]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/core/dev.c
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[mirror_ubuntu-zesty-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143
144 #include "net-sysfs.h"
145
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly; /* Taps */
156 static struct list_head offload_base __read_mostly;
157
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
162
163 /*
164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165 * semaphore.
166 *
167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
170 * dev_base_head list, and hold dev_base_lock for writing when they do the
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191 static seqcount_t devnet_rename_seq;
192
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195 while (++net->dev_base_seq == 0);
196 }
197
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
201
202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
226 {
227 struct net *net = dev_net(dev);
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
236 write_unlock_bh(&dev_base_lock);
237
238 dev_base_seq_inc(net);
239 }
240
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254
255 dev_base_seq_inc(dev_net(dev));
256 }
257
258 /*
259 * Our notifier list
260 */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
276 */
277 static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293
294 static const char *const netdev_lock_name[] =
295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 {
378 if (pt->type == htons(ETH_P_ALL))
379 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380 else
381 return pt->dev ? &pt->dev->ptype_specific :
382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384
385 /**
386 * dev_add_pack - add packet handler
387 * @pt: packet type declaration
388 *
389 * Add a protocol handler to the networking stack. The passed &packet_type
390 * is linked into kernel lists and may not be freed until it has been
391 * removed from the kernel lists.
392 *
393 * This call does not sleep therefore it can not
394 * guarantee all CPU's that are in middle of receiving packets
395 * will see the new packet type (until the next received packet).
396 */
397
398 void dev_add_pack(struct packet_type *pt)
399 {
400 struct list_head *head = ptype_head(pt);
401
402 spin_lock(&ptype_lock);
403 list_add_rcu(&pt->list, head);
404 spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407
408 /**
409 * __dev_remove_pack - remove packet handler
410 * @pt: packet type declaration
411 *
412 * Remove a protocol handler that was previously added to the kernel
413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
414 * from the kernel lists and can be freed or reused once this function
415 * returns.
416 *
417 * The packet type might still be in use by receivers
418 * and must not be freed until after all the CPU's have gone
419 * through a quiescent state.
420 */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 struct list_head *head = ptype_head(pt);
424 struct packet_type *pt1;
425
426 spin_lock(&ptype_lock);
427
428 list_for_each_entry(pt1, head, list) {
429 if (pt == pt1) {
430 list_del_rcu(&pt->list);
431 goto out;
432 }
433 }
434
435 pr_warn("dev_remove_pack: %p not found\n", pt);
436 out:
437 spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440
441 /**
442 * dev_remove_pack - remove packet handler
443 * @pt: packet type declaration
444 *
445 * Remove a protocol handler that was previously added to the kernel
446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
447 * from the kernel lists and can be freed or reused once this function
448 * returns.
449 *
450 * This call sleeps to guarantee that no CPU is looking at the packet
451 * type after return.
452 */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 __dev_remove_pack(pt);
456
457 synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460
461
462 /**
463 * dev_add_offload - register offload handlers
464 * @po: protocol offload declaration
465 *
466 * Add protocol offload handlers to the networking stack. The passed
467 * &proto_offload is linked into kernel lists and may not be freed until
468 * it has been removed from the kernel lists.
469 *
470 * This call does not sleep therefore it can not
471 * guarantee all CPU's that are in middle of receiving packets
472 * will see the new offload handlers (until the next received packet).
473 */
474 void dev_add_offload(struct packet_offload *po)
475 {
476 struct packet_offload *elem;
477
478 spin_lock(&offload_lock);
479 list_for_each_entry(elem, &offload_base, list) {
480 if (po->priority < elem->priority)
481 break;
482 }
483 list_add_rcu(&po->list, elem->list.prev);
484 spin_unlock(&offload_lock);
485 }
486 EXPORT_SYMBOL(dev_add_offload);
487
488 /**
489 * __dev_remove_offload - remove offload handler
490 * @po: packet offload declaration
491 *
492 * Remove a protocol offload handler that was previously added to the
493 * kernel offload handlers by dev_add_offload(). The passed &offload_type
494 * is removed from the kernel lists and can be freed or reused once this
495 * function returns.
496 *
497 * The packet type might still be in use by receivers
498 * and must not be freed until after all the CPU's have gone
499 * through a quiescent state.
500 */
501 static void __dev_remove_offload(struct packet_offload *po)
502 {
503 struct list_head *head = &offload_base;
504 struct packet_offload *po1;
505
506 spin_lock(&offload_lock);
507
508 list_for_each_entry(po1, head, list) {
509 if (po == po1) {
510 list_del_rcu(&po->list);
511 goto out;
512 }
513 }
514
515 pr_warn("dev_remove_offload: %p not found\n", po);
516 out:
517 spin_unlock(&offload_lock);
518 }
519
520 /**
521 * dev_remove_offload - remove packet offload handler
522 * @po: packet offload declaration
523 *
524 * Remove a packet offload handler that was previously added to the kernel
525 * offload handlers by dev_add_offload(). The passed &offload_type is
526 * removed from the kernel lists and can be freed or reused once this
527 * function returns.
528 *
529 * This call sleeps to guarantee that no CPU is looking at the packet
530 * type after return.
531 */
532 void dev_remove_offload(struct packet_offload *po)
533 {
534 __dev_remove_offload(po);
535
536 synchronize_net();
537 }
538 EXPORT_SYMBOL(dev_remove_offload);
539
540 /******************************************************************************
541
542 Device Boot-time Settings Routines
543
544 *******************************************************************************/
545
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548
549 /**
550 * netdev_boot_setup_add - add new setup entry
551 * @name: name of the device
552 * @map: configured settings for the device
553 *
554 * Adds new setup entry to the dev_boot_setup list. The function
555 * returns 0 on error and 1 on success. This is a generic routine to
556 * all netdevices.
557 */
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 {
560 struct netdev_boot_setup *s;
561 int i;
562
563 s = dev_boot_setup;
564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 memset(s[i].name, 0, sizeof(s[i].name));
567 strlcpy(s[i].name, name, IFNAMSIZ);
568 memcpy(&s[i].map, map, sizeof(s[i].map));
569 break;
570 }
571 }
572
573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574 }
575
576 /**
577 * netdev_boot_setup_check - check boot time settings
578 * @dev: the netdevice
579 *
580 * Check boot time settings for the device.
581 * The found settings are set for the device to be used
582 * later in the device probing.
583 * Returns 0 if no settings found, 1 if they are.
584 */
585 int netdev_boot_setup_check(struct net_device *dev)
586 {
587 struct netdev_boot_setup *s = dev_boot_setup;
588 int i;
589
590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592 !strcmp(dev->name, s[i].name)) {
593 dev->irq = s[i].map.irq;
594 dev->base_addr = s[i].map.base_addr;
595 dev->mem_start = s[i].map.mem_start;
596 dev->mem_end = s[i].map.mem_end;
597 return 1;
598 }
599 }
600 return 0;
601 }
602 EXPORT_SYMBOL(netdev_boot_setup_check);
603
604
605 /**
606 * netdev_boot_base - get address from boot time settings
607 * @prefix: prefix for network device
608 * @unit: id for network device
609 *
610 * Check boot time settings for the base address of device.
611 * The found settings are set for the device to be used
612 * later in the device probing.
613 * Returns 0 if no settings found.
614 */
615 unsigned long netdev_boot_base(const char *prefix, int unit)
616 {
617 const struct netdev_boot_setup *s = dev_boot_setup;
618 char name[IFNAMSIZ];
619 int i;
620
621 sprintf(name, "%s%d", prefix, unit);
622
623 /*
624 * If device already registered then return base of 1
625 * to indicate not to probe for this interface
626 */
627 if (__dev_get_by_name(&init_net, name))
628 return 1;
629
630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 if (!strcmp(name, s[i].name))
632 return s[i].map.base_addr;
633 return 0;
634 }
635
636 /*
637 * Saves at boot time configured settings for any netdevice.
638 */
639 int __init netdev_boot_setup(char *str)
640 {
641 int ints[5];
642 struct ifmap map;
643
644 str = get_options(str, ARRAY_SIZE(ints), ints);
645 if (!str || !*str)
646 return 0;
647
648 /* Save settings */
649 memset(&map, 0, sizeof(map));
650 if (ints[0] > 0)
651 map.irq = ints[1];
652 if (ints[0] > 1)
653 map.base_addr = ints[2];
654 if (ints[0] > 2)
655 map.mem_start = ints[3];
656 if (ints[0] > 3)
657 map.mem_end = ints[4];
658
659 /* Add new entry to the list */
660 return netdev_boot_setup_add(str, &map);
661 }
662
663 __setup("netdev=", netdev_boot_setup);
664
665 /*******************************************************************************
666
667 Device Interface Subroutines
668
669 *******************************************************************************/
670
671 /**
672 * dev_get_iflink - get 'iflink' value of a interface
673 * @dev: targeted interface
674 *
675 * Indicates the ifindex the interface is linked to.
676 * Physical interfaces have the same 'ifindex' and 'iflink' values.
677 */
678
679 int dev_get_iflink(const struct net_device *dev)
680 {
681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 return dev->netdev_ops->ndo_get_iflink(dev);
683
684 return dev->ifindex;
685 }
686 EXPORT_SYMBOL(dev_get_iflink);
687
688 /**
689 * dev_fill_metadata_dst - Retrieve tunnel egress information.
690 * @dev: targeted interface
691 * @skb: The packet.
692 *
693 * For better visibility of tunnel traffic OVS needs to retrieve
694 * egress tunnel information for a packet. Following API allows
695 * user to get this info.
696 */
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 {
699 struct ip_tunnel_info *info;
700
701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
702 return -EINVAL;
703
704 info = skb_tunnel_info_unclone(skb);
705 if (!info)
706 return -ENOMEM;
707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 return -EINVAL;
709
710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713
714 /**
715 * __dev_get_by_name - find a device by its name
716 * @net: the applicable net namespace
717 * @name: name to find
718 *
719 * Find an interface by name. Must be called under RTNL semaphore
720 * or @dev_base_lock. If the name is found a pointer to the device
721 * is returned. If the name is not found then %NULL is returned. The
722 * reference counters are not incremented so the caller must be
723 * careful with locks.
724 */
725
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728 struct net_device *dev;
729 struct hlist_head *head = dev_name_hash(net, name);
730
731 hlist_for_each_entry(dev, head, name_hlist)
732 if (!strncmp(dev->name, name, IFNAMSIZ))
733 return dev;
734
735 return NULL;
736 }
737 EXPORT_SYMBOL(__dev_get_by_name);
738
739 /**
740 * dev_get_by_name_rcu - find a device by its name
741 * @net: the applicable net namespace
742 * @name: name to find
743 *
744 * Find an interface by name.
745 * If the name is found a pointer to the device is returned.
746 * If the name is not found then %NULL is returned.
747 * The reference counters are not incremented so the caller must be
748 * careful with locks. The caller must hold RCU lock.
749 */
750
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 {
753 struct net_device *dev;
754 struct hlist_head *head = dev_name_hash(net, name);
755
756 hlist_for_each_entry_rcu(dev, head, name_hlist)
757 if (!strncmp(dev->name, name, IFNAMSIZ))
758 return dev;
759
760 return NULL;
761 }
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
763
764 /**
765 * dev_get_by_name - find a device by its name
766 * @net: the applicable net namespace
767 * @name: name to find
768 *
769 * Find an interface by name. This can be called from any
770 * context and does its own locking. The returned handle has
771 * the usage count incremented and the caller must use dev_put() to
772 * release it when it is no longer needed. %NULL is returned if no
773 * matching device is found.
774 */
775
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 {
778 struct net_device *dev;
779
780 rcu_read_lock();
781 dev = dev_get_by_name_rcu(net, name);
782 if (dev)
783 dev_hold(dev);
784 rcu_read_unlock();
785 return dev;
786 }
787 EXPORT_SYMBOL(dev_get_by_name);
788
789 /**
790 * __dev_get_by_index - find a device by its ifindex
791 * @net: the applicable net namespace
792 * @ifindex: index of device
793 *
794 * Search for an interface by index. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not
796 * had its reference counter increased so the caller must be careful
797 * about locking. The caller must hold either the RTNL semaphore
798 * or @dev_base_lock.
799 */
800
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 {
803 struct net_device *dev;
804 struct hlist_head *head = dev_index_hash(net, ifindex);
805
806 hlist_for_each_entry(dev, head, index_hlist)
807 if (dev->ifindex == ifindex)
808 return dev;
809
810 return NULL;
811 }
812 EXPORT_SYMBOL(__dev_get_by_index);
813
814 /**
815 * dev_get_by_index_rcu - find a device by its ifindex
816 * @net: the applicable net namespace
817 * @ifindex: index of device
818 *
819 * Search for an interface by index. Returns %NULL if the device
820 * is not found or a pointer to the device. The device has not
821 * had its reference counter increased so the caller must be careful
822 * about locking. The caller must hold RCU lock.
823 */
824
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 {
827 struct net_device *dev;
828 struct hlist_head *head = dev_index_hash(net, ifindex);
829
830 hlist_for_each_entry_rcu(dev, head, index_hlist)
831 if (dev->ifindex == ifindex)
832 return dev;
833
834 return NULL;
835 }
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
837
838
839 /**
840 * dev_get_by_index - find a device by its ifindex
841 * @net: the applicable net namespace
842 * @ifindex: index of device
843 *
844 * Search for an interface by index. Returns NULL if the device
845 * is not found or a pointer to the device. The device returned has
846 * had a reference added and the pointer is safe until the user calls
847 * dev_put to indicate they have finished with it.
848 */
849
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 {
852 struct net_device *dev;
853
854 rcu_read_lock();
855 dev = dev_get_by_index_rcu(net, ifindex);
856 if (dev)
857 dev_hold(dev);
858 rcu_read_unlock();
859 return dev;
860 }
861 EXPORT_SYMBOL(dev_get_by_index);
862
863 /**
864 * netdev_get_name - get a netdevice name, knowing its ifindex.
865 * @net: network namespace
866 * @name: a pointer to the buffer where the name will be stored.
867 * @ifindex: the ifindex of the interface to get the name from.
868 *
869 * The use of raw_seqcount_begin() and cond_resched() before
870 * retrying is required as we want to give the writers a chance
871 * to complete when CONFIG_PREEMPT is not set.
872 */
873 int netdev_get_name(struct net *net, char *name, int ifindex)
874 {
875 struct net_device *dev;
876 unsigned int seq;
877
878 retry:
879 seq = raw_seqcount_begin(&devnet_rename_seq);
880 rcu_read_lock();
881 dev = dev_get_by_index_rcu(net, ifindex);
882 if (!dev) {
883 rcu_read_unlock();
884 return -ENODEV;
885 }
886
887 strcpy(name, dev->name);
888 rcu_read_unlock();
889 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 cond_resched();
891 goto retry;
892 }
893
894 return 0;
895 }
896
897 /**
898 * dev_getbyhwaddr_rcu - find a device by its hardware address
899 * @net: the applicable net namespace
900 * @type: media type of device
901 * @ha: hardware address
902 *
903 * Search for an interface by MAC address. Returns NULL if the device
904 * is not found or a pointer to the device.
905 * The caller must hold RCU or RTNL.
906 * The returned device has not had its ref count increased
907 * and the caller must therefore be careful about locking
908 *
909 */
910
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 const char *ha)
913 {
914 struct net_device *dev;
915
916 for_each_netdev_rcu(net, dev)
917 if (dev->type == type &&
918 !memcmp(dev->dev_addr, ha, dev->addr_len))
919 return dev;
920
921 return NULL;
922 }
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 {
927 struct net_device *dev;
928
929 ASSERT_RTNL();
930 for_each_netdev(net, dev)
931 if (dev->type == type)
932 return dev;
933
934 return NULL;
935 }
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 {
940 struct net_device *dev, *ret = NULL;
941
942 rcu_read_lock();
943 for_each_netdev_rcu(net, dev)
944 if (dev->type == type) {
945 dev_hold(dev);
946 ret = dev;
947 break;
948 }
949 rcu_read_unlock();
950 return ret;
951 }
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
953
954 /**
955 * __dev_get_by_flags - find any device with given flags
956 * @net: the applicable net namespace
957 * @if_flags: IFF_* values
958 * @mask: bitmask of bits in if_flags to check
959 *
960 * Search for any interface with the given flags. Returns NULL if a device
961 * is not found or a pointer to the device. Must be called inside
962 * rtnl_lock(), and result refcount is unchanged.
963 */
964
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 unsigned short mask)
967 {
968 struct net_device *dev, *ret;
969
970 ASSERT_RTNL();
971
972 ret = NULL;
973 for_each_netdev(net, dev) {
974 if (((dev->flags ^ if_flags) & mask) == 0) {
975 ret = dev;
976 break;
977 }
978 }
979 return ret;
980 }
981 EXPORT_SYMBOL(__dev_get_by_flags);
982
983 /**
984 * dev_valid_name - check if name is okay for network device
985 * @name: name string
986 *
987 * Network device names need to be valid file names to
988 * to allow sysfs to work. We also disallow any kind of
989 * whitespace.
990 */
991 bool dev_valid_name(const char *name)
992 {
993 if (*name == '\0')
994 return false;
995 if (strlen(name) >= IFNAMSIZ)
996 return false;
997 if (!strcmp(name, ".") || !strcmp(name, ".."))
998 return false;
999
1000 while (*name) {
1001 if (*name == '/' || *name == ':' || isspace(*name))
1002 return false;
1003 name++;
1004 }
1005 return true;
1006 }
1007 EXPORT_SYMBOL(dev_valid_name);
1008
1009 /**
1010 * __dev_alloc_name - allocate a name for a device
1011 * @net: network namespace to allocate the device name in
1012 * @name: name format string
1013 * @buf: scratch buffer and result name string
1014 *
1015 * Passed a format string - eg "lt%d" it will try and find a suitable
1016 * id. It scans list of devices to build up a free map, then chooses
1017 * the first empty slot. The caller must hold the dev_base or rtnl lock
1018 * while allocating the name and adding the device in order to avoid
1019 * duplicates.
1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021 * Returns the number of the unit assigned or a negative errno code.
1022 */
1023
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1025 {
1026 int i = 0;
1027 const char *p;
1028 const int max_netdevices = 8*PAGE_SIZE;
1029 unsigned long *inuse;
1030 struct net_device *d;
1031
1032 p = strnchr(name, IFNAMSIZ-1, '%');
1033 if (p) {
1034 /*
1035 * Verify the string as this thing may have come from
1036 * the user. There must be either one "%d" and no other "%"
1037 * characters.
1038 */
1039 if (p[1] != 'd' || strchr(p + 2, '%'))
1040 return -EINVAL;
1041
1042 /* Use one page as a bit array of possible slots */
1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044 if (!inuse)
1045 return -ENOMEM;
1046
1047 for_each_netdev(net, d) {
1048 if (!sscanf(d->name, name, &i))
1049 continue;
1050 if (i < 0 || i >= max_netdevices)
1051 continue;
1052
1053 /* avoid cases where sscanf is not exact inverse of printf */
1054 snprintf(buf, IFNAMSIZ, name, i);
1055 if (!strncmp(buf, d->name, IFNAMSIZ))
1056 set_bit(i, inuse);
1057 }
1058
1059 i = find_first_zero_bit(inuse, max_netdevices);
1060 free_page((unsigned long) inuse);
1061 }
1062
1063 if (buf != name)
1064 snprintf(buf, IFNAMSIZ, name, i);
1065 if (!__dev_get_by_name(net, buf))
1066 return i;
1067
1068 /* It is possible to run out of possible slots
1069 * when the name is long and there isn't enough space left
1070 * for the digits, or if all bits are used.
1071 */
1072 return -ENFILE;
1073 }
1074
1075 /**
1076 * dev_alloc_name - allocate a name for a device
1077 * @dev: device
1078 * @name: name format string
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1087 */
1088
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1090 {
1091 char buf[IFNAMSIZ];
1092 struct net *net;
1093 int ret;
1094
1095 BUG_ON(!dev_net(dev));
1096 net = dev_net(dev);
1097 ret = __dev_alloc_name(net, name, buf);
1098 if (ret >= 0)
1099 strlcpy(dev->name, buf, IFNAMSIZ);
1100 return ret;
1101 }
1102 EXPORT_SYMBOL(dev_alloc_name);
1103
1104 static int dev_alloc_name_ns(struct net *net,
1105 struct net_device *dev,
1106 const char *name)
1107 {
1108 char buf[IFNAMSIZ];
1109 int ret;
1110
1111 ret = __dev_alloc_name(net, name, buf);
1112 if (ret >= 0)
1113 strlcpy(dev->name, buf, IFNAMSIZ);
1114 return ret;
1115 }
1116
1117 static int dev_get_valid_name(struct net *net,
1118 struct net_device *dev,
1119 const char *name)
1120 {
1121 BUG_ON(!net);
1122
1123 if (!dev_valid_name(name))
1124 return -EINVAL;
1125
1126 if (strchr(name, '%'))
1127 return dev_alloc_name_ns(net, dev, name);
1128 else if (__dev_get_by_name(net, name))
1129 return -EEXIST;
1130 else if (dev->name != name)
1131 strlcpy(dev->name, name, IFNAMSIZ);
1132
1133 return 0;
1134 }
1135
1136 /**
1137 * dev_change_name - change name of a device
1138 * @dev: device
1139 * @newname: name (or format string) must be at least IFNAMSIZ
1140 *
1141 * Change name of a device, can pass format strings "eth%d".
1142 * for wildcarding.
1143 */
1144 int dev_change_name(struct net_device *dev, const char *newname)
1145 {
1146 unsigned char old_assign_type;
1147 char oldname[IFNAMSIZ];
1148 int err = 0;
1149 int ret;
1150 struct net *net;
1151
1152 ASSERT_RTNL();
1153 BUG_ON(!dev_net(dev));
1154
1155 net = dev_net(dev);
1156 if (dev->flags & IFF_UP)
1157 return -EBUSY;
1158
1159 write_seqcount_begin(&devnet_rename_seq);
1160
1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162 write_seqcount_end(&devnet_rename_seq);
1163 return 0;
1164 }
1165
1166 memcpy(oldname, dev->name, IFNAMSIZ);
1167
1168 err = dev_get_valid_name(net, dev, newname);
1169 if (err < 0) {
1170 write_seqcount_end(&devnet_rename_seq);
1171 return err;
1172 }
1173
1174 if (oldname[0] && !strchr(oldname, '%'))
1175 netdev_info(dev, "renamed from %s\n", oldname);
1176
1177 old_assign_type = dev->name_assign_type;
1178 dev->name_assign_type = NET_NAME_RENAMED;
1179
1180 rollback:
1181 ret = device_rename(&dev->dev, dev->name);
1182 if (ret) {
1183 memcpy(dev->name, oldname, IFNAMSIZ);
1184 dev->name_assign_type = old_assign_type;
1185 write_seqcount_end(&devnet_rename_seq);
1186 return ret;
1187 }
1188
1189 write_seqcount_end(&devnet_rename_seq);
1190
1191 netdev_adjacent_rename_links(dev, oldname);
1192
1193 write_lock_bh(&dev_base_lock);
1194 hlist_del_rcu(&dev->name_hlist);
1195 write_unlock_bh(&dev_base_lock);
1196
1197 synchronize_rcu();
1198
1199 write_lock_bh(&dev_base_lock);
1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201 write_unlock_bh(&dev_base_lock);
1202
1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204 ret = notifier_to_errno(ret);
1205
1206 if (ret) {
1207 /* err >= 0 after dev_alloc_name() or stores the first errno */
1208 if (err >= 0) {
1209 err = ret;
1210 write_seqcount_begin(&devnet_rename_seq);
1211 memcpy(dev->name, oldname, IFNAMSIZ);
1212 memcpy(oldname, newname, IFNAMSIZ);
1213 dev->name_assign_type = old_assign_type;
1214 old_assign_type = NET_NAME_RENAMED;
1215 goto rollback;
1216 } else {
1217 pr_err("%s: name change rollback failed: %d\n",
1218 dev->name, ret);
1219 }
1220 }
1221
1222 return err;
1223 }
1224
1225 /**
1226 * dev_set_alias - change ifalias of a device
1227 * @dev: device
1228 * @alias: name up to IFALIASZ
1229 * @len: limit of bytes to copy from info
1230 *
1231 * Set ifalias for a device,
1232 */
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234 {
1235 char *new_ifalias;
1236
1237 ASSERT_RTNL();
1238
1239 if (len >= IFALIASZ)
1240 return -EINVAL;
1241
1242 if (!len) {
1243 kfree(dev->ifalias);
1244 dev->ifalias = NULL;
1245 return 0;
1246 }
1247
1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 if (!new_ifalias)
1250 return -ENOMEM;
1251 dev->ifalias = new_ifalias;
1252
1253 strlcpy(dev->ifalias, alias, len+1);
1254 return len;
1255 }
1256
1257
1258 /**
1259 * netdev_features_change - device changes features
1260 * @dev: device to cause notification
1261 *
1262 * Called to indicate a device has changed features.
1263 */
1264 void netdev_features_change(struct net_device *dev)
1265 {
1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 }
1268 EXPORT_SYMBOL(netdev_features_change);
1269
1270 /**
1271 * netdev_state_change - device changes state
1272 * @dev: device to cause notification
1273 *
1274 * Called to indicate a device has changed state. This function calls
1275 * the notifier chains for netdev_chain and sends a NEWLINK message
1276 * to the routing socket.
1277 */
1278 void netdev_state_change(struct net_device *dev)
1279 {
1280 if (dev->flags & IFF_UP) {
1281 struct netdev_notifier_change_info change_info;
1282
1283 change_info.flags_changed = 0;
1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 &change_info.info);
1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1287 }
1288 }
1289 EXPORT_SYMBOL(netdev_state_change);
1290
1291 /**
1292 * netdev_notify_peers - notify network peers about existence of @dev
1293 * @dev: network device
1294 *
1295 * Generate traffic such that interested network peers are aware of
1296 * @dev, such as by generating a gratuitous ARP. This may be used when
1297 * a device wants to inform the rest of the network about some sort of
1298 * reconfiguration such as a failover event or virtual machine
1299 * migration.
1300 */
1301 void netdev_notify_peers(struct net_device *dev)
1302 {
1303 rtnl_lock();
1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 rtnl_unlock();
1306 }
1307 EXPORT_SYMBOL(netdev_notify_peers);
1308
1309 static int __dev_open(struct net_device *dev)
1310 {
1311 const struct net_device_ops *ops = dev->netdev_ops;
1312 int ret;
1313
1314 ASSERT_RTNL();
1315
1316 if (!netif_device_present(dev))
1317 return -ENODEV;
1318
1319 /* Block netpoll from trying to do any rx path servicing.
1320 * If we don't do this there is a chance ndo_poll_controller
1321 * or ndo_poll may be running while we open the device
1322 */
1323 netpoll_poll_disable(dev);
1324
1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 ret = notifier_to_errno(ret);
1327 if (ret)
1328 return ret;
1329
1330 set_bit(__LINK_STATE_START, &dev->state);
1331
1332 if (ops->ndo_validate_addr)
1333 ret = ops->ndo_validate_addr(dev);
1334
1335 if (!ret && ops->ndo_open)
1336 ret = ops->ndo_open(dev);
1337
1338 netpoll_poll_enable(dev);
1339
1340 if (ret)
1341 clear_bit(__LINK_STATE_START, &dev->state);
1342 else {
1343 dev->flags |= IFF_UP;
1344 dev_set_rx_mode(dev);
1345 dev_activate(dev);
1346 add_device_randomness(dev->dev_addr, dev->addr_len);
1347 }
1348
1349 return ret;
1350 }
1351
1352 /**
1353 * dev_open - prepare an interface for use.
1354 * @dev: device to open
1355 *
1356 * Takes a device from down to up state. The device's private open
1357 * function is invoked and then the multicast lists are loaded. Finally
1358 * the device is moved into the up state and a %NETDEV_UP message is
1359 * sent to the netdev notifier chain.
1360 *
1361 * Calling this function on an active interface is a nop. On a failure
1362 * a negative errno code is returned.
1363 */
1364 int dev_open(struct net_device *dev)
1365 {
1366 int ret;
1367
1368 if (dev->flags & IFF_UP)
1369 return 0;
1370
1371 ret = __dev_open(dev);
1372 if (ret < 0)
1373 return ret;
1374
1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376 call_netdevice_notifiers(NETDEV_UP, dev);
1377
1378 return ret;
1379 }
1380 EXPORT_SYMBOL(dev_open);
1381
1382 static int __dev_close_many(struct list_head *head)
1383 {
1384 struct net_device *dev;
1385
1386 ASSERT_RTNL();
1387 might_sleep();
1388
1389 list_for_each_entry(dev, head, close_list) {
1390 /* Temporarily disable netpoll until the interface is down */
1391 netpoll_poll_disable(dev);
1392
1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394
1395 clear_bit(__LINK_STATE_START, &dev->state);
1396
1397 /* Synchronize to scheduled poll. We cannot touch poll list, it
1398 * can be even on different cpu. So just clear netif_running().
1399 *
1400 * dev->stop() will invoke napi_disable() on all of it's
1401 * napi_struct instances on this device.
1402 */
1403 smp_mb__after_atomic(); /* Commit netif_running(). */
1404 }
1405
1406 dev_deactivate_many(head);
1407
1408 list_for_each_entry(dev, head, close_list) {
1409 const struct net_device_ops *ops = dev->netdev_ops;
1410
1411 /*
1412 * Call the device specific close. This cannot fail.
1413 * Only if device is UP
1414 *
1415 * We allow it to be called even after a DETACH hot-plug
1416 * event.
1417 */
1418 if (ops->ndo_stop)
1419 ops->ndo_stop(dev);
1420
1421 dev->flags &= ~IFF_UP;
1422 netpoll_poll_enable(dev);
1423 }
1424
1425 return 0;
1426 }
1427
1428 static int __dev_close(struct net_device *dev)
1429 {
1430 int retval;
1431 LIST_HEAD(single);
1432
1433 list_add(&dev->close_list, &single);
1434 retval = __dev_close_many(&single);
1435 list_del(&single);
1436
1437 return retval;
1438 }
1439
1440 int dev_close_many(struct list_head *head, bool unlink)
1441 {
1442 struct net_device *dev, *tmp;
1443
1444 /* Remove the devices that don't need to be closed */
1445 list_for_each_entry_safe(dev, tmp, head, close_list)
1446 if (!(dev->flags & IFF_UP))
1447 list_del_init(&dev->close_list);
1448
1449 __dev_close_many(head);
1450
1451 list_for_each_entry_safe(dev, tmp, head, close_list) {
1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453 call_netdevice_notifiers(NETDEV_DOWN, dev);
1454 if (unlink)
1455 list_del_init(&dev->close_list);
1456 }
1457
1458 return 0;
1459 }
1460 EXPORT_SYMBOL(dev_close_many);
1461
1462 /**
1463 * dev_close - shutdown an interface.
1464 * @dev: device to shutdown
1465 *
1466 * This function moves an active device into down state. A
1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469 * chain.
1470 */
1471 int dev_close(struct net_device *dev)
1472 {
1473 if (dev->flags & IFF_UP) {
1474 LIST_HEAD(single);
1475
1476 list_add(&dev->close_list, &single);
1477 dev_close_many(&single, true);
1478 list_del(&single);
1479 }
1480 return 0;
1481 }
1482 EXPORT_SYMBOL(dev_close);
1483
1484
1485 /**
1486 * dev_disable_lro - disable Large Receive Offload on a device
1487 * @dev: device
1488 *
1489 * Disable Large Receive Offload (LRO) on a net device. Must be
1490 * called under RTNL. This is needed if received packets may be
1491 * forwarded to another interface.
1492 */
1493 void dev_disable_lro(struct net_device *dev)
1494 {
1495 struct net_device *lower_dev;
1496 struct list_head *iter;
1497
1498 dev->wanted_features &= ~NETIF_F_LRO;
1499 netdev_update_features(dev);
1500
1501 if (unlikely(dev->features & NETIF_F_LRO))
1502 netdev_WARN(dev, "failed to disable LRO!\n");
1503
1504 netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 dev_disable_lro(lower_dev);
1506 }
1507 EXPORT_SYMBOL(dev_disable_lro);
1508
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 struct net_device *dev)
1511 {
1512 struct netdev_notifier_info info;
1513
1514 netdev_notifier_info_init(&info, dev);
1515 return nb->notifier_call(nb, val, &info);
1516 }
1517
1518 static int dev_boot_phase = 1;
1519
1520 /**
1521 * register_netdevice_notifier - register a network notifier block
1522 * @nb: notifier
1523 *
1524 * Register a notifier to be called when network device events occur.
1525 * The notifier passed is linked into the kernel structures and must
1526 * not be reused until it has been unregistered. A negative errno code
1527 * is returned on a failure.
1528 *
1529 * When registered all registration and up events are replayed
1530 * to the new notifier to allow device to have a race free
1531 * view of the network device list.
1532 */
1533
1534 int register_netdevice_notifier(struct notifier_block *nb)
1535 {
1536 struct net_device *dev;
1537 struct net_device *last;
1538 struct net *net;
1539 int err;
1540
1541 rtnl_lock();
1542 err = raw_notifier_chain_register(&netdev_chain, nb);
1543 if (err)
1544 goto unlock;
1545 if (dev_boot_phase)
1546 goto unlock;
1547 for_each_net(net) {
1548 for_each_netdev(net, dev) {
1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550 err = notifier_to_errno(err);
1551 if (err)
1552 goto rollback;
1553
1554 if (!(dev->flags & IFF_UP))
1555 continue;
1556
1557 call_netdevice_notifier(nb, NETDEV_UP, dev);
1558 }
1559 }
1560
1561 unlock:
1562 rtnl_unlock();
1563 return err;
1564
1565 rollback:
1566 last = dev;
1567 for_each_net(net) {
1568 for_each_netdev(net, dev) {
1569 if (dev == last)
1570 goto outroll;
1571
1572 if (dev->flags & IFF_UP) {
1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 dev);
1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576 }
1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1578 }
1579 }
1580
1581 outroll:
1582 raw_notifier_chain_unregister(&netdev_chain, nb);
1583 goto unlock;
1584 }
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1586
1587 /**
1588 * unregister_netdevice_notifier - unregister a network notifier block
1589 * @nb: notifier
1590 *
1591 * Unregister a notifier previously registered by
1592 * register_netdevice_notifier(). The notifier is unlinked into the
1593 * kernel structures and may then be reused. A negative errno code
1594 * is returned on a failure.
1595 *
1596 * After unregistering unregister and down device events are synthesized
1597 * for all devices on the device list to the removed notifier to remove
1598 * the need for special case cleanup code.
1599 */
1600
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 {
1603 struct net_device *dev;
1604 struct net *net;
1605 int err;
1606
1607 rtnl_lock();
1608 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1609 if (err)
1610 goto unlock;
1611
1612 for_each_net(net) {
1613 for_each_netdev(net, dev) {
1614 if (dev->flags & IFF_UP) {
1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 dev);
1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618 }
1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1620 }
1621 }
1622 unlock:
1623 rtnl_unlock();
1624 return err;
1625 }
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1627
1628 /**
1629 * call_netdevice_notifiers_info - call all network notifier blocks
1630 * @val: value passed unmodified to notifier function
1631 * @dev: net_device pointer passed unmodified to notifier function
1632 * @info: notifier information data
1633 *
1634 * Call all network notifier blocks. Parameters and return value
1635 * are as for raw_notifier_call_chain().
1636 */
1637
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639 struct net_device *dev,
1640 struct netdev_notifier_info *info)
1641 {
1642 ASSERT_RTNL();
1643 netdev_notifier_info_init(info, dev);
1644 return raw_notifier_call_chain(&netdev_chain, val, info);
1645 }
1646
1647 /**
1648 * call_netdevice_notifiers - call all network notifier blocks
1649 * @val: value passed unmodified to notifier function
1650 * @dev: net_device pointer passed unmodified to notifier function
1651 *
1652 * Call all network notifier blocks. Parameters and return value
1653 * are as for raw_notifier_call_chain().
1654 */
1655
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 {
1658 struct netdev_notifier_info info;
1659
1660 return call_netdevice_notifiers_info(val, dev, &info);
1661 }
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1663
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1666
1667 void net_inc_ingress_queue(void)
1668 {
1669 static_key_slow_inc(&ingress_needed);
1670 }
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672
1673 void net_dec_ingress_queue(void)
1674 {
1675 static_key_slow_dec(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678 #endif
1679
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1682
1683 void net_inc_egress_queue(void)
1684 {
1685 static_key_slow_inc(&egress_needed);
1686 }
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688
1689 void net_dec_egress_queue(void)
1690 {
1691 static_key_slow_dec(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694 #endif
1695
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 /* We are not allowed to call static_key_slow_dec() from irq context
1699 * If net_disable_timestamp() is called from irq context, defer the
1700 * static_key_slow_dec() calls.
1701 */
1702 static atomic_t netstamp_needed_deferred;
1703 #endif
1704
1705 void net_enable_timestamp(void)
1706 {
1707 #ifdef HAVE_JUMP_LABEL
1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1709
1710 if (deferred) {
1711 while (--deferred)
1712 static_key_slow_dec(&netstamp_needed);
1713 return;
1714 }
1715 #endif
1716 static_key_slow_inc(&netstamp_needed);
1717 }
1718 EXPORT_SYMBOL(net_enable_timestamp);
1719
1720 void net_disable_timestamp(void)
1721 {
1722 #ifdef HAVE_JUMP_LABEL
1723 if (in_interrupt()) {
1724 atomic_inc(&netstamp_needed_deferred);
1725 return;
1726 }
1727 #endif
1728 static_key_slow_dec(&netstamp_needed);
1729 }
1730 EXPORT_SYMBOL(net_disable_timestamp);
1731
1732 static inline void net_timestamp_set(struct sk_buff *skb)
1733 {
1734 skb->tstamp.tv64 = 0;
1735 if (static_key_false(&netstamp_needed))
1736 __net_timestamp(skb);
1737 }
1738
1739 #define net_timestamp_check(COND, SKB) \
1740 if (static_key_false(&netstamp_needed)) { \
1741 if ((COND) && !(SKB)->tstamp.tv64) \
1742 __net_timestamp(SKB); \
1743 } \
1744
1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1746 {
1747 unsigned int len;
1748
1749 if (!(dev->flags & IFF_UP))
1750 return false;
1751
1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1753 if (skb->len <= len)
1754 return true;
1755
1756 /* if TSO is enabled, we don't care about the length as the packet
1757 * could be forwarded without being segmented before
1758 */
1759 if (skb_is_gso(skb))
1760 return true;
1761
1762 return false;
1763 }
1764 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1765
1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1767 {
1768 int ret = ____dev_forward_skb(dev, skb);
1769
1770 if (likely(!ret)) {
1771 skb->protocol = eth_type_trans(skb, dev);
1772 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1773 }
1774
1775 return ret;
1776 }
1777 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1778
1779 /**
1780 * dev_forward_skb - loopback an skb to another netif
1781 *
1782 * @dev: destination network device
1783 * @skb: buffer to forward
1784 *
1785 * return values:
1786 * NET_RX_SUCCESS (no congestion)
1787 * NET_RX_DROP (packet was dropped, but freed)
1788 *
1789 * dev_forward_skb can be used for injecting an skb from the
1790 * start_xmit function of one device into the receive queue
1791 * of another device.
1792 *
1793 * The receiving device may be in another namespace, so
1794 * we have to clear all information in the skb that could
1795 * impact namespace isolation.
1796 */
1797 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1798 {
1799 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1800 }
1801 EXPORT_SYMBOL_GPL(dev_forward_skb);
1802
1803 static inline int deliver_skb(struct sk_buff *skb,
1804 struct packet_type *pt_prev,
1805 struct net_device *orig_dev)
1806 {
1807 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1808 return -ENOMEM;
1809 atomic_inc(&skb->users);
1810 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1811 }
1812
1813 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1814 struct packet_type **pt,
1815 struct net_device *orig_dev,
1816 __be16 type,
1817 struct list_head *ptype_list)
1818 {
1819 struct packet_type *ptype, *pt_prev = *pt;
1820
1821 list_for_each_entry_rcu(ptype, ptype_list, list) {
1822 if (ptype->type != type)
1823 continue;
1824 if (pt_prev)
1825 deliver_skb(skb, pt_prev, orig_dev);
1826 pt_prev = ptype;
1827 }
1828 *pt = pt_prev;
1829 }
1830
1831 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1832 {
1833 if (!ptype->af_packet_priv || !skb->sk)
1834 return false;
1835
1836 if (ptype->id_match)
1837 return ptype->id_match(ptype, skb->sk);
1838 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1839 return true;
1840
1841 return false;
1842 }
1843
1844 /*
1845 * Support routine. Sends outgoing frames to any network
1846 * taps currently in use.
1847 */
1848
1849 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1850 {
1851 struct packet_type *ptype;
1852 struct sk_buff *skb2 = NULL;
1853 struct packet_type *pt_prev = NULL;
1854 struct list_head *ptype_list = &ptype_all;
1855
1856 rcu_read_lock();
1857 again:
1858 list_for_each_entry_rcu(ptype, ptype_list, list) {
1859 /* Never send packets back to the socket
1860 * they originated from - MvS (miquels@drinkel.ow.org)
1861 */
1862 if (skb_loop_sk(ptype, skb))
1863 continue;
1864
1865 if (pt_prev) {
1866 deliver_skb(skb2, pt_prev, skb->dev);
1867 pt_prev = ptype;
1868 continue;
1869 }
1870
1871 /* need to clone skb, done only once */
1872 skb2 = skb_clone(skb, GFP_ATOMIC);
1873 if (!skb2)
1874 goto out_unlock;
1875
1876 net_timestamp_set(skb2);
1877
1878 /* skb->nh should be correctly
1879 * set by sender, so that the second statement is
1880 * just protection against buggy protocols.
1881 */
1882 skb_reset_mac_header(skb2);
1883
1884 if (skb_network_header(skb2) < skb2->data ||
1885 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1886 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1887 ntohs(skb2->protocol),
1888 dev->name);
1889 skb_reset_network_header(skb2);
1890 }
1891
1892 skb2->transport_header = skb2->network_header;
1893 skb2->pkt_type = PACKET_OUTGOING;
1894 pt_prev = ptype;
1895 }
1896
1897 if (ptype_list == &ptype_all) {
1898 ptype_list = &dev->ptype_all;
1899 goto again;
1900 }
1901 out_unlock:
1902 if (pt_prev)
1903 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1904 rcu_read_unlock();
1905 }
1906 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1907
1908 /**
1909 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1910 * @dev: Network device
1911 * @txq: number of queues available
1912 *
1913 * If real_num_tx_queues is changed the tc mappings may no longer be
1914 * valid. To resolve this verify the tc mapping remains valid and if
1915 * not NULL the mapping. With no priorities mapping to this
1916 * offset/count pair it will no longer be used. In the worst case TC0
1917 * is invalid nothing can be done so disable priority mappings. If is
1918 * expected that drivers will fix this mapping if they can before
1919 * calling netif_set_real_num_tx_queues.
1920 */
1921 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1922 {
1923 int i;
1924 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1925
1926 /* If TC0 is invalidated disable TC mapping */
1927 if (tc->offset + tc->count > txq) {
1928 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1929 dev->num_tc = 0;
1930 return;
1931 }
1932
1933 /* Invalidated prio to tc mappings set to TC0 */
1934 for (i = 1; i < TC_BITMASK + 1; i++) {
1935 int q = netdev_get_prio_tc_map(dev, i);
1936
1937 tc = &dev->tc_to_txq[q];
1938 if (tc->offset + tc->count > txq) {
1939 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1940 i, q);
1941 netdev_set_prio_tc_map(dev, i, 0);
1942 }
1943 }
1944 }
1945
1946 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1947 {
1948 if (dev->num_tc) {
1949 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950 int i;
1951
1952 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1953 if ((txq - tc->offset) < tc->count)
1954 return i;
1955 }
1956
1957 return -1;
1958 }
1959
1960 return 0;
1961 }
1962
1963 #ifdef CONFIG_XPS
1964 static DEFINE_MUTEX(xps_map_mutex);
1965 #define xmap_dereference(P) \
1966 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1967
1968 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1969 int tci, u16 index)
1970 {
1971 struct xps_map *map = NULL;
1972 int pos;
1973
1974 if (dev_maps)
1975 map = xmap_dereference(dev_maps->cpu_map[tci]);
1976 if (!map)
1977 return false;
1978
1979 for (pos = map->len; pos--;) {
1980 if (map->queues[pos] != index)
1981 continue;
1982
1983 if (map->len > 1) {
1984 map->queues[pos] = map->queues[--map->len];
1985 break;
1986 }
1987
1988 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1989 kfree_rcu(map, rcu);
1990 return false;
1991 }
1992
1993 return true;
1994 }
1995
1996 static bool remove_xps_queue_cpu(struct net_device *dev,
1997 struct xps_dev_maps *dev_maps,
1998 int cpu, u16 offset, u16 count)
1999 {
2000 int num_tc = dev->num_tc ? : 1;
2001 bool active = false;
2002 int tci;
2003
2004 for (tci = cpu * num_tc; num_tc--; tci++) {
2005 int i, j;
2006
2007 for (i = count, j = offset; i--; j++) {
2008 if (!remove_xps_queue(dev_maps, cpu, j))
2009 break;
2010 }
2011
2012 active |= i < 0;
2013 }
2014
2015 return active;
2016 }
2017
2018 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2019 u16 count)
2020 {
2021 struct xps_dev_maps *dev_maps;
2022 int cpu, i;
2023 bool active = false;
2024
2025 mutex_lock(&xps_map_mutex);
2026 dev_maps = xmap_dereference(dev->xps_maps);
2027
2028 if (!dev_maps)
2029 goto out_no_maps;
2030
2031 for_each_possible_cpu(cpu)
2032 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2033 offset, count);
2034
2035 if (!active) {
2036 RCU_INIT_POINTER(dev->xps_maps, NULL);
2037 kfree_rcu(dev_maps, rcu);
2038 }
2039
2040 for (i = offset + (count - 1); count--; i--)
2041 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2042 NUMA_NO_NODE);
2043
2044 out_no_maps:
2045 mutex_unlock(&xps_map_mutex);
2046 }
2047
2048 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2049 {
2050 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2051 }
2052
2053 static struct xps_map *expand_xps_map(struct xps_map *map,
2054 int cpu, u16 index)
2055 {
2056 struct xps_map *new_map;
2057 int alloc_len = XPS_MIN_MAP_ALLOC;
2058 int i, pos;
2059
2060 for (pos = 0; map && pos < map->len; pos++) {
2061 if (map->queues[pos] != index)
2062 continue;
2063 return map;
2064 }
2065
2066 /* Need to add queue to this CPU's existing map */
2067 if (map) {
2068 if (pos < map->alloc_len)
2069 return map;
2070
2071 alloc_len = map->alloc_len * 2;
2072 }
2073
2074 /* Need to allocate new map to store queue on this CPU's map */
2075 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2076 cpu_to_node(cpu));
2077 if (!new_map)
2078 return NULL;
2079
2080 for (i = 0; i < pos; i++)
2081 new_map->queues[i] = map->queues[i];
2082 new_map->alloc_len = alloc_len;
2083 new_map->len = pos;
2084
2085 return new_map;
2086 }
2087
2088 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2089 u16 index)
2090 {
2091 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2092 int i, cpu, tci, numa_node_id = -2;
2093 int maps_sz, num_tc = 1, tc = 0;
2094 struct xps_map *map, *new_map;
2095 bool active = false;
2096
2097 if (dev->num_tc) {
2098 num_tc = dev->num_tc;
2099 tc = netdev_txq_to_tc(dev, index);
2100 if (tc < 0)
2101 return -EINVAL;
2102 }
2103
2104 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2105 if (maps_sz < L1_CACHE_BYTES)
2106 maps_sz = L1_CACHE_BYTES;
2107
2108 mutex_lock(&xps_map_mutex);
2109
2110 dev_maps = xmap_dereference(dev->xps_maps);
2111
2112 /* allocate memory for queue storage */
2113 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2114 if (!new_dev_maps)
2115 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2116 if (!new_dev_maps) {
2117 mutex_unlock(&xps_map_mutex);
2118 return -ENOMEM;
2119 }
2120
2121 tci = cpu * num_tc + tc;
2122 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2123 NULL;
2124
2125 map = expand_xps_map(map, cpu, index);
2126 if (!map)
2127 goto error;
2128
2129 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2130 }
2131
2132 if (!new_dev_maps)
2133 goto out_no_new_maps;
2134
2135 for_each_possible_cpu(cpu) {
2136 /* copy maps belonging to foreign traffic classes */
2137 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2138 /* fill in the new device map from the old device map */
2139 map = xmap_dereference(dev_maps->cpu_map[tci]);
2140 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2141 }
2142
2143 /* We need to explicitly update tci as prevous loop
2144 * could break out early if dev_maps is NULL.
2145 */
2146 tci = cpu * num_tc + tc;
2147
2148 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2149 /* add queue to CPU maps */
2150 int pos = 0;
2151
2152 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2153 while ((pos < map->len) && (map->queues[pos] != index))
2154 pos++;
2155
2156 if (pos == map->len)
2157 map->queues[map->len++] = index;
2158 #ifdef CONFIG_NUMA
2159 if (numa_node_id == -2)
2160 numa_node_id = cpu_to_node(cpu);
2161 else if (numa_node_id != cpu_to_node(cpu))
2162 numa_node_id = -1;
2163 #endif
2164 } else if (dev_maps) {
2165 /* fill in the new device map from the old device map */
2166 map = xmap_dereference(dev_maps->cpu_map[tci]);
2167 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2168 }
2169
2170 /* copy maps belonging to foreign traffic classes */
2171 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2172 /* fill in the new device map from the old device map */
2173 map = xmap_dereference(dev_maps->cpu_map[tci]);
2174 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2175 }
2176 }
2177
2178 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2179
2180 /* Cleanup old maps */
2181 if (!dev_maps)
2182 goto out_no_old_maps;
2183
2184 for_each_possible_cpu(cpu) {
2185 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2186 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2187 map = xmap_dereference(dev_maps->cpu_map[tci]);
2188 if (map && map != new_map)
2189 kfree_rcu(map, rcu);
2190 }
2191 }
2192
2193 kfree_rcu(dev_maps, rcu);
2194
2195 out_no_old_maps:
2196 dev_maps = new_dev_maps;
2197 active = true;
2198
2199 out_no_new_maps:
2200 /* update Tx queue numa node */
2201 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2202 (numa_node_id >= 0) ? numa_node_id :
2203 NUMA_NO_NODE);
2204
2205 if (!dev_maps)
2206 goto out_no_maps;
2207
2208 /* removes queue from unused CPUs */
2209 for_each_possible_cpu(cpu) {
2210 for (i = tc, tci = cpu * num_tc; i--; tci++)
2211 active |= remove_xps_queue(dev_maps, tci, index);
2212 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2213 active |= remove_xps_queue(dev_maps, tci, index);
2214 for (i = num_tc - tc, tci++; --i; tci++)
2215 active |= remove_xps_queue(dev_maps, tci, index);
2216 }
2217
2218 /* free map if not active */
2219 if (!active) {
2220 RCU_INIT_POINTER(dev->xps_maps, NULL);
2221 kfree_rcu(dev_maps, rcu);
2222 }
2223
2224 out_no_maps:
2225 mutex_unlock(&xps_map_mutex);
2226
2227 return 0;
2228 error:
2229 /* remove any maps that we added */
2230 for_each_possible_cpu(cpu) {
2231 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2232 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2233 map = dev_maps ?
2234 xmap_dereference(dev_maps->cpu_map[tci]) :
2235 NULL;
2236 if (new_map && new_map != map)
2237 kfree(new_map);
2238 }
2239 }
2240
2241 mutex_unlock(&xps_map_mutex);
2242
2243 kfree(new_dev_maps);
2244 return -ENOMEM;
2245 }
2246 EXPORT_SYMBOL(netif_set_xps_queue);
2247
2248 #endif
2249 void netdev_reset_tc(struct net_device *dev)
2250 {
2251 #ifdef CONFIG_XPS
2252 netif_reset_xps_queues_gt(dev, 0);
2253 #endif
2254 dev->num_tc = 0;
2255 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2256 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2257 }
2258 EXPORT_SYMBOL(netdev_reset_tc);
2259
2260 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2261 {
2262 if (tc >= dev->num_tc)
2263 return -EINVAL;
2264
2265 #ifdef CONFIG_XPS
2266 netif_reset_xps_queues(dev, offset, count);
2267 #endif
2268 dev->tc_to_txq[tc].count = count;
2269 dev->tc_to_txq[tc].offset = offset;
2270 return 0;
2271 }
2272 EXPORT_SYMBOL(netdev_set_tc_queue);
2273
2274 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2275 {
2276 if (num_tc > TC_MAX_QUEUE)
2277 return -EINVAL;
2278
2279 #ifdef CONFIG_XPS
2280 netif_reset_xps_queues_gt(dev, 0);
2281 #endif
2282 dev->num_tc = num_tc;
2283 return 0;
2284 }
2285 EXPORT_SYMBOL(netdev_set_num_tc);
2286
2287 /*
2288 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2289 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2290 */
2291 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2292 {
2293 int rc;
2294
2295 if (txq < 1 || txq > dev->num_tx_queues)
2296 return -EINVAL;
2297
2298 if (dev->reg_state == NETREG_REGISTERED ||
2299 dev->reg_state == NETREG_UNREGISTERING) {
2300 ASSERT_RTNL();
2301
2302 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2303 txq);
2304 if (rc)
2305 return rc;
2306
2307 if (dev->num_tc)
2308 netif_setup_tc(dev, txq);
2309
2310 if (txq < dev->real_num_tx_queues) {
2311 qdisc_reset_all_tx_gt(dev, txq);
2312 #ifdef CONFIG_XPS
2313 netif_reset_xps_queues_gt(dev, txq);
2314 #endif
2315 }
2316 }
2317
2318 dev->real_num_tx_queues = txq;
2319 return 0;
2320 }
2321 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2322
2323 #ifdef CONFIG_SYSFS
2324 /**
2325 * netif_set_real_num_rx_queues - set actual number of RX queues used
2326 * @dev: Network device
2327 * @rxq: Actual number of RX queues
2328 *
2329 * This must be called either with the rtnl_lock held or before
2330 * registration of the net device. Returns 0 on success, or a
2331 * negative error code. If called before registration, it always
2332 * succeeds.
2333 */
2334 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2335 {
2336 int rc;
2337
2338 if (rxq < 1 || rxq > dev->num_rx_queues)
2339 return -EINVAL;
2340
2341 if (dev->reg_state == NETREG_REGISTERED) {
2342 ASSERT_RTNL();
2343
2344 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2345 rxq);
2346 if (rc)
2347 return rc;
2348 }
2349
2350 dev->real_num_rx_queues = rxq;
2351 return 0;
2352 }
2353 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2354 #endif
2355
2356 /**
2357 * netif_get_num_default_rss_queues - default number of RSS queues
2358 *
2359 * This routine should set an upper limit on the number of RSS queues
2360 * used by default by multiqueue devices.
2361 */
2362 int netif_get_num_default_rss_queues(void)
2363 {
2364 return is_kdump_kernel() ?
2365 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2366 }
2367 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2368
2369 static void __netif_reschedule(struct Qdisc *q)
2370 {
2371 struct softnet_data *sd;
2372 unsigned long flags;
2373
2374 local_irq_save(flags);
2375 sd = this_cpu_ptr(&softnet_data);
2376 q->next_sched = NULL;
2377 *sd->output_queue_tailp = q;
2378 sd->output_queue_tailp = &q->next_sched;
2379 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2380 local_irq_restore(flags);
2381 }
2382
2383 void __netif_schedule(struct Qdisc *q)
2384 {
2385 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2386 __netif_reschedule(q);
2387 }
2388 EXPORT_SYMBOL(__netif_schedule);
2389
2390 struct dev_kfree_skb_cb {
2391 enum skb_free_reason reason;
2392 };
2393
2394 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2395 {
2396 return (struct dev_kfree_skb_cb *)skb->cb;
2397 }
2398
2399 void netif_schedule_queue(struct netdev_queue *txq)
2400 {
2401 rcu_read_lock();
2402 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2403 struct Qdisc *q = rcu_dereference(txq->qdisc);
2404
2405 __netif_schedule(q);
2406 }
2407 rcu_read_unlock();
2408 }
2409 EXPORT_SYMBOL(netif_schedule_queue);
2410
2411 /**
2412 * netif_wake_subqueue - allow sending packets on subqueue
2413 * @dev: network device
2414 * @queue_index: sub queue index
2415 *
2416 * Resume individual transmit queue of a device with multiple transmit queues.
2417 */
2418 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2419 {
2420 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2421
2422 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2423 struct Qdisc *q;
2424
2425 rcu_read_lock();
2426 q = rcu_dereference(txq->qdisc);
2427 __netif_schedule(q);
2428 rcu_read_unlock();
2429 }
2430 }
2431 EXPORT_SYMBOL(netif_wake_subqueue);
2432
2433 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2434 {
2435 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2436 struct Qdisc *q;
2437
2438 rcu_read_lock();
2439 q = rcu_dereference(dev_queue->qdisc);
2440 __netif_schedule(q);
2441 rcu_read_unlock();
2442 }
2443 }
2444 EXPORT_SYMBOL(netif_tx_wake_queue);
2445
2446 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2447 {
2448 unsigned long flags;
2449
2450 if (likely(atomic_read(&skb->users) == 1)) {
2451 smp_rmb();
2452 atomic_set(&skb->users, 0);
2453 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2454 return;
2455 }
2456 get_kfree_skb_cb(skb)->reason = reason;
2457 local_irq_save(flags);
2458 skb->next = __this_cpu_read(softnet_data.completion_queue);
2459 __this_cpu_write(softnet_data.completion_queue, skb);
2460 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2461 local_irq_restore(flags);
2462 }
2463 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2464
2465 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2466 {
2467 if (in_irq() || irqs_disabled())
2468 __dev_kfree_skb_irq(skb, reason);
2469 else
2470 dev_kfree_skb(skb);
2471 }
2472 EXPORT_SYMBOL(__dev_kfree_skb_any);
2473
2474
2475 /**
2476 * netif_device_detach - mark device as removed
2477 * @dev: network device
2478 *
2479 * Mark device as removed from system and therefore no longer available.
2480 */
2481 void netif_device_detach(struct net_device *dev)
2482 {
2483 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2484 netif_running(dev)) {
2485 netif_tx_stop_all_queues(dev);
2486 }
2487 }
2488 EXPORT_SYMBOL(netif_device_detach);
2489
2490 /**
2491 * netif_device_attach - mark device as attached
2492 * @dev: network device
2493 *
2494 * Mark device as attached from system and restart if needed.
2495 */
2496 void netif_device_attach(struct net_device *dev)
2497 {
2498 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2499 netif_running(dev)) {
2500 netif_tx_wake_all_queues(dev);
2501 __netdev_watchdog_up(dev);
2502 }
2503 }
2504 EXPORT_SYMBOL(netif_device_attach);
2505
2506 /*
2507 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2508 * to be used as a distribution range.
2509 */
2510 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2511 unsigned int num_tx_queues)
2512 {
2513 u32 hash;
2514 u16 qoffset = 0;
2515 u16 qcount = num_tx_queues;
2516
2517 if (skb_rx_queue_recorded(skb)) {
2518 hash = skb_get_rx_queue(skb);
2519 while (unlikely(hash >= num_tx_queues))
2520 hash -= num_tx_queues;
2521 return hash;
2522 }
2523
2524 if (dev->num_tc) {
2525 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2526 qoffset = dev->tc_to_txq[tc].offset;
2527 qcount = dev->tc_to_txq[tc].count;
2528 }
2529
2530 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2531 }
2532 EXPORT_SYMBOL(__skb_tx_hash);
2533
2534 static void skb_warn_bad_offload(const struct sk_buff *skb)
2535 {
2536 static const netdev_features_t null_features;
2537 struct net_device *dev = skb->dev;
2538 const char *name = "";
2539
2540 if (!net_ratelimit())
2541 return;
2542
2543 if (dev) {
2544 if (dev->dev.parent)
2545 name = dev_driver_string(dev->dev.parent);
2546 else
2547 name = netdev_name(dev);
2548 }
2549 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2550 "gso_type=%d ip_summed=%d\n",
2551 name, dev ? &dev->features : &null_features,
2552 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2553 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2554 skb_shinfo(skb)->gso_type, skb->ip_summed);
2555 }
2556
2557 /*
2558 * Invalidate hardware checksum when packet is to be mangled, and
2559 * complete checksum manually on outgoing path.
2560 */
2561 int skb_checksum_help(struct sk_buff *skb)
2562 {
2563 __wsum csum;
2564 int ret = 0, offset;
2565
2566 if (skb->ip_summed == CHECKSUM_COMPLETE)
2567 goto out_set_summed;
2568
2569 if (unlikely(skb_shinfo(skb)->gso_size)) {
2570 skb_warn_bad_offload(skb);
2571 return -EINVAL;
2572 }
2573
2574 /* Before computing a checksum, we should make sure no frag could
2575 * be modified by an external entity : checksum could be wrong.
2576 */
2577 if (skb_has_shared_frag(skb)) {
2578 ret = __skb_linearize(skb);
2579 if (ret)
2580 goto out;
2581 }
2582
2583 offset = skb_checksum_start_offset(skb);
2584 BUG_ON(offset >= skb_headlen(skb));
2585 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2586
2587 offset += skb->csum_offset;
2588 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2589
2590 if (skb_cloned(skb) &&
2591 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2592 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2593 if (ret)
2594 goto out;
2595 }
2596
2597 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2598 out_set_summed:
2599 skb->ip_summed = CHECKSUM_NONE;
2600 out:
2601 return ret;
2602 }
2603 EXPORT_SYMBOL(skb_checksum_help);
2604
2605 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2606 {
2607 __be16 type = skb->protocol;
2608
2609 /* Tunnel gso handlers can set protocol to ethernet. */
2610 if (type == htons(ETH_P_TEB)) {
2611 struct ethhdr *eth;
2612
2613 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2614 return 0;
2615
2616 eth = (struct ethhdr *)skb_mac_header(skb);
2617 type = eth->h_proto;
2618 }
2619
2620 return __vlan_get_protocol(skb, type, depth);
2621 }
2622
2623 /**
2624 * skb_mac_gso_segment - mac layer segmentation handler.
2625 * @skb: buffer to segment
2626 * @features: features for the output path (see dev->features)
2627 */
2628 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2629 netdev_features_t features)
2630 {
2631 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2632 struct packet_offload *ptype;
2633 int vlan_depth = skb->mac_len;
2634 __be16 type = skb_network_protocol(skb, &vlan_depth);
2635
2636 if (unlikely(!type))
2637 return ERR_PTR(-EINVAL);
2638
2639 __skb_pull(skb, vlan_depth);
2640
2641 rcu_read_lock();
2642 list_for_each_entry_rcu(ptype, &offload_base, list) {
2643 if (ptype->type == type && ptype->callbacks.gso_segment) {
2644 segs = ptype->callbacks.gso_segment(skb, features);
2645 break;
2646 }
2647 }
2648 rcu_read_unlock();
2649
2650 __skb_push(skb, skb->data - skb_mac_header(skb));
2651
2652 return segs;
2653 }
2654 EXPORT_SYMBOL(skb_mac_gso_segment);
2655
2656
2657 /* openvswitch calls this on rx path, so we need a different check.
2658 */
2659 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2660 {
2661 if (tx_path)
2662 return skb->ip_summed != CHECKSUM_PARTIAL;
2663 else
2664 return skb->ip_summed == CHECKSUM_NONE;
2665 }
2666
2667 /**
2668 * __skb_gso_segment - Perform segmentation on skb.
2669 * @skb: buffer to segment
2670 * @features: features for the output path (see dev->features)
2671 * @tx_path: whether it is called in TX path
2672 *
2673 * This function segments the given skb and returns a list of segments.
2674 *
2675 * It may return NULL if the skb requires no segmentation. This is
2676 * only possible when GSO is used for verifying header integrity.
2677 *
2678 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2679 */
2680 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2681 netdev_features_t features, bool tx_path)
2682 {
2683 if (unlikely(skb_needs_check(skb, tx_path))) {
2684 int err;
2685
2686 skb_warn_bad_offload(skb);
2687
2688 err = skb_cow_head(skb, 0);
2689 if (err < 0)
2690 return ERR_PTR(err);
2691 }
2692
2693 /* Only report GSO partial support if it will enable us to
2694 * support segmentation on this frame without needing additional
2695 * work.
2696 */
2697 if (features & NETIF_F_GSO_PARTIAL) {
2698 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2699 struct net_device *dev = skb->dev;
2700
2701 partial_features |= dev->features & dev->gso_partial_features;
2702 if (!skb_gso_ok(skb, features | partial_features))
2703 features &= ~NETIF_F_GSO_PARTIAL;
2704 }
2705
2706 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2707 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2708
2709 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2710 SKB_GSO_CB(skb)->encap_level = 0;
2711
2712 skb_reset_mac_header(skb);
2713 skb_reset_mac_len(skb);
2714
2715 return skb_mac_gso_segment(skb, features);
2716 }
2717 EXPORT_SYMBOL(__skb_gso_segment);
2718
2719 /* Take action when hardware reception checksum errors are detected. */
2720 #ifdef CONFIG_BUG
2721 void netdev_rx_csum_fault(struct net_device *dev)
2722 {
2723 if (net_ratelimit()) {
2724 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2725 dump_stack();
2726 }
2727 }
2728 EXPORT_SYMBOL(netdev_rx_csum_fault);
2729 #endif
2730
2731 /* Actually, we should eliminate this check as soon as we know, that:
2732 * 1. IOMMU is present and allows to map all the memory.
2733 * 2. No high memory really exists on this machine.
2734 */
2735
2736 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2737 {
2738 #ifdef CONFIG_HIGHMEM
2739 int i;
2740 if (!(dev->features & NETIF_F_HIGHDMA)) {
2741 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2742 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2743 if (PageHighMem(skb_frag_page(frag)))
2744 return 1;
2745 }
2746 }
2747
2748 if (PCI_DMA_BUS_IS_PHYS) {
2749 struct device *pdev = dev->dev.parent;
2750
2751 if (!pdev)
2752 return 0;
2753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2754 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2756 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2757 return 1;
2758 }
2759 }
2760 #endif
2761 return 0;
2762 }
2763
2764 /* If MPLS offload request, verify we are testing hardware MPLS features
2765 * instead of standard features for the netdev.
2766 */
2767 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2768 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2769 netdev_features_t features,
2770 __be16 type)
2771 {
2772 if (eth_p_mpls(type))
2773 features &= skb->dev->mpls_features;
2774
2775 return features;
2776 }
2777 #else
2778 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2779 netdev_features_t features,
2780 __be16 type)
2781 {
2782 return features;
2783 }
2784 #endif
2785
2786 static netdev_features_t harmonize_features(struct sk_buff *skb,
2787 netdev_features_t features)
2788 {
2789 int tmp;
2790 __be16 type;
2791
2792 type = skb_network_protocol(skb, &tmp);
2793 features = net_mpls_features(skb, features, type);
2794
2795 if (skb->ip_summed != CHECKSUM_NONE &&
2796 !can_checksum_protocol(features, type)) {
2797 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2798 } else if (illegal_highdma(skb->dev, skb)) {
2799 features &= ~NETIF_F_SG;
2800 }
2801
2802 return features;
2803 }
2804
2805 netdev_features_t passthru_features_check(struct sk_buff *skb,
2806 struct net_device *dev,
2807 netdev_features_t features)
2808 {
2809 return features;
2810 }
2811 EXPORT_SYMBOL(passthru_features_check);
2812
2813 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2814 struct net_device *dev,
2815 netdev_features_t features)
2816 {
2817 return vlan_features_check(skb, features);
2818 }
2819
2820 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2821 struct net_device *dev,
2822 netdev_features_t features)
2823 {
2824 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2825
2826 if (gso_segs > dev->gso_max_segs)
2827 return features & ~NETIF_F_GSO_MASK;
2828
2829 /* Support for GSO partial features requires software
2830 * intervention before we can actually process the packets
2831 * so we need to strip support for any partial features now
2832 * and we can pull them back in after we have partially
2833 * segmented the frame.
2834 */
2835 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2836 features &= ~dev->gso_partial_features;
2837
2838 /* Make sure to clear the IPv4 ID mangling feature if the
2839 * IPv4 header has the potential to be fragmented.
2840 */
2841 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2842 struct iphdr *iph = skb->encapsulation ?
2843 inner_ip_hdr(skb) : ip_hdr(skb);
2844
2845 if (!(iph->frag_off & htons(IP_DF)))
2846 features &= ~NETIF_F_TSO_MANGLEID;
2847 }
2848
2849 return features;
2850 }
2851
2852 netdev_features_t netif_skb_features(struct sk_buff *skb)
2853 {
2854 struct net_device *dev = skb->dev;
2855 netdev_features_t features = dev->features;
2856
2857 if (skb_is_gso(skb))
2858 features = gso_features_check(skb, dev, features);
2859
2860 /* If encapsulation offload request, verify we are testing
2861 * hardware encapsulation features instead of standard
2862 * features for the netdev
2863 */
2864 if (skb->encapsulation)
2865 features &= dev->hw_enc_features;
2866
2867 if (skb_vlan_tagged(skb))
2868 features = netdev_intersect_features(features,
2869 dev->vlan_features |
2870 NETIF_F_HW_VLAN_CTAG_TX |
2871 NETIF_F_HW_VLAN_STAG_TX);
2872
2873 if (dev->netdev_ops->ndo_features_check)
2874 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2875 features);
2876 else
2877 features &= dflt_features_check(skb, dev, features);
2878
2879 return harmonize_features(skb, features);
2880 }
2881 EXPORT_SYMBOL(netif_skb_features);
2882
2883 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2884 struct netdev_queue *txq, bool more)
2885 {
2886 unsigned int len;
2887 int rc;
2888
2889 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2890 dev_queue_xmit_nit(skb, dev);
2891
2892 len = skb->len;
2893 trace_net_dev_start_xmit(skb, dev);
2894 rc = netdev_start_xmit(skb, dev, txq, more);
2895 trace_net_dev_xmit(skb, rc, dev, len);
2896
2897 return rc;
2898 }
2899
2900 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2901 struct netdev_queue *txq, int *ret)
2902 {
2903 struct sk_buff *skb = first;
2904 int rc = NETDEV_TX_OK;
2905
2906 while (skb) {
2907 struct sk_buff *next = skb->next;
2908
2909 skb->next = NULL;
2910 rc = xmit_one(skb, dev, txq, next != NULL);
2911 if (unlikely(!dev_xmit_complete(rc))) {
2912 skb->next = next;
2913 goto out;
2914 }
2915
2916 skb = next;
2917 if (netif_xmit_stopped(txq) && skb) {
2918 rc = NETDEV_TX_BUSY;
2919 break;
2920 }
2921 }
2922
2923 out:
2924 *ret = rc;
2925 return skb;
2926 }
2927
2928 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2929 netdev_features_t features)
2930 {
2931 if (skb_vlan_tag_present(skb) &&
2932 !vlan_hw_offload_capable(features, skb->vlan_proto))
2933 skb = __vlan_hwaccel_push_inside(skb);
2934 return skb;
2935 }
2936
2937 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2938 {
2939 netdev_features_t features;
2940
2941 features = netif_skb_features(skb);
2942 skb = validate_xmit_vlan(skb, features);
2943 if (unlikely(!skb))
2944 goto out_null;
2945
2946 if (netif_needs_gso(skb, features)) {
2947 struct sk_buff *segs;
2948
2949 segs = skb_gso_segment(skb, features);
2950 if (IS_ERR(segs)) {
2951 goto out_kfree_skb;
2952 } else if (segs) {
2953 consume_skb(skb);
2954 skb = segs;
2955 }
2956 } else {
2957 if (skb_needs_linearize(skb, features) &&
2958 __skb_linearize(skb))
2959 goto out_kfree_skb;
2960
2961 /* If packet is not checksummed and device does not
2962 * support checksumming for this protocol, complete
2963 * checksumming here.
2964 */
2965 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2966 if (skb->encapsulation)
2967 skb_set_inner_transport_header(skb,
2968 skb_checksum_start_offset(skb));
2969 else
2970 skb_set_transport_header(skb,
2971 skb_checksum_start_offset(skb));
2972 if (!(features & NETIF_F_CSUM_MASK) &&
2973 skb_checksum_help(skb))
2974 goto out_kfree_skb;
2975 }
2976 }
2977
2978 return skb;
2979
2980 out_kfree_skb:
2981 kfree_skb(skb);
2982 out_null:
2983 atomic_long_inc(&dev->tx_dropped);
2984 return NULL;
2985 }
2986
2987 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2988 {
2989 struct sk_buff *next, *head = NULL, *tail;
2990
2991 for (; skb != NULL; skb = next) {
2992 next = skb->next;
2993 skb->next = NULL;
2994
2995 /* in case skb wont be segmented, point to itself */
2996 skb->prev = skb;
2997
2998 skb = validate_xmit_skb(skb, dev);
2999 if (!skb)
3000 continue;
3001
3002 if (!head)
3003 head = skb;
3004 else
3005 tail->next = skb;
3006 /* If skb was segmented, skb->prev points to
3007 * the last segment. If not, it still contains skb.
3008 */
3009 tail = skb->prev;
3010 }
3011 return head;
3012 }
3013 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3014
3015 static void qdisc_pkt_len_init(struct sk_buff *skb)
3016 {
3017 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3018
3019 qdisc_skb_cb(skb)->pkt_len = skb->len;
3020
3021 /* To get more precise estimation of bytes sent on wire,
3022 * we add to pkt_len the headers size of all segments
3023 */
3024 if (shinfo->gso_size) {
3025 unsigned int hdr_len;
3026 u16 gso_segs = shinfo->gso_segs;
3027
3028 /* mac layer + network layer */
3029 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3030
3031 /* + transport layer */
3032 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3033 hdr_len += tcp_hdrlen(skb);
3034 else
3035 hdr_len += sizeof(struct udphdr);
3036
3037 if (shinfo->gso_type & SKB_GSO_DODGY)
3038 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3039 shinfo->gso_size);
3040
3041 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3042 }
3043 }
3044
3045 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3046 struct net_device *dev,
3047 struct netdev_queue *txq)
3048 {
3049 spinlock_t *root_lock = qdisc_lock(q);
3050 struct sk_buff *to_free = NULL;
3051 bool contended;
3052 int rc;
3053
3054 qdisc_calculate_pkt_len(skb, q);
3055 /*
3056 * Heuristic to force contended enqueues to serialize on a
3057 * separate lock before trying to get qdisc main lock.
3058 * This permits qdisc->running owner to get the lock more
3059 * often and dequeue packets faster.
3060 */
3061 contended = qdisc_is_running(q);
3062 if (unlikely(contended))
3063 spin_lock(&q->busylock);
3064
3065 spin_lock(root_lock);
3066 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3067 __qdisc_drop(skb, &to_free);
3068 rc = NET_XMIT_DROP;
3069 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3070 qdisc_run_begin(q)) {
3071 /*
3072 * This is a work-conserving queue; there are no old skbs
3073 * waiting to be sent out; and the qdisc is not running -
3074 * xmit the skb directly.
3075 */
3076
3077 qdisc_bstats_update(q, skb);
3078
3079 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3080 if (unlikely(contended)) {
3081 spin_unlock(&q->busylock);
3082 contended = false;
3083 }
3084 __qdisc_run(q);
3085 } else
3086 qdisc_run_end(q);
3087
3088 rc = NET_XMIT_SUCCESS;
3089 } else {
3090 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3091 if (qdisc_run_begin(q)) {
3092 if (unlikely(contended)) {
3093 spin_unlock(&q->busylock);
3094 contended = false;
3095 }
3096 __qdisc_run(q);
3097 }
3098 }
3099 spin_unlock(root_lock);
3100 if (unlikely(to_free))
3101 kfree_skb_list(to_free);
3102 if (unlikely(contended))
3103 spin_unlock(&q->busylock);
3104 return rc;
3105 }
3106
3107 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3108 static void skb_update_prio(struct sk_buff *skb)
3109 {
3110 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3111
3112 if (!skb->priority && skb->sk && map) {
3113 unsigned int prioidx =
3114 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3115
3116 if (prioidx < map->priomap_len)
3117 skb->priority = map->priomap[prioidx];
3118 }
3119 }
3120 #else
3121 #define skb_update_prio(skb)
3122 #endif
3123
3124 DEFINE_PER_CPU(int, xmit_recursion);
3125 EXPORT_SYMBOL(xmit_recursion);
3126
3127 /**
3128 * dev_loopback_xmit - loop back @skb
3129 * @net: network namespace this loopback is happening in
3130 * @sk: sk needed to be a netfilter okfn
3131 * @skb: buffer to transmit
3132 */
3133 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3134 {
3135 skb_reset_mac_header(skb);
3136 __skb_pull(skb, skb_network_offset(skb));
3137 skb->pkt_type = PACKET_LOOPBACK;
3138 skb->ip_summed = CHECKSUM_UNNECESSARY;
3139 WARN_ON(!skb_dst(skb));
3140 skb_dst_force(skb);
3141 netif_rx_ni(skb);
3142 return 0;
3143 }
3144 EXPORT_SYMBOL(dev_loopback_xmit);
3145
3146 #ifdef CONFIG_NET_EGRESS
3147 static struct sk_buff *
3148 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3149 {
3150 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3151 struct tcf_result cl_res;
3152
3153 if (!cl)
3154 return skb;
3155
3156 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3157 * earlier by the caller.
3158 */
3159 qdisc_bstats_cpu_update(cl->q, skb);
3160
3161 switch (tc_classify(skb, cl, &cl_res, false)) {
3162 case TC_ACT_OK:
3163 case TC_ACT_RECLASSIFY:
3164 skb->tc_index = TC_H_MIN(cl_res.classid);
3165 break;
3166 case TC_ACT_SHOT:
3167 qdisc_qstats_cpu_drop(cl->q);
3168 *ret = NET_XMIT_DROP;
3169 kfree_skb(skb);
3170 return NULL;
3171 case TC_ACT_STOLEN:
3172 case TC_ACT_QUEUED:
3173 *ret = NET_XMIT_SUCCESS;
3174 consume_skb(skb);
3175 return NULL;
3176 case TC_ACT_REDIRECT:
3177 /* No need to push/pop skb's mac_header here on egress! */
3178 skb_do_redirect(skb);
3179 *ret = NET_XMIT_SUCCESS;
3180 return NULL;
3181 default:
3182 break;
3183 }
3184
3185 return skb;
3186 }
3187 #endif /* CONFIG_NET_EGRESS */
3188
3189 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3190 {
3191 #ifdef CONFIG_XPS
3192 struct xps_dev_maps *dev_maps;
3193 struct xps_map *map;
3194 int queue_index = -1;
3195
3196 rcu_read_lock();
3197 dev_maps = rcu_dereference(dev->xps_maps);
3198 if (dev_maps) {
3199 unsigned int tci = skb->sender_cpu - 1;
3200
3201 if (dev->num_tc) {
3202 tci *= dev->num_tc;
3203 tci += netdev_get_prio_tc_map(dev, skb->priority);
3204 }
3205
3206 map = rcu_dereference(dev_maps->cpu_map[tci]);
3207 if (map) {
3208 if (map->len == 1)
3209 queue_index = map->queues[0];
3210 else
3211 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3212 map->len)];
3213 if (unlikely(queue_index >= dev->real_num_tx_queues))
3214 queue_index = -1;
3215 }
3216 }
3217 rcu_read_unlock();
3218
3219 return queue_index;
3220 #else
3221 return -1;
3222 #endif
3223 }
3224
3225 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3226 {
3227 struct sock *sk = skb->sk;
3228 int queue_index = sk_tx_queue_get(sk);
3229
3230 if (queue_index < 0 || skb->ooo_okay ||
3231 queue_index >= dev->real_num_tx_queues) {
3232 int new_index = get_xps_queue(dev, skb);
3233 if (new_index < 0)
3234 new_index = skb_tx_hash(dev, skb);
3235
3236 if (queue_index != new_index && sk &&
3237 sk_fullsock(sk) &&
3238 rcu_access_pointer(sk->sk_dst_cache))
3239 sk_tx_queue_set(sk, new_index);
3240
3241 queue_index = new_index;
3242 }
3243
3244 return queue_index;
3245 }
3246
3247 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3248 struct sk_buff *skb,
3249 void *accel_priv)
3250 {
3251 int queue_index = 0;
3252
3253 #ifdef CONFIG_XPS
3254 u32 sender_cpu = skb->sender_cpu - 1;
3255
3256 if (sender_cpu >= (u32)NR_CPUS)
3257 skb->sender_cpu = raw_smp_processor_id() + 1;
3258 #endif
3259
3260 if (dev->real_num_tx_queues != 1) {
3261 const struct net_device_ops *ops = dev->netdev_ops;
3262 if (ops->ndo_select_queue)
3263 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3264 __netdev_pick_tx);
3265 else
3266 queue_index = __netdev_pick_tx(dev, skb);
3267
3268 if (!accel_priv)
3269 queue_index = netdev_cap_txqueue(dev, queue_index);
3270 }
3271
3272 skb_set_queue_mapping(skb, queue_index);
3273 return netdev_get_tx_queue(dev, queue_index);
3274 }
3275
3276 /**
3277 * __dev_queue_xmit - transmit a buffer
3278 * @skb: buffer to transmit
3279 * @accel_priv: private data used for L2 forwarding offload
3280 *
3281 * Queue a buffer for transmission to a network device. The caller must
3282 * have set the device and priority and built the buffer before calling
3283 * this function. The function can be called from an interrupt.
3284 *
3285 * A negative errno code is returned on a failure. A success does not
3286 * guarantee the frame will be transmitted as it may be dropped due
3287 * to congestion or traffic shaping.
3288 *
3289 * -----------------------------------------------------------------------------------
3290 * I notice this method can also return errors from the queue disciplines,
3291 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3292 * be positive.
3293 *
3294 * Regardless of the return value, the skb is consumed, so it is currently
3295 * difficult to retry a send to this method. (You can bump the ref count
3296 * before sending to hold a reference for retry if you are careful.)
3297 *
3298 * When calling this method, interrupts MUST be enabled. This is because
3299 * the BH enable code must have IRQs enabled so that it will not deadlock.
3300 * --BLG
3301 */
3302 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3303 {
3304 struct net_device *dev = skb->dev;
3305 struct netdev_queue *txq;
3306 struct Qdisc *q;
3307 int rc = -ENOMEM;
3308
3309 skb_reset_mac_header(skb);
3310
3311 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3312 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3313
3314 /* Disable soft irqs for various locks below. Also
3315 * stops preemption for RCU.
3316 */
3317 rcu_read_lock_bh();
3318
3319 skb_update_prio(skb);
3320
3321 qdisc_pkt_len_init(skb);
3322 #ifdef CONFIG_NET_CLS_ACT
3323 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3324 # ifdef CONFIG_NET_EGRESS
3325 if (static_key_false(&egress_needed)) {
3326 skb = sch_handle_egress(skb, &rc, dev);
3327 if (!skb)
3328 goto out;
3329 }
3330 # endif
3331 #endif
3332 /* If device/qdisc don't need skb->dst, release it right now while
3333 * its hot in this cpu cache.
3334 */
3335 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3336 skb_dst_drop(skb);
3337 else
3338 skb_dst_force(skb);
3339
3340 txq = netdev_pick_tx(dev, skb, accel_priv);
3341 q = rcu_dereference_bh(txq->qdisc);
3342
3343 trace_net_dev_queue(skb);
3344 if (q->enqueue) {
3345 rc = __dev_xmit_skb(skb, q, dev, txq);
3346 goto out;
3347 }
3348
3349 /* The device has no queue. Common case for software devices:
3350 loopback, all the sorts of tunnels...
3351
3352 Really, it is unlikely that netif_tx_lock protection is necessary
3353 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3354 counters.)
3355 However, it is possible, that they rely on protection
3356 made by us here.
3357
3358 Check this and shot the lock. It is not prone from deadlocks.
3359 Either shot noqueue qdisc, it is even simpler 8)
3360 */
3361 if (dev->flags & IFF_UP) {
3362 int cpu = smp_processor_id(); /* ok because BHs are off */
3363
3364 if (txq->xmit_lock_owner != cpu) {
3365 if (unlikely(__this_cpu_read(xmit_recursion) >
3366 XMIT_RECURSION_LIMIT))
3367 goto recursion_alert;
3368
3369 skb = validate_xmit_skb(skb, dev);
3370 if (!skb)
3371 goto out;
3372
3373 HARD_TX_LOCK(dev, txq, cpu);
3374
3375 if (!netif_xmit_stopped(txq)) {
3376 __this_cpu_inc(xmit_recursion);
3377 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3378 __this_cpu_dec(xmit_recursion);
3379 if (dev_xmit_complete(rc)) {
3380 HARD_TX_UNLOCK(dev, txq);
3381 goto out;
3382 }
3383 }
3384 HARD_TX_UNLOCK(dev, txq);
3385 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3386 dev->name);
3387 } else {
3388 /* Recursion is detected! It is possible,
3389 * unfortunately
3390 */
3391 recursion_alert:
3392 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3393 dev->name);
3394 }
3395 }
3396
3397 rc = -ENETDOWN;
3398 rcu_read_unlock_bh();
3399
3400 atomic_long_inc(&dev->tx_dropped);
3401 kfree_skb_list(skb);
3402 return rc;
3403 out:
3404 rcu_read_unlock_bh();
3405 return rc;
3406 }
3407
3408 int dev_queue_xmit(struct sk_buff *skb)
3409 {
3410 return __dev_queue_xmit(skb, NULL);
3411 }
3412 EXPORT_SYMBOL(dev_queue_xmit);
3413
3414 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3415 {
3416 return __dev_queue_xmit(skb, accel_priv);
3417 }
3418 EXPORT_SYMBOL(dev_queue_xmit_accel);
3419
3420
3421 /*=======================================================================
3422 Receiver routines
3423 =======================================================================*/
3424
3425 int netdev_max_backlog __read_mostly = 1000;
3426 EXPORT_SYMBOL(netdev_max_backlog);
3427
3428 int netdev_tstamp_prequeue __read_mostly = 1;
3429 int netdev_budget __read_mostly = 300;
3430 int weight_p __read_mostly = 64; /* old backlog weight */
3431
3432 /* Called with irq disabled */
3433 static inline void ____napi_schedule(struct softnet_data *sd,
3434 struct napi_struct *napi)
3435 {
3436 list_add_tail(&napi->poll_list, &sd->poll_list);
3437 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3438 }
3439
3440 #ifdef CONFIG_RPS
3441
3442 /* One global table that all flow-based protocols share. */
3443 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3444 EXPORT_SYMBOL(rps_sock_flow_table);
3445 u32 rps_cpu_mask __read_mostly;
3446 EXPORT_SYMBOL(rps_cpu_mask);
3447
3448 struct static_key rps_needed __read_mostly;
3449 EXPORT_SYMBOL(rps_needed);
3450 struct static_key rfs_needed __read_mostly;
3451 EXPORT_SYMBOL(rfs_needed);
3452
3453 static struct rps_dev_flow *
3454 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3455 struct rps_dev_flow *rflow, u16 next_cpu)
3456 {
3457 if (next_cpu < nr_cpu_ids) {
3458 #ifdef CONFIG_RFS_ACCEL
3459 struct netdev_rx_queue *rxqueue;
3460 struct rps_dev_flow_table *flow_table;
3461 struct rps_dev_flow *old_rflow;
3462 u32 flow_id;
3463 u16 rxq_index;
3464 int rc;
3465
3466 /* Should we steer this flow to a different hardware queue? */
3467 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3468 !(dev->features & NETIF_F_NTUPLE))
3469 goto out;
3470 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3471 if (rxq_index == skb_get_rx_queue(skb))
3472 goto out;
3473
3474 rxqueue = dev->_rx + rxq_index;
3475 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3476 if (!flow_table)
3477 goto out;
3478 flow_id = skb_get_hash(skb) & flow_table->mask;
3479 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3480 rxq_index, flow_id);
3481 if (rc < 0)
3482 goto out;
3483 old_rflow = rflow;
3484 rflow = &flow_table->flows[flow_id];
3485 rflow->filter = rc;
3486 if (old_rflow->filter == rflow->filter)
3487 old_rflow->filter = RPS_NO_FILTER;
3488 out:
3489 #endif
3490 rflow->last_qtail =
3491 per_cpu(softnet_data, next_cpu).input_queue_head;
3492 }
3493
3494 rflow->cpu = next_cpu;
3495 return rflow;
3496 }
3497
3498 /*
3499 * get_rps_cpu is called from netif_receive_skb and returns the target
3500 * CPU from the RPS map of the receiving queue for a given skb.
3501 * rcu_read_lock must be held on entry.
3502 */
3503 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3504 struct rps_dev_flow **rflowp)
3505 {
3506 const struct rps_sock_flow_table *sock_flow_table;
3507 struct netdev_rx_queue *rxqueue = dev->_rx;
3508 struct rps_dev_flow_table *flow_table;
3509 struct rps_map *map;
3510 int cpu = -1;
3511 u32 tcpu;
3512 u32 hash;
3513
3514 if (skb_rx_queue_recorded(skb)) {
3515 u16 index = skb_get_rx_queue(skb);
3516
3517 if (unlikely(index >= dev->real_num_rx_queues)) {
3518 WARN_ONCE(dev->real_num_rx_queues > 1,
3519 "%s received packet on queue %u, but number "
3520 "of RX queues is %u\n",
3521 dev->name, index, dev->real_num_rx_queues);
3522 goto done;
3523 }
3524 rxqueue += index;
3525 }
3526
3527 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3528
3529 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3530 map = rcu_dereference(rxqueue->rps_map);
3531 if (!flow_table && !map)
3532 goto done;
3533
3534 skb_reset_network_header(skb);
3535 hash = skb_get_hash(skb);
3536 if (!hash)
3537 goto done;
3538
3539 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3540 if (flow_table && sock_flow_table) {
3541 struct rps_dev_flow *rflow;
3542 u32 next_cpu;
3543 u32 ident;
3544
3545 /* First check into global flow table if there is a match */
3546 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3547 if ((ident ^ hash) & ~rps_cpu_mask)
3548 goto try_rps;
3549
3550 next_cpu = ident & rps_cpu_mask;
3551
3552 /* OK, now we know there is a match,
3553 * we can look at the local (per receive queue) flow table
3554 */
3555 rflow = &flow_table->flows[hash & flow_table->mask];
3556 tcpu = rflow->cpu;
3557
3558 /*
3559 * If the desired CPU (where last recvmsg was done) is
3560 * different from current CPU (one in the rx-queue flow
3561 * table entry), switch if one of the following holds:
3562 * - Current CPU is unset (>= nr_cpu_ids).
3563 * - Current CPU is offline.
3564 * - The current CPU's queue tail has advanced beyond the
3565 * last packet that was enqueued using this table entry.
3566 * This guarantees that all previous packets for the flow
3567 * have been dequeued, thus preserving in order delivery.
3568 */
3569 if (unlikely(tcpu != next_cpu) &&
3570 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3571 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3572 rflow->last_qtail)) >= 0)) {
3573 tcpu = next_cpu;
3574 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3575 }
3576
3577 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3578 *rflowp = rflow;
3579 cpu = tcpu;
3580 goto done;
3581 }
3582 }
3583
3584 try_rps:
3585
3586 if (map) {
3587 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3588 if (cpu_online(tcpu)) {
3589 cpu = tcpu;
3590 goto done;
3591 }
3592 }
3593
3594 done:
3595 return cpu;
3596 }
3597
3598 #ifdef CONFIG_RFS_ACCEL
3599
3600 /**
3601 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3602 * @dev: Device on which the filter was set
3603 * @rxq_index: RX queue index
3604 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3605 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3606 *
3607 * Drivers that implement ndo_rx_flow_steer() should periodically call
3608 * this function for each installed filter and remove the filters for
3609 * which it returns %true.
3610 */
3611 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3612 u32 flow_id, u16 filter_id)
3613 {
3614 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3615 struct rps_dev_flow_table *flow_table;
3616 struct rps_dev_flow *rflow;
3617 bool expire = true;
3618 unsigned int cpu;
3619
3620 rcu_read_lock();
3621 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3622 if (flow_table && flow_id <= flow_table->mask) {
3623 rflow = &flow_table->flows[flow_id];
3624 cpu = ACCESS_ONCE(rflow->cpu);
3625 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3626 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3627 rflow->last_qtail) <
3628 (int)(10 * flow_table->mask)))
3629 expire = false;
3630 }
3631 rcu_read_unlock();
3632 return expire;
3633 }
3634 EXPORT_SYMBOL(rps_may_expire_flow);
3635
3636 #endif /* CONFIG_RFS_ACCEL */
3637
3638 /* Called from hardirq (IPI) context */
3639 static void rps_trigger_softirq(void *data)
3640 {
3641 struct softnet_data *sd = data;
3642
3643 ____napi_schedule(sd, &sd->backlog);
3644 sd->received_rps++;
3645 }
3646
3647 #endif /* CONFIG_RPS */
3648
3649 /*
3650 * Check if this softnet_data structure is another cpu one
3651 * If yes, queue it to our IPI list and return 1
3652 * If no, return 0
3653 */
3654 static int rps_ipi_queued(struct softnet_data *sd)
3655 {
3656 #ifdef CONFIG_RPS
3657 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3658
3659 if (sd != mysd) {
3660 sd->rps_ipi_next = mysd->rps_ipi_list;
3661 mysd->rps_ipi_list = sd;
3662
3663 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3664 return 1;
3665 }
3666 #endif /* CONFIG_RPS */
3667 return 0;
3668 }
3669
3670 #ifdef CONFIG_NET_FLOW_LIMIT
3671 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3672 #endif
3673
3674 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3675 {
3676 #ifdef CONFIG_NET_FLOW_LIMIT
3677 struct sd_flow_limit *fl;
3678 struct softnet_data *sd;
3679 unsigned int old_flow, new_flow;
3680
3681 if (qlen < (netdev_max_backlog >> 1))
3682 return false;
3683
3684 sd = this_cpu_ptr(&softnet_data);
3685
3686 rcu_read_lock();
3687 fl = rcu_dereference(sd->flow_limit);
3688 if (fl) {
3689 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3690 old_flow = fl->history[fl->history_head];
3691 fl->history[fl->history_head] = new_flow;
3692
3693 fl->history_head++;
3694 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3695
3696 if (likely(fl->buckets[old_flow]))
3697 fl->buckets[old_flow]--;
3698
3699 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3700 fl->count++;
3701 rcu_read_unlock();
3702 return true;
3703 }
3704 }
3705 rcu_read_unlock();
3706 #endif
3707 return false;
3708 }
3709
3710 /*
3711 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3712 * queue (may be a remote CPU queue).
3713 */
3714 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3715 unsigned int *qtail)
3716 {
3717 struct softnet_data *sd;
3718 unsigned long flags;
3719 unsigned int qlen;
3720
3721 sd = &per_cpu(softnet_data, cpu);
3722
3723 local_irq_save(flags);
3724
3725 rps_lock(sd);
3726 if (!netif_running(skb->dev))
3727 goto drop;
3728 qlen = skb_queue_len(&sd->input_pkt_queue);
3729 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3730 if (qlen) {
3731 enqueue:
3732 __skb_queue_tail(&sd->input_pkt_queue, skb);
3733 input_queue_tail_incr_save(sd, qtail);
3734 rps_unlock(sd);
3735 local_irq_restore(flags);
3736 return NET_RX_SUCCESS;
3737 }
3738
3739 /* Schedule NAPI for backlog device
3740 * We can use non atomic operation since we own the queue lock
3741 */
3742 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3743 if (!rps_ipi_queued(sd))
3744 ____napi_schedule(sd, &sd->backlog);
3745 }
3746 goto enqueue;
3747 }
3748
3749 drop:
3750 sd->dropped++;
3751 rps_unlock(sd);
3752
3753 local_irq_restore(flags);
3754
3755 atomic_long_inc(&skb->dev->rx_dropped);
3756 kfree_skb(skb);
3757 return NET_RX_DROP;
3758 }
3759
3760 static int netif_rx_internal(struct sk_buff *skb)
3761 {
3762 int ret;
3763
3764 net_timestamp_check(netdev_tstamp_prequeue, skb);
3765
3766 trace_netif_rx(skb);
3767 #ifdef CONFIG_RPS
3768 if (static_key_false(&rps_needed)) {
3769 struct rps_dev_flow voidflow, *rflow = &voidflow;
3770 int cpu;
3771
3772 preempt_disable();
3773 rcu_read_lock();
3774
3775 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3776 if (cpu < 0)
3777 cpu = smp_processor_id();
3778
3779 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3780
3781 rcu_read_unlock();
3782 preempt_enable();
3783 } else
3784 #endif
3785 {
3786 unsigned int qtail;
3787 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3788 put_cpu();
3789 }
3790 return ret;
3791 }
3792
3793 /**
3794 * netif_rx - post buffer to the network code
3795 * @skb: buffer to post
3796 *
3797 * This function receives a packet from a device driver and queues it for
3798 * the upper (protocol) levels to process. It always succeeds. The buffer
3799 * may be dropped during processing for congestion control or by the
3800 * protocol layers.
3801 *
3802 * return values:
3803 * NET_RX_SUCCESS (no congestion)
3804 * NET_RX_DROP (packet was dropped)
3805 *
3806 */
3807
3808 int netif_rx(struct sk_buff *skb)
3809 {
3810 trace_netif_rx_entry(skb);
3811
3812 return netif_rx_internal(skb);
3813 }
3814 EXPORT_SYMBOL(netif_rx);
3815
3816 int netif_rx_ni(struct sk_buff *skb)
3817 {
3818 int err;
3819
3820 trace_netif_rx_ni_entry(skb);
3821
3822 preempt_disable();
3823 err = netif_rx_internal(skb);
3824 if (local_softirq_pending())
3825 do_softirq();
3826 preempt_enable();
3827
3828 return err;
3829 }
3830 EXPORT_SYMBOL(netif_rx_ni);
3831
3832 static __latent_entropy void net_tx_action(struct softirq_action *h)
3833 {
3834 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3835
3836 if (sd->completion_queue) {
3837 struct sk_buff *clist;
3838
3839 local_irq_disable();
3840 clist = sd->completion_queue;
3841 sd->completion_queue = NULL;
3842 local_irq_enable();
3843
3844 while (clist) {
3845 struct sk_buff *skb = clist;
3846 clist = clist->next;
3847
3848 WARN_ON(atomic_read(&skb->users));
3849 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3850 trace_consume_skb(skb);
3851 else
3852 trace_kfree_skb(skb, net_tx_action);
3853
3854 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3855 __kfree_skb(skb);
3856 else
3857 __kfree_skb_defer(skb);
3858 }
3859
3860 __kfree_skb_flush();
3861 }
3862
3863 if (sd->output_queue) {
3864 struct Qdisc *head;
3865
3866 local_irq_disable();
3867 head = sd->output_queue;
3868 sd->output_queue = NULL;
3869 sd->output_queue_tailp = &sd->output_queue;
3870 local_irq_enable();
3871
3872 while (head) {
3873 struct Qdisc *q = head;
3874 spinlock_t *root_lock;
3875
3876 head = head->next_sched;
3877
3878 root_lock = qdisc_lock(q);
3879 spin_lock(root_lock);
3880 /* We need to make sure head->next_sched is read
3881 * before clearing __QDISC_STATE_SCHED
3882 */
3883 smp_mb__before_atomic();
3884 clear_bit(__QDISC_STATE_SCHED, &q->state);
3885 qdisc_run(q);
3886 spin_unlock(root_lock);
3887 }
3888 }
3889 }
3890
3891 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3892 /* This hook is defined here for ATM LANE */
3893 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3894 unsigned char *addr) __read_mostly;
3895 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3896 #endif
3897
3898 static inline struct sk_buff *
3899 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3900 struct net_device *orig_dev)
3901 {
3902 #ifdef CONFIG_NET_CLS_ACT
3903 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3904 struct tcf_result cl_res;
3905
3906 /* If there's at least one ingress present somewhere (so
3907 * we get here via enabled static key), remaining devices
3908 * that are not configured with an ingress qdisc will bail
3909 * out here.
3910 */
3911 if (!cl)
3912 return skb;
3913 if (*pt_prev) {
3914 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3915 *pt_prev = NULL;
3916 }
3917
3918 qdisc_skb_cb(skb)->pkt_len = skb->len;
3919 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3920 qdisc_bstats_cpu_update(cl->q, skb);
3921
3922 switch (tc_classify(skb, cl, &cl_res, false)) {
3923 case TC_ACT_OK:
3924 case TC_ACT_RECLASSIFY:
3925 skb->tc_index = TC_H_MIN(cl_res.classid);
3926 break;
3927 case TC_ACT_SHOT:
3928 qdisc_qstats_cpu_drop(cl->q);
3929 kfree_skb(skb);
3930 return NULL;
3931 case TC_ACT_STOLEN:
3932 case TC_ACT_QUEUED:
3933 consume_skb(skb);
3934 return NULL;
3935 case TC_ACT_REDIRECT:
3936 /* skb_mac_header check was done by cls/act_bpf, so
3937 * we can safely push the L2 header back before
3938 * redirecting to another netdev
3939 */
3940 __skb_push(skb, skb->mac_len);
3941 skb_do_redirect(skb);
3942 return NULL;
3943 default:
3944 break;
3945 }
3946 #endif /* CONFIG_NET_CLS_ACT */
3947 return skb;
3948 }
3949
3950 /**
3951 * netdev_is_rx_handler_busy - check if receive handler is registered
3952 * @dev: device to check
3953 *
3954 * Check if a receive handler is already registered for a given device.
3955 * Return true if there one.
3956 *
3957 * The caller must hold the rtnl_mutex.
3958 */
3959 bool netdev_is_rx_handler_busy(struct net_device *dev)
3960 {
3961 ASSERT_RTNL();
3962 return dev && rtnl_dereference(dev->rx_handler);
3963 }
3964 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3965
3966 /**
3967 * netdev_rx_handler_register - register receive handler
3968 * @dev: device to register a handler for
3969 * @rx_handler: receive handler to register
3970 * @rx_handler_data: data pointer that is used by rx handler
3971 *
3972 * Register a receive handler for a device. This handler will then be
3973 * called from __netif_receive_skb. A negative errno code is returned
3974 * on a failure.
3975 *
3976 * The caller must hold the rtnl_mutex.
3977 *
3978 * For a general description of rx_handler, see enum rx_handler_result.
3979 */
3980 int netdev_rx_handler_register(struct net_device *dev,
3981 rx_handler_func_t *rx_handler,
3982 void *rx_handler_data)
3983 {
3984 ASSERT_RTNL();
3985
3986 if (dev->rx_handler)
3987 return -EBUSY;
3988
3989 /* Note: rx_handler_data must be set before rx_handler */
3990 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3991 rcu_assign_pointer(dev->rx_handler, rx_handler);
3992
3993 return 0;
3994 }
3995 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3996
3997 /**
3998 * netdev_rx_handler_unregister - unregister receive handler
3999 * @dev: device to unregister a handler from
4000 *
4001 * Unregister a receive handler from a device.
4002 *
4003 * The caller must hold the rtnl_mutex.
4004 */
4005 void netdev_rx_handler_unregister(struct net_device *dev)
4006 {
4007
4008 ASSERT_RTNL();
4009 RCU_INIT_POINTER(dev->rx_handler, NULL);
4010 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4011 * section has a guarantee to see a non NULL rx_handler_data
4012 * as well.
4013 */
4014 synchronize_net();
4015 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4016 }
4017 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4018
4019 /*
4020 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4021 * the special handling of PFMEMALLOC skbs.
4022 */
4023 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4024 {
4025 switch (skb->protocol) {
4026 case htons(ETH_P_ARP):
4027 case htons(ETH_P_IP):
4028 case htons(ETH_P_IPV6):
4029 case htons(ETH_P_8021Q):
4030 case htons(ETH_P_8021AD):
4031 return true;
4032 default:
4033 return false;
4034 }
4035 }
4036
4037 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4038 int *ret, struct net_device *orig_dev)
4039 {
4040 #ifdef CONFIG_NETFILTER_INGRESS
4041 if (nf_hook_ingress_active(skb)) {
4042 int ingress_retval;
4043
4044 if (*pt_prev) {
4045 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4046 *pt_prev = NULL;
4047 }
4048
4049 rcu_read_lock();
4050 ingress_retval = nf_hook_ingress(skb);
4051 rcu_read_unlock();
4052 return ingress_retval;
4053 }
4054 #endif /* CONFIG_NETFILTER_INGRESS */
4055 return 0;
4056 }
4057
4058 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4059 {
4060 struct packet_type *ptype, *pt_prev;
4061 rx_handler_func_t *rx_handler;
4062 struct net_device *orig_dev;
4063 bool deliver_exact = false;
4064 int ret = NET_RX_DROP;
4065 __be16 type;
4066
4067 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4068
4069 trace_netif_receive_skb(skb);
4070
4071 orig_dev = skb->dev;
4072
4073 skb_reset_network_header(skb);
4074 if (!skb_transport_header_was_set(skb))
4075 skb_reset_transport_header(skb);
4076 skb_reset_mac_len(skb);
4077
4078 pt_prev = NULL;
4079
4080 another_round:
4081 skb->skb_iif = skb->dev->ifindex;
4082
4083 __this_cpu_inc(softnet_data.processed);
4084
4085 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4086 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4087 skb = skb_vlan_untag(skb);
4088 if (unlikely(!skb))
4089 goto out;
4090 }
4091
4092 #ifdef CONFIG_NET_CLS_ACT
4093 if (skb->tc_verd & TC_NCLS) {
4094 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4095 goto ncls;
4096 }
4097 #endif
4098
4099 if (pfmemalloc)
4100 goto skip_taps;
4101
4102 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4103 if (pt_prev)
4104 ret = deliver_skb(skb, pt_prev, orig_dev);
4105 pt_prev = ptype;
4106 }
4107
4108 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4109 if (pt_prev)
4110 ret = deliver_skb(skb, pt_prev, orig_dev);
4111 pt_prev = ptype;
4112 }
4113
4114 skip_taps:
4115 #ifdef CONFIG_NET_INGRESS
4116 if (static_key_false(&ingress_needed)) {
4117 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4118 if (!skb)
4119 goto out;
4120
4121 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4122 goto out;
4123 }
4124 #endif
4125 #ifdef CONFIG_NET_CLS_ACT
4126 skb->tc_verd = 0;
4127 ncls:
4128 #endif
4129 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4130 goto drop;
4131
4132 if (skb_vlan_tag_present(skb)) {
4133 if (pt_prev) {
4134 ret = deliver_skb(skb, pt_prev, orig_dev);
4135 pt_prev = NULL;
4136 }
4137 if (vlan_do_receive(&skb))
4138 goto another_round;
4139 else if (unlikely(!skb))
4140 goto out;
4141 }
4142
4143 rx_handler = rcu_dereference(skb->dev->rx_handler);
4144 if (rx_handler) {
4145 if (pt_prev) {
4146 ret = deliver_skb(skb, pt_prev, orig_dev);
4147 pt_prev = NULL;
4148 }
4149 switch (rx_handler(&skb)) {
4150 case RX_HANDLER_CONSUMED:
4151 ret = NET_RX_SUCCESS;
4152 goto out;
4153 case RX_HANDLER_ANOTHER:
4154 goto another_round;
4155 case RX_HANDLER_EXACT:
4156 deliver_exact = true;
4157 case RX_HANDLER_PASS:
4158 break;
4159 default:
4160 BUG();
4161 }
4162 }
4163
4164 if (unlikely(skb_vlan_tag_present(skb))) {
4165 if (skb_vlan_tag_get_id(skb))
4166 skb->pkt_type = PACKET_OTHERHOST;
4167 /* Note: we might in the future use prio bits
4168 * and set skb->priority like in vlan_do_receive()
4169 * For the time being, just ignore Priority Code Point
4170 */
4171 skb->vlan_tci = 0;
4172 }
4173
4174 type = skb->protocol;
4175
4176 /* deliver only exact match when indicated */
4177 if (likely(!deliver_exact)) {
4178 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4179 &ptype_base[ntohs(type) &
4180 PTYPE_HASH_MASK]);
4181 }
4182
4183 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4184 &orig_dev->ptype_specific);
4185
4186 if (unlikely(skb->dev != orig_dev)) {
4187 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4188 &skb->dev->ptype_specific);
4189 }
4190
4191 if (pt_prev) {
4192 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4193 goto drop;
4194 else
4195 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4196 } else {
4197 drop:
4198 if (!deliver_exact)
4199 atomic_long_inc(&skb->dev->rx_dropped);
4200 else
4201 atomic_long_inc(&skb->dev->rx_nohandler);
4202 kfree_skb(skb);
4203 /* Jamal, now you will not able to escape explaining
4204 * me how you were going to use this. :-)
4205 */
4206 ret = NET_RX_DROP;
4207 }
4208
4209 out:
4210 return ret;
4211 }
4212
4213 static int __netif_receive_skb(struct sk_buff *skb)
4214 {
4215 int ret;
4216
4217 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4218 unsigned long pflags = current->flags;
4219
4220 /*
4221 * PFMEMALLOC skbs are special, they should
4222 * - be delivered to SOCK_MEMALLOC sockets only
4223 * - stay away from userspace
4224 * - have bounded memory usage
4225 *
4226 * Use PF_MEMALLOC as this saves us from propagating the allocation
4227 * context down to all allocation sites.
4228 */
4229 current->flags |= PF_MEMALLOC;
4230 ret = __netif_receive_skb_core(skb, true);
4231 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4232 } else
4233 ret = __netif_receive_skb_core(skb, false);
4234
4235 return ret;
4236 }
4237
4238 static int netif_receive_skb_internal(struct sk_buff *skb)
4239 {
4240 int ret;
4241
4242 net_timestamp_check(netdev_tstamp_prequeue, skb);
4243
4244 if (skb_defer_rx_timestamp(skb))
4245 return NET_RX_SUCCESS;
4246
4247 rcu_read_lock();
4248
4249 #ifdef CONFIG_RPS
4250 if (static_key_false(&rps_needed)) {
4251 struct rps_dev_flow voidflow, *rflow = &voidflow;
4252 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4253
4254 if (cpu >= 0) {
4255 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4256 rcu_read_unlock();
4257 return ret;
4258 }
4259 }
4260 #endif
4261 ret = __netif_receive_skb(skb);
4262 rcu_read_unlock();
4263 return ret;
4264 }
4265
4266 /**
4267 * netif_receive_skb - process receive buffer from network
4268 * @skb: buffer to process
4269 *
4270 * netif_receive_skb() is the main receive data processing function.
4271 * It always succeeds. The buffer may be dropped during processing
4272 * for congestion control or by the protocol layers.
4273 *
4274 * This function may only be called from softirq context and interrupts
4275 * should be enabled.
4276 *
4277 * Return values (usually ignored):
4278 * NET_RX_SUCCESS: no congestion
4279 * NET_RX_DROP: packet was dropped
4280 */
4281 int netif_receive_skb(struct sk_buff *skb)
4282 {
4283 trace_netif_receive_skb_entry(skb);
4284
4285 return netif_receive_skb_internal(skb);
4286 }
4287 EXPORT_SYMBOL(netif_receive_skb);
4288
4289 DEFINE_PER_CPU(struct work_struct, flush_works);
4290
4291 /* Network device is going away, flush any packets still pending */
4292 static void flush_backlog(struct work_struct *work)
4293 {
4294 struct sk_buff *skb, *tmp;
4295 struct softnet_data *sd;
4296
4297 local_bh_disable();
4298 sd = this_cpu_ptr(&softnet_data);
4299
4300 local_irq_disable();
4301 rps_lock(sd);
4302 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4303 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4304 __skb_unlink(skb, &sd->input_pkt_queue);
4305 kfree_skb(skb);
4306 input_queue_head_incr(sd);
4307 }
4308 }
4309 rps_unlock(sd);
4310 local_irq_enable();
4311
4312 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4313 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4314 __skb_unlink(skb, &sd->process_queue);
4315 kfree_skb(skb);
4316 input_queue_head_incr(sd);
4317 }
4318 }
4319 local_bh_enable();
4320 }
4321
4322 static void flush_all_backlogs(void)
4323 {
4324 unsigned int cpu;
4325
4326 get_online_cpus();
4327
4328 for_each_online_cpu(cpu)
4329 queue_work_on(cpu, system_highpri_wq,
4330 per_cpu_ptr(&flush_works, cpu));
4331
4332 for_each_online_cpu(cpu)
4333 flush_work(per_cpu_ptr(&flush_works, cpu));
4334
4335 put_online_cpus();
4336 }
4337
4338 static int napi_gro_complete(struct sk_buff *skb)
4339 {
4340 struct packet_offload *ptype;
4341 __be16 type = skb->protocol;
4342 struct list_head *head = &offload_base;
4343 int err = -ENOENT;
4344
4345 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4346
4347 if (NAPI_GRO_CB(skb)->count == 1) {
4348 skb_shinfo(skb)->gso_size = 0;
4349 goto out;
4350 }
4351
4352 rcu_read_lock();
4353 list_for_each_entry_rcu(ptype, head, list) {
4354 if (ptype->type != type || !ptype->callbacks.gro_complete)
4355 continue;
4356
4357 err = ptype->callbacks.gro_complete(skb, 0);
4358 break;
4359 }
4360 rcu_read_unlock();
4361
4362 if (err) {
4363 WARN_ON(&ptype->list == head);
4364 kfree_skb(skb);
4365 return NET_RX_SUCCESS;
4366 }
4367
4368 out:
4369 return netif_receive_skb_internal(skb);
4370 }
4371
4372 /* napi->gro_list contains packets ordered by age.
4373 * youngest packets at the head of it.
4374 * Complete skbs in reverse order to reduce latencies.
4375 */
4376 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4377 {
4378 struct sk_buff *skb, *prev = NULL;
4379
4380 /* scan list and build reverse chain */
4381 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4382 skb->prev = prev;
4383 prev = skb;
4384 }
4385
4386 for (skb = prev; skb; skb = prev) {
4387 skb->next = NULL;
4388
4389 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4390 return;
4391
4392 prev = skb->prev;
4393 napi_gro_complete(skb);
4394 napi->gro_count--;
4395 }
4396
4397 napi->gro_list = NULL;
4398 }
4399 EXPORT_SYMBOL(napi_gro_flush);
4400
4401 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4402 {
4403 struct sk_buff *p;
4404 unsigned int maclen = skb->dev->hard_header_len;
4405 u32 hash = skb_get_hash_raw(skb);
4406
4407 for (p = napi->gro_list; p; p = p->next) {
4408 unsigned long diffs;
4409
4410 NAPI_GRO_CB(p)->flush = 0;
4411
4412 if (hash != skb_get_hash_raw(p)) {
4413 NAPI_GRO_CB(p)->same_flow = 0;
4414 continue;
4415 }
4416
4417 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4418 diffs |= p->vlan_tci ^ skb->vlan_tci;
4419 diffs |= skb_metadata_dst_cmp(p, skb);
4420 if (maclen == ETH_HLEN)
4421 diffs |= compare_ether_header(skb_mac_header(p),
4422 skb_mac_header(skb));
4423 else if (!diffs)
4424 diffs = memcmp(skb_mac_header(p),
4425 skb_mac_header(skb),
4426 maclen);
4427 NAPI_GRO_CB(p)->same_flow = !diffs;
4428 }
4429 }
4430
4431 static void skb_gro_reset_offset(struct sk_buff *skb)
4432 {
4433 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4434 const skb_frag_t *frag0 = &pinfo->frags[0];
4435
4436 NAPI_GRO_CB(skb)->data_offset = 0;
4437 NAPI_GRO_CB(skb)->frag0 = NULL;
4438 NAPI_GRO_CB(skb)->frag0_len = 0;
4439
4440 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4441 pinfo->nr_frags &&
4442 !PageHighMem(skb_frag_page(frag0))) {
4443 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4444 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4445 }
4446 }
4447
4448 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4449 {
4450 struct skb_shared_info *pinfo = skb_shinfo(skb);
4451
4452 BUG_ON(skb->end - skb->tail < grow);
4453
4454 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4455
4456 skb->data_len -= grow;
4457 skb->tail += grow;
4458
4459 pinfo->frags[0].page_offset += grow;
4460 skb_frag_size_sub(&pinfo->frags[0], grow);
4461
4462 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4463 skb_frag_unref(skb, 0);
4464 memmove(pinfo->frags, pinfo->frags + 1,
4465 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4466 }
4467 }
4468
4469 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4470 {
4471 struct sk_buff **pp = NULL;
4472 struct packet_offload *ptype;
4473 __be16 type = skb->protocol;
4474 struct list_head *head = &offload_base;
4475 int same_flow;
4476 enum gro_result ret;
4477 int grow;
4478
4479 if (!(skb->dev->features & NETIF_F_GRO))
4480 goto normal;
4481
4482 if (skb->csum_bad)
4483 goto normal;
4484
4485 gro_list_prepare(napi, skb);
4486
4487 rcu_read_lock();
4488 list_for_each_entry_rcu(ptype, head, list) {
4489 if (ptype->type != type || !ptype->callbacks.gro_receive)
4490 continue;
4491
4492 skb_set_network_header(skb, skb_gro_offset(skb));
4493 skb_reset_mac_len(skb);
4494 NAPI_GRO_CB(skb)->same_flow = 0;
4495 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4496 NAPI_GRO_CB(skb)->free = 0;
4497 NAPI_GRO_CB(skb)->encap_mark = 0;
4498 NAPI_GRO_CB(skb)->recursion_counter = 0;
4499 NAPI_GRO_CB(skb)->is_fou = 0;
4500 NAPI_GRO_CB(skb)->is_atomic = 1;
4501 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4502
4503 /* Setup for GRO checksum validation */
4504 switch (skb->ip_summed) {
4505 case CHECKSUM_COMPLETE:
4506 NAPI_GRO_CB(skb)->csum = skb->csum;
4507 NAPI_GRO_CB(skb)->csum_valid = 1;
4508 NAPI_GRO_CB(skb)->csum_cnt = 0;
4509 break;
4510 case CHECKSUM_UNNECESSARY:
4511 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4512 NAPI_GRO_CB(skb)->csum_valid = 0;
4513 break;
4514 default:
4515 NAPI_GRO_CB(skb)->csum_cnt = 0;
4516 NAPI_GRO_CB(skb)->csum_valid = 0;
4517 }
4518
4519 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4520 break;
4521 }
4522 rcu_read_unlock();
4523
4524 if (&ptype->list == head)
4525 goto normal;
4526
4527 same_flow = NAPI_GRO_CB(skb)->same_flow;
4528 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4529
4530 if (pp) {
4531 struct sk_buff *nskb = *pp;
4532
4533 *pp = nskb->next;
4534 nskb->next = NULL;
4535 napi_gro_complete(nskb);
4536 napi->gro_count--;
4537 }
4538
4539 if (same_flow)
4540 goto ok;
4541
4542 if (NAPI_GRO_CB(skb)->flush)
4543 goto normal;
4544
4545 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4546 struct sk_buff *nskb = napi->gro_list;
4547
4548 /* locate the end of the list to select the 'oldest' flow */
4549 while (nskb->next) {
4550 pp = &nskb->next;
4551 nskb = *pp;
4552 }
4553 *pp = NULL;
4554 nskb->next = NULL;
4555 napi_gro_complete(nskb);
4556 } else {
4557 napi->gro_count++;
4558 }
4559 NAPI_GRO_CB(skb)->count = 1;
4560 NAPI_GRO_CB(skb)->age = jiffies;
4561 NAPI_GRO_CB(skb)->last = skb;
4562 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4563 skb->next = napi->gro_list;
4564 napi->gro_list = skb;
4565 ret = GRO_HELD;
4566
4567 pull:
4568 grow = skb_gro_offset(skb) - skb_headlen(skb);
4569 if (grow > 0)
4570 gro_pull_from_frag0(skb, grow);
4571 ok:
4572 return ret;
4573
4574 normal:
4575 ret = GRO_NORMAL;
4576 goto pull;
4577 }
4578
4579 struct packet_offload *gro_find_receive_by_type(__be16 type)
4580 {
4581 struct list_head *offload_head = &offload_base;
4582 struct packet_offload *ptype;
4583
4584 list_for_each_entry_rcu(ptype, offload_head, list) {
4585 if (ptype->type != type || !ptype->callbacks.gro_receive)
4586 continue;
4587 return ptype;
4588 }
4589 return NULL;
4590 }
4591 EXPORT_SYMBOL(gro_find_receive_by_type);
4592
4593 struct packet_offload *gro_find_complete_by_type(__be16 type)
4594 {
4595 struct list_head *offload_head = &offload_base;
4596 struct packet_offload *ptype;
4597
4598 list_for_each_entry_rcu(ptype, offload_head, list) {
4599 if (ptype->type != type || !ptype->callbacks.gro_complete)
4600 continue;
4601 return ptype;
4602 }
4603 return NULL;
4604 }
4605 EXPORT_SYMBOL(gro_find_complete_by_type);
4606
4607 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4608 {
4609 switch (ret) {
4610 case GRO_NORMAL:
4611 if (netif_receive_skb_internal(skb))
4612 ret = GRO_DROP;
4613 break;
4614
4615 case GRO_DROP:
4616 kfree_skb(skb);
4617 break;
4618
4619 case GRO_MERGED_FREE:
4620 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4621 skb_dst_drop(skb);
4622 kmem_cache_free(skbuff_head_cache, skb);
4623 } else {
4624 __kfree_skb(skb);
4625 }
4626 break;
4627
4628 case GRO_HELD:
4629 case GRO_MERGED:
4630 break;
4631 }
4632
4633 return ret;
4634 }
4635
4636 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4637 {
4638 skb_mark_napi_id(skb, napi);
4639 trace_napi_gro_receive_entry(skb);
4640
4641 skb_gro_reset_offset(skb);
4642
4643 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4644 }
4645 EXPORT_SYMBOL(napi_gro_receive);
4646
4647 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4648 {
4649 if (unlikely(skb->pfmemalloc)) {
4650 consume_skb(skb);
4651 return;
4652 }
4653 __skb_pull(skb, skb_headlen(skb));
4654 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4655 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4656 skb->vlan_tci = 0;
4657 skb->dev = napi->dev;
4658 skb->skb_iif = 0;
4659 skb->encapsulation = 0;
4660 skb_shinfo(skb)->gso_type = 0;
4661 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4662
4663 napi->skb = skb;
4664 }
4665
4666 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4667 {
4668 struct sk_buff *skb = napi->skb;
4669
4670 if (!skb) {
4671 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4672 if (skb) {
4673 napi->skb = skb;
4674 skb_mark_napi_id(skb, napi);
4675 }
4676 }
4677 return skb;
4678 }
4679 EXPORT_SYMBOL(napi_get_frags);
4680
4681 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4682 struct sk_buff *skb,
4683 gro_result_t ret)
4684 {
4685 switch (ret) {
4686 case GRO_NORMAL:
4687 case GRO_HELD:
4688 __skb_push(skb, ETH_HLEN);
4689 skb->protocol = eth_type_trans(skb, skb->dev);
4690 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4691 ret = GRO_DROP;
4692 break;
4693
4694 case GRO_DROP:
4695 case GRO_MERGED_FREE:
4696 napi_reuse_skb(napi, skb);
4697 break;
4698
4699 case GRO_MERGED:
4700 break;
4701 }
4702
4703 return ret;
4704 }
4705
4706 /* Upper GRO stack assumes network header starts at gro_offset=0
4707 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4708 * We copy ethernet header into skb->data to have a common layout.
4709 */
4710 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4711 {
4712 struct sk_buff *skb = napi->skb;
4713 const struct ethhdr *eth;
4714 unsigned int hlen = sizeof(*eth);
4715
4716 napi->skb = NULL;
4717
4718 skb_reset_mac_header(skb);
4719 skb_gro_reset_offset(skb);
4720
4721 eth = skb_gro_header_fast(skb, 0);
4722 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4723 eth = skb_gro_header_slow(skb, hlen, 0);
4724 if (unlikely(!eth)) {
4725 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4726 __func__, napi->dev->name);
4727 napi_reuse_skb(napi, skb);
4728 return NULL;
4729 }
4730 } else {
4731 gro_pull_from_frag0(skb, hlen);
4732 NAPI_GRO_CB(skb)->frag0 += hlen;
4733 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4734 }
4735 __skb_pull(skb, hlen);
4736
4737 /*
4738 * This works because the only protocols we care about don't require
4739 * special handling.
4740 * We'll fix it up properly in napi_frags_finish()
4741 */
4742 skb->protocol = eth->h_proto;
4743
4744 return skb;
4745 }
4746
4747 gro_result_t napi_gro_frags(struct napi_struct *napi)
4748 {
4749 struct sk_buff *skb = napi_frags_skb(napi);
4750
4751 if (!skb)
4752 return GRO_DROP;
4753
4754 trace_napi_gro_frags_entry(skb);
4755
4756 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4757 }
4758 EXPORT_SYMBOL(napi_gro_frags);
4759
4760 /* Compute the checksum from gro_offset and return the folded value
4761 * after adding in any pseudo checksum.
4762 */
4763 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4764 {
4765 __wsum wsum;
4766 __sum16 sum;
4767
4768 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4769
4770 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4771 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4772 if (likely(!sum)) {
4773 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4774 !skb->csum_complete_sw)
4775 netdev_rx_csum_fault(skb->dev);
4776 }
4777
4778 NAPI_GRO_CB(skb)->csum = wsum;
4779 NAPI_GRO_CB(skb)->csum_valid = 1;
4780
4781 return sum;
4782 }
4783 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4784
4785 /*
4786 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4787 * Note: called with local irq disabled, but exits with local irq enabled.
4788 */
4789 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4790 {
4791 #ifdef CONFIG_RPS
4792 struct softnet_data *remsd = sd->rps_ipi_list;
4793
4794 if (remsd) {
4795 sd->rps_ipi_list = NULL;
4796
4797 local_irq_enable();
4798
4799 /* Send pending IPI's to kick RPS processing on remote cpus. */
4800 while (remsd) {
4801 struct softnet_data *next = remsd->rps_ipi_next;
4802
4803 if (cpu_online(remsd->cpu))
4804 smp_call_function_single_async(remsd->cpu,
4805 &remsd->csd);
4806 remsd = next;
4807 }
4808 } else
4809 #endif
4810 local_irq_enable();
4811 }
4812
4813 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4814 {
4815 #ifdef CONFIG_RPS
4816 return sd->rps_ipi_list != NULL;
4817 #else
4818 return false;
4819 #endif
4820 }
4821
4822 static int process_backlog(struct napi_struct *napi, int quota)
4823 {
4824 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4825 bool again = true;
4826 int work = 0;
4827
4828 /* Check if we have pending ipi, its better to send them now,
4829 * not waiting net_rx_action() end.
4830 */
4831 if (sd_has_rps_ipi_waiting(sd)) {
4832 local_irq_disable();
4833 net_rps_action_and_irq_enable(sd);
4834 }
4835
4836 napi->weight = weight_p;
4837 while (again) {
4838 struct sk_buff *skb;
4839
4840 while ((skb = __skb_dequeue(&sd->process_queue))) {
4841 rcu_read_lock();
4842 __netif_receive_skb(skb);
4843 rcu_read_unlock();
4844 input_queue_head_incr(sd);
4845 if (++work >= quota)
4846 return work;
4847
4848 }
4849
4850 local_irq_disable();
4851 rps_lock(sd);
4852 if (skb_queue_empty(&sd->input_pkt_queue)) {
4853 /*
4854 * Inline a custom version of __napi_complete().
4855 * only current cpu owns and manipulates this napi,
4856 * and NAPI_STATE_SCHED is the only possible flag set
4857 * on backlog.
4858 * We can use a plain write instead of clear_bit(),
4859 * and we dont need an smp_mb() memory barrier.
4860 */
4861 napi->state = 0;
4862 again = false;
4863 } else {
4864 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4865 &sd->process_queue);
4866 }
4867 rps_unlock(sd);
4868 local_irq_enable();
4869 }
4870
4871 return work;
4872 }
4873
4874 /**
4875 * __napi_schedule - schedule for receive
4876 * @n: entry to schedule
4877 *
4878 * The entry's receive function will be scheduled to run.
4879 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4880 */
4881 void __napi_schedule(struct napi_struct *n)
4882 {
4883 unsigned long flags;
4884
4885 local_irq_save(flags);
4886 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4887 local_irq_restore(flags);
4888 }
4889 EXPORT_SYMBOL(__napi_schedule);
4890
4891 /**
4892 * __napi_schedule_irqoff - schedule for receive
4893 * @n: entry to schedule
4894 *
4895 * Variant of __napi_schedule() assuming hard irqs are masked
4896 */
4897 void __napi_schedule_irqoff(struct napi_struct *n)
4898 {
4899 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4900 }
4901 EXPORT_SYMBOL(__napi_schedule_irqoff);
4902
4903 bool __napi_complete(struct napi_struct *n)
4904 {
4905 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4906
4907 /* Some drivers call us directly, instead of calling
4908 * napi_complete_done().
4909 */
4910 if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
4911 return false;
4912
4913 list_del_init(&n->poll_list);
4914 smp_mb__before_atomic();
4915 clear_bit(NAPI_STATE_SCHED, &n->state);
4916 return true;
4917 }
4918 EXPORT_SYMBOL(__napi_complete);
4919
4920 bool napi_complete_done(struct napi_struct *n, int work_done)
4921 {
4922 unsigned long flags;
4923
4924 /*
4925 * 1) Don't let napi dequeue from the cpu poll list
4926 * just in case its running on a different cpu.
4927 * 2) If we are busy polling, do nothing here, we have
4928 * the guarantee we will be called later.
4929 */
4930 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4931 NAPIF_STATE_IN_BUSY_POLL)))
4932 return false;
4933
4934 if (n->gro_list) {
4935 unsigned long timeout = 0;
4936
4937 if (work_done)
4938 timeout = n->dev->gro_flush_timeout;
4939
4940 if (timeout)
4941 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4942 HRTIMER_MODE_REL_PINNED);
4943 else
4944 napi_gro_flush(n, false);
4945 }
4946 if (likely(list_empty(&n->poll_list))) {
4947 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4948 } else {
4949 /* If n->poll_list is not empty, we need to mask irqs */
4950 local_irq_save(flags);
4951 __napi_complete(n);
4952 local_irq_restore(flags);
4953 }
4954 return true;
4955 }
4956 EXPORT_SYMBOL(napi_complete_done);
4957
4958 /* must be called under rcu_read_lock(), as we dont take a reference */
4959 static struct napi_struct *napi_by_id(unsigned int napi_id)
4960 {
4961 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4962 struct napi_struct *napi;
4963
4964 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4965 if (napi->napi_id == napi_id)
4966 return napi;
4967
4968 return NULL;
4969 }
4970
4971 #if defined(CONFIG_NET_RX_BUSY_POLL)
4972
4973 #define BUSY_POLL_BUDGET 8
4974
4975 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4976 {
4977 int rc;
4978
4979 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4980
4981 local_bh_disable();
4982
4983 /* All we really want here is to re-enable device interrupts.
4984 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4985 */
4986 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4987 netpoll_poll_unlock(have_poll_lock);
4988 if (rc == BUSY_POLL_BUDGET)
4989 __napi_schedule(napi);
4990 local_bh_enable();
4991 if (local_softirq_pending())
4992 do_softirq();
4993 }
4994
4995 bool sk_busy_loop(struct sock *sk, int nonblock)
4996 {
4997 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4998 int (*napi_poll)(struct napi_struct *napi, int budget);
4999 int (*busy_poll)(struct napi_struct *dev);
5000 void *have_poll_lock = NULL;
5001 struct napi_struct *napi;
5002 int rc;
5003
5004 restart:
5005 rc = false;
5006 napi_poll = NULL;
5007
5008 rcu_read_lock();
5009
5010 napi = napi_by_id(sk->sk_napi_id);
5011 if (!napi)
5012 goto out;
5013
5014 /* Note: ndo_busy_poll method is optional in linux-4.5 */
5015 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
5016
5017 preempt_disable();
5018 for (;;) {
5019 rc = 0;
5020 local_bh_disable();
5021 if (busy_poll) {
5022 rc = busy_poll(napi);
5023 goto count;
5024 }
5025 if (!napi_poll) {
5026 unsigned long val = READ_ONCE(napi->state);
5027
5028 /* If multiple threads are competing for this napi,
5029 * we avoid dirtying napi->state as much as we can.
5030 */
5031 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5032 NAPIF_STATE_IN_BUSY_POLL))
5033 goto count;
5034 if (cmpxchg(&napi->state, val,
5035 val | NAPIF_STATE_IN_BUSY_POLL |
5036 NAPIF_STATE_SCHED) != val)
5037 goto count;
5038 have_poll_lock = netpoll_poll_lock(napi);
5039 napi_poll = napi->poll;
5040 }
5041 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5042 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5043 count:
5044 if (rc > 0)
5045 __NET_ADD_STATS(sock_net(sk),
5046 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5047 local_bh_enable();
5048
5049 if (rc == LL_FLUSH_FAILED)
5050 break; /* permanent failure */
5051
5052 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5053 busy_loop_timeout(end_time))
5054 break;
5055
5056 if (unlikely(need_resched())) {
5057 if (napi_poll)
5058 busy_poll_stop(napi, have_poll_lock);
5059 preempt_enable();
5060 rcu_read_unlock();
5061 cond_resched();
5062 rc = !skb_queue_empty(&sk->sk_receive_queue);
5063 if (rc || busy_loop_timeout(end_time))
5064 return rc;
5065 goto restart;
5066 }
5067 cpu_relax();
5068 }
5069 if (napi_poll)
5070 busy_poll_stop(napi, have_poll_lock);
5071 preempt_enable();
5072 rc = !skb_queue_empty(&sk->sk_receive_queue);
5073 out:
5074 rcu_read_unlock();
5075 return rc;
5076 }
5077 EXPORT_SYMBOL(sk_busy_loop);
5078
5079 #endif /* CONFIG_NET_RX_BUSY_POLL */
5080
5081 static void napi_hash_add(struct napi_struct *napi)
5082 {
5083 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5084 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5085 return;
5086
5087 spin_lock(&napi_hash_lock);
5088
5089 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5090 do {
5091 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5092 napi_gen_id = NR_CPUS + 1;
5093 } while (napi_by_id(napi_gen_id));
5094 napi->napi_id = napi_gen_id;
5095
5096 hlist_add_head_rcu(&napi->napi_hash_node,
5097 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5098
5099 spin_unlock(&napi_hash_lock);
5100 }
5101
5102 /* Warning : caller is responsible to make sure rcu grace period
5103 * is respected before freeing memory containing @napi
5104 */
5105 bool napi_hash_del(struct napi_struct *napi)
5106 {
5107 bool rcu_sync_needed = false;
5108
5109 spin_lock(&napi_hash_lock);
5110
5111 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5112 rcu_sync_needed = true;
5113 hlist_del_rcu(&napi->napi_hash_node);
5114 }
5115 spin_unlock(&napi_hash_lock);
5116 return rcu_sync_needed;
5117 }
5118 EXPORT_SYMBOL_GPL(napi_hash_del);
5119
5120 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5121 {
5122 struct napi_struct *napi;
5123
5124 napi = container_of(timer, struct napi_struct, timer);
5125 if (napi->gro_list)
5126 napi_schedule(napi);
5127
5128 return HRTIMER_NORESTART;
5129 }
5130
5131 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5132 int (*poll)(struct napi_struct *, int), int weight)
5133 {
5134 INIT_LIST_HEAD(&napi->poll_list);
5135 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5136 napi->timer.function = napi_watchdog;
5137 napi->gro_count = 0;
5138 napi->gro_list = NULL;
5139 napi->skb = NULL;
5140 napi->poll = poll;
5141 if (weight > NAPI_POLL_WEIGHT)
5142 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5143 weight, dev->name);
5144 napi->weight = weight;
5145 list_add(&napi->dev_list, &dev->napi_list);
5146 napi->dev = dev;
5147 #ifdef CONFIG_NETPOLL
5148 napi->poll_owner = -1;
5149 #endif
5150 set_bit(NAPI_STATE_SCHED, &napi->state);
5151 napi_hash_add(napi);
5152 }
5153 EXPORT_SYMBOL(netif_napi_add);
5154
5155 void napi_disable(struct napi_struct *n)
5156 {
5157 might_sleep();
5158 set_bit(NAPI_STATE_DISABLE, &n->state);
5159
5160 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5161 msleep(1);
5162 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5163 msleep(1);
5164
5165 hrtimer_cancel(&n->timer);
5166
5167 clear_bit(NAPI_STATE_DISABLE, &n->state);
5168 }
5169 EXPORT_SYMBOL(napi_disable);
5170
5171 /* Must be called in process context */
5172 void netif_napi_del(struct napi_struct *napi)
5173 {
5174 might_sleep();
5175 if (napi_hash_del(napi))
5176 synchronize_net();
5177 list_del_init(&napi->dev_list);
5178 napi_free_frags(napi);
5179
5180 kfree_skb_list(napi->gro_list);
5181 napi->gro_list = NULL;
5182 napi->gro_count = 0;
5183 }
5184 EXPORT_SYMBOL(netif_napi_del);
5185
5186 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5187 {
5188 void *have;
5189 int work, weight;
5190
5191 list_del_init(&n->poll_list);
5192
5193 have = netpoll_poll_lock(n);
5194
5195 weight = n->weight;
5196
5197 /* This NAPI_STATE_SCHED test is for avoiding a race
5198 * with netpoll's poll_napi(). Only the entity which
5199 * obtains the lock and sees NAPI_STATE_SCHED set will
5200 * actually make the ->poll() call. Therefore we avoid
5201 * accidentally calling ->poll() when NAPI is not scheduled.
5202 */
5203 work = 0;
5204 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5205 work = n->poll(n, weight);
5206 trace_napi_poll(n, work, weight);
5207 }
5208
5209 WARN_ON_ONCE(work > weight);
5210
5211 if (likely(work < weight))
5212 goto out_unlock;
5213
5214 /* Drivers must not modify the NAPI state if they
5215 * consume the entire weight. In such cases this code
5216 * still "owns" the NAPI instance and therefore can
5217 * move the instance around on the list at-will.
5218 */
5219 if (unlikely(napi_disable_pending(n))) {
5220 napi_complete(n);
5221 goto out_unlock;
5222 }
5223
5224 if (n->gro_list) {
5225 /* flush too old packets
5226 * If HZ < 1000, flush all packets.
5227 */
5228 napi_gro_flush(n, HZ >= 1000);
5229 }
5230
5231 /* Some drivers may have called napi_schedule
5232 * prior to exhausting their budget.
5233 */
5234 if (unlikely(!list_empty(&n->poll_list))) {
5235 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5236 n->dev ? n->dev->name : "backlog");
5237 goto out_unlock;
5238 }
5239
5240 list_add_tail(&n->poll_list, repoll);
5241
5242 out_unlock:
5243 netpoll_poll_unlock(have);
5244
5245 return work;
5246 }
5247
5248 static __latent_entropy void net_rx_action(struct softirq_action *h)
5249 {
5250 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5251 unsigned long time_limit = jiffies + 2;
5252 int budget = netdev_budget;
5253 LIST_HEAD(list);
5254 LIST_HEAD(repoll);
5255
5256 local_irq_disable();
5257 list_splice_init(&sd->poll_list, &list);
5258 local_irq_enable();
5259
5260 for (;;) {
5261 struct napi_struct *n;
5262
5263 if (list_empty(&list)) {
5264 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5265 goto out;
5266 break;
5267 }
5268
5269 n = list_first_entry(&list, struct napi_struct, poll_list);
5270 budget -= napi_poll(n, &repoll);
5271
5272 /* If softirq window is exhausted then punt.
5273 * Allow this to run for 2 jiffies since which will allow
5274 * an average latency of 1.5/HZ.
5275 */
5276 if (unlikely(budget <= 0 ||
5277 time_after_eq(jiffies, time_limit))) {
5278 sd->time_squeeze++;
5279 break;
5280 }
5281 }
5282
5283 local_irq_disable();
5284
5285 list_splice_tail_init(&sd->poll_list, &list);
5286 list_splice_tail(&repoll, &list);
5287 list_splice(&list, &sd->poll_list);
5288 if (!list_empty(&sd->poll_list))
5289 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5290
5291 net_rps_action_and_irq_enable(sd);
5292 out:
5293 __kfree_skb_flush();
5294 }
5295
5296 struct netdev_adjacent {
5297 struct net_device *dev;
5298
5299 /* upper master flag, there can only be one master device per list */
5300 bool master;
5301
5302 /* counter for the number of times this device was added to us */
5303 u16 ref_nr;
5304
5305 /* private field for the users */
5306 void *private;
5307
5308 struct list_head list;
5309 struct rcu_head rcu;
5310 };
5311
5312 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5313 struct list_head *adj_list)
5314 {
5315 struct netdev_adjacent *adj;
5316
5317 list_for_each_entry(adj, adj_list, list) {
5318 if (adj->dev == adj_dev)
5319 return adj;
5320 }
5321 return NULL;
5322 }
5323
5324 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5325 {
5326 struct net_device *dev = data;
5327
5328 return upper_dev == dev;
5329 }
5330
5331 /**
5332 * netdev_has_upper_dev - Check if device is linked to an upper device
5333 * @dev: device
5334 * @upper_dev: upper device to check
5335 *
5336 * Find out if a device is linked to specified upper device and return true
5337 * in case it is. Note that this checks only immediate upper device,
5338 * not through a complete stack of devices. The caller must hold the RTNL lock.
5339 */
5340 bool netdev_has_upper_dev(struct net_device *dev,
5341 struct net_device *upper_dev)
5342 {
5343 ASSERT_RTNL();
5344
5345 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5346 upper_dev);
5347 }
5348 EXPORT_SYMBOL(netdev_has_upper_dev);
5349
5350 /**
5351 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5352 * @dev: device
5353 * @upper_dev: upper device to check
5354 *
5355 * Find out if a device is linked to specified upper device and return true
5356 * in case it is. Note that this checks the entire upper device chain.
5357 * The caller must hold rcu lock.
5358 */
5359
5360 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5361 struct net_device *upper_dev)
5362 {
5363 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5364 upper_dev);
5365 }
5366 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5367
5368 /**
5369 * netdev_has_any_upper_dev - Check if device is linked to some device
5370 * @dev: device
5371 *
5372 * Find out if a device is linked to an upper device and return true in case
5373 * it is. The caller must hold the RTNL lock.
5374 */
5375 static bool netdev_has_any_upper_dev(struct net_device *dev)
5376 {
5377 ASSERT_RTNL();
5378
5379 return !list_empty(&dev->adj_list.upper);
5380 }
5381
5382 /**
5383 * netdev_master_upper_dev_get - Get master upper device
5384 * @dev: device
5385 *
5386 * Find a master upper device and return pointer to it or NULL in case
5387 * it's not there. The caller must hold the RTNL lock.
5388 */
5389 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5390 {
5391 struct netdev_adjacent *upper;
5392
5393 ASSERT_RTNL();
5394
5395 if (list_empty(&dev->adj_list.upper))
5396 return NULL;
5397
5398 upper = list_first_entry(&dev->adj_list.upper,
5399 struct netdev_adjacent, list);
5400 if (likely(upper->master))
5401 return upper->dev;
5402 return NULL;
5403 }
5404 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5405
5406 /**
5407 * netdev_has_any_lower_dev - Check if device is linked to some device
5408 * @dev: device
5409 *
5410 * Find out if a device is linked to a lower device and return true in case
5411 * it is. The caller must hold the RTNL lock.
5412 */
5413 static bool netdev_has_any_lower_dev(struct net_device *dev)
5414 {
5415 ASSERT_RTNL();
5416
5417 return !list_empty(&dev->adj_list.lower);
5418 }
5419
5420 void *netdev_adjacent_get_private(struct list_head *adj_list)
5421 {
5422 struct netdev_adjacent *adj;
5423
5424 adj = list_entry(adj_list, struct netdev_adjacent, list);
5425
5426 return adj->private;
5427 }
5428 EXPORT_SYMBOL(netdev_adjacent_get_private);
5429
5430 /**
5431 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5432 * @dev: device
5433 * @iter: list_head ** of the current position
5434 *
5435 * Gets the next device from the dev's upper list, starting from iter
5436 * position. The caller must hold RCU read lock.
5437 */
5438 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5439 struct list_head **iter)
5440 {
5441 struct netdev_adjacent *upper;
5442
5443 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5444
5445 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5446
5447 if (&upper->list == &dev->adj_list.upper)
5448 return NULL;
5449
5450 *iter = &upper->list;
5451
5452 return upper->dev;
5453 }
5454 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5455
5456 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5457 struct list_head **iter)
5458 {
5459 struct netdev_adjacent *upper;
5460
5461 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5462
5463 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5464
5465 if (&upper->list == &dev->adj_list.upper)
5466 return NULL;
5467
5468 *iter = &upper->list;
5469
5470 return upper->dev;
5471 }
5472
5473 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5474 int (*fn)(struct net_device *dev,
5475 void *data),
5476 void *data)
5477 {
5478 struct net_device *udev;
5479 struct list_head *iter;
5480 int ret;
5481
5482 for (iter = &dev->adj_list.upper,
5483 udev = netdev_next_upper_dev_rcu(dev, &iter);
5484 udev;
5485 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5486 /* first is the upper device itself */
5487 ret = fn(udev, data);
5488 if (ret)
5489 return ret;
5490
5491 /* then look at all of its upper devices */
5492 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5493 if (ret)
5494 return ret;
5495 }
5496
5497 return 0;
5498 }
5499 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5500
5501 /**
5502 * netdev_lower_get_next_private - Get the next ->private from the
5503 * lower neighbour list
5504 * @dev: device
5505 * @iter: list_head ** of the current position
5506 *
5507 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5508 * list, starting from iter position. The caller must hold either hold the
5509 * RTNL lock or its own locking that guarantees that the neighbour lower
5510 * list will remain unchanged.
5511 */
5512 void *netdev_lower_get_next_private(struct net_device *dev,
5513 struct list_head **iter)
5514 {
5515 struct netdev_adjacent *lower;
5516
5517 lower = list_entry(*iter, struct netdev_adjacent, list);
5518
5519 if (&lower->list == &dev->adj_list.lower)
5520 return NULL;
5521
5522 *iter = lower->list.next;
5523
5524 return lower->private;
5525 }
5526 EXPORT_SYMBOL(netdev_lower_get_next_private);
5527
5528 /**
5529 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5530 * lower neighbour list, RCU
5531 * variant
5532 * @dev: device
5533 * @iter: list_head ** of the current position
5534 *
5535 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5536 * list, starting from iter position. The caller must hold RCU read lock.
5537 */
5538 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5539 struct list_head **iter)
5540 {
5541 struct netdev_adjacent *lower;
5542
5543 WARN_ON_ONCE(!rcu_read_lock_held());
5544
5545 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5546
5547 if (&lower->list == &dev->adj_list.lower)
5548 return NULL;
5549
5550 *iter = &lower->list;
5551
5552 return lower->private;
5553 }
5554 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5555
5556 /**
5557 * netdev_lower_get_next - Get the next device from the lower neighbour
5558 * list
5559 * @dev: device
5560 * @iter: list_head ** of the current position
5561 *
5562 * Gets the next netdev_adjacent from the dev's lower neighbour
5563 * list, starting from iter position. The caller must hold RTNL lock or
5564 * its own locking that guarantees that the neighbour lower
5565 * list will remain unchanged.
5566 */
5567 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5568 {
5569 struct netdev_adjacent *lower;
5570
5571 lower = list_entry(*iter, struct netdev_adjacent, list);
5572
5573 if (&lower->list == &dev->adj_list.lower)
5574 return NULL;
5575
5576 *iter = lower->list.next;
5577
5578 return lower->dev;
5579 }
5580 EXPORT_SYMBOL(netdev_lower_get_next);
5581
5582 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5583 struct list_head **iter)
5584 {
5585 struct netdev_adjacent *lower;
5586
5587 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5588
5589 if (&lower->list == &dev->adj_list.lower)
5590 return NULL;
5591
5592 *iter = &lower->list;
5593
5594 return lower->dev;
5595 }
5596
5597 int netdev_walk_all_lower_dev(struct net_device *dev,
5598 int (*fn)(struct net_device *dev,
5599 void *data),
5600 void *data)
5601 {
5602 struct net_device *ldev;
5603 struct list_head *iter;
5604 int ret;
5605
5606 for (iter = &dev->adj_list.lower,
5607 ldev = netdev_next_lower_dev(dev, &iter);
5608 ldev;
5609 ldev = netdev_next_lower_dev(dev, &iter)) {
5610 /* first is the lower device itself */
5611 ret = fn(ldev, data);
5612 if (ret)
5613 return ret;
5614
5615 /* then look at all of its lower devices */
5616 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5617 if (ret)
5618 return ret;
5619 }
5620
5621 return 0;
5622 }
5623 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5624
5625 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5626 struct list_head **iter)
5627 {
5628 struct netdev_adjacent *lower;
5629
5630 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5631 if (&lower->list == &dev->adj_list.lower)
5632 return NULL;
5633
5634 *iter = &lower->list;
5635
5636 return lower->dev;
5637 }
5638
5639 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5640 int (*fn)(struct net_device *dev,
5641 void *data),
5642 void *data)
5643 {
5644 struct net_device *ldev;
5645 struct list_head *iter;
5646 int ret;
5647
5648 for (iter = &dev->adj_list.lower,
5649 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5650 ldev;
5651 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5652 /* first is the lower device itself */
5653 ret = fn(ldev, data);
5654 if (ret)
5655 return ret;
5656
5657 /* then look at all of its lower devices */
5658 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5659 if (ret)
5660 return ret;
5661 }
5662
5663 return 0;
5664 }
5665 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5666
5667 /**
5668 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5669 * lower neighbour list, RCU
5670 * variant
5671 * @dev: device
5672 *
5673 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5674 * list. The caller must hold RCU read lock.
5675 */
5676 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5677 {
5678 struct netdev_adjacent *lower;
5679
5680 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5681 struct netdev_adjacent, list);
5682 if (lower)
5683 return lower->private;
5684 return NULL;
5685 }
5686 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5687
5688 /**
5689 * netdev_master_upper_dev_get_rcu - Get master upper device
5690 * @dev: device
5691 *
5692 * Find a master upper device and return pointer to it or NULL in case
5693 * it's not there. The caller must hold the RCU read lock.
5694 */
5695 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5696 {
5697 struct netdev_adjacent *upper;
5698
5699 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5700 struct netdev_adjacent, list);
5701 if (upper && likely(upper->master))
5702 return upper->dev;
5703 return NULL;
5704 }
5705 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5706
5707 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5708 struct net_device *adj_dev,
5709 struct list_head *dev_list)
5710 {
5711 char linkname[IFNAMSIZ+7];
5712 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5713 "upper_%s" : "lower_%s", adj_dev->name);
5714 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5715 linkname);
5716 }
5717 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5718 char *name,
5719 struct list_head *dev_list)
5720 {
5721 char linkname[IFNAMSIZ+7];
5722 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5723 "upper_%s" : "lower_%s", name);
5724 sysfs_remove_link(&(dev->dev.kobj), linkname);
5725 }
5726
5727 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5728 struct net_device *adj_dev,
5729 struct list_head *dev_list)
5730 {
5731 return (dev_list == &dev->adj_list.upper ||
5732 dev_list == &dev->adj_list.lower) &&
5733 net_eq(dev_net(dev), dev_net(adj_dev));
5734 }
5735
5736 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5737 struct net_device *adj_dev,
5738 struct list_head *dev_list,
5739 void *private, bool master)
5740 {
5741 struct netdev_adjacent *adj;
5742 int ret;
5743
5744 adj = __netdev_find_adj(adj_dev, dev_list);
5745
5746 if (adj) {
5747 adj->ref_nr += 1;
5748 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5749 dev->name, adj_dev->name, adj->ref_nr);
5750
5751 return 0;
5752 }
5753
5754 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5755 if (!adj)
5756 return -ENOMEM;
5757
5758 adj->dev = adj_dev;
5759 adj->master = master;
5760 adj->ref_nr = 1;
5761 adj->private = private;
5762 dev_hold(adj_dev);
5763
5764 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5765 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5766
5767 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5768 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5769 if (ret)
5770 goto free_adj;
5771 }
5772
5773 /* Ensure that master link is always the first item in list. */
5774 if (master) {
5775 ret = sysfs_create_link(&(dev->dev.kobj),
5776 &(adj_dev->dev.kobj), "master");
5777 if (ret)
5778 goto remove_symlinks;
5779
5780 list_add_rcu(&adj->list, dev_list);
5781 } else {
5782 list_add_tail_rcu(&adj->list, dev_list);
5783 }
5784
5785 return 0;
5786
5787 remove_symlinks:
5788 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5789 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5790 free_adj:
5791 kfree(adj);
5792 dev_put(adj_dev);
5793
5794 return ret;
5795 }
5796
5797 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5798 struct net_device *adj_dev,
5799 u16 ref_nr,
5800 struct list_head *dev_list)
5801 {
5802 struct netdev_adjacent *adj;
5803
5804 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5805 dev->name, adj_dev->name, ref_nr);
5806
5807 adj = __netdev_find_adj(adj_dev, dev_list);
5808
5809 if (!adj) {
5810 pr_err("Adjacency does not exist for device %s from %s\n",
5811 dev->name, adj_dev->name);
5812 WARN_ON(1);
5813 return;
5814 }
5815
5816 if (adj->ref_nr > ref_nr) {
5817 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5818 dev->name, adj_dev->name, ref_nr,
5819 adj->ref_nr - ref_nr);
5820 adj->ref_nr -= ref_nr;
5821 return;
5822 }
5823
5824 if (adj->master)
5825 sysfs_remove_link(&(dev->dev.kobj), "master");
5826
5827 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5828 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5829
5830 list_del_rcu(&adj->list);
5831 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5832 adj_dev->name, dev->name, adj_dev->name);
5833 dev_put(adj_dev);
5834 kfree_rcu(adj, rcu);
5835 }
5836
5837 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5838 struct net_device *upper_dev,
5839 struct list_head *up_list,
5840 struct list_head *down_list,
5841 void *private, bool master)
5842 {
5843 int ret;
5844
5845 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5846 private, master);
5847 if (ret)
5848 return ret;
5849
5850 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5851 private, false);
5852 if (ret) {
5853 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5854 return ret;
5855 }
5856
5857 return 0;
5858 }
5859
5860 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5861 struct net_device *upper_dev,
5862 u16 ref_nr,
5863 struct list_head *up_list,
5864 struct list_head *down_list)
5865 {
5866 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5867 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5868 }
5869
5870 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5871 struct net_device *upper_dev,
5872 void *private, bool master)
5873 {
5874 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5875 &dev->adj_list.upper,
5876 &upper_dev->adj_list.lower,
5877 private, master);
5878 }
5879
5880 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5881 struct net_device *upper_dev)
5882 {
5883 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5884 &dev->adj_list.upper,
5885 &upper_dev->adj_list.lower);
5886 }
5887
5888 static int __netdev_upper_dev_link(struct net_device *dev,
5889 struct net_device *upper_dev, bool master,
5890 void *upper_priv, void *upper_info)
5891 {
5892 struct netdev_notifier_changeupper_info changeupper_info;
5893 int ret = 0;
5894
5895 ASSERT_RTNL();
5896
5897 if (dev == upper_dev)
5898 return -EBUSY;
5899
5900 /* To prevent loops, check if dev is not upper device to upper_dev. */
5901 if (netdev_has_upper_dev(upper_dev, dev))
5902 return -EBUSY;
5903
5904 if (netdev_has_upper_dev(dev, upper_dev))
5905 return -EEXIST;
5906
5907 if (master && netdev_master_upper_dev_get(dev))
5908 return -EBUSY;
5909
5910 changeupper_info.upper_dev = upper_dev;
5911 changeupper_info.master = master;
5912 changeupper_info.linking = true;
5913 changeupper_info.upper_info = upper_info;
5914
5915 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5916 &changeupper_info.info);
5917 ret = notifier_to_errno(ret);
5918 if (ret)
5919 return ret;
5920
5921 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5922 master);
5923 if (ret)
5924 return ret;
5925
5926 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5927 &changeupper_info.info);
5928 ret = notifier_to_errno(ret);
5929 if (ret)
5930 goto rollback;
5931
5932 return 0;
5933
5934 rollback:
5935 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5936
5937 return ret;
5938 }
5939
5940 /**
5941 * netdev_upper_dev_link - Add a link to the upper device
5942 * @dev: device
5943 * @upper_dev: new upper device
5944 *
5945 * Adds a link to device which is upper to this one. The caller must hold
5946 * the RTNL lock. On a failure a negative errno code is returned.
5947 * On success the reference counts are adjusted and the function
5948 * returns zero.
5949 */
5950 int netdev_upper_dev_link(struct net_device *dev,
5951 struct net_device *upper_dev)
5952 {
5953 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5954 }
5955 EXPORT_SYMBOL(netdev_upper_dev_link);
5956
5957 /**
5958 * netdev_master_upper_dev_link - Add a master link to the upper device
5959 * @dev: device
5960 * @upper_dev: new upper device
5961 * @upper_priv: upper device private
5962 * @upper_info: upper info to be passed down via notifier
5963 *
5964 * Adds a link to device which is upper to this one. In this case, only
5965 * one master upper device can be linked, although other non-master devices
5966 * might be linked as well. The caller must hold the RTNL lock.
5967 * On a failure a negative errno code is returned. On success the reference
5968 * counts are adjusted and the function returns zero.
5969 */
5970 int netdev_master_upper_dev_link(struct net_device *dev,
5971 struct net_device *upper_dev,
5972 void *upper_priv, void *upper_info)
5973 {
5974 return __netdev_upper_dev_link(dev, upper_dev, true,
5975 upper_priv, upper_info);
5976 }
5977 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5978
5979 /**
5980 * netdev_upper_dev_unlink - Removes a link to upper device
5981 * @dev: device
5982 * @upper_dev: new upper device
5983 *
5984 * Removes a link to device which is upper to this one. The caller must hold
5985 * the RTNL lock.
5986 */
5987 void netdev_upper_dev_unlink(struct net_device *dev,
5988 struct net_device *upper_dev)
5989 {
5990 struct netdev_notifier_changeupper_info changeupper_info;
5991 ASSERT_RTNL();
5992
5993 changeupper_info.upper_dev = upper_dev;
5994 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5995 changeupper_info.linking = false;
5996
5997 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5998 &changeupper_info.info);
5999
6000 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6001
6002 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6003 &changeupper_info.info);
6004 }
6005 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6006
6007 /**
6008 * netdev_bonding_info_change - Dispatch event about slave change
6009 * @dev: device
6010 * @bonding_info: info to dispatch
6011 *
6012 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6013 * The caller must hold the RTNL lock.
6014 */
6015 void netdev_bonding_info_change(struct net_device *dev,
6016 struct netdev_bonding_info *bonding_info)
6017 {
6018 struct netdev_notifier_bonding_info info;
6019
6020 memcpy(&info.bonding_info, bonding_info,
6021 sizeof(struct netdev_bonding_info));
6022 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6023 &info.info);
6024 }
6025 EXPORT_SYMBOL(netdev_bonding_info_change);
6026
6027 static void netdev_adjacent_add_links(struct net_device *dev)
6028 {
6029 struct netdev_adjacent *iter;
6030
6031 struct net *net = dev_net(dev);
6032
6033 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6034 if (!net_eq(net, dev_net(iter->dev)))
6035 continue;
6036 netdev_adjacent_sysfs_add(iter->dev, dev,
6037 &iter->dev->adj_list.lower);
6038 netdev_adjacent_sysfs_add(dev, iter->dev,
6039 &dev->adj_list.upper);
6040 }
6041
6042 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6043 if (!net_eq(net, dev_net(iter->dev)))
6044 continue;
6045 netdev_adjacent_sysfs_add(iter->dev, dev,
6046 &iter->dev->adj_list.upper);
6047 netdev_adjacent_sysfs_add(dev, iter->dev,
6048 &dev->adj_list.lower);
6049 }
6050 }
6051
6052 static void netdev_adjacent_del_links(struct net_device *dev)
6053 {
6054 struct netdev_adjacent *iter;
6055
6056 struct net *net = dev_net(dev);
6057
6058 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6059 if (!net_eq(net, dev_net(iter->dev)))
6060 continue;
6061 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6062 &iter->dev->adj_list.lower);
6063 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6064 &dev->adj_list.upper);
6065 }
6066
6067 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6068 if (!net_eq(net, dev_net(iter->dev)))
6069 continue;
6070 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6071 &iter->dev->adj_list.upper);
6072 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6073 &dev->adj_list.lower);
6074 }
6075 }
6076
6077 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6078 {
6079 struct netdev_adjacent *iter;
6080
6081 struct net *net = dev_net(dev);
6082
6083 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6084 if (!net_eq(net, dev_net(iter->dev)))
6085 continue;
6086 netdev_adjacent_sysfs_del(iter->dev, oldname,
6087 &iter->dev->adj_list.lower);
6088 netdev_adjacent_sysfs_add(iter->dev, dev,
6089 &iter->dev->adj_list.lower);
6090 }
6091
6092 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6093 if (!net_eq(net, dev_net(iter->dev)))
6094 continue;
6095 netdev_adjacent_sysfs_del(iter->dev, oldname,
6096 &iter->dev->adj_list.upper);
6097 netdev_adjacent_sysfs_add(iter->dev, dev,
6098 &iter->dev->adj_list.upper);
6099 }
6100 }
6101
6102 void *netdev_lower_dev_get_private(struct net_device *dev,
6103 struct net_device *lower_dev)
6104 {
6105 struct netdev_adjacent *lower;
6106
6107 if (!lower_dev)
6108 return NULL;
6109 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6110 if (!lower)
6111 return NULL;
6112
6113 return lower->private;
6114 }
6115 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6116
6117
6118 int dev_get_nest_level(struct net_device *dev)
6119 {
6120 struct net_device *lower = NULL;
6121 struct list_head *iter;
6122 int max_nest = -1;
6123 int nest;
6124
6125 ASSERT_RTNL();
6126
6127 netdev_for_each_lower_dev(dev, lower, iter) {
6128 nest = dev_get_nest_level(lower);
6129 if (max_nest < nest)
6130 max_nest = nest;
6131 }
6132
6133 return max_nest + 1;
6134 }
6135 EXPORT_SYMBOL(dev_get_nest_level);
6136
6137 /**
6138 * netdev_lower_change - Dispatch event about lower device state change
6139 * @lower_dev: device
6140 * @lower_state_info: state to dispatch
6141 *
6142 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6143 * The caller must hold the RTNL lock.
6144 */
6145 void netdev_lower_state_changed(struct net_device *lower_dev,
6146 void *lower_state_info)
6147 {
6148 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6149
6150 ASSERT_RTNL();
6151 changelowerstate_info.lower_state_info = lower_state_info;
6152 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6153 &changelowerstate_info.info);
6154 }
6155 EXPORT_SYMBOL(netdev_lower_state_changed);
6156
6157 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6158 struct neighbour *n)
6159 {
6160 struct net_device *lower_dev, *stop_dev;
6161 struct list_head *iter;
6162 int err;
6163
6164 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6165 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6166 continue;
6167 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6168 if (err) {
6169 stop_dev = lower_dev;
6170 goto rollback;
6171 }
6172 }
6173 return 0;
6174
6175 rollback:
6176 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6177 if (lower_dev == stop_dev)
6178 break;
6179 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6180 continue;
6181 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6182 }
6183 return err;
6184 }
6185 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6186
6187 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6188 struct neighbour *n)
6189 {
6190 struct net_device *lower_dev;
6191 struct list_head *iter;
6192
6193 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6194 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6195 continue;
6196 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6197 }
6198 }
6199 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6200
6201 static void dev_change_rx_flags(struct net_device *dev, int flags)
6202 {
6203 const struct net_device_ops *ops = dev->netdev_ops;
6204
6205 if (ops->ndo_change_rx_flags)
6206 ops->ndo_change_rx_flags(dev, flags);
6207 }
6208
6209 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6210 {
6211 unsigned int old_flags = dev->flags;
6212 kuid_t uid;
6213 kgid_t gid;
6214
6215 ASSERT_RTNL();
6216
6217 dev->flags |= IFF_PROMISC;
6218 dev->promiscuity += inc;
6219 if (dev->promiscuity == 0) {
6220 /*
6221 * Avoid overflow.
6222 * If inc causes overflow, untouch promisc and return error.
6223 */
6224 if (inc < 0)
6225 dev->flags &= ~IFF_PROMISC;
6226 else {
6227 dev->promiscuity -= inc;
6228 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6229 dev->name);
6230 return -EOVERFLOW;
6231 }
6232 }
6233 if (dev->flags != old_flags) {
6234 pr_info("device %s %s promiscuous mode\n",
6235 dev->name,
6236 dev->flags & IFF_PROMISC ? "entered" : "left");
6237 if (audit_enabled) {
6238 current_uid_gid(&uid, &gid);
6239 audit_log(current->audit_context, GFP_ATOMIC,
6240 AUDIT_ANOM_PROMISCUOUS,
6241 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6242 dev->name, (dev->flags & IFF_PROMISC),
6243 (old_flags & IFF_PROMISC),
6244 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6245 from_kuid(&init_user_ns, uid),
6246 from_kgid(&init_user_ns, gid),
6247 audit_get_sessionid(current));
6248 }
6249
6250 dev_change_rx_flags(dev, IFF_PROMISC);
6251 }
6252 if (notify)
6253 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6254 return 0;
6255 }
6256
6257 /**
6258 * dev_set_promiscuity - update promiscuity count on a device
6259 * @dev: device
6260 * @inc: modifier
6261 *
6262 * Add or remove promiscuity from a device. While the count in the device
6263 * remains above zero the interface remains promiscuous. Once it hits zero
6264 * the device reverts back to normal filtering operation. A negative inc
6265 * value is used to drop promiscuity on the device.
6266 * Return 0 if successful or a negative errno code on error.
6267 */
6268 int dev_set_promiscuity(struct net_device *dev, int inc)
6269 {
6270 unsigned int old_flags = dev->flags;
6271 int err;
6272
6273 err = __dev_set_promiscuity(dev, inc, true);
6274 if (err < 0)
6275 return err;
6276 if (dev->flags != old_flags)
6277 dev_set_rx_mode(dev);
6278 return err;
6279 }
6280 EXPORT_SYMBOL(dev_set_promiscuity);
6281
6282 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6283 {
6284 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6285
6286 ASSERT_RTNL();
6287
6288 dev->flags |= IFF_ALLMULTI;
6289 dev->allmulti += inc;
6290 if (dev->allmulti == 0) {
6291 /*
6292 * Avoid overflow.
6293 * If inc causes overflow, untouch allmulti and return error.
6294 */
6295 if (inc < 0)
6296 dev->flags &= ~IFF_ALLMULTI;
6297 else {
6298 dev->allmulti -= inc;
6299 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6300 dev->name);
6301 return -EOVERFLOW;
6302 }
6303 }
6304 if (dev->flags ^ old_flags) {
6305 dev_change_rx_flags(dev, IFF_ALLMULTI);
6306 dev_set_rx_mode(dev);
6307 if (notify)
6308 __dev_notify_flags(dev, old_flags,
6309 dev->gflags ^ old_gflags);
6310 }
6311 return 0;
6312 }
6313
6314 /**
6315 * dev_set_allmulti - update allmulti count on a device
6316 * @dev: device
6317 * @inc: modifier
6318 *
6319 * Add or remove reception of all multicast frames to a device. While the
6320 * count in the device remains above zero the interface remains listening
6321 * to all interfaces. Once it hits zero the device reverts back to normal
6322 * filtering operation. A negative @inc value is used to drop the counter
6323 * when releasing a resource needing all multicasts.
6324 * Return 0 if successful or a negative errno code on error.
6325 */
6326
6327 int dev_set_allmulti(struct net_device *dev, int inc)
6328 {
6329 return __dev_set_allmulti(dev, inc, true);
6330 }
6331 EXPORT_SYMBOL(dev_set_allmulti);
6332
6333 /*
6334 * Upload unicast and multicast address lists to device and
6335 * configure RX filtering. When the device doesn't support unicast
6336 * filtering it is put in promiscuous mode while unicast addresses
6337 * are present.
6338 */
6339 void __dev_set_rx_mode(struct net_device *dev)
6340 {
6341 const struct net_device_ops *ops = dev->netdev_ops;
6342
6343 /* dev_open will call this function so the list will stay sane. */
6344 if (!(dev->flags&IFF_UP))
6345 return;
6346
6347 if (!netif_device_present(dev))
6348 return;
6349
6350 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6351 /* Unicast addresses changes may only happen under the rtnl,
6352 * therefore calling __dev_set_promiscuity here is safe.
6353 */
6354 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6355 __dev_set_promiscuity(dev, 1, false);
6356 dev->uc_promisc = true;
6357 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6358 __dev_set_promiscuity(dev, -1, false);
6359 dev->uc_promisc = false;
6360 }
6361 }
6362
6363 if (ops->ndo_set_rx_mode)
6364 ops->ndo_set_rx_mode(dev);
6365 }
6366
6367 void dev_set_rx_mode(struct net_device *dev)
6368 {
6369 netif_addr_lock_bh(dev);
6370 __dev_set_rx_mode(dev);
6371 netif_addr_unlock_bh(dev);
6372 }
6373
6374 /**
6375 * dev_get_flags - get flags reported to userspace
6376 * @dev: device
6377 *
6378 * Get the combination of flag bits exported through APIs to userspace.
6379 */
6380 unsigned int dev_get_flags(const struct net_device *dev)
6381 {
6382 unsigned int flags;
6383
6384 flags = (dev->flags & ~(IFF_PROMISC |
6385 IFF_ALLMULTI |
6386 IFF_RUNNING |
6387 IFF_LOWER_UP |
6388 IFF_DORMANT)) |
6389 (dev->gflags & (IFF_PROMISC |
6390 IFF_ALLMULTI));
6391
6392 if (netif_running(dev)) {
6393 if (netif_oper_up(dev))
6394 flags |= IFF_RUNNING;
6395 if (netif_carrier_ok(dev))
6396 flags |= IFF_LOWER_UP;
6397 if (netif_dormant(dev))
6398 flags |= IFF_DORMANT;
6399 }
6400
6401 return flags;
6402 }
6403 EXPORT_SYMBOL(dev_get_flags);
6404
6405 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6406 {
6407 unsigned int old_flags = dev->flags;
6408 int ret;
6409
6410 ASSERT_RTNL();
6411
6412 /*
6413 * Set the flags on our device.
6414 */
6415
6416 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6417 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6418 IFF_AUTOMEDIA)) |
6419 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6420 IFF_ALLMULTI));
6421
6422 /*
6423 * Load in the correct multicast list now the flags have changed.
6424 */
6425
6426 if ((old_flags ^ flags) & IFF_MULTICAST)
6427 dev_change_rx_flags(dev, IFF_MULTICAST);
6428
6429 dev_set_rx_mode(dev);
6430
6431 /*
6432 * Have we downed the interface. We handle IFF_UP ourselves
6433 * according to user attempts to set it, rather than blindly
6434 * setting it.
6435 */
6436
6437 ret = 0;
6438 if ((old_flags ^ flags) & IFF_UP)
6439 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6440
6441 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6442 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6443 unsigned int old_flags = dev->flags;
6444
6445 dev->gflags ^= IFF_PROMISC;
6446
6447 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6448 if (dev->flags != old_flags)
6449 dev_set_rx_mode(dev);
6450 }
6451
6452 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6453 is important. Some (broken) drivers set IFF_PROMISC, when
6454 IFF_ALLMULTI is requested not asking us and not reporting.
6455 */
6456 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6457 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6458
6459 dev->gflags ^= IFF_ALLMULTI;
6460 __dev_set_allmulti(dev, inc, false);
6461 }
6462
6463 return ret;
6464 }
6465
6466 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6467 unsigned int gchanges)
6468 {
6469 unsigned int changes = dev->flags ^ old_flags;
6470
6471 if (gchanges)
6472 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6473
6474 if (changes & IFF_UP) {
6475 if (dev->flags & IFF_UP)
6476 call_netdevice_notifiers(NETDEV_UP, dev);
6477 else
6478 call_netdevice_notifiers(NETDEV_DOWN, dev);
6479 }
6480
6481 if (dev->flags & IFF_UP &&
6482 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6483 struct netdev_notifier_change_info change_info;
6484
6485 change_info.flags_changed = changes;
6486 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6487 &change_info.info);
6488 }
6489 }
6490
6491 /**
6492 * dev_change_flags - change device settings
6493 * @dev: device
6494 * @flags: device state flags
6495 *
6496 * Change settings on device based state flags. The flags are
6497 * in the userspace exported format.
6498 */
6499 int dev_change_flags(struct net_device *dev, unsigned int flags)
6500 {
6501 int ret;
6502 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6503
6504 ret = __dev_change_flags(dev, flags);
6505 if (ret < 0)
6506 return ret;
6507
6508 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6509 __dev_notify_flags(dev, old_flags, changes);
6510 return ret;
6511 }
6512 EXPORT_SYMBOL(dev_change_flags);
6513
6514 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6515 {
6516 const struct net_device_ops *ops = dev->netdev_ops;
6517
6518 if (ops->ndo_change_mtu)
6519 return ops->ndo_change_mtu(dev, new_mtu);
6520
6521 dev->mtu = new_mtu;
6522 return 0;
6523 }
6524
6525 /**
6526 * dev_set_mtu - Change maximum transfer unit
6527 * @dev: device
6528 * @new_mtu: new transfer unit
6529 *
6530 * Change the maximum transfer size of the network device.
6531 */
6532 int dev_set_mtu(struct net_device *dev, int new_mtu)
6533 {
6534 int err, orig_mtu;
6535
6536 if (new_mtu == dev->mtu)
6537 return 0;
6538
6539 /* MTU must be positive, and in range */
6540 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6541 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6542 dev->name, new_mtu, dev->min_mtu);
6543 return -EINVAL;
6544 }
6545
6546 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6547 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6548 dev->name, new_mtu, dev->max_mtu);
6549 return -EINVAL;
6550 }
6551
6552 if (!netif_device_present(dev))
6553 return -ENODEV;
6554
6555 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6556 err = notifier_to_errno(err);
6557 if (err)
6558 return err;
6559
6560 orig_mtu = dev->mtu;
6561 err = __dev_set_mtu(dev, new_mtu);
6562
6563 if (!err) {
6564 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6565 err = notifier_to_errno(err);
6566 if (err) {
6567 /* setting mtu back and notifying everyone again,
6568 * so that they have a chance to revert changes.
6569 */
6570 __dev_set_mtu(dev, orig_mtu);
6571 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6572 }
6573 }
6574 return err;
6575 }
6576 EXPORT_SYMBOL(dev_set_mtu);
6577
6578 /**
6579 * dev_set_group - Change group this device belongs to
6580 * @dev: device
6581 * @new_group: group this device should belong to
6582 */
6583 void dev_set_group(struct net_device *dev, int new_group)
6584 {
6585 dev->group = new_group;
6586 }
6587 EXPORT_SYMBOL(dev_set_group);
6588
6589 /**
6590 * dev_set_mac_address - Change Media Access Control Address
6591 * @dev: device
6592 * @sa: new address
6593 *
6594 * Change the hardware (MAC) address of the device
6595 */
6596 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6597 {
6598 const struct net_device_ops *ops = dev->netdev_ops;
6599 int err;
6600
6601 if (!ops->ndo_set_mac_address)
6602 return -EOPNOTSUPP;
6603 if (sa->sa_family != dev->type)
6604 return -EINVAL;
6605 if (!netif_device_present(dev))
6606 return -ENODEV;
6607 err = ops->ndo_set_mac_address(dev, sa);
6608 if (err)
6609 return err;
6610 dev->addr_assign_type = NET_ADDR_SET;
6611 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6612 add_device_randomness(dev->dev_addr, dev->addr_len);
6613 return 0;
6614 }
6615 EXPORT_SYMBOL(dev_set_mac_address);
6616
6617 /**
6618 * dev_change_carrier - Change device carrier
6619 * @dev: device
6620 * @new_carrier: new value
6621 *
6622 * Change device carrier
6623 */
6624 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6625 {
6626 const struct net_device_ops *ops = dev->netdev_ops;
6627
6628 if (!ops->ndo_change_carrier)
6629 return -EOPNOTSUPP;
6630 if (!netif_device_present(dev))
6631 return -ENODEV;
6632 return ops->ndo_change_carrier(dev, new_carrier);
6633 }
6634 EXPORT_SYMBOL(dev_change_carrier);
6635
6636 /**
6637 * dev_get_phys_port_id - Get device physical port ID
6638 * @dev: device
6639 * @ppid: port ID
6640 *
6641 * Get device physical port ID
6642 */
6643 int dev_get_phys_port_id(struct net_device *dev,
6644 struct netdev_phys_item_id *ppid)
6645 {
6646 const struct net_device_ops *ops = dev->netdev_ops;
6647
6648 if (!ops->ndo_get_phys_port_id)
6649 return -EOPNOTSUPP;
6650 return ops->ndo_get_phys_port_id(dev, ppid);
6651 }
6652 EXPORT_SYMBOL(dev_get_phys_port_id);
6653
6654 /**
6655 * dev_get_phys_port_name - Get device physical port name
6656 * @dev: device
6657 * @name: port name
6658 * @len: limit of bytes to copy to name
6659 *
6660 * Get device physical port name
6661 */
6662 int dev_get_phys_port_name(struct net_device *dev,
6663 char *name, size_t len)
6664 {
6665 const struct net_device_ops *ops = dev->netdev_ops;
6666
6667 if (!ops->ndo_get_phys_port_name)
6668 return -EOPNOTSUPP;
6669 return ops->ndo_get_phys_port_name(dev, name, len);
6670 }
6671 EXPORT_SYMBOL(dev_get_phys_port_name);
6672
6673 /**
6674 * dev_change_proto_down - update protocol port state information
6675 * @dev: device
6676 * @proto_down: new value
6677 *
6678 * This info can be used by switch drivers to set the phys state of the
6679 * port.
6680 */
6681 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6682 {
6683 const struct net_device_ops *ops = dev->netdev_ops;
6684
6685 if (!ops->ndo_change_proto_down)
6686 return -EOPNOTSUPP;
6687 if (!netif_device_present(dev))
6688 return -ENODEV;
6689 return ops->ndo_change_proto_down(dev, proto_down);
6690 }
6691 EXPORT_SYMBOL(dev_change_proto_down);
6692
6693 /**
6694 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6695 * @dev: device
6696 * @fd: new program fd or negative value to clear
6697 * @flags: xdp-related flags
6698 *
6699 * Set or clear a bpf program for a device
6700 */
6701 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6702 {
6703 const struct net_device_ops *ops = dev->netdev_ops;
6704 struct bpf_prog *prog = NULL;
6705 struct netdev_xdp xdp;
6706 int err;
6707
6708 ASSERT_RTNL();
6709
6710 if (!ops->ndo_xdp)
6711 return -EOPNOTSUPP;
6712 if (fd >= 0) {
6713 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6714 memset(&xdp, 0, sizeof(xdp));
6715 xdp.command = XDP_QUERY_PROG;
6716
6717 err = ops->ndo_xdp(dev, &xdp);
6718 if (err < 0)
6719 return err;
6720 if (xdp.prog_attached)
6721 return -EBUSY;
6722 }
6723
6724 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6725 if (IS_ERR(prog))
6726 return PTR_ERR(prog);
6727 }
6728
6729 memset(&xdp, 0, sizeof(xdp));
6730 xdp.command = XDP_SETUP_PROG;
6731 xdp.prog = prog;
6732
6733 err = ops->ndo_xdp(dev, &xdp);
6734 if (err < 0 && prog)
6735 bpf_prog_put(prog);
6736
6737 return err;
6738 }
6739 EXPORT_SYMBOL(dev_change_xdp_fd);
6740
6741 /**
6742 * dev_new_index - allocate an ifindex
6743 * @net: the applicable net namespace
6744 *
6745 * Returns a suitable unique value for a new device interface
6746 * number. The caller must hold the rtnl semaphore or the
6747 * dev_base_lock to be sure it remains unique.
6748 */
6749 static int dev_new_index(struct net *net)
6750 {
6751 int ifindex = net->ifindex;
6752 for (;;) {
6753 if (++ifindex <= 0)
6754 ifindex = 1;
6755 if (!__dev_get_by_index(net, ifindex))
6756 return net->ifindex = ifindex;
6757 }
6758 }
6759
6760 /* Delayed registration/unregisteration */
6761 static LIST_HEAD(net_todo_list);
6762 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6763
6764 static void net_set_todo(struct net_device *dev)
6765 {
6766 list_add_tail(&dev->todo_list, &net_todo_list);
6767 dev_net(dev)->dev_unreg_count++;
6768 }
6769
6770 static void rollback_registered_many(struct list_head *head)
6771 {
6772 struct net_device *dev, *tmp;
6773 LIST_HEAD(close_head);
6774
6775 BUG_ON(dev_boot_phase);
6776 ASSERT_RTNL();
6777
6778 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6779 /* Some devices call without registering
6780 * for initialization unwind. Remove those
6781 * devices and proceed with the remaining.
6782 */
6783 if (dev->reg_state == NETREG_UNINITIALIZED) {
6784 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6785 dev->name, dev);
6786
6787 WARN_ON(1);
6788 list_del(&dev->unreg_list);
6789 continue;
6790 }
6791 dev->dismantle = true;
6792 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6793 }
6794
6795 /* If device is running, close it first. */
6796 list_for_each_entry(dev, head, unreg_list)
6797 list_add_tail(&dev->close_list, &close_head);
6798 dev_close_many(&close_head, true);
6799
6800 list_for_each_entry(dev, head, unreg_list) {
6801 /* And unlink it from device chain. */
6802 unlist_netdevice(dev);
6803
6804 dev->reg_state = NETREG_UNREGISTERING;
6805 }
6806 flush_all_backlogs();
6807
6808 synchronize_net();
6809
6810 list_for_each_entry(dev, head, unreg_list) {
6811 struct sk_buff *skb = NULL;
6812
6813 /* Shutdown queueing discipline. */
6814 dev_shutdown(dev);
6815
6816
6817 /* Notify protocols, that we are about to destroy
6818 this device. They should clean all the things.
6819 */
6820 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6821
6822 if (!dev->rtnl_link_ops ||
6823 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6824 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6825 GFP_KERNEL);
6826
6827 /*
6828 * Flush the unicast and multicast chains
6829 */
6830 dev_uc_flush(dev);
6831 dev_mc_flush(dev);
6832
6833 if (dev->netdev_ops->ndo_uninit)
6834 dev->netdev_ops->ndo_uninit(dev);
6835
6836 if (skb)
6837 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6838
6839 /* Notifier chain MUST detach us all upper devices. */
6840 WARN_ON(netdev_has_any_upper_dev(dev));
6841 WARN_ON(netdev_has_any_lower_dev(dev));
6842
6843 /* Remove entries from kobject tree */
6844 netdev_unregister_kobject(dev);
6845 #ifdef CONFIG_XPS
6846 /* Remove XPS queueing entries */
6847 netif_reset_xps_queues_gt(dev, 0);
6848 #endif
6849 }
6850
6851 synchronize_net();
6852
6853 list_for_each_entry(dev, head, unreg_list)
6854 dev_put(dev);
6855 }
6856
6857 static void rollback_registered(struct net_device *dev)
6858 {
6859 LIST_HEAD(single);
6860
6861 list_add(&dev->unreg_list, &single);
6862 rollback_registered_many(&single);
6863 list_del(&single);
6864 }
6865
6866 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6867 struct net_device *upper, netdev_features_t features)
6868 {
6869 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6870 netdev_features_t feature;
6871 int feature_bit;
6872
6873 for_each_netdev_feature(&upper_disables, feature_bit) {
6874 feature = __NETIF_F_BIT(feature_bit);
6875 if (!(upper->wanted_features & feature)
6876 && (features & feature)) {
6877 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6878 &feature, upper->name);
6879 features &= ~feature;
6880 }
6881 }
6882
6883 return features;
6884 }
6885
6886 static void netdev_sync_lower_features(struct net_device *upper,
6887 struct net_device *lower, netdev_features_t features)
6888 {
6889 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6890 netdev_features_t feature;
6891 int feature_bit;
6892
6893 for_each_netdev_feature(&upper_disables, feature_bit) {
6894 feature = __NETIF_F_BIT(feature_bit);
6895 if (!(features & feature) && (lower->features & feature)) {
6896 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6897 &feature, lower->name);
6898 lower->wanted_features &= ~feature;
6899 netdev_update_features(lower);
6900
6901 if (unlikely(lower->features & feature))
6902 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6903 &feature, lower->name);
6904 }
6905 }
6906 }
6907
6908 static netdev_features_t netdev_fix_features(struct net_device *dev,
6909 netdev_features_t features)
6910 {
6911 /* Fix illegal checksum combinations */
6912 if ((features & NETIF_F_HW_CSUM) &&
6913 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6914 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6915 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6916 }
6917
6918 /* TSO requires that SG is present as well. */
6919 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6920 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6921 features &= ~NETIF_F_ALL_TSO;
6922 }
6923
6924 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6925 !(features & NETIF_F_IP_CSUM)) {
6926 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6927 features &= ~NETIF_F_TSO;
6928 features &= ~NETIF_F_TSO_ECN;
6929 }
6930
6931 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6932 !(features & NETIF_F_IPV6_CSUM)) {
6933 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6934 features &= ~NETIF_F_TSO6;
6935 }
6936
6937 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6938 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6939 features &= ~NETIF_F_TSO_MANGLEID;
6940
6941 /* TSO ECN requires that TSO is present as well. */
6942 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6943 features &= ~NETIF_F_TSO_ECN;
6944
6945 /* Software GSO depends on SG. */
6946 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6947 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6948 features &= ~NETIF_F_GSO;
6949 }
6950
6951 /* UFO needs SG and checksumming */
6952 if (features & NETIF_F_UFO) {
6953 /* maybe split UFO into V4 and V6? */
6954 if (!(features & NETIF_F_HW_CSUM) &&
6955 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6956 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6957 netdev_dbg(dev,
6958 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6959 features &= ~NETIF_F_UFO;
6960 }
6961
6962 if (!(features & NETIF_F_SG)) {
6963 netdev_dbg(dev,
6964 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6965 features &= ~NETIF_F_UFO;
6966 }
6967 }
6968
6969 /* GSO partial features require GSO partial be set */
6970 if ((features & dev->gso_partial_features) &&
6971 !(features & NETIF_F_GSO_PARTIAL)) {
6972 netdev_dbg(dev,
6973 "Dropping partially supported GSO features since no GSO partial.\n");
6974 features &= ~dev->gso_partial_features;
6975 }
6976
6977 #ifdef CONFIG_NET_RX_BUSY_POLL
6978 if (dev->netdev_ops->ndo_busy_poll)
6979 features |= NETIF_F_BUSY_POLL;
6980 else
6981 #endif
6982 features &= ~NETIF_F_BUSY_POLL;
6983
6984 return features;
6985 }
6986
6987 int __netdev_update_features(struct net_device *dev)
6988 {
6989 struct net_device *upper, *lower;
6990 netdev_features_t features;
6991 struct list_head *iter;
6992 int err = -1;
6993
6994 ASSERT_RTNL();
6995
6996 features = netdev_get_wanted_features(dev);
6997
6998 if (dev->netdev_ops->ndo_fix_features)
6999 features = dev->netdev_ops->ndo_fix_features(dev, features);
7000
7001 /* driver might be less strict about feature dependencies */
7002 features = netdev_fix_features(dev, features);
7003
7004 /* some features can't be enabled if they're off an an upper device */
7005 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7006 features = netdev_sync_upper_features(dev, upper, features);
7007
7008 if (dev->features == features)
7009 goto sync_lower;
7010
7011 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7012 &dev->features, &features);
7013
7014 if (dev->netdev_ops->ndo_set_features)
7015 err = dev->netdev_ops->ndo_set_features(dev, features);
7016 else
7017 err = 0;
7018
7019 if (unlikely(err < 0)) {
7020 netdev_err(dev,
7021 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7022 err, &features, &dev->features);
7023 /* return non-0 since some features might have changed and
7024 * it's better to fire a spurious notification than miss it
7025 */
7026 return -1;
7027 }
7028
7029 sync_lower:
7030 /* some features must be disabled on lower devices when disabled
7031 * on an upper device (think: bonding master or bridge)
7032 */
7033 netdev_for_each_lower_dev(dev, lower, iter)
7034 netdev_sync_lower_features(dev, lower, features);
7035
7036 if (!err)
7037 dev->features = features;
7038
7039 return err < 0 ? 0 : 1;
7040 }
7041
7042 /**
7043 * netdev_update_features - recalculate device features
7044 * @dev: the device to check
7045 *
7046 * Recalculate dev->features set and send notifications if it
7047 * has changed. Should be called after driver or hardware dependent
7048 * conditions might have changed that influence the features.
7049 */
7050 void netdev_update_features(struct net_device *dev)
7051 {
7052 if (__netdev_update_features(dev))
7053 netdev_features_change(dev);
7054 }
7055 EXPORT_SYMBOL(netdev_update_features);
7056
7057 /**
7058 * netdev_change_features - recalculate device features
7059 * @dev: the device to check
7060 *
7061 * Recalculate dev->features set and send notifications even
7062 * if they have not changed. Should be called instead of
7063 * netdev_update_features() if also dev->vlan_features might
7064 * have changed to allow the changes to be propagated to stacked
7065 * VLAN devices.
7066 */
7067 void netdev_change_features(struct net_device *dev)
7068 {
7069 __netdev_update_features(dev);
7070 netdev_features_change(dev);
7071 }
7072 EXPORT_SYMBOL(netdev_change_features);
7073
7074 /**
7075 * netif_stacked_transfer_operstate - transfer operstate
7076 * @rootdev: the root or lower level device to transfer state from
7077 * @dev: the device to transfer operstate to
7078 *
7079 * Transfer operational state from root to device. This is normally
7080 * called when a stacking relationship exists between the root
7081 * device and the device(a leaf device).
7082 */
7083 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7084 struct net_device *dev)
7085 {
7086 if (rootdev->operstate == IF_OPER_DORMANT)
7087 netif_dormant_on(dev);
7088 else
7089 netif_dormant_off(dev);
7090
7091 if (netif_carrier_ok(rootdev)) {
7092 if (!netif_carrier_ok(dev))
7093 netif_carrier_on(dev);
7094 } else {
7095 if (netif_carrier_ok(dev))
7096 netif_carrier_off(dev);
7097 }
7098 }
7099 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7100
7101 #ifdef CONFIG_SYSFS
7102 static int netif_alloc_rx_queues(struct net_device *dev)
7103 {
7104 unsigned int i, count = dev->num_rx_queues;
7105 struct netdev_rx_queue *rx;
7106 size_t sz = count * sizeof(*rx);
7107
7108 BUG_ON(count < 1);
7109
7110 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7111 if (!rx) {
7112 rx = vzalloc(sz);
7113 if (!rx)
7114 return -ENOMEM;
7115 }
7116 dev->_rx = rx;
7117
7118 for (i = 0; i < count; i++)
7119 rx[i].dev = dev;
7120 return 0;
7121 }
7122 #endif
7123
7124 static void netdev_init_one_queue(struct net_device *dev,
7125 struct netdev_queue *queue, void *_unused)
7126 {
7127 /* Initialize queue lock */
7128 spin_lock_init(&queue->_xmit_lock);
7129 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7130 queue->xmit_lock_owner = -1;
7131 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7132 queue->dev = dev;
7133 #ifdef CONFIG_BQL
7134 dql_init(&queue->dql, HZ);
7135 #endif
7136 }
7137
7138 static void netif_free_tx_queues(struct net_device *dev)
7139 {
7140 kvfree(dev->_tx);
7141 }
7142
7143 static int netif_alloc_netdev_queues(struct net_device *dev)
7144 {
7145 unsigned int count = dev->num_tx_queues;
7146 struct netdev_queue *tx;
7147 size_t sz = count * sizeof(*tx);
7148
7149 if (count < 1 || count > 0xffff)
7150 return -EINVAL;
7151
7152 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7153 if (!tx) {
7154 tx = vzalloc(sz);
7155 if (!tx)
7156 return -ENOMEM;
7157 }
7158 dev->_tx = tx;
7159
7160 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7161 spin_lock_init(&dev->tx_global_lock);
7162
7163 return 0;
7164 }
7165
7166 void netif_tx_stop_all_queues(struct net_device *dev)
7167 {
7168 unsigned int i;
7169
7170 for (i = 0; i < dev->num_tx_queues; i++) {
7171 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7172 netif_tx_stop_queue(txq);
7173 }
7174 }
7175 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7176
7177 /**
7178 * register_netdevice - register a network device
7179 * @dev: device to register
7180 *
7181 * Take a completed network device structure and add it to the kernel
7182 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7183 * chain. 0 is returned on success. A negative errno code is returned
7184 * on a failure to set up the device, or if the name is a duplicate.
7185 *
7186 * Callers must hold the rtnl semaphore. You may want
7187 * register_netdev() instead of this.
7188 *
7189 * BUGS:
7190 * The locking appears insufficient to guarantee two parallel registers
7191 * will not get the same name.
7192 */
7193
7194 int register_netdevice(struct net_device *dev)
7195 {
7196 int ret;
7197 struct net *net = dev_net(dev);
7198
7199 BUG_ON(dev_boot_phase);
7200 ASSERT_RTNL();
7201
7202 might_sleep();
7203
7204 /* When net_device's are persistent, this will be fatal. */
7205 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7206 BUG_ON(!net);
7207
7208 spin_lock_init(&dev->addr_list_lock);
7209 netdev_set_addr_lockdep_class(dev);
7210
7211 ret = dev_get_valid_name(net, dev, dev->name);
7212 if (ret < 0)
7213 goto out;
7214
7215 /* Init, if this function is available */
7216 if (dev->netdev_ops->ndo_init) {
7217 ret = dev->netdev_ops->ndo_init(dev);
7218 if (ret) {
7219 if (ret > 0)
7220 ret = -EIO;
7221 goto out;
7222 }
7223 }
7224
7225 if (((dev->hw_features | dev->features) &
7226 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7227 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7228 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7229 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7230 ret = -EINVAL;
7231 goto err_uninit;
7232 }
7233
7234 ret = -EBUSY;
7235 if (!dev->ifindex)
7236 dev->ifindex = dev_new_index(net);
7237 else if (__dev_get_by_index(net, dev->ifindex))
7238 goto err_uninit;
7239
7240 /* Transfer changeable features to wanted_features and enable
7241 * software offloads (GSO and GRO).
7242 */
7243 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7244 dev->features |= NETIF_F_SOFT_FEATURES;
7245 dev->wanted_features = dev->features & dev->hw_features;
7246
7247 if (!(dev->flags & IFF_LOOPBACK))
7248 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7249
7250 /* If IPv4 TCP segmentation offload is supported we should also
7251 * allow the device to enable segmenting the frame with the option
7252 * of ignoring a static IP ID value. This doesn't enable the
7253 * feature itself but allows the user to enable it later.
7254 */
7255 if (dev->hw_features & NETIF_F_TSO)
7256 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7257 if (dev->vlan_features & NETIF_F_TSO)
7258 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7259 if (dev->mpls_features & NETIF_F_TSO)
7260 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7261 if (dev->hw_enc_features & NETIF_F_TSO)
7262 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7263
7264 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7265 */
7266 dev->vlan_features |= NETIF_F_HIGHDMA;
7267
7268 /* Make NETIF_F_SG inheritable to tunnel devices.
7269 */
7270 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7271
7272 /* Make NETIF_F_SG inheritable to MPLS.
7273 */
7274 dev->mpls_features |= NETIF_F_SG;
7275
7276 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7277 ret = notifier_to_errno(ret);
7278 if (ret)
7279 goto err_uninit;
7280
7281 ret = netdev_register_kobject(dev);
7282 if (ret)
7283 goto err_uninit;
7284 dev->reg_state = NETREG_REGISTERED;
7285
7286 __netdev_update_features(dev);
7287
7288 /*
7289 * Default initial state at registry is that the
7290 * device is present.
7291 */
7292
7293 set_bit(__LINK_STATE_PRESENT, &dev->state);
7294
7295 linkwatch_init_dev(dev);
7296
7297 dev_init_scheduler(dev);
7298 dev_hold(dev);
7299 list_netdevice(dev);
7300 add_device_randomness(dev->dev_addr, dev->addr_len);
7301
7302 /* If the device has permanent device address, driver should
7303 * set dev_addr and also addr_assign_type should be set to
7304 * NET_ADDR_PERM (default value).
7305 */
7306 if (dev->addr_assign_type == NET_ADDR_PERM)
7307 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7308
7309 /* Notify protocols, that a new device appeared. */
7310 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7311 ret = notifier_to_errno(ret);
7312 if (ret) {
7313 rollback_registered(dev);
7314 dev->reg_state = NETREG_UNREGISTERED;
7315 }
7316 /*
7317 * Prevent userspace races by waiting until the network
7318 * device is fully setup before sending notifications.
7319 */
7320 if (!dev->rtnl_link_ops ||
7321 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7322 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7323
7324 out:
7325 return ret;
7326
7327 err_uninit:
7328 if (dev->netdev_ops->ndo_uninit)
7329 dev->netdev_ops->ndo_uninit(dev);
7330 goto out;
7331 }
7332 EXPORT_SYMBOL(register_netdevice);
7333
7334 /**
7335 * init_dummy_netdev - init a dummy network device for NAPI
7336 * @dev: device to init
7337 *
7338 * This takes a network device structure and initialize the minimum
7339 * amount of fields so it can be used to schedule NAPI polls without
7340 * registering a full blown interface. This is to be used by drivers
7341 * that need to tie several hardware interfaces to a single NAPI
7342 * poll scheduler due to HW limitations.
7343 */
7344 int init_dummy_netdev(struct net_device *dev)
7345 {
7346 /* Clear everything. Note we don't initialize spinlocks
7347 * are they aren't supposed to be taken by any of the
7348 * NAPI code and this dummy netdev is supposed to be
7349 * only ever used for NAPI polls
7350 */
7351 memset(dev, 0, sizeof(struct net_device));
7352
7353 /* make sure we BUG if trying to hit standard
7354 * register/unregister code path
7355 */
7356 dev->reg_state = NETREG_DUMMY;
7357
7358 /* NAPI wants this */
7359 INIT_LIST_HEAD(&dev->napi_list);
7360
7361 /* a dummy interface is started by default */
7362 set_bit(__LINK_STATE_PRESENT, &dev->state);
7363 set_bit(__LINK_STATE_START, &dev->state);
7364
7365 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7366 * because users of this 'device' dont need to change
7367 * its refcount.
7368 */
7369
7370 return 0;
7371 }
7372 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7373
7374
7375 /**
7376 * register_netdev - register a network device
7377 * @dev: device to register
7378 *
7379 * Take a completed network device structure and add it to the kernel
7380 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7381 * chain. 0 is returned on success. A negative errno code is returned
7382 * on a failure to set up the device, or if the name is a duplicate.
7383 *
7384 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7385 * and expands the device name if you passed a format string to
7386 * alloc_netdev.
7387 */
7388 int register_netdev(struct net_device *dev)
7389 {
7390 int err;
7391
7392 rtnl_lock();
7393 err = register_netdevice(dev);
7394 rtnl_unlock();
7395 return err;
7396 }
7397 EXPORT_SYMBOL(register_netdev);
7398
7399 int netdev_refcnt_read(const struct net_device *dev)
7400 {
7401 int i, refcnt = 0;
7402
7403 for_each_possible_cpu(i)
7404 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7405 return refcnt;
7406 }
7407 EXPORT_SYMBOL(netdev_refcnt_read);
7408
7409 /**
7410 * netdev_wait_allrefs - wait until all references are gone.
7411 * @dev: target net_device
7412 *
7413 * This is called when unregistering network devices.
7414 *
7415 * Any protocol or device that holds a reference should register
7416 * for netdevice notification, and cleanup and put back the
7417 * reference if they receive an UNREGISTER event.
7418 * We can get stuck here if buggy protocols don't correctly
7419 * call dev_put.
7420 */
7421 static void netdev_wait_allrefs(struct net_device *dev)
7422 {
7423 unsigned long rebroadcast_time, warning_time;
7424 int refcnt;
7425
7426 linkwatch_forget_dev(dev);
7427
7428 rebroadcast_time = warning_time = jiffies;
7429 refcnt = netdev_refcnt_read(dev);
7430
7431 while (refcnt != 0) {
7432 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7433 rtnl_lock();
7434
7435 /* Rebroadcast unregister notification */
7436 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7437
7438 __rtnl_unlock();
7439 rcu_barrier();
7440 rtnl_lock();
7441
7442 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7443 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7444 &dev->state)) {
7445 /* We must not have linkwatch events
7446 * pending on unregister. If this
7447 * happens, we simply run the queue
7448 * unscheduled, resulting in a noop
7449 * for this device.
7450 */
7451 linkwatch_run_queue();
7452 }
7453
7454 __rtnl_unlock();
7455
7456 rebroadcast_time = jiffies;
7457 }
7458
7459 msleep(250);
7460
7461 refcnt = netdev_refcnt_read(dev);
7462
7463 if (time_after(jiffies, warning_time + 10 * HZ)) {
7464 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7465 dev->name, refcnt);
7466 warning_time = jiffies;
7467 }
7468 }
7469 }
7470
7471 /* The sequence is:
7472 *
7473 * rtnl_lock();
7474 * ...
7475 * register_netdevice(x1);
7476 * register_netdevice(x2);
7477 * ...
7478 * unregister_netdevice(y1);
7479 * unregister_netdevice(y2);
7480 * ...
7481 * rtnl_unlock();
7482 * free_netdev(y1);
7483 * free_netdev(y2);
7484 *
7485 * We are invoked by rtnl_unlock().
7486 * This allows us to deal with problems:
7487 * 1) We can delete sysfs objects which invoke hotplug
7488 * without deadlocking with linkwatch via keventd.
7489 * 2) Since we run with the RTNL semaphore not held, we can sleep
7490 * safely in order to wait for the netdev refcnt to drop to zero.
7491 *
7492 * We must not return until all unregister events added during
7493 * the interval the lock was held have been completed.
7494 */
7495 void netdev_run_todo(void)
7496 {
7497 struct list_head list;
7498
7499 /* Snapshot list, allow later requests */
7500 list_replace_init(&net_todo_list, &list);
7501
7502 __rtnl_unlock();
7503
7504
7505 /* Wait for rcu callbacks to finish before next phase */
7506 if (!list_empty(&list))
7507 rcu_barrier();
7508
7509 while (!list_empty(&list)) {
7510 struct net_device *dev
7511 = list_first_entry(&list, struct net_device, todo_list);
7512 list_del(&dev->todo_list);
7513
7514 rtnl_lock();
7515 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7516 __rtnl_unlock();
7517
7518 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7519 pr_err("network todo '%s' but state %d\n",
7520 dev->name, dev->reg_state);
7521 dump_stack();
7522 continue;
7523 }
7524
7525 dev->reg_state = NETREG_UNREGISTERED;
7526
7527 netdev_wait_allrefs(dev);
7528
7529 /* paranoia */
7530 BUG_ON(netdev_refcnt_read(dev));
7531 BUG_ON(!list_empty(&dev->ptype_all));
7532 BUG_ON(!list_empty(&dev->ptype_specific));
7533 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7534 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7535 WARN_ON(dev->dn_ptr);
7536
7537 if (dev->destructor)
7538 dev->destructor(dev);
7539
7540 /* Report a network device has been unregistered */
7541 rtnl_lock();
7542 dev_net(dev)->dev_unreg_count--;
7543 __rtnl_unlock();
7544 wake_up(&netdev_unregistering_wq);
7545
7546 /* Free network device */
7547 kobject_put(&dev->dev.kobj);
7548 }
7549 }
7550
7551 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7552 * all the same fields in the same order as net_device_stats, with only
7553 * the type differing, but rtnl_link_stats64 may have additional fields
7554 * at the end for newer counters.
7555 */
7556 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7557 const struct net_device_stats *netdev_stats)
7558 {
7559 #if BITS_PER_LONG == 64
7560 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7561 memcpy(stats64, netdev_stats, sizeof(*stats64));
7562 /* zero out counters that only exist in rtnl_link_stats64 */
7563 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7564 sizeof(*stats64) - sizeof(*netdev_stats));
7565 #else
7566 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7567 const unsigned long *src = (const unsigned long *)netdev_stats;
7568 u64 *dst = (u64 *)stats64;
7569
7570 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7571 for (i = 0; i < n; i++)
7572 dst[i] = src[i];
7573 /* zero out counters that only exist in rtnl_link_stats64 */
7574 memset((char *)stats64 + n * sizeof(u64), 0,
7575 sizeof(*stats64) - n * sizeof(u64));
7576 #endif
7577 }
7578 EXPORT_SYMBOL(netdev_stats_to_stats64);
7579
7580 /**
7581 * dev_get_stats - get network device statistics
7582 * @dev: device to get statistics from
7583 * @storage: place to store stats
7584 *
7585 * Get network statistics from device. Return @storage.
7586 * The device driver may provide its own method by setting
7587 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7588 * otherwise the internal statistics structure is used.
7589 */
7590 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7591 struct rtnl_link_stats64 *storage)
7592 {
7593 const struct net_device_ops *ops = dev->netdev_ops;
7594
7595 if (ops->ndo_get_stats64) {
7596 memset(storage, 0, sizeof(*storage));
7597 ops->ndo_get_stats64(dev, storage);
7598 } else if (ops->ndo_get_stats) {
7599 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7600 } else {
7601 netdev_stats_to_stats64(storage, &dev->stats);
7602 }
7603 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7604 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7605 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7606 return storage;
7607 }
7608 EXPORT_SYMBOL(dev_get_stats);
7609
7610 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7611 {
7612 struct netdev_queue *queue = dev_ingress_queue(dev);
7613
7614 #ifdef CONFIG_NET_CLS_ACT
7615 if (queue)
7616 return queue;
7617 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7618 if (!queue)
7619 return NULL;
7620 netdev_init_one_queue(dev, queue, NULL);
7621 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7622 queue->qdisc_sleeping = &noop_qdisc;
7623 rcu_assign_pointer(dev->ingress_queue, queue);
7624 #endif
7625 return queue;
7626 }
7627
7628 static const struct ethtool_ops default_ethtool_ops;
7629
7630 void netdev_set_default_ethtool_ops(struct net_device *dev,
7631 const struct ethtool_ops *ops)
7632 {
7633 if (dev->ethtool_ops == &default_ethtool_ops)
7634 dev->ethtool_ops = ops;
7635 }
7636 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7637
7638 void netdev_freemem(struct net_device *dev)
7639 {
7640 char *addr = (char *)dev - dev->padded;
7641
7642 kvfree(addr);
7643 }
7644
7645 /**
7646 * alloc_netdev_mqs - allocate network device
7647 * @sizeof_priv: size of private data to allocate space for
7648 * @name: device name format string
7649 * @name_assign_type: origin of device name
7650 * @setup: callback to initialize device
7651 * @txqs: the number of TX subqueues to allocate
7652 * @rxqs: the number of RX subqueues to allocate
7653 *
7654 * Allocates a struct net_device with private data area for driver use
7655 * and performs basic initialization. Also allocates subqueue structs
7656 * for each queue on the device.
7657 */
7658 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7659 unsigned char name_assign_type,
7660 void (*setup)(struct net_device *),
7661 unsigned int txqs, unsigned int rxqs)
7662 {
7663 struct net_device *dev;
7664 size_t alloc_size;
7665 struct net_device *p;
7666
7667 BUG_ON(strlen(name) >= sizeof(dev->name));
7668
7669 if (txqs < 1) {
7670 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7671 return NULL;
7672 }
7673
7674 #ifdef CONFIG_SYSFS
7675 if (rxqs < 1) {
7676 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7677 return NULL;
7678 }
7679 #endif
7680
7681 alloc_size = sizeof(struct net_device);
7682 if (sizeof_priv) {
7683 /* ensure 32-byte alignment of private area */
7684 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7685 alloc_size += sizeof_priv;
7686 }
7687 /* ensure 32-byte alignment of whole construct */
7688 alloc_size += NETDEV_ALIGN - 1;
7689
7690 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7691 if (!p)
7692 p = vzalloc(alloc_size);
7693 if (!p)
7694 return NULL;
7695
7696 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7697 dev->padded = (char *)dev - (char *)p;
7698
7699 dev->pcpu_refcnt = alloc_percpu(int);
7700 if (!dev->pcpu_refcnt)
7701 goto free_dev;
7702
7703 if (dev_addr_init(dev))
7704 goto free_pcpu;
7705
7706 dev_mc_init(dev);
7707 dev_uc_init(dev);
7708
7709 dev_net_set(dev, &init_net);
7710
7711 dev->gso_max_size = GSO_MAX_SIZE;
7712 dev->gso_max_segs = GSO_MAX_SEGS;
7713
7714 INIT_LIST_HEAD(&dev->napi_list);
7715 INIT_LIST_HEAD(&dev->unreg_list);
7716 INIT_LIST_HEAD(&dev->close_list);
7717 INIT_LIST_HEAD(&dev->link_watch_list);
7718 INIT_LIST_HEAD(&dev->adj_list.upper);
7719 INIT_LIST_HEAD(&dev->adj_list.lower);
7720 INIT_LIST_HEAD(&dev->ptype_all);
7721 INIT_LIST_HEAD(&dev->ptype_specific);
7722 #ifdef CONFIG_NET_SCHED
7723 hash_init(dev->qdisc_hash);
7724 #endif
7725 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7726 setup(dev);
7727
7728 if (!dev->tx_queue_len) {
7729 dev->priv_flags |= IFF_NO_QUEUE;
7730 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7731 }
7732
7733 dev->num_tx_queues = txqs;
7734 dev->real_num_tx_queues = txqs;
7735 if (netif_alloc_netdev_queues(dev))
7736 goto free_all;
7737
7738 #ifdef CONFIG_SYSFS
7739 dev->num_rx_queues = rxqs;
7740 dev->real_num_rx_queues = rxqs;
7741 if (netif_alloc_rx_queues(dev))
7742 goto free_all;
7743 #endif
7744
7745 strcpy(dev->name, name);
7746 dev->name_assign_type = name_assign_type;
7747 dev->group = INIT_NETDEV_GROUP;
7748 if (!dev->ethtool_ops)
7749 dev->ethtool_ops = &default_ethtool_ops;
7750
7751 nf_hook_ingress_init(dev);
7752
7753 return dev;
7754
7755 free_all:
7756 free_netdev(dev);
7757 return NULL;
7758
7759 free_pcpu:
7760 free_percpu(dev->pcpu_refcnt);
7761 free_dev:
7762 netdev_freemem(dev);
7763 return NULL;
7764 }
7765 EXPORT_SYMBOL(alloc_netdev_mqs);
7766
7767 /**
7768 * free_netdev - free network device
7769 * @dev: device
7770 *
7771 * This function does the last stage of destroying an allocated device
7772 * interface. The reference to the device object is released.
7773 * If this is the last reference then it will be freed.
7774 * Must be called in process context.
7775 */
7776 void free_netdev(struct net_device *dev)
7777 {
7778 struct napi_struct *p, *n;
7779
7780 might_sleep();
7781 netif_free_tx_queues(dev);
7782 #ifdef CONFIG_SYSFS
7783 kvfree(dev->_rx);
7784 #endif
7785
7786 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7787
7788 /* Flush device addresses */
7789 dev_addr_flush(dev);
7790
7791 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7792 netif_napi_del(p);
7793
7794 free_percpu(dev->pcpu_refcnt);
7795 dev->pcpu_refcnt = NULL;
7796
7797 /* Compatibility with error handling in drivers */
7798 if (dev->reg_state == NETREG_UNINITIALIZED) {
7799 netdev_freemem(dev);
7800 return;
7801 }
7802
7803 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7804 dev->reg_state = NETREG_RELEASED;
7805
7806 /* will free via device release */
7807 put_device(&dev->dev);
7808 }
7809 EXPORT_SYMBOL(free_netdev);
7810
7811 /**
7812 * synchronize_net - Synchronize with packet receive processing
7813 *
7814 * Wait for packets currently being received to be done.
7815 * Does not block later packets from starting.
7816 */
7817 void synchronize_net(void)
7818 {
7819 might_sleep();
7820 if (rtnl_is_locked())
7821 synchronize_rcu_expedited();
7822 else
7823 synchronize_rcu();
7824 }
7825 EXPORT_SYMBOL(synchronize_net);
7826
7827 /**
7828 * unregister_netdevice_queue - remove device from the kernel
7829 * @dev: device
7830 * @head: list
7831 *
7832 * This function shuts down a device interface and removes it
7833 * from the kernel tables.
7834 * If head not NULL, device is queued to be unregistered later.
7835 *
7836 * Callers must hold the rtnl semaphore. You may want
7837 * unregister_netdev() instead of this.
7838 */
7839
7840 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7841 {
7842 ASSERT_RTNL();
7843
7844 if (head) {
7845 list_move_tail(&dev->unreg_list, head);
7846 } else {
7847 rollback_registered(dev);
7848 /* Finish processing unregister after unlock */
7849 net_set_todo(dev);
7850 }
7851 }
7852 EXPORT_SYMBOL(unregister_netdevice_queue);
7853
7854 /**
7855 * unregister_netdevice_many - unregister many devices
7856 * @head: list of devices
7857 *
7858 * Note: As most callers use a stack allocated list_head,
7859 * we force a list_del() to make sure stack wont be corrupted later.
7860 */
7861 void unregister_netdevice_many(struct list_head *head)
7862 {
7863 struct net_device *dev;
7864
7865 if (!list_empty(head)) {
7866 rollback_registered_many(head);
7867 list_for_each_entry(dev, head, unreg_list)
7868 net_set_todo(dev);
7869 list_del(head);
7870 }
7871 }
7872 EXPORT_SYMBOL(unregister_netdevice_many);
7873
7874 /**
7875 * unregister_netdev - remove device from the kernel
7876 * @dev: device
7877 *
7878 * This function shuts down a device interface and removes it
7879 * from the kernel tables.
7880 *
7881 * This is just a wrapper for unregister_netdevice that takes
7882 * the rtnl semaphore. In general you want to use this and not
7883 * unregister_netdevice.
7884 */
7885 void unregister_netdev(struct net_device *dev)
7886 {
7887 rtnl_lock();
7888 unregister_netdevice(dev);
7889 rtnl_unlock();
7890 }
7891 EXPORT_SYMBOL(unregister_netdev);
7892
7893 /**
7894 * dev_change_net_namespace - move device to different nethost namespace
7895 * @dev: device
7896 * @net: network namespace
7897 * @pat: If not NULL name pattern to try if the current device name
7898 * is already taken in the destination network namespace.
7899 *
7900 * This function shuts down a device interface and moves it
7901 * to a new network namespace. On success 0 is returned, on
7902 * a failure a netagive errno code is returned.
7903 *
7904 * Callers must hold the rtnl semaphore.
7905 */
7906
7907 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7908 {
7909 int err;
7910
7911 ASSERT_RTNL();
7912
7913 /* Don't allow namespace local devices to be moved. */
7914 err = -EINVAL;
7915 if (dev->features & NETIF_F_NETNS_LOCAL)
7916 goto out;
7917
7918 /* Ensure the device has been registrered */
7919 if (dev->reg_state != NETREG_REGISTERED)
7920 goto out;
7921
7922 /* Get out if there is nothing todo */
7923 err = 0;
7924 if (net_eq(dev_net(dev), net))
7925 goto out;
7926
7927 /* Pick the destination device name, and ensure
7928 * we can use it in the destination network namespace.
7929 */
7930 err = -EEXIST;
7931 if (__dev_get_by_name(net, dev->name)) {
7932 /* We get here if we can't use the current device name */
7933 if (!pat)
7934 goto out;
7935 if (dev_get_valid_name(net, dev, pat) < 0)
7936 goto out;
7937 }
7938
7939 /*
7940 * And now a mini version of register_netdevice unregister_netdevice.
7941 */
7942
7943 /* If device is running close it first. */
7944 dev_close(dev);
7945
7946 /* And unlink it from device chain */
7947 err = -ENODEV;
7948 unlist_netdevice(dev);
7949
7950 synchronize_net();
7951
7952 /* Shutdown queueing discipline. */
7953 dev_shutdown(dev);
7954
7955 /* Notify protocols, that we are about to destroy
7956 this device. They should clean all the things.
7957
7958 Note that dev->reg_state stays at NETREG_REGISTERED.
7959 This is wanted because this way 8021q and macvlan know
7960 the device is just moving and can keep their slaves up.
7961 */
7962 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7963 rcu_barrier();
7964 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7965 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7966
7967 /*
7968 * Flush the unicast and multicast chains
7969 */
7970 dev_uc_flush(dev);
7971 dev_mc_flush(dev);
7972
7973 /* Send a netdev-removed uevent to the old namespace */
7974 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7975 netdev_adjacent_del_links(dev);
7976
7977 /* Actually switch the network namespace */
7978 dev_net_set(dev, net);
7979
7980 /* If there is an ifindex conflict assign a new one */
7981 if (__dev_get_by_index(net, dev->ifindex))
7982 dev->ifindex = dev_new_index(net);
7983
7984 /* Send a netdev-add uevent to the new namespace */
7985 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7986 netdev_adjacent_add_links(dev);
7987
7988 /* Fixup kobjects */
7989 err = device_rename(&dev->dev, dev->name);
7990 WARN_ON(err);
7991
7992 /* Add the device back in the hashes */
7993 list_netdevice(dev);
7994
7995 /* Notify protocols, that a new device appeared. */
7996 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7997
7998 /*
7999 * Prevent userspace races by waiting until the network
8000 * device is fully setup before sending notifications.
8001 */
8002 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8003
8004 synchronize_net();
8005 err = 0;
8006 out:
8007 return err;
8008 }
8009 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8010
8011 static int dev_cpu_dead(unsigned int oldcpu)
8012 {
8013 struct sk_buff **list_skb;
8014 struct sk_buff *skb;
8015 unsigned int cpu;
8016 struct softnet_data *sd, *oldsd;
8017
8018 local_irq_disable();
8019 cpu = smp_processor_id();
8020 sd = &per_cpu(softnet_data, cpu);
8021 oldsd = &per_cpu(softnet_data, oldcpu);
8022
8023 /* Find end of our completion_queue. */
8024 list_skb = &sd->completion_queue;
8025 while (*list_skb)
8026 list_skb = &(*list_skb)->next;
8027 /* Append completion queue from offline CPU. */
8028 *list_skb = oldsd->completion_queue;
8029 oldsd->completion_queue = NULL;
8030
8031 /* Append output queue from offline CPU. */
8032 if (oldsd->output_queue) {
8033 *sd->output_queue_tailp = oldsd->output_queue;
8034 sd->output_queue_tailp = oldsd->output_queue_tailp;
8035 oldsd->output_queue = NULL;
8036 oldsd->output_queue_tailp = &oldsd->output_queue;
8037 }
8038 /* Append NAPI poll list from offline CPU, with one exception :
8039 * process_backlog() must be called by cpu owning percpu backlog.
8040 * We properly handle process_queue & input_pkt_queue later.
8041 */
8042 while (!list_empty(&oldsd->poll_list)) {
8043 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8044 struct napi_struct,
8045 poll_list);
8046
8047 list_del_init(&napi->poll_list);
8048 if (napi->poll == process_backlog)
8049 napi->state = 0;
8050 else
8051 ____napi_schedule(sd, napi);
8052 }
8053
8054 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8055 local_irq_enable();
8056
8057 /* Process offline CPU's input_pkt_queue */
8058 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8059 netif_rx_ni(skb);
8060 input_queue_head_incr(oldsd);
8061 }
8062 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8063 netif_rx_ni(skb);
8064 input_queue_head_incr(oldsd);
8065 }
8066
8067 return 0;
8068 }
8069
8070 /**
8071 * netdev_increment_features - increment feature set by one
8072 * @all: current feature set
8073 * @one: new feature set
8074 * @mask: mask feature set
8075 *
8076 * Computes a new feature set after adding a device with feature set
8077 * @one to the master device with current feature set @all. Will not
8078 * enable anything that is off in @mask. Returns the new feature set.
8079 */
8080 netdev_features_t netdev_increment_features(netdev_features_t all,
8081 netdev_features_t one, netdev_features_t mask)
8082 {
8083 if (mask & NETIF_F_HW_CSUM)
8084 mask |= NETIF_F_CSUM_MASK;
8085 mask |= NETIF_F_VLAN_CHALLENGED;
8086
8087 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8088 all &= one | ~NETIF_F_ALL_FOR_ALL;
8089
8090 /* If one device supports hw checksumming, set for all. */
8091 if (all & NETIF_F_HW_CSUM)
8092 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8093
8094 return all;
8095 }
8096 EXPORT_SYMBOL(netdev_increment_features);
8097
8098 static struct hlist_head * __net_init netdev_create_hash(void)
8099 {
8100 int i;
8101 struct hlist_head *hash;
8102
8103 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8104 if (hash != NULL)
8105 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8106 INIT_HLIST_HEAD(&hash[i]);
8107
8108 return hash;
8109 }
8110
8111 /* Initialize per network namespace state */
8112 static int __net_init netdev_init(struct net *net)
8113 {
8114 if (net != &init_net)
8115 INIT_LIST_HEAD(&net->dev_base_head);
8116
8117 net->dev_name_head = netdev_create_hash();
8118 if (net->dev_name_head == NULL)
8119 goto err_name;
8120
8121 net->dev_index_head = netdev_create_hash();
8122 if (net->dev_index_head == NULL)
8123 goto err_idx;
8124
8125 return 0;
8126
8127 err_idx:
8128 kfree(net->dev_name_head);
8129 err_name:
8130 return -ENOMEM;
8131 }
8132
8133 /**
8134 * netdev_drivername - network driver for the device
8135 * @dev: network device
8136 *
8137 * Determine network driver for device.
8138 */
8139 const char *netdev_drivername(const struct net_device *dev)
8140 {
8141 const struct device_driver *driver;
8142 const struct device *parent;
8143 const char *empty = "";
8144
8145 parent = dev->dev.parent;
8146 if (!parent)
8147 return empty;
8148
8149 driver = parent->driver;
8150 if (driver && driver->name)
8151 return driver->name;
8152 return empty;
8153 }
8154
8155 static void __netdev_printk(const char *level, const struct net_device *dev,
8156 struct va_format *vaf)
8157 {
8158 if (dev && dev->dev.parent) {
8159 dev_printk_emit(level[1] - '0',
8160 dev->dev.parent,
8161 "%s %s %s%s: %pV",
8162 dev_driver_string(dev->dev.parent),
8163 dev_name(dev->dev.parent),
8164 netdev_name(dev), netdev_reg_state(dev),
8165 vaf);
8166 } else if (dev) {
8167 printk("%s%s%s: %pV",
8168 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8169 } else {
8170 printk("%s(NULL net_device): %pV", level, vaf);
8171 }
8172 }
8173
8174 void netdev_printk(const char *level, const struct net_device *dev,
8175 const char *format, ...)
8176 {
8177 struct va_format vaf;
8178 va_list args;
8179
8180 va_start(args, format);
8181
8182 vaf.fmt = format;
8183 vaf.va = &args;
8184
8185 __netdev_printk(level, dev, &vaf);
8186
8187 va_end(args);
8188 }
8189 EXPORT_SYMBOL(netdev_printk);
8190
8191 #define define_netdev_printk_level(func, level) \
8192 void func(const struct net_device *dev, const char *fmt, ...) \
8193 { \
8194 struct va_format vaf; \
8195 va_list args; \
8196 \
8197 va_start(args, fmt); \
8198 \
8199 vaf.fmt = fmt; \
8200 vaf.va = &args; \
8201 \
8202 __netdev_printk(level, dev, &vaf); \
8203 \
8204 va_end(args); \
8205 } \
8206 EXPORT_SYMBOL(func);
8207
8208 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8209 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8210 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8211 define_netdev_printk_level(netdev_err, KERN_ERR);
8212 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8213 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8214 define_netdev_printk_level(netdev_info, KERN_INFO);
8215
8216 static void __net_exit netdev_exit(struct net *net)
8217 {
8218 kfree(net->dev_name_head);
8219 kfree(net->dev_index_head);
8220 }
8221
8222 static struct pernet_operations __net_initdata netdev_net_ops = {
8223 .init = netdev_init,
8224 .exit = netdev_exit,
8225 };
8226
8227 static void __net_exit default_device_exit(struct net *net)
8228 {
8229 struct net_device *dev, *aux;
8230 /*
8231 * Push all migratable network devices back to the
8232 * initial network namespace
8233 */
8234 rtnl_lock();
8235 for_each_netdev_safe(net, dev, aux) {
8236 int err;
8237 char fb_name[IFNAMSIZ];
8238
8239 /* Ignore unmoveable devices (i.e. loopback) */
8240 if (dev->features & NETIF_F_NETNS_LOCAL)
8241 continue;
8242
8243 /* Leave virtual devices for the generic cleanup */
8244 if (dev->rtnl_link_ops)
8245 continue;
8246
8247 /* Push remaining network devices to init_net */
8248 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8249 err = dev_change_net_namespace(dev, &init_net, fb_name);
8250 if (err) {
8251 pr_emerg("%s: failed to move %s to init_net: %d\n",
8252 __func__, dev->name, err);
8253 BUG();
8254 }
8255 }
8256 rtnl_unlock();
8257 }
8258
8259 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8260 {
8261 /* Return with the rtnl_lock held when there are no network
8262 * devices unregistering in any network namespace in net_list.
8263 */
8264 struct net *net;
8265 bool unregistering;
8266 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8267
8268 add_wait_queue(&netdev_unregistering_wq, &wait);
8269 for (;;) {
8270 unregistering = false;
8271 rtnl_lock();
8272 list_for_each_entry(net, net_list, exit_list) {
8273 if (net->dev_unreg_count > 0) {
8274 unregistering = true;
8275 break;
8276 }
8277 }
8278 if (!unregistering)
8279 break;
8280 __rtnl_unlock();
8281
8282 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8283 }
8284 remove_wait_queue(&netdev_unregistering_wq, &wait);
8285 }
8286
8287 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8288 {
8289 /* At exit all network devices most be removed from a network
8290 * namespace. Do this in the reverse order of registration.
8291 * Do this across as many network namespaces as possible to
8292 * improve batching efficiency.
8293 */
8294 struct net_device *dev;
8295 struct net *net;
8296 LIST_HEAD(dev_kill_list);
8297
8298 /* To prevent network device cleanup code from dereferencing
8299 * loopback devices or network devices that have been freed
8300 * wait here for all pending unregistrations to complete,
8301 * before unregistring the loopback device and allowing the
8302 * network namespace be freed.
8303 *
8304 * The netdev todo list containing all network devices
8305 * unregistrations that happen in default_device_exit_batch
8306 * will run in the rtnl_unlock() at the end of
8307 * default_device_exit_batch.
8308 */
8309 rtnl_lock_unregistering(net_list);
8310 list_for_each_entry(net, net_list, exit_list) {
8311 for_each_netdev_reverse(net, dev) {
8312 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8313 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8314 else
8315 unregister_netdevice_queue(dev, &dev_kill_list);
8316 }
8317 }
8318 unregister_netdevice_many(&dev_kill_list);
8319 rtnl_unlock();
8320 }
8321
8322 static struct pernet_operations __net_initdata default_device_ops = {
8323 .exit = default_device_exit,
8324 .exit_batch = default_device_exit_batch,
8325 };
8326
8327 /*
8328 * Initialize the DEV module. At boot time this walks the device list and
8329 * unhooks any devices that fail to initialise (normally hardware not
8330 * present) and leaves us with a valid list of present and active devices.
8331 *
8332 */
8333
8334 /*
8335 * This is called single threaded during boot, so no need
8336 * to take the rtnl semaphore.
8337 */
8338 static int __init net_dev_init(void)
8339 {
8340 int i, rc = -ENOMEM;
8341
8342 BUG_ON(!dev_boot_phase);
8343
8344 if (dev_proc_init())
8345 goto out;
8346
8347 if (netdev_kobject_init())
8348 goto out;
8349
8350 INIT_LIST_HEAD(&ptype_all);
8351 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8352 INIT_LIST_HEAD(&ptype_base[i]);
8353
8354 INIT_LIST_HEAD(&offload_base);
8355
8356 if (register_pernet_subsys(&netdev_net_ops))
8357 goto out;
8358
8359 /*
8360 * Initialise the packet receive queues.
8361 */
8362
8363 for_each_possible_cpu(i) {
8364 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8365 struct softnet_data *sd = &per_cpu(softnet_data, i);
8366
8367 INIT_WORK(flush, flush_backlog);
8368
8369 skb_queue_head_init(&sd->input_pkt_queue);
8370 skb_queue_head_init(&sd->process_queue);
8371 INIT_LIST_HEAD(&sd->poll_list);
8372 sd->output_queue_tailp = &sd->output_queue;
8373 #ifdef CONFIG_RPS
8374 sd->csd.func = rps_trigger_softirq;
8375 sd->csd.info = sd;
8376 sd->cpu = i;
8377 #endif
8378
8379 sd->backlog.poll = process_backlog;
8380 sd->backlog.weight = weight_p;
8381 }
8382
8383 dev_boot_phase = 0;
8384
8385 /* The loopback device is special if any other network devices
8386 * is present in a network namespace the loopback device must
8387 * be present. Since we now dynamically allocate and free the
8388 * loopback device ensure this invariant is maintained by
8389 * keeping the loopback device as the first device on the
8390 * list of network devices. Ensuring the loopback devices
8391 * is the first device that appears and the last network device
8392 * that disappears.
8393 */
8394 if (register_pernet_device(&loopback_net_ops))
8395 goto out;
8396
8397 if (register_pernet_device(&default_device_ops))
8398 goto out;
8399
8400 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8401 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8402
8403 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8404 NULL, dev_cpu_dead);
8405 WARN_ON(rc < 0);
8406 dst_subsys_init();
8407 rc = 0;
8408 out:
8409 return rc;
8410 }
8411
8412 subsys_initcall(net_dev_init);