]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/core/dev.c
092c094038b6b8f6a3e911a859ea0b48dc410eb7
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145
146 #include "net-sysfs.h"
147
148 #define MAX_GRO_SKBS 8
149 #define MAX_NEST_DEV 8
150
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly; /* Taps */
158 static struct list_head offload_base __read_mostly;
159
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162 struct netdev_notifier_info *info);
163 static int call_netdevice_notifiers_extack(unsigned long val,
164 struct net_device *dev,
165 struct netlink_ext_ack *extack);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168 /*
169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170 * semaphore.
171 *
172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173 *
174 * Writers must hold the rtnl semaphore while they loop through the
175 * dev_base_head list, and hold dev_base_lock for writing when they do the
176 * actual updates. This allows pure readers to access the list even
177 * while a writer is preparing to update it.
178 *
179 * To put it another way, dev_base_lock is held for writing only to
180 * protect against pure readers; the rtnl semaphore provides the
181 * protection against other writers.
182 *
183 * See, for example usages, register_netdevice() and
184 * unregister_netdevice(), which must be called with the rtnl
185 * semaphore held.
186 */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189
190 static DEFINE_MUTEX(ifalias_mutex);
191
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198 static seqcount_t devnet_rename_seq;
199
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202 while (++net->dev_base_seq == 0)
203 ;
204 }
205
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231
232 /* Device list insertion */
233 static void list_netdevice(struct net_device *dev)
234 {
235 struct net *net = dev_net(dev);
236
237 ASSERT_RTNL();
238
239 write_lock_bh(&dev_base_lock);
240 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242 hlist_add_head_rcu(&dev->index_hlist,
243 dev_index_hash(net, dev->ifindex));
244 write_unlock_bh(&dev_base_lock);
245
246 dev_base_seq_inc(net);
247 }
248
249 /* Device list removal
250 * caller must respect a RCU grace period before freeing/reusing dev
251 */
252 static void unlist_netdevice(struct net_device *dev)
253 {
254 ASSERT_RTNL();
255
256 /* Unlink dev from the device chain */
257 write_lock_bh(&dev_base_lock);
258 list_del_rcu(&dev->dev_list);
259 hlist_del_rcu(&dev->name_hlist);
260 hlist_del_rcu(&dev->index_hlist);
261 write_unlock_bh(&dev_base_lock);
262
263 dev_base_seq_inc(dev_net(dev));
264 }
265
266 /*
267 * Our notifier list
268 */
269
270 static RAW_NOTIFIER_HEAD(netdev_chain);
271
272 /*
273 * Device drivers call our routines to queue packets here. We empty the
274 * queue in the local softnet handler.
275 */
276
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
278 EXPORT_PER_CPU_SYMBOL(softnet_data);
279
280 /*******************************************************************************
281 *
282 * Protocol management and registration routines
283 *
284 *******************************************************************************/
285
286
287 /*
288 * Add a protocol ID to the list. Now that the input handler is
289 * smarter we can dispense with all the messy stuff that used to be
290 * here.
291 *
292 * BEWARE!!! Protocol handlers, mangling input packets,
293 * MUST BE last in hash buckets and checking protocol handlers
294 * MUST start from promiscuous ptype_all chain in net_bh.
295 * It is true now, do not change it.
296 * Explanation follows: if protocol handler, mangling packet, will
297 * be the first on list, it is not able to sense, that packet
298 * is cloned and should be copied-on-write, so that it will
299 * change it and subsequent readers will get broken packet.
300 * --ANK (980803)
301 */
302
303 static inline struct list_head *ptype_head(const struct packet_type *pt)
304 {
305 if (pt->type == htons(ETH_P_ALL))
306 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
307 else
308 return pt->dev ? &pt->dev->ptype_specific :
309 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
310 }
311
312 /**
313 * dev_add_pack - add packet handler
314 * @pt: packet type declaration
315 *
316 * Add a protocol handler to the networking stack. The passed &packet_type
317 * is linked into kernel lists and may not be freed until it has been
318 * removed from the kernel lists.
319 *
320 * This call does not sleep therefore it can not
321 * guarantee all CPU's that are in middle of receiving packets
322 * will see the new packet type (until the next received packet).
323 */
324
325 void dev_add_pack(struct packet_type *pt)
326 {
327 struct list_head *head = ptype_head(pt);
328
329 spin_lock(&ptype_lock);
330 list_add_rcu(&pt->list, head);
331 spin_unlock(&ptype_lock);
332 }
333 EXPORT_SYMBOL(dev_add_pack);
334
335 /**
336 * __dev_remove_pack - remove packet handler
337 * @pt: packet type declaration
338 *
339 * Remove a protocol handler that was previously added to the kernel
340 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
341 * from the kernel lists and can be freed or reused once this function
342 * returns.
343 *
344 * The packet type might still be in use by receivers
345 * and must not be freed until after all the CPU's have gone
346 * through a quiescent state.
347 */
348 void __dev_remove_pack(struct packet_type *pt)
349 {
350 struct list_head *head = ptype_head(pt);
351 struct packet_type *pt1;
352
353 spin_lock(&ptype_lock);
354
355 list_for_each_entry(pt1, head, list) {
356 if (pt == pt1) {
357 list_del_rcu(&pt->list);
358 goto out;
359 }
360 }
361
362 pr_warn("dev_remove_pack: %p not found\n", pt);
363 out:
364 spin_unlock(&ptype_lock);
365 }
366 EXPORT_SYMBOL(__dev_remove_pack);
367
368 /**
369 * dev_remove_pack - remove packet handler
370 * @pt: packet type declaration
371 *
372 * Remove a protocol handler that was previously added to the kernel
373 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
374 * from the kernel lists and can be freed or reused once this function
375 * returns.
376 *
377 * This call sleeps to guarantee that no CPU is looking at the packet
378 * type after return.
379 */
380 void dev_remove_pack(struct packet_type *pt)
381 {
382 __dev_remove_pack(pt);
383
384 synchronize_net();
385 }
386 EXPORT_SYMBOL(dev_remove_pack);
387
388
389 /**
390 * dev_add_offload - register offload handlers
391 * @po: protocol offload declaration
392 *
393 * Add protocol offload handlers to the networking stack. The passed
394 * &proto_offload is linked into kernel lists and may not be freed until
395 * it has been removed from the kernel lists.
396 *
397 * This call does not sleep therefore it can not
398 * guarantee all CPU's that are in middle of receiving packets
399 * will see the new offload handlers (until the next received packet).
400 */
401 void dev_add_offload(struct packet_offload *po)
402 {
403 struct packet_offload *elem;
404
405 spin_lock(&offload_lock);
406 list_for_each_entry(elem, &offload_base, list) {
407 if (po->priority < elem->priority)
408 break;
409 }
410 list_add_rcu(&po->list, elem->list.prev);
411 spin_unlock(&offload_lock);
412 }
413 EXPORT_SYMBOL(dev_add_offload);
414
415 /**
416 * __dev_remove_offload - remove offload handler
417 * @po: packet offload declaration
418 *
419 * Remove a protocol offload handler that was previously added to the
420 * kernel offload handlers by dev_add_offload(). The passed &offload_type
421 * is removed from the kernel lists and can be freed or reused once this
422 * function returns.
423 *
424 * The packet type might still be in use by receivers
425 * and must not be freed until after all the CPU's have gone
426 * through a quiescent state.
427 */
428 static void __dev_remove_offload(struct packet_offload *po)
429 {
430 struct list_head *head = &offload_base;
431 struct packet_offload *po1;
432
433 spin_lock(&offload_lock);
434
435 list_for_each_entry(po1, head, list) {
436 if (po == po1) {
437 list_del_rcu(&po->list);
438 goto out;
439 }
440 }
441
442 pr_warn("dev_remove_offload: %p not found\n", po);
443 out:
444 spin_unlock(&offload_lock);
445 }
446
447 /**
448 * dev_remove_offload - remove packet offload handler
449 * @po: packet offload declaration
450 *
451 * Remove a packet offload handler that was previously added to the kernel
452 * offload handlers by dev_add_offload(). The passed &offload_type is
453 * removed from the kernel lists and can be freed or reused once this
454 * function returns.
455 *
456 * This call sleeps to guarantee that no CPU is looking at the packet
457 * type after return.
458 */
459 void dev_remove_offload(struct packet_offload *po)
460 {
461 __dev_remove_offload(po);
462
463 synchronize_net();
464 }
465 EXPORT_SYMBOL(dev_remove_offload);
466
467 /******************************************************************************
468 *
469 * Device Boot-time Settings Routines
470 *
471 ******************************************************************************/
472
473 /* Boot time configuration table */
474 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
475
476 /**
477 * netdev_boot_setup_add - add new setup entry
478 * @name: name of the device
479 * @map: configured settings for the device
480 *
481 * Adds new setup entry to the dev_boot_setup list. The function
482 * returns 0 on error and 1 on success. This is a generic routine to
483 * all netdevices.
484 */
485 static int netdev_boot_setup_add(char *name, struct ifmap *map)
486 {
487 struct netdev_boot_setup *s;
488 int i;
489
490 s = dev_boot_setup;
491 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
492 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
493 memset(s[i].name, 0, sizeof(s[i].name));
494 strlcpy(s[i].name, name, IFNAMSIZ);
495 memcpy(&s[i].map, map, sizeof(s[i].map));
496 break;
497 }
498 }
499
500 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
501 }
502
503 /**
504 * netdev_boot_setup_check - check boot time settings
505 * @dev: the netdevice
506 *
507 * Check boot time settings for the device.
508 * The found settings are set for the device to be used
509 * later in the device probing.
510 * Returns 0 if no settings found, 1 if they are.
511 */
512 int netdev_boot_setup_check(struct net_device *dev)
513 {
514 struct netdev_boot_setup *s = dev_boot_setup;
515 int i;
516
517 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
518 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
519 !strcmp(dev->name, s[i].name)) {
520 dev->irq = s[i].map.irq;
521 dev->base_addr = s[i].map.base_addr;
522 dev->mem_start = s[i].map.mem_start;
523 dev->mem_end = s[i].map.mem_end;
524 return 1;
525 }
526 }
527 return 0;
528 }
529 EXPORT_SYMBOL(netdev_boot_setup_check);
530
531
532 /**
533 * netdev_boot_base - get address from boot time settings
534 * @prefix: prefix for network device
535 * @unit: id for network device
536 *
537 * Check boot time settings for the base address of device.
538 * The found settings are set for the device to be used
539 * later in the device probing.
540 * Returns 0 if no settings found.
541 */
542 unsigned long netdev_boot_base(const char *prefix, int unit)
543 {
544 const struct netdev_boot_setup *s = dev_boot_setup;
545 char name[IFNAMSIZ];
546 int i;
547
548 sprintf(name, "%s%d", prefix, unit);
549
550 /*
551 * If device already registered then return base of 1
552 * to indicate not to probe for this interface
553 */
554 if (__dev_get_by_name(&init_net, name))
555 return 1;
556
557 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
558 if (!strcmp(name, s[i].name))
559 return s[i].map.base_addr;
560 return 0;
561 }
562
563 /*
564 * Saves at boot time configured settings for any netdevice.
565 */
566 int __init netdev_boot_setup(char *str)
567 {
568 int ints[5];
569 struct ifmap map;
570
571 str = get_options(str, ARRAY_SIZE(ints), ints);
572 if (!str || !*str)
573 return 0;
574
575 /* Save settings */
576 memset(&map, 0, sizeof(map));
577 if (ints[0] > 0)
578 map.irq = ints[1];
579 if (ints[0] > 1)
580 map.base_addr = ints[2];
581 if (ints[0] > 2)
582 map.mem_start = ints[3];
583 if (ints[0] > 3)
584 map.mem_end = ints[4];
585
586 /* Add new entry to the list */
587 return netdev_boot_setup_add(str, &map);
588 }
589
590 __setup("netdev=", netdev_boot_setup);
591
592 /*******************************************************************************
593 *
594 * Device Interface Subroutines
595 *
596 *******************************************************************************/
597
598 /**
599 * dev_get_iflink - get 'iflink' value of a interface
600 * @dev: targeted interface
601 *
602 * Indicates the ifindex the interface is linked to.
603 * Physical interfaces have the same 'ifindex' and 'iflink' values.
604 */
605
606 int dev_get_iflink(const struct net_device *dev)
607 {
608 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
609 return dev->netdev_ops->ndo_get_iflink(dev);
610
611 return dev->ifindex;
612 }
613 EXPORT_SYMBOL(dev_get_iflink);
614
615 /**
616 * dev_fill_metadata_dst - Retrieve tunnel egress information.
617 * @dev: targeted interface
618 * @skb: The packet.
619 *
620 * For better visibility of tunnel traffic OVS needs to retrieve
621 * egress tunnel information for a packet. Following API allows
622 * user to get this info.
623 */
624 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
625 {
626 struct ip_tunnel_info *info;
627
628 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
629 return -EINVAL;
630
631 info = skb_tunnel_info_unclone(skb);
632 if (!info)
633 return -ENOMEM;
634 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
635 return -EINVAL;
636
637 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
638 }
639 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
640
641 /**
642 * __dev_get_by_name - find a device by its name
643 * @net: the applicable net namespace
644 * @name: name to find
645 *
646 * Find an interface by name. Must be called under RTNL semaphore
647 * or @dev_base_lock. If the name is found a pointer to the device
648 * is returned. If the name is not found then %NULL is returned. The
649 * reference counters are not incremented so the caller must be
650 * careful with locks.
651 */
652
653 struct net_device *__dev_get_by_name(struct net *net, const char *name)
654 {
655 struct net_device *dev;
656 struct hlist_head *head = dev_name_hash(net, name);
657
658 hlist_for_each_entry(dev, head, name_hlist)
659 if (!strncmp(dev->name, name, IFNAMSIZ))
660 return dev;
661
662 return NULL;
663 }
664 EXPORT_SYMBOL(__dev_get_by_name);
665
666 /**
667 * dev_get_by_name_rcu - find a device by its name
668 * @net: the applicable net namespace
669 * @name: name to find
670 *
671 * Find an interface by name.
672 * If the name is found a pointer to the device is returned.
673 * If the name is not found then %NULL is returned.
674 * The reference counters are not incremented so the caller must be
675 * careful with locks. The caller must hold RCU lock.
676 */
677
678 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
679 {
680 struct net_device *dev;
681 struct hlist_head *head = dev_name_hash(net, name);
682
683 hlist_for_each_entry_rcu(dev, head, name_hlist)
684 if (!strncmp(dev->name, name, IFNAMSIZ))
685 return dev;
686
687 return NULL;
688 }
689 EXPORT_SYMBOL(dev_get_by_name_rcu);
690
691 /**
692 * dev_get_by_name - find a device by its name
693 * @net: the applicable net namespace
694 * @name: name to find
695 *
696 * Find an interface by name. This can be called from any
697 * context and does its own locking. The returned handle has
698 * the usage count incremented and the caller must use dev_put() to
699 * release it when it is no longer needed. %NULL is returned if no
700 * matching device is found.
701 */
702
703 struct net_device *dev_get_by_name(struct net *net, const char *name)
704 {
705 struct net_device *dev;
706
707 rcu_read_lock();
708 dev = dev_get_by_name_rcu(net, name);
709 if (dev)
710 dev_hold(dev);
711 rcu_read_unlock();
712 return dev;
713 }
714 EXPORT_SYMBOL(dev_get_by_name);
715
716 /**
717 * __dev_get_by_index - find a device by its ifindex
718 * @net: the applicable net namespace
719 * @ifindex: index of device
720 *
721 * Search for an interface by index. Returns %NULL if the device
722 * is not found or a pointer to the device. The device has not
723 * had its reference counter increased so the caller must be careful
724 * about locking. The caller must hold either the RTNL semaphore
725 * or @dev_base_lock.
726 */
727
728 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
729 {
730 struct net_device *dev;
731 struct hlist_head *head = dev_index_hash(net, ifindex);
732
733 hlist_for_each_entry(dev, head, index_hlist)
734 if (dev->ifindex == ifindex)
735 return dev;
736
737 return NULL;
738 }
739 EXPORT_SYMBOL(__dev_get_by_index);
740
741 /**
742 * dev_get_by_index_rcu - find a device by its ifindex
743 * @net: the applicable net namespace
744 * @ifindex: index of device
745 *
746 * Search for an interface by index. Returns %NULL if the device
747 * is not found or a pointer to the device. The device has not
748 * had its reference counter increased so the caller must be careful
749 * about locking. The caller must hold RCU lock.
750 */
751
752 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
753 {
754 struct net_device *dev;
755 struct hlist_head *head = dev_index_hash(net, ifindex);
756
757 hlist_for_each_entry_rcu(dev, head, index_hlist)
758 if (dev->ifindex == ifindex)
759 return dev;
760
761 return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_index_rcu);
764
765
766 /**
767 * dev_get_by_index - find a device by its ifindex
768 * @net: the applicable net namespace
769 * @ifindex: index of device
770 *
771 * Search for an interface by index. Returns NULL if the device
772 * is not found or a pointer to the device. The device returned has
773 * had a reference added and the pointer is safe until the user calls
774 * dev_put to indicate they have finished with it.
775 */
776
777 struct net_device *dev_get_by_index(struct net *net, int ifindex)
778 {
779 struct net_device *dev;
780
781 rcu_read_lock();
782 dev = dev_get_by_index_rcu(net, ifindex);
783 if (dev)
784 dev_hold(dev);
785 rcu_read_unlock();
786 return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_index);
789
790 /**
791 * dev_get_by_napi_id - find a device by napi_id
792 * @napi_id: ID of the NAPI struct
793 *
794 * Search for an interface by NAPI ID. Returns %NULL if the device
795 * is not found or a pointer to the device. The device has not had
796 * its reference counter increased so the caller must be careful
797 * about locking. The caller must hold RCU lock.
798 */
799
800 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
801 {
802 struct napi_struct *napi;
803
804 WARN_ON_ONCE(!rcu_read_lock_held());
805
806 if (napi_id < MIN_NAPI_ID)
807 return NULL;
808
809 napi = napi_by_id(napi_id);
810
811 return napi ? napi->dev : NULL;
812 }
813 EXPORT_SYMBOL(dev_get_by_napi_id);
814
815 /**
816 * netdev_get_name - get a netdevice name, knowing its ifindex.
817 * @net: network namespace
818 * @name: a pointer to the buffer where the name will be stored.
819 * @ifindex: the ifindex of the interface to get the name from.
820 *
821 * The use of raw_seqcount_begin() and cond_resched() before
822 * retrying is required as we want to give the writers a chance
823 * to complete when CONFIG_PREEMPT is not set.
824 */
825 int netdev_get_name(struct net *net, char *name, int ifindex)
826 {
827 struct net_device *dev;
828 unsigned int seq;
829
830 retry:
831 seq = raw_seqcount_begin(&devnet_rename_seq);
832 rcu_read_lock();
833 dev = dev_get_by_index_rcu(net, ifindex);
834 if (!dev) {
835 rcu_read_unlock();
836 return -ENODEV;
837 }
838
839 strcpy(name, dev->name);
840 rcu_read_unlock();
841 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
842 cond_resched();
843 goto retry;
844 }
845
846 return 0;
847 }
848
849 /**
850 * dev_getbyhwaddr_rcu - find a device by its hardware address
851 * @net: the applicable net namespace
852 * @type: media type of device
853 * @ha: hardware address
854 *
855 * Search for an interface by MAC address. Returns NULL if the device
856 * is not found or a pointer to the device.
857 * The caller must hold RCU or RTNL.
858 * The returned device has not had its ref count increased
859 * and the caller must therefore be careful about locking
860 *
861 */
862
863 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
864 const char *ha)
865 {
866 struct net_device *dev;
867
868 for_each_netdev_rcu(net, dev)
869 if (dev->type == type &&
870 !memcmp(dev->dev_addr, ha, dev->addr_len))
871 return dev;
872
873 return NULL;
874 }
875 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
876
877 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
878 {
879 struct net_device *dev;
880
881 ASSERT_RTNL();
882 for_each_netdev(net, dev)
883 if (dev->type == type)
884 return dev;
885
886 return NULL;
887 }
888 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
889
890 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
891 {
892 struct net_device *dev, *ret = NULL;
893
894 rcu_read_lock();
895 for_each_netdev_rcu(net, dev)
896 if (dev->type == type) {
897 dev_hold(dev);
898 ret = dev;
899 break;
900 }
901 rcu_read_unlock();
902 return ret;
903 }
904 EXPORT_SYMBOL(dev_getfirstbyhwtype);
905
906 /**
907 * __dev_get_by_flags - find any device with given flags
908 * @net: the applicable net namespace
909 * @if_flags: IFF_* values
910 * @mask: bitmask of bits in if_flags to check
911 *
912 * Search for any interface with the given flags. Returns NULL if a device
913 * is not found or a pointer to the device. Must be called inside
914 * rtnl_lock(), and result refcount is unchanged.
915 */
916
917 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
918 unsigned short mask)
919 {
920 struct net_device *dev, *ret;
921
922 ASSERT_RTNL();
923
924 ret = NULL;
925 for_each_netdev(net, dev) {
926 if (((dev->flags ^ if_flags) & mask) == 0) {
927 ret = dev;
928 break;
929 }
930 }
931 return ret;
932 }
933 EXPORT_SYMBOL(__dev_get_by_flags);
934
935 /**
936 * dev_valid_name - check if name is okay for network device
937 * @name: name string
938 *
939 * Network device names need to be valid file names to
940 * to allow sysfs to work. We also disallow any kind of
941 * whitespace.
942 */
943 bool dev_valid_name(const char *name)
944 {
945 if (*name == '\0')
946 return false;
947 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
948 return false;
949 if (!strcmp(name, ".") || !strcmp(name, ".."))
950 return false;
951
952 while (*name) {
953 if (*name == '/' || *name == ':' || isspace(*name))
954 return false;
955 name++;
956 }
957 return true;
958 }
959 EXPORT_SYMBOL(dev_valid_name);
960
961 /**
962 * __dev_alloc_name - allocate a name for a device
963 * @net: network namespace to allocate the device name in
964 * @name: name format string
965 * @buf: scratch buffer and result name string
966 *
967 * Passed a format string - eg "lt%d" it will try and find a suitable
968 * id. It scans list of devices to build up a free map, then chooses
969 * the first empty slot. The caller must hold the dev_base or rtnl lock
970 * while allocating the name and adding the device in order to avoid
971 * duplicates.
972 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
973 * Returns the number of the unit assigned or a negative errno code.
974 */
975
976 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
977 {
978 int i = 0;
979 const char *p;
980 const int max_netdevices = 8*PAGE_SIZE;
981 unsigned long *inuse;
982 struct net_device *d;
983
984 if (!dev_valid_name(name))
985 return -EINVAL;
986
987 p = strchr(name, '%');
988 if (p) {
989 /*
990 * Verify the string as this thing may have come from
991 * the user. There must be either one "%d" and no other "%"
992 * characters.
993 */
994 if (p[1] != 'd' || strchr(p + 2, '%'))
995 return -EINVAL;
996
997 /* Use one page as a bit array of possible slots */
998 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
999 if (!inuse)
1000 return -ENOMEM;
1001
1002 for_each_netdev(net, d) {
1003 if (!sscanf(d->name, name, &i))
1004 continue;
1005 if (i < 0 || i >= max_netdevices)
1006 continue;
1007
1008 /* avoid cases where sscanf is not exact inverse of printf */
1009 snprintf(buf, IFNAMSIZ, name, i);
1010 if (!strncmp(buf, d->name, IFNAMSIZ))
1011 set_bit(i, inuse);
1012 }
1013
1014 i = find_first_zero_bit(inuse, max_netdevices);
1015 free_page((unsigned long) inuse);
1016 }
1017
1018 snprintf(buf, IFNAMSIZ, name, i);
1019 if (!__dev_get_by_name(net, buf))
1020 return i;
1021
1022 /* It is possible to run out of possible slots
1023 * when the name is long and there isn't enough space left
1024 * for the digits, or if all bits are used.
1025 */
1026 return -ENFILE;
1027 }
1028
1029 static int dev_alloc_name_ns(struct net *net,
1030 struct net_device *dev,
1031 const char *name)
1032 {
1033 char buf[IFNAMSIZ];
1034 int ret;
1035
1036 BUG_ON(!net);
1037 ret = __dev_alloc_name(net, name, buf);
1038 if (ret >= 0)
1039 strlcpy(dev->name, buf, IFNAMSIZ);
1040 return ret;
1041 }
1042
1043 /**
1044 * dev_alloc_name - allocate a name for a device
1045 * @dev: device
1046 * @name: name format string
1047 *
1048 * Passed a format string - eg "lt%d" it will try and find a suitable
1049 * id. It scans list of devices to build up a free map, then chooses
1050 * the first empty slot. The caller must hold the dev_base or rtnl lock
1051 * while allocating the name and adding the device in order to avoid
1052 * duplicates.
1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 * Returns the number of the unit assigned or a negative errno code.
1055 */
1056
1057 int dev_alloc_name(struct net_device *dev, const char *name)
1058 {
1059 return dev_alloc_name_ns(dev_net(dev), dev, name);
1060 }
1061 EXPORT_SYMBOL(dev_alloc_name);
1062
1063 int dev_get_valid_name(struct net *net, struct net_device *dev,
1064 const char *name)
1065 {
1066 BUG_ON(!net);
1067
1068 if (!dev_valid_name(name))
1069 return -EINVAL;
1070
1071 if (strchr(name, '%'))
1072 return dev_alloc_name_ns(net, dev, name);
1073 else if (__dev_get_by_name(net, name))
1074 return -EEXIST;
1075 else if (dev->name != name)
1076 strlcpy(dev->name, name, IFNAMSIZ);
1077
1078 return 0;
1079 }
1080 EXPORT_SYMBOL(dev_get_valid_name);
1081
1082 /**
1083 * dev_change_name - change name of a device
1084 * @dev: device
1085 * @newname: name (or format string) must be at least IFNAMSIZ
1086 *
1087 * Change name of a device, can pass format strings "eth%d".
1088 * for wildcarding.
1089 */
1090 int dev_change_name(struct net_device *dev, const char *newname)
1091 {
1092 unsigned char old_assign_type;
1093 char oldname[IFNAMSIZ];
1094 int err = 0;
1095 int ret;
1096 struct net *net;
1097
1098 ASSERT_RTNL();
1099 BUG_ON(!dev_net(dev));
1100
1101 net = dev_net(dev);
1102
1103 /* Some auto-enslaved devices e.g. failover slaves are
1104 * special, as userspace might rename the device after
1105 * the interface had been brought up and running since
1106 * the point kernel initiated auto-enslavement. Allow
1107 * live name change even when these slave devices are
1108 * up and running.
1109 *
1110 * Typically, users of these auto-enslaving devices
1111 * don't actually care about slave name change, as
1112 * they are supposed to operate on master interface
1113 * directly.
1114 */
1115 if (dev->flags & IFF_UP &&
1116 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1117 return -EBUSY;
1118
1119 write_seqcount_begin(&devnet_rename_seq);
1120
1121 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1122 write_seqcount_end(&devnet_rename_seq);
1123 return 0;
1124 }
1125
1126 memcpy(oldname, dev->name, IFNAMSIZ);
1127
1128 err = dev_get_valid_name(net, dev, newname);
1129 if (err < 0) {
1130 write_seqcount_end(&devnet_rename_seq);
1131 return err;
1132 }
1133
1134 if (oldname[0] && !strchr(oldname, '%'))
1135 netdev_info(dev, "renamed from %s\n", oldname);
1136
1137 old_assign_type = dev->name_assign_type;
1138 dev->name_assign_type = NET_NAME_RENAMED;
1139
1140 rollback:
1141 ret = device_rename(&dev->dev, dev->name);
1142 if (ret) {
1143 memcpy(dev->name, oldname, IFNAMSIZ);
1144 dev->name_assign_type = old_assign_type;
1145 write_seqcount_end(&devnet_rename_seq);
1146 return ret;
1147 }
1148
1149 write_seqcount_end(&devnet_rename_seq);
1150
1151 netdev_adjacent_rename_links(dev, oldname);
1152
1153 write_lock_bh(&dev_base_lock);
1154 hlist_del_rcu(&dev->name_hlist);
1155 write_unlock_bh(&dev_base_lock);
1156
1157 synchronize_rcu();
1158
1159 write_lock_bh(&dev_base_lock);
1160 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1161 write_unlock_bh(&dev_base_lock);
1162
1163 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1164 ret = notifier_to_errno(ret);
1165
1166 if (ret) {
1167 /* err >= 0 after dev_alloc_name() or stores the first errno */
1168 if (err >= 0) {
1169 err = ret;
1170 write_seqcount_begin(&devnet_rename_seq);
1171 memcpy(dev->name, oldname, IFNAMSIZ);
1172 memcpy(oldname, newname, IFNAMSIZ);
1173 dev->name_assign_type = old_assign_type;
1174 old_assign_type = NET_NAME_RENAMED;
1175 goto rollback;
1176 } else {
1177 pr_err("%s: name change rollback failed: %d\n",
1178 dev->name, ret);
1179 }
1180 }
1181
1182 return err;
1183 }
1184
1185 /**
1186 * dev_set_alias - change ifalias of a device
1187 * @dev: device
1188 * @alias: name up to IFALIASZ
1189 * @len: limit of bytes to copy from info
1190 *
1191 * Set ifalias for a device,
1192 */
1193 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1194 {
1195 struct dev_ifalias *new_alias = NULL;
1196
1197 if (len >= IFALIASZ)
1198 return -EINVAL;
1199
1200 if (len) {
1201 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1202 if (!new_alias)
1203 return -ENOMEM;
1204
1205 memcpy(new_alias->ifalias, alias, len);
1206 new_alias->ifalias[len] = 0;
1207 }
1208
1209 mutex_lock(&ifalias_mutex);
1210 rcu_swap_protected(dev->ifalias, new_alias,
1211 mutex_is_locked(&ifalias_mutex));
1212 mutex_unlock(&ifalias_mutex);
1213
1214 if (new_alias)
1215 kfree_rcu(new_alias, rcuhead);
1216
1217 return len;
1218 }
1219 EXPORT_SYMBOL(dev_set_alias);
1220
1221 /**
1222 * dev_get_alias - get ifalias of a device
1223 * @dev: device
1224 * @name: buffer to store name of ifalias
1225 * @len: size of buffer
1226 *
1227 * get ifalias for a device. Caller must make sure dev cannot go
1228 * away, e.g. rcu read lock or own a reference count to device.
1229 */
1230 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1231 {
1232 const struct dev_ifalias *alias;
1233 int ret = 0;
1234
1235 rcu_read_lock();
1236 alias = rcu_dereference(dev->ifalias);
1237 if (alias)
1238 ret = snprintf(name, len, "%s", alias->ifalias);
1239 rcu_read_unlock();
1240
1241 return ret;
1242 }
1243
1244 /**
1245 * netdev_features_change - device changes features
1246 * @dev: device to cause notification
1247 *
1248 * Called to indicate a device has changed features.
1249 */
1250 void netdev_features_change(struct net_device *dev)
1251 {
1252 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1253 }
1254 EXPORT_SYMBOL(netdev_features_change);
1255
1256 /**
1257 * netdev_state_change - device changes state
1258 * @dev: device to cause notification
1259 *
1260 * Called to indicate a device has changed state. This function calls
1261 * the notifier chains for netdev_chain and sends a NEWLINK message
1262 * to the routing socket.
1263 */
1264 void netdev_state_change(struct net_device *dev)
1265 {
1266 if (dev->flags & IFF_UP) {
1267 struct netdev_notifier_change_info change_info = {
1268 .info.dev = dev,
1269 };
1270
1271 call_netdevice_notifiers_info(NETDEV_CHANGE,
1272 &change_info.info);
1273 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1274 }
1275 }
1276 EXPORT_SYMBOL(netdev_state_change);
1277
1278 /**
1279 * netdev_notify_peers - notify network peers about existence of @dev
1280 * @dev: network device
1281 *
1282 * Generate traffic such that interested network peers are aware of
1283 * @dev, such as by generating a gratuitous ARP. This may be used when
1284 * a device wants to inform the rest of the network about some sort of
1285 * reconfiguration such as a failover event or virtual machine
1286 * migration.
1287 */
1288 void netdev_notify_peers(struct net_device *dev)
1289 {
1290 rtnl_lock();
1291 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1292 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1293 rtnl_unlock();
1294 }
1295 EXPORT_SYMBOL(netdev_notify_peers);
1296
1297 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1298 {
1299 const struct net_device_ops *ops = dev->netdev_ops;
1300 int ret;
1301
1302 ASSERT_RTNL();
1303
1304 if (!netif_device_present(dev))
1305 return -ENODEV;
1306
1307 /* Block netpoll from trying to do any rx path servicing.
1308 * If we don't do this there is a chance ndo_poll_controller
1309 * or ndo_poll may be running while we open the device
1310 */
1311 netpoll_poll_disable(dev);
1312
1313 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1314 ret = notifier_to_errno(ret);
1315 if (ret)
1316 return ret;
1317
1318 set_bit(__LINK_STATE_START, &dev->state);
1319
1320 if (ops->ndo_validate_addr)
1321 ret = ops->ndo_validate_addr(dev);
1322
1323 if (!ret && ops->ndo_open)
1324 ret = ops->ndo_open(dev);
1325
1326 netpoll_poll_enable(dev);
1327
1328 if (ret)
1329 clear_bit(__LINK_STATE_START, &dev->state);
1330 else {
1331 dev->flags |= IFF_UP;
1332 dev_set_rx_mode(dev);
1333 dev_activate(dev);
1334 add_device_randomness(dev->dev_addr, dev->addr_len);
1335 }
1336
1337 return ret;
1338 }
1339
1340 /**
1341 * dev_open - prepare an interface for use.
1342 * @dev: device to open
1343 * @extack: netlink extended ack
1344 *
1345 * Takes a device from down to up state. The device's private open
1346 * function is invoked and then the multicast lists are loaded. Finally
1347 * the device is moved into the up state and a %NETDEV_UP message is
1348 * sent to the netdev notifier chain.
1349 *
1350 * Calling this function on an active interface is a nop. On a failure
1351 * a negative errno code is returned.
1352 */
1353 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1354 {
1355 int ret;
1356
1357 if (dev->flags & IFF_UP)
1358 return 0;
1359
1360 ret = __dev_open(dev, extack);
1361 if (ret < 0)
1362 return ret;
1363
1364 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1365 call_netdevice_notifiers(NETDEV_UP, dev);
1366
1367 return ret;
1368 }
1369 EXPORT_SYMBOL(dev_open);
1370
1371 static void __dev_close_many(struct list_head *head)
1372 {
1373 struct net_device *dev;
1374
1375 ASSERT_RTNL();
1376 might_sleep();
1377
1378 list_for_each_entry(dev, head, close_list) {
1379 /* Temporarily disable netpoll until the interface is down */
1380 netpoll_poll_disable(dev);
1381
1382 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1383
1384 clear_bit(__LINK_STATE_START, &dev->state);
1385
1386 /* Synchronize to scheduled poll. We cannot touch poll list, it
1387 * can be even on different cpu. So just clear netif_running().
1388 *
1389 * dev->stop() will invoke napi_disable() on all of it's
1390 * napi_struct instances on this device.
1391 */
1392 smp_mb__after_atomic(); /* Commit netif_running(). */
1393 }
1394
1395 dev_deactivate_many(head);
1396
1397 list_for_each_entry(dev, head, close_list) {
1398 const struct net_device_ops *ops = dev->netdev_ops;
1399
1400 /*
1401 * Call the device specific close. This cannot fail.
1402 * Only if device is UP
1403 *
1404 * We allow it to be called even after a DETACH hot-plug
1405 * event.
1406 */
1407 if (ops->ndo_stop)
1408 ops->ndo_stop(dev);
1409
1410 dev->flags &= ~IFF_UP;
1411 netpoll_poll_enable(dev);
1412 }
1413 }
1414
1415 static void __dev_close(struct net_device *dev)
1416 {
1417 LIST_HEAD(single);
1418
1419 list_add(&dev->close_list, &single);
1420 __dev_close_many(&single);
1421 list_del(&single);
1422 }
1423
1424 void dev_close_many(struct list_head *head, bool unlink)
1425 {
1426 struct net_device *dev, *tmp;
1427
1428 /* Remove the devices that don't need to be closed */
1429 list_for_each_entry_safe(dev, tmp, head, close_list)
1430 if (!(dev->flags & IFF_UP))
1431 list_del_init(&dev->close_list);
1432
1433 __dev_close_many(head);
1434
1435 list_for_each_entry_safe(dev, tmp, head, close_list) {
1436 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1437 call_netdevice_notifiers(NETDEV_DOWN, dev);
1438 if (unlink)
1439 list_del_init(&dev->close_list);
1440 }
1441 }
1442 EXPORT_SYMBOL(dev_close_many);
1443
1444 /**
1445 * dev_close - shutdown an interface.
1446 * @dev: device to shutdown
1447 *
1448 * This function moves an active device into down state. A
1449 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1450 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1451 * chain.
1452 */
1453 void dev_close(struct net_device *dev)
1454 {
1455 if (dev->flags & IFF_UP) {
1456 LIST_HEAD(single);
1457
1458 list_add(&dev->close_list, &single);
1459 dev_close_many(&single, true);
1460 list_del(&single);
1461 }
1462 }
1463 EXPORT_SYMBOL(dev_close);
1464
1465
1466 /**
1467 * dev_disable_lro - disable Large Receive Offload on a device
1468 * @dev: device
1469 *
1470 * Disable Large Receive Offload (LRO) on a net device. Must be
1471 * called under RTNL. This is needed if received packets may be
1472 * forwarded to another interface.
1473 */
1474 void dev_disable_lro(struct net_device *dev)
1475 {
1476 struct net_device *lower_dev;
1477 struct list_head *iter;
1478
1479 dev->wanted_features &= ~NETIF_F_LRO;
1480 netdev_update_features(dev);
1481
1482 if (unlikely(dev->features & NETIF_F_LRO))
1483 netdev_WARN(dev, "failed to disable LRO!\n");
1484
1485 netdev_for_each_lower_dev(dev, lower_dev, iter)
1486 dev_disable_lro(lower_dev);
1487 }
1488 EXPORT_SYMBOL(dev_disable_lro);
1489
1490 /**
1491 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1492 * @dev: device
1493 *
1494 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1495 * called under RTNL. This is needed if Generic XDP is installed on
1496 * the device.
1497 */
1498 static void dev_disable_gro_hw(struct net_device *dev)
1499 {
1500 dev->wanted_features &= ~NETIF_F_GRO_HW;
1501 netdev_update_features(dev);
1502
1503 if (unlikely(dev->features & NETIF_F_GRO_HW))
1504 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1505 }
1506
1507 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1508 {
1509 #define N(val) \
1510 case NETDEV_##val: \
1511 return "NETDEV_" __stringify(val);
1512 switch (cmd) {
1513 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1514 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1515 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1516 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1517 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1518 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1519 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1520 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1521 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1522 N(PRE_CHANGEADDR)
1523 }
1524 #undef N
1525 return "UNKNOWN_NETDEV_EVENT";
1526 }
1527 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1528
1529 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1530 struct net_device *dev)
1531 {
1532 struct netdev_notifier_info info = {
1533 .dev = dev,
1534 };
1535
1536 return nb->notifier_call(nb, val, &info);
1537 }
1538
1539 static int dev_boot_phase = 1;
1540
1541 /**
1542 * register_netdevice_notifier - register a network notifier block
1543 * @nb: notifier
1544 *
1545 * Register a notifier to be called when network device events occur.
1546 * The notifier passed is linked into the kernel structures and must
1547 * not be reused until it has been unregistered. A negative errno code
1548 * is returned on a failure.
1549 *
1550 * When registered all registration and up events are replayed
1551 * to the new notifier to allow device to have a race free
1552 * view of the network device list.
1553 */
1554
1555 int register_netdevice_notifier(struct notifier_block *nb)
1556 {
1557 struct net_device *dev;
1558 struct net_device *last;
1559 struct net *net;
1560 int err;
1561
1562 /* Close race with setup_net() and cleanup_net() */
1563 down_write(&pernet_ops_rwsem);
1564 rtnl_lock();
1565 err = raw_notifier_chain_register(&netdev_chain, nb);
1566 if (err)
1567 goto unlock;
1568 if (dev_boot_phase)
1569 goto unlock;
1570 for_each_net(net) {
1571 for_each_netdev(net, dev) {
1572 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1573 err = notifier_to_errno(err);
1574 if (err)
1575 goto rollback;
1576
1577 if (!(dev->flags & IFF_UP))
1578 continue;
1579
1580 call_netdevice_notifier(nb, NETDEV_UP, dev);
1581 }
1582 }
1583
1584 unlock:
1585 rtnl_unlock();
1586 up_write(&pernet_ops_rwsem);
1587 return err;
1588
1589 rollback:
1590 last = dev;
1591 for_each_net(net) {
1592 for_each_netdev(net, dev) {
1593 if (dev == last)
1594 goto outroll;
1595
1596 if (dev->flags & IFF_UP) {
1597 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1598 dev);
1599 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1600 }
1601 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1602 }
1603 }
1604
1605 outroll:
1606 raw_notifier_chain_unregister(&netdev_chain, nb);
1607 goto unlock;
1608 }
1609 EXPORT_SYMBOL(register_netdevice_notifier);
1610
1611 /**
1612 * unregister_netdevice_notifier - unregister a network notifier block
1613 * @nb: notifier
1614 *
1615 * Unregister a notifier previously registered by
1616 * register_netdevice_notifier(). The notifier is unlinked into the
1617 * kernel structures and may then be reused. A negative errno code
1618 * is returned on a failure.
1619 *
1620 * After unregistering unregister and down device events are synthesized
1621 * for all devices on the device list to the removed notifier to remove
1622 * the need for special case cleanup code.
1623 */
1624
1625 int unregister_netdevice_notifier(struct notifier_block *nb)
1626 {
1627 struct net_device *dev;
1628 struct net *net;
1629 int err;
1630
1631 /* Close race with setup_net() and cleanup_net() */
1632 down_write(&pernet_ops_rwsem);
1633 rtnl_lock();
1634 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1635 if (err)
1636 goto unlock;
1637
1638 for_each_net(net) {
1639 for_each_netdev(net, dev) {
1640 if (dev->flags & IFF_UP) {
1641 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1642 dev);
1643 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1644 }
1645 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1646 }
1647 }
1648 unlock:
1649 rtnl_unlock();
1650 up_write(&pernet_ops_rwsem);
1651 return err;
1652 }
1653 EXPORT_SYMBOL(unregister_netdevice_notifier);
1654
1655 /**
1656 * call_netdevice_notifiers_info - call all network notifier blocks
1657 * @val: value passed unmodified to notifier function
1658 * @info: notifier information data
1659 *
1660 * Call all network notifier blocks. Parameters and return value
1661 * are as for raw_notifier_call_chain().
1662 */
1663
1664 static int call_netdevice_notifiers_info(unsigned long val,
1665 struct netdev_notifier_info *info)
1666 {
1667 ASSERT_RTNL();
1668 return raw_notifier_call_chain(&netdev_chain, val, info);
1669 }
1670
1671 static int call_netdevice_notifiers_extack(unsigned long val,
1672 struct net_device *dev,
1673 struct netlink_ext_ack *extack)
1674 {
1675 struct netdev_notifier_info info = {
1676 .dev = dev,
1677 .extack = extack,
1678 };
1679
1680 return call_netdevice_notifiers_info(val, &info);
1681 }
1682
1683 /**
1684 * call_netdevice_notifiers - call all network notifier blocks
1685 * @val: value passed unmodified to notifier function
1686 * @dev: net_device pointer passed unmodified to notifier function
1687 *
1688 * Call all network notifier blocks. Parameters and return value
1689 * are as for raw_notifier_call_chain().
1690 */
1691
1692 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1693 {
1694 return call_netdevice_notifiers_extack(val, dev, NULL);
1695 }
1696 EXPORT_SYMBOL(call_netdevice_notifiers);
1697
1698 /**
1699 * call_netdevice_notifiers_mtu - call all network notifier blocks
1700 * @val: value passed unmodified to notifier function
1701 * @dev: net_device pointer passed unmodified to notifier function
1702 * @arg: additional u32 argument passed to the notifier function
1703 *
1704 * Call all network notifier blocks. Parameters and return value
1705 * are as for raw_notifier_call_chain().
1706 */
1707 static int call_netdevice_notifiers_mtu(unsigned long val,
1708 struct net_device *dev, u32 arg)
1709 {
1710 struct netdev_notifier_info_ext info = {
1711 .info.dev = dev,
1712 .ext.mtu = arg,
1713 };
1714
1715 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1716
1717 return call_netdevice_notifiers_info(val, &info.info);
1718 }
1719
1720 #ifdef CONFIG_NET_INGRESS
1721 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1722
1723 void net_inc_ingress_queue(void)
1724 {
1725 static_branch_inc(&ingress_needed_key);
1726 }
1727 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1728
1729 void net_dec_ingress_queue(void)
1730 {
1731 static_branch_dec(&ingress_needed_key);
1732 }
1733 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1734 #endif
1735
1736 #ifdef CONFIG_NET_EGRESS
1737 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1738
1739 void net_inc_egress_queue(void)
1740 {
1741 static_branch_inc(&egress_needed_key);
1742 }
1743 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1744
1745 void net_dec_egress_queue(void)
1746 {
1747 static_branch_dec(&egress_needed_key);
1748 }
1749 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1750 #endif
1751
1752 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1753 #ifdef CONFIG_JUMP_LABEL
1754 static atomic_t netstamp_needed_deferred;
1755 static atomic_t netstamp_wanted;
1756 static void netstamp_clear(struct work_struct *work)
1757 {
1758 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1759 int wanted;
1760
1761 wanted = atomic_add_return(deferred, &netstamp_wanted);
1762 if (wanted > 0)
1763 static_branch_enable(&netstamp_needed_key);
1764 else
1765 static_branch_disable(&netstamp_needed_key);
1766 }
1767 static DECLARE_WORK(netstamp_work, netstamp_clear);
1768 #endif
1769
1770 void net_enable_timestamp(void)
1771 {
1772 #ifdef CONFIG_JUMP_LABEL
1773 int wanted;
1774
1775 while (1) {
1776 wanted = atomic_read(&netstamp_wanted);
1777 if (wanted <= 0)
1778 break;
1779 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1780 return;
1781 }
1782 atomic_inc(&netstamp_needed_deferred);
1783 schedule_work(&netstamp_work);
1784 #else
1785 static_branch_inc(&netstamp_needed_key);
1786 #endif
1787 }
1788 EXPORT_SYMBOL(net_enable_timestamp);
1789
1790 void net_disable_timestamp(void)
1791 {
1792 #ifdef CONFIG_JUMP_LABEL
1793 int wanted;
1794
1795 while (1) {
1796 wanted = atomic_read(&netstamp_wanted);
1797 if (wanted <= 1)
1798 break;
1799 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1800 return;
1801 }
1802 atomic_dec(&netstamp_needed_deferred);
1803 schedule_work(&netstamp_work);
1804 #else
1805 static_branch_dec(&netstamp_needed_key);
1806 #endif
1807 }
1808 EXPORT_SYMBOL(net_disable_timestamp);
1809
1810 static inline void net_timestamp_set(struct sk_buff *skb)
1811 {
1812 skb->tstamp = 0;
1813 if (static_branch_unlikely(&netstamp_needed_key))
1814 __net_timestamp(skb);
1815 }
1816
1817 #define net_timestamp_check(COND, SKB) \
1818 if (static_branch_unlikely(&netstamp_needed_key)) { \
1819 if ((COND) && !(SKB)->tstamp) \
1820 __net_timestamp(SKB); \
1821 } \
1822
1823 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1824 {
1825 unsigned int len;
1826
1827 if (!(dev->flags & IFF_UP))
1828 return false;
1829
1830 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1831 if (skb->len <= len)
1832 return true;
1833
1834 /* if TSO is enabled, we don't care about the length as the packet
1835 * could be forwarded without being segmented before
1836 */
1837 if (skb_is_gso(skb))
1838 return true;
1839
1840 return false;
1841 }
1842 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1843
1844 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1845 {
1846 int ret = ____dev_forward_skb(dev, skb);
1847
1848 if (likely(!ret)) {
1849 skb->protocol = eth_type_trans(skb, dev);
1850 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1851 }
1852
1853 return ret;
1854 }
1855 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1856
1857 /**
1858 * dev_forward_skb - loopback an skb to another netif
1859 *
1860 * @dev: destination network device
1861 * @skb: buffer to forward
1862 *
1863 * return values:
1864 * NET_RX_SUCCESS (no congestion)
1865 * NET_RX_DROP (packet was dropped, but freed)
1866 *
1867 * dev_forward_skb can be used for injecting an skb from the
1868 * start_xmit function of one device into the receive queue
1869 * of another device.
1870 *
1871 * The receiving device may be in another namespace, so
1872 * we have to clear all information in the skb that could
1873 * impact namespace isolation.
1874 */
1875 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1876 {
1877 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1878 }
1879 EXPORT_SYMBOL_GPL(dev_forward_skb);
1880
1881 static inline int deliver_skb(struct sk_buff *skb,
1882 struct packet_type *pt_prev,
1883 struct net_device *orig_dev)
1884 {
1885 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1886 return -ENOMEM;
1887 refcount_inc(&skb->users);
1888 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1889 }
1890
1891 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1892 struct packet_type **pt,
1893 struct net_device *orig_dev,
1894 __be16 type,
1895 struct list_head *ptype_list)
1896 {
1897 struct packet_type *ptype, *pt_prev = *pt;
1898
1899 list_for_each_entry_rcu(ptype, ptype_list, list) {
1900 if (ptype->type != type)
1901 continue;
1902 if (pt_prev)
1903 deliver_skb(skb, pt_prev, orig_dev);
1904 pt_prev = ptype;
1905 }
1906 *pt = pt_prev;
1907 }
1908
1909 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1910 {
1911 if (!ptype->af_packet_priv || !skb->sk)
1912 return false;
1913
1914 if (ptype->id_match)
1915 return ptype->id_match(ptype, skb->sk);
1916 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1917 return true;
1918
1919 return false;
1920 }
1921
1922 /**
1923 * dev_nit_active - return true if any network interface taps are in use
1924 *
1925 * @dev: network device to check for the presence of taps
1926 */
1927 bool dev_nit_active(struct net_device *dev)
1928 {
1929 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
1930 }
1931 EXPORT_SYMBOL_GPL(dev_nit_active);
1932
1933 /*
1934 * Support routine. Sends outgoing frames to any network
1935 * taps currently in use.
1936 */
1937
1938 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1939 {
1940 struct packet_type *ptype;
1941 struct sk_buff *skb2 = NULL;
1942 struct packet_type *pt_prev = NULL;
1943 struct list_head *ptype_list = &ptype_all;
1944
1945 rcu_read_lock();
1946 again:
1947 list_for_each_entry_rcu(ptype, ptype_list, list) {
1948 if (ptype->ignore_outgoing)
1949 continue;
1950
1951 /* Never send packets back to the socket
1952 * they originated from - MvS (miquels@drinkel.ow.org)
1953 */
1954 if (skb_loop_sk(ptype, skb))
1955 continue;
1956
1957 if (pt_prev) {
1958 deliver_skb(skb2, pt_prev, skb->dev);
1959 pt_prev = ptype;
1960 continue;
1961 }
1962
1963 /* need to clone skb, done only once */
1964 skb2 = skb_clone(skb, GFP_ATOMIC);
1965 if (!skb2)
1966 goto out_unlock;
1967
1968 net_timestamp_set(skb2);
1969
1970 /* skb->nh should be correctly
1971 * set by sender, so that the second statement is
1972 * just protection against buggy protocols.
1973 */
1974 skb_reset_mac_header(skb2);
1975
1976 if (skb_network_header(skb2) < skb2->data ||
1977 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1978 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1979 ntohs(skb2->protocol),
1980 dev->name);
1981 skb_reset_network_header(skb2);
1982 }
1983
1984 skb2->transport_header = skb2->network_header;
1985 skb2->pkt_type = PACKET_OUTGOING;
1986 pt_prev = ptype;
1987 }
1988
1989 if (ptype_list == &ptype_all) {
1990 ptype_list = &dev->ptype_all;
1991 goto again;
1992 }
1993 out_unlock:
1994 if (pt_prev) {
1995 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1996 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1997 else
1998 kfree_skb(skb2);
1999 }
2000 rcu_read_unlock();
2001 }
2002 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2003
2004 /**
2005 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2006 * @dev: Network device
2007 * @txq: number of queues available
2008 *
2009 * If real_num_tx_queues is changed the tc mappings may no longer be
2010 * valid. To resolve this verify the tc mapping remains valid and if
2011 * not NULL the mapping. With no priorities mapping to this
2012 * offset/count pair it will no longer be used. In the worst case TC0
2013 * is invalid nothing can be done so disable priority mappings. If is
2014 * expected that drivers will fix this mapping if they can before
2015 * calling netif_set_real_num_tx_queues.
2016 */
2017 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2018 {
2019 int i;
2020 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2021
2022 /* If TC0 is invalidated disable TC mapping */
2023 if (tc->offset + tc->count > txq) {
2024 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2025 dev->num_tc = 0;
2026 return;
2027 }
2028
2029 /* Invalidated prio to tc mappings set to TC0 */
2030 for (i = 1; i < TC_BITMASK + 1; i++) {
2031 int q = netdev_get_prio_tc_map(dev, i);
2032
2033 tc = &dev->tc_to_txq[q];
2034 if (tc->offset + tc->count > txq) {
2035 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2036 i, q);
2037 netdev_set_prio_tc_map(dev, i, 0);
2038 }
2039 }
2040 }
2041
2042 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2043 {
2044 if (dev->num_tc) {
2045 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2046 int i;
2047
2048 /* walk through the TCs and see if it falls into any of them */
2049 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2050 if ((txq - tc->offset) < tc->count)
2051 return i;
2052 }
2053
2054 /* didn't find it, just return -1 to indicate no match */
2055 return -1;
2056 }
2057
2058 return 0;
2059 }
2060 EXPORT_SYMBOL(netdev_txq_to_tc);
2061
2062 #ifdef CONFIG_XPS
2063 struct static_key xps_needed __read_mostly;
2064 EXPORT_SYMBOL(xps_needed);
2065 struct static_key xps_rxqs_needed __read_mostly;
2066 EXPORT_SYMBOL(xps_rxqs_needed);
2067 static DEFINE_MUTEX(xps_map_mutex);
2068 #define xmap_dereference(P) \
2069 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2070
2071 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2072 int tci, u16 index)
2073 {
2074 struct xps_map *map = NULL;
2075 int pos;
2076
2077 if (dev_maps)
2078 map = xmap_dereference(dev_maps->attr_map[tci]);
2079 if (!map)
2080 return false;
2081
2082 for (pos = map->len; pos--;) {
2083 if (map->queues[pos] != index)
2084 continue;
2085
2086 if (map->len > 1) {
2087 map->queues[pos] = map->queues[--map->len];
2088 break;
2089 }
2090
2091 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2092 kfree_rcu(map, rcu);
2093 return false;
2094 }
2095
2096 return true;
2097 }
2098
2099 static bool remove_xps_queue_cpu(struct net_device *dev,
2100 struct xps_dev_maps *dev_maps,
2101 int cpu, u16 offset, u16 count)
2102 {
2103 int num_tc = dev->num_tc ? : 1;
2104 bool active = false;
2105 int tci;
2106
2107 for (tci = cpu * num_tc; num_tc--; tci++) {
2108 int i, j;
2109
2110 for (i = count, j = offset; i--; j++) {
2111 if (!remove_xps_queue(dev_maps, tci, j))
2112 break;
2113 }
2114
2115 active |= i < 0;
2116 }
2117
2118 return active;
2119 }
2120
2121 static void reset_xps_maps(struct net_device *dev,
2122 struct xps_dev_maps *dev_maps,
2123 bool is_rxqs_map)
2124 {
2125 if (is_rxqs_map) {
2126 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2127 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2128 } else {
2129 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2130 }
2131 static_key_slow_dec_cpuslocked(&xps_needed);
2132 kfree_rcu(dev_maps, rcu);
2133 }
2134
2135 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2136 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2137 u16 offset, u16 count, bool is_rxqs_map)
2138 {
2139 bool active = false;
2140 int i, j;
2141
2142 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2143 j < nr_ids;)
2144 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2145 count);
2146 if (!active)
2147 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2148
2149 if (!is_rxqs_map) {
2150 for (i = offset + (count - 1); count--; i--) {
2151 netdev_queue_numa_node_write(
2152 netdev_get_tx_queue(dev, i),
2153 NUMA_NO_NODE);
2154 }
2155 }
2156 }
2157
2158 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2159 u16 count)
2160 {
2161 const unsigned long *possible_mask = NULL;
2162 struct xps_dev_maps *dev_maps;
2163 unsigned int nr_ids;
2164
2165 if (!static_key_false(&xps_needed))
2166 return;
2167
2168 cpus_read_lock();
2169 mutex_lock(&xps_map_mutex);
2170
2171 if (static_key_false(&xps_rxqs_needed)) {
2172 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2173 if (dev_maps) {
2174 nr_ids = dev->num_rx_queues;
2175 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2176 offset, count, true);
2177 }
2178 }
2179
2180 dev_maps = xmap_dereference(dev->xps_cpus_map);
2181 if (!dev_maps)
2182 goto out_no_maps;
2183
2184 if (num_possible_cpus() > 1)
2185 possible_mask = cpumask_bits(cpu_possible_mask);
2186 nr_ids = nr_cpu_ids;
2187 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2188 false);
2189
2190 out_no_maps:
2191 mutex_unlock(&xps_map_mutex);
2192 cpus_read_unlock();
2193 }
2194
2195 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2196 {
2197 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2198 }
2199
2200 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2201 u16 index, bool is_rxqs_map)
2202 {
2203 struct xps_map *new_map;
2204 int alloc_len = XPS_MIN_MAP_ALLOC;
2205 int i, pos;
2206
2207 for (pos = 0; map && pos < map->len; pos++) {
2208 if (map->queues[pos] != index)
2209 continue;
2210 return map;
2211 }
2212
2213 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2214 if (map) {
2215 if (pos < map->alloc_len)
2216 return map;
2217
2218 alloc_len = map->alloc_len * 2;
2219 }
2220
2221 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2222 * map
2223 */
2224 if (is_rxqs_map)
2225 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2226 else
2227 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2228 cpu_to_node(attr_index));
2229 if (!new_map)
2230 return NULL;
2231
2232 for (i = 0; i < pos; i++)
2233 new_map->queues[i] = map->queues[i];
2234 new_map->alloc_len = alloc_len;
2235 new_map->len = pos;
2236
2237 return new_map;
2238 }
2239
2240 /* Must be called under cpus_read_lock */
2241 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2242 u16 index, bool is_rxqs_map)
2243 {
2244 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2245 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2246 int i, j, tci, numa_node_id = -2;
2247 int maps_sz, num_tc = 1, tc = 0;
2248 struct xps_map *map, *new_map;
2249 bool active = false;
2250 unsigned int nr_ids;
2251
2252 if (dev->num_tc) {
2253 /* Do not allow XPS on subordinate device directly */
2254 num_tc = dev->num_tc;
2255 if (num_tc < 0)
2256 return -EINVAL;
2257
2258 /* If queue belongs to subordinate dev use its map */
2259 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2260
2261 tc = netdev_txq_to_tc(dev, index);
2262 if (tc < 0)
2263 return -EINVAL;
2264 }
2265
2266 mutex_lock(&xps_map_mutex);
2267 if (is_rxqs_map) {
2268 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2269 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2270 nr_ids = dev->num_rx_queues;
2271 } else {
2272 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2273 if (num_possible_cpus() > 1) {
2274 online_mask = cpumask_bits(cpu_online_mask);
2275 possible_mask = cpumask_bits(cpu_possible_mask);
2276 }
2277 dev_maps = xmap_dereference(dev->xps_cpus_map);
2278 nr_ids = nr_cpu_ids;
2279 }
2280
2281 if (maps_sz < L1_CACHE_BYTES)
2282 maps_sz = L1_CACHE_BYTES;
2283
2284 /* allocate memory for queue storage */
2285 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2286 j < nr_ids;) {
2287 if (!new_dev_maps)
2288 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2289 if (!new_dev_maps) {
2290 mutex_unlock(&xps_map_mutex);
2291 return -ENOMEM;
2292 }
2293
2294 tci = j * num_tc + tc;
2295 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2296 NULL;
2297
2298 map = expand_xps_map(map, j, index, is_rxqs_map);
2299 if (!map)
2300 goto error;
2301
2302 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2303 }
2304
2305 if (!new_dev_maps)
2306 goto out_no_new_maps;
2307
2308 if (!dev_maps) {
2309 /* Increment static keys at most once per type */
2310 static_key_slow_inc_cpuslocked(&xps_needed);
2311 if (is_rxqs_map)
2312 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2313 }
2314
2315 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2316 j < nr_ids;) {
2317 /* copy maps belonging to foreign traffic classes */
2318 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2319 /* fill in the new device map from the old device map */
2320 map = xmap_dereference(dev_maps->attr_map[tci]);
2321 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2322 }
2323
2324 /* We need to explicitly update tci as prevous loop
2325 * could break out early if dev_maps is NULL.
2326 */
2327 tci = j * num_tc + tc;
2328
2329 if (netif_attr_test_mask(j, mask, nr_ids) &&
2330 netif_attr_test_online(j, online_mask, nr_ids)) {
2331 /* add tx-queue to CPU/rx-queue maps */
2332 int pos = 0;
2333
2334 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2335 while ((pos < map->len) && (map->queues[pos] != index))
2336 pos++;
2337
2338 if (pos == map->len)
2339 map->queues[map->len++] = index;
2340 #ifdef CONFIG_NUMA
2341 if (!is_rxqs_map) {
2342 if (numa_node_id == -2)
2343 numa_node_id = cpu_to_node(j);
2344 else if (numa_node_id != cpu_to_node(j))
2345 numa_node_id = -1;
2346 }
2347 #endif
2348 } else if (dev_maps) {
2349 /* fill in the new device map from the old device map */
2350 map = xmap_dereference(dev_maps->attr_map[tci]);
2351 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2352 }
2353
2354 /* copy maps belonging to foreign traffic classes */
2355 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2356 /* fill in the new device map from the old device map */
2357 map = xmap_dereference(dev_maps->attr_map[tci]);
2358 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2359 }
2360 }
2361
2362 if (is_rxqs_map)
2363 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2364 else
2365 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2366
2367 /* Cleanup old maps */
2368 if (!dev_maps)
2369 goto out_no_old_maps;
2370
2371 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2372 j < nr_ids;) {
2373 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2374 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2375 map = xmap_dereference(dev_maps->attr_map[tci]);
2376 if (map && map != new_map)
2377 kfree_rcu(map, rcu);
2378 }
2379 }
2380
2381 kfree_rcu(dev_maps, rcu);
2382
2383 out_no_old_maps:
2384 dev_maps = new_dev_maps;
2385 active = true;
2386
2387 out_no_new_maps:
2388 if (!is_rxqs_map) {
2389 /* update Tx queue numa node */
2390 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2391 (numa_node_id >= 0) ?
2392 numa_node_id : NUMA_NO_NODE);
2393 }
2394
2395 if (!dev_maps)
2396 goto out_no_maps;
2397
2398 /* removes tx-queue from unused CPUs/rx-queues */
2399 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2400 j < nr_ids;) {
2401 for (i = tc, tci = j * num_tc; i--; tci++)
2402 active |= remove_xps_queue(dev_maps, tci, index);
2403 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2404 !netif_attr_test_online(j, online_mask, nr_ids))
2405 active |= remove_xps_queue(dev_maps, tci, index);
2406 for (i = num_tc - tc, tci++; --i; tci++)
2407 active |= remove_xps_queue(dev_maps, tci, index);
2408 }
2409
2410 /* free map if not active */
2411 if (!active)
2412 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2413
2414 out_no_maps:
2415 mutex_unlock(&xps_map_mutex);
2416
2417 return 0;
2418 error:
2419 /* remove any maps that we added */
2420 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2421 j < nr_ids;) {
2422 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2423 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2424 map = dev_maps ?
2425 xmap_dereference(dev_maps->attr_map[tci]) :
2426 NULL;
2427 if (new_map && new_map != map)
2428 kfree(new_map);
2429 }
2430 }
2431
2432 mutex_unlock(&xps_map_mutex);
2433
2434 kfree(new_dev_maps);
2435 return -ENOMEM;
2436 }
2437 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2438
2439 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2440 u16 index)
2441 {
2442 int ret;
2443
2444 cpus_read_lock();
2445 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2446 cpus_read_unlock();
2447
2448 return ret;
2449 }
2450 EXPORT_SYMBOL(netif_set_xps_queue);
2451
2452 #endif
2453 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2454 {
2455 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2456
2457 /* Unbind any subordinate channels */
2458 while (txq-- != &dev->_tx[0]) {
2459 if (txq->sb_dev)
2460 netdev_unbind_sb_channel(dev, txq->sb_dev);
2461 }
2462 }
2463
2464 void netdev_reset_tc(struct net_device *dev)
2465 {
2466 #ifdef CONFIG_XPS
2467 netif_reset_xps_queues_gt(dev, 0);
2468 #endif
2469 netdev_unbind_all_sb_channels(dev);
2470
2471 /* Reset TC configuration of device */
2472 dev->num_tc = 0;
2473 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2474 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2475 }
2476 EXPORT_SYMBOL(netdev_reset_tc);
2477
2478 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2479 {
2480 if (tc >= dev->num_tc)
2481 return -EINVAL;
2482
2483 #ifdef CONFIG_XPS
2484 netif_reset_xps_queues(dev, offset, count);
2485 #endif
2486 dev->tc_to_txq[tc].count = count;
2487 dev->tc_to_txq[tc].offset = offset;
2488 return 0;
2489 }
2490 EXPORT_SYMBOL(netdev_set_tc_queue);
2491
2492 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2493 {
2494 if (num_tc > TC_MAX_QUEUE)
2495 return -EINVAL;
2496
2497 #ifdef CONFIG_XPS
2498 netif_reset_xps_queues_gt(dev, 0);
2499 #endif
2500 netdev_unbind_all_sb_channels(dev);
2501
2502 dev->num_tc = num_tc;
2503 return 0;
2504 }
2505 EXPORT_SYMBOL(netdev_set_num_tc);
2506
2507 void netdev_unbind_sb_channel(struct net_device *dev,
2508 struct net_device *sb_dev)
2509 {
2510 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2511
2512 #ifdef CONFIG_XPS
2513 netif_reset_xps_queues_gt(sb_dev, 0);
2514 #endif
2515 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2516 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2517
2518 while (txq-- != &dev->_tx[0]) {
2519 if (txq->sb_dev == sb_dev)
2520 txq->sb_dev = NULL;
2521 }
2522 }
2523 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2524
2525 int netdev_bind_sb_channel_queue(struct net_device *dev,
2526 struct net_device *sb_dev,
2527 u8 tc, u16 count, u16 offset)
2528 {
2529 /* Make certain the sb_dev and dev are already configured */
2530 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2531 return -EINVAL;
2532
2533 /* We cannot hand out queues we don't have */
2534 if ((offset + count) > dev->real_num_tx_queues)
2535 return -EINVAL;
2536
2537 /* Record the mapping */
2538 sb_dev->tc_to_txq[tc].count = count;
2539 sb_dev->tc_to_txq[tc].offset = offset;
2540
2541 /* Provide a way for Tx queue to find the tc_to_txq map or
2542 * XPS map for itself.
2543 */
2544 while (count--)
2545 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2546
2547 return 0;
2548 }
2549 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2550
2551 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2552 {
2553 /* Do not use a multiqueue device to represent a subordinate channel */
2554 if (netif_is_multiqueue(dev))
2555 return -ENODEV;
2556
2557 /* We allow channels 1 - 32767 to be used for subordinate channels.
2558 * Channel 0 is meant to be "native" mode and used only to represent
2559 * the main root device. We allow writing 0 to reset the device back
2560 * to normal mode after being used as a subordinate channel.
2561 */
2562 if (channel > S16_MAX)
2563 return -EINVAL;
2564
2565 dev->num_tc = -channel;
2566
2567 return 0;
2568 }
2569 EXPORT_SYMBOL(netdev_set_sb_channel);
2570
2571 /*
2572 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2573 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2574 */
2575 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2576 {
2577 bool disabling;
2578 int rc;
2579
2580 disabling = txq < dev->real_num_tx_queues;
2581
2582 if (txq < 1 || txq > dev->num_tx_queues)
2583 return -EINVAL;
2584
2585 if (dev->reg_state == NETREG_REGISTERED ||
2586 dev->reg_state == NETREG_UNREGISTERING) {
2587 ASSERT_RTNL();
2588
2589 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2590 txq);
2591 if (rc)
2592 return rc;
2593
2594 if (dev->num_tc)
2595 netif_setup_tc(dev, txq);
2596
2597 dev->real_num_tx_queues = txq;
2598
2599 if (disabling) {
2600 synchronize_net();
2601 qdisc_reset_all_tx_gt(dev, txq);
2602 #ifdef CONFIG_XPS
2603 netif_reset_xps_queues_gt(dev, txq);
2604 #endif
2605 }
2606 } else {
2607 dev->real_num_tx_queues = txq;
2608 }
2609
2610 return 0;
2611 }
2612 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2613
2614 #ifdef CONFIG_SYSFS
2615 /**
2616 * netif_set_real_num_rx_queues - set actual number of RX queues used
2617 * @dev: Network device
2618 * @rxq: Actual number of RX queues
2619 *
2620 * This must be called either with the rtnl_lock held or before
2621 * registration of the net device. Returns 0 on success, or a
2622 * negative error code. If called before registration, it always
2623 * succeeds.
2624 */
2625 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2626 {
2627 int rc;
2628
2629 if (rxq < 1 || rxq > dev->num_rx_queues)
2630 return -EINVAL;
2631
2632 if (dev->reg_state == NETREG_REGISTERED) {
2633 ASSERT_RTNL();
2634
2635 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2636 rxq);
2637 if (rc)
2638 return rc;
2639 }
2640
2641 dev->real_num_rx_queues = rxq;
2642 return 0;
2643 }
2644 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2645 #endif
2646
2647 /**
2648 * netif_get_num_default_rss_queues - default number of RSS queues
2649 *
2650 * This routine should set an upper limit on the number of RSS queues
2651 * used by default by multiqueue devices.
2652 */
2653 int netif_get_num_default_rss_queues(void)
2654 {
2655 return is_kdump_kernel() ?
2656 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2657 }
2658 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2659
2660 static void __netif_reschedule(struct Qdisc *q)
2661 {
2662 struct softnet_data *sd;
2663 unsigned long flags;
2664
2665 local_irq_save(flags);
2666 sd = this_cpu_ptr(&softnet_data);
2667 q->next_sched = NULL;
2668 *sd->output_queue_tailp = q;
2669 sd->output_queue_tailp = &q->next_sched;
2670 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2671 local_irq_restore(flags);
2672 }
2673
2674 void __netif_schedule(struct Qdisc *q)
2675 {
2676 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2677 __netif_reschedule(q);
2678 }
2679 EXPORT_SYMBOL(__netif_schedule);
2680
2681 struct dev_kfree_skb_cb {
2682 enum skb_free_reason reason;
2683 };
2684
2685 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2686 {
2687 return (struct dev_kfree_skb_cb *)skb->cb;
2688 }
2689
2690 void netif_schedule_queue(struct netdev_queue *txq)
2691 {
2692 rcu_read_lock();
2693 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2694 struct Qdisc *q = rcu_dereference(txq->qdisc);
2695
2696 __netif_schedule(q);
2697 }
2698 rcu_read_unlock();
2699 }
2700 EXPORT_SYMBOL(netif_schedule_queue);
2701
2702 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2703 {
2704 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2705 struct Qdisc *q;
2706
2707 rcu_read_lock();
2708 q = rcu_dereference(dev_queue->qdisc);
2709 __netif_schedule(q);
2710 rcu_read_unlock();
2711 }
2712 }
2713 EXPORT_SYMBOL(netif_tx_wake_queue);
2714
2715 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2716 {
2717 unsigned long flags;
2718
2719 if (unlikely(!skb))
2720 return;
2721
2722 if (likely(refcount_read(&skb->users) == 1)) {
2723 smp_rmb();
2724 refcount_set(&skb->users, 0);
2725 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2726 return;
2727 }
2728 get_kfree_skb_cb(skb)->reason = reason;
2729 local_irq_save(flags);
2730 skb->next = __this_cpu_read(softnet_data.completion_queue);
2731 __this_cpu_write(softnet_data.completion_queue, skb);
2732 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2733 local_irq_restore(flags);
2734 }
2735 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2736
2737 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2738 {
2739 if (in_irq() || irqs_disabled())
2740 __dev_kfree_skb_irq(skb, reason);
2741 else
2742 dev_kfree_skb(skb);
2743 }
2744 EXPORT_SYMBOL(__dev_kfree_skb_any);
2745
2746
2747 /**
2748 * netif_device_detach - mark device as removed
2749 * @dev: network device
2750 *
2751 * Mark device as removed from system and therefore no longer available.
2752 */
2753 void netif_device_detach(struct net_device *dev)
2754 {
2755 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2756 netif_running(dev)) {
2757 netif_tx_stop_all_queues(dev);
2758 }
2759 }
2760 EXPORT_SYMBOL(netif_device_detach);
2761
2762 /**
2763 * netif_device_attach - mark device as attached
2764 * @dev: network device
2765 *
2766 * Mark device as attached from system and restart if needed.
2767 */
2768 void netif_device_attach(struct net_device *dev)
2769 {
2770 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2771 netif_running(dev)) {
2772 netif_tx_wake_all_queues(dev);
2773 __netdev_watchdog_up(dev);
2774 }
2775 }
2776 EXPORT_SYMBOL(netif_device_attach);
2777
2778 /*
2779 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2780 * to be used as a distribution range.
2781 */
2782 static u16 skb_tx_hash(const struct net_device *dev,
2783 const struct net_device *sb_dev,
2784 struct sk_buff *skb)
2785 {
2786 u32 hash;
2787 u16 qoffset = 0;
2788 u16 qcount = dev->real_num_tx_queues;
2789
2790 if (dev->num_tc) {
2791 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2792
2793 qoffset = sb_dev->tc_to_txq[tc].offset;
2794 qcount = sb_dev->tc_to_txq[tc].count;
2795 }
2796
2797 if (skb_rx_queue_recorded(skb)) {
2798 hash = skb_get_rx_queue(skb);
2799 while (unlikely(hash >= qcount))
2800 hash -= qcount;
2801 return hash + qoffset;
2802 }
2803
2804 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2805 }
2806
2807 static void skb_warn_bad_offload(const struct sk_buff *skb)
2808 {
2809 static const netdev_features_t null_features;
2810 struct net_device *dev = skb->dev;
2811 const char *name = "";
2812
2813 if (!net_ratelimit())
2814 return;
2815
2816 if (dev) {
2817 if (dev->dev.parent)
2818 name = dev_driver_string(dev->dev.parent);
2819 else
2820 name = netdev_name(dev);
2821 }
2822 skb_dump(KERN_WARNING, skb, false);
2823 WARN(1, "%s: caps=(%pNF, %pNF)\n",
2824 name, dev ? &dev->features : &null_features,
2825 skb->sk ? &skb->sk->sk_route_caps : &null_features);
2826 }
2827
2828 /*
2829 * Invalidate hardware checksum when packet is to be mangled, and
2830 * complete checksum manually on outgoing path.
2831 */
2832 int skb_checksum_help(struct sk_buff *skb)
2833 {
2834 __wsum csum;
2835 int ret = 0, offset;
2836
2837 if (skb->ip_summed == CHECKSUM_COMPLETE)
2838 goto out_set_summed;
2839
2840 if (unlikely(skb_shinfo(skb)->gso_size)) {
2841 skb_warn_bad_offload(skb);
2842 return -EINVAL;
2843 }
2844
2845 /* Before computing a checksum, we should make sure no frag could
2846 * be modified by an external entity : checksum could be wrong.
2847 */
2848 if (skb_has_shared_frag(skb)) {
2849 ret = __skb_linearize(skb);
2850 if (ret)
2851 goto out;
2852 }
2853
2854 offset = skb_checksum_start_offset(skb);
2855 BUG_ON(offset >= skb_headlen(skb));
2856 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2857
2858 offset += skb->csum_offset;
2859 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2860
2861 if (skb_cloned(skb) &&
2862 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2863 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2864 if (ret)
2865 goto out;
2866 }
2867
2868 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2869 out_set_summed:
2870 skb->ip_summed = CHECKSUM_NONE;
2871 out:
2872 return ret;
2873 }
2874 EXPORT_SYMBOL(skb_checksum_help);
2875
2876 int skb_crc32c_csum_help(struct sk_buff *skb)
2877 {
2878 __le32 crc32c_csum;
2879 int ret = 0, offset, start;
2880
2881 if (skb->ip_summed != CHECKSUM_PARTIAL)
2882 goto out;
2883
2884 if (unlikely(skb_is_gso(skb)))
2885 goto out;
2886
2887 /* Before computing a checksum, we should make sure no frag could
2888 * be modified by an external entity : checksum could be wrong.
2889 */
2890 if (unlikely(skb_has_shared_frag(skb))) {
2891 ret = __skb_linearize(skb);
2892 if (ret)
2893 goto out;
2894 }
2895 start = skb_checksum_start_offset(skb);
2896 offset = start + offsetof(struct sctphdr, checksum);
2897 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2898 ret = -EINVAL;
2899 goto out;
2900 }
2901 if (skb_cloned(skb) &&
2902 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2903 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2904 if (ret)
2905 goto out;
2906 }
2907 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2908 skb->len - start, ~(__u32)0,
2909 crc32c_csum_stub));
2910 *(__le32 *)(skb->data + offset) = crc32c_csum;
2911 skb->ip_summed = CHECKSUM_NONE;
2912 skb->csum_not_inet = 0;
2913 out:
2914 return ret;
2915 }
2916
2917 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2918 {
2919 __be16 type = skb->protocol;
2920
2921 /* Tunnel gso handlers can set protocol to ethernet. */
2922 if (type == htons(ETH_P_TEB)) {
2923 struct ethhdr *eth;
2924
2925 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2926 return 0;
2927
2928 eth = (struct ethhdr *)skb->data;
2929 type = eth->h_proto;
2930 }
2931
2932 return __vlan_get_protocol(skb, type, depth);
2933 }
2934
2935 /**
2936 * skb_mac_gso_segment - mac layer segmentation handler.
2937 * @skb: buffer to segment
2938 * @features: features for the output path (see dev->features)
2939 */
2940 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2941 netdev_features_t features)
2942 {
2943 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2944 struct packet_offload *ptype;
2945 int vlan_depth = skb->mac_len;
2946 __be16 type = skb_network_protocol(skb, &vlan_depth);
2947
2948 if (unlikely(!type))
2949 return ERR_PTR(-EINVAL);
2950
2951 __skb_pull(skb, vlan_depth);
2952
2953 rcu_read_lock();
2954 list_for_each_entry_rcu(ptype, &offload_base, list) {
2955 if (ptype->type == type && ptype->callbacks.gso_segment) {
2956 segs = ptype->callbacks.gso_segment(skb, features);
2957 break;
2958 }
2959 }
2960 rcu_read_unlock();
2961
2962 __skb_push(skb, skb->data - skb_mac_header(skb));
2963
2964 return segs;
2965 }
2966 EXPORT_SYMBOL(skb_mac_gso_segment);
2967
2968
2969 /* openvswitch calls this on rx path, so we need a different check.
2970 */
2971 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2972 {
2973 if (tx_path)
2974 return skb->ip_summed != CHECKSUM_PARTIAL &&
2975 skb->ip_summed != CHECKSUM_UNNECESSARY;
2976
2977 return skb->ip_summed == CHECKSUM_NONE;
2978 }
2979
2980 /**
2981 * __skb_gso_segment - Perform segmentation on skb.
2982 * @skb: buffer to segment
2983 * @features: features for the output path (see dev->features)
2984 * @tx_path: whether it is called in TX path
2985 *
2986 * This function segments the given skb and returns a list of segments.
2987 *
2988 * It may return NULL if the skb requires no segmentation. This is
2989 * only possible when GSO is used for verifying header integrity.
2990 *
2991 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2992 */
2993 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2994 netdev_features_t features, bool tx_path)
2995 {
2996 struct sk_buff *segs;
2997
2998 if (unlikely(skb_needs_check(skb, tx_path))) {
2999 int err;
3000
3001 /* We're going to init ->check field in TCP or UDP header */
3002 err = skb_cow_head(skb, 0);
3003 if (err < 0)
3004 return ERR_PTR(err);
3005 }
3006
3007 /* Only report GSO partial support if it will enable us to
3008 * support segmentation on this frame without needing additional
3009 * work.
3010 */
3011 if (features & NETIF_F_GSO_PARTIAL) {
3012 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3013 struct net_device *dev = skb->dev;
3014
3015 partial_features |= dev->features & dev->gso_partial_features;
3016 if (!skb_gso_ok(skb, features | partial_features))
3017 features &= ~NETIF_F_GSO_PARTIAL;
3018 }
3019
3020 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3021 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3022
3023 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3024 SKB_GSO_CB(skb)->encap_level = 0;
3025
3026 skb_reset_mac_header(skb);
3027 skb_reset_mac_len(skb);
3028
3029 segs = skb_mac_gso_segment(skb, features);
3030
3031 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3032 skb_warn_bad_offload(skb);
3033
3034 return segs;
3035 }
3036 EXPORT_SYMBOL(__skb_gso_segment);
3037
3038 /* Take action when hardware reception checksum errors are detected. */
3039 #ifdef CONFIG_BUG
3040 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3041 {
3042 if (net_ratelimit()) {
3043 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3044 skb_dump(KERN_ERR, skb, true);
3045 dump_stack();
3046 }
3047 }
3048 EXPORT_SYMBOL(netdev_rx_csum_fault);
3049 #endif
3050
3051 /* XXX: check that highmem exists at all on the given machine. */
3052 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3053 {
3054 #ifdef CONFIG_HIGHMEM
3055 int i;
3056
3057 if (!(dev->features & NETIF_F_HIGHDMA)) {
3058 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3059 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3060
3061 if (PageHighMem(skb_frag_page(frag)))
3062 return 1;
3063 }
3064 }
3065 #endif
3066 return 0;
3067 }
3068
3069 /* If MPLS offload request, verify we are testing hardware MPLS features
3070 * instead of standard features for the netdev.
3071 */
3072 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3073 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3074 netdev_features_t features,
3075 __be16 type)
3076 {
3077 if (eth_p_mpls(type))
3078 features &= skb->dev->mpls_features;
3079
3080 return features;
3081 }
3082 #else
3083 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3084 netdev_features_t features,
3085 __be16 type)
3086 {
3087 return features;
3088 }
3089 #endif
3090
3091 static netdev_features_t harmonize_features(struct sk_buff *skb,
3092 netdev_features_t features)
3093 {
3094 int tmp;
3095 __be16 type;
3096
3097 type = skb_network_protocol(skb, &tmp);
3098 features = net_mpls_features(skb, features, type);
3099
3100 if (skb->ip_summed != CHECKSUM_NONE &&
3101 !can_checksum_protocol(features, type)) {
3102 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3103 }
3104 if (illegal_highdma(skb->dev, skb))
3105 features &= ~NETIF_F_SG;
3106
3107 return features;
3108 }
3109
3110 netdev_features_t passthru_features_check(struct sk_buff *skb,
3111 struct net_device *dev,
3112 netdev_features_t features)
3113 {
3114 return features;
3115 }
3116 EXPORT_SYMBOL(passthru_features_check);
3117
3118 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3119 struct net_device *dev,
3120 netdev_features_t features)
3121 {
3122 return vlan_features_check(skb, features);
3123 }
3124
3125 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3126 struct net_device *dev,
3127 netdev_features_t features)
3128 {
3129 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3130
3131 if (gso_segs > dev->gso_max_segs)
3132 return features & ~NETIF_F_GSO_MASK;
3133
3134 /* Support for GSO partial features requires software
3135 * intervention before we can actually process the packets
3136 * so we need to strip support for any partial features now
3137 * and we can pull them back in after we have partially
3138 * segmented the frame.
3139 */
3140 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3141 features &= ~dev->gso_partial_features;
3142
3143 /* Make sure to clear the IPv4 ID mangling feature if the
3144 * IPv4 header has the potential to be fragmented.
3145 */
3146 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3147 struct iphdr *iph = skb->encapsulation ?
3148 inner_ip_hdr(skb) : ip_hdr(skb);
3149
3150 if (!(iph->frag_off & htons(IP_DF)))
3151 features &= ~NETIF_F_TSO_MANGLEID;
3152 }
3153
3154 return features;
3155 }
3156
3157 netdev_features_t netif_skb_features(struct sk_buff *skb)
3158 {
3159 struct net_device *dev = skb->dev;
3160 netdev_features_t features = dev->features;
3161
3162 if (skb_is_gso(skb))
3163 features = gso_features_check(skb, dev, features);
3164
3165 /* If encapsulation offload request, verify we are testing
3166 * hardware encapsulation features instead of standard
3167 * features for the netdev
3168 */
3169 if (skb->encapsulation)
3170 features &= dev->hw_enc_features;
3171
3172 if (skb_vlan_tagged(skb))
3173 features = netdev_intersect_features(features,
3174 dev->vlan_features |
3175 NETIF_F_HW_VLAN_CTAG_TX |
3176 NETIF_F_HW_VLAN_STAG_TX);
3177
3178 if (dev->netdev_ops->ndo_features_check)
3179 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3180 features);
3181 else
3182 features &= dflt_features_check(skb, dev, features);
3183
3184 return harmonize_features(skb, features);
3185 }
3186 EXPORT_SYMBOL(netif_skb_features);
3187
3188 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3189 struct netdev_queue *txq, bool more)
3190 {
3191 unsigned int len;
3192 int rc;
3193
3194 if (dev_nit_active(dev))
3195 dev_queue_xmit_nit(skb, dev);
3196
3197 len = skb->len;
3198 trace_net_dev_start_xmit(skb, dev);
3199 rc = netdev_start_xmit(skb, dev, txq, more);
3200 trace_net_dev_xmit(skb, rc, dev, len);
3201
3202 return rc;
3203 }
3204
3205 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3206 struct netdev_queue *txq, int *ret)
3207 {
3208 struct sk_buff *skb = first;
3209 int rc = NETDEV_TX_OK;
3210
3211 while (skb) {
3212 struct sk_buff *next = skb->next;
3213
3214 skb_mark_not_on_list(skb);
3215 rc = xmit_one(skb, dev, txq, next != NULL);
3216 if (unlikely(!dev_xmit_complete(rc))) {
3217 skb->next = next;
3218 goto out;
3219 }
3220
3221 skb = next;
3222 if (netif_tx_queue_stopped(txq) && skb) {
3223 rc = NETDEV_TX_BUSY;
3224 break;
3225 }
3226 }
3227
3228 out:
3229 *ret = rc;
3230 return skb;
3231 }
3232
3233 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3234 netdev_features_t features)
3235 {
3236 if (skb_vlan_tag_present(skb) &&
3237 !vlan_hw_offload_capable(features, skb->vlan_proto))
3238 skb = __vlan_hwaccel_push_inside(skb);
3239 return skb;
3240 }
3241
3242 int skb_csum_hwoffload_help(struct sk_buff *skb,
3243 const netdev_features_t features)
3244 {
3245 if (unlikely(skb->csum_not_inet))
3246 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3247 skb_crc32c_csum_help(skb);
3248
3249 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3250 }
3251 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3252
3253 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3254 {
3255 netdev_features_t features;
3256
3257 features = netif_skb_features(skb);
3258 skb = validate_xmit_vlan(skb, features);
3259 if (unlikely(!skb))
3260 goto out_null;
3261
3262 skb = sk_validate_xmit_skb(skb, dev);
3263 if (unlikely(!skb))
3264 goto out_null;
3265
3266 if (netif_needs_gso(skb, features)) {
3267 struct sk_buff *segs;
3268
3269 segs = skb_gso_segment(skb, features);
3270 if (IS_ERR(segs)) {
3271 goto out_kfree_skb;
3272 } else if (segs) {
3273 consume_skb(skb);
3274 skb = segs;
3275 }
3276 } else {
3277 if (skb_needs_linearize(skb, features) &&
3278 __skb_linearize(skb))
3279 goto out_kfree_skb;
3280
3281 /* If packet is not checksummed and device does not
3282 * support checksumming for this protocol, complete
3283 * checksumming here.
3284 */
3285 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3286 if (skb->encapsulation)
3287 skb_set_inner_transport_header(skb,
3288 skb_checksum_start_offset(skb));
3289 else
3290 skb_set_transport_header(skb,
3291 skb_checksum_start_offset(skb));
3292 if (skb_csum_hwoffload_help(skb, features))
3293 goto out_kfree_skb;
3294 }
3295 }
3296
3297 skb = validate_xmit_xfrm(skb, features, again);
3298
3299 return skb;
3300
3301 out_kfree_skb:
3302 kfree_skb(skb);
3303 out_null:
3304 atomic_long_inc(&dev->tx_dropped);
3305 return NULL;
3306 }
3307
3308 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3309 {
3310 struct sk_buff *next, *head = NULL, *tail;
3311
3312 for (; skb != NULL; skb = next) {
3313 next = skb->next;
3314 skb_mark_not_on_list(skb);
3315
3316 /* in case skb wont be segmented, point to itself */
3317 skb->prev = skb;
3318
3319 skb = validate_xmit_skb(skb, dev, again);
3320 if (!skb)
3321 continue;
3322
3323 if (!head)
3324 head = skb;
3325 else
3326 tail->next = skb;
3327 /* If skb was segmented, skb->prev points to
3328 * the last segment. If not, it still contains skb.
3329 */
3330 tail = skb->prev;
3331 }
3332 return head;
3333 }
3334 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3335
3336 static void qdisc_pkt_len_init(struct sk_buff *skb)
3337 {
3338 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3339
3340 qdisc_skb_cb(skb)->pkt_len = skb->len;
3341
3342 /* To get more precise estimation of bytes sent on wire,
3343 * we add to pkt_len the headers size of all segments
3344 */
3345 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3346 unsigned int hdr_len;
3347 u16 gso_segs = shinfo->gso_segs;
3348
3349 /* mac layer + network layer */
3350 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3351
3352 /* + transport layer */
3353 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3354 const struct tcphdr *th;
3355 struct tcphdr _tcphdr;
3356
3357 th = skb_header_pointer(skb, skb_transport_offset(skb),
3358 sizeof(_tcphdr), &_tcphdr);
3359 if (likely(th))
3360 hdr_len += __tcp_hdrlen(th);
3361 } else {
3362 struct udphdr _udphdr;
3363
3364 if (skb_header_pointer(skb, skb_transport_offset(skb),
3365 sizeof(_udphdr), &_udphdr))
3366 hdr_len += sizeof(struct udphdr);
3367 }
3368
3369 if (shinfo->gso_type & SKB_GSO_DODGY)
3370 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3371 shinfo->gso_size);
3372
3373 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3374 }
3375 }
3376
3377 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3378 struct net_device *dev,
3379 struct netdev_queue *txq)
3380 {
3381 spinlock_t *root_lock = qdisc_lock(q);
3382 struct sk_buff *to_free = NULL;
3383 bool contended;
3384 int rc;
3385
3386 qdisc_calculate_pkt_len(skb, q);
3387
3388 if (q->flags & TCQ_F_NOLOCK) {
3389 if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3390 qdisc_run_begin(q)) {
3391 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3392 &q->state))) {
3393 __qdisc_drop(skb, &to_free);
3394 rc = NET_XMIT_DROP;
3395 goto end_run;
3396 }
3397 qdisc_bstats_cpu_update(q, skb);
3398
3399 rc = NET_XMIT_SUCCESS;
3400 if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3401 __qdisc_run(q);
3402
3403 end_run:
3404 qdisc_run_end(q);
3405 } else {
3406 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3407 qdisc_run(q);
3408 }
3409
3410 if (unlikely(to_free))
3411 kfree_skb_list(to_free);
3412 return rc;
3413 }
3414
3415 /*
3416 * Heuristic to force contended enqueues to serialize on a
3417 * separate lock before trying to get qdisc main lock.
3418 * This permits qdisc->running owner to get the lock more
3419 * often and dequeue packets faster.
3420 */
3421 contended = qdisc_is_running(q);
3422 if (unlikely(contended))
3423 spin_lock(&q->busylock);
3424
3425 spin_lock(root_lock);
3426 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3427 __qdisc_drop(skb, &to_free);
3428 rc = NET_XMIT_DROP;
3429 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3430 qdisc_run_begin(q)) {
3431 /*
3432 * This is a work-conserving queue; there are no old skbs
3433 * waiting to be sent out; and the qdisc is not running -
3434 * xmit the skb directly.
3435 */
3436
3437 qdisc_bstats_update(q, skb);
3438
3439 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3440 if (unlikely(contended)) {
3441 spin_unlock(&q->busylock);
3442 contended = false;
3443 }
3444 __qdisc_run(q);
3445 }
3446
3447 qdisc_run_end(q);
3448 rc = NET_XMIT_SUCCESS;
3449 } else {
3450 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3451 if (qdisc_run_begin(q)) {
3452 if (unlikely(contended)) {
3453 spin_unlock(&q->busylock);
3454 contended = false;
3455 }
3456 __qdisc_run(q);
3457 qdisc_run_end(q);
3458 }
3459 }
3460 spin_unlock(root_lock);
3461 if (unlikely(to_free))
3462 kfree_skb_list(to_free);
3463 if (unlikely(contended))
3464 spin_unlock(&q->busylock);
3465 return rc;
3466 }
3467
3468 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3469 static void skb_update_prio(struct sk_buff *skb)
3470 {
3471 const struct netprio_map *map;
3472 const struct sock *sk;
3473 unsigned int prioidx;
3474
3475 if (skb->priority)
3476 return;
3477 map = rcu_dereference_bh(skb->dev->priomap);
3478 if (!map)
3479 return;
3480 sk = skb_to_full_sk(skb);
3481 if (!sk)
3482 return;
3483
3484 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3485
3486 if (prioidx < map->priomap_len)
3487 skb->priority = map->priomap[prioidx];
3488 }
3489 #else
3490 #define skb_update_prio(skb)
3491 #endif
3492
3493 /**
3494 * dev_loopback_xmit - loop back @skb
3495 * @net: network namespace this loopback is happening in
3496 * @sk: sk needed to be a netfilter okfn
3497 * @skb: buffer to transmit
3498 */
3499 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3500 {
3501 skb_reset_mac_header(skb);
3502 __skb_pull(skb, skb_network_offset(skb));
3503 skb->pkt_type = PACKET_LOOPBACK;
3504 skb->ip_summed = CHECKSUM_UNNECESSARY;
3505 WARN_ON(!skb_dst(skb));
3506 skb_dst_force(skb);
3507 netif_rx_ni(skb);
3508 return 0;
3509 }
3510 EXPORT_SYMBOL(dev_loopback_xmit);
3511
3512 #ifdef CONFIG_NET_EGRESS
3513 static struct sk_buff *
3514 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3515 {
3516 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3517 struct tcf_result cl_res;
3518
3519 if (!miniq)
3520 return skb;
3521
3522 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3523 mini_qdisc_bstats_cpu_update(miniq, skb);
3524
3525 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3526 case TC_ACT_OK:
3527 case TC_ACT_RECLASSIFY:
3528 skb->tc_index = TC_H_MIN(cl_res.classid);
3529 break;
3530 case TC_ACT_SHOT:
3531 mini_qdisc_qstats_cpu_drop(miniq);
3532 *ret = NET_XMIT_DROP;
3533 kfree_skb(skb);
3534 return NULL;
3535 case TC_ACT_STOLEN:
3536 case TC_ACT_QUEUED:
3537 case TC_ACT_TRAP:
3538 *ret = NET_XMIT_SUCCESS;
3539 consume_skb(skb);
3540 return NULL;
3541 case TC_ACT_REDIRECT:
3542 /* No need to push/pop skb's mac_header here on egress! */
3543 skb_do_redirect(skb);
3544 *ret = NET_XMIT_SUCCESS;
3545 return NULL;
3546 default:
3547 break;
3548 }
3549
3550 return skb;
3551 }
3552 #endif /* CONFIG_NET_EGRESS */
3553
3554 #ifdef CONFIG_XPS
3555 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3556 struct xps_dev_maps *dev_maps, unsigned int tci)
3557 {
3558 struct xps_map *map;
3559 int queue_index = -1;
3560
3561 if (dev->num_tc) {
3562 tci *= dev->num_tc;
3563 tci += netdev_get_prio_tc_map(dev, skb->priority);
3564 }
3565
3566 map = rcu_dereference(dev_maps->attr_map[tci]);
3567 if (map) {
3568 if (map->len == 1)
3569 queue_index = map->queues[0];
3570 else
3571 queue_index = map->queues[reciprocal_scale(
3572 skb_get_hash(skb), map->len)];
3573 if (unlikely(queue_index >= dev->real_num_tx_queues))
3574 queue_index = -1;
3575 }
3576 return queue_index;
3577 }
3578 #endif
3579
3580 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3581 struct sk_buff *skb)
3582 {
3583 #ifdef CONFIG_XPS
3584 struct xps_dev_maps *dev_maps;
3585 struct sock *sk = skb->sk;
3586 int queue_index = -1;
3587
3588 if (!static_key_false(&xps_needed))
3589 return -1;
3590
3591 rcu_read_lock();
3592 if (!static_key_false(&xps_rxqs_needed))
3593 goto get_cpus_map;
3594
3595 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3596 if (dev_maps) {
3597 int tci = sk_rx_queue_get(sk);
3598
3599 if (tci >= 0 && tci < dev->num_rx_queues)
3600 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3601 tci);
3602 }
3603
3604 get_cpus_map:
3605 if (queue_index < 0) {
3606 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3607 if (dev_maps) {
3608 unsigned int tci = skb->sender_cpu - 1;
3609
3610 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3611 tci);
3612 }
3613 }
3614 rcu_read_unlock();
3615
3616 return queue_index;
3617 #else
3618 return -1;
3619 #endif
3620 }
3621
3622 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3623 struct net_device *sb_dev)
3624 {
3625 return 0;
3626 }
3627 EXPORT_SYMBOL(dev_pick_tx_zero);
3628
3629 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3630 struct net_device *sb_dev)
3631 {
3632 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3633 }
3634 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3635
3636 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3637 struct net_device *sb_dev)
3638 {
3639 struct sock *sk = skb->sk;
3640 int queue_index = sk_tx_queue_get(sk);
3641
3642 sb_dev = sb_dev ? : dev;
3643
3644 if (queue_index < 0 || skb->ooo_okay ||
3645 queue_index >= dev->real_num_tx_queues) {
3646 int new_index = get_xps_queue(dev, sb_dev, skb);
3647
3648 if (new_index < 0)
3649 new_index = skb_tx_hash(dev, sb_dev, skb);
3650
3651 if (queue_index != new_index && sk &&
3652 sk_fullsock(sk) &&
3653 rcu_access_pointer(sk->sk_dst_cache))
3654 sk_tx_queue_set(sk, new_index);
3655
3656 queue_index = new_index;
3657 }
3658
3659 return queue_index;
3660 }
3661 EXPORT_SYMBOL(netdev_pick_tx);
3662
3663 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3664 struct sk_buff *skb,
3665 struct net_device *sb_dev)
3666 {
3667 int queue_index = 0;
3668
3669 #ifdef CONFIG_XPS
3670 u32 sender_cpu = skb->sender_cpu - 1;
3671
3672 if (sender_cpu >= (u32)NR_CPUS)
3673 skb->sender_cpu = raw_smp_processor_id() + 1;
3674 #endif
3675
3676 if (dev->real_num_tx_queues != 1) {
3677 const struct net_device_ops *ops = dev->netdev_ops;
3678
3679 if (ops->ndo_select_queue)
3680 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3681 else
3682 queue_index = netdev_pick_tx(dev, skb, sb_dev);
3683
3684 queue_index = netdev_cap_txqueue(dev, queue_index);
3685 }
3686
3687 skb_set_queue_mapping(skb, queue_index);
3688 return netdev_get_tx_queue(dev, queue_index);
3689 }
3690
3691 /**
3692 * __dev_queue_xmit - transmit a buffer
3693 * @skb: buffer to transmit
3694 * @sb_dev: suboordinate device used for L2 forwarding offload
3695 *
3696 * Queue a buffer for transmission to a network device. The caller must
3697 * have set the device and priority and built the buffer before calling
3698 * this function. The function can be called from an interrupt.
3699 *
3700 * A negative errno code is returned on a failure. A success does not
3701 * guarantee the frame will be transmitted as it may be dropped due
3702 * to congestion or traffic shaping.
3703 *
3704 * -----------------------------------------------------------------------------------
3705 * I notice this method can also return errors from the queue disciplines,
3706 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3707 * be positive.
3708 *
3709 * Regardless of the return value, the skb is consumed, so it is currently
3710 * difficult to retry a send to this method. (You can bump the ref count
3711 * before sending to hold a reference for retry if you are careful.)
3712 *
3713 * When calling this method, interrupts MUST be enabled. This is because
3714 * the BH enable code must have IRQs enabled so that it will not deadlock.
3715 * --BLG
3716 */
3717 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3718 {
3719 struct net_device *dev = skb->dev;
3720 struct netdev_queue *txq;
3721 struct Qdisc *q;
3722 int rc = -ENOMEM;
3723 bool again = false;
3724
3725 skb_reset_mac_header(skb);
3726
3727 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3728 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3729
3730 /* Disable soft irqs for various locks below. Also
3731 * stops preemption for RCU.
3732 */
3733 rcu_read_lock_bh();
3734
3735 skb_update_prio(skb);
3736
3737 qdisc_pkt_len_init(skb);
3738 #ifdef CONFIG_NET_CLS_ACT
3739 skb->tc_at_ingress = 0;
3740 # ifdef CONFIG_NET_EGRESS
3741 if (static_branch_unlikely(&egress_needed_key)) {
3742 skb = sch_handle_egress(skb, &rc, dev);
3743 if (!skb)
3744 goto out;
3745 }
3746 # endif
3747 #endif
3748 /* If device/qdisc don't need skb->dst, release it right now while
3749 * its hot in this cpu cache.
3750 */
3751 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3752 skb_dst_drop(skb);
3753 else
3754 skb_dst_force(skb);
3755
3756 txq = netdev_core_pick_tx(dev, skb, sb_dev);
3757 q = rcu_dereference_bh(txq->qdisc);
3758
3759 trace_net_dev_queue(skb);
3760 if (q->enqueue) {
3761 rc = __dev_xmit_skb(skb, q, dev, txq);
3762 goto out;
3763 }
3764
3765 /* The device has no queue. Common case for software devices:
3766 * loopback, all the sorts of tunnels...
3767
3768 * Really, it is unlikely that netif_tx_lock protection is necessary
3769 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3770 * counters.)
3771 * However, it is possible, that they rely on protection
3772 * made by us here.
3773
3774 * Check this and shot the lock. It is not prone from deadlocks.
3775 *Either shot noqueue qdisc, it is even simpler 8)
3776 */
3777 if (dev->flags & IFF_UP) {
3778 int cpu = smp_processor_id(); /* ok because BHs are off */
3779
3780 if (txq->xmit_lock_owner != cpu) {
3781 if (dev_xmit_recursion())
3782 goto recursion_alert;
3783
3784 skb = validate_xmit_skb(skb, dev, &again);
3785 if (!skb)
3786 goto out;
3787
3788 HARD_TX_LOCK(dev, txq, cpu);
3789
3790 if (!netif_xmit_stopped(txq)) {
3791 dev_xmit_recursion_inc();
3792 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3793 dev_xmit_recursion_dec();
3794 if (dev_xmit_complete(rc)) {
3795 HARD_TX_UNLOCK(dev, txq);
3796 goto out;
3797 }
3798 }
3799 HARD_TX_UNLOCK(dev, txq);
3800 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3801 dev->name);
3802 } else {
3803 /* Recursion is detected! It is possible,
3804 * unfortunately
3805 */
3806 recursion_alert:
3807 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3808 dev->name);
3809 }
3810 }
3811
3812 rc = -ENETDOWN;
3813 rcu_read_unlock_bh();
3814
3815 atomic_long_inc(&dev->tx_dropped);
3816 kfree_skb_list(skb);
3817 return rc;
3818 out:
3819 rcu_read_unlock_bh();
3820 return rc;
3821 }
3822
3823 int dev_queue_xmit(struct sk_buff *skb)
3824 {
3825 return __dev_queue_xmit(skb, NULL);
3826 }
3827 EXPORT_SYMBOL(dev_queue_xmit);
3828
3829 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3830 {
3831 return __dev_queue_xmit(skb, sb_dev);
3832 }
3833 EXPORT_SYMBOL(dev_queue_xmit_accel);
3834
3835 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3836 {
3837 struct net_device *dev = skb->dev;
3838 struct sk_buff *orig_skb = skb;
3839 struct netdev_queue *txq;
3840 int ret = NETDEV_TX_BUSY;
3841 bool again = false;
3842
3843 if (unlikely(!netif_running(dev) ||
3844 !netif_carrier_ok(dev)))
3845 goto drop;
3846
3847 skb = validate_xmit_skb_list(skb, dev, &again);
3848 if (skb != orig_skb)
3849 goto drop;
3850
3851 skb_set_queue_mapping(skb, queue_id);
3852 txq = skb_get_tx_queue(dev, skb);
3853
3854 local_bh_disable();
3855
3856 HARD_TX_LOCK(dev, txq, smp_processor_id());
3857 if (!netif_xmit_frozen_or_drv_stopped(txq))
3858 ret = netdev_start_xmit(skb, dev, txq, false);
3859 HARD_TX_UNLOCK(dev, txq);
3860
3861 local_bh_enable();
3862
3863 if (!dev_xmit_complete(ret))
3864 kfree_skb(skb);
3865
3866 return ret;
3867 drop:
3868 atomic_long_inc(&dev->tx_dropped);
3869 kfree_skb_list(skb);
3870 return NET_XMIT_DROP;
3871 }
3872 EXPORT_SYMBOL(dev_direct_xmit);
3873
3874 /*************************************************************************
3875 * Receiver routines
3876 *************************************************************************/
3877
3878 int netdev_max_backlog __read_mostly = 1000;
3879 EXPORT_SYMBOL(netdev_max_backlog);
3880
3881 int netdev_tstamp_prequeue __read_mostly = 1;
3882 int netdev_budget __read_mostly = 300;
3883 unsigned int __read_mostly netdev_budget_usecs = 2000;
3884 int weight_p __read_mostly = 64; /* old backlog weight */
3885 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3886 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3887 int dev_rx_weight __read_mostly = 64;
3888 int dev_tx_weight __read_mostly = 64;
3889 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
3890 int gro_normal_batch __read_mostly = 8;
3891
3892 /* Called with irq disabled */
3893 static inline void ____napi_schedule(struct softnet_data *sd,
3894 struct napi_struct *napi)
3895 {
3896 list_add_tail(&napi->poll_list, &sd->poll_list);
3897 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3898 }
3899
3900 #ifdef CONFIG_RPS
3901
3902 /* One global table that all flow-based protocols share. */
3903 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3904 EXPORT_SYMBOL(rps_sock_flow_table);
3905 u32 rps_cpu_mask __read_mostly;
3906 EXPORT_SYMBOL(rps_cpu_mask);
3907
3908 struct static_key_false rps_needed __read_mostly;
3909 EXPORT_SYMBOL(rps_needed);
3910 struct static_key_false rfs_needed __read_mostly;
3911 EXPORT_SYMBOL(rfs_needed);
3912
3913 static struct rps_dev_flow *
3914 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3915 struct rps_dev_flow *rflow, u16 next_cpu)
3916 {
3917 if (next_cpu < nr_cpu_ids) {
3918 #ifdef CONFIG_RFS_ACCEL
3919 struct netdev_rx_queue *rxqueue;
3920 struct rps_dev_flow_table *flow_table;
3921 struct rps_dev_flow *old_rflow;
3922 u32 flow_id;
3923 u16 rxq_index;
3924 int rc;
3925
3926 /* Should we steer this flow to a different hardware queue? */
3927 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3928 !(dev->features & NETIF_F_NTUPLE))
3929 goto out;
3930 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3931 if (rxq_index == skb_get_rx_queue(skb))
3932 goto out;
3933
3934 rxqueue = dev->_rx + rxq_index;
3935 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3936 if (!flow_table)
3937 goto out;
3938 flow_id = skb_get_hash(skb) & flow_table->mask;
3939 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3940 rxq_index, flow_id);
3941 if (rc < 0)
3942 goto out;
3943 old_rflow = rflow;
3944 rflow = &flow_table->flows[flow_id];
3945 rflow->filter = rc;
3946 if (old_rflow->filter == rflow->filter)
3947 old_rflow->filter = RPS_NO_FILTER;
3948 out:
3949 #endif
3950 rflow->last_qtail =
3951 per_cpu(softnet_data, next_cpu).input_queue_head;
3952 }
3953
3954 rflow->cpu = next_cpu;
3955 return rflow;
3956 }
3957
3958 /*
3959 * get_rps_cpu is called from netif_receive_skb and returns the target
3960 * CPU from the RPS map of the receiving queue for a given skb.
3961 * rcu_read_lock must be held on entry.
3962 */
3963 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3964 struct rps_dev_flow **rflowp)
3965 {
3966 const struct rps_sock_flow_table *sock_flow_table;
3967 struct netdev_rx_queue *rxqueue = dev->_rx;
3968 struct rps_dev_flow_table *flow_table;
3969 struct rps_map *map;
3970 int cpu = -1;
3971 u32 tcpu;
3972 u32 hash;
3973
3974 if (skb_rx_queue_recorded(skb)) {
3975 u16 index = skb_get_rx_queue(skb);
3976
3977 if (unlikely(index >= dev->real_num_rx_queues)) {
3978 WARN_ONCE(dev->real_num_rx_queues > 1,
3979 "%s received packet on queue %u, but number "
3980 "of RX queues is %u\n",
3981 dev->name, index, dev->real_num_rx_queues);
3982 goto done;
3983 }
3984 rxqueue += index;
3985 }
3986
3987 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3988
3989 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3990 map = rcu_dereference(rxqueue->rps_map);
3991 if (!flow_table && !map)
3992 goto done;
3993
3994 skb_reset_network_header(skb);
3995 hash = skb_get_hash(skb);
3996 if (!hash)
3997 goto done;
3998
3999 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4000 if (flow_table && sock_flow_table) {
4001 struct rps_dev_flow *rflow;
4002 u32 next_cpu;
4003 u32 ident;
4004
4005 /* First check into global flow table if there is a match */
4006 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4007 if ((ident ^ hash) & ~rps_cpu_mask)
4008 goto try_rps;
4009
4010 next_cpu = ident & rps_cpu_mask;
4011
4012 /* OK, now we know there is a match,
4013 * we can look at the local (per receive queue) flow table
4014 */
4015 rflow = &flow_table->flows[hash & flow_table->mask];
4016 tcpu = rflow->cpu;
4017
4018 /*
4019 * If the desired CPU (where last recvmsg was done) is
4020 * different from current CPU (one in the rx-queue flow
4021 * table entry), switch if one of the following holds:
4022 * - Current CPU is unset (>= nr_cpu_ids).
4023 * - Current CPU is offline.
4024 * - The current CPU's queue tail has advanced beyond the
4025 * last packet that was enqueued using this table entry.
4026 * This guarantees that all previous packets for the flow
4027 * have been dequeued, thus preserving in order delivery.
4028 */
4029 if (unlikely(tcpu != next_cpu) &&
4030 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4031 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4032 rflow->last_qtail)) >= 0)) {
4033 tcpu = next_cpu;
4034 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4035 }
4036
4037 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4038 *rflowp = rflow;
4039 cpu = tcpu;
4040 goto done;
4041 }
4042 }
4043
4044 try_rps:
4045
4046 if (map) {
4047 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4048 if (cpu_online(tcpu)) {
4049 cpu = tcpu;
4050 goto done;
4051 }
4052 }
4053
4054 done:
4055 return cpu;
4056 }
4057
4058 #ifdef CONFIG_RFS_ACCEL
4059
4060 /**
4061 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4062 * @dev: Device on which the filter was set
4063 * @rxq_index: RX queue index
4064 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4065 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4066 *
4067 * Drivers that implement ndo_rx_flow_steer() should periodically call
4068 * this function for each installed filter and remove the filters for
4069 * which it returns %true.
4070 */
4071 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4072 u32 flow_id, u16 filter_id)
4073 {
4074 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4075 struct rps_dev_flow_table *flow_table;
4076 struct rps_dev_flow *rflow;
4077 bool expire = true;
4078 unsigned int cpu;
4079
4080 rcu_read_lock();
4081 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4082 if (flow_table && flow_id <= flow_table->mask) {
4083 rflow = &flow_table->flows[flow_id];
4084 cpu = READ_ONCE(rflow->cpu);
4085 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4086 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4087 rflow->last_qtail) <
4088 (int)(10 * flow_table->mask)))
4089 expire = false;
4090 }
4091 rcu_read_unlock();
4092 return expire;
4093 }
4094 EXPORT_SYMBOL(rps_may_expire_flow);
4095
4096 #endif /* CONFIG_RFS_ACCEL */
4097
4098 /* Called from hardirq (IPI) context */
4099 static void rps_trigger_softirq(void *data)
4100 {
4101 struct softnet_data *sd = data;
4102
4103 ____napi_schedule(sd, &sd->backlog);
4104 sd->received_rps++;
4105 }
4106
4107 #endif /* CONFIG_RPS */
4108
4109 /*
4110 * Check if this softnet_data structure is another cpu one
4111 * If yes, queue it to our IPI list and return 1
4112 * If no, return 0
4113 */
4114 static int rps_ipi_queued(struct softnet_data *sd)
4115 {
4116 #ifdef CONFIG_RPS
4117 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4118
4119 if (sd != mysd) {
4120 sd->rps_ipi_next = mysd->rps_ipi_list;
4121 mysd->rps_ipi_list = sd;
4122
4123 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4124 return 1;
4125 }
4126 #endif /* CONFIG_RPS */
4127 return 0;
4128 }
4129
4130 #ifdef CONFIG_NET_FLOW_LIMIT
4131 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4132 #endif
4133
4134 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4135 {
4136 #ifdef CONFIG_NET_FLOW_LIMIT
4137 struct sd_flow_limit *fl;
4138 struct softnet_data *sd;
4139 unsigned int old_flow, new_flow;
4140
4141 if (qlen < (netdev_max_backlog >> 1))
4142 return false;
4143
4144 sd = this_cpu_ptr(&softnet_data);
4145
4146 rcu_read_lock();
4147 fl = rcu_dereference(sd->flow_limit);
4148 if (fl) {
4149 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4150 old_flow = fl->history[fl->history_head];
4151 fl->history[fl->history_head] = new_flow;
4152
4153 fl->history_head++;
4154 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4155
4156 if (likely(fl->buckets[old_flow]))
4157 fl->buckets[old_flow]--;
4158
4159 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4160 fl->count++;
4161 rcu_read_unlock();
4162 return true;
4163 }
4164 }
4165 rcu_read_unlock();
4166 #endif
4167 return false;
4168 }
4169
4170 /*
4171 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4172 * queue (may be a remote CPU queue).
4173 */
4174 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4175 unsigned int *qtail)
4176 {
4177 struct softnet_data *sd;
4178 unsigned long flags;
4179 unsigned int qlen;
4180
4181 sd = &per_cpu(softnet_data, cpu);
4182
4183 local_irq_save(flags);
4184
4185 rps_lock(sd);
4186 if (!netif_running(skb->dev))
4187 goto drop;
4188 qlen = skb_queue_len(&sd->input_pkt_queue);
4189 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4190 if (qlen) {
4191 enqueue:
4192 __skb_queue_tail(&sd->input_pkt_queue, skb);
4193 input_queue_tail_incr_save(sd, qtail);
4194 rps_unlock(sd);
4195 local_irq_restore(flags);
4196 return NET_RX_SUCCESS;
4197 }
4198
4199 /* Schedule NAPI for backlog device
4200 * We can use non atomic operation since we own the queue lock
4201 */
4202 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4203 if (!rps_ipi_queued(sd))
4204 ____napi_schedule(sd, &sd->backlog);
4205 }
4206 goto enqueue;
4207 }
4208
4209 drop:
4210 sd->dropped++;
4211 rps_unlock(sd);
4212
4213 local_irq_restore(flags);
4214
4215 atomic_long_inc(&skb->dev->rx_dropped);
4216 kfree_skb(skb);
4217 return NET_RX_DROP;
4218 }
4219
4220 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4221 {
4222 struct net_device *dev = skb->dev;
4223 struct netdev_rx_queue *rxqueue;
4224
4225 rxqueue = dev->_rx;
4226
4227 if (skb_rx_queue_recorded(skb)) {
4228 u16 index = skb_get_rx_queue(skb);
4229
4230 if (unlikely(index >= dev->real_num_rx_queues)) {
4231 WARN_ONCE(dev->real_num_rx_queues > 1,
4232 "%s received packet on queue %u, but number "
4233 "of RX queues is %u\n",
4234 dev->name, index, dev->real_num_rx_queues);
4235
4236 return rxqueue; /* Return first rxqueue */
4237 }
4238 rxqueue += index;
4239 }
4240 return rxqueue;
4241 }
4242
4243 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4244 struct xdp_buff *xdp,
4245 struct bpf_prog *xdp_prog)
4246 {
4247 struct netdev_rx_queue *rxqueue;
4248 void *orig_data, *orig_data_end;
4249 u32 metalen, act = XDP_DROP;
4250 __be16 orig_eth_type;
4251 struct ethhdr *eth;
4252 bool orig_bcast;
4253 int hlen, off;
4254 u32 mac_len;
4255
4256 /* Reinjected packets coming from act_mirred or similar should
4257 * not get XDP generic processing.
4258 */
4259 if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4260 return XDP_PASS;
4261
4262 /* XDP packets must be linear and must have sufficient headroom
4263 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4264 * native XDP provides, thus we need to do it here as well.
4265 */
4266 if (skb_is_nonlinear(skb) ||
4267 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4268 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4269 int troom = skb->tail + skb->data_len - skb->end;
4270
4271 /* In case we have to go down the path and also linearize,
4272 * then lets do the pskb_expand_head() work just once here.
4273 */
4274 if (pskb_expand_head(skb,
4275 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4276 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4277 goto do_drop;
4278 if (skb_linearize(skb))
4279 goto do_drop;
4280 }
4281
4282 /* The XDP program wants to see the packet starting at the MAC
4283 * header.
4284 */
4285 mac_len = skb->data - skb_mac_header(skb);
4286 hlen = skb_headlen(skb) + mac_len;
4287 xdp->data = skb->data - mac_len;
4288 xdp->data_meta = xdp->data;
4289 xdp->data_end = xdp->data + hlen;
4290 xdp->data_hard_start = skb->data - skb_headroom(skb);
4291 orig_data_end = xdp->data_end;
4292 orig_data = xdp->data;
4293 eth = (struct ethhdr *)xdp->data;
4294 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4295 orig_eth_type = eth->h_proto;
4296
4297 rxqueue = netif_get_rxqueue(skb);
4298 xdp->rxq = &rxqueue->xdp_rxq;
4299
4300 act = bpf_prog_run_xdp(xdp_prog, xdp);
4301
4302 /* check if bpf_xdp_adjust_head was used */
4303 off = xdp->data - orig_data;
4304 if (off) {
4305 if (off > 0)
4306 __skb_pull(skb, off);
4307 else if (off < 0)
4308 __skb_push(skb, -off);
4309
4310 skb->mac_header += off;
4311 skb_reset_network_header(skb);
4312 }
4313
4314 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4315 * pckt.
4316 */
4317 off = orig_data_end - xdp->data_end;
4318 if (off != 0) {
4319 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4320 skb->len -= off;
4321
4322 }
4323
4324 /* check if XDP changed eth hdr such SKB needs update */
4325 eth = (struct ethhdr *)xdp->data;
4326 if ((orig_eth_type != eth->h_proto) ||
4327 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4328 __skb_push(skb, ETH_HLEN);
4329 skb->protocol = eth_type_trans(skb, skb->dev);
4330 }
4331
4332 switch (act) {
4333 case XDP_REDIRECT:
4334 case XDP_TX:
4335 __skb_push(skb, mac_len);
4336 break;
4337 case XDP_PASS:
4338 metalen = xdp->data - xdp->data_meta;
4339 if (metalen)
4340 skb_metadata_set(skb, metalen);
4341 break;
4342 default:
4343 bpf_warn_invalid_xdp_action(act);
4344 /* fall through */
4345 case XDP_ABORTED:
4346 trace_xdp_exception(skb->dev, xdp_prog, act);
4347 /* fall through */
4348 case XDP_DROP:
4349 do_drop:
4350 kfree_skb(skb);
4351 break;
4352 }
4353
4354 return act;
4355 }
4356
4357 /* When doing generic XDP we have to bypass the qdisc layer and the
4358 * network taps in order to match in-driver-XDP behavior.
4359 */
4360 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4361 {
4362 struct net_device *dev = skb->dev;
4363 struct netdev_queue *txq;
4364 bool free_skb = true;
4365 int cpu, rc;
4366
4367 txq = netdev_core_pick_tx(dev, skb, NULL);
4368 cpu = smp_processor_id();
4369 HARD_TX_LOCK(dev, txq, cpu);
4370 if (!netif_xmit_stopped(txq)) {
4371 rc = netdev_start_xmit(skb, dev, txq, 0);
4372 if (dev_xmit_complete(rc))
4373 free_skb = false;
4374 }
4375 HARD_TX_UNLOCK(dev, txq);
4376 if (free_skb) {
4377 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4378 kfree_skb(skb);
4379 }
4380 }
4381 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4382
4383 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4384
4385 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4386 {
4387 if (xdp_prog) {
4388 struct xdp_buff xdp;
4389 u32 act;
4390 int err;
4391
4392 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4393 if (act != XDP_PASS) {
4394 switch (act) {
4395 case XDP_REDIRECT:
4396 err = xdp_do_generic_redirect(skb->dev, skb,
4397 &xdp, xdp_prog);
4398 if (err)
4399 goto out_redir;
4400 break;
4401 case XDP_TX:
4402 generic_xdp_tx(skb, xdp_prog);
4403 break;
4404 }
4405 return XDP_DROP;
4406 }
4407 }
4408 return XDP_PASS;
4409 out_redir:
4410 kfree_skb(skb);
4411 return XDP_DROP;
4412 }
4413 EXPORT_SYMBOL_GPL(do_xdp_generic);
4414
4415 static int netif_rx_internal(struct sk_buff *skb)
4416 {
4417 int ret;
4418
4419 net_timestamp_check(netdev_tstamp_prequeue, skb);
4420
4421 trace_netif_rx(skb);
4422
4423 #ifdef CONFIG_RPS
4424 if (static_branch_unlikely(&rps_needed)) {
4425 struct rps_dev_flow voidflow, *rflow = &voidflow;
4426 int cpu;
4427
4428 preempt_disable();
4429 rcu_read_lock();
4430
4431 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4432 if (cpu < 0)
4433 cpu = smp_processor_id();
4434
4435 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4436
4437 rcu_read_unlock();
4438 preempt_enable();
4439 } else
4440 #endif
4441 {
4442 unsigned int qtail;
4443
4444 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4445 put_cpu();
4446 }
4447 return ret;
4448 }
4449
4450 /**
4451 * netif_rx - post buffer to the network code
4452 * @skb: buffer to post
4453 *
4454 * This function receives a packet from a device driver and queues it for
4455 * the upper (protocol) levels to process. It always succeeds. The buffer
4456 * may be dropped during processing for congestion control or by the
4457 * protocol layers.
4458 *
4459 * return values:
4460 * NET_RX_SUCCESS (no congestion)
4461 * NET_RX_DROP (packet was dropped)
4462 *
4463 */
4464
4465 int netif_rx(struct sk_buff *skb)
4466 {
4467 int ret;
4468
4469 trace_netif_rx_entry(skb);
4470
4471 ret = netif_rx_internal(skb);
4472 trace_netif_rx_exit(ret);
4473
4474 return ret;
4475 }
4476 EXPORT_SYMBOL(netif_rx);
4477
4478 int netif_rx_ni(struct sk_buff *skb)
4479 {
4480 int err;
4481
4482 trace_netif_rx_ni_entry(skb);
4483
4484 preempt_disable();
4485 err = netif_rx_internal(skb);
4486 if (local_softirq_pending())
4487 do_softirq();
4488 preempt_enable();
4489 trace_netif_rx_ni_exit(err);
4490
4491 return err;
4492 }
4493 EXPORT_SYMBOL(netif_rx_ni);
4494
4495 static __latent_entropy void net_tx_action(struct softirq_action *h)
4496 {
4497 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4498
4499 if (sd->completion_queue) {
4500 struct sk_buff *clist;
4501
4502 local_irq_disable();
4503 clist = sd->completion_queue;
4504 sd->completion_queue = NULL;
4505 local_irq_enable();
4506
4507 while (clist) {
4508 struct sk_buff *skb = clist;
4509
4510 clist = clist->next;
4511
4512 WARN_ON(refcount_read(&skb->users));
4513 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4514 trace_consume_skb(skb);
4515 else
4516 trace_kfree_skb(skb, net_tx_action);
4517
4518 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4519 __kfree_skb(skb);
4520 else
4521 __kfree_skb_defer(skb);
4522 }
4523
4524 __kfree_skb_flush();
4525 }
4526
4527 if (sd->output_queue) {
4528 struct Qdisc *head;
4529
4530 local_irq_disable();
4531 head = sd->output_queue;
4532 sd->output_queue = NULL;
4533 sd->output_queue_tailp = &sd->output_queue;
4534 local_irq_enable();
4535
4536 while (head) {
4537 struct Qdisc *q = head;
4538 spinlock_t *root_lock = NULL;
4539
4540 head = head->next_sched;
4541
4542 if (!(q->flags & TCQ_F_NOLOCK)) {
4543 root_lock = qdisc_lock(q);
4544 spin_lock(root_lock);
4545 }
4546 /* We need to make sure head->next_sched is read
4547 * before clearing __QDISC_STATE_SCHED
4548 */
4549 smp_mb__before_atomic();
4550 clear_bit(__QDISC_STATE_SCHED, &q->state);
4551 qdisc_run(q);
4552 if (root_lock)
4553 spin_unlock(root_lock);
4554 }
4555 }
4556
4557 xfrm_dev_backlog(sd);
4558 }
4559
4560 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4561 /* This hook is defined here for ATM LANE */
4562 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4563 unsigned char *addr) __read_mostly;
4564 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4565 #endif
4566
4567 static inline struct sk_buff *
4568 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4569 struct net_device *orig_dev)
4570 {
4571 #ifdef CONFIG_NET_CLS_ACT
4572 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4573 struct tcf_result cl_res;
4574
4575 /* If there's at least one ingress present somewhere (so
4576 * we get here via enabled static key), remaining devices
4577 * that are not configured with an ingress qdisc will bail
4578 * out here.
4579 */
4580 if (!miniq)
4581 return skb;
4582
4583 if (*pt_prev) {
4584 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4585 *pt_prev = NULL;
4586 }
4587
4588 qdisc_skb_cb(skb)->pkt_len = skb->len;
4589 skb->tc_at_ingress = 1;
4590 mini_qdisc_bstats_cpu_update(miniq, skb);
4591
4592 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4593 case TC_ACT_OK:
4594 case TC_ACT_RECLASSIFY:
4595 skb->tc_index = TC_H_MIN(cl_res.classid);
4596 break;
4597 case TC_ACT_SHOT:
4598 mini_qdisc_qstats_cpu_drop(miniq);
4599 kfree_skb(skb);
4600 return NULL;
4601 case TC_ACT_STOLEN:
4602 case TC_ACT_QUEUED:
4603 case TC_ACT_TRAP:
4604 consume_skb(skb);
4605 return NULL;
4606 case TC_ACT_REDIRECT:
4607 /* skb_mac_header check was done by cls/act_bpf, so
4608 * we can safely push the L2 header back before
4609 * redirecting to another netdev
4610 */
4611 __skb_push(skb, skb->mac_len);
4612 skb_do_redirect(skb);
4613 return NULL;
4614 case TC_ACT_CONSUMED:
4615 return NULL;
4616 default:
4617 break;
4618 }
4619 #endif /* CONFIG_NET_CLS_ACT */
4620 return skb;
4621 }
4622
4623 /**
4624 * netdev_is_rx_handler_busy - check if receive handler is registered
4625 * @dev: device to check
4626 *
4627 * Check if a receive handler is already registered for a given device.
4628 * Return true if there one.
4629 *
4630 * The caller must hold the rtnl_mutex.
4631 */
4632 bool netdev_is_rx_handler_busy(struct net_device *dev)
4633 {
4634 ASSERT_RTNL();
4635 return dev && rtnl_dereference(dev->rx_handler);
4636 }
4637 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4638
4639 /**
4640 * netdev_rx_handler_register - register receive handler
4641 * @dev: device to register a handler for
4642 * @rx_handler: receive handler to register
4643 * @rx_handler_data: data pointer that is used by rx handler
4644 *
4645 * Register a receive handler for a device. This handler will then be
4646 * called from __netif_receive_skb. A negative errno code is returned
4647 * on a failure.
4648 *
4649 * The caller must hold the rtnl_mutex.
4650 *
4651 * For a general description of rx_handler, see enum rx_handler_result.
4652 */
4653 int netdev_rx_handler_register(struct net_device *dev,
4654 rx_handler_func_t *rx_handler,
4655 void *rx_handler_data)
4656 {
4657 if (netdev_is_rx_handler_busy(dev))
4658 return -EBUSY;
4659
4660 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4661 return -EINVAL;
4662
4663 /* Note: rx_handler_data must be set before rx_handler */
4664 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4665 rcu_assign_pointer(dev->rx_handler, rx_handler);
4666
4667 return 0;
4668 }
4669 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4670
4671 /**
4672 * netdev_rx_handler_unregister - unregister receive handler
4673 * @dev: device to unregister a handler from
4674 *
4675 * Unregister a receive handler from a device.
4676 *
4677 * The caller must hold the rtnl_mutex.
4678 */
4679 void netdev_rx_handler_unregister(struct net_device *dev)
4680 {
4681
4682 ASSERT_RTNL();
4683 RCU_INIT_POINTER(dev->rx_handler, NULL);
4684 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4685 * section has a guarantee to see a non NULL rx_handler_data
4686 * as well.
4687 */
4688 synchronize_net();
4689 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4690 }
4691 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4692
4693 /*
4694 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4695 * the special handling of PFMEMALLOC skbs.
4696 */
4697 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4698 {
4699 switch (skb->protocol) {
4700 case htons(ETH_P_ARP):
4701 case htons(ETH_P_IP):
4702 case htons(ETH_P_IPV6):
4703 case htons(ETH_P_8021Q):
4704 case htons(ETH_P_8021AD):
4705 return true;
4706 default:
4707 return false;
4708 }
4709 }
4710
4711 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4712 int *ret, struct net_device *orig_dev)
4713 {
4714 #ifdef CONFIG_NETFILTER_INGRESS
4715 if (nf_hook_ingress_active(skb)) {
4716 int ingress_retval;
4717
4718 if (*pt_prev) {
4719 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4720 *pt_prev = NULL;
4721 }
4722
4723 rcu_read_lock();
4724 ingress_retval = nf_hook_ingress(skb);
4725 rcu_read_unlock();
4726 return ingress_retval;
4727 }
4728 #endif /* CONFIG_NETFILTER_INGRESS */
4729 return 0;
4730 }
4731
4732 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4733 struct packet_type **ppt_prev)
4734 {
4735 struct packet_type *ptype, *pt_prev;
4736 rx_handler_func_t *rx_handler;
4737 struct net_device *orig_dev;
4738 bool deliver_exact = false;
4739 int ret = NET_RX_DROP;
4740 __be16 type;
4741
4742 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4743
4744 trace_netif_receive_skb(skb);
4745
4746 orig_dev = skb->dev;
4747
4748 skb_reset_network_header(skb);
4749 if (!skb_transport_header_was_set(skb))
4750 skb_reset_transport_header(skb);
4751 skb_reset_mac_len(skb);
4752
4753 pt_prev = NULL;
4754
4755 another_round:
4756 skb->skb_iif = skb->dev->ifindex;
4757
4758 __this_cpu_inc(softnet_data.processed);
4759
4760 if (static_branch_unlikely(&generic_xdp_needed_key)) {
4761 int ret2;
4762
4763 preempt_disable();
4764 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4765 preempt_enable();
4766
4767 if (ret2 != XDP_PASS)
4768 return NET_RX_DROP;
4769 skb_reset_mac_len(skb);
4770 }
4771
4772 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4773 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4774 skb = skb_vlan_untag(skb);
4775 if (unlikely(!skb))
4776 goto out;
4777 }
4778
4779 if (skb_skip_tc_classify(skb))
4780 goto skip_classify;
4781
4782 if (pfmemalloc)
4783 goto skip_taps;
4784
4785 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4786 if (pt_prev)
4787 ret = deliver_skb(skb, pt_prev, orig_dev);
4788 pt_prev = ptype;
4789 }
4790
4791 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4792 if (pt_prev)
4793 ret = deliver_skb(skb, pt_prev, orig_dev);
4794 pt_prev = ptype;
4795 }
4796
4797 skip_taps:
4798 #ifdef CONFIG_NET_INGRESS
4799 if (static_branch_unlikely(&ingress_needed_key)) {
4800 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4801 if (!skb)
4802 goto out;
4803
4804 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4805 goto out;
4806 }
4807 #endif
4808 skb_reset_tc(skb);
4809 skip_classify:
4810 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4811 goto drop;
4812
4813 if (skb_vlan_tag_present(skb)) {
4814 if (pt_prev) {
4815 ret = deliver_skb(skb, pt_prev, orig_dev);
4816 pt_prev = NULL;
4817 }
4818 if (vlan_do_receive(&skb))
4819 goto another_round;
4820 else if (unlikely(!skb))
4821 goto out;
4822 }
4823
4824 rx_handler = rcu_dereference(skb->dev->rx_handler);
4825 if (rx_handler) {
4826 if (pt_prev) {
4827 ret = deliver_skb(skb, pt_prev, orig_dev);
4828 pt_prev = NULL;
4829 }
4830 switch (rx_handler(&skb)) {
4831 case RX_HANDLER_CONSUMED:
4832 ret = NET_RX_SUCCESS;
4833 goto out;
4834 case RX_HANDLER_ANOTHER:
4835 goto another_round;
4836 case RX_HANDLER_EXACT:
4837 deliver_exact = true;
4838 case RX_HANDLER_PASS:
4839 break;
4840 default:
4841 BUG();
4842 }
4843 }
4844
4845 if (unlikely(skb_vlan_tag_present(skb))) {
4846 check_vlan_id:
4847 if (skb_vlan_tag_get_id(skb)) {
4848 /* Vlan id is non 0 and vlan_do_receive() above couldn't
4849 * find vlan device.
4850 */
4851 skb->pkt_type = PACKET_OTHERHOST;
4852 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4853 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4854 /* Outer header is 802.1P with vlan 0, inner header is
4855 * 802.1Q or 802.1AD and vlan_do_receive() above could
4856 * not find vlan dev for vlan id 0.
4857 */
4858 __vlan_hwaccel_clear_tag(skb);
4859 skb = skb_vlan_untag(skb);
4860 if (unlikely(!skb))
4861 goto out;
4862 if (vlan_do_receive(&skb))
4863 /* After stripping off 802.1P header with vlan 0
4864 * vlan dev is found for inner header.
4865 */
4866 goto another_round;
4867 else if (unlikely(!skb))
4868 goto out;
4869 else
4870 /* We have stripped outer 802.1P vlan 0 header.
4871 * But could not find vlan dev.
4872 * check again for vlan id to set OTHERHOST.
4873 */
4874 goto check_vlan_id;
4875 }
4876 /* Note: we might in the future use prio bits
4877 * and set skb->priority like in vlan_do_receive()
4878 * For the time being, just ignore Priority Code Point
4879 */
4880 __vlan_hwaccel_clear_tag(skb);
4881 }
4882
4883 type = skb->protocol;
4884
4885 /* deliver only exact match when indicated */
4886 if (likely(!deliver_exact)) {
4887 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4888 &ptype_base[ntohs(type) &
4889 PTYPE_HASH_MASK]);
4890 }
4891
4892 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4893 &orig_dev->ptype_specific);
4894
4895 if (unlikely(skb->dev != orig_dev)) {
4896 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4897 &skb->dev->ptype_specific);
4898 }
4899
4900 if (pt_prev) {
4901 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4902 goto drop;
4903 *ppt_prev = pt_prev;
4904 } else {
4905 drop:
4906 if (!deliver_exact)
4907 atomic_long_inc(&skb->dev->rx_dropped);
4908 else
4909 atomic_long_inc(&skb->dev->rx_nohandler);
4910 kfree_skb(skb);
4911 /* Jamal, now you will not able to escape explaining
4912 * me how you were going to use this. :-)
4913 */
4914 ret = NET_RX_DROP;
4915 }
4916
4917 out:
4918 return ret;
4919 }
4920
4921 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4922 {
4923 struct net_device *orig_dev = skb->dev;
4924 struct packet_type *pt_prev = NULL;
4925 int ret;
4926
4927 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4928 if (pt_prev)
4929 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
4930 skb->dev, pt_prev, orig_dev);
4931 return ret;
4932 }
4933
4934 /**
4935 * netif_receive_skb_core - special purpose version of netif_receive_skb
4936 * @skb: buffer to process
4937 *
4938 * More direct receive version of netif_receive_skb(). It should
4939 * only be used by callers that have a need to skip RPS and Generic XDP.
4940 * Caller must also take care of handling if (page_is_)pfmemalloc.
4941 *
4942 * This function may only be called from softirq context and interrupts
4943 * should be enabled.
4944 *
4945 * Return values (usually ignored):
4946 * NET_RX_SUCCESS: no congestion
4947 * NET_RX_DROP: packet was dropped
4948 */
4949 int netif_receive_skb_core(struct sk_buff *skb)
4950 {
4951 int ret;
4952
4953 rcu_read_lock();
4954 ret = __netif_receive_skb_one_core(skb, false);
4955 rcu_read_unlock();
4956
4957 return ret;
4958 }
4959 EXPORT_SYMBOL(netif_receive_skb_core);
4960
4961 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4962 struct packet_type *pt_prev,
4963 struct net_device *orig_dev)
4964 {
4965 struct sk_buff *skb, *next;
4966
4967 if (!pt_prev)
4968 return;
4969 if (list_empty(head))
4970 return;
4971 if (pt_prev->list_func != NULL)
4972 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
4973 ip_list_rcv, head, pt_prev, orig_dev);
4974 else
4975 list_for_each_entry_safe(skb, next, head, list) {
4976 skb_list_del_init(skb);
4977 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4978 }
4979 }
4980
4981 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4982 {
4983 /* Fast-path assumptions:
4984 * - There is no RX handler.
4985 * - Only one packet_type matches.
4986 * If either of these fails, we will end up doing some per-packet
4987 * processing in-line, then handling the 'last ptype' for the whole
4988 * sublist. This can't cause out-of-order delivery to any single ptype,
4989 * because the 'last ptype' must be constant across the sublist, and all
4990 * other ptypes are handled per-packet.
4991 */
4992 /* Current (common) ptype of sublist */
4993 struct packet_type *pt_curr = NULL;
4994 /* Current (common) orig_dev of sublist */
4995 struct net_device *od_curr = NULL;
4996 struct list_head sublist;
4997 struct sk_buff *skb, *next;
4998
4999 INIT_LIST_HEAD(&sublist);
5000 list_for_each_entry_safe(skb, next, head, list) {
5001 struct net_device *orig_dev = skb->dev;
5002 struct packet_type *pt_prev = NULL;
5003
5004 skb_list_del_init(skb);
5005 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5006 if (!pt_prev)
5007 continue;
5008 if (pt_curr != pt_prev || od_curr != orig_dev) {
5009 /* dispatch old sublist */
5010 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5011 /* start new sublist */
5012 INIT_LIST_HEAD(&sublist);
5013 pt_curr = pt_prev;
5014 od_curr = orig_dev;
5015 }
5016 list_add_tail(&skb->list, &sublist);
5017 }
5018
5019 /* dispatch final sublist */
5020 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5021 }
5022
5023 static int __netif_receive_skb(struct sk_buff *skb)
5024 {
5025 int ret;
5026
5027 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5028 unsigned int noreclaim_flag;
5029
5030 /*
5031 * PFMEMALLOC skbs are special, they should
5032 * - be delivered to SOCK_MEMALLOC sockets only
5033 * - stay away from userspace
5034 * - have bounded memory usage
5035 *
5036 * Use PF_MEMALLOC as this saves us from propagating the allocation
5037 * context down to all allocation sites.
5038 */
5039 noreclaim_flag = memalloc_noreclaim_save();
5040 ret = __netif_receive_skb_one_core(skb, true);
5041 memalloc_noreclaim_restore(noreclaim_flag);
5042 } else
5043 ret = __netif_receive_skb_one_core(skb, false);
5044
5045 return ret;
5046 }
5047
5048 static void __netif_receive_skb_list(struct list_head *head)
5049 {
5050 unsigned long noreclaim_flag = 0;
5051 struct sk_buff *skb, *next;
5052 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5053
5054 list_for_each_entry_safe(skb, next, head, list) {
5055 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5056 struct list_head sublist;
5057
5058 /* Handle the previous sublist */
5059 list_cut_before(&sublist, head, &skb->list);
5060 if (!list_empty(&sublist))
5061 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5062 pfmemalloc = !pfmemalloc;
5063 /* See comments in __netif_receive_skb */
5064 if (pfmemalloc)
5065 noreclaim_flag = memalloc_noreclaim_save();
5066 else
5067 memalloc_noreclaim_restore(noreclaim_flag);
5068 }
5069 }
5070 /* Handle the remaining sublist */
5071 if (!list_empty(head))
5072 __netif_receive_skb_list_core(head, pfmemalloc);
5073 /* Restore pflags */
5074 if (pfmemalloc)
5075 memalloc_noreclaim_restore(noreclaim_flag);
5076 }
5077
5078 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5079 {
5080 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5081 struct bpf_prog *new = xdp->prog;
5082 int ret = 0;
5083
5084 switch (xdp->command) {
5085 case XDP_SETUP_PROG:
5086 rcu_assign_pointer(dev->xdp_prog, new);
5087 if (old)
5088 bpf_prog_put(old);
5089
5090 if (old && !new) {
5091 static_branch_dec(&generic_xdp_needed_key);
5092 } else if (new && !old) {
5093 static_branch_inc(&generic_xdp_needed_key);
5094 dev_disable_lro(dev);
5095 dev_disable_gro_hw(dev);
5096 }
5097 break;
5098
5099 case XDP_QUERY_PROG:
5100 xdp->prog_id = old ? old->aux->id : 0;
5101 break;
5102
5103 default:
5104 ret = -EINVAL;
5105 break;
5106 }
5107
5108 return ret;
5109 }
5110
5111 static int netif_receive_skb_internal(struct sk_buff *skb)
5112 {
5113 int ret;
5114
5115 net_timestamp_check(netdev_tstamp_prequeue, skb);
5116
5117 if (skb_defer_rx_timestamp(skb))
5118 return NET_RX_SUCCESS;
5119
5120 rcu_read_lock();
5121 #ifdef CONFIG_RPS
5122 if (static_branch_unlikely(&rps_needed)) {
5123 struct rps_dev_flow voidflow, *rflow = &voidflow;
5124 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5125
5126 if (cpu >= 0) {
5127 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5128 rcu_read_unlock();
5129 return ret;
5130 }
5131 }
5132 #endif
5133 ret = __netif_receive_skb(skb);
5134 rcu_read_unlock();
5135 return ret;
5136 }
5137
5138 static void netif_receive_skb_list_internal(struct list_head *head)
5139 {
5140 struct sk_buff *skb, *next;
5141 struct list_head sublist;
5142
5143 INIT_LIST_HEAD(&sublist);
5144 list_for_each_entry_safe(skb, next, head, list) {
5145 net_timestamp_check(netdev_tstamp_prequeue, skb);
5146 skb_list_del_init(skb);
5147 if (!skb_defer_rx_timestamp(skb))
5148 list_add_tail(&skb->list, &sublist);
5149 }
5150 list_splice_init(&sublist, head);
5151
5152 rcu_read_lock();
5153 #ifdef CONFIG_RPS
5154 if (static_branch_unlikely(&rps_needed)) {
5155 list_for_each_entry_safe(skb, next, head, list) {
5156 struct rps_dev_flow voidflow, *rflow = &voidflow;
5157 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5158
5159 if (cpu >= 0) {
5160 /* Will be handled, remove from list */
5161 skb_list_del_init(skb);
5162 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5163 }
5164 }
5165 }
5166 #endif
5167 __netif_receive_skb_list(head);
5168 rcu_read_unlock();
5169 }
5170
5171 /**
5172 * netif_receive_skb - process receive buffer from network
5173 * @skb: buffer to process
5174 *
5175 * netif_receive_skb() is the main receive data processing function.
5176 * It always succeeds. The buffer may be dropped during processing
5177 * for congestion control or by the protocol layers.
5178 *
5179 * This function may only be called from softirq context and interrupts
5180 * should be enabled.
5181 *
5182 * Return values (usually ignored):
5183 * NET_RX_SUCCESS: no congestion
5184 * NET_RX_DROP: packet was dropped
5185 */
5186 int netif_receive_skb(struct sk_buff *skb)
5187 {
5188 int ret;
5189
5190 trace_netif_receive_skb_entry(skb);
5191
5192 ret = netif_receive_skb_internal(skb);
5193 trace_netif_receive_skb_exit(ret);
5194
5195 return ret;
5196 }
5197 EXPORT_SYMBOL(netif_receive_skb);
5198
5199 /**
5200 * netif_receive_skb_list - process many receive buffers from network
5201 * @head: list of skbs to process.
5202 *
5203 * Since return value of netif_receive_skb() is normally ignored, and
5204 * wouldn't be meaningful for a list, this function returns void.
5205 *
5206 * This function may only be called from softirq context and interrupts
5207 * should be enabled.
5208 */
5209 void netif_receive_skb_list(struct list_head *head)
5210 {
5211 struct sk_buff *skb;
5212
5213 if (list_empty(head))
5214 return;
5215 if (trace_netif_receive_skb_list_entry_enabled()) {
5216 list_for_each_entry(skb, head, list)
5217 trace_netif_receive_skb_list_entry(skb);
5218 }
5219 netif_receive_skb_list_internal(head);
5220 trace_netif_receive_skb_list_exit(0);
5221 }
5222 EXPORT_SYMBOL(netif_receive_skb_list);
5223
5224 DEFINE_PER_CPU(struct work_struct, flush_works);
5225
5226 /* Network device is going away, flush any packets still pending */
5227 static void flush_backlog(struct work_struct *work)
5228 {
5229 struct sk_buff *skb, *tmp;
5230 struct softnet_data *sd;
5231
5232 local_bh_disable();
5233 sd = this_cpu_ptr(&softnet_data);
5234
5235 local_irq_disable();
5236 rps_lock(sd);
5237 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5238 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5239 __skb_unlink(skb, &sd->input_pkt_queue);
5240 kfree_skb(skb);
5241 input_queue_head_incr(sd);
5242 }
5243 }
5244 rps_unlock(sd);
5245 local_irq_enable();
5246
5247 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5248 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5249 __skb_unlink(skb, &sd->process_queue);
5250 kfree_skb(skb);
5251 input_queue_head_incr(sd);
5252 }
5253 }
5254 local_bh_enable();
5255 }
5256
5257 static void flush_all_backlogs(void)
5258 {
5259 unsigned int cpu;
5260
5261 get_online_cpus();
5262
5263 for_each_online_cpu(cpu)
5264 queue_work_on(cpu, system_highpri_wq,
5265 per_cpu_ptr(&flush_works, cpu));
5266
5267 for_each_online_cpu(cpu)
5268 flush_work(per_cpu_ptr(&flush_works, cpu));
5269
5270 put_online_cpus();
5271 }
5272
5273 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5274 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5275 static int napi_gro_complete(struct sk_buff *skb)
5276 {
5277 struct packet_offload *ptype;
5278 __be16 type = skb->protocol;
5279 struct list_head *head = &offload_base;
5280 int err = -ENOENT;
5281
5282 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5283
5284 if (NAPI_GRO_CB(skb)->count == 1) {
5285 skb_shinfo(skb)->gso_size = 0;
5286 goto out;
5287 }
5288
5289 rcu_read_lock();
5290 list_for_each_entry_rcu(ptype, head, list) {
5291 if (ptype->type != type || !ptype->callbacks.gro_complete)
5292 continue;
5293
5294 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5295 ipv6_gro_complete, inet_gro_complete,
5296 skb, 0);
5297 break;
5298 }
5299 rcu_read_unlock();
5300
5301 if (err) {
5302 WARN_ON(&ptype->list == head);
5303 kfree_skb(skb);
5304 return NET_RX_SUCCESS;
5305 }
5306
5307 out:
5308 return netif_receive_skb_internal(skb);
5309 }
5310
5311 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5312 bool flush_old)
5313 {
5314 struct list_head *head = &napi->gro_hash[index].list;
5315 struct sk_buff *skb, *p;
5316
5317 list_for_each_entry_safe_reverse(skb, p, head, list) {
5318 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5319 return;
5320 skb_list_del_init(skb);
5321 napi_gro_complete(skb);
5322 napi->gro_hash[index].count--;
5323 }
5324
5325 if (!napi->gro_hash[index].count)
5326 __clear_bit(index, &napi->gro_bitmask);
5327 }
5328
5329 /* napi->gro_hash[].list contains packets ordered by age.
5330 * youngest packets at the head of it.
5331 * Complete skbs in reverse order to reduce latencies.
5332 */
5333 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5334 {
5335 unsigned long bitmask = napi->gro_bitmask;
5336 unsigned int i, base = ~0U;
5337
5338 while ((i = ffs(bitmask)) != 0) {
5339 bitmask >>= i;
5340 base += i;
5341 __napi_gro_flush_chain(napi, base, flush_old);
5342 }
5343 }
5344 EXPORT_SYMBOL(napi_gro_flush);
5345
5346 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5347 struct sk_buff *skb)
5348 {
5349 unsigned int maclen = skb->dev->hard_header_len;
5350 u32 hash = skb_get_hash_raw(skb);
5351 struct list_head *head;
5352 struct sk_buff *p;
5353
5354 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5355 list_for_each_entry(p, head, list) {
5356 unsigned long diffs;
5357
5358 NAPI_GRO_CB(p)->flush = 0;
5359
5360 if (hash != skb_get_hash_raw(p)) {
5361 NAPI_GRO_CB(p)->same_flow = 0;
5362 continue;
5363 }
5364
5365 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5366 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5367 if (skb_vlan_tag_present(p))
5368 diffs |= p->vlan_tci ^ skb->vlan_tci;
5369 diffs |= skb_metadata_dst_cmp(p, skb);
5370 diffs |= skb_metadata_differs(p, skb);
5371 if (maclen == ETH_HLEN)
5372 diffs |= compare_ether_header(skb_mac_header(p),
5373 skb_mac_header(skb));
5374 else if (!diffs)
5375 diffs = memcmp(skb_mac_header(p),
5376 skb_mac_header(skb),
5377 maclen);
5378 NAPI_GRO_CB(p)->same_flow = !diffs;
5379 }
5380
5381 return head;
5382 }
5383
5384 static void skb_gro_reset_offset(struct sk_buff *skb)
5385 {
5386 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5387 const skb_frag_t *frag0 = &pinfo->frags[0];
5388
5389 NAPI_GRO_CB(skb)->data_offset = 0;
5390 NAPI_GRO_CB(skb)->frag0 = NULL;
5391 NAPI_GRO_CB(skb)->frag0_len = 0;
5392
5393 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5394 pinfo->nr_frags &&
5395 !PageHighMem(skb_frag_page(frag0))) {
5396 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5397 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5398 skb_frag_size(frag0),
5399 skb->end - skb->tail);
5400 }
5401 }
5402
5403 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5404 {
5405 struct skb_shared_info *pinfo = skb_shinfo(skb);
5406
5407 BUG_ON(skb->end - skb->tail < grow);
5408
5409 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5410
5411 skb->data_len -= grow;
5412 skb->tail += grow;
5413
5414 skb_frag_off_add(&pinfo->frags[0], grow);
5415 skb_frag_size_sub(&pinfo->frags[0], grow);
5416
5417 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5418 skb_frag_unref(skb, 0);
5419 memmove(pinfo->frags, pinfo->frags + 1,
5420 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5421 }
5422 }
5423
5424 static void gro_flush_oldest(struct list_head *head)
5425 {
5426 struct sk_buff *oldest;
5427
5428 oldest = list_last_entry(head, struct sk_buff, list);
5429
5430 /* We are called with head length >= MAX_GRO_SKBS, so this is
5431 * impossible.
5432 */
5433 if (WARN_ON_ONCE(!oldest))
5434 return;
5435
5436 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5437 * SKB to the chain.
5438 */
5439 skb_list_del_init(oldest);
5440 napi_gro_complete(oldest);
5441 }
5442
5443 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5444 struct sk_buff *));
5445 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5446 struct sk_buff *));
5447 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5448 {
5449 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5450 struct list_head *head = &offload_base;
5451 struct packet_offload *ptype;
5452 __be16 type = skb->protocol;
5453 struct list_head *gro_head;
5454 struct sk_buff *pp = NULL;
5455 enum gro_result ret;
5456 int same_flow;
5457 int grow;
5458
5459 if (netif_elide_gro(skb->dev))
5460 goto normal;
5461
5462 gro_head = gro_list_prepare(napi, skb);
5463
5464 rcu_read_lock();
5465 list_for_each_entry_rcu(ptype, head, list) {
5466 if (ptype->type != type || !ptype->callbacks.gro_receive)
5467 continue;
5468
5469 skb_set_network_header(skb, skb_gro_offset(skb));
5470 skb_reset_mac_len(skb);
5471 NAPI_GRO_CB(skb)->same_flow = 0;
5472 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5473 NAPI_GRO_CB(skb)->free = 0;
5474 NAPI_GRO_CB(skb)->encap_mark = 0;
5475 NAPI_GRO_CB(skb)->recursion_counter = 0;
5476 NAPI_GRO_CB(skb)->is_fou = 0;
5477 NAPI_GRO_CB(skb)->is_atomic = 1;
5478 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5479
5480 /* Setup for GRO checksum validation */
5481 switch (skb->ip_summed) {
5482 case CHECKSUM_COMPLETE:
5483 NAPI_GRO_CB(skb)->csum = skb->csum;
5484 NAPI_GRO_CB(skb)->csum_valid = 1;
5485 NAPI_GRO_CB(skb)->csum_cnt = 0;
5486 break;
5487 case CHECKSUM_UNNECESSARY:
5488 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5489 NAPI_GRO_CB(skb)->csum_valid = 0;
5490 break;
5491 default:
5492 NAPI_GRO_CB(skb)->csum_cnt = 0;
5493 NAPI_GRO_CB(skb)->csum_valid = 0;
5494 }
5495
5496 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5497 ipv6_gro_receive, inet_gro_receive,
5498 gro_head, skb);
5499 break;
5500 }
5501 rcu_read_unlock();
5502
5503 if (&ptype->list == head)
5504 goto normal;
5505
5506 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5507 ret = GRO_CONSUMED;
5508 goto ok;
5509 }
5510
5511 same_flow = NAPI_GRO_CB(skb)->same_flow;
5512 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5513
5514 if (pp) {
5515 skb_list_del_init(pp);
5516 napi_gro_complete(pp);
5517 napi->gro_hash[hash].count--;
5518 }
5519
5520 if (same_flow)
5521 goto ok;
5522
5523 if (NAPI_GRO_CB(skb)->flush)
5524 goto normal;
5525
5526 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5527 gro_flush_oldest(gro_head);
5528 } else {
5529 napi->gro_hash[hash].count++;
5530 }
5531 NAPI_GRO_CB(skb)->count = 1;
5532 NAPI_GRO_CB(skb)->age = jiffies;
5533 NAPI_GRO_CB(skb)->last = skb;
5534 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5535 list_add(&skb->list, gro_head);
5536 ret = GRO_HELD;
5537
5538 pull:
5539 grow = skb_gro_offset(skb) - skb_headlen(skb);
5540 if (grow > 0)
5541 gro_pull_from_frag0(skb, grow);
5542 ok:
5543 if (napi->gro_hash[hash].count) {
5544 if (!test_bit(hash, &napi->gro_bitmask))
5545 __set_bit(hash, &napi->gro_bitmask);
5546 } else if (test_bit(hash, &napi->gro_bitmask)) {
5547 __clear_bit(hash, &napi->gro_bitmask);
5548 }
5549
5550 return ret;
5551
5552 normal:
5553 ret = GRO_NORMAL;
5554 goto pull;
5555 }
5556
5557 struct packet_offload *gro_find_receive_by_type(__be16 type)
5558 {
5559 struct list_head *offload_head = &offload_base;
5560 struct packet_offload *ptype;
5561
5562 list_for_each_entry_rcu(ptype, offload_head, list) {
5563 if (ptype->type != type || !ptype->callbacks.gro_receive)
5564 continue;
5565 return ptype;
5566 }
5567 return NULL;
5568 }
5569 EXPORT_SYMBOL(gro_find_receive_by_type);
5570
5571 struct packet_offload *gro_find_complete_by_type(__be16 type)
5572 {
5573 struct list_head *offload_head = &offload_base;
5574 struct packet_offload *ptype;
5575
5576 list_for_each_entry_rcu(ptype, offload_head, list) {
5577 if (ptype->type != type || !ptype->callbacks.gro_complete)
5578 continue;
5579 return ptype;
5580 }
5581 return NULL;
5582 }
5583 EXPORT_SYMBOL(gro_find_complete_by_type);
5584
5585 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5586 {
5587 skb_dst_drop(skb);
5588 skb_ext_put(skb);
5589 kmem_cache_free(skbuff_head_cache, skb);
5590 }
5591
5592 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5593 {
5594 switch (ret) {
5595 case GRO_NORMAL:
5596 if (netif_receive_skb_internal(skb))
5597 ret = GRO_DROP;
5598 break;
5599
5600 case GRO_DROP:
5601 kfree_skb(skb);
5602 break;
5603
5604 case GRO_MERGED_FREE:
5605 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5606 napi_skb_free_stolen_head(skb);
5607 else
5608 __kfree_skb(skb);
5609 break;
5610
5611 case GRO_HELD:
5612 case GRO_MERGED:
5613 case GRO_CONSUMED:
5614 break;
5615 }
5616
5617 return ret;
5618 }
5619
5620 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5621 {
5622 gro_result_t ret;
5623
5624 skb_mark_napi_id(skb, napi);
5625 trace_napi_gro_receive_entry(skb);
5626
5627 skb_gro_reset_offset(skb);
5628
5629 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5630 trace_napi_gro_receive_exit(ret);
5631
5632 return ret;
5633 }
5634 EXPORT_SYMBOL(napi_gro_receive);
5635
5636 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5637 {
5638 if (unlikely(skb->pfmemalloc)) {
5639 consume_skb(skb);
5640 return;
5641 }
5642 __skb_pull(skb, skb_headlen(skb));
5643 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5644 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5645 __vlan_hwaccel_clear_tag(skb);
5646 skb->dev = napi->dev;
5647 skb->skb_iif = 0;
5648
5649 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5650 skb->pkt_type = PACKET_HOST;
5651
5652 skb->encapsulation = 0;
5653 skb_shinfo(skb)->gso_type = 0;
5654 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5655 skb_ext_reset(skb);
5656
5657 napi->skb = skb;
5658 }
5659
5660 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5661 {
5662 struct sk_buff *skb = napi->skb;
5663
5664 if (!skb) {
5665 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5666 if (skb) {
5667 napi->skb = skb;
5668 skb_mark_napi_id(skb, napi);
5669 }
5670 }
5671 return skb;
5672 }
5673 EXPORT_SYMBOL(napi_get_frags);
5674
5675 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5676 static void gro_normal_list(struct napi_struct *napi)
5677 {
5678 if (!napi->rx_count)
5679 return;
5680 netif_receive_skb_list_internal(&napi->rx_list);
5681 INIT_LIST_HEAD(&napi->rx_list);
5682 napi->rx_count = 0;
5683 }
5684
5685 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5686 * pass the whole batch up to the stack.
5687 */
5688 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5689 {
5690 list_add_tail(&skb->list, &napi->rx_list);
5691 if (++napi->rx_count >= gro_normal_batch)
5692 gro_normal_list(napi);
5693 }
5694
5695 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5696 struct sk_buff *skb,
5697 gro_result_t ret)
5698 {
5699 switch (ret) {
5700 case GRO_NORMAL:
5701 case GRO_HELD:
5702 __skb_push(skb, ETH_HLEN);
5703 skb->protocol = eth_type_trans(skb, skb->dev);
5704 if (ret == GRO_NORMAL)
5705 gro_normal_one(napi, skb);
5706 break;
5707
5708 case GRO_DROP:
5709 napi_reuse_skb(napi, skb);
5710 break;
5711
5712 case GRO_MERGED_FREE:
5713 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5714 napi_skb_free_stolen_head(skb);
5715 else
5716 napi_reuse_skb(napi, skb);
5717 break;
5718
5719 case GRO_MERGED:
5720 case GRO_CONSUMED:
5721 break;
5722 }
5723
5724 return ret;
5725 }
5726
5727 /* Upper GRO stack assumes network header starts at gro_offset=0
5728 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5729 * We copy ethernet header into skb->data to have a common layout.
5730 */
5731 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5732 {
5733 struct sk_buff *skb = napi->skb;
5734 const struct ethhdr *eth;
5735 unsigned int hlen = sizeof(*eth);
5736
5737 napi->skb = NULL;
5738
5739 skb_reset_mac_header(skb);
5740 skb_gro_reset_offset(skb);
5741
5742 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5743 eth = skb_gro_header_slow(skb, hlen, 0);
5744 if (unlikely(!eth)) {
5745 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5746 __func__, napi->dev->name);
5747 napi_reuse_skb(napi, skb);
5748 return NULL;
5749 }
5750 } else {
5751 eth = (const struct ethhdr *)skb->data;
5752 gro_pull_from_frag0(skb, hlen);
5753 NAPI_GRO_CB(skb)->frag0 += hlen;
5754 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5755 }
5756 __skb_pull(skb, hlen);
5757
5758 /*
5759 * This works because the only protocols we care about don't require
5760 * special handling.
5761 * We'll fix it up properly in napi_frags_finish()
5762 */
5763 skb->protocol = eth->h_proto;
5764
5765 return skb;
5766 }
5767
5768 gro_result_t napi_gro_frags(struct napi_struct *napi)
5769 {
5770 gro_result_t ret;
5771 struct sk_buff *skb = napi_frags_skb(napi);
5772
5773 if (!skb)
5774 return GRO_DROP;
5775
5776 trace_napi_gro_frags_entry(skb);
5777
5778 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5779 trace_napi_gro_frags_exit(ret);
5780
5781 return ret;
5782 }
5783 EXPORT_SYMBOL(napi_gro_frags);
5784
5785 /* Compute the checksum from gro_offset and return the folded value
5786 * after adding in any pseudo checksum.
5787 */
5788 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5789 {
5790 __wsum wsum;
5791 __sum16 sum;
5792
5793 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5794
5795 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5796 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5797 /* See comments in __skb_checksum_complete(). */
5798 if (likely(!sum)) {
5799 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5800 !skb->csum_complete_sw)
5801 netdev_rx_csum_fault(skb->dev, skb);
5802 }
5803
5804 NAPI_GRO_CB(skb)->csum = wsum;
5805 NAPI_GRO_CB(skb)->csum_valid = 1;
5806
5807 return sum;
5808 }
5809 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5810
5811 static void net_rps_send_ipi(struct softnet_data *remsd)
5812 {
5813 #ifdef CONFIG_RPS
5814 while (remsd) {
5815 struct softnet_data *next = remsd->rps_ipi_next;
5816
5817 if (cpu_online(remsd->cpu))
5818 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5819 remsd = next;
5820 }
5821 #endif
5822 }
5823
5824 /*
5825 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5826 * Note: called with local irq disabled, but exits with local irq enabled.
5827 */
5828 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5829 {
5830 #ifdef CONFIG_RPS
5831 struct softnet_data *remsd = sd->rps_ipi_list;
5832
5833 if (remsd) {
5834 sd->rps_ipi_list = NULL;
5835
5836 local_irq_enable();
5837
5838 /* Send pending IPI's to kick RPS processing on remote cpus. */
5839 net_rps_send_ipi(remsd);
5840 } else
5841 #endif
5842 local_irq_enable();
5843 }
5844
5845 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5846 {
5847 #ifdef CONFIG_RPS
5848 return sd->rps_ipi_list != NULL;
5849 #else
5850 return false;
5851 #endif
5852 }
5853
5854 static int process_backlog(struct napi_struct *napi, int quota)
5855 {
5856 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5857 bool again = true;
5858 int work = 0;
5859
5860 /* Check if we have pending ipi, its better to send them now,
5861 * not waiting net_rx_action() end.
5862 */
5863 if (sd_has_rps_ipi_waiting(sd)) {
5864 local_irq_disable();
5865 net_rps_action_and_irq_enable(sd);
5866 }
5867
5868 napi->weight = dev_rx_weight;
5869 while (again) {
5870 struct sk_buff *skb;
5871
5872 while ((skb = __skb_dequeue(&sd->process_queue))) {
5873 rcu_read_lock();
5874 __netif_receive_skb(skb);
5875 rcu_read_unlock();
5876 input_queue_head_incr(sd);
5877 if (++work >= quota)
5878 return work;
5879
5880 }
5881
5882 local_irq_disable();
5883 rps_lock(sd);
5884 if (skb_queue_empty(&sd->input_pkt_queue)) {
5885 /*
5886 * Inline a custom version of __napi_complete().
5887 * only current cpu owns and manipulates this napi,
5888 * and NAPI_STATE_SCHED is the only possible flag set
5889 * on backlog.
5890 * We can use a plain write instead of clear_bit(),
5891 * and we dont need an smp_mb() memory barrier.
5892 */
5893 napi->state = 0;
5894 again = false;
5895 } else {
5896 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5897 &sd->process_queue);
5898 }
5899 rps_unlock(sd);
5900 local_irq_enable();
5901 }
5902
5903 return work;
5904 }
5905
5906 /**
5907 * __napi_schedule - schedule for receive
5908 * @n: entry to schedule
5909 *
5910 * The entry's receive function will be scheduled to run.
5911 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5912 */
5913 void __napi_schedule(struct napi_struct *n)
5914 {
5915 unsigned long flags;
5916
5917 local_irq_save(flags);
5918 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5919 local_irq_restore(flags);
5920 }
5921 EXPORT_SYMBOL(__napi_schedule);
5922
5923 /**
5924 * napi_schedule_prep - check if napi can be scheduled
5925 * @n: napi context
5926 *
5927 * Test if NAPI routine is already running, and if not mark
5928 * it as running. This is used as a condition variable
5929 * insure only one NAPI poll instance runs. We also make
5930 * sure there is no pending NAPI disable.
5931 */
5932 bool napi_schedule_prep(struct napi_struct *n)
5933 {
5934 unsigned long val, new;
5935
5936 do {
5937 val = READ_ONCE(n->state);
5938 if (unlikely(val & NAPIF_STATE_DISABLE))
5939 return false;
5940 new = val | NAPIF_STATE_SCHED;
5941
5942 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5943 * This was suggested by Alexander Duyck, as compiler
5944 * emits better code than :
5945 * if (val & NAPIF_STATE_SCHED)
5946 * new |= NAPIF_STATE_MISSED;
5947 */
5948 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5949 NAPIF_STATE_MISSED;
5950 } while (cmpxchg(&n->state, val, new) != val);
5951
5952 return !(val & NAPIF_STATE_SCHED);
5953 }
5954 EXPORT_SYMBOL(napi_schedule_prep);
5955
5956 /**
5957 * __napi_schedule_irqoff - schedule for receive
5958 * @n: entry to schedule
5959 *
5960 * Variant of __napi_schedule() assuming hard irqs are masked
5961 */
5962 void __napi_schedule_irqoff(struct napi_struct *n)
5963 {
5964 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5965 }
5966 EXPORT_SYMBOL(__napi_schedule_irqoff);
5967
5968 bool napi_complete_done(struct napi_struct *n, int work_done)
5969 {
5970 unsigned long flags, val, new;
5971
5972 /*
5973 * 1) Don't let napi dequeue from the cpu poll list
5974 * just in case its running on a different cpu.
5975 * 2) If we are busy polling, do nothing here, we have
5976 * the guarantee we will be called later.
5977 */
5978 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5979 NAPIF_STATE_IN_BUSY_POLL)))
5980 return false;
5981
5982 gro_normal_list(n);
5983
5984 if (n->gro_bitmask) {
5985 unsigned long timeout = 0;
5986
5987 if (work_done)
5988 timeout = n->dev->gro_flush_timeout;
5989
5990 /* When the NAPI instance uses a timeout and keeps postponing
5991 * it, we need to bound somehow the time packets are kept in
5992 * the GRO layer
5993 */
5994 napi_gro_flush(n, !!timeout);
5995 if (timeout)
5996 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5997 HRTIMER_MODE_REL_PINNED);
5998 }
5999 if (unlikely(!list_empty(&n->poll_list))) {
6000 /* If n->poll_list is not empty, we need to mask irqs */
6001 local_irq_save(flags);
6002 list_del_init(&n->poll_list);
6003 local_irq_restore(flags);
6004 }
6005
6006 do {
6007 val = READ_ONCE(n->state);
6008
6009 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6010
6011 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6012
6013 /* If STATE_MISSED was set, leave STATE_SCHED set,
6014 * because we will call napi->poll() one more time.
6015 * This C code was suggested by Alexander Duyck to help gcc.
6016 */
6017 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6018 NAPIF_STATE_SCHED;
6019 } while (cmpxchg(&n->state, val, new) != val);
6020
6021 if (unlikely(val & NAPIF_STATE_MISSED)) {
6022 __napi_schedule(n);
6023 return false;
6024 }
6025
6026 return true;
6027 }
6028 EXPORT_SYMBOL(napi_complete_done);
6029
6030 /* must be called under rcu_read_lock(), as we dont take a reference */
6031 static struct napi_struct *napi_by_id(unsigned int napi_id)
6032 {
6033 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6034 struct napi_struct *napi;
6035
6036 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6037 if (napi->napi_id == napi_id)
6038 return napi;
6039
6040 return NULL;
6041 }
6042
6043 #if defined(CONFIG_NET_RX_BUSY_POLL)
6044
6045 #define BUSY_POLL_BUDGET 8
6046
6047 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6048 {
6049 int rc;
6050
6051 /* Busy polling means there is a high chance device driver hard irq
6052 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6053 * set in napi_schedule_prep().
6054 * Since we are about to call napi->poll() once more, we can safely
6055 * clear NAPI_STATE_MISSED.
6056 *
6057 * Note: x86 could use a single "lock and ..." instruction
6058 * to perform these two clear_bit()
6059 */
6060 clear_bit(NAPI_STATE_MISSED, &napi->state);
6061 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6062
6063 local_bh_disable();
6064
6065 /* All we really want here is to re-enable device interrupts.
6066 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6067 */
6068 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6069 /* We can't gro_normal_list() here, because napi->poll() might have
6070 * rearmed the napi (napi_complete_done()) in which case it could
6071 * already be running on another CPU.
6072 */
6073 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6074 netpoll_poll_unlock(have_poll_lock);
6075 if (rc == BUSY_POLL_BUDGET) {
6076 /* As the whole budget was spent, we still own the napi so can
6077 * safely handle the rx_list.
6078 */
6079 gro_normal_list(napi);
6080 __napi_schedule(napi);
6081 }
6082 local_bh_enable();
6083 }
6084
6085 void napi_busy_loop(unsigned int napi_id,
6086 bool (*loop_end)(void *, unsigned long),
6087 void *loop_end_arg)
6088 {
6089 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6090 int (*napi_poll)(struct napi_struct *napi, int budget);
6091 void *have_poll_lock = NULL;
6092 struct napi_struct *napi;
6093
6094 restart:
6095 napi_poll = NULL;
6096
6097 rcu_read_lock();
6098
6099 napi = napi_by_id(napi_id);
6100 if (!napi)
6101 goto out;
6102
6103 preempt_disable();
6104 for (;;) {
6105 int work = 0;
6106
6107 local_bh_disable();
6108 if (!napi_poll) {
6109 unsigned long val = READ_ONCE(napi->state);
6110
6111 /* If multiple threads are competing for this napi,
6112 * we avoid dirtying napi->state as much as we can.
6113 */
6114 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6115 NAPIF_STATE_IN_BUSY_POLL))
6116 goto count;
6117 if (cmpxchg(&napi->state, val,
6118 val | NAPIF_STATE_IN_BUSY_POLL |
6119 NAPIF_STATE_SCHED) != val)
6120 goto count;
6121 have_poll_lock = netpoll_poll_lock(napi);
6122 napi_poll = napi->poll;
6123 }
6124 work = napi_poll(napi, BUSY_POLL_BUDGET);
6125 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6126 gro_normal_list(napi);
6127 count:
6128 if (work > 0)
6129 __NET_ADD_STATS(dev_net(napi->dev),
6130 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6131 local_bh_enable();
6132
6133 if (!loop_end || loop_end(loop_end_arg, start_time))
6134 break;
6135
6136 if (unlikely(need_resched())) {
6137 if (napi_poll)
6138 busy_poll_stop(napi, have_poll_lock);
6139 preempt_enable();
6140 rcu_read_unlock();
6141 cond_resched();
6142 if (loop_end(loop_end_arg, start_time))
6143 return;
6144 goto restart;
6145 }
6146 cpu_relax();
6147 }
6148 if (napi_poll)
6149 busy_poll_stop(napi, have_poll_lock);
6150 preempt_enable();
6151 out:
6152 rcu_read_unlock();
6153 }
6154 EXPORT_SYMBOL(napi_busy_loop);
6155
6156 #endif /* CONFIG_NET_RX_BUSY_POLL */
6157
6158 static void napi_hash_add(struct napi_struct *napi)
6159 {
6160 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6161 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6162 return;
6163
6164 spin_lock(&napi_hash_lock);
6165
6166 /* 0..NR_CPUS range is reserved for sender_cpu use */
6167 do {
6168 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6169 napi_gen_id = MIN_NAPI_ID;
6170 } while (napi_by_id(napi_gen_id));
6171 napi->napi_id = napi_gen_id;
6172
6173 hlist_add_head_rcu(&napi->napi_hash_node,
6174 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6175
6176 spin_unlock(&napi_hash_lock);
6177 }
6178
6179 /* Warning : caller is responsible to make sure rcu grace period
6180 * is respected before freeing memory containing @napi
6181 */
6182 bool napi_hash_del(struct napi_struct *napi)
6183 {
6184 bool rcu_sync_needed = false;
6185
6186 spin_lock(&napi_hash_lock);
6187
6188 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6189 rcu_sync_needed = true;
6190 hlist_del_rcu(&napi->napi_hash_node);
6191 }
6192 spin_unlock(&napi_hash_lock);
6193 return rcu_sync_needed;
6194 }
6195 EXPORT_SYMBOL_GPL(napi_hash_del);
6196
6197 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6198 {
6199 struct napi_struct *napi;
6200
6201 napi = container_of(timer, struct napi_struct, timer);
6202
6203 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6204 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6205 */
6206 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6207 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6208 __napi_schedule_irqoff(napi);
6209
6210 return HRTIMER_NORESTART;
6211 }
6212
6213 static void init_gro_hash(struct napi_struct *napi)
6214 {
6215 int i;
6216
6217 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6218 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6219 napi->gro_hash[i].count = 0;
6220 }
6221 napi->gro_bitmask = 0;
6222 }
6223
6224 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6225 int (*poll)(struct napi_struct *, int), int weight)
6226 {
6227 INIT_LIST_HEAD(&napi->poll_list);
6228 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6229 napi->timer.function = napi_watchdog;
6230 init_gro_hash(napi);
6231 napi->skb = NULL;
6232 INIT_LIST_HEAD(&napi->rx_list);
6233 napi->rx_count = 0;
6234 napi->poll = poll;
6235 if (weight > NAPI_POLL_WEIGHT)
6236 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6237 weight);
6238 napi->weight = weight;
6239 list_add(&napi->dev_list, &dev->napi_list);
6240 napi->dev = dev;
6241 #ifdef CONFIG_NETPOLL
6242 napi->poll_owner = -1;
6243 #endif
6244 set_bit(NAPI_STATE_SCHED, &napi->state);
6245 napi_hash_add(napi);
6246 }
6247 EXPORT_SYMBOL(netif_napi_add);
6248
6249 void napi_disable(struct napi_struct *n)
6250 {
6251 might_sleep();
6252 set_bit(NAPI_STATE_DISABLE, &n->state);
6253
6254 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6255 msleep(1);
6256 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6257 msleep(1);
6258
6259 hrtimer_cancel(&n->timer);
6260
6261 clear_bit(NAPI_STATE_DISABLE, &n->state);
6262 }
6263 EXPORT_SYMBOL(napi_disable);
6264
6265 static void flush_gro_hash(struct napi_struct *napi)
6266 {
6267 int i;
6268
6269 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6270 struct sk_buff *skb, *n;
6271
6272 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6273 kfree_skb(skb);
6274 napi->gro_hash[i].count = 0;
6275 }
6276 }
6277
6278 /* Must be called in process context */
6279 void netif_napi_del(struct napi_struct *napi)
6280 {
6281 might_sleep();
6282 if (napi_hash_del(napi))
6283 synchronize_net();
6284 list_del_init(&napi->dev_list);
6285 napi_free_frags(napi);
6286
6287 flush_gro_hash(napi);
6288 napi->gro_bitmask = 0;
6289 }
6290 EXPORT_SYMBOL(netif_napi_del);
6291
6292 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6293 {
6294 void *have;
6295 int work, weight;
6296
6297 list_del_init(&n->poll_list);
6298
6299 have = netpoll_poll_lock(n);
6300
6301 weight = n->weight;
6302
6303 /* This NAPI_STATE_SCHED test is for avoiding a race
6304 * with netpoll's poll_napi(). Only the entity which
6305 * obtains the lock and sees NAPI_STATE_SCHED set will
6306 * actually make the ->poll() call. Therefore we avoid
6307 * accidentally calling ->poll() when NAPI is not scheduled.
6308 */
6309 work = 0;
6310 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6311 work = n->poll(n, weight);
6312 trace_napi_poll(n, work, weight);
6313 }
6314
6315 WARN_ON_ONCE(work > weight);
6316
6317 if (likely(work < weight))
6318 goto out_unlock;
6319
6320 /* Drivers must not modify the NAPI state if they
6321 * consume the entire weight. In such cases this code
6322 * still "owns" the NAPI instance and therefore can
6323 * move the instance around on the list at-will.
6324 */
6325 if (unlikely(napi_disable_pending(n))) {
6326 napi_complete(n);
6327 goto out_unlock;
6328 }
6329
6330 gro_normal_list(n);
6331
6332 if (n->gro_bitmask) {
6333 /* flush too old packets
6334 * If HZ < 1000, flush all packets.
6335 */
6336 napi_gro_flush(n, HZ >= 1000);
6337 }
6338
6339 /* Some drivers may have called napi_schedule
6340 * prior to exhausting their budget.
6341 */
6342 if (unlikely(!list_empty(&n->poll_list))) {
6343 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6344 n->dev ? n->dev->name : "backlog");
6345 goto out_unlock;
6346 }
6347
6348 list_add_tail(&n->poll_list, repoll);
6349
6350 out_unlock:
6351 netpoll_poll_unlock(have);
6352
6353 return work;
6354 }
6355
6356 static __latent_entropy void net_rx_action(struct softirq_action *h)
6357 {
6358 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6359 unsigned long time_limit = jiffies +
6360 usecs_to_jiffies(netdev_budget_usecs);
6361 int budget = netdev_budget;
6362 LIST_HEAD(list);
6363 LIST_HEAD(repoll);
6364
6365 local_irq_disable();
6366 list_splice_init(&sd->poll_list, &list);
6367 local_irq_enable();
6368
6369 for (;;) {
6370 struct napi_struct *n;
6371
6372 if (list_empty(&list)) {
6373 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6374 goto out;
6375 break;
6376 }
6377
6378 n = list_first_entry(&list, struct napi_struct, poll_list);
6379 budget -= napi_poll(n, &repoll);
6380
6381 /* If softirq window is exhausted then punt.
6382 * Allow this to run for 2 jiffies since which will allow
6383 * an average latency of 1.5/HZ.
6384 */
6385 if (unlikely(budget <= 0 ||
6386 time_after_eq(jiffies, time_limit))) {
6387 sd->time_squeeze++;
6388 break;
6389 }
6390 }
6391
6392 local_irq_disable();
6393
6394 list_splice_tail_init(&sd->poll_list, &list);
6395 list_splice_tail(&repoll, &list);
6396 list_splice(&list, &sd->poll_list);
6397 if (!list_empty(&sd->poll_list))
6398 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6399
6400 net_rps_action_and_irq_enable(sd);
6401 out:
6402 __kfree_skb_flush();
6403 }
6404
6405 struct netdev_adjacent {
6406 struct net_device *dev;
6407
6408 /* upper master flag, there can only be one master device per list */
6409 bool master;
6410
6411 /* lookup ignore flag */
6412 bool ignore;
6413
6414 /* counter for the number of times this device was added to us */
6415 u16 ref_nr;
6416
6417 /* private field for the users */
6418 void *private;
6419
6420 struct list_head list;
6421 struct rcu_head rcu;
6422 };
6423
6424 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6425 struct list_head *adj_list)
6426 {
6427 struct netdev_adjacent *adj;
6428
6429 list_for_each_entry(adj, adj_list, list) {
6430 if (adj->dev == adj_dev)
6431 return adj;
6432 }
6433 return NULL;
6434 }
6435
6436 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6437 {
6438 struct net_device *dev = data;
6439
6440 return upper_dev == dev;
6441 }
6442
6443 /**
6444 * netdev_has_upper_dev - Check if device is linked to an upper device
6445 * @dev: device
6446 * @upper_dev: upper device to check
6447 *
6448 * Find out if a device is linked to specified upper device and return true
6449 * in case it is. Note that this checks only immediate upper device,
6450 * not through a complete stack of devices. The caller must hold the RTNL lock.
6451 */
6452 bool netdev_has_upper_dev(struct net_device *dev,
6453 struct net_device *upper_dev)
6454 {
6455 ASSERT_RTNL();
6456
6457 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6458 upper_dev);
6459 }
6460 EXPORT_SYMBOL(netdev_has_upper_dev);
6461
6462 /**
6463 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6464 * @dev: device
6465 * @upper_dev: upper device to check
6466 *
6467 * Find out if a device is linked to specified upper device and return true
6468 * in case it is. Note that this checks the entire upper device chain.
6469 * The caller must hold rcu lock.
6470 */
6471
6472 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6473 struct net_device *upper_dev)
6474 {
6475 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6476 upper_dev);
6477 }
6478 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6479
6480 /**
6481 * netdev_has_any_upper_dev - Check if device is linked to some device
6482 * @dev: device
6483 *
6484 * Find out if a device is linked to an upper device and return true in case
6485 * it is. The caller must hold the RTNL lock.
6486 */
6487 bool netdev_has_any_upper_dev(struct net_device *dev)
6488 {
6489 ASSERT_RTNL();
6490
6491 return !list_empty(&dev->adj_list.upper);
6492 }
6493 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6494
6495 /**
6496 * netdev_master_upper_dev_get - Get master upper device
6497 * @dev: device
6498 *
6499 * Find a master upper device and return pointer to it or NULL in case
6500 * it's not there. The caller must hold the RTNL lock.
6501 */
6502 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6503 {
6504 struct netdev_adjacent *upper;
6505
6506 ASSERT_RTNL();
6507
6508 if (list_empty(&dev->adj_list.upper))
6509 return NULL;
6510
6511 upper = list_first_entry(&dev->adj_list.upper,
6512 struct netdev_adjacent, list);
6513 if (likely(upper->master))
6514 return upper->dev;
6515 return NULL;
6516 }
6517 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6518
6519 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6520 {
6521 struct netdev_adjacent *upper;
6522
6523 ASSERT_RTNL();
6524
6525 if (list_empty(&dev->adj_list.upper))
6526 return NULL;
6527
6528 upper = list_first_entry(&dev->adj_list.upper,
6529 struct netdev_adjacent, list);
6530 if (likely(upper->master) && !upper->ignore)
6531 return upper->dev;
6532 return NULL;
6533 }
6534
6535 /**
6536 * netdev_has_any_lower_dev - Check if device is linked to some device
6537 * @dev: device
6538 *
6539 * Find out if a device is linked to a lower device and return true in case
6540 * it is. The caller must hold the RTNL lock.
6541 */
6542 static bool netdev_has_any_lower_dev(struct net_device *dev)
6543 {
6544 ASSERT_RTNL();
6545
6546 return !list_empty(&dev->adj_list.lower);
6547 }
6548
6549 void *netdev_adjacent_get_private(struct list_head *adj_list)
6550 {
6551 struct netdev_adjacent *adj;
6552
6553 adj = list_entry(adj_list, struct netdev_adjacent, list);
6554
6555 return adj->private;
6556 }
6557 EXPORT_SYMBOL(netdev_adjacent_get_private);
6558
6559 /**
6560 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6561 * @dev: device
6562 * @iter: list_head ** of the current position
6563 *
6564 * Gets the next device from the dev's upper list, starting from iter
6565 * position. The caller must hold RCU read lock.
6566 */
6567 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6568 struct list_head **iter)
6569 {
6570 struct netdev_adjacent *upper;
6571
6572 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6573
6574 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6575
6576 if (&upper->list == &dev->adj_list.upper)
6577 return NULL;
6578
6579 *iter = &upper->list;
6580
6581 return upper->dev;
6582 }
6583 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6584
6585 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6586 struct list_head **iter,
6587 bool *ignore)
6588 {
6589 struct netdev_adjacent *upper;
6590
6591 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6592
6593 if (&upper->list == &dev->adj_list.upper)
6594 return NULL;
6595
6596 *iter = &upper->list;
6597 *ignore = upper->ignore;
6598
6599 return upper->dev;
6600 }
6601
6602 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6603 struct list_head **iter)
6604 {
6605 struct netdev_adjacent *upper;
6606
6607 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6608
6609 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6610
6611 if (&upper->list == &dev->adj_list.upper)
6612 return NULL;
6613
6614 *iter = &upper->list;
6615
6616 return upper->dev;
6617 }
6618
6619 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6620 int (*fn)(struct net_device *dev,
6621 void *data),
6622 void *data)
6623 {
6624 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6625 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6626 int ret, cur = 0;
6627 bool ignore;
6628
6629 now = dev;
6630 iter = &dev->adj_list.upper;
6631
6632 while (1) {
6633 if (now != dev) {
6634 ret = fn(now, data);
6635 if (ret)
6636 return ret;
6637 }
6638
6639 next = NULL;
6640 while (1) {
6641 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6642 if (!udev)
6643 break;
6644 if (ignore)
6645 continue;
6646
6647 next = udev;
6648 niter = &udev->adj_list.upper;
6649 dev_stack[cur] = now;
6650 iter_stack[cur++] = iter;
6651 break;
6652 }
6653
6654 if (!next) {
6655 if (!cur)
6656 return 0;
6657 next = dev_stack[--cur];
6658 niter = iter_stack[cur];
6659 }
6660
6661 now = next;
6662 iter = niter;
6663 }
6664
6665 return 0;
6666 }
6667
6668 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6669 int (*fn)(struct net_device *dev,
6670 void *data),
6671 void *data)
6672 {
6673 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6674 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6675 int ret, cur = 0;
6676
6677 now = dev;
6678 iter = &dev->adj_list.upper;
6679
6680 while (1) {
6681 if (now != dev) {
6682 ret = fn(now, data);
6683 if (ret)
6684 return ret;
6685 }
6686
6687 next = NULL;
6688 while (1) {
6689 udev = netdev_next_upper_dev_rcu(now, &iter);
6690 if (!udev)
6691 break;
6692
6693 next = udev;
6694 niter = &udev->adj_list.upper;
6695 dev_stack[cur] = now;
6696 iter_stack[cur++] = iter;
6697 break;
6698 }
6699
6700 if (!next) {
6701 if (!cur)
6702 return 0;
6703 next = dev_stack[--cur];
6704 niter = iter_stack[cur];
6705 }
6706
6707 now = next;
6708 iter = niter;
6709 }
6710
6711 return 0;
6712 }
6713 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6714
6715 static bool __netdev_has_upper_dev(struct net_device *dev,
6716 struct net_device *upper_dev)
6717 {
6718 ASSERT_RTNL();
6719
6720 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6721 upper_dev);
6722 }
6723
6724 /**
6725 * netdev_lower_get_next_private - Get the next ->private from the
6726 * lower neighbour list
6727 * @dev: device
6728 * @iter: list_head ** of the current position
6729 *
6730 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6731 * list, starting from iter position. The caller must hold either hold the
6732 * RTNL lock or its own locking that guarantees that the neighbour lower
6733 * list will remain unchanged.
6734 */
6735 void *netdev_lower_get_next_private(struct net_device *dev,
6736 struct list_head **iter)
6737 {
6738 struct netdev_adjacent *lower;
6739
6740 lower = list_entry(*iter, struct netdev_adjacent, list);
6741
6742 if (&lower->list == &dev->adj_list.lower)
6743 return NULL;
6744
6745 *iter = lower->list.next;
6746
6747 return lower->private;
6748 }
6749 EXPORT_SYMBOL(netdev_lower_get_next_private);
6750
6751 /**
6752 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6753 * lower neighbour list, RCU
6754 * variant
6755 * @dev: device
6756 * @iter: list_head ** of the current position
6757 *
6758 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6759 * list, starting from iter position. The caller must hold RCU read lock.
6760 */
6761 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6762 struct list_head **iter)
6763 {
6764 struct netdev_adjacent *lower;
6765
6766 WARN_ON_ONCE(!rcu_read_lock_held());
6767
6768 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6769
6770 if (&lower->list == &dev->adj_list.lower)
6771 return NULL;
6772
6773 *iter = &lower->list;
6774
6775 return lower->private;
6776 }
6777 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6778
6779 /**
6780 * netdev_lower_get_next - Get the next device from the lower neighbour
6781 * list
6782 * @dev: device
6783 * @iter: list_head ** of the current position
6784 *
6785 * Gets the next netdev_adjacent from the dev's lower neighbour
6786 * list, starting from iter position. The caller must hold RTNL lock or
6787 * its own locking that guarantees that the neighbour lower
6788 * list will remain unchanged.
6789 */
6790 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6791 {
6792 struct netdev_adjacent *lower;
6793
6794 lower = list_entry(*iter, struct netdev_adjacent, list);
6795
6796 if (&lower->list == &dev->adj_list.lower)
6797 return NULL;
6798
6799 *iter = lower->list.next;
6800
6801 return lower->dev;
6802 }
6803 EXPORT_SYMBOL(netdev_lower_get_next);
6804
6805 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6806 struct list_head **iter)
6807 {
6808 struct netdev_adjacent *lower;
6809
6810 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6811
6812 if (&lower->list == &dev->adj_list.lower)
6813 return NULL;
6814
6815 *iter = &lower->list;
6816
6817 return lower->dev;
6818 }
6819
6820 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
6821 struct list_head **iter,
6822 bool *ignore)
6823 {
6824 struct netdev_adjacent *lower;
6825
6826 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6827
6828 if (&lower->list == &dev->adj_list.lower)
6829 return NULL;
6830
6831 *iter = &lower->list;
6832 *ignore = lower->ignore;
6833
6834 return lower->dev;
6835 }
6836
6837 int netdev_walk_all_lower_dev(struct net_device *dev,
6838 int (*fn)(struct net_device *dev,
6839 void *data),
6840 void *data)
6841 {
6842 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6843 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6844 int ret, cur = 0;
6845
6846 now = dev;
6847 iter = &dev->adj_list.lower;
6848
6849 while (1) {
6850 if (now != dev) {
6851 ret = fn(now, data);
6852 if (ret)
6853 return ret;
6854 }
6855
6856 next = NULL;
6857 while (1) {
6858 ldev = netdev_next_lower_dev(now, &iter);
6859 if (!ldev)
6860 break;
6861
6862 next = ldev;
6863 niter = &ldev->adj_list.lower;
6864 dev_stack[cur] = now;
6865 iter_stack[cur++] = iter;
6866 break;
6867 }
6868
6869 if (!next) {
6870 if (!cur)
6871 return 0;
6872 next = dev_stack[--cur];
6873 niter = iter_stack[cur];
6874 }
6875
6876 now = next;
6877 iter = niter;
6878 }
6879
6880 return 0;
6881 }
6882 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6883
6884 static int __netdev_walk_all_lower_dev(struct net_device *dev,
6885 int (*fn)(struct net_device *dev,
6886 void *data),
6887 void *data)
6888 {
6889 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6890 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6891 int ret, cur = 0;
6892 bool ignore;
6893
6894 now = dev;
6895 iter = &dev->adj_list.lower;
6896
6897 while (1) {
6898 if (now != dev) {
6899 ret = fn(now, data);
6900 if (ret)
6901 return ret;
6902 }
6903
6904 next = NULL;
6905 while (1) {
6906 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
6907 if (!ldev)
6908 break;
6909 if (ignore)
6910 continue;
6911
6912 next = ldev;
6913 niter = &ldev->adj_list.lower;
6914 dev_stack[cur] = now;
6915 iter_stack[cur++] = iter;
6916 break;
6917 }
6918
6919 if (!next) {
6920 if (!cur)
6921 return 0;
6922 next = dev_stack[--cur];
6923 niter = iter_stack[cur];
6924 }
6925
6926 now = next;
6927 iter = niter;
6928 }
6929
6930 return 0;
6931 }
6932
6933 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6934 struct list_head **iter)
6935 {
6936 struct netdev_adjacent *lower;
6937
6938 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6939 if (&lower->list == &dev->adj_list.lower)
6940 return NULL;
6941
6942 *iter = &lower->list;
6943
6944 return lower->dev;
6945 }
6946
6947 static u8 __netdev_upper_depth(struct net_device *dev)
6948 {
6949 struct net_device *udev;
6950 struct list_head *iter;
6951 u8 max_depth = 0;
6952 bool ignore;
6953
6954 for (iter = &dev->adj_list.upper,
6955 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
6956 udev;
6957 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
6958 if (ignore)
6959 continue;
6960 if (max_depth < udev->upper_level)
6961 max_depth = udev->upper_level;
6962 }
6963
6964 return max_depth;
6965 }
6966
6967 static u8 __netdev_lower_depth(struct net_device *dev)
6968 {
6969 struct net_device *ldev;
6970 struct list_head *iter;
6971 u8 max_depth = 0;
6972 bool ignore;
6973
6974 for (iter = &dev->adj_list.lower,
6975 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
6976 ldev;
6977 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
6978 if (ignore)
6979 continue;
6980 if (max_depth < ldev->lower_level)
6981 max_depth = ldev->lower_level;
6982 }
6983
6984 return max_depth;
6985 }
6986
6987 static int __netdev_update_upper_level(struct net_device *dev, void *data)
6988 {
6989 dev->upper_level = __netdev_upper_depth(dev) + 1;
6990 return 0;
6991 }
6992
6993 static int __netdev_update_lower_level(struct net_device *dev, void *data)
6994 {
6995 dev->lower_level = __netdev_lower_depth(dev) + 1;
6996 return 0;
6997 }
6998
6999 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7000 int (*fn)(struct net_device *dev,
7001 void *data),
7002 void *data)
7003 {
7004 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7005 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7006 int ret, cur = 0;
7007
7008 now = dev;
7009 iter = &dev->adj_list.lower;
7010
7011 while (1) {
7012 if (now != dev) {
7013 ret = fn(now, data);
7014 if (ret)
7015 return ret;
7016 }
7017
7018 next = NULL;
7019 while (1) {
7020 ldev = netdev_next_lower_dev_rcu(now, &iter);
7021 if (!ldev)
7022 break;
7023
7024 next = ldev;
7025 niter = &ldev->adj_list.lower;
7026 dev_stack[cur] = now;
7027 iter_stack[cur++] = iter;
7028 break;
7029 }
7030
7031 if (!next) {
7032 if (!cur)
7033 return 0;
7034 next = dev_stack[--cur];
7035 niter = iter_stack[cur];
7036 }
7037
7038 now = next;
7039 iter = niter;
7040 }
7041
7042 return 0;
7043 }
7044 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7045
7046 /**
7047 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7048 * lower neighbour list, RCU
7049 * variant
7050 * @dev: device
7051 *
7052 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7053 * list. The caller must hold RCU read lock.
7054 */
7055 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7056 {
7057 struct netdev_adjacent *lower;
7058
7059 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7060 struct netdev_adjacent, list);
7061 if (lower)
7062 return lower->private;
7063 return NULL;
7064 }
7065 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7066
7067 /**
7068 * netdev_master_upper_dev_get_rcu - Get master upper device
7069 * @dev: device
7070 *
7071 * Find a master upper device and return pointer to it or NULL in case
7072 * it's not there. The caller must hold the RCU read lock.
7073 */
7074 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7075 {
7076 struct netdev_adjacent *upper;
7077
7078 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7079 struct netdev_adjacent, list);
7080 if (upper && likely(upper->master))
7081 return upper->dev;
7082 return NULL;
7083 }
7084 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7085
7086 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7087 struct net_device *adj_dev,
7088 struct list_head *dev_list)
7089 {
7090 char linkname[IFNAMSIZ+7];
7091
7092 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7093 "upper_%s" : "lower_%s", adj_dev->name);
7094 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7095 linkname);
7096 }
7097 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7098 char *name,
7099 struct list_head *dev_list)
7100 {
7101 char linkname[IFNAMSIZ+7];
7102
7103 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7104 "upper_%s" : "lower_%s", name);
7105 sysfs_remove_link(&(dev->dev.kobj), linkname);
7106 }
7107
7108 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7109 struct net_device *adj_dev,
7110 struct list_head *dev_list)
7111 {
7112 return (dev_list == &dev->adj_list.upper ||
7113 dev_list == &dev->adj_list.lower) &&
7114 net_eq(dev_net(dev), dev_net(adj_dev));
7115 }
7116
7117 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7118 struct net_device *adj_dev,
7119 struct list_head *dev_list,
7120 void *private, bool master)
7121 {
7122 struct netdev_adjacent *adj;
7123 int ret;
7124
7125 adj = __netdev_find_adj(adj_dev, dev_list);
7126
7127 if (adj) {
7128 adj->ref_nr += 1;
7129 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7130 dev->name, adj_dev->name, adj->ref_nr);
7131
7132 return 0;
7133 }
7134
7135 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7136 if (!adj)
7137 return -ENOMEM;
7138
7139 adj->dev = adj_dev;
7140 adj->master = master;
7141 adj->ref_nr = 1;
7142 adj->private = private;
7143 adj->ignore = false;
7144 dev_hold(adj_dev);
7145
7146 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7147 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7148
7149 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7150 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7151 if (ret)
7152 goto free_adj;
7153 }
7154
7155 /* Ensure that master link is always the first item in list. */
7156 if (master) {
7157 ret = sysfs_create_link(&(dev->dev.kobj),
7158 &(adj_dev->dev.kobj), "master");
7159 if (ret)
7160 goto remove_symlinks;
7161
7162 list_add_rcu(&adj->list, dev_list);
7163 } else {
7164 list_add_tail_rcu(&adj->list, dev_list);
7165 }
7166
7167 return 0;
7168
7169 remove_symlinks:
7170 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7171 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7172 free_adj:
7173 kfree(adj);
7174 dev_put(adj_dev);
7175
7176 return ret;
7177 }
7178
7179 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7180 struct net_device *adj_dev,
7181 u16 ref_nr,
7182 struct list_head *dev_list)
7183 {
7184 struct netdev_adjacent *adj;
7185
7186 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7187 dev->name, adj_dev->name, ref_nr);
7188
7189 adj = __netdev_find_adj(adj_dev, dev_list);
7190
7191 if (!adj) {
7192 pr_err("Adjacency does not exist for device %s from %s\n",
7193 dev->name, adj_dev->name);
7194 WARN_ON(1);
7195 return;
7196 }
7197
7198 if (adj->ref_nr > ref_nr) {
7199 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7200 dev->name, adj_dev->name, ref_nr,
7201 adj->ref_nr - ref_nr);
7202 adj->ref_nr -= ref_nr;
7203 return;
7204 }
7205
7206 if (adj->master)
7207 sysfs_remove_link(&(dev->dev.kobj), "master");
7208
7209 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7210 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7211
7212 list_del_rcu(&adj->list);
7213 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7214 adj_dev->name, dev->name, adj_dev->name);
7215 dev_put(adj_dev);
7216 kfree_rcu(adj, rcu);
7217 }
7218
7219 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7220 struct net_device *upper_dev,
7221 struct list_head *up_list,
7222 struct list_head *down_list,
7223 void *private, bool master)
7224 {
7225 int ret;
7226
7227 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7228 private, master);
7229 if (ret)
7230 return ret;
7231
7232 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7233 private, false);
7234 if (ret) {
7235 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7236 return ret;
7237 }
7238
7239 return 0;
7240 }
7241
7242 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7243 struct net_device *upper_dev,
7244 u16 ref_nr,
7245 struct list_head *up_list,
7246 struct list_head *down_list)
7247 {
7248 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7249 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7250 }
7251
7252 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7253 struct net_device *upper_dev,
7254 void *private, bool master)
7255 {
7256 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7257 &dev->adj_list.upper,
7258 &upper_dev->adj_list.lower,
7259 private, master);
7260 }
7261
7262 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7263 struct net_device *upper_dev)
7264 {
7265 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7266 &dev->adj_list.upper,
7267 &upper_dev->adj_list.lower);
7268 }
7269
7270 static int __netdev_upper_dev_link(struct net_device *dev,
7271 struct net_device *upper_dev, bool master,
7272 void *upper_priv, void *upper_info,
7273 struct netlink_ext_ack *extack)
7274 {
7275 struct netdev_notifier_changeupper_info changeupper_info = {
7276 .info = {
7277 .dev = dev,
7278 .extack = extack,
7279 },
7280 .upper_dev = upper_dev,
7281 .master = master,
7282 .linking = true,
7283 .upper_info = upper_info,
7284 };
7285 struct net_device *master_dev;
7286 int ret = 0;
7287
7288 ASSERT_RTNL();
7289
7290 if (dev == upper_dev)
7291 return -EBUSY;
7292
7293 /* To prevent loops, check if dev is not upper device to upper_dev. */
7294 if (__netdev_has_upper_dev(upper_dev, dev))
7295 return -EBUSY;
7296
7297 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7298 return -EMLINK;
7299
7300 if (!master) {
7301 if (__netdev_has_upper_dev(dev, upper_dev))
7302 return -EEXIST;
7303 } else {
7304 master_dev = __netdev_master_upper_dev_get(dev);
7305 if (master_dev)
7306 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7307 }
7308
7309 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7310 &changeupper_info.info);
7311 ret = notifier_to_errno(ret);
7312 if (ret)
7313 return ret;
7314
7315 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7316 master);
7317 if (ret)
7318 return ret;
7319
7320 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7321 &changeupper_info.info);
7322 ret = notifier_to_errno(ret);
7323 if (ret)
7324 goto rollback;
7325
7326 __netdev_update_upper_level(dev, NULL);
7327 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7328
7329 __netdev_update_lower_level(upper_dev, NULL);
7330 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7331 NULL);
7332
7333 return 0;
7334
7335 rollback:
7336 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7337
7338 return ret;
7339 }
7340
7341 /**
7342 * netdev_upper_dev_link - Add a link to the upper device
7343 * @dev: device
7344 * @upper_dev: new upper device
7345 * @extack: netlink extended ack
7346 *
7347 * Adds a link to device which is upper to this one. The caller must hold
7348 * the RTNL lock. On a failure a negative errno code is returned.
7349 * On success the reference counts are adjusted and the function
7350 * returns zero.
7351 */
7352 int netdev_upper_dev_link(struct net_device *dev,
7353 struct net_device *upper_dev,
7354 struct netlink_ext_ack *extack)
7355 {
7356 return __netdev_upper_dev_link(dev, upper_dev, false,
7357 NULL, NULL, extack);
7358 }
7359 EXPORT_SYMBOL(netdev_upper_dev_link);
7360
7361 /**
7362 * netdev_master_upper_dev_link - Add a master link to the upper device
7363 * @dev: device
7364 * @upper_dev: new upper device
7365 * @upper_priv: upper device private
7366 * @upper_info: upper info to be passed down via notifier
7367 * @extack: netlink extended ack
7368 *
7369 * Adds a link to device which is upper to this one. In this case, only
7370 * one master upper device can be linked, although other non-master devices
7371 * might be linked as well. The caller must hold the RTNL lock.
7372 * On a failure a negative errno code is returned. On success the reference
7373 * counts are adjusted and the function returns zero.
7374 */
7375 int netdev_master_upper_dev_link(struct net_device *dev,
7376 struct net_device *upper_dev,
7377 void *upper_priv, void *upper_info,
7378 struct netlink_ext_ack *extack)
7379 {
7380 return __netdev_upper_dev_link(dev, upper_dev, true,
7381 upper_priv, upper_info, extack);
7382 }
7383 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7384
7385 /**
7386 * netdev_upper_dev_unlink - Removes a link to upper device
7387 * @dev: device
7388 * @upper_dev: new upper device
7389 *
7390 * Removes a link to device which is upper to this one. The caller must hold
7391 * the RTNL lock.
7392 */
7393 void netdev_upper_dev_unlink(struct net_device *dev,
7394 struct net_device *upper_dev)
7395 {
7396 struct netdev_notifier_changeupper_info changeupper_info = {
7397 .info = {
7398 .dev = dev,
7399 },
7400 .upper_dev = upper_dev,
7401 .linking = false,
7402 };
7403
7404 ASSERT_RTNL();
7405
7406 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7407
7408 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7409 &changeupper_info.info);
7410
7411 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7412
7413 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7414 &changeupper_info.info);
7415
7416 __netdev_update_upper_level(dev, NULL);
7417 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7418
7419 __netdev_update_lower_level(upper_dev, NULL);
7420 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7421 NULL);
7422 }
7423 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7424
7425 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7426 struct net_device *lower_dev,
7427 bool val)
7428 {
7429 struct netdev_adjacent *adj;
7430
7431 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7432 if (adj)
7433 adj->ignore = val;
7434
7435 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7436 if (adj)
7437 adj->ignore = val;
7438 }
7439
7440 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7441 struct net_device *lower_dev)
7442 {
7443 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7444 }
7445
7446 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7447 struct net_device *lower_dev)
7448 {
7449 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7450 }
7451
7452 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7453 struct net_device *new_dev,
7454 struct net_device *dev,
7455 struct netlink_ext_ack *extack)
7456 {
7457 int err;
7458
7459 if (!new_dev)
7460 return 0;
7461
7462 if (old_dev && new_dev != old_dev)
7463 netdev_adjacent_dev_disable(dev, old_dev);
7464
7465 err = netdev_upper_dev_link(new_dev, dev, extack);
7466 if (err) {
7467 if (old_dev && new_dev != old_dev)
7468 netdev_adjacent_dev_enable(dev, old_dev);
7469 return err;
7470 }
7471
7472 return 0;
7473 }
7474 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7475
7476 void netdev_adjacent_change_commit(struct net_device *old_dev,
7477 struct net_device *new_dev,
7478 struct net_device *dev)
7479 {
7480 if (!new_dev || !old_dev)
7481 return;
7482
7483 if (new_dev == old_dev)
7484 return;
7485
7486 netdev_adjacent_dev_enable(dev, old_dev);
7487 netdev_upper_dev_unlink(old_dev, dev);
7488 }
7489 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7490
7491 void netdev_adjacent_change_abort(struct net_device *old_dev,
7492 struct net_device *new_dev,
7493 struct net_device *dev)
7494 {
7495 if (!new_dev)
7496 return;
7497
7498 if (old_dev && new_dev != old_dev)
7499 netdev_adjacent_dev_enable(dev, old_dev);
7500
7501 netdev_upper_dev_unlink(new_dev, dev);
7502 }
7503 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7504
7505 /**
7506 * netdev_bonding_info_change - Dispatch event about slave change
7507 * @dev: device
7508 * @bonding_info: info to dispatch
7509 *
7510 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7511 * The caller must hold the RTNL lock.
7512 */
7513 void netdev_bonding_info_change(struct net_device *dev,
7514 struct netdev_bonding_info *bonding_info)
7515 {
7516 struct netdev_notifier_bonding_info info = {
7517 .info.dev = dev,
7518 };
7519
7520 memcpy(&info.bonding_info, bonding_info,
7521 sizeof(struct netdev_bonding_info));
7522 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7523 &info.info);
7524 }
7525 EXPORT_SYMBOL(netdev_bonding_info_change);
7526
7527 static void netdev_adjacent_add_links(struct net_device *dev)
7528 {
7529 struct netdev_adjacent *iter;
7530
7531 struct net *net = dev_net(dev);
7532
7533 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7534 if (!net_eq(net, dev_net(iter->dev)))
7535 continue;
7536 netdev_adjacent_sysfs_add(iter->dev, dev,
7537 &iter->dev->adj_list.lower);
7538 netdev_adjacent_sysfs_add(dev, iter->dev,
7539 &dev->adj_list.upper);
7540 }
7541
7542 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7543 if (!net_eq(net, dev_net(iter->dev)))
7544 continue;
7545 netdev_adjacent_sysfs_add(iter->dev, dev,
7546 &iter->dev->adj_list.upper);
7547 netdev_adjacent_sysfs_add(dev, iter->dev,
7548 &dev->adj_list.lower);
7549 }
7550 }
7551
7552 static void netdev_adjacent_del_links(struct net_device *dev)
7553 {
7554 struct netdev_adjacent *iter;
7555
7556 struct net *net = dev_net(dev);
7557
7558 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7559 if (!net_eq(net, dev_net(iter->dev)))
7560 continue;
7561 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7562 &iter->dev->adj_list.lower);
7563 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7564 &dev->adj_list.upper);
7565 }
7566
7567 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7568 if (!net_eq(net, dev_net(iter->dev)))
7569 continue;
7570 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7571 &iter->dev->adj_list.upper);
7572 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7573 &dev->adj_list.lower);
7574 }
7575 }
7576
7577 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7578 {
7579 struct netdev_adjacent *iter;
7580
7581 struct net *net = dev_net(dev);
7582
7583 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7584 if (!net_eq(net, dev_net(iter->dev)))
7585 continue;
7586 netdev_adjacent_sysfs_del(iter->dev, oldname,
7587 &iter->dev->adj_list.lower);
7588 netdev_adjacent_sysfs_add(iter->dev, dev,
7589 &iter->dev->adj_list.lower);
7590 }
7591
7592 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7593 if (!net_eq(net, dev_net(iter->dev)))
7594 continue;
7595 netdev_adjacent_sysfs_del(iter->dev, oldname,
7596 &iter->dev->adj_list.upper);
7597 netdev_adjacent_sysfs_add(iter->dev, dev,
7598 &iter->dev->adj_list.upper);
7599 }
7600 }
7601
7602 void *netdev_lower_dev_get_private(struct net_device *dev,
7603 struct net_device *lower_dev)
7604 {
7605 struct netdev_adjacent *lower;
7606
7607 if (!lower_dev)
7608 return NULL;
7609 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7610 if (!lower)
7611 return NULL;
7612
7613 return lower->private;
7614 }
7615 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7616
7617
7618 int dev_get_nest_level(struct net_device *dev)
7619 {
7620 struct net_device *lower = NULL;
7621 struct list_head *iter;
7622 int max_nest = -1;
7623 int nest;
7624
7625 ASSERT_RTNL();
7626
7627 netdev_for_each_lower_dev(dev, lower, iter) {
7628 nest = dev_get_nest_level(lower);
7629 if (max_nest < nest)
7630 max_nest = nest;
7631 }
7632
7633 return max_nest + 1;
7634 }
7635 EXPORT_SYMBOL(dev_get_nest_level);
7636
7637 /**
7638 * netdev_lower_change - Dispatch event about lower device state change
7639 * @lower_dev: device
7640 * @lower_state_info: state to dispatch
7641 *
7642 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7643 * The caller must hold the RTNL lock.
7644 */
7645 void netdev_lower_state_changed(struct net_device *lower_dev,
7646 void *lower_state_info)
7647 {
7648 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7649 .info.dev = lower_dev,
7650 };
7651
7652 ASSERT_RTNL();
7653 changelowerstate_info.lower_state_info = lower_state_info;
7654 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7655 &changelowerstate_info.info);
7656 }
7657 EXPORT_SYMBOL(netdev_lower_state_changed);
7658
7659 static void dev_change_rx_flags(struct net_device *dev, int flags)
7660 {
7661 const struct net_device_ops *ops = dev->netdev_ops;
7662
7663 if (ops->ndo_change_rx_flags)
7664 ops->ndo_change_rx_flags(dev, flags);
7665 }
7666
7667 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7668 {
7669 unsigned int old_flags = dev->flags;
7670 kuid_t uid;
7671 kgid_t gid;
7672
7673 ASSERT_RTNL();
7674
7675 dev->flags |= IFF_PROMISC;
7676 dev->promiscuity += inc;
7677 if (dev->promiscuity == 0) {
7678 /*
7679 * Avoid overflow.
7680 * If inc causes overflow, untouch promisc and return error.
7681 */
7682 if (inc < 0)
7683 dev->flags &= ~IFF_PROMISC;
7684 else {
7685 dev->promiscuity -= inc;
7686 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7687 dev->name);
7688 return -EOVERFLOW;
7689 }
7690 }
7691 if (dev->flags != old_flags) {
7692 pr_info("device %s %s promiscuous mode\n",
7693 dev->name,
7694 dev->flags & IFF_PROMISC ? "entered" : "left");
7695 if (audit_enabled) {
7696 current_uid_gid(&uid, &gid);
7697 audit_log(audit_context(), GFP_ATOMIC,
7698 AUDIT_ANOM_PROMISCUOUS,
7699 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7700 dev->name, (dev->flags & IFF_PROMISC),
7701 (old_flags & IFF_PROMISC),
7702 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7703 from_kuid(&init_user_ns, uid),
7704 from_kgid(&init_user_ns, gid),
7705 audit_get_sessionid(current));
7706 }
7707
7708 dev_change_rx_flags(dev, IFF_PROMISC);
7709 }
7710 if (notify)
7711 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7712 return 0;
7713 }
7714
7715 /**
7716 * dev_set_promiscuity - update promiscuity count on a device
7717 * @dev: device
7718 * @inc: modifier
7719 *
7720 * Add or remove promiscuity from a device. While the count in the device
7721 * remains above zero the interface remains promiscuous. Once it hits zero
7722 * the device reverts back to normal filtering operation. A negative inc
7723 * value is used to drop promiscuity on the device.
7724 * Return 0 if successful or a negative errno code on error.
7725 */
7726 int dev_set_promiscuity(struct net_device *dev, int inc)
7727 {
7728 unsigned int old_flags = dev->flags;
7729 int err;
7730
7731 err = __dev_set_promiscuity(dev, inc, true);
7732 if (err < 0)
7733 return err;
7734 if (dev->flags != old_flags)
7735 dev_set_rx_mode(dev);
7736 return err;
7737 }
7738 EXPORT_SYMBOL(dev_set_promiscuity);
7739
7740 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7741 {
7742 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7743
7744 ASSERT_RTNL();
7745
7746 dev->flags |= IFF_ALLMULTI;
7747 dev->allmulti += inc;
7748 if (dev->allmulti == 0) {
7749 /*
7750 * Avoid overflow.
7751 * If inc causes overflow, untouch allmulti and return error.
7752 */
7753 if (inc < 0)
7754 dev->flags &= ~IFF_ALLMULTI;
7755 else {
7756 dev->allmulti -= inc;
7757 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7758 dev->name);
7759 return -EOVERFLOW;
7760 }
7761 }
7762 if (dev->flags ^ old_flags) {
7763 dev_change_rx_flags(dev, IFF_ALLMULTI);
7764 dev_set_rx_mode(dev);
7765 if (notify)
7766 __dev_notify_flags(dev, old_flags,
7767 dev->gflags ^ old_gflags);
7768 }
7769 return 0;
7770 }
7771
7772 /**
7773 * dev_set_allmulti - update allmulti count on a device
7774 * @dev: device
7775 * @inc: modifier
7776 *
7777 * Add or remove reception of all multicast frames to a device. While the
7778 * count in the device remains above zero the interface remains listening
7779 * to all interfaces. Once it hits zero the device reverts back to normal
7780 * filtering operation. A negative @inc value is used to drop the counter
7781 * when releasing a resource needing all multicasts.
7782 * Return 0 if successful or a negative errno code on error.
7783 */
7784
7785 int dev_set_allmulti(struct net_device *dev, int inc)
7786 {
7787 return __dev_set_allmulti(dev, inc, true);
7788 }
7789 EXPORT_SYMBOL(dev_set_allmulti);
7790
7791 /*
7792 * Upload unicast and multicast address lists to device and
7793 * configure RX filtering. When the device doesn't support unicast
7794 * filtering it is put in promiscuous mode while unicast addresses
7795 * are present.
7796 */
7797 void __dev_set_rx_mode(struct net_device *dev)
7798 {
7799 const struct net_device_ops *ops = dev->netdev_ops;
7800
7801 /* dev_open will call this function so the list will stay sane. */
7802 if (!(dev->flags&IFF_UP))
7803 return;
7804
7805 if (!netif_device_present(dev))
7806 return;
7807
7808 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7809 /* Unicast addresses changes may only happen under the rtnl,
7810 * therefore calling __dev_set_promiscuity here is safe.
7811 */
7812 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7813 __dev_set_promiscuity(dev, 1, false);
7814 dev->uc_promisc = true;
7815 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7816 __dev_set_promiscuity(dev, -1, false);
7817 dev->uc_promisc = false;
7818 }
7819 }
7820
7821 if (ops->ndo_set_rx_mode)
7822 ops->ndo_set_rx_mode(dev);
7823 }
7824
7825 void dev_set_rx_mode(struct net_device *dev)
7826 {
7827 netif_addr_lock_bh(dev);
7828 __dev_set_rx_mode(dev);
7829 netif_addr_unlock_bh(dev);
7830 }
7831
7832 /**
7833 * dev_get_flags - get flags reported to userspace
7834 * @dev: device
7835 *
7836 * Get the combination of flag bits exported through APIs to userspace.
7837 */
7838 unsigned int dev_get_flags(const struct net_device *dev)
7839 {
7840 unsigned int flags;
7841
7842 flags = (dev->flags & ~(IFF_PROMISC |
7843 IFF_ALLMULTI |
7844 IFF_RUNNING |
7845 IFF_LOWER_UP |
7846 IFF_DORMANT)) |
7847 (dev->gflags & (IFF_PROMISC |
7848 IFF_ALLMULTI));
7849
7850 if (netif_running(dev)) {
7851 if (netif_oper_up(dev))
7852 flags |= IFF_RUNNING;
7853 if (netif_carrier_ok(dev))
7854 flags |= IFF_LOWER_UP;
7855 if (netif_dormant(dev))
7856 flags |= IFF_DORMANT;
7857 }
7858
7859 return flags;
7860 }
7861 EXPORT_SYMBOL(dev_get_flags);
7862
7863 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7864 struct netlink_ext_ack *extack)
7865 {
7866 unsigned int old_flags = dev->flags;
7867 int ret;
7868
7869 ASSERT_RTNL();
7870
7871 /*
7872 * Set the flags on our device.
7873 */
7874
7875 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7876 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7877 IFF_AUTOMEDIA)) |
7878 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7879 IFF_ALLMULTI));
7880
7881 /*
7882 * Load in the correct multicast list now the flags have changed.
7883 */
7884
7885 if ((old_flags ^ flags) & IFF_MULTICAST)
7886 dev_change_rx_flags(dev, IFF_MULTICAST);
7887
7888 dev_set_rx_mode(dev);
7889
7890 /*
7891 * Have we downed the interface. We handle IFF_UP ourselves
7892 * according to user attempts to set it, rather than blindly
7893 * setting it.
7894 */
7895
7896 ret = 0;
7897 if ((old_flags ^ flags) & IFF_UP) {
7898 if (old_flags & IFF_UP)
7899 __dev_close(dev);
7900 else
7901 ret = __dev_open(dev, extack);
7902 }
7903
7904 if ((flags ^ dev->gflags) & IFF_PROMISC) {
7905 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7906 unsigned int old_flags = dev->flags;
7907
7908 dev->gflags ^= IFF_PROMISC;
7909
7910 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7911 if (dev->flags != old_flags)
7912 dev_set_rx_mode(dev);
7913 }
7914
7915 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7916 * is important. Some (broken) drivers set IFF_PROMISC, when
7917 * IFF_ALLMULTI is requested not asking us and not reporting.
7918 */
7919 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7920 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7921
7922 dev->gflags ^= IFF_ALLMULTI;
7923 __dev_set_allmulti(dev, inc, false);
7924 }
7925
7926 return ret;
7927 }
7928
7929 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7930 unsigned int gchanges)
7931 {
7932 unsigned int changes = dev->flags ^ old_flags;
7933
7934 if (gchanges)
7935 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7936
7937 if (changes & IFF_UP) {
7938 if (dev->flags & IFF_UP)
7939 call_netdevice_notifiers(NETDEV_UP, dev);
7940 else
7941 call_netdevice_notifiers(NETDEV_DOWN, dev);
7942 }
7943
7944 if (dev->flags & IFF_UP &&
7945 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7946 struct netdev_notifier_change_info change_info = {
7947 .info = {
7948 .dev = dev,
7949 },
7950 .flags_changed = changes,
7951 };
7952
7953 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7954 }
7955 }
7956
7957 /**
7958 * dev_change_flags - change device settings
7959 * @dev: device
7960 * @flags: device state flags
7961 * @extack: netlink extended ack
7962 *
7963 * Change settings on device based state flags. The flags are
7964 * in the userspace exported format.
7965 */
7966 int dev_change_flags(struct net_device *dev, unsigned int flags,
7967 struct netlink_ext_ack *extack)
7968 {
7969 int ret;
7970 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7971
7972 ret = __dev_change_flags(dev, flags, extack);
7973 if (ret < 0)
7974 return ret;
7975
7976 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7977 __dev_notify_flags(dev, old_flags, changes);
7978 return ret;
7979 }
7980 EXPORT_SYMBOL(dev_change_flags);
7981
7982 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7983 {
7984 const struct net_device_ops *ops = dev->netdev_ops;
7985
7986 if (ops->ndo_change_mtu)
7987 return ops->ndo_change_mtu(dev, new_mtu);
7988
7989 dev->mtu = new_mtu;
7990 return 0;
7991 }
7992 EXPORT_SYMBOL(__dev_set_mtu);
7993
7994 /**
7995 * dev_set_mtu_ext - Change maximum transfer unit
7996 * @dev: device
7997 * @new_mtu: new transfer unit
7998 * @extack: netlink extended ack
7999 *
8000 * Change the maximum transfer size of the network device.
8001 */
8002 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8003 struct netlink_ext_ack *extack)
8004 {
8005 int err, orig_mtu;
8006
8007 if (new_mtu == dev->mtu)
8008 return 0;
8009
8010 /* MTU must be positive, and in range */
8011 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8012 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8013 return -EINVAL;
8014 }
8015
8016 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8017 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8018 return -EINVAL;
8019 }
8020
8021 if (!netif_device_present(dev))
8022 return -ENODEV;
8023
8024 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8025 err = notifier_to_errno(err);
8026 if (err)
8027 return err;
8028
8029 orig_mtu = dev->mtu;
8030 err = __dev_set_mtu(dev, new_mtu);
8031
8032 if (!err) {
8033 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8034 orig_mtu);
8035 err = notifier_to_errno(err);
8036 if (err) {
8037 /* setting mtu back and notifying everyone again,
8038 * so that they have a chance to revert changes.
8039 */
8040 __dev_set_mtu(dev, orig_mtu);
8041 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8042 new_mtu);
8043 }
8044 }
8045 return err;
8046 }
8047
8048 int dev_set_mtu(struct net_device *dev, int new_mtu)
8049 {
8050 struct netlink_ext_ack extack;
8051 int err;
8052
8053 memset(&extack, 0, sizeof(extack));
8054 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8055 if (err && extack._msg)
8056 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8057 return err;
8058 }
8059 EXPORT_SYMBOL(dev_set_mtu);
8060
8061 /**
8062 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8063 * @dev: device
8064 * @new_len: new tx queue length
8065 */
8066 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8067 {
8068 unsigned int orig_len = dev->tx_queue_len;
8069 int res;
8070
8071 if (new_len != (unsigned int)new_len)
8072 return -ERANGE;
8073
8074 if (new_len != orig_len) {
8075 dev->tx_queue_len = new_len;
8076 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8077 res = notifier_to_errno(res);
8078 if (res)
8079 goto err_rollback;
8080 res = dev_qdisc_change_tx_queue_len(dev);
8081 if (res)
8082 goto err_rollback;
8083 }
8084
8085 return 0;
8086
8087 err_rollback:
8088 netdev_err(dev, "refused to change device tx_queue_len\n");
8089 dev->tx_queue_len = orig_len;
8090 return res;
8091 }
8092
8093 /**
8094 * dev_set_group - Change group this device belongs to
8095 * @dev: device
8096 * @new_group: group this device should belong to
8097 */
8098 void dev_set_group(struct net_device *dev, int new_group)
8099 {
8100 dev->group = new_group;
8101 }
8102 EXPORT_SYMBOL(dev_set_group);
8103
8104 /**
8105 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8106 * @dev: device
8107 * @addr: new address
8108 * @extack: netlink extended ack
8109 */
8110 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8111 struct netlink_ext_ack *extack)
8112 {
8113 struct netdev_notifier_pre_changeaddr_info info = {
8114 .info.dev = dev,
8115 .info.extack = extack,
8116 .dev_addr = addr,
8117 };
8118 int rc;
8119
8120 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8121 return notifier_to_errno(rc);
8122 }
8123 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8124
8125 /**
8126 * dev_set_mac_address - Change Media Access Control Address
8127 * @dev: device
8128 * @sa: new address
8129 * @extack: netlink extended ack
8130 *
8131 * Change the hardware (MAC) address of the device
8132 */
8133 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8134 struct netlink_ext_ack *extack)
8135 {
8136 const struct net_device_ops *ops = dev->netdev_ops;
8137 int err;
8138
8139 if (!ops->ndo_set_mac_address)
8140 return -EOPNOTSUPP;
8141 if (sa->sa_family != dev->type)
8142 return -EINVAL;
8143 if (!netif_device_present(dev))
8144 return -ENODEV;
8145 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8146 if (err)
8147 return err;
8148 err = ops->ndo_set_mac_address(dev, sa);
8149 if (err)
8150 return err;
8151 dev->addr_assign_type = NET_ADDR_SET;
8152 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8153 add_device_randomness(dev->dev_addr, dev->addr_len);
8154 return 0;
8155 }
8156 EXPORT_SYMBOL(dev_set_mac_address);
8157
8158 /**
8159 * dev_change_carrier - Change device carrier
8160 * @dev: device
8161 * @new_carrier: new value
8162 *
8163 * Change device carrier
8164 */
8165 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8166 {
8167 const struct net_device_ops *ops = dev->netdev_ops;
8168
8169 if (!ops->ndo_change_carrier)
8170 return -EOPNOTSUPP;
8171 if (!netif_device_present(dev))
8172 return -ENODEV;
8173 return ops->ndo_change_carrier(dev, new_carrier);
8174 }
8175 EXPORT_SYMBOL(dev_change_carrier);
8176
8177 /**
8178 * dev_get_phys_port_id - Get device physical port ID
8179 * @dev: device
8180 * @ppid: port ID
8181 *
8182 * Get device physical port ID
8183 */
8184 int dev_get_phys_port_id(struct net_device *dev,
8185 struct netdev_phys_item_id *ppid)
8186 {
8187 const struct net_device_ops *ops = dev->netdev_ops;
8188
8189 if (!ops->ndo_get_phys_port_id)
8190 return -EOPNOTSUPP;
8191 return ops->ndo_get_phys_port_id(dev, ppid);
8192 }
8193 EXPORT_SYMBOL(dev_get_phys_port_id);
8194
8195 /**
8196 * dev_get_phys_port_name - Get device physical port name
8197 * @dev: device
8198 * @name: port name
8199 * @len: limit of bytes to copy to name
8200 *
8201 * Get device physical port name
8202 */
8203 int dev_get_phys_port_name(struct net_device *dev,
8204 char *name, size_t len)
8205 {
8206 const struct net_device_ops *ops = dev->netdev_ops;
8207 int err;
8208
8209 if (ops->ndo_get_phys_port_name) {
8210 err = ops->ndo_get_phys_port_name(dev, name, len);
8211 if (err != -EOPNOTSUPP)
8212 return err;
8213 }
8214 return devlink_compat_phys_port_name_get(dev, name, len);
8215 }
8216 EXPORT_SYMBOL(dev_get_phys_port_name);
8217
8218 /**
8219 * dev_get_port_parent_id - Get the device's port parent identifier
8220 * @dev: network device
8221 * @ppid: pointer to a storage for the port's parent identifier
8222 * @recurse: allow/disallow recursion to lower devices
8223 *
8224 * Get the devices's port parent identifier
8225 */
8226 int dev_get_port_parent_id(struct net_device *dev,
8227 struct netdev_phys_item_id *ppid,
8228 bool recurse)
8229 {
8230 const struct net_device_ops *ops = dev->netdev_ops;
8231 struct netdev_phys_item_id first = { };
8232 struct net_device *lower_dev;
8233 struct list_head *iter;
8234 int err;
8235
8236 if (ops->ndo_get_port_parent_id) {
8237 err = ops->ndo_get_port_parent_id(dev, ppid);
8238 if (err != -EOPNOTSUPP)
8239 return err;
8240 }
8241
8242 err = devlink_compat_switch_id_get(dev, ppid);
8243 if (!err || err != -EOPNOTSUPP)
8244 return err;
8245
8246 if (!recurse)
8247 return -EOPNOTSUPP;
8248
8249 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8250 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8251 if (err)
8252 break;
8253 if (!first.id_len)
8254 first = *ppid;
8255 else if (memcmp(&first, ppid, sizeof(*ppid)))
8256 return -ENODATA;
8257 }
8258
8259 return err;
8260 }
8261 EXPORT_SYMBOL(dev_get_port_parent_id);
8262
8263 /**
8264 * netdev_port_same_parent_id - Indicate if two network devices have
8265 * the same port parent identifier
8266 * @a: first network device
8267 * @b: second network device
8268 */
8269 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8270 {
8271 struct netdev_phys_item_id a_id = { };
8272 struct netdev_phys_item_id b_id = { };
8273
8274 if (dev_get_port_parent_id(a, &a_id, true) ||
8275 dev_get_port_parent_id(b, &b_id, true))
8276 return false;
8277
8278 return netdev_phys_item_id_same(&a_id, &b_id);
8279 }
8280 EXPORT_SYMBOL(netdev_port_same_parent_id);
8281
8282 /**
8283 * dev_change_proto_down - update protocol port state information
8284 * @dev: device
8285 * @proto_down: new value
8286 *
8287 * This info can be used by switch drivers to set the phys state of the
8288 * port.
8289 */
8290 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8291 {
8292 const struct net_device_ops *ops = dev->netdev_ops;
8293
8294 if (!ops->ndo_change_proto_down)
8295 return -EOPNOTSUPP;
8296 if (!netif_device_present(dev))
8297 return -ENODEV;
8298 return ops->ndo_change_proto_down(dev, proto_down);
8299 }
8300 EXPORT_SYMBOL(dev_change_proto_down);
8301
8302 /**
8303 * dev_change_proto_down_generic - generic implementation for
8304 * ndo_change_proto_down that sets carrier according to
8305 * proto_down.
8306 *
8307 * @dev: device
8308 * @proto_down: new value
8309 */
8310 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8311 {
8312 if (proto_down)
8313 netif_carrier_off(dev);
8314 else
8315 netif_carrier_on(dev);
8316 dev->proto_down = proto_down;
8317 return 0;
8318 }
8319 EXPORT_SYMBOL(dev_change_proto_down_generic);
8320
8321 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8322 enum bpf_netdev_command cmd)
8323 {
8324 struct netdev_bpf xdp;
8325
8326 if (!bpf_op)
8327 return 0;
8328
8329 memset(&xdp, 0, sizeof(xdp));
8330 xdp.command = cmd;
8331
8332 /* Query must always succeed. */
8333 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8334
8335 return xdp.prog_id;
8336 }
8337
8338 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8339 struct netlink_ext_ack *extack, u32 flags,
8340 struct bpf_prog *prog)
8341 {
8342 struct netdev_bpf xdp;
8343
8344 memset(&xdp, 0, sizeof(xdp));
8345 if (flags & XDP_FLAGS_HW_MODE)
8346 xdp.command = XDP_SETUP_PROG_HW;
8347 else
8348 xdp.command = XDP_SETUP_PROG;
8349 xdp.extack = extack;
8350 xdp.flags = flags;
8351 xdp.prog = prog;
8352
8353 return bpf_op(dev, &xdp);
8354 }
8355
8356 static void dev_xdp_uninstall(struct net_device *dev)
8357 {
8358 struct netdev_bpf xdp;
8359 bpf_op_t ndo_bpf;
8360
8361 /* Remove generic XDP */
8362 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8363
8364 /* Remove from the driver */
8365 ndo_bpf = dev->netdev_ops->ndo_bpf;
8366 if (!ndo_bpf)
8367 return;
8368
8369 memset(&xdp, 0, sizeof(xdp));
8370 xdp.command = XDP_QUERY_PROG;
8371 WARN_ON(ndo_bpf(dev, &xdp));
8372 if (xdp.prog_id)
8373 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8374 NULL));
8375
8376 /* Remove HW offload */
8377 memset(&xdp, 0, sizeof(xdp));
8378 xdp.command = XDP_QUERY_PROG_HW;
8379 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8380 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8381 NULL));
8382 }
8383
8384 /**
8385 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8386 * @dev: device
8387 * @extack: netlink extended ack
8388 * @fd: new program fd or negative value to clear
8389 * @flags: xdp-related flags
8390 *
8391 * Set or clear a bpf program for a device
8392 */
8393 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8394 int fd, u32 flags)
8395 {
8396 const struct net_device_ops *ops = dev->netdev_ops;
8397 enum bpf_netdev_command query;
8398 struct bpf_prog *prog = NULL;
8399 bpf_op_t bpf_op, bpf_chk;
8400 bool offload;
8401 int err;
8402
8403 ASSERT_RTNL();
8404
8405 offload = flags & XDP_FLAGS_HW_MODE;
8406 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8407
8408 bpf_op = bpf_chk = ops->ndo_bpf;
8409 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8410 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8411 return -EOPNOTSUPP;
8412 }
8413 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8414 bpf_op = generic_xdp_install;
8415 if (bpf_op == bpf_chk)
8416 bpf_chk = generic_xdp_install;
8417
8418 if (fd >= 0) {
8419 u32 prog_id;
8420
8421 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8422 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8423 return -EEXIST;
8424 }
8425
8426 prog_id = __dev_xdp_query(dev, bpf_op, query);
8427 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8428 NL_SET_ERR_MSG(extack, "XDP program already attached");
8429 return -EBUSY;
8430 }
8431
8432 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8433 bpf_op == ops->ndo_bpf);
8434 if (IS_ERR(prog))
8435 return PTR_ERR(prog);
8436
8437 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8438 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8439 bpf_prog_put(prog);
8440 return -EINVAL;
8441 }
8442
8443 if (prog->aux->id == prog_id) {
8444 bpf_prog_put(prog);
8445 return 0;
8446 }
8447 } else {
8448 if (!__dev_xdp_query(dev, bpf_op, query))
8449 return 0;
8450 }
8451
8452 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8453 if (err < 0 && prog)
8454 bpf_prog_put(prog);
8455
8456 return err;
8457 }
8458
8459 /**
8460 * dev_new_index - allocate an ifindex
8461 * @net: the applicable net namespace
8462 *
8463 * Returns a suitable unique value for a new device interface
8464 * number. The caller must hold the rtnl semaphore or the
8465 * dev_base_lock to be sure it remains unique.
8466 */
8467 static int dev_new_index(struct net *net)
8468 {
8469 int ifindex = net->ifindex;
8470
8471 for (;;) {
8472 if (++ifindex <= 0)
8473 ifindex = 1;
8474 if (!__dev_get_by_index(net, ifindex))
8475 return net->ifindex = ifindex;
8476 }
8477 }
8478
8479 /* Delayed registration/unregisteration */
8480 static LIST_HEAD(net_todo_list);
8481 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8482
8483 static void net_set_todo(struct net_device *dev)
8484 {
8485 list_add_tail(&dev->todo_list, &net_todo_list);
8486 dev_net(dev)->dev_unreg_count++;
8487 }
8488
8489 static void rollback_registered_many(struct list_head *head)
8490 {
8491 struct net_device *dev, *tmp;
8492 LIST_HEAD(close_head);
8493
8494 BUG_ON(dev_boot_phase);
8495 ASSERT_RTNL();
8496
8497 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8498 /* Some devices call without registering
8499 * for initialization unwind. Remove those
8500 * devices and proceed with the remaining.
8501 */
8502 if (dev->reg_state == NETREG_UNINITIALIZED) {
8503 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8504 dev->name, dev);
8505
8506 WARN_ON(1);
8507 list_del(&dev->unreg_list);
8508 continue;
8509 }
8510 dev->dismantle = true;
8511 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8512 }
8513
8514 /* If device is running, close it first. */
8515 list_for_each_entry(dev, head, unreg_list)
8516 list_add_tail(&dev->close_list, &close_head);
8517 dev_close_many(&close_head, true);
8518
8519 list_for_each_entry(dev, head, unreg_list) {
8520 /* And unlink it from device chain. */
8521 unlist_netdevice(dev);
8522
8523 dev->reg_state = NETREG_UNREGISTERING;
8524 }
8525 flush_all_backlogs();
8526
8527 synchronize_net();
8528
8529 list_for_each_entry(dev, head, unreg_list) {
8530 struct sk_buff *skb = NULL;
8531
8532 /* Shutdown queueing discipline. */
8533 dev_shutdown(dev);
8534
8535 dev_xdp_uninstall(dev);
8536
8537 /* Notify protocols, that we are about to destroy
8538 * this device. They should clean all the things.
8539 */
8540 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8541
8542 if (!dev->rtnl_link_ops ||
8543 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8544 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8545 GFP_KERNEL, NULL, 0);
8546
8547 /*
8548 * Flush the unicast and multicast chains
8549 */
8550 dev_uc_flush(dev);
8551 dev_mc_flush(dev);
8552
8553 if (dev->netdev_ops->ndo_uninit)
8554 dev->netdev_ops->ndo_uninit(dev);
8555
8556 if (skb)
8557 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8558
8559 /* Notifier chain MUST detach us all upper devices. */
8560 WARN_ON(netdev_has_any_upper_dev(dev));
8561 WARN_ON(netdev_has_any_lower_dev(dev));
8562
8563 /* Remove entries from kobject tree */
8564 netdev_unregister_kobject(dev);
8565 #ifdef CONFIG_XPS
8566 /* Remove XPS queueing entries */
8567 netif_reset_xps_queues_gt(dev, 0);
8568 #endif
8569 }
8570
8571 synchronize_net();
8572
8573 list_for_each_entry(dev, head, unreg_list)
8574 dev_put(dev);
8575 }
8576
8577 static void rollback_registered(struct net_device *dev)
8578 {
8579 LIST_HEAD(single);
8580
8581 list_add(&dev->unreg_list, &single);
8582 rollback_registered_many(&single);
8583 list_del(&single);
8584 }
8585
8586 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8587 struct net_device *upper, netdev_features_t features)
8588 {
8589 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8590 netdev_features_t feature;
8591 int feature_bit;
8592
8593 for_each_netdev_feature(upper_disables, feature_bit) {
8594 feature = __NETIF_F_BIT(feature_bit);
8595 if (!(upper->wanted_features & feature)
8596 && (features & feature)) {
8597 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8598 &feature, upper->name);
8599 features &= ~feature;
8600 }
8601 }
8602
8603 return features;
8604 }
8605
8606 static void netdev_sync_lower_features(struct net_device *upper,
8607 struct net_device *lower, netdev_features_t features)
8608 {
8609 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8610 netdev_features_t feature;
8611 int feature_bit;
8612
8613 for_each_netdev_feature(upper_disables, feature_bit) {
8614 feature = __NETIF_F_BIT(feature_bit);
8615 if (!(features & feature) && (lower->features & feature)) {
8616 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8617 &feature, lower->name);
8618 lower->wanted_features &= ~feature;
8619 netdev_update_features(lower);
8620
8621 if (unlikely(lower->features & feature))
8622 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8623 &feature, lower->name);
8624 }
8625 }
8626 }
8627
8628 static netdev_features_t netdev_fix_features(struct net_device *dev,
8629 netdev_features_t features)
8630 {
8631 /* Fix illegal checksum combinations */
8632 if ((features & NETIF_F_HW_CSUM) &&
8633 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8634 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8635 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8636 }
8637
8638 /* TSO requires that SG is present as well. */
8639 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8640 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8641 features &= ~NETIF_F_ALL_TSO;
8642 }
8643
8644 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8645 !(features & NETIF_F_IP_CSUM)) {
8646 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8647 features &= ~NETIF_F_TSO;
8648 features &= ~NETIF_F_TSO_ECN;
8649 }
8650
8651 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8652 !(features & NETIF_F_IPV6_CSUM)) {
8653 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8654 features &= ~NETIF_F_TSO6;
8655 }
8656
8657 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8658 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8659 features &= ~NETIF_F_TSO_MANGLEID;
8660
8661 /* TSO ECN requires that TSO is present as well. */
8662 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8663 features &= ~NETIF_F_TSO_ECN;
8664
8665 /* Software GSO depends on SG. */
8666 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8667 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8668 features &= ~NETIF_F_GSO;
8669 }
8670
8671 /* GSO partial features require GSO partial be set */
8672 if ((features & dev->gso_partial_features) &&
8673 !(features & NETIF_F_GSO_PARTIAL)) {
8674 netdev_dbg(dev,
8675 "Dropping partially supported GSO features since no GSO partial.\n");
8676 features &= ~dev->gso_partial_features;
8677 }
8678
8679 if (!(features & NETIF_F_RXCSUM)) {
8680 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8681 * successfully merged by hardware must also have the
8682 * checksum verified by hardware. If the user does not
8683 * want to enable RXCSUM, logically, we should disable GRO_HW.
8684 */
8685 if (features & NETIF_F_GRO_HW) {
8686 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8687 features &= ~NETIF_F_GRO_HW;
8688 }
8689 }
8690
8691 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8692 if (features & NETIF_F_RXFCS) {
8693 if (features & NETIF_F_LRO) {
8694 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8695 features &= ~NETIF_F_LRO;
8696 }
8697
8698 if (features & NETIF_F_GRO_HW) {
8699 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8700 features &= ~NETIF_F_GRO_HW;
8701 }
8702 }
8703
8704 return features;
8705 }
8706
8707 int __netdev_update_features(struct net_device *dev)
8708 {
8709 struct net_device *upper, *lower;
8710 netdev_features_t features;
8711 struct list_head *iter;
8712 int err = -1;
8713
8714 ASSERT_RTNL();
8715
8716 features = netdev_get_wanted_features(dev);
8717
8718 if (dev->netdev_ops->ndo_fix_features)
8719 features = dev->netdev_ops->ndo_fix_features(dev, features);
8720
8721 /* driver might be less strict about feature dependencies */
8722 features = netdev_fix_features(dev, features);
8723
8724 /* some features can't be enabled if they're off an an upper device */
8725 netdev_for_each_upper_dev_rcu(dev, upper, iter)
8726 features = netdev_sync_upper_features(dev, upper, features);
8727
8728 if (dev->features == features)
8729 goto sync_lower;
8730
8731 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8732 &dev->features, &features);
8733
8734 if (dev->netdev_ops->ndo_set_features)
8735 err = dev->netdev_ops->ndo_set_features(dev, features);
8736 else
8737 err = 0;
8738
8739 if (unlikely(err < 0)) {
8740 netdev_err(dev,
8741 "set_features() failed (%d); wanted %pNF, left %pNF\n",
8742 err, &features, &dev->features);
8743 /* return non-0 since some features might have changed and
8744 * it's better to fire a spurious notification than miss it
8745 */
8746 return -1;
8747 }
8748
8749 sync_lower:
8750 /* some features must be disabled on lower devices when disabled
8751 * on an upper device (think: bonding master or bridge)
8752 */
8753 netdev_for_each_lower_dev(dev, lower, iter)
8754 netdev_sync_lower_features(dev, lower, features);
8755
8756 if (!err) {
8757 netdev_features_t diff = features ^ dev->features;
8758
8759 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8760 /* udp_tunnel_{get,drop}_rx_info both need
8761 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8762 * device, or they won't do anything.
8763 * Thus we need to update dev->features
8764 * *before* calling udp_tunnel_get_rx_info,
8765 * but *after* calling udp_tunnel_drop_rx_info.
8766 */
8767 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8768 dev->features = features;
8769 udp_tunnel_get_rx_info(dev);
8770 } else {
8771 udp_tunnel_drop_rx_info(dev);
8772 }
8773 }
8774
8775 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8776 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8777 dev->features = features;
8778 err |= vlan_get_rx_ctag_filter_info(dev);
8779 } else {
8780 vlan_drop_rx_ctag_filter_info(dev);
8781 }
8782 }
8783
8784 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8785 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8786 dev->features = features;
8787 err |= vlan_get_rx_stag_filter_info(dev);
8788 } else {
8789 vlan_drop_rx_stag_filter_info(dev);
8790 }
8791 }
8792
8793 dev->features = features;
8794 }
8795
8796 return err < 0 ? 0 : 1;
8797 }
8798
8799 /**
8800 * netdev_update_features - recalculate device features
8801 * @dev: the device to check
8802 *
8803 * Recalculate dev->features set and send notifications if it
8804 * has changed. Should be called after driver or hardware dependent
8805 * conditions might have changed that influence the features.
8806 */
8807 void netdev_update_features(struct net_device *dev)
8808 {
8809 if (__netdev_update_features(dev))
8810 netdev_features_change(dev);
8811 }
8812 EXPORT_SYMBOL(netdev_update_features);
8813
8814 /**
8815 * netdev_change_features - recalculate device features
8816 * @dev: the device to check
8817 *
8818 * Recalculate dev->features set and send notifications even
8819 * if they have not changed. Should be called instead of
8820 * netdev_update_features() if also dev->vlan_features might
8821 * have changed to allow the changes to be propagated to stacked
8822 * VLAN devices.
8823 */
8824 void netdev_change_features(struct net_device *dev)
8825 {
8826 __netdev_update_features(dev);
8827 netdev_features_change(dev);
8828 }
8829 EXPORT_SYMBOL(netdev_change_features);
8830
8831 /**
8832 * netif_stacked_transfer_operstate - transfer operstate
8833 * @rootdev: the root or lower level device to transfer state from
8834 * @dev: the device to transfer operstate to
8835 *
8836 * Transfer operational state from root to device. This is normally
8837 * called when a stacking relationship exists between the root
8838 * device and the device(a leaf device).
8839 */
8840 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8841 struct net_device *dev)
8842 {
8843 if (rootdev->operstate == IF_OPER_DORMANT)
8844 netif_dormant_on(dev);
8845 else
8846 netif_dormant_off(dev);
8847
8848 if (netif_carrier_ok(rootdev))
8849 netif_carrier_on(dev);
8850 else
8851 netif_carrier_off(dev);
8852 }
8853 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8854
8855 static int netif_alloc_rx_queues(struct net_device *dev)
8856 {
8857 unsigned int i, count = dev->num_rx_queues;
8858 struct netdev_rx_queue *rx;
8859 size_t sz = count * sizeof(*rx);
8860 int err = 0;
8861
8862 BUG_ON(count < 1);
8863
8864 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8865 if (!rx)
8866 return -ENOMEM;
8867
8868 dev->_rx = rx;
8869
8870 for (i = 0; i < count; i++) {
8871 rx[i].dev = dev;
8872
8873 /* XDP RX-queue setup */
8874 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8875 if (err < 0)
8876 goto err_rxq_info;
8877 }
8878 return 0;
8879
8880 err_rxq_info:
8881 /* Rollback successful reg's and free other resources */
8882 while (i--)
8883 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8884 kvfree(dev->_rx);
8885 dev->_rx = NULL;
8886 return err;
8887 }
8888
8889 static void netif_free_rx_queues(struct net_device *dev)
8890 {
8891 unsigned int i, count = dev->num_rx_queues;
8892
8893 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8894 if (!dev->_rx)
8895 return;
8896
8897 for (i = 0; i < count; i++)
8898 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8899
8900 kvfree(dev->_rx);
8901 }
8902
8903 static void netdev_init_one_queue(struct net_device *dev,
8904 struct netdev_queue *queue, void *_unused)
8905 {
8906 /* Initialize queue lock */
8907 spin_lock_init(&queue->_xmit_lock);
8908 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
8909 queue->xmit_lock_owner = -1;
8910 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8911 queue->dev = dev;
8912 #ifdef CONFIG_BQL
8913 dql_init(&queue->dql, HZ);
8914 #endif
8915 }
8916
8917 static void netif_free_tx_queues(struct net_device *dev)
8918 {
8919 kvfree(dev->_tx);
8920 }
8921
8922 static int netif_alloc_netdev_queues(struct net_device *dev)
8923 {
8924 unsigned int count = dev->num_tx_queues;
8925 struct netdev_queue *tx;
8926 size_t sz = count * sizeof(*tx);
8927
8928 if (count < 1 || count > 0xffff)
8929 return -EINVAL;
8930
8931 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8932 if (!tx)
8933 return -ENOMEM;
8934
8935 dev->_tx = tx;
8936
8937 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8938 spin_lock_init(&dev->tx_global_lock);
8939
8940 return 0;
8941 }
8942
8943 void netif_tx_stop_all_queues(struct net_device *dev)
8944 {
8945 unsigned int i;
8946
8947 for (i = 0; i < dev->num_tx_queues; i++) {
8948 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8949
8950 netif_tx_stop_queue(txq);
8951 }
8952 }
8953 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8954
8955 static void netdev_register_lockdep_key(struct net_device *dev)
8956 {
8957 lockdep_register_key(&dev->qdisc_tx_busylock_key);
8958 lockdep_register_key(&dev->qdisc_running_key);
8959 lockdep_register_key(&dev->qdisc_xmit_lock_key);
8960 lockdep_register_key(&dev->addr_list_lock_key);
8961 }
8962
8963 static void netdev_unregister_lockdep_key(struct net_device *dev)
8964 {
8965 lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
8966 lockdep_unregister_key(&dev->qdisc_running_key);
8967 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
8968 lockdep_unregister_key(&dev->addr_list_lock_key);
8969 }
8970
8971 void netdev_update_lockdep_key(struct net_device *dev)
8972 {
8973 struct netdev_queue *queue;
8974 int i;
8975
8976 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
8977 lockdep_unregister_key(&dev->addr_list_lock_key);
8978
8979 lockdep_register_key(&dev->qdisc_xmit_lock_key);
8980 lockdep_register_key(&dev->addr_list_lock_key);
8981
8982 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
8983 for (i = 0; i < dev->num_tx_queues; i++) {
8984 queue = netdev_get_tx_queue(dev, i);
8985
8986 lockdep_set_class(&queue->_xmit_lock,
8987 &dev->qdisc_xmit_lock_key);
8988 }
8989 }
8990 EXPORT_SYMBOL(netdev_update_lockdep_key);
8991
8992 /**
8993 * register_netdevice - register a network device
8994 * @dev: device to register
8995 *
8996 * Take a completed network device structure and add it to the kernel
8997 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8998 * chain. 0 is returned on success. A negative errno code is returned
8999 * on a failure to set up the device, or if the name is a duplicate.
9000 *
9001 * Callers must hold the rtnl semaphore. You may want
9002 * register_netdev() instead of this.
9003 *
9004 * BUGS:
9005 * The locking appears insufficient to guarantee two parallel registers
9006 * will not get the same name.
9007 */
9008
9009 int register_netdevice(struct net_device *dev)
9010 {
9011 int ret;
9012 struct net *net = dev_net(dev);
9013
9014 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9015 NETDEV_FEATURE_COUNT);
9016 BUG_ON(dev_boot_phase);
9017 ASSERT_RTNL();
9018
9019 might_sleep();
9020
9021 /* When net_device's are persistent, this will be fatal. */
9022 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9023 BUG_ON(!net);
9024
9025 spin_lock_init(&dev->addr_list_lock);
9026 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9027
9028 ret = dev_get_valid_name(net, dev, dev->name);
9029 if (ret < 0)
9030 goto out;
9031
9032 /* Init, if this function is available */
9033 if (dev->netdev_ops->ndo_init) {
9034 ret = dev->netdev_ops->ndo_init(dev);
9035 if (ret) {
9036 if (ret > 0)
9037 ret = -EIO;
9038 goto out;
9039 }
9040 }
9041
9042 if (((dev->hw_features | dev->features) &
9043 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9044 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9045 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9046 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9047 ret = -EINVAL;
9048 goto err_uninit;
9049 }
9050
9051 ret = -EBUSY;
9052 if (!dev->ifindex)
9053 dev->ifindex = dev_new_index(net);
9054 else if (__dev_get_by_index(net, dev->ifindex))
9055 goto err_uninit;
9056
9057 /* Transfer changeable features to wanted_features and enable
9058 * software offloads (GSO and GRO).
9059 */
9060 dev->hw_features |= NETIF_F_SOFT_FEATURES;
9061 dev->features |= NETIF_F_SOFT_FEATURES;
9062
9063 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9064 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9065 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9066 }
9067
9068 dev->wanted_features = dev->features & dev->hw_features;
9069
9070 if (!(dev->flags & IFF_LOOPBACK))
9071 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9072
9073 /* If IPv4 TCP segmentation offload is supported we should also
9074 * allow the device to enable segmenting the frame with the option
9075 * of ignoring a static IP ID value. This doesn't enable the
9076 * feature itself but allows the user to enable it later.
9077 */
9078 if (dev->hw_features & NETIF_F_TSO)
9079 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9080 if (dev->vlan_features & NETIF_F_TSO)
9081 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9082 if (dev->mpls_features & NETIF_F_TSO)
9083 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9084 if (dev->hw_enc_features & NETIF_F_TSO)
9085 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9086
9087 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9088 */
9089 dev->vlan_features |= NETIF_F_HIGHDMA;
9090
9091 /* Make NETIF_F_SG inheritable to tunnel devices.
9092 */
9093 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9094
9095 /* Make NETIF_F_SG inheritable to MPLS.
9096 */
9097 dev->mpls_features |= NETIF_F_SG;
9098
9099 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9100 ret = notifier_to_errno(ret);
9101 if (ret)
9102 goto err_uninit;
9103
9104 ret = netdev_register_kobject(dev);
9105 if (ret)
9106 goto err_uninit;
9107 dev->reg_state = NETREG_REGISTERED;
9108
9109 __netdev_update_features(dev);
9110
9111 /*
9112 * Default initial state at registry is that the
9113 * device is present.
9114 */
9115
9116 set_bit(__LINK_STATE_PRESENT, &dev->state);
9117
9118 linkwatch_init_dev(dev);
9119
9120 dev_init_scheduler(dev);
9121 dev_hold(dev);
9122 list_netdevice(dev);
9123 add_device_randomness(dev->dev_addr, dev->addr_len);
9124
9125 /* If the device has permanent device address, driver should
9126 * set dev_addr and also addr_assign_type should be set to
9127 * NET_ADDR_PERM (default value).
9128 */
9129 if (dev->addr_assign_type == NET_ADDR_PERM)
9130 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9131
9132 /* Notify protocols, that a new device appeared. */
9133 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9134 ret = notifier_to_errno(ret);
9135 if (ret) {
9136 rollback_registered(dev);
9137 rcu_barrier();
9138
9139 dev->reg_state = NETREG_UNREGISTERED;
9140 }
9141 /*
9142 * Prevent userspace races by waiting until the network
9143 * device is fully setup before sending notifications.
9144 */
9145 if (!dev->rtnl_link_ops ||
9146 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9147 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9148
9149 out:
9150 return ret;
9151
9152 err_uninit:
9153 if (dev->netdev_ops->ndo_uninit)
9154 dev->netdev_ops->ndo_uninit(dev);
9155 if (dev->priv_destructor)
9156 dev->priv_destructor(dev);
9157 goto out;
9158 }
9159 EXPORT_SYMBOL(register_netdevice);
9160
9161 /**
9162 * init_dummy_netdev - init a dummy network device for NAPI
9163 * @dev: device to init
9164 *
9165 * This takes a network device structure and initialize the minimum
9166 * amount of fields so it can be used to schedule NAPI polls without
9167 * registering a full blown interface. This is to be used by drivers
9168 * that need to tie several hardware interfaces to a single NAPI
9169 * poll scheduler due to HW limitations.
9170 */
9171 int init_dummy_netdev(struct net_device *dev)
9172 {
9173 /* Clear everything. Note we don't initialize spinlocks
9174 * are they aren't supposed to be taken by any of the
9175 * NAPI code and this dummy netdev is supposed to be
9176 * only ever used for NAPI polls
9177 */
9178 memset(dev, 0, sizeof(struct net_device));
9179
9180 /* make sure we BUG if trying to hit standard
9181 * register/unregister code path
9182 */
9183 dev->reg_state = NETREG_DUMMY;
9184
9185 /* NAPI wants this */
9186 INIT_LIST_HEAD(&dev->napi_list);
9187
9188 /* a dummy interface is started by default */
9189 set_bit(__LINK_STATE_PRESENT, &dev->state);
9190 set_bit(__LINK_STATE_START, &dev->state);
9191
9192 /* napi_busy_loop stats accounting wants this */
9193 dev_net_set(dev, &init_net);
9194
9195 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9196 * because users of this 'device' dont need to change
9197 * its refcount.
9198 */
9199
9200 return 0;
9201 }
9202 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9203
9204
9205 /**
9206 * register_netdev - register a network device
9207 * @dev: device to register
9208 *
9209 * Take a completed network device structure and add it to the kernel
9210 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9211 * chain. 0 is returned on success. A negative errno code is returned
9212 * on a failure to set up the device, or if the name is a duplicate.
9213 *
9214 * This is a wrapper around register_netdevice that takes the rtnl semaphore
9215 * and expands the device name if you passed a format string to
9216 * alloc_netdev.
9217 */
9218 int register_netdev(struct net_device *dev)
9219 {
9220 int err;
9221
9222 if (rtnl_lock_killable())
9223 return -EINTR;
9224 err = register_netdevice(dev);
9225 rtnl_unlock();
9226 return err;
9227 }
9228 EXPORT_SYMBOL(register_netdev);
9229
9230 int netdev_refcnt_read(const struct net_device *dev)
9231 {
9232 int i, refcnt = 0;
9233
9234 for_each_possible_cpu(i)
9235 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9236 return refcnt;
9237 }
9238 EXPORT_SYMBOL(netdev_refcnt_read);
9239
9240 /**
9241 * netdev_wait_allrefs - wait until all references are gone.
9242 * @dev: target net_device
9243 *
9244 * This is called when unregistering network devices.
9245 *
9246 * Any protocol or device that holds a reference should register
9247 * for netdevice notification, and cleanup and put back the
9248 * reference if they receive an UNREGISTER event.
9249 * We can get stuck here if buggy protocols don't correctly
9250 * call dev_put.
9251 */
9252 static void netdev_wait_allrefs(struct net_device *dev)
9253 {
9254 unsigned long rebroadcast_time, warning_time;
9255 int refcnt;
9256
9257 linkwatch_forget_dev(dev);
9258
9259 rebroadcast_time = warning_time = jiffies;
9260 refcnt = netdev_refcnt_read(dev);
9261
9262 while (refcnt != 0) {
9263 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9264 rtnl_lock();
9265
9266 /* Rebroadcast unregister notification */
9267 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9268
9269 __rtnl_unlock();
9270 rcu_barrier();
9271 rtnl_lock();
9272
9273 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9274 &dev->state)) {
9275 /* We must not have linkwatch events
9276 * pending on unregister. If this
9277 * happens, we simply run the queue
9278 * unscheduled, resulting in a noop
9279 * for this device.
9280 */
9281 linkwatch_run_queue();
9282 }
9283
9284 __rtnl_unlock();
9285
9286 rebroadcast_time = jiffies;
9287 }
9288
9289 msleep(250);
9290
9291 refcnt = netdev_refcnt_read(dev);
9292
9293 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9294 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9295 dev->name, refcnt);
9296 warning_time = jiffies;
9297 }
9298 }
9299 }
9300
9301 /* The sequence is:
9302 *
9303 * rtnl_lock();
9304 * ...
9305 * register_netdevice(x1);
9306 * register_netdevice(x2);
9307 * ...
9308 * unregister_netdevice(y1);
9309 * unregister_netdevice(y2);
9310 * ...
9311 * rtnl_unlock();
9312 * free_netdev(y1);
9313 * free_netdev(y2);
9314 *
9315 * We are invoked by rtnl_unlock().
9316 * This allows us to deal with problems:
9317 * 1) We can delete sysfs objects which invoke hotplug
9318 * without deadlocking with linkwatch via keventd.
9319 * 2) Since we run with the RTNL semaphore not held, we can sleep
9320 * safely in order to wait for the netdev refcnt to drop to zero.
9321 *
9322 * We must not return until all unregister events added during
9323 * the interval the lock was held have been completed.
9324 */
9325 void netdev_run_todo(void)
9326 {
9327 struct list_head list;
9328
9329 /* Snapshot list, allow later requests */
9330 list_replace_init(&net_todo_list, &list);
9331
9332 __rtnl_unlock();
9333
9334
9335 /* Wait for rcu callbacks to finish before next phase */
9336 if (!list_empty(&list))
9337 rcu_barrier();
9338
9339 while (!list_empty(&list)) {
9340 struct net_device *dev
9341 = list_first_entry(&list, struct net_device, todo_list);
9342 list_del(&dev->todo_list);
9343
9344 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9345 pr_err("network todo '%s' but state %d\n",
9346 dev->name, dev->reg_state);
9347 dump_stack();
9348 continue;
9349 }
9350
9351 dev->reg_state = NETREG_UNREGISTERED;
9352
9353 netdev_wait_allrefs(dev);
9354
9355 /* paranoia */
9356 BUG_ON(netdev_refcnt_read(dev));
9357 BUG_ON(!list_empty(&dev->ptype_all));
9358 BUG_ON(!list_empty(&dev->ptype_specific));
9359 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9360 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9361 #if IS_ENABLED(CONFIG_DECNET)
9362 WARN_ON(dev->dn_ptr);
9363 #endif
9364 if (dev->priv_destructor)
9365 dev->priv_destructor(dev);
9366 if (dev->needs_free_netdev)
9367 free_netdev(dev);
9368
9369 /* Report a network device has been unregistered */
9370 rtnl_lock();
9371 dev_net(dev)->dev_unreg_count--;
9372 __rtnl_unlock();
9373 wake_up(&netdev_unregistering_wq);
9374
9375 /* Free network device */
9376 kobject_put(&dev->dev.kobj);
9377 }
9378 }
9379
9380 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9381 * all the same fields in the same order as net_device_stats, with only
9382 * the type differing, but rtnl_link_stats64 may have additional fields
9383 * at the end for newer counters.
9384 */
9385 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9386 const struct net_device_stats *netdev_stats)
9387 {
9388 #if BITS_PER_LONG == 64
9389 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9390 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9391 /* zero out counters that only exist in rtnl_link_stats64 */
9392 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9393 sizeof(*stats64) - sizeof(*netdev_stats));
9394 #else
9395 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9396 const unsigned long *src = (const unsigned long *)netdev_stats;
9397 u64 *dst = (u64 *)stats64;
9398
9399 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9400 for (i = 0; i < n; i++)
9401 dst[i] = src[i];
9402 /* zero out counters that only exist in rtnl_link_stats64 */
9403 memset((char *)stats64 + n * sizeof(u64), 0,
9404 sizeof(*stats64) - n * sizeof(u64));
9405 #endif
9406 }
9407 EXPORT_SYMBOL(netdev_stats_to_stats64);
9408
9409 /**
9410 * dev_get_stats - get network device statistics
9411 * @dev: device to get statistics from
9412 * @storage: place to store stats
9413 *
9414 * Get network statistics from device. Return @storage.
9415 * The device driver may provide its own method by setting
9416 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9417 * otherwise the internal statistics structure is used.
9418 */
9419 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9420 struct rtnl_link_stats64 *storage)
9421 {
9422 const struct net_device_ops *ops = dev->netdev_ops;
9423
9424 if (ops->ndo_get_stats64) {
9425 memset(storage, 0, sizeof(*storage));
9426 ops->ndo_get_stats64(dev, storage);
9427 } else if (ops->ndo_get_stats) {
9428 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9429 } else {
9430 netdev_stats_to_stats64(storage, &dev->stats);
9431 }
9432 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9433 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9434 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9435 return storage;
9436 }
9437 EXPORT_SYMBOL(dev_get_stats);
9438
9439 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9440 {
9441 struct netdev_queue *queue = dev_ingress_queue(dev);
9442
9443 #ifdef CONFIG_NET_CLS_ACT
9444 if (queue)
9445 return queue;
9446 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9447 if (!queue)
9448 return NULL;
9449 netdev_init_one_queue(dev, queue, NULL);
9450 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9451 queue->qdisc_sleeping = &noop_qdisc;
9452 rcu_assign_pointer(dev->ingress_queue, queue);
9453 #endif
9454 return queue;
9455 }
9456
9457 static const struct ethtool_ops default_ethtool_ops;
9458
9459 void netdev_set_default_ethtool_ops(struct net_device *dev,
9460 const struct ethtool_ops *ops)
9461 {
9462 if (dev->ethtool_ops == &default_ethtool_ops)
9463 dev->ethtool_ops = ops;
9464 }
9465 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9466
9467 void netdev_freemem(struct net_device *dev)
9468 {
9469 char *addr = (char *)dev - dev->padded;
9470
9471 kvfree(addr);
9472 }
9473
9474 /**
9475 * alloc_netdev_mqs - allocate network device
9476 * @sizeof_priv: size of private data to allocate space for
9477 * @name: device name format string
9478 * @name_assign_type: origin of device name
9479 * @setup: callback to initialize device
9480 * @txqs: the number of TX subqueues to allocate
9481 * @rxqs: the number of RX subqueues to allocate
9482 *
9483 * Allocates a struct net_device with private data area for driver use
9484 * and performs basic initialization. Also allocates subqueue structs
9485 * for each queue on the device.
9486 */
9487 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9488 unsigned char name_assign_type,
9489 void (*setup)(struct net_device *),
9490 unsigned int txqs, unsigned int rxqs)
9491 {
9492 struct net_device *dev;
9493 unsigned int alloc_size;
9494 struct net_device *p;
9495
9496 BUG_ON(strlen(name) >= sizeof(dev->name));
9497
9498 if (txqs < 1) {
9499 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9500 return NULL;
9501 }
9502
9503 if (rxqs < 1) {
9504 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9505 return NULL;
9506 }
9507
9508 alloc_size = sizeof(struct net_device);
9509 if (sizeof_priv) {
9510 /* ensure 32-byte alignment of private area */
9511 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9512 alloc_size += sizeof_priv;
9513 }
9514 /* ensure 32-byte alignment of whole construct */
9515 alloc_size += NETDEV_ALIGN - 1;
9516
9517 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9518 if (!p)
9519 return NULL;
9520
9521 dev = PTR_ALIGN(p, NETDEV_ALIGN);
9522 dev->padded = (char *)dev - (char *)p;
9523
9524 dev->pcpu_refcnt = alloc_percpu(int);
9525 if (!dev->pcpu_refcnt)
9526 goto free_dev;
9527
9528 if (dev_addr_init(dev))
9529 goto free_pcpu;
9530
9531 dev_mc_init(dev);
9532 dev_uc_init(dev);
9533
9534 dev_net_set(dev, &init_net);
9535
9536 netdev_register_lockdep_key(dev);
9537
9538 dev->gso_max_size = GSO_MAX_SIZE;
9539 dev->gso_max_segs = GSO_MAX_SEGS;
9540 dev->upper_level = 1;
9541 dev->lower_level = 1;
9542
9543 INIT_LIST_HEAD(&dev->napi_list);
9544 INIT_LIST_HEAD(&dev->unreg_list);
9545 INIT_LIST_HEAD(&dev->close_list);
9546 INIT_LIST_HEAD(&dev->link_watch_list);
9547 INIT_LIST_HEAD(&dev->adj_list.upper);
9548 INIT_LIST_HEAD(&dev->adj_list.lower);
9549 INIT_LIST_HEAD(&dev->ptype_all);
9550 INIT_LIST_HEAD(&dev->ptype_specific);
9551 #ifdef CONFIG_NET_SCHED
9552 hash_init(dev->qdisc_hash);
9553 #endif
9554 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9555 setup(dev);
9556
9557 if (!dev->tx_queue_len) {
9558 dev->priv_flags |= IFF_NO_QUEUE;
9559 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9560 }
9561
9562 dev->num_tx_queues = txqs;
9563 dev->real_num_tx_queues = txqs;
9564 if (netif_alloc_netdev_queues(dev))
9565 goto free_all;
9566
9567 dev->num_rx_queues = rxqs;
9568 dev->real_num_rx_queues = rxqs;
9569 if (netif_alloc_rx_queues(dev))
9570 goto free_all;
9571
9572 strcpy(dev->name, name);
9573 dev->name_assign_type = name_assign_type;
9574 dev->group = INIT_NETDEV_GROUP;
9575 if (!dev->ethtool_ops)
9576 dev->ethtool_ops = &default_ethtool_ops;
9577
9578 nf_hook_ingress_init(dev);
9579
9580 return dev;
9581
9582 free_all:
9583 free_netdev(dev);
9584 return NULL;
9585
9586 free_pcpu:
9587 free_percpu(dev->pcpu_refcnt);
9588 free_dev:
9589 netdev_freemem(dev);
9590 return NULL;
9591 }
9592 EXPORT_SYMBOL(alloc_netdev_mqs);
9593
9594 /**
9595 * free_netdev - free network device
9596 * @dev: device
9597 *
9598 * This function does the last stage of destroying an allocated device
9599 * interface. The reference to the device object is released. If this
9600 * is the last reference then it will be freed.Must be called in process
9601 * context.
9602 */
9603 void free_netdev(struct net_device *dev)
9604 {
9605 struct napi_struct *p, *n;
9606
9607 might_sleep();
9608 netif_free_tx_queues(dev);
9609 netif_free_rx_queues(dev);
9610
9611 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9612
9613 /* Flush device addresses */
9614 dev_addr_flush(dev);
9615
9616 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9617 netif_napi_del(p);
9618
9619 free_percpu(dev->pcpu_refcnt);
9620 dev->pcpu_refcnt = NULL;
9621
9622 netdev_unregister_lockdep_key(dev);
9623
9624 /* Compatibility with error handling in drivers */
9625 if (dev->reg_state == NETREG_UNINITIALIZED) {
9626 netdev_freemem(dev);
9627 return;
9628 }
9629
9630 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9631 dev->reg_state = NETREG_RELEASED;
9632
9633 /* will free via device release */
9634 put_device(&dev->dev);
9635 }
9636 EXPORT_SYMBOL(free_netdev);
9637
9638 /**
9639 * synchronize_net - Synchronize with packet receive processing
9640 *
9641 * Wait for packets currently being received to be done.
9642 * Does not block later packets from starting.
9643 */
9644 void synchronize_net(void)
9645 {
9646 might_sleep();
9647 if (rtnl_is_locked())
9648 synchronize_rcu_expedited();
9649 else
9650 synchronize_rcu();
9651 }
9652 EXPORT_SYMBOL(synchronize_net);
9653
9654 /**
9655 * unregister_netdevice_queue - remove device from the kernel
9656 * @dev: device
9657 * @head: list
9658 *
9659 * This function shuts down a device interface and removes it
9660 * from the kernel tables.
9661 * If head not NULL, device is queued to be unregistered later.
9662 *
9663 * Callers must hold the rtnl semaphore. You may want
9664 * unregister_netdev() instead of this.
9665 */
9666
9667 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9668 {
9669 ASSERT_RTNL();
9670
9671 if (head) {
9672 list_move_tail(&dev->unreg_list, head);
9673 } else {
9674 rollback_registered(dev);
9675 /* Finish processing unregister after unlock */
9676 net_set_todo(dev);
9677 }
9678 }
9679 EXPORT_SYMBOL(unregister_netdevice_queue);
9680
9681 /**
9682 * unregister_netdevice_many - unregister many devices
9683 * @head: list of devices
9684 *
9685 * Note: As most callers use a stack allocated list_head,
9686 * we force a list_del() to make sure stack wont be corrupted later.
9687 */
9688 void unregister_netdevice_many(struct list_head *head)
9689 {
9690 struct net_device *dev;
9691
9692 if (!list_empty(head)) {
9693 rollback_registered_many(head);
9694 list_for_each_entry(dev, head, unreg_list)
9695 net_set_todo(dev);
9696 list_del(head);
9697 }
9698 }
9699 EXPORT_SYMBOL(unregister_netdevice_many);
9700
9701 /**
9702 * unregister_netdev - remove device from the kernel
9703 * @dev: device
9704 *
9705 * This function shuts down a device interface and removes it
9706 * from the kernel tables.
9707 *
9708 * This is just a wrapper for unregister_netdevice that takes
9709 * the rtnl semaphore. In general you want to use this and not
9710 * unregister_netdevice.
9711 */
9712 void unregister_netdev(struct net_device *dev)
9713 {
9714 rtnl_lock();
9715 unregister_netdevice(dev);
9716 rtnl_unlock();
9717 }
9718 EXPORT_SYMBOL(unregister_netdev);
9719
9720 /**
9721 * dev_change_net_namespace - move device to different nethost namespace
9722 * @dev: device
9723 * @net: network namespace
9724 * @pat: If not NULL name pattern to try if the current device name
9725 * is already taken in the destination network namespace.
9726 *
9727 * This function shuts down a device interface and moves it
9728 * to a new network namespace. On success 0 is returned, on
9729 * a failure a netagive errno code is returned.
9730 *
9731 * Callers must hold the rtnl semaphore.
9732 */
9733
9734 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9735 {
9736 int err, new_nsid, new_ifindex;
9737
9738 ASSERT_RTNL();
9739
9740 /* Don't allow namespace local devices to be moved. */
9741 err = -EINVAL;
9742 if (dev->features & NETIF_F_NETNS_LOCAL)
9743 goto out;
9744
9745 /* Ensure the device has been registrered */
9746 if (dev->reg_state != NETREG_REGISTERED)
9747 goto out;
9748
9749 /* Get out if there is nothing todo */
9750 err = 0;
9751 if (net_eq(dev_net(dev), net))
9752 goto out;
9753
9754 /* Pick the destination device name, and ensure
9755 * we can use it in the destination network namespace.
9756 */
9757 err = -EEXIST;
9758 if (__dev_get_by_name(net, dev->name)) {
9759 /* We get here if we can't use the current device name */
9760 if (!pat)
9761 goto out;
9762 err = dev_get_valid_name(net, dev, pat);
9763 if (err < 0)
9764 goto out;
9765 }
9766
9767 /*
9768 * And now a mini version of register_netdevice unregister_netdevice.
9769 */
9770
9771 /* If device is running close it first. */
9772 dev_close(dev);
9773
9774 /* And unlink it from device chain */
9775 unlist_netdevice(dev);
9776
9777 synchronize_net();
9778
9779 /* Shutdown queueing discipline. */
9780 dev_shutdown(dev);
9781
9782 /* Notify protocols, that we are about to destroy
9783 * this device. They should clean all the things.
9784 *
9785 * Note that dev->reg_state stays at NETREG_REGISTERED.
9786 * This is wanted because this way 8021q and macvlan know
9787 * the device is just moving and can keep their slaves up.
9788 */
9789 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9790 rcu_barrier();
9791
9792 new_nsid = peernet2id_alloc(dev_net(dev), net);
9793 /* If there is an ifindex conflict assign a new one */
9794 if (__dev_get_by_index(net, dev->ifindex))
9795 new_ifindex = dev_new_index(net);
9796 else
9797 new_ifindex = dev->ifindex;
9798
9799 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9800 new_ifindex);
9801
9802 /*
9803 * Flush the unicast and multicast chains
9804 */
9805 dev_uc_flush(dev);
9806 dev_mc_flush(dev);
9807
9808 /* Send a netdev-removed uevent to the old namespace */
9809 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9810 netdev_adjacent_del_links(dev);
9811
9812 /* Actually switch the network namespace */
9813 dev_net_set(dev, net);
9814 dev->ifindex = new_ifindex;
9815
9816 /* Send a netdev-add uevent to the new namespace */
9817 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9818 netdev_adjacent_add_links(dev);
9819
9820 /* Fixup kobjects */
9821 err = device_rename(&dev->dev, dev->name);
9822 WARN_ON(err);
9823
9824 /* Add the device back in the hashes */
9825 list_netdevice(dev);
9826
9827 /* Notify protocols, that a new device appeared. */
9828 call_netdevice_notifiers(NETDEV_REGISTER, dev);
9829
9830 /*
9831 * Prevent userspace races by waiting until the network
9832 * device is fully setup before sending notifications.
9833 */
9834 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9835
9836 synchronize_net();
9837 err = 0;
9838 out:
9839 return err;
9840 }
9841 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9842
9843 static int dev_cpu_dead(unsigned int oldcpu)
9844 {
9845 struct sk_buff **list_skb;
9846 struct sk_buff *skb;
9847 unsigned int cpu;
9848 struct softnet_data *sd, *oldsd, *remsd = NULL;
9849
9850 local_irq_disable();
9851 cpu = smp_processor_id();
9852 sd = &per_cpu(softnet_data, cpu);
9853 oldsd = &per_cpu(softnet_data, oldcpu);
9854
9855 /* Find end of our completion_queue. */
9856 list_skb = &sd->completion_queue;
9857 while (*list_skb)
9858 list_skb = &(*list_skb)->next;
9859 /* Append completion queue from offline CPU. */
9860 *list_skb = oldsd->completion_queue;
9861 oldsd->completion_queue = NULL;
9862
9863 /* Append output queue from offline CPU. */
9864 if (oldsd->output_queue) {
9865 *sd->output_queue_tailp = oldsd->output_queue;
9866 sd->output_queue_tailp = oldsd->output_queue_tailp;
9867 oldsd->output_queue = NULL;
9868 oldsd->output_queue_tailp = &oldsd->output_queue;
9869 }
9870 /* Append NAPI poll list from offline CPU, with one exception :
9871 * process_backlog() must be called by cpu owning percpu backlog.
9872 * We properly handle process_queue & input_pkt_queue later.
9873 */
9874 while (!list_empty(&oldsd->poll_list)) {
9875 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9876 struct napi_struct,
9877 poll_list);
9878
9879 list_del_init(&napi->poll_list);
9880 if (napi->poll == process_backlog)
9881 napi->state = 0;
9882 else
9883 ____napi_schedule(sd, napi);
9884 }
9885
9886 raise_softirq_irqoff(NET_TX_SOFTIRQ);
9887 local_irq_enable();
9888
9889 #ifdef CONFIG_RPS
9890 remsd = oldsd->rps_ipi_list;
9891 oldsd->rps_ipi_list = NULL;
9892 #endif
9893 /* send out pending IPI's on offline CPU */
9894 net_rps_send_ipi(remsd);
9895
9896 /* Process offline CPU's input_pkt_queue */
9897 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9898 netif_rx_ni(skb);
9899 input_queue_head_incr(oldsd);
9900 }
9901 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9902 netif_rx_ni(skb);
9903 input_queue_head_incr(oldsd);
9904 }
9905
9906 return 0;
9907 }
9908
9909 /**
9910 * netdev_increment_features - increment feature set by one
9911 * @all: current feature set
9912 * @one: new feature set
9913 * @mask: mask feature set
9914 *
9915 * Computes a new feature set after adding a device with feature set
9916 * @one to the master device with current feature set @all. Will not
9917 * enable anything that is off in @mask. Returns the new feature set.
9918 */
9919 netdev_features_t netdev_increment_features(netdev_features_t all,
9920 netdev_features_t one, netdev_features_t mask)
9921 {
9922 if (mask & NETIF_F_HW_CSUM)
9923 mask |= NETIF_F_CSUM_MASK;
9924 mask |= NETIF_F_VLAN_CHALLENGED;
9925
9926 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9927 all &= one | ~NETIF_F_ALL_FOR_ALL;
9928
9929 /* If one device supports hw checksumming, set for all. */
9930 if (all & NETIF_F_HW_CSUM)
9931 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9932
9933 return all;
9934 }
9935 EXPORT_SYMBOL(netdev_increment_features);
9936
9937 static struct hlist_head * __net_init netdev_create_hash(void)
9938 {
9939 int i;
9940 struct hlist_head *hash;
9941
9942 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9943 if (hash != NULL)
9944 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9945 INIT_HLIST_HEAD(&hash[i]);
9946
9947 return hash;
9948 }
9949
9950 /* Initialize per network namespace state */
9951 static int __net_init netdev_init(struct net *net)
9952 {
9953 BUILD_BUG_ON(GRO_HASH_BUCKETS >
9954 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9955
9956 if (net != &init_net)
9957 INIT_LIST_HEAD(&net->dev_base_head);
9958
9959 net->dev_name_head = netdev_create_hash();
9960 if (net->dev_name_head == NULL)
9961 goto err_name;
9962
9963 net->dev_index_head = netdev_create_hash();
9964 if (net->dev_index_head == NULL)
9965 goto err_idx;
9966
9967 return 0;
9968
9969 err_idx:
9970 kfree(net->dev_name_head);
9971 err_name:
9972 return -ENOMEM;
9973 }
9974
9975 /**
9976 * netdev_drivername - network driver for the device
9977 * @dev: network device
9978 *
9979 * Determine network driver for device.
9980 */
9981 const char *netdev_drivername(const struct net_device *dev)
9982 {
9983 const struct device_driver *driver;
9984 const struct device *parent;
9985 const char *empty = "";
9986
9987 parent = dev->dev.parent;
9988 if (!parent)
9989 return empty;
9990
9991 driver = parent->driver;
9992 if (driver && driver->name)
9993 return driver->name;
9994 return empty;
9995 }
9996
9997 static void __netdev_printk(const char *level, const struct net_device *dev,
9998 struct va_format *vaf)
9999 {
10000 if (dev && dev->dev.parent) {
10001 dev_printk_emit(level[1] - '0',
10002 dev->dev.parent,
10003 "%s %s %s%s: %pV",
10004 dev_driver_string(dev->dev.parent),
10005 dev_name(dev->dev.parent),
10006 netdev_name(dev), netdev_reg_state(dev),
10007 vaf);
10008 } else if (dev) {
10009 printk("%s%s%s: %pV",
10010 level, netdev_name(dev), netdev_reg_state(dev), vaf);
10011 } else {
10012 printk("%s(NULL net_device): %pV", level, vaf);
10013 }
10014 }
10015
10016 void netdev_printk(const char *level, const struct net_device *dev,
10017 const char *format, ...)
10018 {
10019 struct va_format vaf;
10020 va_list args;
10021
10022 va_start(args, format);
10023
10024 vaf.fmt = format;
10025 vaf.va = &args;
10026
10027 __netdev_printk(level, dev, &vaf);
10028
10029 va_end(args);
10030 }
10031 EXPORT_SYMBOL(netdev_printk);
10032
10033 #define define_netdev_printk_level(func, level) \
10034 void func(const struct net_device *dev, const char *fmt, ...) \
10035 { \
10036 struct va_format vaf; \
10037 va_list args; \
10038 \
10039 va_start(args, fmt); \
10040 \
10041 vaf.fmt = fmt; \
10042 vaf.va = &args; \
10043 \
10044 __netdev_printk(level, dev, &vaf); \
10045 \
10046 va_end(args); \
10047 } \
10048 EXPORT_SYMBOL(func);
10049
10050 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10051 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10052 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10053 define_netdev_printk_level(netdev_err, KERN_ERR);
10054 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10055 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10056 define_netdev_printk_level(netdev_info, KERN_INFO);
10057
10058 static void __net_exit netdev_exit(struct net *net)
10059 {
10060 kfree(net->dev_name_head);
10061 kfree(net->dev_index_head);
10062 if (net != &init_net)
10063 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10064 }
10065
10066 static struct pernet_operations __net_initdata netdev_net_ops = {
10067 .init = netdev_init,
10068 .exit = netdev_exit,
10069 };
10070
10071 static void __net_exit default_device_exit(struct net *net)
10072 {
10073 struct net_device *dev, *aux;
10074 /*
10075 * Push all migratable network devices back to the
10076 * initial network namespace
10077 */
10078 rtnl_lock();
10079 for_each_netdev_safe(net, dev, aux) {
10080 int err;
10081 char fb_name[IFNAMSIZ];
10082
10083 /* Ignore unmoveable devices (i.e. loopback) */
10084 if (dev->features & NETIF_F_NETNS_LOCAL)
10085 continue;
10086
10087 /* Leave virtual devices for the generic cleanup */
10088 if (dev->rtnl_link_ops)
10089 continue;
10090
10091 /* Push remaining network devices to init_net */
10092 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10093 if (__dev_get_by_name(&init_net, fb_name))
10094 snprintf(fb_name, IFNAMSIZ, "dev%%d");
10095 err = dev_change_net_namespace(dev, &init_net, fb_name);
10096 if (err) {
10097 pr_emerg("%s: failed to move %s to init_net: %d\n",
10098 __func__, dev->name, err);
10099 BUG();
10100 }
10101 }
10102 rtnl_unlock();
10103 }
10104
10105 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10106 {
10107 /* Return with the rtnl_lock held when there are no network
10108 * devices unregistering in any network namespace in net_list.
10109 */
10110 struct net *net;
10111 bool unregistering;
10112 DEFINE_WAIT_FUNC(wait, woken_wake_function);
10113
10114 add_wait_queue(&netdev_unregistering_wq, &wait);
10115 for (;;) {
10116 unregistering = false;
10117 rtnl_lock();
10118 list_for_each_entry(net, net_list, exit_list) {
10119 if (net->dev_unreg_count > 0) {
10120 unregistering = true;
10121 break;
10122 }
10123 }
10124 if (!unregistering)
10125 break;
10126 __rtnl_unlock();
10127
10128 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10129 }
10130 remove_wait_queue(&netdev_unregistering_wq, &wait);
10131 }
10132
10133 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10134 {
10135 /* At exit all network devices most be removed from a network
10136 * namespace. Do this in the reverse order of registration.
10137 * Do this across as many network namespaces as possible to
10138 * improve batching efficiency.
10139 */
10140 struct net_device *dev;
10141 struct net *net;
10142 LIST_HEAD(dev_kill_list);
10143
10144 /* To prevent network device cleanup code from dereferencing
10145 * loopback devices or network devices that have been freed
10146 * wait here for all pending unregistrations to complete,
10147 * before unregistring the loopback device and allowing the
10148 * network namespace be freed.
10149 *
10150 * The netdev todo list containing all network devices
10151 * unregistrations that happen in default_device_exit_batch
10152 * will run in the rtnl_unlock() at the end of
10153 * default_device_exit_batch.
10154 */
10155 rtnl_lock_unregistering(net_list);
10156 list_for_each_entry(net, net_list, exit_list) {
10157 for_each_netdev_reverse(net, dev) {
10158 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10159 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10160 else
10161 unregister_netdevice_queue(dev, &dev_kill_list);
10162 }
10163 }
10164 unregister_netdevice_many(&dev_kill_list);
10165 rtnl_unlock();
10166 }
10167
10168 static struct pernet_operations __net_initdata default_device_ops = {
10169 .exit = default_device_exit,
10170 .exit_batch = default_device_exit_batch,
10171 };
10172
10173 /*
10174 * Initialize the DEV module. At boot time this walks the device list and
10175 * unhooks any devices that fail to initialise (normally hardware not
10176 * present) and leaves us with a valid list of present and active devices.
10177 *
10178 */
10179
10180 /*
10181 * This is called single threaded during boot, so no need
10182 * to take the rtnl semaphore.
10183 */
10184 static int __init net_dev_init(void)
10185 {
10186 int i, rc = -ENOMEM;
10187
10188 BUG_ON(!dev_boot_phase);
10189
10190 if (dev_proc_init())
10191 goto out;
10192
10193 if (netdev_kobject_init())
10194 goto out;
10195
10196 INIT_LIST_HEAD(&ptype_all);
10197 for (i = 0; i < PTYPE_HASH_SIZE; i++)
10198 INIT_LIST_HEAD(&ptype_base[i]);
10199
10200 INIT_LIST_HEAD(&offload_base);
10201
10202 if (register_pernet_subsys(&netdev_net_ops))
10203 goto out;
10204
10205 /*
10206 * Initialise the packet receive queues.
10207 */
10208
10209 for_each_possible_cpu(i) {
10210 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10211 struct softnet_data *sd = &per_cpu(softnet_data, i);
10212
10213 INIT_WORK(flush, flush_backlog);
10214
10215 skb_queue_head_init(&sd->input_pkt_queue);
10216 skb_queue_head_init(&sd->process_queue);
10217 #ifdef CONFIG_XFRM_OFFLOAD
10218 skb_queue_head_init(&sd->xfrm_backlog);
10219 #endif
10220 INIT_LIST_HEAD(&sd->poll_list);
10221 sd->output_queue_tailp = &sd->output_queue;
10222 #ifdef CONFIG_RPS
10223 sd->csd.func = rps_trigger_softirq;
10224 sd->csd.info = sd;
10225 sd->cpu = i;
10226 #endif
10227
10228 init_gro_hash(&sd->backlog);
10229 sd->backlog.poll = process_backlog;
10230 sd->backlog.weight = weight_p;
10231 }
10232
10233 dev_boot_phase = 0;
10234
10235 /* The loopback device is special if any other network devices
10236 * is present in a network namespace the loopback device must
10237 * be present. Since we now dynamically allocate and free the
10238 * loopback device ensure this invariant is maintained by
10239 * keeping the loopback device as the first device on the
10240 * list of network devices. Ensuring the loopback devices
10241 * is the first device that appears and the last network device
10242 * that disappears.
10243 */
10244 if (register_pernet_device(&loopback_net_ops))
10245 goto out;
10246
10247 if (register_pernet_device(&default_device_ops))
10248 goto out;
10249
10250 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10251 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10252
10253 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10254 NULL, dev_cpu_dead);
10255 WARN_ON(rc < 0);
10256 rc = 0;
10257 out:
10258 return rc;
10259 }
10260
10261 subsys_initcall(net_dev_init);