(&map->primary_temp),
1145 struct ceph_pg_mapping, node);
1146 erase_pg_mapping(&map->primary_temp, pg);
1147 free_pg_mapping(pg);
1148 }
1149 while (!RB_EMPTY_ROOT(&map->pg_upmap)) {
1150 struct ceph_pg_mapping *pg =
1151 rb_entry(rb_first(&map->pg_upmap),
1152 struct ceph_pg_mapping, node);
1153 rb_erase(&pg->node, &map->pg_upmap);
1154 kfree(pg);
1155 }
1156 while (!RB_EMPTY_ROOT(&map->pg_upmap_items)) {
1157 struct ceph_pg_mapping *pg =
1158 rb_entry(rb_first(&map->pg_upmap_items),
1159 struct ceph_pg_mapping, node);
1160 rb_erase(&pg->node, &map->pg_upmap_items);
1161 kfree(pg);
1162 }
1163 while (!RB_EMPTY_ROOT(&map->pg_pools)) {
1164 struct ceph_pg_pool_info *pi =
1165 rb_entry(rb_first(&map->pg_pools),
1166 struct ceph_pg_pool_info, node);
1167 __remove_pg_pool(&map->pg_pools, pi);
1168 }
1169 kvfree(map->osd_state);
1170 kvfree(map->osd_weight);
1171 kvfree(map->osd_addr);
1172 kvfree(map->osd_primary_affinity);
1173 kfree(map);
1174 }
1175
1176 /*
1177 * Adjust max_osd value, (re)allocate arrays.
1178 *
1179 * The new elements are properly initialized.
1180 */
1181 static int osdmap_set_max_osd(struct ceph_osdmap *map, u32 max)
1182 {
1183 u32 *state;
1184 u32 *weight;
1185 struct ceph_entity_addr *addr;
1186 u32 to_copy;
1187 int i;
1188
1189 dout("%s old %u new %u\n", __func__, map->max_osd, max);
1190 if (max == map->max_osd)
1191 return 0;
1192
1193 state = ceph_kvmalloc(array_size(max, sizeof(*state)), GFP_NOFS);
1194 weight = ceph_kvmalloc(array_size(max, sizeof(*weight)), GFP_NOFS);
1195 addr = ceph_kvmalloc(array_size(max, sizeof(*addr)), GFP_NOFS);
1196 if (!state || !weight || !addr) {
1197 kvfree(state);
1198 kvfree(weight);
1199 kvfree(addr);
1200 return -ENOMEM;
1201 }
1202
1203 to_copy = min(map->max_osd, max);
1204 if (map->osd_state) {
1205 memcpy(state, map->osd_state, to_copy * sizeof(*state));
1206 memcpy(weight, map->osd_weight, to_copy * sizeof(*weight));
1207 memcpy(addr, map->osd_addr, to_copy * sizeof(*addr));
1208 kvfree(map->osd_state);
1209 kvfree(map->osd_weight);
1210 kvfree(map->osd_addr);
1211 }
1212
1213 map->osd_state = state;
1214 map->osd_weight = weight;
1215 map->osd_addr = addr;
1216 for (i = map->max_osd; i < max; i++) {
1217 map->osd_state[i] = 0;
1218 map->osd_weight[i] = CEPH_OSD_OUT;
1219 memset(map->osd_addr + i, 0, sizeof(*map->osd_addr));
1220 }
1221
1222 if (map->osd_primary_affinity) {
1223 u32 *affinity;
1224
1225 affinity = ceph_kvmalloc(array_size(max, sizeof(*affinity)),
1226 GFP_NOFS);
1227 if (!affinity)
1228 return -ENOMEM;
1229
1230 memcpy(affinity, map->osd_primary_affinity,
1231 to_copy * sizeof(*affinity));
1232 kvfree(map->osd_primary_affinity);
1233
1234 map->osd_primary_affinity = affinity;
1235 for (i = map->max_osd; i < max; i++)
1236 map->osd_primary_affinity[i] =
1237 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1238 }
1239
1240 map->max_osd = max;
1241
1242 return 0;
1243 }
1244
1245 static int osdmap_set_crush(struct ceph_osdmap *map, struct crush_map *crush)
1246 {
1247 struct crush_work *work;
1248
1249 if (IS_ERR(crush))
1250 return PTR_ERR(crush);
1251
1252 work = alloc_workspace(crush);
1253 if (!work) {
1254 crush_destroy(crush);
1255 return -ENOMEM;
1256 }
1257
1258 if (map->crush)
1259 crush_destroy(map->crush);
1260 cleanup_workspace_manager(&map->crush_wsm);
1261 map->crush = crush;
1262 add_initial_workspace(&map->crush_wsm, work);
1263 return 0;
1264 }
1265
1266 #define OSDMAP_WRAPPER_COMPAT_VER 7
1267 #define OSDMAP_CLIENT_DATA_COMPAT_VER 1
1268
1269 /*
1270 * Return 0 or error. On success, *v is set to 0 for old (v6) osdmaps,
1271 * to struct_v of the client_data section for new (v7 and above)
1272 * osdmaps.
1273 */
1274 static int get_osdmap_client_data_v(void **p, void *end,
1275 const char *prefix, u8 *v)
1276 {
1277 u8 struct_v;
1278
1279 ceph_decode_8_safe(p, end, struct_v, e_inval);
1280 if (struct_v >= 7) {
1281 u8 struct_compat;
1282
1283 ceph_decode_8_safe(p, end, struct_compat, e_inval);
1284 if (struct_compat > OSDMAP_WRAPPER_COMPAT_VER) {
1285 pr_warn("got v %d cv %d > %d of %s ceph_osdmap\n",
1286 struct_v, struct_compat,
1287 OSDMAP_WRAPPER_COMPAT_VER, prefix);
1288 return -EINVAL;
1289 }
1290 *p += 4; /* ignore wrapper struct_len */
1291
1292 ceph_decode_8_safe(p, end, struct_v, e_inval);
1293 ceph_decode_8_safe(p, end, struct_compat, e_inval);
1294 if (struct_compat > OSDMAP_CLIENT_DATA_COMPAT_VER) {
1295 pr_warn("got v %d cv %d > %d of %s ceph_osdmap client data\n",
1296 struct_v, struct_compat,
1297 OSDMAP_CLIENT_DATA_COMPAT_VER, prefix);
1298 return -EINVAL;
1299 }
1300 *p += 4; /* ignore client data struct_len */
1301 } else {
1302 u16 version;
1303
1304 *p -= 1;
1305 ceph_decode_16_safe(p, end, version, e_inval);
1306 if (version < 6) {
1307 pr_warn("got v %d < 6 of %s ceph_osdmap\n",
1308 version, prefix);
1309 return -EINVAL;
1310 }
1311
1312 /* old osdmap encoding */
1313 struct_v = 0;
1314 }
1315
1316 *v = struct_v;
1317 return 0;
1318
1319 e_inval:
1320 return -EINVAL;
1321 }
1322
1323 static int __decode_pools(void **p, void *end, struct ceph_osdmap *map,
1324 bool incremental)
1325 {
1326 u32 n;
1327
1328 ceph_decode_32_safe(p, end, n, e_inval);
1329 while (n--) {
1330 struct ceph_pg_pool_info *pi;
1331 u64 pool;
1332 int ret;
1333
1334 ceph_decode_64_safe(p, end, pool, e_inval);
1335
1336 pi = lookup_pg_pool(&map->pg_pools, pool);
1337 if (!incremental || !pi) {
1338 pi = kzalloc(sizeof(*pi), GFP_NOFS);
1339 if (!pi)
1340 return -ENOMEM;
1341
1342 RB_CLEAR_NODE(&pi->node);
1343 pi->id = pool;
1344
1345 if (!__insert_pg_pool(&map->pg_pools, pi)) {
1346 kfree(pi);
1347 return -EEXIST;
1348 }
1349 }
1350
1351 ret = decode_pool(p, end, pi);
1352 if (ret)
1353 return ret;
1354 }
1355
1356 return 0;
1357
1358 e_inval:
1359 return -EINVAL;
1360 }
1361
1362 static int decode_pools(void **p, void *end, struct ceph_osdmap *map)
1363 {
1364 return __decode_pools(p, end, map, false);
1365 }
1366
1367 static int decode_new_pools(void **p, void *end, struct ceph_osdmap *map)
1368 {
1369 return __decode_pools(p, end, map, true);
1370 }
1371
1372 typedef struct ceph_pg_mapping *(*decode_mapping_fn_t)(void **, void *, bool);
1373
1374 static int decode_pg_mapping(void **p, void *end, struct rb_root *mapping_root,
1375 decode_mapping_fn_t fn, bool incremental)
1376 {
1377 u32 n;
1378
1379 WARN_ON(!incremental && !fn);
1380
1381 ceph_decode_32_safe(p, end, n, e_inval);
1382 while (n--) {
1383 struct ceph_pg_mapping *pg;
1384 struct ceph_pg pgid;
1385 int ret;
1386
1387 ret = ceph_decode_pgid(p, end, &pgid);
1388 if (ret)
1389 return ret;
1390
1391 pg = lookup_pg_mapping(mapping_root, &pgid);
1392 if (pg) {
1393 WARN_ON(!incremental);
1394 erase_pg_mapping(mapping_root, pg);
1395 free_pg_mapping(pg);
1396 }
1397
1398 if (fn) {
1399 pg = fn(p, end, incremental);
1400 if (IS_ERR(pg))
1401 return PTR_ERR(pg);
1402
1403 if (pg) {
1404 pg->pgid = pgid; /* struct */
1405 insert_pg_mapping(mapping_root, pg);
1406 }
1407 }
1408 }
1409
1410 return 0;
1411
1412 e_inval:
1413 return -EINVAL;
1414 }
1415
1416 static struct ceph_pg_mapping *__decode_pg_temp(void **p, void *end,
1417 bool incremental)
1418 {
1419 struct ceph_pg_mapping *pg;
1420 u32 len, i;
1421
1422 ceph_decode_32_safe(p, end, len, e_inval);
1423 if (len == 0 && incremental)
1424 return NULL; /* new_pg_temp: [] to remove */
1425 if (len > (SIZE_MAX - sizeof(*pg)) / sizeof(u32))
1426 return ERR_PTR(-EINVAL);
1427
1428 ceph_decode_need(p, end, len * sizeof(u32), e_inval);
1429 pg = alloc_pg_mapping(len * sizeof(u32));
1430 if (!pg)
1431 return ERR_PTR(-ENOMEM);
1432
1433 pg->pg_temp.len = len;
1434 for (i = 0; i < len; i++)
1435 pg->pg_temp.osds[i] = ceph_decode_32(p);
1436
1437 return pg;
1438
1439 e_inval:
1440 return ERR_PTR(-EINVAL);
1441 }
1442
1443 static int decode_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1444 {
1445 return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1446 false);
1447 }
1448
1449 static int decode_new_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1450 {
1451 return decode_pg_mapping(p, end, &map->pg_temp, __decode_pg_temp,
1452 true);
1453 }
1454
1455 static struct ceph_pg_mapping *__decode_primary_temp(void **p, void *end,
1456 bool incremental)
1457 {
1458 struct ceph_pg_mapping *pg;
1459 u32 osd;
1460
1461 ceph_decode_32_safe(p, end, osd, e_inval);
1462 if (osd == (u32)-1 && incremental)
1463 return NULL; /* new_primary_temp: -1 to remove */
1464
1465 pg = alloc_pg_mapping(0);
1466 if (!pg)
1467 return ERR_PTR(-ENOMEM);
1468
1469 pg->primary_temp.osd = osd;
1470 return pg;
1471
1472 e_inval:
1473 return ERR_PTR(-EINVAL);
1474 }
1475
1476 static int decode_primary_temp(void **p, void *end, struct ceph_osdmap *map)
1477 {
1478 return decode_pg_mapping(p, end, &map->primary_temp,
1479 __decode_primary_temp, false);
1480 }
1481
1482 static int decode_new_primary_temp(void **p, void *end,
1483 struct ceph_osdmap *map)
1484 {
1485 return decode_pg_mapping(p, end, &map->primary_temp,
1486 __decode_primary_temp, true);
1487 }
1488
1489 u32 ceph_get_primary_affinity(struct ceph_osdmap *map, int osd)
1490 {
1491 BUG_ON(osd >= map->max_osd);
1492
1493 if (!map->osd_primary_affinity)
1494 return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1495
1496 return map->osd_primary_affinity[osd];
1497 }
1498
1499 static int set_primary_affinity(struct ceph_osdmap *map, int osd, u32 aff)
1500 {
1501 BUG_ON(osd >= map->max_osd);
1502
1503 if (!map->osd_primary_affinity) {
1504 int i;
1505
1506 map->osd_primary_affinity = ceph_kvmalloc(
1507 array_size(map->max_osd, sizeof(*map->osd_primary_affinity)),
1508 GFP_NOFS);
1509 if (!map->osd_primary_affinity)
1510 return -ENOMEM;
1511
1512 for (i = 0; i < map->max_osd; i++)
1513 map->osd_primary_affinity[i] =
1514 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1515 }
1516
1517 map->osd_primary_affinity[osd] = aff;
1518
1519 return 0;
1520 }
1521
1522 static int decode_primary_affinity(void **p, void *end,
1523 struct ceph_osdmap *map)
1524 {
1525 u32 len, i;
1526
1527 ceph_decode_32_safe(p, end, len, e_inval);
1528 if (len == 0) {
1529 kvfree(map->osd_primary_affinity);
1530 map->osd_primary_affinity = NULL;
1531 return 0;
1532 }
1533 if (len != map->max_osd)
1534 goto e_inval;
1535
1536 ceph_decode_need(p, end, map->max_osd*sizeof(u32), e_inval);
1537
1538 for (i = 0; i < map->max_osd; i++) {
1539 int ret;
1540
1541 ret = set_primary_affinity(map, i, ceph_decode_32(p));
1542 if (ret)
1543 return ret;
1544 }
1545
1546 return 0;
1547
1548 e_inval:
1549 return -EINVAL;
1550 }
1551
1552 static int decode_new_primary_affinity(void **p, void *end,
1553 struct ceph_osdmap *map)
1554 {
1555 u32 n;
1556
1557 ceph_decode_32_safe(p, end, n, e_inval);
1558 while (n--) {
1559 u32 osd, aff;
1560 int ret;
1561
1562 ceph_decode_32_safe(p, end, osd, e_inval);
1563 ceph_decode_32_safe(p, end, aff, e_inval);
1564
1565 ret = set_primary_affinity(map, osd, aff);
1566 if (ret)
1567 return ret;
1568
1569 pr_info("osd%d primary-affinity 0x%x\n", osd, aff);
1570 }
1571
1572 return 0;
1573
1574 e_inval:
1575 return -EINVAL;
1576 }
1577
1578 static struct ceph_pg_mapping *__decode_pg_upmap(void **p, void *end,
1579 bool __unused)
1580 {
1581 return __decode_pg_temp(p, end, false);
1582 }
1583
1584 static int decode_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1585 {
1586 return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1587 false);
1588 }
1589
1590 static int decode_new_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1591 {
1592 return decode_pg_mapping(p, end, &map->pg_upmap, __decode_pg_upmap,
1593 true);
1594 }
1595
1596 static int decode_old_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1597 {
1598 return decode_pg_mapping(p, end, &map->pg_upmap, NULL, true);
1599 }
1600
1601 static struct ceph_pg_mapping *__decode_pg_upmap_items(void **p, void *end,
1602 bool __unused)
1603 {
1604 struct ceph_pg_mapping *pg;
1605 u32 len, i;
1606
1607 ceph_decode_32_safe(p, end, len, e_inval);
1608 if (len > (SIZE_MAX - sizeof(*pg)) / (2 * sizeof(u32)))
1609 return ERR_PTR(-EINVAL);
1610
1611 ceph_decode_need(p, end, 2 * len * sizeof(u32), e_inval);
1612 pg = alloc_pg_mapping(2 * len * sizeof(u32));
1613 if (!pg)
1614 return ERR_PTR(-ENOMEM);
1615
1616 pg->pg_upmap_items.len = len;
1617 for (i = 0; i < len; i++) {
1618 pg->pg_upmap_items.from_to[i][0] = ceph_decode_32(p);
1619 pg->pg_upmap_items.from_to[i][1] = ceph_decode_32(p);
1620 }
1621
1622 return pg;
1623
1624 e_inval:
1625 return ERR_PTR(-EINVAL);
1626 }
1627
1628 static int decode_pg_upmap_items(void **p, void *end, struct ceph_osdmap *map)
1629 {
1630 return decode_pg_mapping(p, end, &map->pg_upmap_items,
1631 __decode_pg_upmap_items, false);
1632 }
1633
1634 static int decode_new_pg_upmap_items(void **p, void *end,
1635 struct ceph_osdmap *map)
1636 {
1637 return decode_pg_mapping(p, end, &map->pg_upmap_items,
1638 __decode_pg_upmap_items, true);
1639 }
1640
1641 static int decode_old_pg_upmap_items(void **p, void *end,
1642 struct ceph_osdmap *map)
1643 {
1644 return decode_pg_mapping(p, end, &map->pg_upmap_items, NULL, true);
1645 }
1646
1647 /*
1648 * decode a full map.
1649 */
1650 static int osdmap_decode(void **p, void *end, bool msgr2,
1651 struct ceph_osdmap *map)
1652 {
1653 u8 struct_v;
1654 u32 epoch = 0;
1655 void *start = *p;
1656 u32 max;
1657 u32 len, i;
1658 int err;
1659
1660 dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1661
1662 err = get_osdmap_client_data_v(p, end, "full", &struct_v);
1663 if (err)
1664 goto bad;
1665
1666 /* fsid, epoch, created, modified */
1667 ceph_decode_need(p, end, sizeof(map->fsid) + sizeof(u32) +
1668 sizeof(map->created) + sizeof(map->modified), e_inval);
1669 ceph_decode_copy(p, &map->fsid, sizeof(map->fsid));
1670 epoch = map->epoch = ceph_decode_32(p);
1671 ceph_decode_copy(p, &map->created, sizeof(map->created));
1672 ceph_decode_copy(p, &map->modified, sizeof(map->modified));
1673
1674 /* pools */
1675 err = decode_pools(p, end, map);
1676 if (err)
1677 goto bad;
1678
1679 /* pool_name */
1680 err = decode_pool_names(p, end, map);
1681 if (err)
1682 goto bad;
1683
1684 ceph_decode_32_safe(p, end, map->pool_max, e_inval);
1685
1686 ceph_decode_32_safe(p, end, map->flags, e_inval);
1687
1688 /* max_osd */
1689 ceph_decode_32_safe(p, end, max, e_inval);
1690
1691 /* (re)alloc osd arrays */
1692 err = osdmap_set_max_osd(map, max);
1693 if (err)
1694 goto bad;
1695
1696 /* osd_state, osd_weight, osd_addrs->client_addr */
1697 ceph_decode_need(p, end, 3*sizeof(u32) +
1698 map->max_osd*(struct_v >= 5 ? sizeof(u32) :
1699 sizeof(u8)) +
1700 sizeof(*map->osd_weight), e_inval);
1701 if (ceph_decode_32(p) != map->max_osd)
1702 goto e_inval;
1703
1704 if (struct_v >= 5) {
1705 for (i = 0; i < map->max_osd; i++)
1706 map->osd_state[i] = ceph_decode_32(p);
1707 } else {
1708 for (i = 0; i < map->max_osd; i++)
1709 map->osd_state[i] = ceph_decode_8(p);
1710 }
1711
1712 if (ceph_decode_32(p) != map->max_osd)
1713 goto e_inval;
1714
1715 for (i = 0; i < map->max_osd; i++)
1716 map->osd_weight[i] = ceph_decode_32(p);
1717
1718 if (ceph_decode_32(p) != map->max_osd)
1719 goto e_inval;
1720
1721 for (i = 0; i < map->max_osd; i++) {
1722 struct ceph_entity_addr *addr = &map->osd_addr[i];
1723
1724 if (struct_v >= 8)
1725 err = ceph_decode_entity_addrvec(p, end, msgr2, addr);
1726 else
1727 err = ceph_decode_entity_addr(p, end, addr);
1728 if (err)
1729 goto bad;
1730
1731 dout("%s osd%d addr %s\n", __func__, i, ceph_pr_addr(addr));
1732 }
1733
1734 /* pg_temp */
1735 err = decode_pg_temp(p, end, map);
1736 if (err)
1737 goto bad;
1738
1739 /* primary_temp */
1740 if (struct_v >= 1) {
1741 err = decode_primary_temp(p, end, map);
1742 if (err)
1743 goto bad;
1744 }
1745
1746 /* primary_affinity */
1747 if (struct_v >= 2) {
1748 err = decode_primary_affinity(p, end, map);
1749 if (err)
1750 goto bad;
1751 } else {
1752 WARN_ON(map->osd_primary_affinity);
1753 }
1754
1755 /* crush */
1756 ceph_decode_32_safe(p, end, len, e_inval);
1757 err = osdmap_set_crush(map, crush_decode(*p, min(*p + len, end)));
1758 if (err)
1759 goto bad;
1760
1761 *p += len;
1762 if (struct_v >= 3) {
1763 /* erasure_code_profiles */
1764 ceph_decode_skip_map_of_map(p, end, string, string, string,
1765 e_inval);
1766 }
1767
1768 if (struct_v >= 4) {
1769 err = decode_pg_upmap(p, end, map);
1770 if (err)
1771 goto bad;
1772
1773 err = decode_pg_upmap_items(p, end, map);
1774 if (err)
1775 goto bad;
1776 } else {
1777 WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap));
1778 WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap_items));
1779 }
1780
1781 /* ignore the rest */
1782 *p = end;
1783
1784 dout("full osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
1785 return 0;
1786
1787 e_inval:
1788 err = -EINVAL;
1789 bad:
1790 pr_err("corrupt full osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
1791 err, epoch, (int)(*p - start), *p, start, end);
1792 print_hex_dump(KERN_DEBUG, "osdmap: ",
1793 DUMP_PREFIX_OFFSET, 16, 1,
1794 start, end - start, true);
1795 return err;
1796 }
1797
1798 /*
1799 * Allocate and decode a full map.
1800 */
1801 struct ceph_osdmap *ceph_osdmap_decode(void **p, void *end, bool msgr2)
1802 {
1803 struct ceph_osdmap *map;
1804 int ret;
1805
1806 map = ceph_osdmap_alloc();
1807 if (!map)
1808 return ERR_PTR(-ENOMEM);
1809
1810 ret = osdmap_decode(p, end, msgr2, map);
1811 if (ret) {
1812 ceph_osdmap_destroy(map);
1813 return ERR_PTR(ret);
1814 }
1815
1816 return map;
1817 }
1818
1819 /*
1820 * Encoding order is (new_up_client, new_state, new_weight). Need to
1821 * apply in the (new_weight, new_state, new_up_client) order, because
1822 * an incremental map may look like e.g.
1823 *
1824 * new_up_client: { osd=6, addr=... } # set osd_state and addr
1825 * new_state: { osd=6, xorstate=EXISTS } # clear osd_state
1826 */
1827 static int decode_new_up_state_weight(void **p, void *end, u8 struct_v,
1828 bool msgr2, struct ceph_osdmap *map)
1829 {
1830 void *new_up_client;
1831 void *new_state;
1832 void *new_weight_end;
1833 u32 len;
1834 int ret;
1835 int i;
1836
1837 new_up_client = *p;
1838 ceph_decode_32_safe(p, end, len, e_inval);
1839 for (i = 0; i < len; ++i) {
1840 struct ceph_entity_addr addr;
1841
1842 ceph_decode_skip_32(p, end, e_inval);
1843 if (struct_v >= 7)
1844 ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
1845 else
1846 ret = ceph_decode_entity_addr(p, end, &addr);
1847 if (ret)
1848 return ret;
1849 }
1850
1851 new_state = *p;
1852 ceph_decode_32_safe(p, end, len, e_inval);
1853 len *= sizeof(u32) + (struct_v >= 5 ? sizeof(u32) : sizeof(u8));
1854 ceph_decode_need(p, end, len, e_inval);
1855 *p += len;
1856
1857 /* new_weight */
1858 ceph_decode_32_safe(p, end, len, e_inval);
1859 while (len--) {
1860 s32 osd;
1861 u32 w;
1862
1863 ceph_decode_need(p, end, 2*sizeof(u32), e_inval);
1864 osd = ceph_decode_32(p);
1865 w = ceph_decode_32(p);
1866 BUG_ON(osd >= map->max_osd);
1867 pr_info("osd%d weight 0x%x %s\n", osd, w,
1868 w == CEPH_OSD_IN ? "(in)" :
1869 (w == CEPH_OSD_OUT ? "(out)" : ""));
1870 map->osd_weight[osd] = w;
1871
1872 /*
1873 * If we are marking in, set the EXISTS, and clear the
1874 * AUTOOUT and NEW bits.
1875 */
1876 if (w) {
1877 map->osd_state[osd] |= CEPH_OSD_EXISTS;
1878 map->osd_state[osd] &= ~(CEPH_OSD_AUTOOUT |
1879 CEPH_OSD_NEW);
1880 }
1881 }
1882 new_weight_end = *p;
1883
1884 /* new_state (up/down) */
1885 *p = new_state;
1886 len = ceph_decode_32(p);
1887 while (len--) {
1888 s32 osd;
1889 u32 xorstate;
1890
1891 osd = ceph_decode_32(p);
1892 if (struct_v >= 5)
1893 xorstate = ceph_decode_32(p);
1894 else
1895 xorstate = ceph_decode_8(p);
1896 if (xorstate == 0)
1897 xorstate = CEPH_OSD_UP;
1898 BUG_ON(osd >= map->max_osd);
1899 if ((map->osd_state[osd] & CEPH_OSD_UP) &&
1900 (xorstate & CEPH_OSD_UP))
1901 pr_info("osd%d down\n", osd);
1902 if ((map->osd_state[osd] & CEPH_OSD_EXISTS) &&
1903 (xorstate & CEPH_OSD_EXISTS)) {
1904 pr_info("osd%d does not exist\n", osd);
1905 ret = set_primary_affinity(map, osd,
1906 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY);
1907 if (ret)
1908 return ret;
1909 memset(map->osd_addr + osd, 0, sizeof(*map->osd_addr));
1910 map->osd_state[osd] = 0;
1911 } else {
1912 map->osd_state[osd] ^= xorstate;
1913 }
1914 }
1915
1916 /* new_up_client */
1917 *p = new_up_client;
1918 len = ceph_decode_32(p);
1919 while (len--) {
1920 s32 osd;
1921 struct ceph_entity_addr addr;
1922
1923 osd = ceph_decode_32(p);
1924 BUG_ON(osd >= map->max_osd);
1925 if (struct_v >= 7)
1926 ret = ceph_decode_entity_addrvec(p, end, msgr2, &addr);
1927 else
1928 ret = ceph_decode_entity_addr(p, end, &addr);
1929 if (ret)
1930 return ret;
1931
1932 dout("%s osd%d addr %s\n", __func__, osd, ceph_pr_addr(&addr));
1933
1934 pr_info("osd%d up\n", osd);
1935 map->osd_state[osd] |= CEPH_OSD_EXISTS | CEPH_OSD_UP;
1936 map->osd_addr[osd] = addr;
1937 }
1938
1939 *p = new_weight_end;
1940 return 0;
1941
1942 e_inval:
1943 return -EINVAL;
1944 }
1945
1946 /*
1947 * decode and apply an incremental map update.
1948 */
1949 struct ceph_osdmap *osdmap_apply_incremental(void **p, void *end, bool msgr2,
1950 struct ceph_osdmap *map)
1951 {
1952 struct ceph_fsid fsid;
1953 u32 epoch = 0;
1954 struct ceph_timespec modified;
1955 s32 len;
1956 u64 pool;
1957 __s64 new_pool_max;
1958 __s32 new_flags, max;
1959 void *start = *p;
1960 int err;
1961 u8 struct_v;
1962
1963 dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1964
1965 err = get_osdmap_client_data_v(p, end, "inc", &struct_v);
1966 if (err)
1967 goto bad;
1968
1969 /* fsid, epoch, modified, new_pool_max, new_flags */
1970 ceph_decode_need(p, end, sizeof(fsid) + sizeof(u32) + sizeof(modified) +
1971 sizeof(u64) + sizeof(u32), e_inval);
1972 ceph_decode_copy(p, &fsid, sizeof(fsid));
1973 epoch = ceph_decode_32(p);
1974 BUG_ON(epoch != map->epoch+1);
1975 ceph_decode_copy(p, &modified, sizeof(modified));
1976 new_pool_max = ceph_decode_64(p);
1977 new_flags = ceph_decode_32(p);
1978
1979 /* full map? */
1980 ceph_decode_32_safe(p, end, len, e_inval);
1981 if (len > 0) {
1982 dout("apply_incremental full map len %d, %p to %p\n",
1983 len, *p, end);
1984 return ceph_osdmap_decode(p, min(*p+len, end), msgr2);
1985 }
1986
1987 /* new crush? */
1988 ceph_decode_32_safe(p, end, len, e_inval);
1989 if (len > 0) {
1990 err = osdmap_set_crush(map,
1991 crush_decode(*p, min(*p + len, end)));
1992 if (err)
1993 goto bad;
1994 *p += len;
1995 }
1996
1997 /* new flags? */
1998 if (new_flags >= 0)
1999 map->flags = new_flags;
2000 if (new_pool_max >= 0)
2001 map->pool_max = new_pool_max;
2002
2003 /* new max? */
2004 ceph_decode_32_safe(p, end, max, e_inval);
2005 if (max >= 0) {
2006 err = osdmap_set_max_osd(map, max);
2007 if (err)
2008 goto bad;
2009 }
2010
2011 map->epoch++;
2012 map->modified = modified;
2013
2014 /* new_pools */
2015 err = decode_new_pools(p, end, map);
2016 if (err)
2017 goto bad;
2018
2019 /* new_pool_names */
2020 err = decode_pool_names(p, end, map);
2021 if (err)
2022 goto bad;
2023
2024 /* old_pool */
2025 ceph_decode_32_safe(p, end, len, e_inval);
2026 while (len--) {
2027 struct ceph_pg_pool_info *pi;
2028
2029 ceph_decode_64_safe(p, end, pool, e_inval);
2030 pi = lookup_pg_pool(&map->pg_pools, pool);
2031 if (pi)
2032 __remove_pg_pool(&map->pg_pools, pi);
2033 }
2034
2035 /* new_up_client, new_state, new_weight */
2036 err = decode_new_up_state_weight(p, end, struct_v, msgr2, map);
2037 if (err)
2038 goto bad;
2039
2040 /* new_pg_temp */
2041 err = decode_new_pg_temp(p, end, map);
2042 if (err)
2043 goto bad;
2044
2045 /* new_primary_temp */
2046 if (struct_v >= 1) {
2047 err = decode_new_primary_temp(p, end, map);
2048 if (err)
2049 goto bad;
2050 }
2051
2052 /* new_primary_affinity */
2053 if (struct_v >= 2) {
2054 err = decode_new_primary_affinity(p, end, map);
2055 if (err)
2056 goto bad;
2057 }
2058
2059 if (struct_v >= 3) {
2060 /* new_erasure_code_profiles */
2061 ceph_decode_skip_map_of_map(p, end, string, string, string,
2062 e_inval);
2063 /* old_erasure_code_profiles */
2064 ceph_decode_skip_set(p, end, string, e_inval);
2065 }
2066
2067 if (struct_v >= 4) {
2068 err = decode_new_pg_upmap(p, end, map);
2069 if (err)
2070 goto bad;
2071
2072 err = decode_old_pg_upmap(p, end, map);
2073 if (err)
2074 goto bad;
2075
2076 err = decode_new_pg_upmap_items(p, end, map);
2077 if (err)
2078 goto bad;
2079
2080 err = decode_old_pg_upmap_items(p, end, map);
2081 if (err)
2082 goto bad;
2083 }
2084
2085 /* ignore the rest */
2086 *p = end;
2087
2088 dout("inc osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
2089 return map;
2090
2091 e_inval:
2092 err = -EINVAL;
2093 bad:
2094 pr_err("corrupt inc osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
2095 err, epoch, (int)(*p - start), *p, start, end);
2096 print_hex_dump(KERN_DEBUG, "osdmap: ",
2097 DUMP_PREFIX_OFFSET, 16, 1,
2098 start, end - start, true);
2099 return ERR_PTR(err);
2100 }
2101
2102 void ceph_oloc_copy(struct ceph_object_locator *dest,
2103 const struct ceph_object_locator *src)
2104 {
2105 ceph_oloc_destroy(dest);
2106
2107 dest->pool = src->pool;
2108 if (src->pool_ns)
2109 dest->pool_ns = ceph_get_string(src->pool_ns);
2110 else
2111 dest->pool_ns = NULL;
2112 }
2113 EXPORT_SYMBOL(ceph_oloc_copy);
2114
2115 void ceph_oloc_destroy(struct ceph_object_locator *oloc)
2116 {
2117 ceph_put_string(oloc->pool_ns);
2118 }
2119 EXPORT_SYMBOL(ceph_oloc_destroy);
2120
2121 void ceph_oid_copy(struct ceph_object_id *dest,
2122 const struct ceph_object_id *src)
2123 {
2124 ceph_oid_destroy(dest);
2125
2126 if (src->name != src->inline_name) {
2127 /* very rare, see ceph_object_id definition */
2128 dest->name = kmalloc(src->name_len + 1,
2129 GFP_NOIO | __GFP_NOFAIL);
2130 } else {
2131 dest->name = dest->inline_name;
2132 }
2133 memcpy(dest->name, src->name, src->name_len + 1);
2134 dest->name_len = src->name_len;
2135 }
2136 EXPORT_SYMBOL(ceph_oid_copy);
2137
2138 static __printf(2, 0)
2139 int oid_printf_vargs(struct ceph_object_id *oid, const char *fmt, va_list ap)
2140 {
2141 int len;
2142
2143 WARN_ON(!ceph_oid_empty(oid));
2144
2145 len = vsnprintf(oid->inline_name, sizeof(oid->inline_name), fmt, ap);
2146 if (len >= sizeof(oid->inline_name))
2147 return len;
2148
2149 oid->name_len = len;
2150 return 0;
2151 }
2152
2153 /*
2154 * If oid doesn't fit into inline buffer, BUG.
2155 */
2156 void ceph_oid_printf(struct ceph_object_id *oid, const char *fmt, ...)
2157 {
2158 va_list ap;
2159
2160 va_start(ap, fmt);
2161 BUG_ON(oid_printf_vargs(oid, fmt, ap));
2162 va_end(ap);
2163 }
2164 EXPORT_SYMBOL(ceph_oid_printf);
2165
2166 static __printf(3, 0)
2167 int oid_aprintf_vargs(struct ceph_object_id *oid, gfp_t gfp,
2168 const char *fmt, va_list ap)
2169 {
2170 va_list aq;
2171 int len;
2172
2173 va_copy(aq, ap);
2174 len = oid_printf_vargs(oid, fmt, aq);
2175 va_end(aq);
2176
2177 if (len) {
2178 char *external_name;
2179
2180 external_name = kmalloc(len + 1, gfp);
2181 if (!external_name)
2182 return -ENOMEM;
2183
2184 oid->name = external_name;
2185 WARN_ON(vsnprintf(oid->name, len + 1, fmt, ap) != len);
2186 oid->name_len = len;
2187 }
2188
2189 return 0;
2190 }
2191
2192 /*
2193 * If oid doesn't fit into inline buffer, allocate.
2194 */
2195 int ceph_oid_aprintf(struct ceph_object_id *oid, gfp_t gfp,
2196 const char *fmt, ...)
2197 {
2198 va_list ap;
2199 int ret;
2200
2201 va_start(ap, fmt);
2202 ret = oid_aprintf_vargs(oid, gfp, fmt, ap);
2203 va_end(ap);
2204
2205 return ret;
2206 }
2207 EXPORT_SYMBOL(ceph_oid_aprintf);
2208
2209 void ceph_oid_destroy(struct ceph_object_id *oid)
2210 {
2211 if (oid->name != oid->inline_name)
2212 kfree(oid->name);
2213 }
2214 EXPORT_SYMBOL(ceph_oid_destroy);
2215
2216 /*
2217 * osds only
2218 */
2219 static bool __osds_equal(const struct ceph_osds *lhs,
2220 const struct ceph_osds *rhs)
2221 {
2222 if (lhs->size == rhs->size &&
2223 !memcmp(lhs->osds, rhs->osds, rhs->size * sizeof(rhs->osds[0])))
2224 return true;
2225
2226 return false;
2227 }
2228
2229 /*
2230 * osds + primary
2231 */
2232 static bool osds_equal(const struct ceph_osds *lhs,
2233 const struct ceph_osds *rhs)
2234 {
2235 if (__osds_equal(lhs, rhs) &&
2236 lhs->primary == rhs->primary)
2237 return true;
2238
2239 return false;
2240 }
2241
2242 static bool osds_valid(const struct ceph_osds *set)
2243 {
2244 /* non-empty set */
2245 if (set->size > 0 && set->primary >= 0)
2246 return true;
2247
2248 /* empty can_shift_osds set */
2249 if (!set->size && set->primary == -1)
2250 return true;
2251
2252 /* empty !can_shift_osds set - all NONE */
2253 if (set->size > 0 && set->primary == -1) {
2254 int i;
2255
2256 for (i = 0; i < set->size; i++) {
2257 if (set->osds[i] != CRUSH_ITEM_NONE)
2258 break;
2259 }
2260 if (i == set->size)
2261 return true;
2262 }
2263
2264 return false;
2265 }
2266
2267 void ceph_osds_copy(struct ceph_osds *dest, const struct ceph_osds *src)
2268 {
2269 memcpy(dest->osds, src->osds, src->size * sizeof(src->osds[0]));
2270 dest->size = src->size;
2271 dest->primary = src->primary;
2272 }
2273
2274 bool ceph_pg_is_split(const struct ceph_pg *pgid, u32 old_pg_num,
2275 u32 new_pg_num)
2276 {
2277 int old_bits = calc_bits_of(old_pg_num);
2278 int old_mask = (1 << old_bits) - 1;
2279 int n;
2280
2281 WARN_ON(pgid->seed >= old_pg_num);
2282 if (new_pg_num <= old_pg_num)
2283 return false;
2284
2285 for (n = 1; ; n++) {
2286 int next_bit = n << (old_bits - 1);
2287 u32 s = next_bit | pgid->seed;
2288
2289 if (s < old_pg_num || s == pgid->seed)
2290 continue;
2291 if (s >= new_pg_num)
2292 break;
2293
2294 s = ceph_stable_mod(s, old_pg_num, old_mask);
2295 if (s == pgid->seed)
2296 return true;
2297 }
2298
2299 return false;
2300 }
2301
2302 bool ceph_is_new_interval(const struct ceph_osds *old_acting,
2303 const struct ceph_osds *new_acting,
2304 const struct ceph_osds *old_up,
2305 const struct ceph_osds *new_up,
2306 int old_size,
2307 int new_size,
2308 int old_min_size,
2309 int new_min_size,
2310 u32 old_pg_num,
2311 u32 new_pg_num,
2312 bool old_sort_bitwise,
2313 bool new_sort_bitwise,
2314 bool old_recovery_deletes,
2315 bool new_recovery_deletes,
2316 const struct ceph_pg *pgid)
2317 {
2318 return !osds_equal(old_acting, new_acting) ||
2319 !osds_equal(old_up, new_up) ||
2320 old_size != new_size ||
2321 old_min_size != new_min_size ||
2322 ceph_pg_is_split(pgid, old_pg_num, new_pg_num) ||
2323 old_sort_bitwise != new_sort_bitwise ||
2324 old_recovery_deletes != new_recovery_deletes;
2325 }
2326
2327 static int calc_pg_rank(int osd, const struct ceph_osds *acting)
2328 {
2329 int i;
2330
2331 for (i = 0; i < acting->size; i++) {
2332 if (acting->osds[i] == osd)
2333 return i;
2334 }
2335
2336 return -1;
2337 }
2338
2339 static bool primary_changed(const struct ceph_osds *old_acting,
2340 const struct ceph_osds *new_acting)
2341 {
2342 if (!old_acting->size && !new_acting->size)
2343 return false; /* both still empty */
2344
2345 if (!old_acting->size ^ !new_acting->size)
2346 return true; /* was empty, now not, or vice versa */
2347
2348 if (old_acting->primary != new_acting->primary)
2349 return true; /* primary changed */
2350
2351 if (calc_pg_rank(old_acting->primary, old_acting) !=
2352 calc_pg_rank(new_acting->primary, new_acting))
2353 return true;
2354
2355 return false; /* same primary (tho replicas may have changed) */
2356 }
2357
2358 bool ceph_osds_changed(const struct ceph_osds *old_acting,
2359 const struct ceph_osds *new_acting,
2360 bool any_change)
2361 {
2362 if (primary_changed(old_acting, new_acting))
2363 return true;
2364
2365 if (any_change && !__osds_equal(old_acting, new_acting))
2366 return true;
2367
2368 return false;
2369 }
2370
2371 /*
2372 * Map an object into a PG.
2373 *
2374 * Should only be called with target_oid and target_oloc (as opposed to
2375 * base_oid and base_oloc), since tiering isn't taken into account.
2376 */
2377 void __ceph_object_locator_to_pg(struct ceph_pg_pool_info *pi,
2378 const struct ceph_object_id *oid,
2379 const struct ceph_object_locator *oloc,
2380 struct ceph_pg *raw_pgid)
2381 {
2382 WARN_ON(pi->id != oloc->pool);
2383
2384 if (!oloc->pool_ns) {
2385 raw_pgid->pool = oloc->pool;
2386 raw_pgid->seed = ceph_str_hash(pi->object_hash, oid->name,
2387 oid->name_len);
2388 dout("%s %s -> raw_pgid %llu.%x\n", __func__, oid->name,
2389 raw_pgid->pool, raw_pgid->seed);
2390 } else {
2391 char stack_buf[256];
2392 char *buf = stack_buf;
2393 int nsl = oloc->pool_ns->len;
2394 size_t total = nsl + 1 + oid->name_len;
2395
2396 if (total > sizeof(stack_buf))
2397 buf = kmalloc(total, GFP_NOIO | __GFP_NOFAIL);
2398 memcpy(buf, oloc->pool_ns->str, nsl);
2399 buf[nsl] = '\037';
2400 memcpy(buf + nsl + 1, oid->name, oid->name_len);
2401 raw_pgid->pool = oloc->pool;
2402 raw_pgid->seed = ceph_str_hash(pi->object_hash, buf, total);
2403 if (buf != stack_buf)
2404 kfree(buf);
2405 dout("%s %s ns %.*s -> raw_pgid %llu.%x\n", __func__,
2406 oid->name, nsl, oloc->pool_ns->str,
2407 raw_pgid->pool, raw_pgid->seed);
2408 }
2409 }
2410
2411 int ceph_object_locator_to_pg(struct ceph_osdmap *osdmap,
2412 const struct ceph_object_id *oid,
2413 const struct ceph_object_locator *oloc,
2414 struct ceph_pg *raw_pgid)
2415 {
2416 struct ceph_pg_pool_info *pi;
2417
2418 pi = ceph_pg_pool_by_id(osdmap, oloc->pool);
2419 if (!pi)
2420 return -ENOENT;
2421
2422 __ceph_object_locator_to_pg(pi, oid, oloc, raw_pgid);
2423 return 0;
2424 }
2425 EXPORT_SYMBOL(ceph_object_locator_to_pg);
2426
2427 /*
2428 * Map a raw PG (full precision ps) into an actual PG.
2429 */
2430 static void raw_pg_to_pg(struct ceph_pg_pool_info *pi,
2431 const struct ceph_pg *raw_pgid,
2432 struct ceph_pg *pgid)
2433 {
2434 pgid->pool = raw_pgid->pool;
2435 pgid->seed = ceph_stable_mod(raw_pgid->seed, pi->pg_num,
2436 pi->pg_num_mask);
2437 }
2438
2439 /*
2440 * Map a raw PG (full precision ps) into a placement ps (placement
2441 * seed). Include pool id in that value so that different pools don't
2442 * use the same seeds.
2443 */
2444 static u32 raw_pg_to_pps(struct ceph_pg_pool_info *pi,
2445 const struct ceph_pg *raw_pgid)
2446 {
2447 if (pi->flags & CEPH_POOL_FLAG_HASHPSPOOL) {
2448 /* hash pool id and seed so that pool PGs do not overlap */
2449 return crush_hash32_2(CRUSH_HASH_RJENKINS1,
2450 ceph_stable_mod(raw_pgid->seed,
2451 pi->pgp_num,
2452 pi->pgp_num_mask),
2453 raw_pgid->pool);
2454 } else {
2455 /*
2456 * legacy behavior: add ps and pool together. this is
2457 * not a great approach because the PGs from each pool
2458 * will overlap on top of each other: 0.5 == 1.4 ==
2459 * 2.3 == ...
2460 */
2461 return ceph_stable_mod(raw_pgid->seed, pi->pgp_num,
2462 pi->pgp_num_mask) +
2463 (unsigned)raw_pgid->pool;
2464 }
2465 }
2466
2467 /*
2468 * Magic value used for a "default" fallback choose_args, used if the
2469 * crush_choose_arg_map passed to do_crush() does not exist. If this
2470 * also doesn't exist, fall back to canonical weights.
2471 */
2472 #define CEPH_DEFAULT_CHOOSE_ARGS -1
2473
2474 static int do_crush(struct ceph_osdmap *map, int ruleno, int x,
2475 int *result, int result_max,
2476 const __u32 *weight, int weight_max,
2477 s64 choose_args_index)
2478 {
2479 struct crush_choose_arg_map *arg_map;
2480 struct crush_work *work;
2481 int r;
2482
2483 BUG_ON(result_max > CEPH_PG_MAX_SIZE);
2484
2485 arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2486 choose_args_index);
2487 if (!arg_map)
2488 arg_map = lookup_choose_arg_map(&map->crush->choose_args,
2489 CEPH_DEFAULT_CHOOSE_ARGS);
2490
2491 work = get_workspace(&map->crush_wsm, map->crush);
2492 r = crush_do_rule(map->crush, ruleno, x, result, result_max,
2493 weight, weight_max, work,
2494 arg_map ? arg_map->args : NULL);
2495 put_workspace(&map->crush_wsm, work);
2496 return r;
2497 }
2498
2499 static void remove_nonexistent_osds(struct ceph_osdmap *osdmap,
2500 struct ceph_pg_pool_info *pi,
2501 struct ceph_osds *set)
2502 {
2503 int i;
2504
2505 if (ceph_can_shift_osds(pi)) {
2506 int removed = 0;
2507
2508 /* shift left */
2509 for (i = 0; i < set->size; i++) {
2510 if (!ceph_osd_exists(osdmap, set->osds[i])) {
2511 removed++;
2512 continue;
2513 }
2514 if (removed)
2515 set->osds[i - removed] = set->osds[i];
2516 }
2517 set->size -= removed;
2518 } else {
2519 /* set dne devices to NONE */
2520 for (i = 0; i < set->size; i++) {
2521 if (!ceph_osd_exists(osdmap, set->osds[i]))
2522 set->osds[i] = CRUSH_ITEM_NONE;
2523 }
2524 }
2525 }
2526
2527 /*
2528 * Calculate raw set (CRUSH output) for given PG and filter out
2529 * nonexistent OSDs. ->primary is undefined for a raw set.
2530 *
2531 * Placement seed (CRUSH input) is returned through @ppps.
2532 */
2533 static void pg_to_raw_osds(struct ceph_osdmap *osdmap,
2534 struct ceph_pg_pool_info *pi,
2535 const struct ceph_pg *raw_pgid,
2536 struct ceph_osds *raw,
2537 u32 *ppps)
2538 {
2539 u32 pps = raw_pg_to_pps(pi, raw_pgid);
2540 int ruleno;
2541 int len;
2542
2543 ceph_osds_init(raw);
2544 if (ppps)
2545 *ppps = pps;
2546
2547 ruleno = crush_find_rule(osdmap->crush, pi->crush_ruleset, pi->type,
2548 pi->size);
2549 if (ruleno < 0) {
2550 pr_err("no crush rule: pool %lld ruleset %d type %d size %d\n",
2551 pi->id, pi->crush_ruleset, pi->type, pi->size);
2552 return;
2553 }
2554
2555 if (pi->size > ARRAY_SIZE(raw->osds)) {
2556 pr_err_ratelimited("pool %lld ruleset %d type %d too wide: size %d > %zu\n",
2557 pi->id, pi->crush_ruleset, pi->type, pi->size,
2558 ARRAY_SIZE(raw->osds));
2559 return;
2560 }
2561
2562 len = do_crush(osdmap, ruleno, pps, raw->osds, pi->size,
2563 osdmap->osd_weight, osdmap->max_osd, pi->id);
2564 if (len < 0) {
2565 pr_err("error %d from crush rule %d: pool %lld ruleset %d type %d size %d\n",
2566 len, ruleno, pi->id, pi->crush_ruleset, pi->type,
2567 pi->size);
2568 return;
2569 }
2570
2571 raw->size = len;
2572 remove_nonexistent_osds(osdmap, pi, raw);
2573 }
2574
2575 /* apply pg_upmap[_items] mappings */
2576 static void apply_upmap(struct ceph_osdmap *osdmap,
2577 const struct ceph_pg *pgid,
2578 struct ceph_osds *raw)
2579 {
2580 struct ceph_pg_mapping *pg;
2581 int i, j;
2582
2583 pg = lookup_pg_mapping(&osdmap->pg_upmap, pgid);
2584 if (pg) {
2585 /* make sure targets aren't marked out */
2586 for (i = 0; i < pg->pg_upmap.len; i++) {
2587 int osd = pg->pg_upmap.osds[i];
2588
2589 if (osd != CRUSH_ITEM_NONE &&
2590 osd < osdmap->max_osd &&
2591 osdmap->osd_weight[osd] == 0) {
2592 /* reject/ignore explicit mapping */
2593 return;
2594 }
2595 }
2596 for (i = 0; i < pg->pg_upmap.len; i++)
2597 raw->osds[i] = pg->pg_upmap.osds[i];
2598 raw->size = pg->pg_upmap.len;
2599 /* check and apply pg_upmap_items, if any */
2600 }
2601
2602 pg = lookup_pg_mapping(&osdmap->pg_upmap_items, pgid);
2603 if (pg) {
2604 /*
2605 * Note: this approach does not allow a bidirectional swap,
2606 * e.g., [[1,2],[2,1]] applied to [0,1,2] -> [0,2,1].
2607 */
2608 for (i = 0; i < pg->pg_upmap_items.len; i++) {
2609 int from = pg->pg_upmap_items.from_to[i][0];
2610 int to = pg->pg_upmap_items.from_to[i][1];
2611 int pos = -1;
2612 bool exists = false;
2613
2614 /* make sure replacement doesn't already appear */
2615 for (j = 0; j < raw->size; j++) {
2616 int osd = raw->osds[j];
2617
2618 if (osd == to) {
2619 exists = true;
2620 break;
2621 }
2622 /* ignore mapping if target is marked out */
2623 if (osd == from && pos < 0 &&
2624 !(to != CRUSH_ITEM_NONE &&
2625 to < osdmap->max_osd &&
2626 osdmap->osd_weight[to] == 0)) {
2627 pos = j;
2628 }
2629 }
2630 if (!exists && pos >= 0)
2631 raw->osds[pos] = to;
2632 }
2633 }
2634 }
2635
2636 /*
2637 * Given raw set, calculate up set and up primary. By definition of an
2638 * up set, the result won't contain nonexistent or down OSDs.
2639 *
2640 * This is done in-place - on return @set is the up set. If it's
2641 * empty, ->primary will remain undefined.
2642 */
2643 static void raw_to_up_osds(struct ceph_osdmap *osdmap,
2644 struct ceph_pg_pool_info *pi,
2645 struct ceph_osds *set)
2646 {
2647 int i;
2648
2649 /* ->primary is undefined for a raw set */
2650 BUG_ON(set->primary != -1);
2651
2652 if (ceph_can_shift_osds(pi)) {
2653 int removed = 0;
2654
2655 /* shift left */
2656 for (i = 0; i < set->size; i++) {
2657 if (ceph_osd_is_down(osdmap, set->osds[i])) {
2658 removed++;
2659 continue;
2660 }
2661 if (removed)
2662 set->osds[i - removed] = set->osds[i];
2663 }
2664 set->size -= removed;
2665 if (set->size > 0)
2666 set->primary = set->osds[0];
2667 } else {
2668 /* set down/dne devices to NONE */
2669 for (i = set->size - 1; i >= 0; i--) {
2670 if (ceph_osd_is_down(osdmap, set->osds[i]))
2671 set->osds[i] = CRUSH_ITEM_NONE;
2672 else
2673 set->primary = set->osds[i];
2674 }
2675 }
2676 }
2677
2678 static void apply_primary_affinity(struct ceph_osdmap *osdmap,
2679 struct ceph_pg_pool_info *pi,
2680 u32 pps,
2681 struct ceph_osds *up)
2682 {
2683 int i;
2684 int pos = -1;
2685
2686 /*
2687 * Do we have any non-default primary_affinity values for these
2688 * osds?
2689 */
2690 if (!osdmap->osd_primary_affinity)
2691 return;
2692
2693 for (i = 0; i < up->size; i++) {
2694 int osd = up->osds[i];
2695
2696 if (osd != CRUSH_ITEM_NONE &&
2697 osdmap->osd_primary_affinity[osd] !=
2698 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY) {
2699 break;
2700 }
2701 }
2702 if (i == up->size)
2703 return;
2704
2705 /*
2706 * Pick the primary. Feed both the seed (for the pg) and the
2707 * osd into the hash/rng so that a proportional fraction of an
2708 * osd's pgs get rejected as primary.
2709 */
2710 for (i = 0; i < up->size; i++) {
2711 int osd = up->osds[i];
2712 u32 aff;
2713
2714 if (osd == CRUSH_ITEM_NONE)
2715 continue;
2716
2717 aff = osdmap->osd_primary_affinity[osd];
2718 if (aff < CEPH_OSD_MAX_PRIMARY_AFFINITY &&
2719 (crush_hash32_2(CRUSH_HASH_RJENKINS1,
2720 pps, osd) >> 16) >= aff) {
2721 /*
2722 * We chose not to use this primary. Note it
2723 * anyway as a fallback in case we don't pick
2724 * anyone else, but keep looking.
2725 */
2726 if (pos < 0)
2727 pos = i;
2728 } else {
2729 pos = i;
2730 break;
2731 }
2732 }
2733 if (pos < 0)
2734 return;
2735
2736 up->primary = up->osds[pos];
2737
2738 if (ceph_can_shift_osds(pi) && pos > 0) {
2739 /* move the new primary to the front */
2740 for (i = pos; i > 0; i--)
2741 up->osds[i] = up->osds[i - 1];
2742 up->osds[0] = up->primary;
2743 }
2744 }
2745
2746 /*
2747 * Get pg_temp and primary_temp mappings for given PG.
2748 *
2749 * Note that a PG may have none, only pg_temp, only primary_temp or
2750 * both pg_temp and primary_temp mappings. This means @temp isn't
2751 * always a valid OSD set on return: in the "only primary_temp" case,
2752 * @temp will have its ->primary >= 0 but ->size == 0.
2753 */
2754 static void get_temp_osds(struct ceph_osdmap *osdmap,
2755 struct ceph_pg_pool_info *pi,
2756 const struct ceph_pg *pgid,
2757 struct ceph_osds *temp)
2758 {
2759 struct ceph_pg_mapping *pg;
2760 int i;
2761
2762 ceph_osds_init(temp);
2763
2764 /* pg_temp? */
2765 pg = lookup_pg_mapping(&osdmap->pg_temp, pgid);
2766 if (pg) {
2767 for (i = 0; i < pg->pg_temp.len; i++) {
2768 if (ceph_osd_is_down(osdmap, pg->pg_temp.osds[i])) {
2769 if (ceph_can_shift_osds(pi))
2770 continue;
2771
2772 temp->osds[temp->size++] = CRUSH_ITEM_NONE;
2773 } else {
2774 temp->osds[temp->size++] = pg->pg_temp.osds[i];
2775 }
2776 }
2777
2778 /* apply pg_temp's primary */
2779 for (i = 0; i < temp->size; i++) {
2780 if (temp->osds[i] != CRUSH_ITEM_NONE) {
2781 temp->primary = temp->osds[i];
2782 break;
2783 }
2784 }
2785 }
2786
2787 /* primary_temp? */
2788 pg = lookup_pg_mapping(&osdmap->primary_temp, pgid);
2789 if (pg)
2790 temp->primary = pg->primary_temp.osd;
2791 }
2792
2793 /*
2794 * Map a PG to its acting set as well as its up set.
2795 *
2796 * Acting set is used for data mapping purposes, while up set can be
2797 * recorded for detecting interval changes and deciding whether to
2798 * resend a request.
2799 */
2800 void ceph_pg_to_up_acting_osds(struct ceph_osdmap *osdmap,
2801 struct ceph_pg_pool_info *pi,
2802 const struct ceph_pg *raw_pgid,
2803 struct ceph_osds *up,
2804 struct ceph_osds *acting)
2805 {
2806 struct ceph_pg pgid;
2807 u32 pps;
2808
2809 WARN_ON(pi->id != raw_pgid->pool);
2810 raw_pg_to_pg(pi, raw_pgid, &pgid);
2811
2812 pg_to_raw_osds(osdmap, pi, raw_pgid, up, &pps);
2813 apply_upmap(osdmap, &pgid, up);
2814 raw_to_up_osds(osdmap, pi, up);
2815 apply_primary_affinity(osdmap, pi, pps, up);
2816 get_temp_osds(osdmap, pi, &pgid, acting);
2817 if (!acting->size) {
2818 memcpy(acting->osds, up->osds, up->size * sizeof(up->osds[0]));
2819 acting->size = up->size;
2820 if (acting->primary == -1)
2821 acting->primary = up->primary;
2822 }
2823 WARN_ON(!osds_valid(up) || !osds_valid(acting));
2824 }
2825
2826 bool ceph_pg_to_primary_shard(struct ceph_osdmap *osdmap,
2827 struct ceph_pg_pool_info *pi,
2828 const struct ceph_pg *raw_pgid,
2829 struct ceph_spg *spgid)
2830 {
2831 struct ceph_pg pgid;
2832 struct ceph_osds up, acting;
2833 int i;
2834
2835 WARN_ON(pi->id != raw_pgid->pool);
2836 raw_pg_to_pg(pi, raw_pgid, &pgid);
2837
2838 if (ceph_can_shift_osds(pi)) {
2839 spgid->pgid = pgid; /* struct */
2840 spgid->shard = CEPH_SPG_NOSHARD;
2841 return true;
2842 }
2843
2844 ceph_pg_to_up_acting_osds(osdmap, pi, &pgid, &up, &acting);
2845 for (i = 0; i < acting.size; i++) {
2846 if (acting.osds[i] == acting.primary) {
2847 spgid->pgid = pgid; /* struct */
2848 spgid->shard = i;
2849 return true;
2850 }
2851 }
2852
2853 return false;
2854 }
2855
2856 /*
2857 * Return acting primary for given PG, or -1 if none.
2858 */
2859 int ceph_pg_to_acting_primary(struct ceph_osdmap *osdmap,
2860 const struct ceph_pg *raw_pgid)
2861 {
2862 struct ceph_pg_pool_info *pi;
2863 struct ceph_osds up, acting;
2864
2865 pi = ceph_pg_pool_by_id(osdmap, raw_pgid->pool);
2866 if (!pi)
2867 return -1;
2868
2869 ceph_pg_to_up_acting_osds(osdmap, pi, raw_pgid, &up, &acting);
2870 return acting.primary;
2871 }
2872 EXPORT_SYMBOL(ceph_pg_to_acting_primary);
2873
2874 static struct crush_loc_node *alloc_crush_loc(size_t type_name_len,
2875 size_t name_len)
2876 {
2877 struct crush_loc_node *loc;
2878
2879 loc = kmalloc(sizeof(*loc) + type_name_len + name_len + 2, GFP_NOIO);
2880 if (!loc)
2881 return NULL;
2882
2883 RB_CLEAR_NODE(&loc->cl_node);
2884 return loc;
2885 }
2886
2887 static void free_crush_loc(struct crush_loc_node *loc)
2888 {
2889 WARN_ON(!RB_EMPTY_NODE(&loc->cl_node));
2890
2891 kfree(loc);
2892 }
2893
2894 static int crush_loc_compare(const struct crush_loc *loc1,
2895 const struct crush_loc *loc2)
2896 {
2897 return strcmp(loc1->cl_type_name, loc2->cl_type_name) ?:
2898 strcmp(loc1->cl_name, loc2->cl_name);
2899 }
2900
2901 DEFINE_RB_FUNCS2(crush_loc, struct crush_loc_node, cl_loc, crush_loc_compare,
2902 RB_BYPTR, const struct crush_loc *, cl_node)
2903
2904 /*
2905 * Parses a set of <bucket type name>':'<bucket name> pairs separated
2906 * by '|', e.g. "rack:foo1|rack:foo2|datacenter:bar".
2907 *
2908 * Note that @crush_location is modified by strsep().
2909 */
2910 int ceph_parse_crush_location(char *crush_location, struct rb_root *locs)
2911 {
2912 struct crush_loc_node *loc;
2913 const char *type_name, *name, *colon;
2914 size_t type_name_len, name_len;
2915
2916 dout("%s '%s'\n", __func__, crush_location);
2917 while ((type_name = strsep(&crush_location, "|"))) {
2918 colon = strchr(type_name, ':');
2919 if (!colon)
2920 return -EINVAL;
2921
2922 type_name_len = colon - type_name;
2923 if (type_name_len == 0)
2924 return -EINVAL;
2925
2926 name = colon + 1;
2927 name_len = strlen(name);
2928 if (name_len == 0)
2929 return -EINVAL;
2930
2931 loc = alloc_crush_loc(type_name_len, name_len);
2932 if (!loc)
2933 return -ENOMEM;
2934
2935 loc->cl_loc.cl_type_name = loc->cl_data;
2936 memcpy(loc->cl_loc.cl_type_name, type_name, type_name_len);
2937 loc->cl_loc.cl_type_name[type_name_len] = '\0';
2938
2939 loc->cl_loc.cl_name = loc->cl_data + type_name_len + 1;
2940 memcpy(loc->cl_loc.cl_name, name, name_len);
2941 loc->cl_loc.cl_name[name_len] = '\0';
2942
2943 if (!__insert_crush_loc(locs, loc)) {
2944 free_crush_loc(loc);
2945 return -EEXIST;
2946 }
2947
2948 dout("%s type_name '%s' name '%s'\n", __func__,
2949 loc->cl_loc.cl_type_name, loc->cl_loc.cl_name);
2950 }
2951
2952 return 0;
2953 }
2954
2955 int ceph_compare_crush_locs(struct rb_root *locs1, struct rb_root *locs2)
2956 {
2957 struct rb_node *n1 = rb_first(locs1);
2958 struct rb_node *n2 = rb_first(locs2);
2959 int ret;
2960
2961 for ( ; n1 && n2; n1 = rb_next(n1), n2 = rb_next(n2)) {
2962 struct crush_loc_node *loc1 =
2963 rb_entry(n1, struct crush_loc_node, cl_node);
2964 struct crush_loc_node *loc2 =
2965 rb_entry(n2, struct crush_loc_node, cl_node);
2966
2967 ret = crush_loc_compare(&loc1->cl_loc, &loc2->cl_loc);
2968 if (ret)
2969 return ret;
2970 }
2971
2972 if (!n1 && n2)
2973 return -1;
2974 if (n1 && !n2)
2975 return 1;
2976 return 0;
2977 }
2978
2979 void ceph_clear_crush_locs(struct rb_root *locs)
2980 {
2981 while (!RB_EMPTY_ROOT(locs)) {
2982 struct crush_loc_node *loc =
2983 rb_entry(rb_first(locs), struct crush_loc_node, cl_node);
2984
2985 erase_crush_loc(locs, loc);
2986 free_crush_loc(loc);
2987 }
2988 }
2989
2990 /*
2991 * [a-zA-Z0-9-_.]+
2992 */
2993 static bool is_valid_crush_name(const char *name)
2994 {
2995 do {
2996 if (!('a' <= *name && *name <= 'z') &&
2997 !('A' <= *name && *name <= 'Z') &&
2998 !('0' <= *name && *name <= '9') &&
2999 *name != '-' && *name != '_' && *name != '.')
3000 return false;
3001 } while (*++name != '\0');
3002
3003 return true;
3004 }
3005
3006 /*
3007 * Gets the parent of an item. Returns its id (<0 because the
3008 * parent is always a bucket), type id (>0 for the same reason,
3009 * via @parent_type_id) and location (via @parent_loc). If no
3010 * parent, returns 0.
3011 *
3012 * Does a linear search, as there are no parent pointers of any
3013 * kind. Note that the result is ambiguous for items that occur
3014 * multiple times in the map.
3015 */
3016 static int get_immediate_parent(struct crush_map *c, int id,
3017 u16 *parent_type_id,
3018 struct crush_loc *parent_loc)
3019 {
3020 struct crush_bucket *b;
3021 struct crush_name_node *type_cn, *cn;
3022 int i, j;
3023
3024 for (i = 0; i < c->max_buckets; i++) {
3025 b = c->buckets[i];
3026 if (!b)
3027 continue;
3028
3029 /* ignore per-class shadow hierarchy */
3030 cn = lookup_crush_name(&c->names, b->id);
3031 if (!cn || !is_valid_crush_name(cn->cn_name))
3032 continue;
3033
3034 for (j = 0; j < b->size; j++) {
3035 if (b->items[j] != id)
3036 continue;
3037
3038 *parent_type_id = b->type;
3039 type_cn = lookup_crush_name(&c->type_names, b->type);
3040 parent_loc->cl_type_name = type_cn->cn_name;
3041 parent_loc->cl_name = cn->cn_name;
3042 return b->id;
3043 }
3044 }
3045
3046 return 0; /* no parent */
3047 }
3048
3049 /*
3050 * Calculates the locality/distance from an item to a client
3051 * location expressed in terms of CRUSH hierarchy as a set of
3052 * (bucket type name, bucket name) pairs. Specifically, looks
3053 * for the lowest-valued bucket type for which the location of
3054 * @id matches one of the locations in @locs, so for standard
3055 * bucket types (host = 1, rack = 3, datacenter = 8, zone = 9)
3056 * a matching host is closer than a matching rack and a matching
3057 * data center is closer than a matching zone.
3058 *
3059 * Specifying multiple locations (a "multipath" location) such
3060 * as "rack=foo1 rack=foo2 datacenter=bar" is allowed -- @locs
3061 * is a multimap. The locality will be:
3062 *
3063 * - 3 for OSDs in racks foo1 and foo2
3064 * - 8 for OSDs in data center bar
3065 * - -1 for all other OSDs
3066 *
3067 * The lowest possible bucket type is 1, so the best locality
3068 * for an OSD is 1 (i.e. a matching host). Locality 0 would be
3069 * the OSD itself.
3070 */
3071 int ceph_get_crush_locality(struct ceph_osdmap *osdmap, int id,
3072 struct rb_root *locs)
3073 {
3074 struct crush_loc loc;
3075 u16 type_id;
3076
3077 /*
3078 * Instead of repeated get_immediate_parent() calls,
3079 * the location of @id could be obtained with a single
3080 * depth-first traversal.
3081 */
3082 for (;;) {
3083 id = get_immediate_parent(osdmap->crush, id, &type_id, &loc);
3084 if (id >= 0)
3085 return -1; /* not local */
3086
3087 if (lookup_crush_loc(locs, &loc))
3088 return type_id;
3089 }
3090 }