]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/core/dev.c
07a8e9dc43fc784d8e3c31234dce066f7935e536
[mirror_ubuntu-jammy-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132
133 #include "net-sysfs.h"
134
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141 static DEFINE_SPINLOCK(ptype_lock);
142 static DEFINE_SPINLOCK(offload_lock);
143 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
144 struct list_head ptype_all __read_mostly; /* Taps */
145 static struct list_head offload_base __read_mostly;
146
147 /*
148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
149 * semaphore.
150 *
151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
152 *
153 * Writers must hold the rtnl semaphore while they loop through the
154 * dev_base_head list, and hold dev_base_lock for writing when they do the
155 * actual updates. This allows pure readers to access the list even
156 * while a writer is preparing to update it.
157 *
158 * To put it another way, dev_base_lock is held for writing only to
159 * protect against pure readers; the rtnl semaphore provides the
160 * protection against other writers.
161 *
162 * See, for example usages, register_netdevice() and
163 * unregister_netdevice(), which must be called with the rtnl
164 * semaphore held.
165 */
166 DEFINE_RWLOCK(dev_base_lock);
167 EXPORT_SYMBOL(dev_base_lock);
168
169 seqcount_t devnet_rename_seq;
170
171 static inline void dev_base_seq_inc(struct net *net)
172 {
173 while (++net->dev_base_seq == 0);
174 }
175
176 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
177 {
178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
179
180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
181 }
182
183 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
184 {
185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
186 }
187
188 static inline void rps_lock(struct softnet_data *sd)
189 {
190 #ifdef CONFIG_RPS
191 spin_lock(&sd->input_pkt_queue.lock);
192 #endif
193 }
194
195 static inline void rps_unlock(struct softnet_data *sd)
196 {
197 #ifdef CONFIG_RPS
198 spin_unlock(&sd->input_pkt_queue.lock);
199 #endif
200 }
201
202 /* Device list insertion */
203 static int list_netdevice(struct net_device *dev)
204 {
205 struct net *net = dev_net(dev);
206
207 ASSERT_RTNL();
208
209 write_lock_bh(&dev_base_lock);
210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
212 hlist_add_head_rcu(&dev->index_hlist,
213 dev_index_hash(net, dev->ifindex));
214 write_unlock_bh(&dev_base_lock);
215
216 dev_base_seq_inc(net);
217
218 return 0;
219 }
220
221 /* Device list removal
222 * caller must respect a RCU grace period before freeing/reusing dev
223 */
224 static void unlist_netdevice(struct net_device *dev)
225 {
226 ASSERT_RTNL();
227
228 /* Unlink dev from the device chain */
229 write_lock_bh(&dev_base_lock);
230 list_del_rcu(&dev->dev_list);
231 hlist_del_rcu(&dev->name_hlist);
232 hlist_del_rcu(&dev->index_hlist);
233 write_unlock_bh(&dev_base_lock);
234
235 dev_base_seq_inc(dev_net(dev));
236 }
237
238 /*
239 * Our notifier list
240 */
241
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243
244 /*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
250 EXPORT_PER_CPU_SYMBOL(softnet_data);
251
252 #ifdef CONFIG_LOCKDEP
253 /*
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
256 */
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
271 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
272 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
273
274 static const char *const netdev_lock_name[] =
275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
288 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
289 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
290
291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
293
294 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
295 {
296 int i;
297
298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 if (netdev_lock_type[i] == dev_type)
300 return i;
301 /* the last key is used by default */
302 return ARRAY_SIZE(netdev_lock_type) - 1;
303 }
304
305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 unsigned short dev_type)
307 {
308 int i;
309
310 i = netdev_lock_pos(dev_type);
311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 netdev_lock_name[i]);
313 }
314
315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
316 {
317 int i;
318
319 i = netdev_lock_pos(dev->type);
320 lockdep_set_class_and_name(&dev->addr_list_lock,
321 &netdev_addr_lock_key[i],
322 netdev_lock_name[i]);
323 }
324 #else
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 }
329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
330 {
331 }
332 #endif
333
334 /*******************************************************************************
335
336 Protocol management and registration routines
337
338 *******************************************************************************/
339
340 /*
341 * Add a protocol ID to the list. Now that the input handler is
342 * smarter we can dispense with all the messy stuff that used to be
343 * here.
344 *
345 * BEWARE!!! Protocol handlers, mangling input packets,
346 * MUST BE last in hash buckets and checking protocol handlers
347 * MUST start from promiscuous ptype_all chain in net_bh.
348 * It is true now, do not change it.
349 * Explanation follows: if protocol handler, mangling packet, will
350 * be the first on list, it is not able to sense, that packet
351 * is cloned and should be copied-on-write, so that it will
352 * change it and subsequent readers will get broken packet.
353 * --ANK (980803)
354 */
355
356 static inline struct list_head *ptype_head(const struct packet_type *pt)
357 {
358 if (pt->type == htons(ETH_P_ALL))
359 return &ptype_all;
360 else
361 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
362 }
363
364 /**
365 * dev_add_pack - add packet handler
366 * @pt: packet type declaration
367 *
368 * Add a protocol handler to the networking stack. The passed &packet_type
369 * is linked into kernel lists and may not be freed until it has been
370 * removed from the kernel lists.
371 *
372 * This call does not sleep therefore it can not
373 * guarantee all CPU's that are in middle of receiving packets
374 * will see the new packet type (until the next received packet).
375 */
376
377 void dev_add_pack(struct packet_type *pt)
378 {
379 struct list_head *head = ptype_head(pt);
380
381 spin_lock(&ptype_lock);
382 list_add_rcu(&pt->list, head);
383 spin_unlock(&ptype_lock);
384 }
385 EXPORT_SYMBOL(dev_add_pack);
386
387 /**
388 * __dev_remove_pack - remove packet handler
389 * @pt: packet type declaration
390 *
391 * Remove a protocol handler that was previously added to the kernel
392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
393 * from the kernel lists and can be freed or reused once this function
394 * returns.
395 *
396 * The packet type might still be in use by receivers
397 * and must not be freed until after all the CPU's have gone
398 * through a quiescent state.
399 */
400 void __dev_remove_pack(struct packet_type *pt)
401 {
402 struct list_head *head = ptype_head(pt);
403 struct packet_type *pt1;
404
405 spin_lock(&ptype_lock);
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 pr_warn("dev_remove_pack: %p not found\n", pt);
415 out:
416 spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(__dev_remove_pack);
419
420 /**
421 * dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * This call sleeps to guarantee that no CPU is looking at the packet
430 * type after return.
431 */
432 void dev_remove_pack(struct packet_type *pt)
433 {
434 __dev_remove_pack(pt);
435
436 synchronize_net();
437 }
438 EXPORT_SYMBOL(dev_remove_pack);
439
440
441 /**
442 * dev_add_offload - register offload handlers
443 * @po: protocol offload declaration
444 *
445 * Add protocol offload handlers to the networking stack. The passed
446 * &proto_offload is linked into kernel lists and may not be freed until
447 * it has been removed from the kernel lists.
448 *
449 * This call does not sleep therefore it can not
450 * guarantee all CPU's that are in middle of receiving packets
451 * will see the new offload handlers (until the next received packet).
452 */
453 void dev_add_offload(struct packet_offload *po)
454 {
455 struct list_head *head = &offload_base;
456
457 spin_lock(&offload_lock);
458 list_add_rcu(&po->list, head);
459 spin_unlock(&offload_lock);
460 }
461 EXPORT_SYMBOL(dev_add_offload);
462
463 /**
464 * __dev_remove_offload - remove offload handler
465 * @po: packet offload declaration
466 *
467 * Remove a protocol offload handler that was previously added to the
468 * kernel offload handlers by dev_add_offload(). The passed &offload_type
469 * is removed from the kernel lists and can be freed or reused once this
470 * function returns.
471 *
472 * The packet type might still be in use by receivers
473 * and must not be freed until after all the CPU's have gone
474 * through a quiescent state.
475 */
476 void __dev_remove_offload(struct packet_offload *po)
477 {
478 struct list_head *head = &offload_base;
479 struct packet_offload *po1;
480
481 spin_lock(&offload_lock);
482
483 list_for_each_entry(po1, head, list) {
484 if (po == po1) {
485 list_del_rcu(&po->list);
486 goto out;
487 }
488 }
489
490 pr_warn("dev_remove_offload: %p not found\n", po);
491 out:
492 spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(__dev_remove_offload);
495
496 /**
497 * dev_remove_offload - remove packet offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a packet offload handler that was previously added to the kernel
501 * offload handlers by dev_add_offload(). The passed &offload_type is
502 * removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * This call sleeps to guarantee that no CPU is looking at the packet
506 * type after return.
507 */
508 void dev_remove_offload(struct packet_offload *po)
509 {
510 __dev_remove_offload(po);
511
512 synchronize_net();
513 }
514 EXPORT_SYMBOL(dev_remove_offload);
515
516 /******************************************************************************
517
518 Device Boot-time Settings Routines
519
520 *******************************************************************************/
521
522 /* Boot time configuration table */
523 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
524
525 /**
526 * netdev_boot_setup_add - add new setup entry
527 * @name: name of the device
528 * @map: configured settings for the device
529 *
530 * Adds new setup entry to the dev_boot_setup list. The function
531 * returns 0 on error and 1 on success. This is a generic routine to
532 * all netdevices.
533 */
534 static int netdev_boot_setup_add(char *name, struct ifmap *map)
535 {
536 struct netdev_boot_setup *s;
537 int i;
538
539 s = dev_boot_setup;
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
541 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
542 memset(s[i].name, 0, sizeof(s[i].name));
543 strlcpy(s[i].name, name, IFNAMSIZ);
544 memcpy(&s[i].map, map, sizeof(s[i].map));
545 break;
546 }
547 }
548
549 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
550 }
551
552 /**
553 * netdev_boot_setup_check - check boot time settings
554 * @dev: the netdevice
555 *
556 * Check boot time settings for the device.
557 * The found settings are set for the device to be used
558 * later in the device probing.
559 * Returns 0 if no settings found, 1 if they are.
560 */
561 int netdev_boot_setup_check(struct net_device *dev)
562 {
563 struct netdev_boot_setup *s = dev_boot_setup;
564 int i;
565
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
568 !strcmp(dev->name, s[i].name)) {
569 dev->irq = s[i].map.irq;
570 dev->base_addr = s[i].map.base_addr;
571 dev->mem_start = s[i].map.mem_start;
572 dev->mem_end = s[i].map.mem_end;
573 return 1;
574 }
575 }
576 return 0;
577 }
578 EXPORT_SYMBOL(netdev_boot_setup_check);
579
580
581 /**
582 * netdev_boot_base - get address from boot time settings
583 * @prefix: prefix for network device
584 * @unit: id for network device
585 *
586 * Check boot time settings for the base address of device.
587 * The found settings are set for the device to be used
588 * later in the device probing.
589 * Returns 0 if no settings found.
590 */
591 unsigned long netdev_boot_base(const char *prefix, int unit)
592 {
593 const struct netdev_boot_setup *s = dev_boot_setup;
594 char name[IFNAMSIZ];
595 int i;
596
597 sprintf(name, "%s%d", prefix, unit);
598
599 /*
600 * If device already registered then return base of 1
601 * to indicate not to probe for this interface
602 */
603 if (__dev_get_by_name(&init_net, name))
604 return 1;
605
606 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
607 if (!strcmp(name, s[i].name))
608 return s[i].map.base_addr;
609 return 0;
610 }
611
612 /*
613 * Saves at boot time configured settings for any netdevice.
614 */
615 int __init netdev_boot_setup(char *str)
616 {
617 int ints[5];
618 struct ifmap map;
619
620 str = get_options(str, ARRAY_SIZE(ints), ints);
621 if (!str || !*str)
622 return 0;
623
624 /* Save settings */
625 memset(&map, 0, sizeof(map));
626 if (ints[0] > 0)
627 map.irq = ints[1];
628 if (ints[0] > 1)
629 map.base_addr = ints[2];
630 if (ints[0] > 2)
631 map.mem_start = ints[3];
632 if (ints[0] > 3)
633 map.mem_end = ints[4];
634
635 /* Add new entry to the list */
636 return netdev_boot_setup_add(str, &map);
637 }
638
639 __setup("netdev=", netdev_boot_setup);
640
641 /*******************************************************************************
642
643 Device Interface Subroutines
644
645 *******************************************************************************/
646
647 /**
648 * __dev_get_by_name - find a device by its name
649 * @net: the applicable net namespace
650 * @name: name to find
651 *
652 * Find an interface by name. Must be called under RTNL semaphore
653 * or @dev_base_lock. If the name is found a pointer to the device
654 * is returned. If the name is not found then %NULL is returned. The
655 * reference counters are not incremented so the caller must be
656 * careful with locks.
657 */
658
659 struct net_device *__dev_get_by_name(struct net *net, const char *name)
660 {
661 struct net_device *dev;
662 struct hlist_head *head = dev_name_hash(net, name);
663
664 hlist_for_each_entry(dev, head, name_hlist)
665 if (!strncmp(dev->name, name, IFNAMSIZ))
666 return dev;
667
668 return NULL;
669 }
670 EXPORT_SYMBOL(__dev_get_by_name);
671
672 /**
673 * dev_get_by_name_rcu - find a device by its name
674 * @net: the applicable net namespace
675 * @name: name to find
676 *
677 * Find an interface by name.
678 * If the name is found a pointer to the device is returned.
679 * If the name is not found then %NULL is returned.
680 * The reference counters are not incremented so the caller must be
681 * careful with locks. The caller must hold RCU lock.
682 */
683
684 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
685 {
686 struct net_device *dev;
687 struct hlist_head *head = dev_name_hash(net, name);
688
689 hlist_for_each_entry_rcu(dev, head, name_hlist)
690 if (!strncmp(dev->name, name, IFNAMSIZ))
691 return dev;
692
693 return NULL;
694 }
695 EXPORT_SYMBOL(dev_get_by_name_rcu);
696
697 /**
698 * dev_get_by_name - find a device by its name
699 * @net: the applicable net namespace
700 * @name: name to find
701 *
702 * Find an interface by name. This can be called from any
703 * context and does its own locking. The returned handle has
704 * the usage count incremented and the caller must use dev_put() to
705 * release it when it is no longer needed. %NULL is returned if no
706 * matching device is found.
707 */
708
709 struct net_device *dev_get_by_name(struct net *net, const char *name)
710 {
711 struct net_device *dev;
712
713 rcu_read_lock();
714 dev = dev_get_by_name_rcu(net, name);
715 if (dev)
716 dev_hold(dev);
717 rcu_read_unlock();
718 return dev;
719 }
720 EXPORT_SYMBOL(dev_get_by_name);
721
722 /**
723 * __dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns %NULL if the device
728 * is not found or a pointer to the device. The device has not
729 * had its reference counter increased so the caller must be careful
730 * about locking. The caller must hold either the RTNL semaphore
731 * or @dev_base_lock.
732 */
733
734 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
735 {
736 struct net_device *dev;
737 struct hlist_head *head = dev_index_hash(net, ifindex);
738
739 hlist_for_each_entry(dev, head, index_hlist)
740 if (dev->ifindex == ifindex)
741 return dev;
742
743 return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_index);
746
747 /**
748 * dev_get_by_index_rcu - find a device by its ifindex
749 * @net: the applicable net namespace
750 * @ifindex: index of device
751 *
752 * Search for an interface by index. Returns %NULL if the device
753 * is not found or a pointer to the device. The device has not
754 * had its reference counter increased so the caller must be careful
755 * about locking. The caller must hold RCU lock.
756 */
757
758 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
759 {
760 struct net_device *dev;
761 struct hlist_head *head = dev_index_hash(net, ifindex);
762
763 hlist_for_each_entry_rcu(dev, head, index_hlist)
764 if (dev->ifindex == ifindex)
765 return dev;
766
767 return NULL;
768 }
769 EXPORT_SYMBOL(dev_get_by_index_rcu);
770
771
772 /**
773 * dev_get_by_index - find a device by its ifindex
774 * @net: the applicable net namespace
775 * @ifindex: index of device
776 *
777 * Search for an interface by index. Returns NULL if the device
778 * is not found or a pointer to the device. The device returned has
779 * had a reference added and the pointer is safe until the user calls
780 * dev_put to indicate they have finished with it.
781 */
782
783 struct net_device *dev_get_by_index(struct net *net, int ifindex)
784 {
785 struct net_device *dev;
786
787 rcu_read_lock();
788 dev = dev_get_by_index_rcu(net, ifindex);
789 if (dev)
790 dev_hold(dev);
791 rcu_read_unlock();
792 return dev;
793 }
794 EXPORT_SYMBOL(dev_get_by_index);
795
796 /**
797 * dev_getbyhwaddr_rcu - find a device by its hardware address
798 * @net: the applicable net namespace
799 * @type: media type of device
800 * @ha: hardware address
801 *
802 * Search for an interface by MAC address. Returns NULL if the device
803 * is not found or a pointer to the device.
804 * The caller must hold RCU or RTNL.
805 * The returned device has not had its ref count increased
806 * and the caller must therefore be careful about locking
807 *
808 */
809
810 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
811 const char *ha)
812 {
813 struct net_device *dev;
814
815 for_each_netdev_rcu(net, dev)
816 if (dev->type == type &&
817 !memcmp(dev->dev_addr, ha, dev->addr_len))
818 return dev;
819
820 return NULL;
821 }
822 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
823
824 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
825 {
826 struct net_device *dev;
827
828 ASSERT_RTNL();
829 for_each_netdev(net, dev)
830 if (dev->type == type)
831 return dev;
832
833 return NULL;
834 }
835 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
836
837 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
838 {
839 struct net_device *dev, *ret = NULL;
840
841 rcu_read_lock();
842 for_each_netdev_rcu(net, dev)
843 if (dev->type == type) {
844 dev_hold(dev);
845 ret = dev;
846 break;
847 }
848 rcu_read_unlock();
849 return ret;
850 }
851 EXPORT_SYMBOL(dev_getfirstbyhwtype);
852
853 /**
854 * dev_get_by_flags_rcu - find any device with given flags
855 * @net: the applicable net namespace
856 * @if_flags: IFF_* values
857 * @mask: bitmask of bits in if_flags to check
858 *
859 * Search for any interface with the given flags. Returns NULL if a device
860 * is not found or a pointer to the device. Must be called inside
861 * rcu_read_lock(), and result refcount is unchanged.
862 */
863
864 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
865 unsigned short mask)
866 {
867 struct net_device *dev, *ret;
868
869 ret = NULL;
870 for_each_netdev_rcu(net, dev) {
871 if (((dev->flags ^ if_flags) & mask) == 0) {
872 ret = dev;
873 break;
874 }
875 }
876 return ret;
877 }
878 EXPORT_SYMBOL(dev_get_by_flags_rcu);
879
880 /**
881 * dev_valid_name - check if name is okay for network device
882 * @name: name string
883 *
884 * Network device names need to be valid file names to
885 * to allow sysfs to work. We also disallow any kind of
886 * whitespace.
887 */
888 bool dev_valid_name(const char *name)
889 {
890 if (*name == '\0')
891 return false;
892 if (strlen(name) >= IFNAMSIZ)
893 return false;
894 if (!strcmp(name, ".") || !strcmp(name, ".."))
895 return false;
896
897 while (*name) {
898 if (*name == '/' || isspace(*name))
899 return false;
900 name++;
901 }
902 return true;
903 }
904 EXPORT_SYMBOL(dev_valid_name);
905
906 /**
907 * __dev_alloc_name - allocate a name for a device
908 * @net: network namespace to allocate the device name in
909 * @name: name format string
910 * @buf: scratch buffer and result name string
911 *
912 * Passed a format string - eg "lt%d" it will try and find a suitable
913 * id. It scans list of devices to build up a free map, then chooses
914 * the first empty slot. The caller must hold the dev_base or rtnl lock
915 * while allocating the name and adding the device in order to avoid
916 * duplicates.
917 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
918 * Returns the number of the unit assigned or a negative errno code.
919 */
920
921 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
922 {
923 int i = 0;
924 const char *p;
925 const int max_netdevices = 8*PAGE_SIZE;
926 unsigned long *inuse;
927 struct net_device *d;
928
929 p = strnchr(name, IFNAMSIZ-1, '%');
930 if (p) {
931 /*
932 * Verify the string as this thing may have come from
933 * the user. There must be either one "%d" and no other "%"
934 * characters.
935 */
936 if (p[1] != 'd' || strchr(p + 2, '%'))
937 return -EINVAL;
938
939 /* Use one page as a bit array of possible slots */
940 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
941 if (!inuse)
942 return -ENOMEM;
943
944 for_each_netdev(net, d) {
945 if (!sscanf(d->name, name, &i))
946 continue;
947 if (i < 0 || i >= max_netdevices)
948 continue;
949
950 /* avoid cases where sscanf is not exact inverse of printf */
951 snprintf(buf, IFNAMSIZ, name, i);
952 if (!strncmp(buf, d->name, IFNAMSIZ))
953 set_bit(i, inuse);
954 }
955
956 i = find_first_zero_bit(inuse, max_netdevices);
957 free_page((unsigned long) inuse);
958 }
959
960 if (buf != name)
961 snprintf(buf, IFNAMSIZ, name, i);
962 if (!__dev_get_by_name(net, buf))
963 return i;
964
965 /* It is possible to run out of possible slots
966 * when the name is long and there isn't enough space left
967 * for the digits, or if all bits are used.
968 */
969 return -ENFILE;
970 }
971
972 /**
973 * dev_alloc_name - allocate a name for a device
974 * @dev: device
975 * @name: name format string
976 *
977 * Passed a format string - eg "lt%d" it will try and find a suitable
978 * id. It scans list of devices to build up a free map, then chooses
979 * the first empty slot. The caller must hold the dev_base or rtnl lock
980 * while allocating the name and adding the device in order to avoid
981 * duplicates.
982 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
983 * Returns the number of the unit assigned or a negative errno code.
984 */
985
986 int dev_alloc_name(struct net_device *dev, const char *name)
987 {
988 char buf[IFNAMSIZ];
989 struct net *net;
990 int ret;
991
992 BUG_ON(!dev_net(dev));
993 net = dev_net(dev);
994 ret = __dev_alloc_name(net, name, buf);
995 if (ret >= 0)
996 strlcpy(dev->name, buf, IFNAMSIZ);
997 return ret;
998 }
999 EXPORT_SYMBOL(dev_alloc_name);
1000
1001 static int dev_alloc_name_ns(struct net *net,
1002 struct net_device *dev,
1003 const char *name)
1004 {
1005 char buf[IFNAMSIZ];
1006 int ret;
1007
1008 ret = __dev_alloc_name(net, name, buf);
1009 if (ret >= 0)
1010 strlcpy(dev->name, buf, IFNAMSIZ);
1011 return ret;
1012 }
1013
1014 static int dev_get_valid_name(struct net *net,
1015 struct net_device *dev,
1016 const char *name)
1017 {
1018 BUG_ON(!net);
1019
1020 if (!dev_valid_name(name))
1021 return -EINVAL;
1022
1023 if (strchr(name, '%'))
1024 return dev_alloc_name_ns(net, dev, name);
1025 else if (__dev_get_by_name(net, name))
1026 return -EEXIST;
1027 else if (dev->name != name)
1028 strlcpy(dev->name, name, IFNAMSIZ);
1029
1030 return 0;
1031 }
1032
1033 /**
1034 * dev_change_name - change name of a device
1035 * @dev: device
1036 * @newname: name (or format string) must be at least IFNAMSIZ
1037 *
1038 * Change name of a device, can pass format strings "eth%d".
1039 * for wildcarding.
1040 */
1041 int dev_change_name(struct net_device *dev, const char *newname)
1042 {
1043 char oldname[IFNAMSIZ];
1044 int err = 0;
1045 int ret;
1046 struct net *net;
1047
1048 ASSERT_RTNL();
1049 BUG_ON(!dev_net(dev));
1050
1051 net = dev_net(dev);
1052 if (dev->flags & IFF_UP)
1053 return -EBUSY;
1054
1055 write_seqcount_begin(&devnet_rename_seq);
1056
1057 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1058 write_seqcount_end(&devnet_rename_seq);
1059 return 0;
1060 }
1061
1062 memcpy(oldname, dev->name, IFNAMSIZ);
1063
1064 err = dev_get_valid_name(net, dev, newname);
1065 if (err < 0) {
1066 write_seqcount_end(&devnet_rename_seq);
1067 return err;
1068 }
1069
1070 rollback:
1071 ret = device_rename(&dev->dev, dev->name);
1072 if (ret) {
1073 memcpy(dev->name, oldname, IFNAMSIZ);
1074 write_seqcount_end(&devnet_rename_seq);
1075 return ret;
1076 }
1077
1078 write_seqcount_end(&devnet_rename_seq);
1079
1080 write_lock_bh(&dev_base_lock);
1081 hlist_del_rcu(&dev->name_hlist);
1082 write_unlock_bh(&dev_base_lock);
1083
1084 synchronize_rcu();
1085
1086 write_lock_bh(&dev_base_lock);
1087 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1088 write_unlock_bh(&dev_base_lock);
1089
1090 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1091 ret = notifier_to_errno(ret);
1092
1093 if (ret) {
1094 /* err >= 0 after dev_alloc_name() or stores the first errno */
1095 if (err >= 0) {
1096 err = ret;
1097 write_seqcount_begin(&devnet_rename_seq);
1098 memcpy(dev->name, oldname, IFNAMSIZ);
1099 goto rollback;
1100 } else {
1101 pr_err("%s: name change rollback failed: %d\n",
1102 dev->name, ret);
1103 }
1104 }
1105
1106 return err;
1107 }
1108
1109 /**
1110 * dev_set_alias - change ifalias of a device
1111 * @dev: device
1112 * @alias: name up to IFALIASZ
1113 * @len: limit of bytes to copy from info
1114 *
1115 * Set ifalias for a device,
1116 */
1117 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1118 {
1119 char *new_ifalias;
1120
1121 ASSERT_RTNL();
1122
1123 if (len >= IFALIASZ)
1124 return -EINVAL;
1125
1126 if (!len) {
1127 kfree(dev->ifalias);
1128 dev->ifalias = NULL;
1129 return 0;
1130 }
1131
1132 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1133 if (!new_ifalias)
1134 return -ENOMEM;
1135 dev->ifalias = new_ifalias;
1136
1137 strlcpy(dev->ifalias, alias, len+1);
1138 return len;
1139 }
1140
1141
1142 /**
1143 * netdev_features_change - device changes features
1144 * @dev: device to cause notification
1145 *
1146 * Called to indicate a device has changed features.
1147 */
1148 void netdev_features_change(struct net_device *dev)
1149 {
1150 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1151 }
1152 EXPORT_SYMBOL(netdev_features_change);
1153
1154 /**
1155 * netdev_state_change - device changes state
1156 * @dev: device to cause notification
1157 *
1158 * Called to indicate a device has changed state. This function calls
1159 * the notifier chains for netdev_chain and sends a NEWLINK message
1160 * to the routing socket.
1161 */
1162 void netdev_state_change(struct net_device *dev)
1163 {
1164 if (dev->flags & IFF_UP) {
1165 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1166 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1167 }
1168 }
1169 EXPORT_SYMBOL(netdev_state_change);
1170
1171 /**
1172 * netdev_notify_peers - notify network peers about existence of @dev
1173 * @dev: network device
1174 *
1175 * Generate traffic such that interested network peers are aware of
1176 * @dev, such as by generating a gratuitous ARP. This may be used when
1177 * a device wants to inform the rest of the network about some sort of
1178 * reconfiguration such as a failover event or virtual machine
1179 * migration.
1180 */
1181 void netdev_notify_peers(struct net_device *dev)
1182 {
1183 rtnl_lock();
1184 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1185 rtnl_unlock();
1186 }
1187 EXPORT_SYMBOL(netdev_notify_peers);
1188
1189 static int __dev_open(struct net_device *dev)
1190 {
1191 const struct net_device_ops *ops = dev->netdev_ops;
1192 int ret;
1193
1194 ASSERT_RTNL();
1195
1196 if (!netif_device_present(dev))
1197 return -ENODEV;
1198
1199 /* Block netpoll from trying to do any rx path servicing.
1200 * If we don't do this there is a chance ndo_poll_controller
1201 * or ndo_poll may be running while we open the device
1202 */
1203 ret = netpoll_rx_disable(dev);
1204 if (ret)
1205 return ret;
1206
1207 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1208 ret = notifier_to_errno(ret);
1209 if (ret)
1210 return ret;
1211
1212 set_bit(__LINK_STATE_START, &dev->state);
1213
1214 if (ops->ndo_validate_addr)
1215 ret = ops->ndo_validate_addr(dev);
1216
1217 if (!ret && ops->ndo_open)
1218 ret = ops->ndo_open(dev);
1219
1220 netpoll_rx_enable(dev);
1221
1222 if (ret)
1223 clear_bit(__LINK_STATE_START, &dev->state);
1224 else {
1225 dev->flags |= IFF_UP;
1226 net_dmaengine_get();
1227 dev_set_rx_mode(dev);
1228 dev_activate(dev);
1229 add_device_randomness(dev->dev_addr, dev->addr_len);
1230 }
1231
1232 return ret;
1233 }
1234
1235 /**
1236 * dev_open - prepare an interface for use.
1237 * @dev: device to open
1238 *
1239 * Takes a device from down to up state. The device's private open
1240 * function is invoked and then the multicast lists are loaded. Finally
1241 * the device is moved into the up state and a %NETDEV_UP message is
1242 * sent to the netdev notifier chain.
1243 *
1244 * Calling this function on an active interface is a nop. On a failure
1245 * a negative errno code is returned.
1246 */
1247 int dev_open(struct net_device *dev)
1248 {
1249 int ret;
1250
1251 if (dev->flags & IFF_UP)
1252 return 0;
1253
1254 ret = __dev_open(dev);
1255 if (ret < 0)
1256 return ret;
1257
1258 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1259 call_netdevice_notifiers(NETDEV_UP, dev);
1260
1261 return ret;
1262 }
1263 EXPORT_SYMBOL(dev_open);
1264
1265 static int __dev_close_many(struct list_head *head)
1266 {
1267 struct net_device *dev;
1268
1269 ASSERT_RTNL();
1270 might_sleep();
1271
1272 list_for_each_entry(dev, head, unreg_list) {
1273 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1274
1275 clear_bit(__LINK_STATE_START, &dev->state);
1276
1277 /* Synchronize to scheduled poll. We cannot touch poll list, it
1278 * can be even on different cpu. So just clear netif_running().
1279 *
1280 * dev->stop() will invoke napi_disable() on all of it's
1281 * napi_struct instances on this device.
1282 */
1283 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1284 }
1285
1286 dev_deactivate_many(head);
1287
1288 list_for_each_entry(dev, head, unreg_list) {
1289 const struct net_device_ops *ops = dev->netdev_ops;
1290
1291 /*
1292 * Call the device specific close. This cannot fail.
1293 * Only if device is UP
1294 *
1295 * We allow it to be called even after a DETACH hot-plug
1296 * event.
1297 */
1298 if (ops->ndo_stop)
1299 ops->ndo_stop(dev);
1300
1301 dev->flags &= ~IFF_UP;
1302 net_dmaengine_put();
1303 }
1304
1305 return 0;
1306 }
1307
1308 static int __dev_close(struct net_device *dev)
1309 {
1310 int retval;
1311 LIST_HEAD(single);
1312
1313 /* Temporarily disable netpoll until the interface is down */
1314 retval = netpoll_rx_disable(dev);
1315 if (retval)
1316 return retval;
1317
1318 list_add(&dev->unreg_list, &single);
1319 retval = __dev_close_many(&single);
1320 list_del(&single);
1321
1322 netpoll_rx_enable(dev);
1323 return retval;
1324 }
1325
1326 static int dev_close_many(struct list_head *head)
1327 {
1328 struct net_device *dev, *tmp;
1329 LIST_HEAD(tmp_list);
1330
1331 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1332 if (!(dev->flags & IFF_UP))
1333 list_move(&dev->unreg_list, &tmp_list);
1334
1335 __dev_close_many(head);
1336
1337 list_for_each_entry(dev, head, unreg_list) {
1338 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1339 call_netdevice_notifiers(NETDEV_DOWN, dev);
1340 }
1341
1342 /* rollback_registered_many needs the complete original list */
1343 list_splice(&tmp_list, head);
1344 return 0;
1345 }
1346
1347 /**
1348 * dev_close - shutdown an interface.
1349 * @dev: device to shutdown
1350 *
1351 * This function moves an active device into down state. A
1352 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1353 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1354 * chain.
1355 */
1356 int dev_close(struct net_device *dev)
1357 {
1358 int ret = 0;
1359 if (dev->flags & IFF_UP) {
1360 LIST_HEAD(single);
1361
1362 /* Block netpoll rx while the interface is going down */
1363 ret = netpoll_rx_disable(dev);
1364 if (ret)
1365 return ret;
1366
1367 list_add(&dev->unreg_list, &single);
1368 dev_close_many(&single);
1369 list_del(&single);
1370
1371 netpoll_rx_enable(dev);
1372 }
1373 return ret;
1374 }
1375 EXPORT_SYMBOL(dev_close);
1376
1377
1378 /**
1379 * dev_disable_lro - disable Large Receive Offload on a device
1380 * @dev: device
1381 *
1382 * Disable Large Receive Offload (LRO) on a net device. Must be
1383 * called under RTNL. This is needed if received packets may be
1384 * forwarded to another interface.
1385 */
1386 void dev_disable_lro(struct net_device *dev)
1387 {
1388 /*
1389 * If we're trying to disable lro on a vlan device
1390 * use the underlying physical device instead
1391 */
1392 if (is_vlan_dev(dev))
1393 dev = vlan_dev_real_dev(dev);
1394
1395 dev->wanted_features &= ~NETIF_F_LRO;
1396 netdev_update_features(dev);
1397
1398 if (unlikely(dev->features & NETIF_F_LRO))
1399 netdev_WARN(dev, "failed to disable LRO!\n");
1400 }
1401 EXPORT_SYMBOL(dev_disable_lro);
1402
1403
1404 static int dev_boot_phase = 1;
1405
1406 /**
1407 * register_netdevice_notifier - register a network notifier block
1408 * @nb: notifier
1409 *
1410 * Register a notifier to be called when network device events occur.
1411 * The notifier passed is linked into the kernel structures and must
1412 * not be reused until it has been unregistered. A negative errno code
1413 * is returned on a failure.
1414 *
1415 * When registered all registration and up events are replayed
1416 * to the new notifier to allow device to have a race free
1417 * view of the network device list.
1418 */
1419
1420 int register_netdevice_notifier(struct notifier_block *nb)
1421 {
1422 struct net_device *dev;
1423 struct net_device *last;
1424 struct net *net;
1425 int err;
1426
1427 rtnl_lock();
1428 err = raw_notifier_chain_register(&netdev_chain, nb);
1429 if (err)
1430 goto unlock;
1431 if (dev_boot_phase)
1432 goto unlock;
1433 for_each_net(net) {
1434 for_each_netdev(net, dev) {
1435 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1436 err = notifier_to_errno(err);
1437 if (err)
1438 goto rollback;
1439
1440 if (!(dev->flags & IFF_UP))
1441 continue;
1442
1443 nb->notifier_call(nb, NETDEV_UP, dev);
1444 }
1445 }
1446
1447 unlock:
1448 rtnl_unlock();
1449 return err;
1450
1451 rollback:
1452 last = dev;
1453 for_each_net(net) {
1454 for_each_netdev(net, dev) {
1455 if (dev == last)
1456 goto outroll;
1457
1458 if (dev->flags & IFF_UP) {
1459 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1460 nb->notifier_call(nb, NETDEV_DOWN, dev);
1461 }
1462 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1463 }
1464 }
1465
1466 outroll:
1467 raw_notifier_chain_unregister(&netdev_chain, nb);
1468 goto unlock;
1469 }
1470 EXPORT_SYMBOL(register_netdevice_notifier);
1471
1472 /**
1473 * unregister_netdevice_notifier - unregister a network notifier block
1474 * @nb: notifier
1475 *
1476 * Unregister a notifier previously registered by
1477 * register_netdevice_notifier(). The notifier is unlinked into the
1478 * kernel structures and may then be reused. A negative errno code
1479 * is returned on a failure.
1480 *
1481 * After unregistering unregister and down device events are synthesized
1482 * for all devices on the device list to the removed notifier to remove
1483 * the need for special case cleanup code.
1484 */
1485
1486 int unregister_netdevice_notifier(struct notifier_block *nb)
1487 {
1488 struct net_device *dev;
1489 struct net *net;
1490 int err;
1491
1492 rtnl_lock();
1493 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1494 if (err)
1495 goto unlock;
1496
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev->flags & IFF_UP) {
1500 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1501 nb->notifier_call(nb, NETDEV_DOWN, dev);
1502 }
1503 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1504 }
1505 }
1506 unlock:
1507 rtnl_unlock();
1508 return err;
1509 }
1510 EXPORT_SYMBOL(unregister_netdevice_notifier);
1511
1512 /**
1513 * call_netdevice_notifiers - call all network notifier blocks
1514 * @val: value passed unmodified to notifier function
1515 * @dev: net_device pointer passed unmodified to notifier function
1516 *
1517 * Call all network notifier blocks. Parameters and return value
1518 * are as for raw_notifier_call_chain().
1519 */
1520
1521 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1522 {
1523 ASSERT_RTNL();
1524 return raw_notifier_call_chain(&netdev_chain, val, dev);
1525 }
1526 EXPORT_SYMBOL(call_netdevice_notifiers);
1527
1528 static struct static_key netstamp_needed __read_mostly;
1529 #ifdef HAVE_JUMP_LABEL
1530 /* We are not allowed to call static_key_slow_dec() from irq context
1531 * If net_disable_timestamp() is called from irq context, defer the
1532 * static_key_slow_dec() calls.
1533 */
1534 static atomic_t netstamp_needed_deferred;
1535 #endif
1536
1537 void net_enable_timestamp(void)
1538 {
1539 #ifdef HAVE_JUMP_LABEL
1540 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1541
1542 if (deferred) {
1543 while (--deferred)
1544 static_key_slow_dec(&netstamp_needed);
1545 return;
1546 }
1547 #endif
1548 static_key_slow_inc(&netstamp_needed);
1549 }
1550 EXPORT_SYMBOL(net_enable_timestamp);
1551
1552 void net_disable_timestamp(void)
1553 {
1554 #ifdef HAVE_JUMP_LABEL
1555 if (in_interrupt()) {
1556 atomic_inc(&netstamp_needed_deferred);
1557 return;
1558 }
1559 #endif
1560 static_key_slow_dec(&netstamp_needed);
1561 }
1562 EXPORT_SYMBOL(net_disable_timestamp);
1563
1564 static inline void net_timestamp_set(struct sk_buff *skb)
1565 {
1566 skb->tstamp.tv64 = 0;
1567 if (static_key_false(&netstamp_needed))
1568 __net_timestamp(skb);
1569 }
1570
1571 #define net_timestamp_check(COND, SKB) \
1572 if (static_key_false(&netstamp_needed)) { \
1573 if ((COND) && !(SKB)->tstamp.tv64) \
1574 __net_timestamp(SKB); \
1575 } \
1576
1577 static inline bool is_skb_forwardable(struct net_device *dev,
1578 struct sk_buff *skb)
1579 {
1580 unsigned int len;
1581
1582 if (!(dev->flags & IFF_UP))
1583 return false;
1584
1585 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1586 if (skb->len <= len)
1587 return true;
1588
1589 /* if TSO is enabled, we don't care about the length as the packet
1590 * could be forwarded without being segmented before
1591 */
1592 if (skb_is_gso(skb))
1593 return true;
1594
1595 return false;
1596 }
1597
1598 /**
1599 * dev_forward_skb - loopback an skb to another netif
1600 *
1601 * @dev: destination network device
1602 * @skb: buffer to forward
1603 *
1604 * return values:
1605 * NET_RX_SUCCESS (no congestion)
1606 * NET_RX_DROP (packet was dropped, but freed)
1607 *
1608 * dev_forward_skb can be used for injecting an skb from the
1609 * start_xmit function of one device into the receive queue
1610 * of another device.
1611 *
1612 * The receiving device may be in another namespace, so
1613 * we have to clear all information in the skb that could
1614 * impact namespace isolation.
1615 */
1616 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1617 {
1618 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1619 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1620 atomic_long_inc(&dev->rx_dropped);
1621 kfree_skb(skb);
1622 return NET_RX_DROP;
1623 }
1624 }
1625
1626 skb_orphan(skb);
1627
1628 if (unlikely(!is_skb_forwardable(dev, skb))) {
1629 atomic_long_inc(&dev->rx_dropped);
1630 kfree_skb(skb);
1631 return NET_RX_DROP;
1632 }
1633 skb->skb_iif = 0;
1634 skb->dev = dev;
1635 skb_dst_drop(skb);
1636 skb->tstamp.tv64 = 0;
1637 skb->pkt_type = PACKET_HOST;
1638 skb->protocol = eth_type_trans(skb, dev);
1639 skb->mark = 0;
1640 secpath_reset(skb);
1641 nf_reset(skb);
1642 nf_reset_trace(skb);
1643 return netif_rx(skb);
1644 }
1645 EXPORT_SYMBOL_GPL(dev_forward_skb);
1646
1647 static inline int deliver_skb(struct sk_buff *skb,
1648 struct packet_type *pt_prev,
1649 struct net_device *orig_dev)
1650 {
1651 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1652 return -ENOMEM;
1653 atomic_inc(&skb->users);
1654 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1655 }
1656
1657 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1658 {
1659 if (!ptype->af_packet_priv || !skb->sk)
1660 return false;
1661
1662 if (ptype->id_match)
1663 return ptype->id_match(ptype, skb->sk);
1664 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1665 return true;
1666
1667 return false;
1668 }
1669
1670 /*
1671 * Support routine. Sends outgoing frames to any network
1672 * taps currently in use.
1673 */
1674
1675 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1676 {
1677 struct packet_type *ptype;
1678 struct sk_buff *skb2 = NULL;
1679 struct packet_type *pt_prev = NULL;
1680
1681 rcu_read_lock();
1682 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1683 /* Never send packets back to the socket
1684 * they originated from - MvS (miquels@drinkel.ow.org)
1685 */
1686 if ((ptype->dev == dev || !ptype->dev) &&
1687 (!skb_loop_sk(ptype, skb))) {
1688 if (pt_prev) {
1689 deliver_skb(skb2, pt_prev, skb->dev);
1690 pt_prev = ptype;
1691 continue;
1692 }
1693
1694 skb2 = skb_clone(skb, GFP_ATOMIC);
1695 if (!skb2)
1696 break;
1697
1698 net_timestamp_set(skb2);
1699
1700 /* skb->nh should be correctly
1701 set by sender, so that the second statement is
1702 just protection against buggy protocols.
1703 */
1704 skb_reset_mac_header(skb2);
1705
1706 if (skb_network_header(skb2) < skb2->data ||
1707 skb2->network_header > skb2->tail) {
1708 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1709 ntohs(skb2->protocol),
1710 dev->name);
1711 skb_reset_network_header(skb2);
1712 }
1713
1714 skb2->transport_header = skb2->network_header;
1715 skb2->pkt_type = PACKET_OUTGOING;
1716 pt_prev = ptype;
1717 }
1718 }
1719 if (pt_prev)
1720 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1721 rcu_read_unlock();
1722 }
1723
1724 /**
1725 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1726 * @dev: Network device
1727 * @txq: number of queues available
1728 *
1729 * If real_num_tx_queues is changed the tc mappings may no longer be
1730 * valid. To resolve this verify the tc mapping remains valid and if
1731 * not NULL the mapping. With no priorities mapping to this
1732 * offset/count pair it will no longer be used. In the worst case TC0
1733 * is invalid nothing can be done so disable priority mappings. If is
1734 * expected that drivers will fix this mapping if they can before
1735 * calling netif_set_real_num_tx_queues.
1736 */
1737 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1738 {
1739 int i;
1740 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1741
1742 /* If TC0 is invalidated disable TC mapping */
1743 if (tc->offset + tc->count > txq) {
1744 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1745 dev->num_tc = 0;
1746 return;
1747 }
1748
1749 /* Invalidated prio to tc mappings set to TC0 */
1750 for (i = 1; i < TC_BITMASK + 1; i++) {
1751 int q = netdev_get_prio_tc_map(dev, i);
1752
1753 tc = &dev->tc_to_txq[q];
1754 if (tc->offset + tc->count > txq) {
1755 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1756 i, q);
1757 netdev_set_prio_tc_map(dev, i, 0);
1758 }
1759 }
1760 }
1761
1762 #ifdef CONFIG_XPS
1763 static DEFINE_MUTEX(xps_map_mutex);
1764 #define xmap_dereference(P) \
1765 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1766
1767 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1768 int cpu, u16 index)
1769 {
1770 struct xps_map *map = NULL;
1771 int pos;
1772
1773 if (dev_maps)
1774 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1775
1776 for (pos = 0; map && pos < map->len; pos++) {
1777 if (map->queues[pos] == index) {
1778 if (map->len > 1) {
1779 map->queues[pos] = map->queues[--map->len];
1780 } else {
1781 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1782 kfree_rcu(map, rcu);
1783 map = NULL;
1784 }
1785 break;
1786 }
1787 }
1788
1789 return map;
1790 }
1791
1792 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1793 {
1794 struct xps_dev_maps *dev_maps;
1795 int cpu, i;
1796 bool active = false;
1797
1798 mutex_lock(&xps_map_mutex);
1799 dev_maps = xmap_dereference(dev->xps_maps);
1800
1801 if (!dev_maps)
1802 goto out_no_maps;
1803
1804 for_each_possible_cpu(cpu) {
1805 for (i = index; i < dev->num_tx_queues; i++) {
1806 if (!remove_xps_queue(dev_maps, cpu, i))
1807 break;
1808 }
1809 if (i == dev->num_tx_queues)
1810 active = true;
1811 }
1812
1813 if (!active) {
1814 RCU_INIT_POINTER(dev->xps_maps, NULL);
1815 kfree_rcu(dev_maps, rcu);
1816 }
1817
1818 for (i = index; i < dev->num_tx_queues; i++)
1819 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1820 NUMA_NO_NODE);
1821
1822 out_no_maps:
1823 mutex_unlock(&xps_map_mutex);
1824 }
1825
1826 static struct xps_map *expand_xps_map(struct xps_map *map,
1827 int cpu, u16 index)
1828 {
1829 struct xps_map *new_map;
1830 int alloc_len = XPS_MIN_MAP_ALLOC;
1831 int i, pos;
1832
1833 for (pos = 0; map && pos < map->len; pos++) {
1834 if (map->queues[pos] != index)
1835 continue;
1836 return map;
1837 }
1838
1839 /* Need to add queue to this CPU's existing map */
1840 if (map) {
1841 if (pos < map->alloc_len)
1842 return map;
1843
1844 alloc_len = map->alloc_len * 2;
1845 }
1846
1847 /* Need to allocate new map to store queue on this CPU's map */
1848 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1849 cpu_to_node(cpu));
1850 if (!new_map)
1851 return NULL;
1852
1853 for (i = 0; i < pos; i++)
1854 new_map->queues[i] = map->queues[i];
1855 new_map->alloc_len = alloc_len;
1856 new_map->len = pos;
1857
1858 return new_map;
1859 }
1860
1861 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1862 {
1863 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1864 struct xps_map *map, *new_map;
1865 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1866 int cpu, numa_node_id = -2;
1867 bool active = false;
1868
1869 mutex_lock(&xps_map_mutex);
1870
1871 dev_maps = xmap_dereference(dev->xps_maps);
1872
1873 /* allocate memory for queue storage */
1874 for_each_online_cpu(cpu) {
1875 if (!cpumask_test_cpu(cpu, mask))
1876 continue;
1877
1878 if (!new_dev_maps)
1879 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1880 if (!new_dev_maps) {
1881 mutex_unlock(&xps_map_mutex);
1882 return -ENOMEM;
1883 }
1884
1885 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1886 NULL;
1887
1888 map = expand_xps_map(map, cpu, index);
1889 if (!map)
1890 goto error;
1891
1892 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1893 }
1894
1895 if (!new_dev_maps)
1896 goto out_no_new_maps;
1897
1898 for_each_possible_cpu(cpu) {
1899 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1900 /* add queue to CPU maps */
1901 int pos = 0;
1902
1903 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1904 while ((pos < map->len) && (map->queues[pos] != index))
1905 pos++;
1906
1907 if (pos == map->len)
1908 map->queues[map->len++] = index;
1909 #ifdef CONFIG_NUMA
1910 if (numa_node_id == -2)
1911 numa_node_id = cpu_to_node(cpu);
1912 else if (numa_node_id != cpu_to_node(cpu))
1913 numa_node_id = -1;
1914 #endif
1915 } else if (dev_maps) {
1916 /* fill in the new device map from the old device map */
1917 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1918 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1919 }
1920
1921 }
1922
1923 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1924
1925 /* Cleanup old maps */
1926 if (dev_maps) {
1927 for_each_possible_cpu(cpu) {
1928 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1929 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1930 if (map && map != new_map)
1931 kfree_rcu(map, rcu);
1932 }
1933
1934 kfree_rcu(dev_maps, rcu);
1935 }
1936
1937 dev_maps = new_dev_maps;
1938 active = true;
1939
1940 out_no_new_maps:
1941 /* update Tx queue numa node */
1942 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1943 (numa_node_id >= 0) ? numa_node_id :
1944 NUMA_NO_NODE);
1945
1946 if (!dev_maps)
1947 goto out_no_maps;
1948
1949 /* removes queue from unused CPUs */
1950 for_each_possible_cpu(cpu) {
1951 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1952 continue;
1953
1954 if (remove_xps_queue(dev_maps, cpu, index))
1955 active = true;
1956 }
1957
1958 /* free map if not active */
1959 if (!active) {
1960 RCU_INIT_POINTER(dev->xps_maps, NULL);
1961 kfree_rcu(dev_maps, rcu);
1962 }
1963
1964 out_no_maps:
1965 mutex_unlock(&xps_map_mutex);
1966
1967 return 0;
1968 error:
1969 /* remove any maps that we added */
1970 for_each_possible_cpu(cpu) {
1971 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1972 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1973 NULL;
1974 if (new_map && new_map != map)
1975 kfree(new_map);
1976 }
1977
1978 mutex_unlock(&xps_map_mutex);
1979
1980 kfree(new_dev_maps);
1981 return -ENOMEM;
1982 }
1983 EXPORT_SYMBOL(netif_set_xps_queue);
1984
1985 #endif
1986 /*
1987 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1988 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1989 */
1990 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1991 {
1992 int rc;
1993
1994 if (txq < 1 || txq > dev->num_tx_queues)
1995 return -EINVAL;
1996
1997 if (dev->reg_state == NETREG_REGISTERED ||
1998 dev->reg_state == NETREG_UNREGISTERING) {
1999 ASSERT_RTNL();
2000
2001 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2002 txq);
2003 if (rc)
2004 return rc;
2005
2006 if (dev->num_tc)
2007 netif_setup_tc(dev, txq);
2008
2009 if (txq < dev->real_num_tx_queues) {
2010 qdisc_reset_all_tx_gt(dev, txq);
2011 #ifdef CONFIG_XPS
2012 netif_reset_xps_queues_gt(dev, txq);
2013 #endif
2014 }
2015 }
2016
2017 dev->real_num_tx_queues = txq;
2018 return 0;
2019 }
2020 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2021
2022 #ifdef CONFIG_RPS
2023 /**
2024 * netif_set_real_num_rx_queues - set actual number of RX queues used
2025 * @dev: Network device
2026 * @rxq: Actual number of RX queues
2027 *
2028 * This must be called either with the rtnl_lock held or before
2029 * registration of the net device. Returns 0 on success, or a
2030 * negative error code. If called before registration, it always
2031 * succeeds.
2032 */
2033 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2034 {
2035 int rc;
2036
2037 if (rxq < 1 || rxq > dev->num_rx_queues)
2038 return -EINVAL;
2039
2040 if (dev->reg_state == NETREG_REGISTERED) {
2041 ASSERT_RTNL();
2042
2043 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2044 rxq);
2045 if (rc)
2046 return rc;
2047 }
2048
2049 dev->real_num_rx_queues = rxq;
2050 return 0;
2051 }
2052 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2053 #endif
2054
2055 /**
2056 * netif_get_num_default_rss_queues - default number of RSS queues
2057 *
2058 * This routine should set an upper limit on the number of RSS queues
2059 * used by default by multiqueue devices.
2060 */
2061 int netif_get_num_default_rss_queues(void)
2062 {
2063 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2064 }
2065 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2066
2067 static inline void __netif_reschedule(struct Qdisc *q)
2068 {
2069 struct softnet_data *sd;
2070 unsigned long flags;
2071
2072 local_irq_save(flags);
2073 sd = &__get_cpu_var(softnet_data);
2074 q->next_sched = NULL;
2075 *sd->output_queue_tailp = q;
2076 sd->output_queue_tailp = &q->next_sched;
2077 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2078 local_irq_restore(flags);
2079 }
2080
2081 void __netif_schedule(struct Qdisc *q)
2082 {
2083 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2084 __netif_reschedule(q);
2085 }
2086 EXPORT_SYMBOL(__netif_schedule);
2087
2088 void dev_kfree_skb_irq(struct sk_buff *skb)
2089 {
2090 if (atomic_dec_and_test(&skb->users)) {
2091 struct softnet_data *sd;
2092 unsigned long flags;
2093
2094 local_irq_save(flags);
2095 sd = &__get_cpu_var(softnet_data);
2096 skb->next = sd->completion_queue;
2097 sd->completion_queue = skb;
2098 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2099 local_irq_restore(flags);
2100 }
2101 }
2102 EXPORT_SYMBOL(dev_kfree_skb_irq);
2103
2104 void dev_kfree_skb_any(struct sk_buff *skb)
2105 {
2106 if (in_irq() || irqs_disabled())
2107 dev_kfree_skb_irq(skb);
2108 else
2109 dev_kfree_skb(skb);
2110 }
2111 EXPORT_SYMBOL(dev_kfree_skb_any);
2112
2113
2114 /**
2115 * netif_device_detach - mark device as removed
2116 * @dev: network device
2117 *
2118 * Mark device as removed from system and therefore no longer available.
2119 */
2120 void netif_device_detach(struct net_device *dev)
2121 {
2122 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2123 netif_running(dev)) {
2124 netif_tx_stop_all_queues(dev);
2125 }
2126 }
2127 EXPORT_SYMBOL(netif_device_detach);
2128
2129 /**
2130 * netif_device_attach - mark device as attached
2131 * @dev: network device
2132 *
2133 * Mark device as attached from system and restart if needed.
2134 */
2135 void netif_device_attach(struct net_device *dev)
2136 {
2137 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2138 netif_running(dev)) {
2139 netif_tx_wake_all_queues(dev);
2140 __netdev_watchdog_up(dev);
2141 }
2142 }
2143 EXPORT_SYMBOL(netif_device_attach);
2144
2145 static void skb_warn_bad_offload(const struct sk_buff *skb)
2146 {
2147 static const netdev_features_t null_features = 0;
2148 struct net_device *dev = skb->dev;
2149 const char *driver = "";
2150
2151 if (dev && dev->dev.parent)
2152 driver = dev_driver_string(dev->dev.parent);
2153
2154 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2155 "gso_type=%d ip_summed=%d\n",
2156 driver, dev ? &dev->features : &null_features,
2157 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2158 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2159 skb_shinfo(skb)->gso_type, skb->ip_summed);
2160 }
2161
2162 /*
2163 * Invalidate hardware checksum when packet is to be mangled, and
2164 * complete checksum manually on outgoing path.
2165 */
2166 int skb_checksum_help(struct sk_buff *skb)
2167 {
2168 __wsum csum;
2169 int ret = 0, offset;
2170
2171 if (skb->ip_summed == CHECKSUM_COMPLETE)
2172 goto out_set_summed;
2173
2174 if (unlikely(skb_shinfo(skb)->gso_size)) {
2175 skb_warn_bad_offload(skb);
2176 return -EINVAL;
2177 }
2178
2179 /* Before computing a checksum, we should make sure no frag could
2180 * be modified by an external entity : checksum could be wrong.
2181 */
2182 if (skb_has_shared_frag(skb)) {
2183 ret = __skb_linearize(skb);
2184 if (ret)
2185 goto out;
2186 }
2187
2188 offset = skb_checksum_start_offset(skb);
2189 BUG_ON(offset >= skb_headlen(skb));
2190 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2191
2192 offset += skb->csum_offset;
2193 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2194
2195 if (skb_cloned(skb) &&
2196 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2197 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2198 if (ret)
2199 goto out;
2200 }
2201
2202 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2203 out_set_summed:
2204 skb->ip_summed = CHECKSUM_NONE;
2205 out:
2206 return ret;
2207 }
2208 EXPORT_SYMBOL(skb_checksum_help);
2209
2210 __be16 skb_network_protocol(struct sk_buff *skb)
2211 {
2212 __be16 type = skb->protocol;
2213 int vlan_depth = ETH_HLEN;
2214
2215 while (type == htons(ETH_P_8021Q)) {
2216 struct vlan_hdr *vh;
2217
2218 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2219 return 0;
2220
2221 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2222 type = vh->h_vlan_encapsulated_proto;
2223 vlan_depth += VLAN_HLEN;
2224 }
2225
2226 return type;
2227 }
2228
2229 /**
2230 * skb_mac_gso_segment - mac layer segmentation handler.
2231 * @skb: buffer to segment
2232 * @features: features for the output path (see dev->features)
2233 */
2234 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2235 netdev_features_t features)
2236 {
2237 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2238 struct packet_offload *ptype;
2239 __be16 type = skb_network_protocol(skb);
2240
2241 if (unlikely(!type))
2242 return ERR_PTR(-EINVAL);
2243
2244 __skb_pull(skb, skb->mac_len);
2245
2246 rcu_read_lock();
2247 list_for_each_entry_rcu(ptype, &offload_base, list) {
2248 if (ptype->type == type && ptype->callbacks.gso_segment) {
2249 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2250 int err;
2251
2252 err = ptype->callbacks.gso_send_check(skb);
2253 segs = ERR_PTR(err);
2254 if (err || skb_gso_ok(skb, features))
2255 break;
2256 __skb_push(skb, (skb->data -
2257 skb_network_header(skb)));
2258 }
2259 segs = ptype->callbacks.gso_segment(skb, features);
2260 break;
2261 }
2262 }
2263 rcu_read_unlock();
2264
2265 __skb_push(skb, skb->data - skb_mac_header(skb));
2266
2267 return segs;
2268 }
2269 EXPORT_SYMBOL(skb_mac_gso_segment);
2270
2271
2272 /* openvswitch calls this on rx path, so we need a different check.
2273 */
2274 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2275 {
2276 if (tx_path)
2277 return skb->ip_summed != CHECKSUM_PARTIAL;
2278 else
2279 return skb->ip_summed == CHECKSUM_NONE;
2280 }
2281
2282 /**
2283 * __skb_gso_segment - Perform segmentation on skb.
2284 * @skb: buffer to segment
2285 * @features: features for the output path (see dev->features)
2286 * @tx_path: whether it is called in TX path
2287 *
2288 * This function segments the given skb and returns a list of segments.
2289 *
2290 * It may return NULL if the skb requires no segmentation. This is
2291 * only possible when GSO is used for verifying header integrity.
2292 */
2293 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2294 netdev_features_t features, bool tx_path)
2295 {
2296 if (unlikely(skb_needs_check(skb, tx_path))) {
2297 int err;
2298
2299 skb_warn_bad_offload(skb);
2300
2301 if (skb_header_cloned(skb) &&
2302 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2303 return ERR_PTR(err);
2304 }
2305
2306 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2307 skb_reset_mac_header(skb);
2308 skb_reset_mac_len(skb);
2309
2310 return skb_mac_gso_segment(skb, features);
2311 }
2312 EXPORT_SYMBOL(__skb_gso_segment);
2313
2314 /* Take action when hardware reception checksum errors are detected. */
2315 #ifdef CONFIG_BUG
2316 void netdev_rx_csum_fault(struct net_device *dev)
2317 {
2318 if (net_ratelimit()) {
2319 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2320 dump_stack();
2321 }
2322 }
2323 EXPORT_SYMBOL(netdev_rx_csum_fault);
2324 #endif
2325
2326 /* Actually, we should eliminate this check as soon as we know, that:
2327 * 1. IOMMU is present and allows to map all the memory.
2328 * 2. No high memory really exists on this machine.
2329 */
2330
2331 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2332 {
2333 #ifdef CONFIG_HIGHMEM
2334 int i;
2335 if (!(dev->features & NETIF_F_HIGHDMA)) {
2336 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2337 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2338 if (PageHighMem(skb_frag_page(frag)))
2339 return 1;
2340 }
2341 }
2342
2343 if (PCI_DMA_BUS_IS_PHYS) {
2344 struct device *pdev = dev->dev.parent;
2345
2346 if (!pdev)
2347 return 0;
2348 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2349 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2350 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2351 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2352 return 1;
2353 }
2354 }
2355 #endif
2356 return 0;
2357 }
2358
2359 struct dev_gso_cb {
2360 void (*destructor)(struct sk_buff *skb);
2361 };
2362
2363 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2364
2365 static void dev_gso_skb_destructor(struct sk_buff *skb)
2366 {
2367 struct dev_gso_cb *cb;
2368
2369 do {
2370 struct sk_buff *nskb = skb->next;
2371
2372 skb->next = nskb->next;
2373 nskb->next = NULL;
2374 kfree_skb(nskb);
2375 } while (skb->next);
2376
2377 cb = DEV_GSO_CB(skb);
2378 if (cb->destructor)
2379 cb->destructor(skb);
2380 }
2381
2382 /**
2383 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2384 * @skb: buffer to segment
2385 * @features: device features as applicable to this skb
2386 *
2387 * This function segments the given skb and stores the list of segments
2388 * in skb->next.
2389 */
2390 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2391 {
2392 struct sk_buff *segs;
2393
2394 segs = skb_gso_segment(skb, features);
2395
2396 /* Verifying header integrity only. */
2397 if (!segs)
2398 return 0;
2399
2400 if (IS_ERR(segs))
2401 return PTR_ERR(segs);
2402
2403 skb->next = segs;
2404 DEV_GSO_CB(skb)->destructor = skb->destructor;
2405 skb->destructor = dev_gso_skb_destructor;
2406
2407 return 0;
2408 }
2409
2410 static netdev_features_t harmonize_features(struct sk_buff *skb,
2411 __be16 protocol, netdev_features_t features)
2412 {
2413 if (skb->ip_summed != CHECKSUM_NONE &&
2414 !can_checksum_protocol(features, protocol)) {
2415 features &= ~NETIF_F_ALL_CSUM;
2416 } else if (illegal_highdma(skb->dev, skb)) {
2417 features &= ~NETIF_F_SG;
2418 }
2419
2420 return features;
2421 }
2422
2423 netdev_features_t netif_skb_features(struct sk_buff *skb)
2424 {
2425 __be16 protocol = skb->protocol;
2426 netdev_features_t features = skb->dev->features;
2427
2428 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2429 features &= ~NETIF_F_GSO_MASK;
2430
2431 if (protocol == htons(ETH_P_8021Q)) {
2432 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2433 protocol = veh->h_vlan_encapsulated_proto;
2434 } else if (!vlan_tx_tag_present(skb)) {
2435 return harmonize_features(skb, protocol, features);
2436 }
2437
2438 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX);
2439
2440 if (protocol != htons(ETH_P_8021Q)) {
2441 return harmonize_features(skb, protocol, features);
2442 } else {
2443 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2444 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX;
2445 return harmonize_features(skb, protocol, features);
2446 }
2447 }
2448 EXPORT_SYMBOL(netif_skb_features);
2449
2450 /*
2451 * Returns true if either:
2452 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2453 * 2. skb is fragmented and the device does not support SG.
2454 */
2455 static inline int skb_needs_linearize(struct sk_buff *skb,
2456 int features)
2457 {
2458 return skb_is_nonlinear(skb) &&
2459 ((skb_has_frag_list(skb) &&
2460 !(features & NETIF_F_FRAGLIST)) ||
2461 (skb_shinfo(skb)->nr_frags &&
2462 !(features & NETIF_F_SG)));
2463 }
2464
2465 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2466 struct netdev_queue *txq)
2467 {
2468 const struct net_device_ops *ops = dev->netdev_ops;
2469 int rc = NETDEV_TX_OK;
2470 unsigned int skb_len;
2471
2472 if (likely(!skb->next)) {
2473 netdev_features_t features;
2474
2475 /*
2476 * If device doesn't need skb->dst, release it right now while
2477 * its hot in this cpu cache
2478 */
2479 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2480 skb_dst_drop(skb);
2481
2482 features = netif_skb_features(skb);
2483
2484 if (vlan_tx_tag_present(skb) &&
2485 !(features & NETIF_F_HW_VLAN_CTAG_TX)) {
2486 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2487 if (unlikely(!skb))
2488 goto out;
2489
2490 skb->vlan_tci = 0;
2491 }
2492
2493 /* If encapsulation offload request, verify we are testing
2494 * hardware encapsulation features instead of standard
2495 * features for the netdev
2496 */
2497 if (skb->encapsulation)
2498 features &= dev->hw_enc_features;
2499
2500 if (netif_needs_gso(skb, features)) {
2501 if (unlikely(dev_gso_segment(skb, features)))
2502 goto out_kfree_skb;
2503 if (skb->next)
2504 goto gso;
2505 } else {
2506 if (skb_needs_linearize(skb, features) &&
2507 __skb_linearize(skb))
2508 goto out_kfree_skb;
2509
2510 /* If packet is not checksummed and device does not
2511 * support checksumming for this protocol, complete
2512 * checksumming here.
2513 */
2514 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2515 if (skb->encapsulation)
2516 skb_set_inner_transport_header(skb,
2517 skb_checksum_start_offset(skb));
2518 else
2519 skb_set_transport_header(skb,
2520 skb_checksum_start_offset(skb));
2521 if (!(features & NETIF_F_ALL_CSUM) &&
2522 skb_checksum_help(skb))
2523 goto out_kfree_skb;
2524 }
2525 }
2526
2527 if (!list_empty(&ptype_all))
2528 dev_queue_xmit_nit(skb, dev);
2529
2530 skb_len = skb->len;
2531 rc = ops->ndo_start_xmit(skb, dev);
2532 trace_net_dev_xmit(skb, rc, dev, skb_len);
2533 if (rc == NETDEV_TX_OK)
2534 txq_trans_update(txq);
2535 return rc;
2536 }
2537
2538 gso:
2539 do {
2540 struct sk_buff *nskb = skb->next;
2541
2542 skb->next = nskb->next;
2543 nskb->next = NULL;
2544
2545 /*
2546 * If device doesn't need nskb->dst, release it right now while
2547 * its hot in this cpu cache
2548 */
2549 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2550 skb_dst_drop(nskb);
2551
2552 if (!list_empty(&ptype_all))
2553 dev_queue_xmit_nit(nskb, dev);
2554
2555 skb_len = nskb->len;
2556 rc = ops->ndo_start_xmit(nskb, dev);
2557 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2558 if (unlikely(rc != NETDEV_TX_OK)) {
2559 if (rc & ~NETDEV_TX_MASK)
2560 goto out_kfree_gso_skb;
2561 nskb->next = skb->next;
2562 skb->next = nskb;
2563 return rc;
2564 }
2565 txq_trans_update(txq);
2566 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2567 return NETDEV_TX_BUSY;
2568 } while (skb->next);
2569
2570 out_kfree_gso_skb:
2571 if (likely(skb->next == NULL))
2572 skb->destructor = DEV_GSO_CB(skb)->destructor;
2573 out_kfree_skb:
2574 kfree_skb(skb);
2575 out:
2576 return rc;
2577 }
2578
2579 static void qdisc_pkt_len_init(struct sk_buff *skb)
2580 {
2581 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2582
2583 qdisc_skb_cb(skb)->pkt_len = skb->len;
2584
2585 /* To get more precise estimation of bytes sent on wire,
2586 * we add to pkt_len the headers size of all segments
2587 */
2588 if (shinfo->gso_size) {
2589 unsigned int hdr_len;
2590 u16 gso_segs = shinfo->gso_segs;
2591
2592 /* mac layer + network layer */
2593 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2594
2595 /* + transport layer */
2596 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2597 hdr_len += tcp_hdrlen(skb);
2598 else
2599 hdr_len += sizeof(struct udphdr);
2600
2601 if (shinfo->gso_type & SKB_GSO_DODGY)
2602 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2603 shinfo->gso_size);
2604
2605 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2606 }
2607 }
2608
2609 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2610 struct net_device *dev,
2611 struct netdev_queue *txq)
2612 {
2613 spinlock_t *root_lock = qdisc_lock(q);
2614 bool contended;
2615 int rc;
2616
2617 qdisc_pkt_len_init(skb);
2618 qdisc_calculate_pkt_len(skb, q);
2619 /*
2620 * Heuristic to force contended enqueues to serialize on a
2621 * separate lock before trying to get qdisc main lock.
2622 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2623 * and dequeue packets faster.
2624 */
2625 contended = qdisc_is_running(q);
2626 if (unlikely(contended))
2627 spin_lock(&q->busylock);
2628
2629 spin_lock(root_lock);
2630 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2631 kfree_skb(skb);
2632 rc = NET_XMIT_DROP;
2633 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2634 qdisc_run_begin(q)) {
2635 /*
2636 * This is a work-conserving queue; there are no old skbs
2637 * waiting to be sent out; and the qdisc is not running -
2638 * xmit the skb directly.
2639 */
2640 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2641 skb_dst_force(skb);
2642
2643 qdisc_bstats_update(q, skb);
2644
2645 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2646 if (unlikely(contended)) {
2647 spin_unlock(&q->busylock);
2648 contended = false;
2649 }
2650 __qdisc_run(q);
2651 } else
2652 qdisc_run_end(q);
2653
2654 rc = NET_XMIT_SUCCESS;
2655 } else {
2656 skb_dst_force(skb);
2657 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2658 if (qdisc_run_begin(q)) {
2659 if (unlikely(contended)) {
2660 spin_unlock(&q->busylock);
2661 contended = false;
2662 }
2663 __qdisc_run(q);
2664 }
2665 }
2666 spin_unlock(root_lock);
2667 if (unlikely(contended))
2668 spin_unlock(&q->busylock);
2669 return rc;
2670 }
2671
2672 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2673 static void skb_update_prio(struct sk_buff *skb)
2674 {
2675 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2676
2677 if (!skb->priority && skb->sk && map) {
2678 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2679
2680 if (prioidx < map->priomap_len)
2681 skb->priority = map->priomap[prioidx];
2682 }
2683 }
2684 #else
2685 #define skb_update_prio(skb)
2686 #endif
2687
2688 static DEFINE_PER_CPU(int, xmit_recursion);
2689 #define RECURSION_LIMIT 10
2690
2691 /**
2692 * dev_loopback_xmit - loop back @skb
2693 * @skb: buffer to transmit
2694 */
2695 int dev_loopback_xmit(struct sk_buff *skb)
2696 {
2697 skb_reset_mac_header(skb);
2698 __skb_pull(skb, skb_network_offset(skb));
2699 skb->pkt_type = PACKET_LOOPBACK;
2700 skb->ip_summed = CHECKSUM_UNNECESSARY;
2701 WARN_ON(!skb_dst(skb));
2702 skb_dst_force(skb);
2703 netif_rx_ni(skb);
2704 return 0;
2705 }
2706 EXPORT_SYMBOL(dev_loopback_xmit);
2707
2708 /**
2709 * dev_queue_xmit - transmit a buffer
2710 * @skb: buffer to transmit
2711 *
2712 * Queue a buffer for transmission to a network device. The caller must
2713 * have set the device and priority and built the buffer before calling
2714 * this function. The function can be called from an interrupt.
2715 *
2716 * A negative errno code is returned on a failure. A success does not
2717 * guarantee the frame will be transmitted as it may be dropped due
2718 * to congestion or traffic shaping.
2719 *
2720 * -----------------------------------------------------------------------------------
2721 * I notice this method can also return errors from the queue disciplines,
2722 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2723 * be positive.
2724 *
2725 * Regardless of the return value, the skb is consumed, so it is currently
2726 * difficult to retry a send to this method. (You can bump the ref count
2727 * before sending to hold a reference for retry if you are careful.)
2728 *
2729 * When calling this method, interrupts MUST be enabled. This is because
2730 * the BH enable code must have IRQs enabled so that it will not deadlock.
2731 * --BLG
2732 */
2733 int dev_queue_xmit(struct sk_buff *skb)
2734 {
2735 struct net_device *dev = skb->dev;
2736 struct netdev_queue *txq;
2737 struct Qdisc *q;
2738 int rc = -ENOMEM;
2739
2740 skb_reset_mac_header(skb);
2741
2742 /* Disable soft irqs for various locks below. Also
2743 * stops preemption for RCU.
2744 */
2745 rcu_read_lock_bh();
2746
2747 skb_update_prio(skb);
2748
2749 txq = netdev_pick_tx(dev, skb);
2750 q = rcu_dereference_bh(txq->qdisc);
2751
2752 #ifdef CONFIG_NET_CLS_ACT
2753 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2754 #endif
2755 trace_net_dev_queue(skb);
2756 if (q->enqueue) {
2757 rc = __dev_xmit_skb(skb, q, dev, txq);
2758 goto out;
2759 }
2760
2761 /* The device has no queue. Common case for software devices:
2762 loopback, all the sorts of tunnels...
2763
2764 Really, it is unlikely that netif_tx_lock protection is necessary
2765 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2766 counters.)
2767 However, it is possible, that they rely on protection
2768 made by us here.
2769
2770 Check this and shot the lock. It is not prone from deadlocks.
2771 Either shot noqueue qdisc, it is even simpler 8)
2772 */
2773 if (dev->flags & IFF_UP) {
2774 int cpu = smp_processor_id(); /* ok because BHs are off */
2775
2776 if (txq->xmit_lock_owner != cpu) {
2777
2778 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2779 goto recursion_alert;
2780
2781 HARD_TX_LOCK(dev, txq, cpu);
2782
2783 if (!netif_xmit_stopped(txq)) {
2784 __this_cpu_inc(xmit_recursion);
2785 rc = dev_hard_start_xmit(skb, dev, txq);
2786 __this_cpu_dec(xmit_recursion);
2787 if (dev_xmit_complete(rc)) {
2788 HARD_TX_UNLOCK(dev, txq);
2789 goto out;
2790 }
2791 }
2792 HARD_TX_UNLOCK(dev, txq);
2793 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2794 dev->name);
2795 } else {
2796 /* Recursion is detected! It is possible,
2797 * unfortunately
2798 */
2799 recursion_alert:
2800 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2801 dev->name);
2802 }
2803 }
2804
2805 rc = -ENETDOWN;
2806 rcu_read_unlock_bh();
2807
2808 kfree_skb(skb);
2809 return rc;
2810 out:
2811 rcu_read_unlock_bh();
2812 return rc;
2813 }
2814 EXPORT_SYMBOL(dev_queue_xmit);
2815
2816
2817 /*=======================================================================
2818 Receiver routines
2819 =======================================================================*/
2820
2821 int netdev_max_backlog __read_mostly = 1000;
2822 EXPORT_SYMBOL(netdev_max_backlog);
2823
2824 int netdev_tstamp_prequeue __read_mostly = 1;
2825 int netdev_budget __read_mostly = 300;
2826 int weight_p __read_mostly = 64; /* old backlog weight */
2827
2828 /* Called with irq disabled */
2829 static inline void ____napi_schedule(struct softnet_data *sd,
2830 struct napi_struct *napi)
2831 {
2832 list_add_tail(&napi->poll_list, &sd->poll_list);
2833 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2834 }
2835
2836 #ifdef CONFIG_RPS
2837
2838 /* One global table that all flow-based protocols share. */
2839 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2840 EXPORT_SYMBOL(rps_sock_flow_table);
2841
2842 struct static_key rps_needed __read_mostly;
2843
2844 static struct rps_dev_flow *
2845 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2846 struct rps_dev_flow *rflow, u16 next_cpu)
2847 {
2848 if (next_cpu != RPS_NO_CPU) {
2849 #ifdef CONFIG_RFS_ACCEL
2850 struct netdev_rx_queue *rxqueue;
2851 struct rps_dev_flow_table *flow_table;
2852 struct rps_dev_flow *old_rflow;
2853 u32 flow_id;
2854 u16 rxq_index;
2855 int rc;
2856
2857 /* Should we steer this flow to a different hardware queue? */
2858 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2859 !(dev->features & NETIF_F_NTUPLE))
2860 goto out;
2861 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2862 if (rxq_index == skb_get_rx_queue(skb))
2863 goto out;
2864
2865 rxqueue = dev->_rx + rxq_index;
2866 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2867 if (!flow_table)
2868 goto out;
2869 flow_id = skb->rxhash & flow_table->mask;
2870 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2871 rxq_index, flow_id);
2872 if (rc < 0)
2873 goto out;
2874 old_rflow = rflow;
2875 rflow = &flow_table->flows[flow_id];
2876 rflow->filter = rc;
2877 if (old_rflow->filter == rflow->filter)
2878 old_rflow->filter = RPS_NO_FILTER;
2879 out:
2880 #endif
2881 rflow->last_qtail =
2882 per_cpu(softnet_data, next_cpu).input_queue_head;
2883 }
2884
2885 rflow->cpu = next_cpu;
2886 return rflow;
2887 }
2888
2889 /*
2890 * get_rps_cpu is called from netif_receive_skb and returns the target
2891 * CPU from the RPS map of the receiving queue for a given skb.
2892 * rcu_read_lock must be held on entry.
2893 */
2894 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2895 struct rps_dev_flow **rflowp)
2896 {
2897 struct netdev_rx_queue *rxqueue;
2898 struct rps_map *map;
2899 struct rps_dev_flow_table *flow_table;
2900 struct rps_sock_flow_table *sock_flow_table;
2901 int cpu = -1;
2902 u16 tcpu;
2903
2904 if (skb_rx_queue_recorded(skb)) {
2905 u16 index = skb_get_rx_queue(skb);
2906 if (unlikely(index >= dev->real_num_rx_queues)) {
2907 WARN_ONCE(dev->real_num_rx_queues > 1,
2908 "%s received packet on queue %u, but number "
2909 "of RX queues is %u\n",
2910 dev->name, index, dev->real_num_rx_queues);
2911 goto done;
2912 }
2913 rxqueue = dev->_rx + index;
2914 } else
2915 rxqueue = dev->_rx;
2916
2917 map = rcu_dereference(rxqueue->rps_map);
2918 if (map) {
2919 if (map->len == 1 &&
2920 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2921 tcpu = map->cpus[0];
2922 if (cpu_online(tcpu))
2923 cpu = tcpu;
2924 goto done;
2925 }
2926 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2927 goto done;
2928 }
2929
2930 skb_reset_network_header(skb);
2931 if (!skb_get_rxhash(skb))
2932 goto done;
2933
2934 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2935 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2936 if (flow_table && sock_flow_table) {
2937 u16 next_cpu;
2938 struct rps_dev_flow *rflow;
2939
2940 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2941 tcpu = rflow->cpu;
2942
2943 next_cpu = sock_flow_table->ents[skb->rxhash &
2944 sock_flow_table->mask];
2945
2946 /*
2947 * If the desired CPU (where last recvmsg was done) is
2948 * different from current CPU (one in the rx-queue flow
2949 * table entry), switch if one of the following holds:
2950 * - Current CPU is unset (equal to RPS_NO_CPU).
2951 * - Current CPU is offline.
2952 * - The current CPU's queue tail has advanced beyond the
2953 * last packet that was enqueued using this table entry.
2954 * This guarantees that all previous packets for the flow
2955 * have been dequeued, thus preserving in order delivery.
2956 */
2957 if (unlikely(tcpu != next_cpu) &&
2958 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2959 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2960 rflow->last_qtail)) >= 0)) {
2961 tcpu = next_cpu;
2962 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2963 }
2964
2965 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2966 *rflowp = rflow;
2967 cpu = tcpu;
2968 goto done;
2969 }
2970 }
2971
2972 if (map) {
2973 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2974
2975 if (cpu_online(tcpu)) {
2976 cpu = tcpu;
2977 goto done;
2978 }
2979 }
2980
2981 done:
2982 return cpu;
2983 }
2984
2985 #ifdef CONFIG_RFS_ACCEL
2986
2987 /**
2988 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2989 * @dev: Device on which the filter was set
2990 * @rxq_index: RX queue index
2991 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2992 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2993 *
2994 * Drivers that implement ndo_rx_flow_steer() should periodically call
2995 * this function for each installed filter and remove the filters for
2996 * which it returns %true.
2997 */
2998 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2999 u32 flow_id, u16 filter_id)
3000 {
3001 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3002 struct rps_dev_flow_table *flow_table;
3003 struct rps_dev_flow *rflow;
3004 bool expire = true;
3005 int cpu;
3006
3007 rcu_read_lock();
3008 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3009 if (flow_table && flow_id <= flow_table->mask) {
3010 rflow = &flow_table->flows[flow_id];
3011 cpu = ACCESS_ONCE(rflow->cpu);
3012 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3013 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3014 rflow->last_qtail) <
3015 (int)(10 * flow_table->mask)))
3016 expire = false;
3017 }
3018 rcu_read_unlock();
3019 return expire;
3020 }
3021 EXPORT_SYMBOL(rps_may_expire_flow);
3022
3023 #endif /* CONFIG_RFS_ACCEL */
3024
3025 /* Called from hardirq (IPI) context */
3026 static void rps_trigger_softirq(void *data)
3027 {
3028 struct softnet_data *sd = data;
3029
3030 ____napi_schedule(sd, &sd->backlog);
3031 sd->received_rps++;
3032 }
3033
3034 #endif /* CONFIG_RPS */
3035
3036 /*
3037 * Check if this softnet_data structure is another cpu one
3038 * If yes, queue it to our IPI list and return 1
3039 * If no, return 0
3040 */
3041 static int rps_ipi_queued(struct softnet_data *sd)
3042 {
3043 #ifdef CONFIG_RPS
3044 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3045
3046 if (sd != mysd) {
3047 sd->rps_ipi_next = mysd->rps_ipi_list;
3048 mysd->rps_ipi_list = sd;
3049
3050 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3051 return 1;
3052 }
3053 #endif /* CONFIG_RPS */
3054 return 0;
3055 }
3056
3057 /*
3058 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3059 * queue (may be a remote CPU queue).
3060 */
3061 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3062 unsigned int *qtail)
3063 {
3064 struct softnet_data *sd;
3065 unsigned long flags;
3066
3067 sd = &per_cpu(softnet_data, cpu);
3068
3069 local_irq_save(flags);
3070
3071 rps_lock(sd);
3072 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3073 if (skb_queue_len(&sd->input_pkt_queue)) {
3074 enqueue:
3075 __skb_queue_tail(&sd->input_pkt_queue, skb);
3076 input_queue_tail_incr_save(sd, qtail);
3077 rps_unlock(sd);
3078 local_irq_restore(flags);
3079 return NET_RX_SUCCESS;
3080 }
3081
3082 /* Schedule NAPI for backlog device
3083 * We can use non atomic operation since we own the queue lock
3084 */
3085 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3086 if (!rps_ipi_queued(sd))
3087 ____napi_schedule(sd, &sd->backlog);
3088 }
3089 goto enqueue;
3090 }
3091
3092 sd->dropped++;
3093 rps_unlock(sd);
3094
3095 local_irq_restore(flags);
3096
3097 atomic_long_inc(&skb->dev->rx_dropped);
3098 kfree_skb(skb);
3099 return NET_RX_DROP;
3100 }
3101
3102 /**
3103 * netif_rx - post buffer to the network code
3104 * @skb: buffer to post
3105 *
3106 * This function receives a packet from a device driver and queues it for
3107 * the upper (protocol) levels to process. It always succeeds. The buffer
3108 * may be dropped during processing for congestion control or by the
3109 * protocol layers.
3110 *
3111 * return values:
3112 * NET_RX_SUCCESS (no congestion)
3113 * NET_RX_DROP (packet was dropped)
3114 *
3115 */
3116
3117 int netif_rx(struct sk_buff *skb)
3118 {
3119 int ret;
3120
3121 /* if netpoll wants it, pretend we never saw it */
3122 if (netpoll_rx(skb))
3123 return NET_RX_DROP;
3124
3125 net_timestamp_check(netdev_tstamp_prequeue, skb);
3126
3127 trace_netif_rx(skb);
3128 #ifdef CONFIG_RPS
3129 if (static_key_false(&rps_needed)) {
3130 struct rps_dev_flow voidflow, *rflow = &voidflow;
3131 int cpu;
3132
3133 preempt_disable();
3134 rcu_read_lock();
3135
3136 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3137 if (cpu < 0)
3138 cpu = smp_processor_id();
3139
3140 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3141
3142 rcu_read_unlock();
3143 preempt_enable();
3144 } else
3145 #endif
3146 {
3147 unsigned int qtail;
3148 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3149 put_cpu();
3150 }
3151 return ret;
3152 }
3153 EXPORT_SYMBOL(netif_rx);
3154
3155 int netif_rx_ni(struct sk_buff *skb)
3156 {
3157 int err;
3158
3159 preempt_disable();
3160 err = netif_rx(skb);
3161 if (local_softirq_pending())
3162 do_softirq();
3163 preempt_enable();
3164
3165 return err;
3166 }
3167 EXPORT_SYMBOL(netif_rx_ni);
3168
3169 static void net_tx_action(struct softirq_action *h)
3170 {
3171 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3172
3173 if (sd->completion_queue) {
3174 struct sk_buff *clist;
3175
3176 local_irq_disable();
3177 clist = sd->completion_queue;
3178 sd->completion_queue = NULL;
3179 local_irq_enable();
3180
3181 while (clist) {
3182 struct sk_buff *skb = clist;
3183 clist = clist->next;
3184
3185 WARN_ON(atomic_read(&skb->users));
3186 trace_kfree_skb(skb, net_tx_action);
3187 __kfree_skb(skb);
3188 }
3189 }
3190
3191 if (sd->output_queue) {
3192 struct Qdisc *head;
3193
3194 local_irq_disable();
3195 head = sd->output_queue;
3196 sd->output_queue = NULL;
3197 sd->output_queue_tailp = &sd->output_queue;
3198 local_irq_enable();
3199
3200 while (head) {
3201 struct Qdisc *q = head;
3202 spinlock_t *root_lock;
3203
3204 head = head->next_sched;
3205
3206 root_lock = qdisc_lock(q);
3207 if (spin_trylock(root_lock)) {
3208 smp_mb__before_clear_bit();
3209 clear_bit(__QDISC_STATE_SCHED,
3210 &q->state);
3211 qdisc_run(q);
3212 spin_unlock(root_lock);
3213 } else {
3214 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3215 &q->state)) {
3216 __netif_reschedule(q);
3217 } else {
3218 smp_mb__before_clear_bit();
3219 clear_bit(__QDISC_STATE_SCHED,
3220 &q->state);
3221 }
3222 }
3223 }
3224 }
3225 }
3226
3227 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3228 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3229 /* This hook is defined here for ATM LANE */
3230 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3231 unsigned char *addr) __read_mostly;
3232 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3233 #endif
3234
3235 #ifdef CONFIG_NET_CLS_ACT
3236 /* TODO: Maybe we should just force sch_ingress to be compiled in
3237 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3238 * a compare and 2 stores extra right now if we dont have it on
3239 * but have CONFIG_NET_CLS_ACT
3240 * NOTE: This doesn't stop any functionality; if you dont have
3241 * the ingress scheduler, you just can't add policies on ingress.
3242 *
3243 */
3244 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3245 {
3246 struct net_device *dev = skb->dev;
3247 u32 ttl = G_TC_RTTL(skb->tc_verd);
3248 int result = TC_ACT_OK;
3249 struct Qdisc *q;
3250
3251 if (unlikely(MAX_RED_LOOP < ttl++)) {
3252 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3253 skb->skb_iif, dev->ifindex);
3254 return TC_ACT_SHOT;
3255 }
3256
3257 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3258 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3259
3260 q = rxq->qdisc;
3261 if (q != &noop_qdisc) {
3262 spin_lock(qdisc_lock(q));
3263 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3264 result = qdisc_enqueue_root(skb, q);
3265 spin_unlock(qdisc_lock(q));
3266 }
3267
3268 return result;
3269 }
3270
3271 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3272 struct packet_type **pt_prev,
3273 int *ret, struct net_device *orig_dev)
3274 {
3275 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3276
3277 if (!rxq || rxq->qdisc == &noop_qdisc)
3278 goto out;
3279
3280 if (*pt_prev) {
3281 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3282 *pt_prev = NULL;
3283 }
3284
3285 switch (ing_filter(skb, rxq)) {
3286 case TC_ACT_SHOT:
3287 case TC_ACT_STOLEN:
3288 kfree_skb(skb);
3289 return NULL;
3290 }
3291
3292 out:
3293 skb->tc_verd = 0;
3294 return skb;
3295 }
3296 #endif
3297
3298 /**
3299 * netdev_rx_handler_register - register receive handler
3300 * @dev: device to register a handler for
3301 * @rx_handler: receive handler to register
3302 * @rx_handler_data: data pointer that is used by rx handler
3303 *
3304 * Register a receive hander for a device. This handler will then be
3305 * called from __netif_receive_skb. A negative errno code is returned
3306 * on a failure.
3307 *
3308 * The caller must hold the rtnl_mutex.
3309 *
3310 * For a general description of rx_handler, see enum rx_handler_result.
3311 */
3312 int netdev_rx_handler_register(struct net_device *dev,
3313 rx_handler_func_t *rx_handler,
3314 void *rx_handler_data)
3315 {
3316 ASSERT_RTNL();
3317
3318 if (dev->rx_handler)
3319 return -EBUSY;
3320
3321 /* Note: rx_handler_data must be set before rx_handler */
3322 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3323 rcu_assign_pointer(dev->rx_handler, rx_handler);
3324
3325 return 0;
3326 }
3327 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3328
3329 /**
3330 * netdev_rx_handler_unregister - unregister receive handler
3331 * @dev: device to unregister a handler from
3332 *
3333 * Unregister a receive handler from a device.
3334 *
3335 * The caller must hold the rtnl_mutex.
3336 */
3337 void netdev_rx_handler_unregister(struct net_device *dev)
3338 {
3339
3340 ASSERT_RTNL();
3341 RCU_INIT_POINTER(dev->rx_handler, NULL);
3342 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3343 * section has a guarantee to see a non NULL rx_handler_data
3344 * as well.
3345 */
3346 synchronize_net();
3347 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3348 }
3349 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3350
3351 /*
3352 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3353 * the special handling of PFMEMALLOC skbs.
3354 */
3355 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3356 {
3357 switch (skb->protocol) {
3358 case __constant_htons(ETH_P_ARP):
3359 case __constant_htons(ETH_P_IP):
3360 case __constant_htons(ETH_P_IPV6):
3361 case __constant_htons(ETH_P_8021Q):
3362 return true;
3363 default:
3364 return false;
3365 }
3366 }
3367
3368 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3369 {
3370 struct packet_type *ptype, *pt_prev;
3371 rx_handler_func_t *rx_handler;
3372 struct net_device *orig_dev;
3373 struct net_device *null_or_dev;
3374 bool deliver_exact = false;
3375 int ret = NET_RX_DROP;
3376 __be16 type;
3377
3378 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3379
3380 trace_netif_receive_skb(skb);
3381
3382 /* if we've gotten here through NAPI, check netpoll */
3383 if (netpoll_receive_skb(skb))
3384 goto out;
3385
3386 orig_dev = skb->dev;
3387
3388 skb_reset_network_header(skb);
3389 if (!skb_transport_header_was_set(skb))
3390 skb_reset_transport_header(skb);
3391 skb_reset_mac_len(skb);
3392
3393 pt_prev = NULL;
3394
3395 rcu_read_lock();
3396
3397 another_round:
3398 skb->skb_iif = skb->dev->ifindex;
3399
3400 __this_cpu_inc(softnet_data.processed);
3401
3402 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3403 skb = vlan_untag(skb);
3404 if (unlikely(!skb))
3405 goto unlock;
3406 }
3407
3408 #ifdef CONFIG_NET_CLS_ACT
3409 if (skb->tc_verd & TC_NCLS) {
3410 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3411 goto ncls;
3412 }
3413 #endif
3414
3415 if (pfmemalloc)
3416 goto skip_taps;
3417
3418 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3419 if (!ptype->dev || ptype->dev == skb->dev) {
3420 if (pt_prev)
3421 ret = deliver_skb(skb, pt_prev, orig_dev);
3422 pt_prev = ptype;
3423 }
3424 }
3425
3426 skip_taps:
3427 #ifdef CONFIG_NET_CLS_ACT
3428 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3429 if (!skb)
3430 goto unlock;
3431 ncls:
3432 #endif
3433
3434 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3435 goto drop;
3436
3437 if (vlan_tx_tag_present(skb)) {
3438 if (pt_prev) {
3439 ret = deliver_skb(skb, pt_prev, orig_dev);
3440 pt_prev = NULL;
3441 }
3442 if (vlan_do_receive(&skb))
3443 goto another_round;
3444 else if (unlikely(!skb))
3445 goto unlock;
3446 }
3447
3448 rx_handler = rcu_dereference(skb->dev->rx_handler);
3449 if (rx_handler) {
3450 if (pt_prev) {
3451 ret = deliver_skb(skb, pt_prev, orig_dev);
3452 pt_prev = NULL;
3453 }
3454 switch (rx_handler(&skb)) {
3455 case RX_HANDLER_CONSUMED:
3456 ret = NET_RX_SUCCESS;
3457 goto unlock;
3458 case RX_HANDLER_ANOTHER:
3459 goto another_round;
3460 case RX_HANDLER_EXACT:
3461 deliver_exact = true;
3462 case RX_HANDLER_PASS:
3463 break;
3464 default:
3465 BUG();
3466 }
3467 }
3468
3469 if (vlan_tx_nonzero_tag_present(skb))
3470 skb->pkt_type = PACKET_OTHERHOST;
3471
3472 /* deliver only exact match when indicated */
3473 null_or_dev = deliver_exact ? skb->dev : NULL;
3474
3475 type = skb->protocol;
3476 list_for_each_entry_rcu(ptype,
3477 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3478 if (ptype->type == type &&
3479 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3480 ptype->dev == orig_dev)) {
3481 if (pt_prev)
3482 ret = deliver_skb(skb, pt_prev, orig_dev);
3483 pt_prev = ptype;
3484 }
3485 }
3486
3487 if (pt_prev) {
3488 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3489 goto drop;
3490 else
3491 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3492 } else {
3493 drop:
3494 atomic_long_inc(&skb->dev->rx_dropped);
3495 kfree_skb(skb);
3496 /* Jamal, now you will not able to escape explaining
3497 * me how you were going to use this. :-)
3498 */
3499 ret = NET_RX_DROP;
3500 }
3501
3502 unlock:
3503 rcu_read_unlock();
3504 out:
3505 return ret;
3506 }
3507
3508 static int __netif_receive_skb(struct sk_buff *skb)
3509 {
3510 int ret;
3511
3512 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3513 unsigned long pflags = current->flags;
3514
3515 /*
3516 * PFMEMALLOC skbs are special, they should
3517 * - be delivered to SOCK_MEMALLOC sockets only
3518 * - stay away from userspace
3519 * - have bounded memory usage
3520 *
3521 * Use PF_MEMALLOC as this saves us from propagating the allocation
3522 * context down to all allocation sites.
3523 */
3524 current->flags |= PF_MEMALLOC;
3525 ret = __netif_receive_skb_core(skb, true);
3526 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3527 } else
3528 ret = __netif_receive_skb_core(skb, false);
3529
3530 return ret;
3531 }
3532
3533 /**
3534 * netif_receive_skb - process receive buffer from network
3535 * @skb: buffer to process
3536 *
3537 * netif_receive_skb() is the main receive data processing function.
3538 * It always succeeds. The buffer may be dropped during processing
3539 * for congestion control or by the protocol layers.
3540 *
3541 * This function may only be called from softirq context and interrupts
3542 * should be enabled.
3543 *
3544 * Return values (usually ignored):
3545 * NET_RX_SUCCESS: no congestion
3546 * NET_RX_DROP: packet was dropped
3547 */
3548 int netif_receive_skb(struct sk_buff *skb)
3549 {
3550 net_timestamp_check(netdev_tstamp_prequeue, skb);
3551
3552 if (skb_defer_rx_timestamp(skb))
3553 return NET_RX_SUCCESS;
3554
3555 #ifdef CONFIG_RPS
3556 if (static_key_false(&rps_needed)) {
3557 struct rps_dev_flow voidflow, *rflow = &voidflow;
3558 int cpu, ret;
3559
3560 rcu_read_lock();
3561
3562 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3563
3564 if (cpu >= 0) {
3565 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3566 rcu_read_unlock();
3567 return ret;
3568 }
3569 rcu_read_unlock();
3570 }
3571 #endif
3572 return __netif_receive_skb(skb);
3573 }
3574 EXPORT_SYMBOL(netif_receive_skb);
3575
3576 /* Network device is going away, flush any packets still pending
3577 * Called with irqs disabled.
3578 */
3579 static void flush_backlog(void *arg)
3580 {
3581 struct net_device *dev = arg;
3582 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3583 struct sk_buff *skb, *tmp;
3584
3585 rps_lock(sd);
3586 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3587 if (skb->dev == dev) {
3588 __skb_unlink(skb, &sd->input_pkt_queue);
3589 kfree_skb(skb);
3590 input_queue_head_incr(sd);
3591 }
3592 }
3593 rps_unlock(sd);
3594
3595 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3596 if (skb->dev == dev) {
3597 __skb_unlink(skb, &sd->process_queue);
3598 kfree_skb(skb);
3599 input_queue_head_incr(sd);
3600 }
3601 }
3602 }
3603
3604 static int napi_gro_complete(struct sk_buff *skb)
3605 {
3606 struct packet_offload *ptype;
3607 __be16 type = skb->protocol;
3608 struct list_head *head = &offload_base;
3609 int err = -ENOENT;
3610
3611 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3612
3613 if (NAPI_GRO_CB(skb)->count == 1) {
3614 skb_shinfo(skb)->gso_size = 0;
3615 goto out;
3616 }
3617
3618 rcu_read_lock();
3619 list_for_each_entry_rcu(ptype, head, list) {
3620 if (ptype->type != type || !ptype->callbacks.gro_complete)
3621 continue;
3622
3623 err = ptype->callbacks.gro_complete(skb);
3624 break;
3625 }
3626 rcu_read_unlock();
3627
3628 if (err) {
3629 WARN_ON(&ptype->list == head);
3630 kfree_skb(skb);
3631 return NET_RX_SUCCESS;
3632 }
3633
3634 out:
3635 return netif_receive_skb(skb);
3636 }
3637
3638 /* napi->gro_list contains packets ordered by age.
3639 * youngest packets at the head of it.
3640 * Complete skbs in reverse order to reduce latencies.
3641 */
3642 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3643 {
3644 struct sk_buff *skb, *prev = NULL;
3645
3646 /* scan list and build reverse chain */
3647 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3648 skb->prev = prev;
3649 prev = skb;
3650 }
3651
3652 for (skb = prev; skb; skb = prev) {
3653 skb->next = NULL;
3654
3655 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3656 return;
3657
3658 prev = skb->prev;
3659 napi_gro_complete(skb);
3660 napi->gro_count--;
3661 }
3662
3663 napi->gro_list = NULL;
3664 }
3665 EXPORT_SYMBOL(napi_gro_flush);
3666
3667 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3668 {
3669 struct sk_buff *p;
3670 unsigned int maclen = skb->dev->hard_header_len;
3671
3672 for (p = napi->gro_list; p; p = p->next) {
3673 unsigned long diffs;
3674
3675 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3676 diffs |= p->vlan_tci ^ skb->vlan_tci;
3677 if (maclen == ETH_HLEN)
3678 diffs |= compare_ether_header(skb_mac_header(p),
3679 skb_gro_mac_header(skb));
3680 else if (!diffs)
3681 diffs = memcmp(skb_mac_header(p),
3682 skb_gro_mac_header(skb),
3683 maclen);
3684 NAPI_GRO_CB(p)->same_flow = !diffs;
3685 NAPI_GRO_CB(p)->flush = 0;
3686 }
3687 }
3688
3689 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3690 {
3691 struct sk_buff **pp = NULL;
3692 struct packet_offload *ptype;
3693 __be16 type = skb->protocol;
3694 struct list_head *head = &offload_base;
3695 int same_flow;
3696 enum gro_result ret;
3697
3698 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3699 goto normal;
3700
3701 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3702 goto normal;
3703
3704 gro_list_prepare(napi, skb);
3705
3706 rcu_read_lock();
3707 list_for_each_entry_rcu(ptype, head, list) {
3708 if (ptype->type != type || !ptype->callbacks.gro_receive)
3709 continue;
3710
3711 skb_set_network_header(skb, skb_gro_offset(skb));
3712 skb_reset_mac_len(skb);
3713 NAPI_GRO_CB(skb)->same_flow = 0;
3714 NAPI_GRO_CB(skb)->flush = 0;
3715 NAPI_GRO_CB(skb)->free = 0;
3716
3717 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3718 break;
3719 }
3720 rcu_read_unlock();
3721
3722 if (&ptype->list == head)
3723 goto normal;
3724
3725 same_flow = NAPI_GRO_CB(skb)->same_flow;
3726 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3727
3728 if (pp) {
3729 struct sk_buff *nskb = *pp;
3730
3731 *pp = nskb->next;
3732 nskb->next = NULL;
3733 napi_gro_complete(nskb);
3734 napi->gro_count--;
3735 }
3736
3737 if (same_flow)
3738 goto ok;
3739
3740 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3741 goto normal;
3742
3743 napi->gro_count++;
3744 NAPI_GRO_CB(skb)->count = 1;
3745 NAPI_GRO_CB(skb)->age = jiffies;
3746 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3747 skb->next = napi->gro_list;
3748 napi->gro_list = skb;
3749 ret = GRO_HELD;
3750
3751 pull:
3752 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3753 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3754
3755 BUG_ON(skb->end - skb->tail < grow);
3756
3757 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3758
3759 skb->tail += grow;
3760 skb->data_len -= grow;
3761
3762 skb_shinfo(skb)->frags[0].page_offset += grow;
3763 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3764
3765 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3766 skb_frag_unref(skb, 0);
3767 memmove(skb_shinfo(skb)->frags,
3768 skb_shinfo(skb)->frags + 1,
3769 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3770 }
3771 }
3772
3773 ok:
3774 return ret;
3775
3776 normal:
3777 ret = GRO_NORMAL;
3778 goto pull;
3779 }
3780
3781
3782 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3783 {
3784 switch (ret) {
3785 case GRO_NORMAL:
3786 if (netif_receive_skb(skb))
3787 ret = GRO_DROP;
3788 break;
3789
3790 case GRO_DROP:
3791 kfree_skb(skb);
3792 break;
3793
3794 case GRO_MERGED_FREE:
3795 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3796 kmem_cache_free(skbuff_head_cache, skb);
3797 else
3798 __kfree_skb(skb);
3799 break;
3800
3801 case GRO_HELD:
3802 case GRO_MERGED:
3803 break;
3804 }
3805
3806 return ret;
3807 }
3808
3809 static void skb_gro_reset_offset(struct sk_buff *skb)
3810 {
3811 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3812 const skb_frag_t *frag0 = &pinfo->frags[0];
3813
3814 NAPI_GRO_CB(skb)->data_offset = 0;
3815 NAPI_GRO_CB(skb)->frag0 = NULL;
3816 NAPI_GRO_CB(skb)->frag0_len = 0;
3817
3818 if (skb->mac_header == skb->tail &&
3819 pinfo->nr_frags &&
3820 !PageHighMem(skb_frag_page(frag0))) {
3821 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3822 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3823 }
3824 }
3825
3826 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3827 {
3828 skb_gro_reset_offset(skb);
3829
3830 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3831 }
3832 EXPORT_SYMBOL(napi_gro_receive);
3833
3834 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3835 {
3836 __skb_pull(skb, skb_headlen(skb));
3837 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3838 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3839 skb->vlan_tci = 0;
3840 skb->dev = napi->dev;
3841 skb->skb_iif = 0;
3842
3843 napi->skb = skb;
3844 }
3845
3846 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3847 {
3848 struct sk_buff *skb = napi->skb;
3849
3850 if (!skb) {
3851 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3852 if (skb)
3853 napi->skb = skb;
3854 }
3855 return skb;
3856 }
3857 EXPORT_SYMBOL(napi_get_frags);
3858
3859 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3860 gro_result_t ret)
3861 {
3862 switch (ret) {
3863 case GRO_NORMAL:
3864 case GRO_HELD:
3865 skb->protocol = eth_type_trans(skb, skb->dev);
3866
3867 if (ret == GRO_HELD)
3868 skb_gro_pull(skb, -ETH_HLEN);
3869 else if (netif_receive_skb(skb))
3870 ret = GRO_DROP;
3871 break;
3872
3873 case GRO_DROP:
3874 case GRO_MERGED_FREE:
3875 napi_reuse_skb(napi, skb);
3876 break;
3877
3878 case GRO_MERGED:
3879 break;
3880 }
3881
3882 return ret;
3883 }
3884
3885 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3886 {
3887 struct sk_buff *skb = napi->skb;
3888 struct ethhdr *eth;
3889 unsigned int hlen;
3890 unsigned int off;
3891
3892 napi->skb = NULL;
3893
3894 skb_reset_mac_header(skb);
3895 skb_gro_reset_offset(skb);
3896
3897 off = skb_gro_offset(skb);
3898 hlen = off + sizeof(*eth);
3899 eth = skb_gro_header_fast(skb, off);
3900 if (skb_gro_header_hard(skb, hlen)) {
3901 eth = skb_gro_header_slow(skb, hlen, off);
3902 if (unlikely(!eth)) {
3903 napi_reuse_skb(napi, skb);
3904 skb = NULL;
3905 goto out;
3906 }
3907 }
3908
3909 skb_gro_pull(skb, sizeof(*eth));
3910
3911 /*
3912 * This works because the only protocols we care about don't require
3913 * special handling. We'll fix it up properly at the end.
3914 */
3915 skb->protocol = eth->h_proto;
3916
3917 out:
3918 return skb;
3919 }
3920
3921 gro_result_t napi_gro_frags(struct napi_struct *napi)
3922 {
3923 struct sk_buff *skb = napi_frags_skb(napi);
3924
3925 if (!skb)
3926 return GRO_DROP;
3927
3928 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3929 }
3930 EXPORT_SYMBOL(napi_gro_frags);
3931
3932 /*
3933 * net_rps_action sends any pending IPI's for rps.
3934 * Note: called with local irq disabled, but exits with local irq enabled.
3935 */
3936 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3937 {
3938 #ifdef CONFIG_RPS
3939 struct softnet_data *remsd = sd->rps_ipi_list;
3940
3941 if (remsd) {
3942 sd->rps_ipi_list = NULL;
3943
3944 local_irq_enable();
3945
3946 /* Send pending IPI's to kick RPS processing on remote cpus. */
3947 while (remsd) {
3948 struct softnet_data *next = remsd->rps_ipi_next;
3949
3950 if (cpu_online(remsd->cpu))
3951 __smp_call_function_single(remsd->cpu,
3952 &remsd->csd, 0);
3953 remsd = next;
3954 }
3955 } else
3956 #endif
3957 local_irq_enable();
3958 }
3959
3960 static int process_backlog(struct napi_struct *napi, int quota)
3961 {
3962 int work = 0;
3963 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3964
3965 #ifdef CONFIG_RPS
3966 /* Check if we have pending ipi, its better to send them now,
3967 * not waiting net_rx_action() end.
3968 */
3969 if (sd->rps_ipi_list) {
3970 local_irq_disable();
3971 net_rps_action_and_irq_enable(sd);
3972 }
3973 #endif
3974 napi->weight = weight_p;
3975 local_irq_disable();
3976 while (work < quota) {
3977 struct sk_buff *skb;
3978 unsigned int qlen;
3979
3980 while ((skb = __skb_dequeue(&sd->process_queue))) {
3981 local_irq_enable();
3982 __netif_receive_skb(skb);
3983 local_irq_disable();
3984 input_queue_head_incr(sd);
3985 if (++work >= quota) {
3986 local_irq_enable();
3987 return work;
3988 }
3989 }
3990
3991 rps_lock(sd);
3992 qlen = skb_queue_len(&sd->input_pkt_queue);
3993 if (qlen)
3994 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3995 &sd->process_queue);
3996
3997 if (qlen < quota - work) {
3998 /*
3999 * Inline a custom version of __napi_complete().
4000 * only current cpu owns and manipulates this napi,
4001 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4002 * we can use a plain write instead of clear_bit(),
4003 * and we dont need an smp_mb() memory barrier.
4004 */
4005 list_del(&napi->poll_list);
4006 napi->state = 0;
4007
4008 quota = work + qlen;
4009 }
4010 rps_unlock(sd);
4011 }
4012 local_irq_enable();
4013
4014 return work;
4015 }
4016
4017 /**
4018 * __napi_schedule - schedule for receive
4019 * @n: entry to schedule
4020 *
4021 * The entry's receive function will be scheduled to run
4022 */
4023 void __napi_schedule(struct napi_struct *n)
4024 {
4025 unsigned long flags;
4026
4027 local_irq_save(flags);
4028 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4029 local_irq_restore(flags);
4030 }
4031 EXPORT_SYMBOL(__napi_schedule);
4032
4033 void __napi_complete(struct napi_struct *n)
4034 {
4035 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4036 BUG_ON(n->gro_list);
4037
4038 list_del(&n->poll_list);
4039 smp_mb__before_clear_bit();
4040 clear_bit(NAPI_STATE_SCHED, &n->state);
4041 }
4042 EXPORT_SYMBOL(__napi_complete);
4043
4044 void napi_complete(struct napi_struct *n)
4045 {
4046 unsigned long flags;
4047
4048 /*
4049 * don't let napi dequeue from the cpu poll list
4050 * just in case its running on a different cpu
4051 */
4052 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4053 return;
4054
4055 napi_gro_flush(n, false);
4056 local_irq_save(flags);
4057 __napi_complete(n);
4058 local_irq_restore(flags);
4059 }
4060 EXPORT_SYMBOL(napi_complete);
4061
4062 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4063 int (*poll)(struct napi_struct *, int), int weight)
4064 {
4065 INIT_LIST_HEAD(&napi->poll_list);
4066 napi->gro_count = 0;
4067 napi->gro_list = NULL;
4068 napi->skb = NULL;
4069 napi->poll = poll;
4070 if (weight > NAPI_POLL_WEIGHT)
4071 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4072 weight, dev->name);
4073 napi->weight = weight;
4074 list_add(&napi->dev_list, &dev->napi_list);
4075 napi->dev = dev;
4076 #ifdef CONFIG_NETPOLL
4077 spin_lock_init(&napi->poll_lock);
4078 napi->poll_owner = -1;
4079 #endif
4080 set_bit(NAPI_STATE_SCHED, &napi->state);
4081 }
4082 EXPORT_SYMBOL(netif_napi_add);
4083
4084 void netif_napi_del(struct napi_struct *napi)
4085 {
4086 struct sk_buff *skb, *next;
4087
4088 list_del_init(&napi->dev_list);
4089 napi_free_frags(napi);
4090
4091 for (skb = napi->gro_list; skb; skb = next) {
4092 next = skb->next;
4093 skb->next = NULL;
4094 kfree_skb(skb);
4095 }
4096
4097 napi->gro_list = NULL;
4098 napi->gro_count = 0;
4099 }
4100 EXPORT_SYMBOL(netif_napi_del);
4101
4102 static void net_rx_action(struct softirq_action *h)
4103 {
4104 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4105 unsigned long time_limit = jiffies + 2;
4106 int budget = netdev_budget;
4107 void *have;
4108
4109 local_irq_disable();
4110
4111 while (!list_empty(&sd->poll_list)) {
4112 struct napi_struct *n;
4113 int work, weight;
4114
4115 /* If softirq window is exhuasted then punt.
4116 * Allow this to run for 2 jiffies since which will allow
4117 * an average latency of 1.5/HZ.
4118 */
4119 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4120 goto softnet_break;
4121
4122 local_irq_enable();
4123
4124 /* Even though interrupts have been re-enabled, this
4125 * access is safe because interrupts can only add new
4126 * entries to the tail of this list, and only ->poll()
4127 * calls can remove this head entry from the list.
4128 */
4129 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4130
4131 have = netpoll_poll_lock(n);
4132
4133 weight = n->weight;
4134
4135 /* This NAPI_STATE_SCHED test is for avoiding a race
4136 * with netpoll's poll_napi(). Only the entity which
4137 * obtains the lock and sees NAPI_STATE_SCHED set will
4138 * actually make the ->poll() call. Therefore we avoid
4139 * accidentally calling ->poll() when NAPI is not scheduled.
4140 */
4141 work = 0;
4142 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4143 work = n->poll(n, weight);
4144 trace_napi_poll(n);
4145 }
4146
4147 WARN_ON_ONCE(work > weight);
4148
4149 budget -= work;
4150
4151 local_irq_disable();
4152
4153 /* Drivers must not modify the NAPI state if they
4154 * consume the entire weight. In such cases this code
4155 * still "owns" the NAPI instance and therefore can
4156 * move the instance around on the list at-will.
4157 */
4158 if (unlikely(work == weight)) {
4159 if (unlikely(napi_disable_pending(n))) {
4160 local_irq_enable();
4161 napi_complete(n);
4162 local_irq_disable();
4163 } else {
4164 if (n->gro_list) {
4165 /* flush too old packets
4166 * If HZ < 1000, flush all packets.
4167 */
4168 local_irq_enable();
4169 napi_gro_flush(n, HZ >= 1000);
4170 local_irq_disable();
4171 }
4172 list_move_tail(&n->poll_list, &sd->poll_list);
4173 }
4174 }
4175
4176 netpoll_poll_unlock(have);
4177 }
4178 out:
4179 net_rps_action_and_irq_enable(sd);
4180
4181 #ifdef CONFIG_NET_DMA
4182 /*
4183 * There may not be any more sk_buffs coming right now, so push
4184 * any pending DMA copies to hardware
4185 */
4186 dma_issue_pending_all();
4187 #endif
4188
4189 return;
4190
4191 softnet_break:
4192 sd->time_squeeze++;
4193 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4194 goto out;
4195 }
4196
4197 struct netdev_upper {
4198 struct net_device *dev;
4199 bool master;
4200 struct list_head list;
4201 struct rcu_head rcu;
4202 struct list_head search_list;
4203 };
4204
4205 static void __append_search_uppers(struct list_head *search_list,
4206 struct net_device *dev)
4207 {
4208 struct netdev_upper *upper;
4209
4210 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4211 /* check if this upper is not already in search list */
4212 if (list_empty(&upper->search_list))
4213 list_add_tail(&upper->search_list, search_list);
4214 }
4215 }
4216
4217 static bool __netdev_search_upper_dev(struct net_device *dev,
4218 struct net_device *upper_dev)
4219 {
4220 LIST_HEAD(search_list);
4221 struct netdev_upper *upper;
4222 struct netdev_upper *tmp;
4223 bool ret = false;
4224
4225 __append_search_uppers(&search_list, dev);
4226 list_for_each_entry(upper, &search_list, search_list) {
4227 if (upper->dev == upper_dev) {
4228 ret = true;
4229 break;
4230 }
4231 __append_search_uppers(&search_list, upper->dev);
4232 }
4233 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4234 INIT_LIST_HEAD(&upper->search_list);
4235 return ret;
4236 }
4237
4238 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4239 struct net_device *upper_dev)
4240 {
4241 struct netdev_upper *upper;
4242
4243 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4244 if (upper->dev == upper_dev)
4245 return upper;
4246 }
4247 return NULL;
4248 }
4249
4250 /**
4251 * netdev_has_upper_dev - Check if device is linked to an upper device
4252 * @dev: device
4253 * @upper_dev: upper device to check
4254 *
4255 * Find out if a device is linked to specified upper device and return true
4256 * in case it is. Note that this checks only immediate upper device,
4257 * not through a complete stack of devices. The caller must hold the RTNL lock.
4258 */
4259 bool netdev_has_upper_dev(struct net_device *dev,
4260 struct net_device *upper_dev)
4261 {
4262 ASSERT_RTNL();
4263
4264 return __netdev_find_upper(dev, upper_dev);
4265 }
4266 EXPORT_SYMBOL(netdev_has_upper_dev);
4267
4268 /**
4269 * netdev_has_any_upper_dev - Check if device is linked to some device
4270 * @dev: device
4271 *
4272 * Find out if a device is linked to an upper device and return true in case
4273 * it is. The caller must hold the RTNL lock.
4274 */
4275 bool netdev_has_any_upper_dev(struct net_device *dev)
4276 {
4277 ASSERT_RTNL();
4278
4279 return !list_empty(&dev->upper_dev_list);
4280 }
4281 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4282
4283 /**
4284 * netdev_master_upper_dev_get - Get master upper device
4285 * @dev: device
4286 *
4287 * Find a master upper device and return pointer to it or NULL in case
4288 * it's not there. The caller must hold the RTNL lock.
4289 */
4290 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4291 {
4292 struct netdev_upper *upper;
4293
4294 ASSERT_RTNL();
4295
4296 if (list_empty(&dev->upper_dev_list))
4297 return NULL;
4298
4299 upper = list_first_entry(&dev->upper_dev_list,
4300 struct netdev_upper, list);
4301 if (likely(upper->master))
4302 return upper->dev;
4303 return NULL;
4304 }
4305 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4306
4307 /**
4308 * netdev_master_upper_dev_get_rcu - Get master upper device
4309 * @dev: device
4310 *
4311 * Find a master upper device and return pointer to it or NULL in case
4312 * it's not there. The caller must hold the RCU read lock.
4313 */
4314 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4315 {
4316 struct netdev_upper *upper;
4317
4318 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4319 struct netdev_upper, list);
4320 if (upper && likely(upper->master))
4321 return upper->dev;
4322 return NULL;
4323 }
4324 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4325
4326 static int __netdev_upper_dev_link(struct net_device *dev,
4327 struct net_device *upper_dev, bool master)
4328 {
4329 struct netdev_upper *upper;
4330
4331 ASSERT_RTNL();
4332
4333 if (dev == upper_dev)
4334 return -EBUSY;
4335
4336 /* To prevent loops, check if dev is not upper device to upper_dev. */
4337 if (__netdev_search_upper_dev(upper_dev, dev))
4338 return -EBUSY;
4339
4340 if (__netdev_find_upper(dev, upper_dev))
4341 return -EEXIST;
4342
4343 if (master && netdev_master_upper_dev_get(dev))
4344 return -EBUSY;
4345
4346 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4347 if (!upper)
4348 return -ENOMEM;
4349
4350 upper->dev = upper_dev;
4351 upper->master = master;
4352 INIT_LIST_HEAD(&upper->search_list);
4353
4354 /* Ensure that master upper link is always the first item in list. */
4355 if (master)
4356 list_add_rcu(&upper->list, &dev->upper_dev_list);
4357 else
4358 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4359 dev_hold(upper_dev);
4360
4361 return 0;
4362 }
4363
4364 /**
4365 * netdev_upper_dev_link - Add a link to the upper device
4366 * @dev: device
4367 * @upper_dev: new upper device
4368 *
4369 * Adds a link to device which is upper to this one. The caller must hold
4370 * the RTNL lock. On a failure a negative errno code is returned.
4371 * On success the reference counts are adjusted and the function
4372 * returns zero.
4373 */
4374 int netdev_upper_dev_link(struct net_device *dev,
4375 struct net_device *upper_dev)
4376 {
4377 return __netdev_upper_dev_link(dev, upper_dev, false);
4378 }
4379 EXPORT_SYMBOL(netdev_upper_dev_link);
4380
4381 /**
4382 * netdev_master_upper_dev_link - Add a master link to the upper device
4383 * @dev: device
4384 * @upper_dev: new upper device
4385 *
4386 * Adds a link to device which is upper to this one. In this case, only
4387 * one master upper device can be linked, although other non-master devices
4388 * might be linked as well. The caller must hold the RTNL lock.
4389 * On a failure a negative errno code is returned. On success the reference
4390 * counts are adjusted and the function returns zero.
4391 */
4392 int netdev_master_upper_dev_link(struct net_device *dev,
4393 struct net_device *upper_dev)
4394 {
4395 return __netdev_upper_dev_link(dev, upper_dev, true);
4396 }
4397 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4398
4399 /**
4400 * netdev_upper_dev_unlink - Removes a link to upper device
4401 * @dev: device
4402 * @upper_dev: new upper device
4403 *
4404 * Removes a link to device which is upper to this one. The caller must hold
4405 * the RTNL lock.
4406 */
4407 void netdev_upper_dev_unlink(struct net_device *dev,
4408 struct net_device *upper_dev)
4409 {
4410 struct netdev_upper *upper;
4411
4412 ASSERT_RTNL();
4413
4414 upper = __netdev_find_upper(dev, upper_dev);
4415 if (!upper)
4416 return;
4417 list_del_rcu(&upper->list);
4418 dev_put(upper_dev);
4419 kfree_rcu(upper, rcu);
4420 }
4421 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4422
4423 static void dev_change_rx_flags(struct net_device *dev, int flags)
4424 {
4425 const struct net_device_ops *ops = dev->netdev_ops;
4426
4427 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4428 ops->ndo_change_rx_flags(dev, flags);
4429 }
4430
4431 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4432 {
4433 unsigned int old_flags = dev->flags;
4434 kuid_t uid;
4435 kgid_t gid;
4436
4437 ASSERT_RTNL();
4438
4439 dev->flags |= IFF_PROMISC;
4440 dev->promiscuity += inc;
4441 if (dev->promiscuity == 0) {
4442 /*
4443 * Avoid overflow.
4444 * If inc causes overflow, untouch promisc and return error.
4445 */
4446 if (inc < 0)
4447 dev->flags &= ~IFF_PROMISC;
4448 else {
4449 dev->promiscuity -= inc;
4450 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4451 dev->name);
4452 return -EOVERFLOW;
4453 }
4454 }
4455 if (dev->flags != old_flags) {
4456 pr_info("device %s %s promiscuous mode\n",
4457 dev->name,
4458 dev->flags & IFF_PROMISC ? "entered" : "left");
4459 if (audit_enabled) {
4460 current_uid_gid(&uid, &gid);
4461 audit_log(current->audit_context, GFP_ATOMIC,
4462 AUDIT_ANOM_PROMISCUOUS,
4463 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4464 dev->name, (dev->flags & IFF_PROMISC),
4465 (old_flags & IFF_PROMISC),
4466 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4467 from_kuid(&init_user_ns, uid),
4468 from_kgid(&init_user_ns, gid),
4469 audit_get_sessionid(current));
4470 }
4471
4472 dev_change_rx_flags(dev, IFF_PROMISC);
4473 }
4474 return 0;
4475 }
4476
4477 /**
4478 * dev_set_promiscuity - update promiscuity count on a device
4479 * @dev: device
4480 * @inc: modifier
4481 *
4482 * Add or remove promiscuity from a device. While the count in the device
4483 * remains above zero the interface remains promiscuous. Once it hits zero
4484 * the device reverts back to normal filtering operation. A negative inc
4485 * value is used to drop promiscuity on the device.
4486 * Return 0 if successful or a negative errno code on error.
4487 */
4488 int dev_set_promiscuity(struct net_device *dev, int inc)
4489 {
4490 unsigned int old_flags = dev->flags;
4491 int err;
4492
4493 err = __dev_set_promiscuity(dev, inc);
4494 if (err < 0)
4495 return err;
4496 if (dev->flags != old_flags)
4497 dev_set_rx_mode(dev);
4498 return err;
4499 }
4500 EXPORT_SYMBOL(dev_set_promiscuity);
4501
4502 /**
4503 * dev_set_allmulti - update allmulti count on a device
4504 * @dev: device
4505 * @inc: modifier
4506 *
4507 * Add or remove reception of all multicast frames to a device. While the
4508 * count in the device remains above zero the interface remains listening
4509 * to all interfaces. Once it hits zero the device reverts back to normal
4510 * filtering operation. A negative @inc value is used to drop the counter
4511 * when releasing a resource needing all multicasts.
4512 * Return 0 if successful or a negative errno code on error.
4513 */
4514
4515 int dev_set_allmulti(struct net_device *dev, int inc)
4516 {
4517 unsigned int old_flags = dev->flags;
4518
4519 ASSERT_RTNL();
4520
4521 dev->flags |= IFF_ALLMULTI;
4522 dev->allmulti += inc;
4523 if (dev->allmulti == 0) {
4524 /*
4525 * Avoid overflow.
4526 * If inc causes overflow, untouch allmulti and return error.
4527 */
4528 if (inc < 0)
4529 dev->flags &= ~IFF_ALLMULTI;
4530 else {
4531 dev->allmulti -= inc;
4532 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4533 dev->name);
4534 return -EOVERFLOW;
4535 }
4536 }
4537 if (dev->flags ^ old_flags) {
4538 dev_change_rx_flags(dev, IFF_ALLMULTI);
4539 dev_set_rx_mode(dev);
4540 }
4541 return 0;
4542 }
4543 EXPORT_SYMBOL(dev_set_allmulti);
4544
4545 /*
4546 * Upload unicast and multicast address lists to device and
4547 * configure RX filtering. When the device doesn't support unicast
4548 * filtering it is put in promiscuous mode while unicast addresses
4549 * are present.
4550 */
4551 void __dev_set_rx_mode(struct net_device *dev)
4552 {
4553 const struct net_device_ops *ops = dev->netdev_ops;
4554
4555 /* dev_open will call this function so the list will stay sane. */
4556 if (!(dev->flags&IFF_UP))
4557 return;
4558
4559 if (!netif_device_present(dev))
4560 return;
4561
4562 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4563 /* Unicast addresses changes may only happen under the rtnl,
4564 * therefore calling __dev_set_promiscuity here is safe.
4565 */
4566 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4567 __dev_set_promiscuity(dev, 1);
4568 dev->uc_promisc = true;
4569 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4570 __dev_set_promiscuity(dev, -1);
4571 dev->uc_promisc = false;
4572 }
4573 }
4574
4575 if (ops->ndo_set_rx_mode)
4576 ops->ndo_set_rx_mode(dev);
4577 }
4578
4579 void dev_set_rx_mode(struct net_device *dev)
4580 {
4581 netif_addr_lock_bh(dev);
4582 __dev_set_rx_mode(dev);
4583 netif_addr_unlock_bh(dev);
4584 }
4585
4586 /**
4587 * dev_get_flags - get flags reported to userspace
4588 * @dev: device
4589 *
4590 * Get the combination of flag bits exported through APIs to userspace.
4591 */
4592 unsigned int dev_get_flags(const struct net_device *dev)
4593 {
4594 unsigned int flags;
4595
4596 flags = (dev->flags & ~(IFF_PROMISC |
4597 IFF_ALLMULTI |
4598 IFF_RUNNING |
4599 IFF_LOWER_UP |
4600 IFF_DORMANT)) |
4601 (dev->gflags & (IFF_PROMISC |
4602 IFF_ALLMULTI));
4603
4604 if (netif_running(dev)) {
4605 if (netif_oper_up(dev))
4606 flags |= IFF_RUNNING;
4607 if (netif_carrier_ok(dev))
4608 flags |= IFF_LOWER_UP;
4609 if (netif_dormant(dev))
4610 flags |= IFF_DORMANT;
4611 }
4612
4613 return flags;
4614 }
4615 EXPORT_SYMBOL(dev_get_flags);
4616
4617 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4618 {
4619 unsigned int old_flags = dev->flags;
4620 int ret;
4621
4622 ASSERT_RTNL();
4623
4624 /*
4625 * Set the flags on our device.
4626 */
4627
4628 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4629 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4630 IFF_AUTOMEDIA)) |
4631 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4632 IFF_ALLMULTI));
4633
4634 /*
4635 * Load in the correct multicast list now the flags have changed.
4636 */
4637
4638 if ((old_flags ^ flags) & IFF_MULTICAST)
4639 dev_change_rx_flags(dev, IFF_MULTICAST);
4640
4641 dev_set_rx_mode(dev);
4642
4643 /*
4644 * Have we downed the interface. We handle IFF_UP ourselves
4645 * according to user attempts to set it, rather than blindly
4646 * setting it.
4647 */
4648
4649 ret = 0;
4650 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4651 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4652
4653 if (!ret)
4654 dev_set_rx_mode(dev);
4655 }
4656
4657 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4658 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4659
4660 dev->gflags ^= IFF_PROMISC;
4661 dev_set_promiscuity(dev, inc);
4662 }
4663
4664 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4665 is important. Some (broken) drivers set IFF_PROMISC, when
4666 IFF_ALLMULTI is requested not asking us and not reporting.
4667 */
4668 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4669 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4670
4671 dev->gflags ^= IFF_ALLMULTI;
4672 dev_set_allmulti(dev, inc);
4673 }
4674
4675 return ret;
4676 }
4677
4678 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4679 {
4680 unsigned int changes = dev->flags ^ old_flags;
4681
4682 if (changes & IFF_UP) {
4683 if (dev->flags & IFF_UP)
4684 call_netdevice_notifiers(NETDEV_UP, dev);
4685 else
4686 call_netdevice_notifiers(NETDEV_DOWN, dev);
4687 }
4688
4689 if (dev->flags & IFF_UP &&
4690 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4691 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4692 }
4693
4694 /**
4695 * dev_change_flags - change device settings
4696 * @dev: device
4697 * @flags: device state flags
4698 *
4699 * Change settings on device based state flags. The flags are
4700 * in the userspace exported format.
4701 */
4702 int dev_change_flags(struct net_device *dev, unsigned int flags)
4703 {
4704 int ret;
4705 unsigned int changes, old_flags = dev->flags;
4706
4707 ret = __dev_change_flags(dev, flags);
4708 if (ret < 0)
4709 return ret;
4710
4711 changes = old_flags ^ dev->flags;
4712 if (changes)
4713 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4714
4715 __dev_notify_flags(dev, old_flags);
4716 return ret;
4717 }
4718 EXPORT_SYMBOL(dev_change_flags);
4719
4720 /**
4721 * dev_set_mtu - Change maximum transfer unit
4722 * @dev: device
4723 * @new_mtu: new transfer unit
4724 *
4725 * Change the maximum transfer size of the network device.
4726 */
4727 int dev_set_mtu(struct net_device *dev, int new_mtu)
4728 {
4729 const struct net_device_ops *ops = dev->netdev_ops;
4730 int err;
4731
4732 if (new_mtu == dev->mtu)
4733 return 0;
4734
4735 /* MTU must be positive. */
4736 if (new_mtu < 0)
4737 return -EINVAL;
4738
4739 if (!netif_device_present(dev))
4740 return -ENODEV;
4741
4742 err = 0;
4743 if (ops->ndo_change_mtu)
4744 err = ops->ndo_change_mtu(dev, new_mtu);
4745 else
4746 dev->mtu = new_mtu;
4747
4748 if (!err)
4749 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4750 return err;
4751 }
4752 EXPORT_SYMBOL(dev_set_mtu);
4753
4754 /**
4755 * dev_set_group - Change group this device belongs to
4756 * @dev: device
4757 * @new_group: group this device should belong to
4758 */
4759 void dev_set_group(struct net_device *dev, int new_group)
4760 {
4761 dev->group = new_group;
4762 }
4763 EXPORT_SYMBOL(dev_set_group);
4764
4765 /**
4766 * dev_set_mac_address - Change Media Access Control Address
4767 * @dev: device
4768 * @sa: new address
4769 *
4770 * Change the hardware (MAC) address of the device
4771 */
4772 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4773 {
4774 const struct net_device_ops *ops = dev->netdev_ops;
4775 int err;
4776
4777 if (!ops->ndo_set_mac_address)
4778 return -EOPNOTSUPP;
4779 if (sa->sa_family != dev->type)
4780 return -EINVAL;
4781 if (!netif_device_present(dev))
4782 return -ENODEV;
4783 err = ops->ndo_set_mac_address(dev, sa);
4784 if (err)
4785 return err;
4786 dev->addr_assign_type = NET_ADDR_SET;
4787 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4788 add_device_randomness(dev->dev_addr, dev->addr_len);
4789 return 0;
4790 }
4791 EXPORT_SYMBOL(dev_set_mac_address);
4792
4793 /**
4794 * dev_change_carrier - Change device carrier
4795 * @dev: device
4796 * @new_carrier: new value
4797 *
4798 * Change device carrier
4799 */
4800 int dev_change_carrier(struct net_device *dev, bool new_carrier)
4801 {
4802 const struct net_device_ops *ops = dev->netdev_ops;
4803
4804 if (!ops->ndo_change_carrier)
4805 return -EOPNOTSUPP;
4806 if (!netif_device_present(dev))
4807 return -ENODEV;
4808 return ops->ndo_change_carrier(dev, new_carrier);
4809 }
4810 EXPORT_SYMBOL(dev_change_carrier);
4811
4812 /**
4813 * dev_new_index - allocate an ifindex
4814 * @net: the applicable net namespace
4815 *
4816 * Returns a suitable unique value for a new device interface
4817 * number. The caller must hold the rtnl semaphore or the
4818 * dev_base_lock to be sure it remains unique.
4819 */
4820 static int dev_new_index(struct net *net)
4821 {
4822 int ifindex = net->ifindex;
4823 for (;;) {
4824 if (++ifindex <= 0)
4825 ifindex = 1;
4826 if (!__dev_get_by_index(net, ifindex))
4827 return net->ifindex = ifindex;
4828 }
4829 }
4830
4831 /* Delayed registration/unregisteration */
4832 static LIST_HEAD(net_todo_list);
4833
4834 static void net_set_todo(struct net_device *dev)
4835 {
4836 list_add_tail(&dev->todo_list, &net_todo_list);
4837 }
4838
4839 static void rollback_registered_many(struct list_head *head)
4840 {
4841 struct net_device *dev, *tmp;
4842
4843 BUG_ON(dev_boot_phase);
4844 ASSERT_RTNL();
4845
4846 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4847 /* Some devices call without registering
4848 * for initialization unwind. Remove those
4849 * devices and proceed with the remaining.
4850 */
4851 if (dev->reg_state == NETREG_UNINITIALIZED) {
4852 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
4853 dev->name, dev);
4854
4855 WARN_ON(1);
4856 list_del(&dev->unreg_list);
4857 continue;
4858 }
4859 dev->dismantle = true;
4860 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4861 }
4862
4863 /* If device is running, close it first. */
4864 dev_close_many(head);
4865
4866 list_for_each_entry(dev, head, unreg_list) {
4867 /* And unlink it from device chain. */
4868 unlist_netdevice(dev);
4869
4870 dev->reg_state = NETREG_UNREGISTERING;
4871 }
4872
4873 synchronize_net();
4874
4875 list_for_each_entry(dev, head, unreg_list) {
4876 /* Shutdown queueing discipline. */
4877 dev_shutdown(dev);
4878
4879
4880 /* Notify protocols, that we are about to destroy
4881 this device. They should clean all the things.
4882 */
4883 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4884
4885 if (!dev->rtnl_link_ops ||
4886 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4887 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4888
4889 /*
4890 * Flush the unicast and multicast chains
4891 */
4892 dev_uc_flush(dev);
4893 dev_mc_flush(dev);
4894
4895 if (dev->netdev_ops->ndo_uninit)
4896 dev->netdev_ops->ndo_uninit(dev);
4897
4898 /* Notifier chain MUST detach us all upper devices. */
4899 WARN_ON(netdev_has_any_upper_dev(dev));
4900
4901 /* Remove entries from kobject tree */
4902 netdev_unregister_kobject(dev);
4903 #ifdef CONFIG_XPS
4904 /* Remove XPS queueing entries */
4905 netif_reset_xps_queues_gt(dev, 0);
4906 #endif
4907 }
4908
4909 synchronize_net();
4910
4911 list_for_each_entry(dev, head, unreg_list)
4912 dev_put(dev);
4913 }
4914
4915 static void rollback_registered(struct net_device *dev)
4916 {
4917 LIST_HEAD(single);
4918
4919 list_add(&dev->unreg_list, &single);
4920 rollback_registered_many(&single);
4921 list_del(&single);
4922 }
4923
4924 static netdev_features_t netdev_fix_features(struct net_device *dev,
4925 netdev_features_t features)
4926 {
4927 /* Fix illegal checksum combinations */
4928 if ((features & NETIF_F_HW_CSUM) &&
4929 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4930 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
4931 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4932 }
4933
4934 /* TSO requires that SG is present as well. */
4935 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
4936 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
4937 features &= ~NETIF_F_ALL_TSO;
4938 }
4939
4940 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
4941 !(features & NETIF_F_IP_CSUM)) {
4942 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
4943 features &= ~NETIF_F_TSO;
4944 features &= ~NETIF_F_TSO_ECN;
4945 }
4946
4947 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
4948 !(features & NETIF_F_IPV6_CSUM)) {
4949 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
4950 features &= ~NETIF_F_TSO6;
4951 }
4952
4953 /* TSO ECN requires that TSO is present as well. */
4954 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
4955 features &= ~NETIF_F_TSO_ECN;
4956
4957 /* Software GSO depends on SG. */
4958 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
4959 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
4960 features &= ~NETIF_F_GSO;
4961 }
4962
4963 /* UFO needs SG and checksumming */
4964 if (features & NETIF_F_UFO) {
4965 /* maybe split UFO into V4 and V6? */
4966 if (!((features & NETIF_F_GEN_CSUM) ||
4967 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
4968 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4969 netdev_dbg(dev,
4970 "Dropping NETIF_F_UFO since no checksum offload features.\n");
4971 features &= ~NETIF_F_UFO;
4972 }
4973
4974 if (!(features & NETIF_F_SG)) {
4975 netdev_dbg(dev,
4976 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
4977 features &= ~NETIF_F_UFO;
4978 }
4979 }
4980
4981 return features;
4982 }
4983
4984 int __netdev_update_features(struct net_device *dev)
4985 {
4986 netdev_features_t features;
4987 int err = 0;
4988
4989 ASSERT_RTNL();
4990
4991 features = netdev_get_wanted_features(dev);
4992
4993 if (dev->netdev_ops->ndo_fix_features)
4994 features = dev->netdev_ops->ndo_fix_features(dev, features);
4995
4996 /* driver might be less strict about feature dependencies */
4997 features = netdev_fix_features(dev, features);
4998
4999 if (dev->features == features)
5000 return 0;
5001
5002 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5003 &dev->features, &features);
5004
5005 if (dev->netdev_ops->ndo_set_features)
5006 err = dev->netdev_ops->ndo_set_features(dev, features);
5007
5008 if (unlikely(err < 0)) {
5009 netdev_err(dev,
5010 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5011 err, &features, &dev->features);
5012 return -1;
5013 }
5014
5015 if (!err)
5016 dev->features = features;
5017
5018 return 1;
5019 }
5020
5021 /**
5022 * netdev_update_features - recalculate device features
5023 * @dev: the device to check
5024 *
5025 * Recalculate dev->features set and send notifications if it
5026 * has changed. Should be called after driver or hardware dependent
5027 * conditions might have changed that influence the features.
5028 */
5029 void netdev_update_features(struct net_device *dev)
5030 {
5031 if (__netdev_update_features(dev))
5032 netdev_features_change(dev);
5033 }
5034 EXPORT_SYMBOL(netdev_update_features);
5035
5036 /**
5037 * netdev_change_features - recalculate device features
5038 * @dev: the device to check
5039 *
5040 * Recalculate dev->features set and send notifications even
5041 * if they have not changed. Should be called instead of
5042 * netdev_update_features() if also dev->vlan_features might
5043 * have changed to allow the changes to be propagated to stacked
5044 * VLAN devices.
5045 */
5046 void netdev_change_features(struct net_device *dev)
5047 {
5048 __netdev_update_features(dev);
5049 netdev_features_change(dev);
5050 }
5051 EXPORT_SYMBOL(netdev_change_features);
5052
5053 /**
5054 * netif_stacked_transfer_operstate - transfer operstate
5055 * @rootdev: the root or lower level device to transfer state from
5056 * @dev: the device to transfer operstate to
5057 *
5058 * Transfer operational state from root to device. This is normally
5059 * called when a stacking relationship exists between the root
5060 * device and the device(a leaf device).
5061 */
5062 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5063 struct net_device *dev)
5064 {
5065 if (rootdev->operstate == IF_OPER_DORMANT)
5066 netif_dormant_on(dev);
5067 else
5068 netif_dormant_off(dev);
5069
5070 if (netif_carrier_ok(rootdev)) {
5071 if (!netif_carrier_ok(dev))
5072 netif_carrier_on(dev);
5073 } else {
5074 if (netif_carrier_ok(dev))
5075 netif_carrier_off(dev);
5076 }
5077 }
5078 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5079
5080 #ifdef CONFIG_RPS
5081 static int netif_alloc_rx_queues(struct net_device *dev)
5082 {
5083 unsigned int i, count = dev->num_rx_queues;
5084 struct netdev_rx_queue *rx;
5085
5086 BUG_ON(count < 1);
5087
5088 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5089 if (!rx)
5090 return -ENOMEM;
5091
5092 dev->_rx = rx;
5093
5094 for (i = 0; i < count; i++)
5095 rx[i].dev = dev;
5096 return 0;
5097 }
5098 #endif
5099
5100 static void netdev_init_one_queue(struct net_device *dev,
5101 struct netdev_queue *queue, void *_unused)
5102 {
5103 /* Initialize queue lock */
5104 spin_lock_init(&queue->_xmit_lock);
5105 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5106 queue->xmit_lock_owner = -1;
5107 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5108 queue->dev = dev;
5109 #ifdef CONFIG_BQL
5110 dql_init(&queue->dql, HZ);
5111 #endif
5112 }
5113
5114 static int netif_alloc_netdev_queues(struct net_device *dev)
5115 {
5116 unsigned int count = dev->num_tx_queues;
5117 struct netdev_queue *tx;
5118
5119 BUG_ON(count < 1);
5120
5121 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5122 if (!tx)
5123 return -ENOMEM;
5124
5125 dev->_tx = tx;
5126
5127 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5128 spin_lock_init(&dev->tx_global_lock);
5129
5130 return 0;
5131 }
5132
5133 /**
5134 * register_netdevice - register a network device
5135 * @dev: device to register
5136 *
5137 * Take a completed network device structure and add it to the kernel
5138 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5139 * chain. 0 is returned on success. A negative errno code is returned
5140 * on a failure to set up the device, or if the name is a duplicate.
5141 *
5142 * Callers must hold the rtnl semaphore. You may want
5143 * register_netdev() instead of this.
5144 *
5145 * BUGS:
5146 * The locking appears insufficient to guarantee two parallel registers
5147 * will not get the same name.
5148 */
5149
5150 int register_netdevice(struct net_device *dev)
5151 {
5152 int ret;
5153 struct net *net = dev_net(dev);
5154
5155 BUG_ON(dev_boot_phase);
5156 ASSERT_RTNL();
5157
5158 might_sleep();
5159
5160 /* When net_device's are persistent, this will be fatal. */
5161 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5162 BUG_ON(!net);
5163
5164 spin_lock_init(&dev->addr_list_lock);
5165 netdev_set_addr_lockdep_class(dev);
5166
5167 dev->iflink = -1;
5168
5169 ret = dev_get_valid_name(net, dev, dev->name);
5170 if (ret < 0)
5171 goto out;
5172
5173 /* Init, if this function is available */
5174 if (dev->netdev_ops->ndo_init) {
5175 ret = dev->netdev_ops->ndo_init(dev);
5176 if (ret) {
5177 if (ret > 0)
5178 ret = -EIO;
5179 goto out;
5180 }
5181 }
5182
5183 if (((dev->hw_features | dev->features) &
5184 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5185 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5186 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5187 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5188 ret = -EINVAL;
5189 goto err_uninit;
5190 }
5191
5192 ret = -EBUSY;
5193 if (!dev->ifindex)
5194 dev->ifindex = dev_new_index(net);
5195 else if (__dev_get_by_index(net, dev->ifindex))
5196 goto err_uninit;
5197
5198 if (dev->iflink == -1)
5199 dev->iflink = dev->ifindex;
5200
5201 /* Transfer changeable features to wanted_features and enable
5202 * software offloads (GSO and GRO).
5203 */
5204 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5205 dev->features |= NETIF_F_SOFT_FEATURES;
5206 dev->wanted_features = dev->features & dev->hw_features;
5207
5208 /* Turn on no cache copy if HW is doing checksum */
5209 if (!(dev->flags & IFF_LOOPBACK)) {
5210 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5211 if (dev->features & NETIF_F_ALL_CSUM) {
5212 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5213 dev->features |= NETIF_F_NOCACHE_COPY;
5214 }
5215 }
5216
5217 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5218 */
5219 dev->vlan_features |= NETIF_F_HIGHDMA;
5220
5221 /* Make NETIF_F_SG inheritable to tunnel devices.
5222 */
5223 dev->hw_enc_features |= NETIF_F_SG;
5224
5225 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5226 ret = notifier_to_errno(ret);
5227 if (ret)
5228 goto err_uninit;
5229
5230 ret = netdev_register_kobject(dev);
5231 if (ret)
5232 goto err_uninit;
5233 dev->reg_state = NETREG_REGISTERED;
5234
5235 __netdev_update_features(dev);
5236
5237 /*
5238 * Default initial state at registry is that the
5239 * device is present.
5240 */
5241
5242 set_bit(__LINK_STATE_PRESENT, &dev->state);
5243
5244 linkwatch_init_dev(dev);
5245
5246 dev_init_scheduler(dev);
5247 dev_hold(dev);
5248 list_netdevice(dev);
5249 add_device_randomness(dev->dev_addr, dev->addr_len);
5250
5251 /* If the device has permanent device address, driver should
5252 * set dev_addr and also addr_assign_type should be set to
5253 * NET_ADDR_PERM (default value).
5254 */
5255 if (dev->addr_assign_type == NET_ADDR_PERM)
5256 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5257
5258 /* Notify protocols, that a new device appeared. */
5259 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5260 ret = notifier_to_errno(ret);
5261 if (ret) {
5262 rollback_registered(dev);
5263 dev->reg_state = NETREG_UNREGISTERED;
5264 }
5265 /*
5266 * Prevent userspace races by waiting until the network
5267 * device is fully setup before sending notifications.
5268 */
5269 if (!dev->rtnl_link_ops ||
5270 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5271 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5272
5273 out:
5274 return ret;
5275
5276 err_uninit:
5277 if (dev->netdev_ops->ndo_uninit)
5278 dev->netdev_ops->ndo_uninit(dev);
5279 goto out;
5280 }
5281 EXPORT_SYMBOL(register_netdevice);
5282
5283 /**
5284 * init_dummy_netdev - init a dummy network device for NAPI
5285 * @dev: device to init
5286 *
5287 * This takes a network device structure and initialize the minimum
5288 * amount of fields so it can be used to schedule NAPI polls without
5289 * registering a full blown interface. This is to be used by drivers
5290 * that need to tie several hardware interfaces to a single NAPI
5291 * poll scheduler due to HW limitations.
5292 */
5293 int init_dummy_netdev(struct net_device *dev)
5294 {
5295 /* Clear everything. Note we don't initialize spinlocks
5296 * are they aren't supposed to be taken by any of the
5297 * NAPI code and this dummy netdev is supposed to be
5298 * only ever used for NAPI polls
5299 */
5300 memset(dev, 0, sizeof(struct net_device));
5301
5302 /* make sure we BUG if trying to hit standard
5303 * register/unregister code path
5304 */
5305 dev->reg_state = NETREG_DUMMY;
5306
5307 /* NAPI wants this */
5308 INIT_LIST_HEAD(&dev->napi_list);
5309
5310 /* a dummy interface is started by default */
5311 set_bit(__LINK_STATE_PRESENT, &dev->state);
5312 set_bit(__LINK_STATE_START, &dev->state);
5313
5314 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5315 * because users of this 'device' dont need to change
5316 * its refcount.
5317 */
5318
5319 return 0;
5320 }
5321 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5322
5323
5324 /**
5325 * register_netdev - register a network device
5326 * @dev: device to register
5327 *
5328 * Take a completed network device structure and add it to the kernel
5329 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5330 * chain. 0 is returned on success. A negative errno code is returned
5331 * on a failure to set up the device, or if the name is a duplicate.
5332 *
5333 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5334 * and expands the device name if you passed a format string to
5335 * alloc_netdev.
5336 */
5337 int register_netdev(struct net_device *dev)
5338 {
5339 int err;
5340
5341 rtnl_lock();
5342 err = register_netdevice(dev);
5343 rtnl_unlock();
5344 return err;
5345 }
5346 EXPORT_SYMBOL(register_netdev);
5347
5348 int netdev_refcnt_read(const struct net_device *dev)
5349 {
5350 int i, refcnt = 0;
5351
5352 for_each_possible_cpu(i)
5353 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5354 return refcnt;
5355 }
5356 EXPORT_SYMBOL(netdev_refcnt_read);
5357
5358 /**
5359 * netdev_wait_allrefs - wait until all references are gone.
5360 * @dev: target net_device
5361 *
5362 * This is called when unregistering network devices.
5363 *
5364 * Any protocol or device that holds a reference should register
5365 * for netdevice notification, and cleanup and put back the
5366 * reference if they receive an UNREGISTER event.
5367 * We can get stuck here if buggy protocols don't correctly
5368 * call dev_put.
5369 */
5370 static void netdev_wait_allrefs(struct net_device *dev)
5371 {
5372 unsigned long rebroadcast_time, warning_time;
5373 int refcnt;
5374
5375 linkwatch_forget_dev(dev);
5376
5377 rebroadcast_time = warning_time = jiffies;
5378 refcnt = netdev_refcnt_read(dev);
5379
5380 while (refcnt != 0) {
5381 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5382 rtnl_lock();
5383
5384 /* Rebroadcast unregister notification */
5385 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5386
5387 __rtnl_unlock();
5388 rcu_barrier();
5389 rtnl_lock();
5390
5391 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5392 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5393 &dev->state)) {
5394 /* We must not have linkwatch events
5395 * pending on unregister. If this
5396 * happens, we simply run the queue
5397 * unscheduled, resulting in a noop
5398 * for this device.
5399 */
5400 linkwatch_run_queue();
5401 }
5402
5403 __rtnl_unlock();
5404
5405 rebroadcast_time = jiffies;
5406 }
5407
5408 msleep(250);
5409
5410 refcnt = netdev_refcnt_read(dev);
5411
5412 if (time_after(jiffies, warning_time + 10 * HZ)) {
5413 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5414 dev->name, refcnt);
5415 warning_time = jiffies;
5416 }
5417 }
5418 }
5419
5420 /* The sequence is:
5421 *
5422 * rtnl_lock();
5423 * ...
5424 * register_netdevice(x1);
5425 * register_netdevice(x2);
5426 * ...
5427 * unregister_netdevice(y1);
5428 * unregister_netdevice(y2);
5429 * ...
5430 * rtnl_unlock();
5431 * free_netdev(y1);
5432 * free_netdev(y2);
5433 *
5434 * We are invoked by rtnl_unlock().
5435 * This allows us to deal with problems:
5436 * 1) We can delete sysfs objects which invoke hotplug
5437 * without deadlocking with linkwatch via keventd.
5438 * 2) Since we run with the RTNL semaphore not held, we can sleep
5439 * safely in order to wait for the netdev refcnt to drop to zero.
5440 *
5441 * We must not return until all unregister events added during
5442 * the interval the lock was held have been completed.
5443 */
5444 void netdev_run_todo(void)
5445 {
5446 struct list_head list;
5447
5448 /* Snapshot list, allow later requests */
5449 list_replace_init(&net_todo_list, &list);
5450
5451 __rtnl_unlock();
5452
5453
5454 /* Wait for rcu callbacks to finish before next phase */
5455 if (!list_empty(&list))
5456 rcu_barrier();
5457
5458 while (!list_empty(&list)) {
5459 struct net_device *dev
5460 = list_first_entry(&list, struct net_device, todo_list);
5461 list_del(&dev->todo_list);
5462
5463 rtnl_lock();
5464 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5465 __rtnl_unlock();
5466
5467 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5468 pr_err("network todo '%s' but state %d\n",
5469 dev->name, dev->reg_state);
5470 dump_stack();
5471 continue;
5472 }
5473
5474 dev->reg_state = NETREG_UNREGISTERED;
5475
5476 on_each_cpu(flush_backlog, dev, 1);
5477
5478 netdev_wait_allrefs(dev);
5479
5480 /* paranoia */
5481 BUG_ON(netdev_refcnt_read(dev));
5482 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5483 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5484 WARN_ON(dev->dn_ptr);
5485
5486 if (dev->destructor)
5487 dev->destructor(dev);
5488
5489 /* Free network device */
5490 kobject_put(&dev->dev.kobj);
5491 }
5492 }
5493
5494 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5495 * fields in the same order, with only the type differing.
5496 */
5497 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5498 const struct net_device_stats *netdev_stats)
5499 {
5500 #if BITS_PER_LONG == 64
5501 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5502 memcpy(stats64, netdev_stats, sizeof(*stats64));
5503 #else
5504 size_t i, n = sizeof(*stats64) / sizeof(u64);
5505 const unsigned long *src = (const unsigned long *)netdev_stats;
5506 u64 *dst = (u64 *)stats64;
5507
5508 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5509 sizeof(*stats64) / sizeof(u64));
5510 for (i = 0; i < n; i++)
5511 dst[i] = src[i];
5512 #endif
5513 }
5514 EXPORT_SYMBOL(netdev_stats_to_stats64);
5515
5516 /**
5517 * dev_get_stats - get network device statistics
5518 * @dev: device to get statistics from
5519 * @storage: place to store stats
5520 *
5521 * Get network statistics from device. Return @storage.
5522 * The device driver may provide its own method by setting
5523 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5524 * otherwise the internal statistics structure is used.
5525 */
5526 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5527 struct rtnl_link_stats64 *storage)
5528 {
5529 const struct net_device_ops *ops = dev->netdev_ops;
5530
5531 if (ops->ndo_get_stats64) {
5532 memset(storage, 0, sizeof(*storage));
5533 ops->ndo_get_stats64(dev, storage);
5534 } else if (ops->ndo_get_stats) {
5535 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5536 } else {
5537 netdev_stats_to_stats64(storage, &dev->stats);
5538 }
5539 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5540 return storage;
5541 }
5542 EXPORT_SYMBOL(dev_get_stats);
5543
5544 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5545 {
5546 struct netdev_queue *queue = dev_ingress_queue(dev);
5547
5548 #ifdef CONFIG_NET_CLS_ACT
5549 if (queue)
5550 return queue;
5551 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5552 if (!queue)
5553 return NULL;
5554 netdev_init_one_queue(dev, queue, NULL);
5555 queue->qdisc = &noop_qdisc;
5556 queue->qdisc_sleeping = &noop_qdisc;
5557 rcu_assign_pointer(dev->ingress_queue, queue);
5558 #endif
5559 return queue;
5560 }
5561
5562 static const struct ethtool_ops default_ethtool_ops;
5563
5564 void netdev_set_default_ethtool_ops(struct net_device *dev,
5565 const struct ethtool_ops *ops)
5566 {
5567 if (dev->ethtool_ops == &default_ethtool_ops)
5568 dev->ethtool_ops = ops;
5569 }
5570 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5571
5572 /**
5573 * alloc_netdev_mqs - allocate network device
5574 * @sizeof_priv: size of private data to allocate space for
5575 * @name: device name format string
5576 * @setup: callback to initialize device
5577 * @txqs: the number of TX subqueues to allocate
5578 * @rxqs: the number of RX subqueues to allocate
5579 *
5580 * Allocates a struct net_device with private data area for driver use
5581 * and performs basic initialization. Also allocates subquue structs
5582 * for each queue on the device.
5583 */
5584 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5585 void (*setup)(struct net_device *),
5586 unsigned int txqs, unsigned int rxqs)
5587 {
5588 struct net_device *dev;
5589 size_t alloc_size;
5590 struct net_device *p;
5591
5592 BUG_ON(strlen(name) >= sizeof(dev->name));
5593
5594 if (txqs < 1) {
5595 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5596 return NULL;
5597 }
5598
5599 #ifdef CONFIG_RPS
5600 if (rxqs < 1) {
5601 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5602 return NULL;
5603 }
5604 #endif
5605
5606 alloc_size = sizeof(struct net_device);
5607 if (sizeof_priv) {
5608 /* ensure 32-byte alignment of private area */
5609 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5610 alloc_size += sizeof_priv;
5611 }
5612 /* ensure 32-byte alignment of whole construct */
5613 alloc_size += NETDEV_ALIGN - 1;
5614
5615 p = kzalloc(alloc_size, GFP_KERNEL);
5616 if (!p)
5617 return NULL;
5618
5619 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5620 dev->padded = (char *)dev - (char *)p;
5621
5622 dev->pcpu_refcnt = alloc_percpu(int);
5623 if (!dev->pcpu_refcnt)
5624 goto free_p;
5625
5626 if (dev_addr_init(dev))
5627 goto free_pcpu;
5628
5629 dev_mc_init(dev);
5630 dev_uc_init(dev);
5631
5632 dev_net_set(dev, &init_net);
5633
5634 dev->gso_max_size = GSO_MAX_SIZE;
5635 dev->gso_max_segs = GSO_MAX_SEGS;
5636
5637 INIT_LIST_HEAD(&dev->napi_list);
5638 INIT_LIST_HEAD(&dev->unreg_list);
5639 INIT_LIST_HEAD(&dev->link_watch_list);
5640 INIT_LIST_HEAD(&dev->upper_dev_list);
5641 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5642 setup(dev);
5643
5644 dev->num_tx_queues = txqs;
5645 dev->real_num_tx_queues = txqs;
5646 if (netif_alloc_netdev_queues(dev))
5647 goto free_all;
5648
5649 #ifdef CONFIG_RPS
5650 dev->num_rx_queues = rxqs;
5651 dev->real_num_rx_queues = rxqs;
5652 if (netif_alloc_rx_queues(dev))
5653 goto free_all;
5654 #endif
5655
5656 strcpy(dev->name, name);
5657 dev->group = INIT_NETDEV_GROUP;
5658 if (!dev->ethtool_ops)
5659 dev->ethtool_ops = &default_ethtool_ops;
5660 return dev;
5661
5662 free_all:
5663 free_netdev(dev);
5664 return NULL;
5665
5666 free_pcpu:
5667 free_percpu(dev->pcpu_refcnt);
5668 kfree(dev->_tx);
5669 #ifdef CONFIG_RPS
5670 kfree(dev->_rx);
5671 #endif
5672
5673 free_p:
5674 kfree(p);
5675 return NULL;
5676 }
5677 EXPORT_SYMBOL(alloc_netdev_mqs);
5678
5679 /**
5680 * free_netdev - free network device
5681 * @dev: device
5682 *
5683 * This function does the last stage of destroying an allocated device
5684 * interface. The reference to the device object is released.
5685 * If this is the last reference then it will be freed.
5686 */
5687 void free_netdev(struct net_device *dev)
5688 {
5689 struct napi_struct *p, *n;
5690
5691 release_net(dev_net(dev));
5692
5693 kfree(dev->_tx);
5694 #ifdef CONFIG_RPS
5695 kfree(dev->_rx);
5696 #endif
5697
5698 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5699
5700 /* Flush device addresses */
5701 dev_addr_flush(dev);
5702
5703 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5704 netif_napi_del(p);
5705
5706 free_percpu(dev->pcpu_refcnt);
5707 dev->pcpu_refcnt = NULL;
5708
5709 /* Compatibility with error handling in drivers */
5710 if (dev->reg_state == NETREG_UNINITIALIZED) {
5711 kfree((char *)dev - dev->padded);
5712 return;
5713 }
5714
5715 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5716 dev->reg_state = NETREG_RELEASED;
5717
5718 /* will free via device release */
5719 put_device(&dev->dev);
5720 }
5721 EXPORT_SYMBOL(free_netdev);
5722
5723 /**
5724 * synchronize_net - Synchronize with packet receive processing
5725 *
5726 * Wait for packets currently being received to be done.
5727 * Does not block later packets from starting.
5728 */
5729 void synchronize_net(void)
5730 {
5731 might_sleep();
5732 if (rtnl_is_locked())
5733 synchronize_rcu_expedited();
5734 else
5735 synchronize_rcu();
5736 }
5737 EXPORT_SYMBOL(synchronize_net);
5738
5739 /**
5740 * unregister_netdevice_queue - remove device from the kernel
5741 * @dev: device
5742 * @head: list
5743 *
5744 * This function shuts down a device interface and removes it
5745 * from the kernel tables.
5746 * If head not NULL, device is queued to be unregistered later.
5747 *
5748 * Callers must hold the rtnl semaphore. You may want
5749 * unregister_netdev() instead of this.
5750 */
5751
5752 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5753 {
5754 ASSERT_RTNL();
5755
5756 if (head) {
5757 list_move_tail(&dev->unreg_list, head);
5758 } else {
5759 rollback_registered(dev);
5760 /* Finish processing unregister after unlock */
5761 net_set_todo(dev);
5762 }
5763 }
5764 EXPORT_SYMBOL(unregister_netdevice_queue);
5765
5766 /**
5767 * unregister_netdevice_many - unregister many devices
5768 * @head: list of devices
5769 */
5770 void unregister_netdevice_many(struct list_head *head)
5771 {
5772 struct net_device *dev;
5773
5774 if (!list_empty(head)) {
5775 rollback_registered_many(head);
5776 list_for_each_entry(dev, head, unreg_list)
5777 net_set_todo(dev);
5778 }
5779 }
5780 EXPORT_SYMBOL(unregister_netdevice_many);
5781
5782 /**
5783 * unregister_netdev - remove device from the kernel
5784 * @dev: device
5785 *
5786 * This function shuts down a device interface and removes it
5787 * from the kernel tables.
5788 *
5789 * This is just a wrapper for unregister_netdevice that takes
5790 * the rtnl semaphore. In general you want to use this and not
5791 * unregister_netdevice.
5792 */
5793 void unregister_netdev(struct net_device *dev)
5794 {
5795 rtnl_lock();
5796 unregister_netdevice(dev);
5797 rtnl_unlock();
5798 }
5799 EXPORT_SYMBOL(unregister_netdev);
5800
5801 /**
5802 * dev_change_net_namespace - move device to different nethost namespace
5803 * @dev: device
5804 * @net: network namespace
5805 * @pat: If not NULL name pattern to try if the current device name
5806 * is already taken in the destination network namespace.
5807 *
5808 * This function shuts down a device interface and moves it
5809 * to a new network namespace. On success 0 is returned, on
5810 * a failure a netagive errno code is returned.
5811 *
5812 * Callers must hold the rtnl semaphore.
5813 */
5814
5815 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5816 {
5817 int err;
5818
5819 ASSERT_RTNL();
5820
5821 /* Don't allow namespace local devices to be moved. */
5822 err = -EINVAL;
5823 if (dev->features & NETIF_F_NETNS_LOCAL)
5824 goto out;
5825
5826 /* Ensure the device has been registrered */
5827 if (dev->reg_state != NETREG_REGISTERED)
5828 goto out;
5829
5830 /* Get out if there is nothing todo */
5831 err = 0;
5832 if (net_eq(dev_net(dev), net))
5833 goto out;
5834
5835 /* Pick the destination device name, and ensure
5836 * we can use it in the destination network namespace.
5837 */
5838 err = -EEXIST;
5839 if (__dev_get_by_name(net, dev->name)) {
5840 /* We get here if we can't use the current device name */
5841 if (!pat)
5842 goto out;
5843 if (dev_get_valid_name(net, dev, pat) < 0)
5844 goto out;
5845 }
5846
5847 /*
5848 * And now a mini version of register_netdevice unregister_netdevice.
5849 */
5850
5851 /* If device is running close it first. */
5852 dev_close(dev);
5853
5854 /* And unlink it from device chain */
5855 err = -ENODEV;
5856 unlist_netdevice(dev);
5857
5858 synchronize_net();
5859
5860 /* Shutdown queueing discipline. */
5861 dev_shutdown(dev);
5862
5863 /* Notify protocols, that we are about to destroy
5864 this device. They should clean all the things.
5865
5866 Note that dev->reg_state stays at NETREG_REGISTERED.
5867 This is wanted because this way 8021q and macvlan know
5868 the device is just moving and can keep their slaves up.
5869 */
5870 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5871 rcu_barrier();
5872 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5873 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5874
5875 /*
5876 * Flush the unicast and multicast chains
5877 */
5878 dev_uc_flush(dev);
5879 dev_mc_flush(dev);
5880
5881 /* Send a netdev-removed uevent to the old namespace */
5882 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
5883
5884 /* Actually switch the network namespace */
5885 dev_net_set(dev, net);
5886
5887 /* If there is an ifindex conflict assign a new one */
5888 if (__dev_get_by_index(net, dev->ifindex)) {
5889 int iflink = (dev->iflink == dev->ifindex);
5890 dev->ifindex = dev_new_index(net);
5891 if (iflink)
5892 dev->iflink = dev->ifindex;
5893 }
5894
5895 /* Send a netdev-add uevent to the new namespace */
5896 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
5897
5898 /* Fixup kobjects */
5899 err = device_rename(&dev->dev, dev->name);
5900 WARN_ON(err);
5901
5902 /* Add the device back in the hashes */
5903 list_netdevice(dev);
5904
5905 /* Notify protocols, that a new device appeared. */
5906 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5907
5908 /*
5909 * Prevent userspace races by waiting until the network
5910 * device is fully setup before sending notifications.
5911 */
5912 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5913
5914 synchronize_net();
5915 err = 0;
5916 out:
5917 return err;
5918 }
5919 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5920
5921 static int dev_cpu_callback(struct notifier_block *nfb,
5922 unsigned long action,
5923 void *ocpu)
5924 {
5925 struct sk_buff **list_skb;
5926 struct sk_buff *skb;
5927 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5928 struct softnet_data *sd, *oldsd;
5929
5930 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5931 return NOTIFY_OK;
5932
5933 local_irq_disable();
5934 cpu = smp_processor_id();
5935 sd = &per_cpu(softnet_data, cpu);
5936 oldsd = &per_cpu(softnet_data, oldcpu);
5937
5938 /* Find end of our completion_queue. */
5939 list_skb = &sd->completion_queue;
5940 while (*list_skb)
5941 list_skb = &(*list_skb)->next;
5942 /* Append completion queue from offline CPU. */
5943 *list_skb = oldsd->completion_queue;
5944 oldsd->completion_queue = NULL;
5945
5946 /* Append output queue from offline CPU. */
5947 if (oldsd->output_queue) {
5948 *sd->output_queue_tailp = oldsd->output_queue;
5949 sd->output_queue_tailp = oldsd->output_queue_tailp;
5950 oldsd->output_queue = NULL;
5951 oldsd->output_queue_tailp = &oldsd->output_queue;
5952 }
5953 /* Append NAPI poll list from offline CPU. */
5954 if (!list_empty(&oldsd->poll_list)) {
5955 list_splice_init(&oldsd->poll_list, &sd->poll_list);
5956 raise_softirq_irqoff(NET_RX_SOFTIRQ);
5957 }
5958
5959 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5960 local_irq_enable();
5961
5962 /* Process offline CPU's input_pkt_queue */
5963 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5964 netif_rx(skb);
5965 input_queue_head_incr(oldsd);
5966 }
5967 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5968 netif_rx(skb);
5969 input_queue_head_incr(oldsd);
5970 }
5971
5972 return NOTIFY_OK;
5973 }
5974
5975
5976 /**
5977 * netdev_increment_features - increment feature set by one
5978 * @all: current feature set
5979 * @one: new feature set
5980 * @mask: mask feature set
5981 *
5982 * Computes a new feature set after adding a device with feature set
5983 * @one to the master device with current feature set @all. Will not
5984 * enable anything that is off in @mask. Returns the new feature set.
5985 */
5986 netdev_features_t netdev_increment_features(netdev_features_t all,
5987 netdev_features_t one, netdev_features_t mask)
5988 {
5989 if (mask & NETIF_F_GEN_CSUM)
5990 mask |= NETIF_F_ALL_CSUM;
5991 mask |= NETIF_F_VLAN_CHALLENGED;
5992
5993 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
5994 all &= one | ~NETIF_F_ALL_FOR_ALL;
5995
5996 /* If one device supports hw checksumming, set for all. */
5997 if (all & NETIF_F_GEN_CSUM)
5998 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
5999
6000 return all;
6001 }
6002 EXPORT_SYMBOL(netdev_increment_features);
6003
6004 static struct hlist_head *netdev_create_hash(void)
6005 {
6006 int i;
6007 struct hlist_head *hash;
6008
6009 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6010 if (hash != NULL)
6011 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6012 INIT_HLIST_HEAD(&hash[i]);
6013
6014 return hash;
6015 }
6016
6017 /* Initialize per network namespace state */
6018 static int __net_init netdev_init(struct net *net)
6019 {
6020 if (net != &init_net)
6021 INIT_LIST_HEAD(&net->dev_base_head);
6022
6023 net->dev_name_head = netdev_create_hash();
6024 if (net->dev_name_head == NULL)
6025 goto err_name;
6026
6027 net->dev_index_head = netdev_create_hash();
6028 if (net->dev_index_head == NULL)
6029 goto err_idx;
6030
6031 return 0;
6032
6033 err_idx:
6034 kfree(net->dev_name_head);
6035 err_name:
6036 return -ENOMEM;
6037 }
6038
6039 /**
6040 * netdev_drivername - network driver for the device
6041 * @dev: network device
6042 *
6043 * Determine network driver for device.
6044 */
6045 const char *netdev_drivername(const struct net_device *dev)
6046 {
6047 const struct device_driver *driver;
6048 const struct device *parent;
6049 const char *empty = "";
6050
6051 parent = dev->dev.parent;
6052 if (!parent)
6053 return empty;
6054
6055 driver = parent->driver;
6056 if (driver && driver->name)
6057 return driver->name;
6058 return empty;
6059 }
6060
6061 static int __netdev_printk(const char *level, const struct net_device *dev,
6062 struct va_format *vaf)
6063 {
6064 int r;
6065
6066 if (dev && dev->dev.parent) {
6067 r = dev_printk_emit(level[1] - '0',
6068 dev->dev.parent,
6069 "%s %s %s: %pV",
6070 dev_driver_string(dev->dev.parent),
6071 dev_name(dev->dev.parent),
6072 netdev_name(dev), vaf);
6073 } else if (dev) {
6074 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6075 } else {
6076 r = printk("%s(NULL net_device): %pV", level, vaf);
6077 }
6078
6079 return r;
6080 }
6081
6082 int netdev_printk(const char *level, const struct net_device *dev,
6083 const char *format, ...)
6084 {
6085 struct va_format vaf;
6086 va_list args;
6087 int r;
6088
6089 va_start(args, format);
6090
6091 vaf.fmt = format;
6092 vaf.va = &args;
6093
6094 r = __netdev_printk(level, dev, &vaf);
6095
6096 va_end(args);
6097
6098 return r;
6099 }
6100 EXPORT_SYMBOL(netdev_printk);
6101
6102 #define define_netdev_printk_level(func, level) \
6103 int func(const struct net_device *dev, const char *fmt, ...) \
6104 { \
6105 int r; \
6106 struct va_format vaf; \
6107 va_list args; \
6108 \
6109 va_start(args, fmt); \
6110 \
6111 vaf.fmt = fmt; \
6112 vaf.va = &args; \
6113 \
6114 r = __netdev_printk(level, dev, &vaf); \
6115 \
6116 va_end(args); \
6117 \
6118 return r; \
6119 } \
6120 EXPORT_SYMBOL(func);
6121
6122 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6123 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6124 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6125 define_netdev_printk_level(netdev_err, KERN_ERR);
6126 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6127 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6128 define_netdev_printk_level(netdev_info, KERN_INFO);
6129
6130 static void __net_exit netdev_exit(struct net *net)
6131 {
6132 kfree(net->dev_name_head);
6133 kfree(net->dev_index_head);
6134 }
6135
6136 static struct pernet_operations __net_initdata netdev_net_ops = {
6137 .init = netdev_init,
6138 .exit = netdev_exit,
6139 };
6140
6141 static void __net_exit default_device_exit(struct net *net)
6142 {
6143 struct net_device *dev, *aux;
6144 /*
6145 * Push all migratable network devices back to the
6146 * initial network namespace
6147 */
6148 rtnl_lock();
6149 for_each_netdev_safe(net, dev, aux) {
6150 int err;
6151 char fb_name[IFNAMSIZ];
6152
6153 /* Ignore unmoveable devices (i.e. loopback) */
6154 if (dev->features & NETIF_F_NETNS_LOCAL)
6155 continue;
6156
6157 /* Leave virtual devices for the generic cleanup */
6158 if (dev->rtnl_link_ops)
6159 continue;
6160
6161 /* Push remaining network devices to init_net */
6162 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6163 err = dev_change_net_namespace(dev, &init_net, fb_name);
6164 if (err) {
6165 pr_emerg("%s: failed to move %s to init_net: %d\n",
6166 __func__, dev->name, err);
6167 BUG();
6168 }
6169 }
6170 rtnl_unlock();
6171 }
6172
6173 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6174 {
6175 /* At exit all network devices most be removed from a network
6176 * namespace. Do this in the reverse order of registration.
6177 * Do this across as many network namespaces as possible to
6178 * improve batching efficiency.
6179 */
6180 struct net_device *dev;
6181 struct net *net;
6182 LIST_HEAD(dev_kill_list);
6183
6184 rtnl_lock();
6185 list_for_each_entry(net, net_list, exit_list) {
6186 for_each_netdev_reverse(net, dev) {
6187 if (dev->rtnl_link_ops)
6188 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6189 else
6190 unregister_netdevice_queue(dev, &dev_kill_list);
6191 }
6192 }
6193 unregister_netdevice_many(&dev_kill_list);
6194 list_del(&dev_kill_list);
6195 rtnl_unlock();
6196 }
6197
6198 static struct pernet_operations __net_initdata default_device_ops = {
6199 .exit = default_device_exit,
6200 .exit_batch = default_device_exit_batch,
6201 };
6202
6203 /*
6204 * Initialize the DEV module. At boot time this walks the device list and
6205 * unhooks any devices that fail to initialise (normally hardware not
6206 * present) and leaves us with a valid list of present and active devices.
6207 *
6208 */
6209
6210 /*
6211 * This is called single threaded during boot, so no need
6212 * to take the rtnl semaphore.
6213 */
6214 static int __init net_dev_init(void)
6215 {
6216 int i, rc = -ENOMEM;
6217
6218 BUG_ON(!dev_boot_phase);
6219
6220 if (dev_proc_init())
6221 goto out;
6222
6223 if (netdev_kobject_init())
6224 goto out;
6225
6226 INIT_LIST_HEAD(&ptype_all);
6227 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6228 INIT_LIST_HEAD(&ptype_base[i]);
6229
6230 INIT_LIST_HEAD(&offload_base);
6231
6232 if (register_pernet_subsys(&netdev_net_ops))
6233 goto out;
6234
6235 /*
6236 * Initialise the packet receive queues.
6237 */
6238
6239 for_each_possible_cpu(i) {
6240 struct softnet_data *sd = &per_cpu(softnet_data, i);
6241
6242 memset(sd, 0, sizeof(*sd));
6243 skb_queue_head_init(&sd->input_pkt_queue);
6244 skb_queue_head_init(&sd->process_queue);
6245 sd->completion_queue = NULL;
6246 INIT_LIST_HEAD(&sd->poll_list);
6247 sd->output_queue = NULL;
6248 sd->output_queue_tailp = &sd->output_queue;
6249 #ifdef CONFIG_RPS
6250 sd->csd.func = rps_trigger_softirq;
6251 sd->csd.info = sd;
6252 sd->csd.flags = 0;
6253 sd->cpu = i;
6254 #endif
6255
6256 sd->backlog.poll = process_backlog;
6257 sd->backlog.weight = weight_p;
6258 sd->backlog.gro_list = NULL;
6259 sd->backlog.gro_count = 0;
6260 }
6261
6262 dev_boot_phase = 0;
6263
6264 /* The loopback device is special if any other network devices
6265 * is present in a network namespace the loopback device must
6266 * be present. Since we now dynamically allocate and free the
6267 * loopback device ensure this invariant is maintained by
6268 * keeping the loopback device as the first device on the
6269 * list of network devices. Ensuring the loopback devices
6270 * is the first device that appears and the last network device
6271 * that disappears.
6272 */
6273 if (register_pernet_device(&loopback_net_ops))
6274 goto out;
6275
6276 if (register_pernet_device(&default_device_ops))
6277 goto out;
6278
6279 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6280 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6281
6282 hotcpu_notifier(dev_cpu_callback, 0);
6283 dst_init();
6284 rc = 0;
6285 out:
6286 return rc;
6287 }
6288
6289 subsys_initcall(net_dev_init);