]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
net: Track start of busy loop instead of when it should end
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143
144 #include "net-sysfs.h"
145
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly; /* Taps */
156 static struct list_head offload_base __read_mostly;
157
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
162
163 /*
164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165 * semaphore.
166 *
167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
170 * dev_base_head list, and hold dev_base_lock for writing when they do the
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191 static seqcount_t devnet_rename_seq;
192
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195 while (++net->dev_base_seq == 0)
196 ;
197 }
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238
239 dev_base_seq_inc(net);
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255
256 dev_base_seq_inc(dev_net(dev));
257 }
258
259 /*
260 * Our notifier list
261 */
262
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264
265 /*
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
268 */
269
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273 #ifdef CONFIG_LOCKDEP
274 /*
275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276 * according to dev->type
277 */
278 static const unsigned short netdev_lock_type[] = {
279 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] = {
296 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356 *
357 * Protocol management and registration routines
358 *
359 *******************************************************************************/
360
361
362 /*
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
365 * here.
366 *
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
375 * --ANK (980803)
376 */
377
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380 if (pt->type == htons(ETH_P_ALL))
381 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
382 else
383 return pt->dev ? &pt->dev->ptype_specific :
384 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
385 }
386
387 /**
388 * dev_add_pack - add packet handler
389 * @pt: packet type declaration
390 *
391 * Add a protocol handler to the networking stack. The passed &packet_type
392 * is linked into kernel lists and may not be freed until it has been
393 * removed from the kernel lists.
394 *
395 * This call does not sleep therefore it can not
396 * guarantee all CPU's that are in middle of receiving packets
397 * will see the new packet type (until the next received packet).
398 */
399
400 void dev_add_pack(struct packet_type *pt)
401 {
402 struct list_head *head = ptype_head(pt);
403
404 spin_lock(&ptype_lock);
405 list_add_rcu(&pt->list, head);
406 spin_unlock(&ptype_lock);
407 }
408 EXPORT_SYMBOL(dev_add_pack);
409
410 /**
411 * __dev_remove_pack - remove packet handler
412 * @pt: packet type declaration
413 *
414 * Remove a protocol handler that was previously added to the kernel
415 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
416 * from the kernel lists and can be freed or reused once this function
417 * returns.
418 *
419 * The packet type might still be in use by receivers
420 * and must not be freed until after all the CPU's have gone
421 * through a quiescent state.
422 */
423 void __dev_remove_pack(struct packet_type *pt)
424 {
425 struct list_head *head = ptype_head(pt);
426 struct packet_type *pt1;
427
428 spin_lock(&ptype_lock);
429
430 list_for_each_entry(pt1, head, list) {
431 if (pt == pt1) {
432 list_del_rcu(&pt->list);
433 goto out;
434 }
435 }
436
437 pr_warn("dev_remove_pack: %p not found\n", pt);
438 out:
439 spin_unlock(&ptype_lock);
440 }
441 EXPORT_SYMBOL(__dev_remove_pack);
442
443 /**
444 * dev_remove_pack - remove packet handler
445 * @pt: packet type declaration
446 *
447 * Remove a protocol handler that was previously added to the kernel
448 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
449 * from the kernel lists and can be freed or reused once this function
450 * returns.
451 *
452 * This call sleeps to guarantee that no CPU is looking at the packet
453 * type after return.
454 */
455 void dev_remove_pack(struct packet_type *pt)
456 {
457 __dev_remove_pack(pt);
458
459 synchronize_net();
460 }
461 EXPORT_SYMBOL(dev_remove_pack);
462
463
464 /**
465 * dev_add_offload - register offload handlers
466 * @po: protocol offload declaration
467 *
468 * Add protocol offload handlers to the networking stack. The passed
469 * &proto_offload is linked into kernel lists and may not be freed until
470 * it has been removed from the kernel lists.
471 *
472 * This call does not sleep therefore it can not
473 * guarantee all CPU's that are in middle of receiving packets
474 * will see the new offload handlers (until the next received packet).
475 */
476 void dev_add_offload(struct packet_offload *po)
477 {
478 struct packet_offload *elem;
479
480 spin_lock(&offload_lock);
481 list_for_each_entry(elem, &offload_base, list) {
482 if (po->priority < elem->priority)
483 break;
484 }
485 list_add_rcu(&po->list, elem->list.prev);
486 spin_unlock(&offload_lock);
487 }
488 EXPORT_SYMBOL(dev_add_offload);
489
490 /**
491 * __dev_remove_offload - remove offload handler
492 * @po: packet offload declaration
493 *
494 * Remove a protocol offload handler that was previously added to the
495 * kernel offload handlers by dev_add_offload(). The passed &offload_type
496 * is removed from the kernel lists and can be freed or reused once this
497 * function returns.
498 *
499 * The packet type might still be in use by receivers
500 * and must not be freed until after all the CPU's have gone
501 * through a quiescent state.
502 */
503 static void __dev_remove_offload(struct packet_offload *po)
504 {
505 struct list_head *head = &offload_base;
506 struct packet_offload *po1;
507
508 spin_lock(&offload_lock);
509
510 list_for_each_entry(po1, head, list) {
511 if (po == po1) {
512 list_del_rcu(&po->list);
513 goto out;
514 }
515 }
516
517 pr_warn("dev_remove_offload: %p not found\n", po);
518 out:
519 spin_unlock(&offload_lock);
520 }
521
522 /**
523 * dev_remove_offload - remove packet offload handler
524 * @po: packet offload declaration
525 *
526 * Remove a packet offload handler that was previously added to the kernel
527 * offload handlers by dev_add_offload(). The passed &offload_type is
528 * removed from the kernel lists and can be freed or reused once this
529 * function returns.
530 *
531 * This call sleeps to guarantee that no CPU is looking at the packet
532 * type after return.
533 */
534 void dev_remove_offload(struct packet_offload *po)
535 {
536 __dev_remove_offload(po);
537
538 synchronize_net();
539 }
540 EXPORT_SYMBOL(dev_remove_offload);
541
542 /******************************************************************************
543 *
544 * Device Boot-time Settings Routines
545 *
546 ******************************************************************************/
547
548 /* Boot time configuration table */
549 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
550
551 /**
552 * netdev_boot_setup_add - add new setup entry
553 * @name: name of the device
554 * @map: configured settings for the device
555 *
556 * Adds new setup entry to the dev_boot_setup list. The function
557 * returns 0 on error and 1 on success. This is a generic routine to
558 * all netdevices.
559 */
560 static int netdev_boot_setup_add(char *name, struct ifmap *map)
561 {
562 struct netdev_boot_setup *s;
563 int i;
564
565 s = dev_boot_setup;
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
568 memset(s[i].name, 0, sizeof(s[i].name));
569 strlcpy(s[i].name, name, IFNAMSIZ);
570 memcpy(&s[i].map, map, sizeof(s[i].map));
571 break;
572 }
573 }
574
575 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
576 }
577
578 /**
579 * netdev_boot_setup_check - check boot time settings
580 * @dev: the netdevice
581 *
582 * Check boot time settings for the device.
583 * The found settings are set for the device to be used
584 * later in the device probing.
585 * Returns 0 if no settings found, 1 if they are.
586 */
587 int netdev_boot_setup_check(struct net_device *dev)
588 {
589 struct netdev_boot_setup *s = dev_boot_setup;
590 int i;
591
592 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
593 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
594 !strcmp(dev->name, s[i].name)) {
595 dev->irq = s[i].map.irq;
596 dev->base_addr = s[i].map.base_addr;
597 dev->mem_start = s[i].map.mem_start;
598 dev->mem_end = s[i].map.mem_end;
599 return 1;
600 }
601 }
602 return 0;
603 }
604 EXPORT_SYMBOL(netdev_boot_setup_check);
605
606
607 /**
608 * netdev_boot_base - get address from boot time settings
609 * @prefix: prefix for network device
610 * @unit: id for network device
611 *
612 * Check boot time settings for the base address of device.
613 * The found settings are set for the device to be used
614 * later in the device probing.
615 * Returns 0 if no settings found.
616 */
617 unsigned long netdev_boot_base(const char *prefix, int unit)
618 {
619 const struct netdev_boot_setup *s = dev_boot_setup;
620 char name[IFNAMSIZ];
621 int i;
622
623 sprintf(name, "%s%d", prefix, unit);
624
625 /*
626 * If device already registered then return base of 1
627 * to indicate not to probe for this interface
628 */
629 if (__dev_get_by_name(&init_net, name))
630 return 1;
631
632 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
633 if (!strcmp(name, s[i].name))
634 return s[i].map.base_addr;
635 return 0;
636 }
637
638 /*
639 * Saves at boot time configured settings for any netdevice.
640 */
641 int __init netdev_boot_setup(char *str)
642 {
643 int ints[5];
644 struct ifmap map;
645
646 str = get_options(str, ARRAY_SIZE(ints), ints);
647 if (!str || !*str)
648 return 0;
649
650 /* Save settings */
651 memset(&map, 0, sizeof(map));
652 if (ints[0] > 0)
653 map.irq = ints[1];
654 if (ints[0] > 1)
655 map.base_addr = ints[2];
656 if (ints[0] > 2)
657 map.mem_start = ints[3];
658 if (ints[0] > 3)
659 map.mem_end = ints[4];
660
661 /* Add new entry to the list */
662 return netdev_boot_setup_add(str, &map);
663 }
664
665 __setup("netdev=", netdev_boot_setup);
666
667 /*******************************************************************************
668 *
669 * Device Interface Subroutines
670 *
671 *******************************************************************************/
672
673 /**
674 * dev_get_iflink - get 'iflink' value of a interface
675 * @dev: targeted interface
676 *
677 * Indicates the ifindex the interface is linked to.
678 * Physical interfaces have the same 'ifindex' and 'iflink' values.
679 */
680
681 int dev_get_iflink(const struct net_device *dev)
682 {
683 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
684 return dev->netdev_ops->ndo_get_iflink(dev);
685
686 return dev->ifindex;
687 }
688 EXPORT_SYMBOL(dev_get_iflink);
689
690 /**
691 * dev_fill_metadata_dst - Retrieve tunnel egress information.
692 * @dev: targeted interface
693 * @skb: The packet.
694 *
695 * For better visibility of tunnel traffic OVS needs to retrieve
696 * egress tunnel information for a packet. Following API allows
697 * user to get this info.
698 */
699 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
700 {
701 struct ip_tunnel_info *info;
702
703 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
704 return -EINVAL;
705
706 info = skb_tunnel_info_unclone(skb);
707 if (!info)
708 return -ENOMEM;
709 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
710 return -EINVAL;
711
712 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
713 }
714 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
715
716 /**
717 * __dev_get_by_name - find a device by its name
718 * @net: the applicable net namespace
719 * @name: name to find
720 *
721 * Find an interface by name. Must be called under RTNL semaphore
722 * or @dev_base_lock. If the name is found a pointer to the device
723 * is returned. If the name is not found then %NULL is returned. The
724 * reference counters are not incremented so the caller must be
725 * careful with locks.
726 */
727
728 struct net_device *__dev_get_by_name(struct net *net, const char *name)
729 {
730 struct net_device *dev;
731 struct hlist_head *head = dev_name_hash(net, name);
732
733 hlist_for_each_entry(dev, head, name_hlist)
734 if (!strncmp(dev->name, name, IFNAMSIZ))
735 return dev;
736
737 return NULL;
738 }
739 EXPORT_SYMBOL(__dev_get_by_name);
740
741 /**
742 * dev_get_by_name_rcu - find a device by its name
743 * @net: the applicable net namespace
744 * @name: name to find
745 *
746 * Find an interface by name.
747 * If the name is found a pointer to the device is returned.
748 * If the name is not found then %NULL is returned.
749 * The reference counters are not incremented so the caller must be
750 * careful with locks. The caller must hold RCU lock.
751 */
752
753 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
754 {
755 struct net_device *dev;
756 struct hlist_head *head = dev_name_hash(net, name);
757
758 hlist_for_each_entry_rcu(dev, head, name_hlist)
759 if (!strncmp(dev->name, name, IFNAMSIZ))
760 return dev;
761
762 return NULL;
763 }
764 EXPORT_SYMBOL(dev_get_by_name_rcu);
765
766 /**
767 * dev_get_by_name - find a device by its name
768 * @net: the applicable net namespace
769 * @name: name to find
770 *
771 * Find an interface by name. This can be called from any
772 * context and does its own locking. The returned handle has
773 * the usage count incremented and the caller must use dev_put() to
774 * release it when it is no longer needed. %NULL is returned if no
775 * matching device is found.
776 */
777
778 struct net_device *dev_get_by_name(struct net *net, const char *name)
779 {
780 struct net_device *dev;
781
782 rcu_read_lock();
783 dev = dev_get_by_name_rcu(net, name);
784 if (dev)
785 dev_hold(dev);
786 rcu_read_unlock();
787 return dev;
788 }
789 EXPORT_SYMBOL(dev_get_by_name);
790
791 /**
792 * __dev_get_by_index - find a device by its ifindex
793 * @net: the applicable net namespace
794 * @ifindex: index of device
795 *
796 * Search for an interface by index. Returns %NULL if the device
797 * is not found or a pointer to the device. The device has not
798 * had its reference counter increased so the caller must be careful
799 * about locking. The caller must hold either the RTNL semaphore
800 * or @dev_base_lock.
801 */
802
803 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
804 {
805 struct net_device *dev;
806 struct hlist_head *head = dev_index_hash(net, ifindex);
807
808 hlist_for_each_entry(dev, head, index_hlist)
809 if (dev->ifindex == ifindex)
810 return dev;
811
812 return NULL;
813 }
814 EXPORT_SYMBOL(__dev_get_by_index);
815
816 /**
817 * dev_get_by_index_rcu - find a device by its ifindex
818 * @net: the applicable net namespace
819 * @ifindex: index of device
820 *
821 * Search for an interface by index. Returns %NULL if the device
822 * is not found or a pointer to the device. The device has not
823 * had its reference counter increased so the caller must be careful
824 * about locking. The caller must hold RCU lock.
825 */
826
827 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
828 {
829 struct net_device *dev;
830 struct hlist_head *head = dev_index_hash(net, ifindex);
831
832 hlist_for_each_entry_rcu(dev, head, index_hlist)
833 if (dev->ifindex == ifindex)
834 return dev;
835
836 return NULL;
837 }
838 EXPORT_SYMBOL(dev_get_by_index_rcu);
839
840
841 /**
842 * dev_get_by_index - find a device by its ifindex
843 * @net: the applicable net namespace
844 * @ifindex: index of device
845 *
846 * Search for an interface by index. Returns NULL if the device
847 * is not found or a pointer to the device. The device returned has
848 * had a reference added and the pointer is safe until the user calls
849 * dev_put to indicate they have finished with it.
850 */
851
852 struct net_device *dev_get_by_index(struct net *net, int ifindex)
853 {
854 struct net_device *dev;
855
856 rcu_read_lock();
857 dev = dev_get_by_index_rcu(net, ifindex);
858 if (dev)
859 dev_hold(dev);
860 rcu_read_unlock();
861 return dev;
862 }
863 EXPORT_SYMBOL(dev_get_by_index);
864
865 /**
866 * netdev_get_name - get a netdevice name, knowing its ifindex.
867 * @net: network namespace
868 * @name: a pointer to the buffer where the name will be stored.
869 * @ifindex: the ifindex of the interface to get the name from.
870 *
871 * The use of raw_seqcount_begin() and cond_resched() before
872 * retrying is required as we want to give the writers a chance
873 * to complete when CONFIG_PREEMPT is not set.
874 */
875 int netdev_get_name(struct net *net, char *name, int ifindex)
876 {
877 struct net_device *dev;
878 unsigned int seq;
879
880 retry:
881 seq = raw_seqcount_begin(&devnet_rename_seq);
882 rcu_read_lock();
883 dev = dev_get_by_index_rcu(net, ifindex);
884 if (!dev) {
885 rcu_read_unlock();
886 return -ENODEV;
887 }
888
889 strcpy(name, dev->name);
890 rcu_read_unlock();
891 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
892 cond_resched();
893 goto retry;
894 }
895
896 return 0;
897 }
898
899 /**
900 * dev_getbyhwaddr_rcu - find a device by its hardware address
901 * @net: the applicable net namespace
902 * @type: media type of device
903 * @ha: hardware address
904 *
905 * Search for an interface by MAC address. Returns NULL if the device
906 * is not found or a pointer to the device.
907 * The caller must hold RCU or RTNL.
908 * The returned device has not had its ref count increased
909 * and the caller must therefore be careful about locking
910 *
911 */
912
913 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
914 const char *ha)
915 {
916 struct net_device *dev;
917
918 for_each_netdev_rcu(net, dev)
919 if (dev->type == type &&
920 !memcmp(dev->dev_addr, ha, dev->addr_len))
921 return dev;
922
923 return NULL;
924 }
925 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
926
927 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
928 {
929 struct net_device *dev;
930
931 ASSERT_RTNL();
932 for_each_netdev(net, dev)
933 if (dev->type == type)
934 return dev;
935
936 return NULL;
937 }
938 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
939
940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
941 {
942 struct net_device *dev, *ret = NULL;
943
944 rcu_read_lock();
945 for_each_netdev_rcu(net, dev)
946 if (dev->type == type) {
947 dev_hold(dev);
948 ret = dev;
949 break;
950 }
951 rcu_read_unlock();
952 return ret;
953 }
954 EXPORT_SYMBOL(dev_getfirstbyhwtype);
955
956 /**
957 * __dev_get_by_flags - find any device with given flags
958 * @net: the applicable net namespace
959 * @if_flags: IFF_* values
960 * @mask: bitmask of bits in if_flags to check
961 *
962 * Search for any interface with the given flags. Returns NULL if a device
963 * is not found or a pointer to the device. Must be called inside
964 * rtnl_lock(), and result refcount is unchanged.
965 */
966
967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968 unsigned short mask)
969 {
970 struct net_device *dev, *ret;
971
972 ASSERT_RTNL();
973
974 ret = NULL;
975 for_each_netdev(net, dev) {
976 if (((dev->flags ^ if_flags) & mask) == 0) {
977 ret = dev;
978 break;
979 }
980 }
981 return ret;
982 }
983 EXPORT_SYMBOL(__dev_get_by_flags);
984
985 /**
986 * dev_valid_name - check if name is okay for network device
987 * @name: name string
988 *
989 * Network device names need to be valid file names to
990 * to allow sysfs to work. We also disallow any kind of
991 * whitespace.
992 */
993 bool dev_valid_name(const char *name)
994 {
995 if (*name == '\0')
996 return false;
997 if (strlen(name) >= IFNAMSIZ)
998 return false;
999 if (!strcmp(name, ".") || !strcmp(name, ".."))
1000 return false;
1001
1002 while (*name) {
1003 if (*name == '/' || *name == ':' || isspace(*name))
1004 return false;
1005 name++;
1006 }
1007 return true;
1008 }
1009 EXPORT_SYMBOL(dev_valid_name);
1010
1011 /**
1012 * __dev_alloc_name - allocate a name for a device
1013 * @net: network namespace to allocate the device name in
1014 * @name: name format string
1015 * @buf: scratch buffer and result name string
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1024 */
1025
1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1027 {
1028 int i = 0;
1029 const char *p;
1030 const int max_netdevices = 8*PAGE_SIZE;
1031 unsigned long *inuse;
1032 struct net_device *d;
1033
1034 p = strnchr(name, IFNAMSIZ-1, '%');
1035 if (p) {
1036 /*
1037 * Verify the string as this thing may have come from
1038 * the user. There must be either one "%d" and no other "%"
1039 * characters.
1040 */
1041 if (p[1] != 'd' || strchr(p + 2, '%'))
1042 return -EINVAL;
1043
1044 /* Use one page as a bit array of possible slots */
1045 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1046 if (!inuse)
1047 return -ENOMEM;
1048
1049 for_each_netdev(net, d) {
1050 if (!sscanf(d->name, name, &i))
1051 continue;
1052 if (i < 0 || i >= max_netdevices)
1053 continue;
1054
1055 /* avoid cases where sscanf is not exact inverse of printf */
1056 snprintf(buf, IFNAMSIZ, name, i);
1057 if (!strncmp(buf, d->name, IFNAMSIZ))
1058 set_bit(i, inuse);
1059 }
1060
1061 i = find_first_zero_bit(inuse, max_netdevices);
1062 free_page((unsigned long) inuse);
1063 }
1064
1065 if (buf != name)
1066 snprintf(buf, IFNAMSIZ, name, i);
1067 if (!__dev_get_by_name(net, buf))
1068 return i;
1069
1070 /* It is possible to run out of possible slots
1071 * when the name is long and there isn't enough space left
1072 * for the digits, or if all bits are used.
1073 */
1074 return -ENFILE;
1075 }
1076
1077 /**
1078 * dev_alloc_name - allocate a name for a device
1079 * @dev: device
1080 * @name: name format string
1081 *
1082 * Passed a format string - eg "lt%d" it will try and find a suitable
1083 * id. It scans list of devices to build up a free map, then chooses
1084 * the first empty slot. The caller must hold the dev_base or rtnl lock
1085 * while allocating the name and adding the device in order to avoid
1086 * duplicates.
1087 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1088 * Returns the number of the unit assigned or a negative errno code.
1089 */
1090
1091 int dev_alloc_name(struct net_device *dev, const char *name)
1092 {
1093 char buf[IFNAMSIZ];
1094 struct net *net;
1095 int ret;
1096
1097 BUG_ON(!dev_net(dev));
1098 net = dev_net(dev);
1099 ret = __dev_alloc_name(net, name, buf);
1100 if (ret >= 0)
1101 strlcpy(dev->name, buf, IFNAMSIZ);
1102 return ret;
1103 }
1104 EXPORT_SYMBOL(dev_alloc_name);
1105
1106 static int dev_alloc_name_ns(struct net *net,
1107 struct net_device *dev,
1108 const char *name)
1109 {
1110 char buf[IFNAMSIZ];
1111 int ret;
1112
1113 ret = __dev_alloc_name(net, name, buf);
1114 if (ret >= 0)
1115 strlcpy(dev->name, buf, IFNAMSIZ);
1116 return ret;
1117 }
1118
1119 static int dev_get_valid_name(struct net *net,
1120 struct net_device *dev,
1121 const char *name)
1122 {
1123 BUG_ON(!net);
1124
1125 if (!dev_valid_name(name))
1126 return -EINVAL;
1127
1128 if (strchr(name, '%'))
1129 return dev_alloc_name_ns(net, dev, name);
1130 else if (__dev_get_by_name(net, name))
1131 return -EEXIST;
1132 else if (dev->name != name)
1133 strlcpy(dev->name, name, IFNAMSIZ);
1134
1135 return 0;
1136 }
1137
1138 /**
1139 * dev_change_name - change name of a device
1140 * @dev: device
1141 * @newname: name (or format string) must be at least IFNAMSIZ
1142 *
1143 * Change name of a device, can pass format strings "eth%d".
1144 * for wildcarding.
1145 */
1146 int dev_change_name(struct net_device *dev, const char *newname)
1147 {
1148 unsigned char old_assign_type;
1149 char oldname[IFNAMSIZ];
1150 int err = 0;
1151 int ret;
1152 struct net *net;
1153
1154 ASSERT_RTNL();
1155 BUG_ON(!dev_net(dev));
1156
1157 net = dev_net(dev);
1158 if (dev->flags & IFF_UP)
1159 return -EBUSY;
1160
1161 write_seqcount_begin(&devnet_rename_seq);
1162
1163 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1164 write_seqcount_end(&devnet_rename_seq);
1165 return 0;
1166 }
1167
1168 memcpy(oldname, dev->name, IFNAMSIZ);
1169
1170 err = dev_get_valid_name(net, dev, newname);
1171 if (err < 0) {
1172 write_seqcount_end(&devnet_rename_seq);
1173 return err;
1174 }
1175
1176 if (oldname[0] && !strchr(oldname, '%'))
1177 netdev_info(dev, "renamed from %s\n", oldname);
1178
1179 old_assign_type = dev->name_assign_type;
1180 dev->name_assign_type = NET_NAME_RENAMED;
1181
1182 rollback:
1183 ret = device_rename(&dev->dev, dev->name);
1184 if (ret) {
1185 memcpy(dev->name, oldname, IFNAMSIZ);
1186 dev->name_assign_type = old_assign_type;
1187 write_seqcount_end(&devnet_rename_seq);
1188 return ret;
1189 }
1190
1191 write_seqcount_end(&devnet_rename_seq);
1192
1193 netdev_adjacent_rename_links(dev, oldname);
1194
1195 write_lock_bh(&dev_base_lock);
1196 hlist_del_rcu(&dev->name_hlist);
1197 write_unlock_bh(&dev_base_lock);
1198
1199 synchronize_rcu();
1200
1201 write_lock_bh(&dev_base_lock);
1202 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1203 write_unlock_bh(&dev_base_lock);
1204
1205 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1206 ret = notifier_to_errno(ret);
1207
1208 if (ret) {
1209 /* err >= 0 after dev_alloc_name() or stores the first errno */
1210 if (err >= 0) {
1211 err = ret;
1212 write_seqcount_begin(&devnet_rename_seq);
1213 memcpy(dev->name, oldname, IFNAMSIZ);
1214 memcpy(oldname, newname, IFNAMSIZ);
1215 dev->name_assign_type = old_assign_type;
1216 old_assign_type = NET_NAME_RENAMED;
1217 goto rollback;
1218 } else {
1219 pr_err("%s: name change rollback failed: %d\n",
1220 dev->name, ret);
1221 }
1222 }
1223
1224 return err;
1225 }
1226
1227 /**
1228 * dev_set_alias - change ifalias of a device
1229 * @dev: device
1230 * @alias: name up to IFALIASZ
1231 * @len: limit of bytes to copy from info
1232 *
1233 * Set ifalias for a device,
1234 */
1235 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1236 {
1237 char *new_ifalias;
1238
1239 ASSERT_RTNL();
1240
1241 if (len >= IFALIASZ)
1242 return -EINVAL;
1243
1244 if (!len) {
1245 kfree(dev->ifalias);
1246 dev->ifalias = NULL;
1247 return 0;
1248 }
1249
1250 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1251 if (!new_ifalias)
1252 return -ENOMEM;
1253 dev->ifalias = new_ifalias;
1254
1255 strlcpy(dev->ifalias, alias, len+1);
1256 return len;
1257 }
1258
1259
1260 /**
1261 * netdev_features_change - device changes features
1262 * @dev: device to cause notification
1263 *
1264 * Called to indicate a device has changed features.
1265 */
1266 void netdev_features_change(struct net_device *dev)
1267 {
1268 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1269 }
1270 EXPORT_SYMBOL(netdev_features_change);
1271
1272 /**
1273 * netdev_state_change - device changes state
1274 * @dev: device to cause notification
1275 *
1276 * Called to indicate a device has changed state. This function calls
1277 * the notifier chains for netdev_chain and sends a NEWLINK message
1278 * to the routing socket.
1279 */
1280 void netdev_state_change(struct net_device *dev)
1281 {
1282 if (dev->flags & IFF_UP) {
1283 struct netdev_notifier_change_info change_info;
1284
1285 change_info.flags_changed = 0;
1286 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1287 &change_info.info);
1288 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1289 }
1290 }
1291 EXPORT_SYMBOL(netdev_state_change);
1292
1293 /**
1294 * netdev_notify_peers - notify network peers about existence of @dev
1295 * @dev: network device
1296 *
1297 * Generate traffic such that interested network peers are aware of
1298 * @dev, such as by generating a gratuitous ARP. This may be used when
1299 * a device wants to inform the rest of the network about some sort of
1300 * reconfiguration such as a failover event or virtual machine
1301 * migration.
1302 */
1303 void netdev_notify_peers(struct net_device *dev)
1304 {
1305 rtnl_lock();
1306 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1307 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1308 rtnl_unlock();
1309 }
1310 EXPORT_SYMBOL(netdev_notify_peers);
1311
1312 static int __dev_open(struct net_device *dev)
1313 {
1314 const struct net_device_ops *ops = dev->netdev_ops;
1315 int ret;
1316
1317 ASSERT_RTNL();
1318
1319 if (!netif_device_present(dev))
1320 return -ENODEV;
1321
1322 /* Block netpoll from trying to do any rx path servicing.
1323 * If we don't do this there is a chance ndo_poll_controller
1324 * or ndo_poll may be running while we open the device
1325 */
1326 netpoll_poll_disable(dev);
1327
1328 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1329 ret = notifier_to_errno(ret);
1330 if (ret)
1331 return ret;
1332
1333 set_bit(__LINK_STATE_START, &dev->state);
1334
1335 if (ops->ndo_validate_addr)
1336 ret = ops->ndo_validate_addr(dev);
1337
1338 if (!ret && ops->ndo_open)
1339 ret = ops->ndo_open(dev);
1340
1341 netpoll_poll_enable(dev);
1342
1343 if (ret)
1344 clear_bit(__LINK_STATE_START, &dev->state);
1345 else {
1346 dev->flags |= IFF_UP;
1347 dev_set_rx_mode(dev);
1348 dev_activate(dev);
1349 add_device_randomness(dev->dev_addr, dev->addr_len);
1350 }
1351
1352 return ret;
1353 }
1354
1355 /**
1356 * dev_open - prepare an interface for use.
1357 * @dev: device to open
1358 *
1359 * Takes a device from down to up state. The device's private open
1360 * function is invoked and then the multicast lists are loaded. Finally
1361 * the device is moved into the up state and a %NETDEV_UP message is
1362 * sent to the netdev notifier chain.
1363 *
1364 * Calling this function on an active interface is a nop. On a failure
1365 * a negative errno code is returned.
1366 */
1367 int dev_open(struct net_device *dev)
1368 {
1369 int ret;
1370
1371 if (dev->flags & IFF_UP)
1372 return 0;
1373
1374 ret = __dev_open(dev);
1375 if (ret < 0)
1376 return ret;
1377
1378 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1379 call_netdevice_notifiers(NETDEV_UP, dev);
1380
1381 return ret;
1382 }
1383 EXPORT_SYMBOL(dev_open);
1384
1385 static int __dev_close_many(struct list_head *head)
1386 {
1387 struct net_device *dev;
1388
1389 ASSERT_RTNL();
1390 might_sleep();
1391
1392 list_for_each_entry(dev, head, close_list) {
1393 /* Temporarily disable netpoll until the interface is down */
1394 netpoll_poll_disable(dev);
1395
1396 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1397
1398 clear_bit(__LINK_STATE_START, &dev->state);
1399
1400 /* Synchronize to scheduled poll. We cannot touch poll list, it
1401 * can be even on different cpu. So just clear netif_running().
1402 *
1403 * dev->stop() will invoke napi_disable() on all of it's
1404 * napi_struct instances on this device.
1405 */
1406 smp_mb__after_atomic(); /* Commit netif_running(). */
1407 }
1408
1409 dev_deactivate_many(head);
1410
1411 list_for_each_entry(dev, head, close_list) {
1412 const struct net_device_ops *ops = dev->netdev_ops;
1413
1414 /*
1415 * Call the device specific close. This cannot fail.
1416 * Only if device is UP
1417 *
1418 * We allow it to be called even after a DETACH hot-plug
1419 * event.
1420 */
1421 if (ops->ndo_stop)
1422 ops->ndo_stop(dev);
1423
1424 dev->flags &= ~IFF_UP;
1425 netpoll_poll_enable(dev);
1426 }
1427
1428 return 0;
1429 }
1430
1431 static int __dev_close(struct net_device *dev)
1432 {
1433 int retval;
1434 LIST_HEAD(single);
1435
1436 list_add(&dev->close_list, &single);
1437 retval = __dev_close_many(&single);
1438 list_del(&single);
1439
1440 return retval;
1441 }
1442
1443 int dev_close_many(struct list_head *head, bool unlink)
1444 {
1445 struct net_device *dev, *tmp;
1446
1447 /* Remove the devices that don't need to be closed */
1448 list_for_each_entry_safe(dev, tmp, head, close_list)
1449 if (!(dev->flags & IFF_UP))
1450 list_del_init(&dev->close_list);
1451
1452 __dev_close_many(head);
1453
1454 list_for_each_entry_safe(dev, tmp, head, close_list) {
1455 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1456 call_netdevice_notifiers(NETDEV_DOWN, dev);
1457 if (unlink)
1458 list_del_init(&dev->close_list);
1459 }
1460
1461 return 0;
1462 }
1463 EXPORT_SYMBOL(dev_close_many);
1464
1465 /**
1466 * dev_close - shutdown an interface.
1467 * @dev: device to shutdown
1468 *
1469 * This function moves an active device into down state. A
1470 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1471 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1472 * chain.
1473 */
1474 int dev_close(struct net_device *dev)
1475 {
1476 if (dev->flags & IFF_UP) {
1477 LIST_HEAD(single);
1478
1479 list_add(&dev->close_list, &single);
1480 dev_close_many(&single, true);
1481 list_del(&single);
1482 }
1483 return 0;
1484 }
1485 EXPORT_SYMBOL(dev_close);
1486
1487
1488 /**
1489 * dev_disable_lro - disable Large Receive Offload on a device
1490 * @dev: device
1491 *
1492 * Disable Large Receive Offload (LRO) on a net device. Must be
1493 * called under RTNL. This is needed if received packets may be
1494 * forwarded to another interface.
1495 */
1496 void dev_disable_lro(struct net_device *dev)
1497 {
1498 struct net_device *lower_dev;
1499 struct list_head *iter;
1500
1501 dev->wanted_features &= ~NETIF_F_LRO;
1502 netdev_update_features(dev);
1503
1504 if (unlikely(dev->features & NETIF_F_LRO))
1505 netdev_WARN(dev, "failed to disable LRO!\n");
1506
1507 netdev_for_each_lower_dev(dev, lower_dev, iter)
1508 dev_disable_lro(lower_dev);
1509 }
1510 EXPORT_SYMBOL(dev_disable_lro);
1511
1512 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1513 struct net_device *dev)
1514 {
1515 struct netdev_notifier_info info;
1516
1517 netdev_notifier_info_init(&info, dev);
1518 return nb->notifier_call(nb, val, &info);
1519 }
1520
1521 static int dev_boot_phase = 1;
1522
1523 /**
1524 * register_netdevice_notifier - register a network notifier block
1525 * @nb: notifier
1526 *
1527 * Register a notifier to be called when network device events occur.
1528 * The notifier passed is linked into the kernel structures and must
1529 * not be reused until it has been unregistered. A negative errno code
1530 * is returned on a failure.
1531 *
1532 * When registered all registration and up events are replayed
1533 * to the new notifier to allow device to have a race free
1534 * view of the network device list.
1535 */
1536
1537 int register_netdevice_notifier(struct notifier_block *nb)
1538 {
1539 struct net_device *dev;
1540 struct net_device *last;
1541 struct net *net;
1542 int err;
1543
1544 rtnl_lock();
1545 err = raw_notifier_chain_register(&netdev_chain, nb);
1546 if (err)
1547 goto unlock;
1548 if (dev_boot_phase)
1549 goto unlock;
1550 for_each_net(net) {
1551 for_each_netdev(net, dev) {
1552 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1553 err = notifier_to_errno(err);
1554 if (err)
1555 goto rollback;
1556
1557 if (!(dev->flags & IFF_UP))
1558 continue;
1559
1560 call_netdevice_notifier(nb, NETDEV_UP, dev);
1561 }
1562 }
1563
1564 unlock:
1565 rtnl_unlock();
1566 return err;
1567
1568 rollback:
1569 last = dev;
1570 for_each_net(net) {
1571 for_each_netdev(net, dev) {
1572 if (dev == last)
1573 goto outroll;
1574
1575 if (dev->flags & IFF_UP) {
1576 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1577 dev);
1578 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1579 }
1580 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1581 }
1582 }
1583
1584 outroll:
1585 raw_notifier_chain_unregister(&netdev_chain, nb);
1586 goto unlock;
1587 }
1588 EXPORT_SYMBOL(register_netdevice_notifier);
1589
1590 /**
1591 * unregister_netdevice_notifier - unregister a network notifier block
1592 * @nb: notifier
1593 *
1594 * Unregister a notifier previously registered by
1595 * register_netdevice_notifier(). The notifier is unlinked into the
1596 * kernel structures and may then be reused. A negative errno code
1597 * is returned on a failure.
1598 *
1599 * After unregistering unregister and down device events are synthesized
1600 * for all devices on the device list to the removed notifier to remove
1601 * the need for special case cleanup code.
1602 */
1603
1604 int unregister_netdevice_notifier(struct notifier_block *nb)
1605 {
1606 struct net_device *dev;
1607 struct net *net;
1608 int err;
1609
1610 rtnl_lock();
1611 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1612 if (err)
1613 goto unlock;
1614
1615 for_each_net(net) {
1616 for_each_netdev(net, dev) {
1617 if (dev->flags & IFF_UP) {
1618 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1619 dev);
1620 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1621 }
1622 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1623 }
1624 }
1625 unlock:
1626 rtnl_unlock();
1627 return err;
1628 }
1629 EXPORT_SYMBOL(unregister_netdevice_notifier);
1630
1631 /**
1632 * call_netdevice_notifiers_info - call all network notifier blocks
1633 * @val: value passed unmodified to notifier function
1634 * @dev: net_device pointer passed unmodified to notifier function
1635 * @info: notifier information data
1636 *
1637 * Call all network notifier blocks. Parameters and return value
1638 * are as for raw_notifier_call_chain().
1639 */
1640
1641 static int call_netdevice_notifiers_info(unsigned long val,
1642 struct net_device *dev,
1643 struct netdev_notifier_info *info)
1644 {
1645 ASSERT_RTNL();
1646 netdev_notifier_info_init(info, dev);
1647 return raw_notifier_call_chain(&netdev_chain, val, info);
1648 }
1649
1650 /**
1651 * call_netdevice_notifiers - call all network notifier blocks
1652 * @val: value passed unmodified to notifier function
1653 * @dev: net_device pointer passed unmodified to notifier function
1654 *
1655 * Call all network notifier blocks. Parameters and return value
1656 * are as for raw_notifier_call_chain().
1657 */
1658
1659 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1660 {
1661 struct netdev_notifier_info info;
1662
1663 return call_netdevice_notifiers_info(val, dev, &info);
1664 }
1665 EXPORT_SYMBOL(call_netdevice_notifiers);
1666
1667 #ifdef CONFIG_NET_INGRESS
1668 static struct static_key ingress_needed __read_mostly;
1669
1670 void net_inc_ingress_queue(void)
1671 {
1672 static_key_slow_inc(&ingress_needed);
1673 }
1674 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1675
1676 void net_dec_ingress_queue(void)
1677 {
1678 static_key_slow_dec(&ingress_needed);
1679 }
1680 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1681 #endif
1682
1683 #ifdef CONFIG_NET_EGRESS
1684 static struct static_key egress_needed __read_mostly;
1685
1686 void net_inc_egress_queue(void)
1687 {
1688 static_key_slow_inc(&egress_needed);
1689 }
1690 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1691
1692 void net_dec_egress_queue(void)
1693 {
1694 static_key_slow_dec(&egress_needed);
1695 }
1696 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1697 #endif
1698
1699 static struct static_key netstamp_needed __read_mostly;
1700 #ifdef HAVE_JUMP_LABEL
1701 static atomic_t netstamp_needed_deferred;
1702 static atomic_t netstamp_wanted;
1703 static void netstamp_clear(struct work_struct *work)
1704 {
1705 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1706 int wanted;
1707
1708 wanted = atomic_add_return(deferred, &netstamp_wanted);
1709 if (wanted > 0)
1710 static_key_enable(&netstamp_needed);
1711 else
1712 static_key_disable(&netstamp_needed);
1713 }
1714 static DECLARE_WORK(netstamp_work, netstamp_clear);
1715 #endif
1716
1717 void net_enable_timestamp(void)
1718 {
1719 #ifdef HAVE_JUMP_LABEL
1720 int wanted;
1721
1722 while (1) {
1723 wanted = atomic_read(&netstamp_wanted);
1724 if (wanted <= 0)
1725 break;
1726 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1727 return;
1728 }
1729 atomic_inc(&netstamp_needed_deferred);
1730 schedule_work(&netstamp_work);
1731 #else
1732 static_key_slow_inc(&netstamp_needed);
1733 #endif
1734 }
1735 EXPORT_SYMBOL(net_enable_timestamp);
1736
1737 void net_disable_timestamp(void)
1738 {
1739 #ifdef HAVE_JUMP_LABEL
1740 int wanted;
1741
1742 while (1) {
1743 wanted = atomic_read(&netstamp_wanted);
1744 if (wanted <= 1)
1745 break;
1746 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1747 return;
1748 }
1749 atomic_dec(&netstamp_needed_deferred);
1750 schedule_work(&netstamp_work);
1751 #else
1752 static_key_slow_dec(&netstamp_needed);
1753 #endif
1754 }
1755 EXPORT_SYMBOL(net_disable_timestamp);
1756
1757 static inline void net_timestamp_set(struct sk_buff *skb)
1758 {
1759 skb->tstamp = 0;
1760 if (static_key_false(&netstamp_needed))
1761 __net_timestamp(skb);
1762 }
1763
1764 #define net_timestamp_check(COND, SKB) \
1765 if (static_key_false(&netstamp_needed)) { \
1766 if ((COND) && !(SKB)->tstamp) \
1767 __net_timestamp(SKB); \
1768 } \
1769
1770 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1771 {
1772 unsigned int len;
1773
1774 if (!(dev->flags & IFF_UP))
1775 return false;
1776
1777 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1778 if (skb->len <= len)
1779 return true;
1780
1781 /* if TSO is enabled, we don't care about the length as the packet
1782 * could be forwarded without being segmented before
1783 */
1784 if (skb_is_gso(skb))
1785 return true;
1786
1787 return false;
1788 }
1789 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1790
1791 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1792 {
1793 int ret = ____dev_forward_skb(dev, skb);
1794
1795 if (likely(!ret)) {
1796 skb->protocol = eth_type_trans(skb, dev);
1797 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1798 }
1799
1800 return ret;
1801 }
1802 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1803
1804 /**
1805 * dev_forward_skb - loopback an skb to another netif
1806 *
1807 * @dev: destination network device
1808 * @skb: buffer to forward
1809 *
1810 * return values:
1811 * NET_RX_SUCCESS (no congestion)
1812 * NET_RX_DROP (packet was dropped, but freed)
1813 *
1814 * dev_forward_skb can be used for injecting an skb from the
1815 * start_xmit function of one device into the receive queue
1816 * of another device.
1817 *
1818 * The receiving device may be in another namespace, so
1819 * we have to clear all information in the skb that could
1820 * impact namespace isolation.
1821 */
1822 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1823 {
1824 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1825 }
1826 EXPORT_SYMBOL_GPL(dev_forward_skb);
1827
1828 static inline int deliver_skb(struct sk_buff *skb,
1829 struct packet_type *pt_prev,
1830 struct net_device *orig_dev)
1831 {
1832 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1833 return -ENOMEM;
1834 atomic_inc(&skb->users);
1835 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1836 }
1837
1838 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1839 struct packet_type **pt,
1840 struct net_device *orig_dev,
1841 __be16 type,
1842 struct list_head *ptype_list)
1843 {
1844 struct packet_type *ptype, *pt_prev = *pt;
1845
1846 list_for_each_entry_rcu(ptype, ptype_list, list) {
1847 if (ptype->type != type)
1848 continue;
1849 if (pt_prev)
1850 deliver_skb(skb, pt_prev, orig_dev);
1851 pt_prev = ptype;
1852 }
1853 *pt = pt_prev;
1854 }
1855
1856 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1857 {
1858 if (!ptype->af_packet_priv || !skb->sk)
1859 return false;
1860
1861 if (ptype->id_match)
1862 return ptype->id_match(ptype, skb->sk);
1863 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1864 return true;
1865
1866 return false;
1867 }
1868
1869 /*
1870 * Support routine. Sends outgoing frames to any network
1871 * taps currently in use.
1872 */
1873
1874 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1875 {
1876 struct packet_type *ptype;
1877 struct sk_buff *skb2 = NULL;
1878 struct packet_type *pt_prev = NULL;
1879 struct list_head *ptype_list = &ptype_all;
1880
1881 rcu_read_lock();
1882 again:
1883 list_for_each_entry_rcu(ptype, ptype_list, list) {
1884 /* Never send packets back to the socket
1885 * they originated from - MvS (miquels@drinkel.ow.org)
1886 */
1887 if (skb_loop_sk(ptype, skb))
1888 continue;
1889
1890 if (pt_prev) {
1891 deliver_skb(skb2, pt_prev, skb->dev);
1892 pt_prev = ptype;
1893 continue;
1894 }
1895
1896 /* need to clone skb, done only once */
1897 skb2 = skb_clone(skb, GFP_ATOMIC);
1898 if (!skb2)
1899 goto out_unlock;
1900
1901 net_timestamp_set(skb2);
1902
1903 /* skb->nh should be correctly
1904 * set by sender, so that the second statement is
1905 * just protection against buggy protocols.
1906 */
1907 skb_reset_mac_header(skb2);
1908
1909 if (skb_network_header(skb2) < skb2->data ||
1910 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1911 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1912 ntohs(skb2->protocol),
1913 dev->name);
1914 skb_reset_network_header(skb2);
1915 }
1916
1917 skb2->transport_header = skb2->network_header;
1918 skb2->pkt_type = PACKET_OUTGOING;
1919 pt_prev = ptype;
1920 }
1921
1922 if (ptype_list == &ptype_all) {
1923 ptype_list = &dev->ptype_all;
1924 goto again;
1925 }
1926 out_unlock:
1927 if (pt_prev)
1928 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1929 rcu_read_unlock();
1930 }
1931 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1932
1933 /**
1934 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1935 * @dev: Network device
1936 * @txq: number of queues available
1937 *
1938 * If real_num_tx_queues is changed the tc mappings may no longer be
1939 * valid. To resolve this verify the tc mapping remains valid and if
1940 * not NULL the mapping. With no priorities mapping to this
1941 * offset/count pair it will no longer be used. In the worst case TC0
1942 * is invalid nothing can be done so disable priority mappings. If is
1943 * expected that drivers will fix this mapping if they can before
1944 * calling netif_set_real_num_tx_queues.
1945 */
1946 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1947 {
1948 int i;
1949 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950
1951 /* If TC0 is invalidated disable TC mapping */
1952 if (tc->offset + tc->count > txq) {
1953 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1954 dev->num_tc = 0;
1955 return;
1956 }
1957
1958 /* Invalidated prio to tc mappings set to TC0 */
1959 for (i = 1; i < TC_BITMASK + 1; i++) {
1960 int q = netdev_get_prio_tc_map(dev, i);
1961
1962 tc = &dev->tc_to_txq[q];
1963 if (tc->offset + tc->count > txq) {
1964 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1965 i, q);
1966 netdev_set_prio_tc_map(dev, i, 0);
1967 }
1968 }
1969 }
1970
1971 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1972 {
1973 if (dev->num_tc) {
1974 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1975 int i;
1976
1977 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1978 if ((txq - tc->offset) < tc->count)
1979 return i;
1980 }
1981
1982 return -1;
1983 }
1984
1985 return 0;
1986 }
1987
1988 #ifdef CONFIG_XPS
1989 static DEFINE_MUTEX(xps_map_mutex);
1990 #define xmap_dereference(P) \
1991 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1992
1993 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1994 int tci, u16 index)
1995 {
1996 struct xps_map *map = NULL;
1997 int pos;
1998
1999 if (dev_maps)
2000 map = xmap_dereference(dev_maps->cpu_map[tci]);
2001 if (!map)
2002 return false;
2003
2004 for (pos = map->len; pos--;) {
2005 if (map->queues[pos] != index)
2006 continue;
2007
2008 if (map->len > 1) {
2009 map->queues[pos] = map->queues[--map->len];
2010 break;
2011 }
2012
2013 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2014 kfree_rcu(map, rcu);
2015 return false;
2016 }
2017
2018 return true;
2019 }
2020
2021 static bool remove_xps_queue_cpu(struct net_device *dev,
2022 struct xps_dev_maps *dev_maps,
2023 int cpu, u16 offset, u16 count)
2024 {
2025 int num_tc = dev->num_tc ? : 1;
2026 bool active = false;
2027 int tci;
2028
2029 for (tci = cpu * num_tc; num_tc--; tci++) {
2030 int i, j;
2031
2032 for (i = count, j = offset; i--; j++) {
2033 if (!remove_xps_queue(dev_maps, cpu, j))
2034 break;
2035 }
2036
2037 active |= i < 0;
2038 }
2039
2040 return active;
2041 }
2042
2043 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2044 u16 count)
2045 {
2046 struct xps_dev_maps *dev_maps;
2047 int cpu, i;
2048 bool active = false;
2049
2050 mutex_lock(&xps_map_mutex);
2051 dev_maps = xmap_dereference(dev->xps_maps);
2052
2053 if (!dev_maps)
2054 goto out_no_maps;
2055
2056 for_each_possible_cpu(cpu)
2057 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2058 offset, count);
2059
2060 if (!active) {
2061 RCU_INIT_POINTER(dev->xps_maps, NULL);
2062 kfree_rcu(dev_maps, rcu);
2063 }
2064
2065 for (i = offset + (count - 1); count--; i--)
2066 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2067 NUMA_NO_NODE);
2068
2069 out_no_maps:
2070 mutex_unlock(&xps_map_mutex);
2071 }
2072
2073 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2074 {
2075 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2076 }
2077
2078 static struct xps_map *expand_xps_map(struct xps_map *map,
2079 int cpu, u16 index)
2080 {
2081 struct xps_map *new_map;
2082 int alloc_len = XPS_MIN_MAP_ALLOC;
2083 int i, pos;
2084
2085 for (pos = 0; map && pos < map->len; pos++) {
2086 if (map->queues[pos] != index)
2087 continue;
2088 return map;
2089 }
2090
2091 /* Need to add queue to this CPU's existing map */
2092 if (map) {
2093 if (pos < map->alloc_len)
2094 return map;
2095
2096 alloc_len = map->alloc_len * 2;
2097 }
2098
2099 /* Need to allocate new map to store queue on this CPU's map */
2100 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2101 cpu_to_node(cpu));
2102 if (!new_map)
2103 return NULL;
2104
2105 for (i = 0; i < pos; i++)
2106 new_map->queues[i] = map->queues[i];
2107 new_map->alloc_len = alloc_len;
2108 new_map->len = pos;
2109
2110 return new_map;
2111 }
2112
2113 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2114 u16 index)
2115 {
2116 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2117 int i, cpu, tci, numa_node_id = -2;
2118 int maps_sz, num_tc = 1, tc = 0;
2119 struct xps_map *map, *new_map;
2120 bool active = false;
2121
2122 if (dev->num_tc) {
2123 num_tc = dev->num_tc;
2124 tc = netdev_txq_to_tc(dev, index);
2125 if (tc < 0)
2126 return -EINVAL;
2127 }
2128
2129 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2130 if (maps_sz < L1_CACHE_BYTES)
2131 maps_sz = L1_CACHE_BYTES;
2132
2133 mutex_lock(&xps_map_mutex);
2134
2135 dev_maps = xmap_dereference(dev->xps_maps);
2136
2137 /* allocate memory for queue storage */
2138 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2139 if (!new_dev_maps)
2140 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2141 if (!new_dev_maps) {
2142 mutex_unlock(&xps_map_mutex);
2143 return -ENOMEM;
2144 }
2145
2146 tci = cpu * num_tc + tc;
2147 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2148 NULL;
2149
2150 map = expand_xps_map(map, cpu, index);
2151 if (!map)
2152 goto error;
2153
2154 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2155 }
2156
2157 if (!new_dev_maps)
2158 goto out_no_new_maps;
2159
2160 for_each_possible_cpu(cpu) {
2161 /* copy maps belonging to foreign traffic classes */
2162 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2163 /* fill in the new device map from the old device map */
2164 map = xmap_dereference(dev_maps->cpu_map[tci]);
2165 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2166 }
2167
2168 /* We need to explicitly update tci as prevous loop
2169 * could break out early if dev_maps is NULL.
2170 */
2171 tci = cpu * num_tc + tc;
2172
2173 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2174 /* add queue to CPU maps */
2175 int pos = 0;
2176
2177 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2178 while ((pos < map->len) && (map->queues[pos] != index))
2179 pos++;
2180
2181 if (pos == map->len)
2182 map->queues[map->len++] = index;
2183 #ifdef CONFIG_NUMA
2184 if (numa_node_id == -2)
2185 numa_node_id = cpu_to_node(cpu);
2186 else if (numa_node_id != cpu_to_node(cpu))
2187 numa_node_id = -1;
2188 #endif
2189 } else if (dev_maps) {
2190 /* fill in the new device map from the old device map */
2191 map = xmap_dereference(dev_maps->cpu_map[tci]);
2192 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2193 }
2194
2195 /* copy maps belonging to foreign traffic classes */
2196 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2197 /* fill in the new device map from the old device map */
2198 map = xmap_dereference(dev_maps->cpu_map[tci]);
2199 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2200 }
2201 }
2202
2203 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2204
2205 /* Cleanup old maps */
2206 if (!dev_maps)
2207 goto out_no_old_maps;
2208
2209 for_each_possible_cpu(cpu) {
2210 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2211 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2212 map = xmap_dereference(dev_maps->cpu_map[tci]);
2213 if (map && map != new_map)
2214 kfree_rcu(map, rcu);
2215 }
2216 }
2217
2218 kfree_rcu(dev_maps, rcu);
2219
2220 out_no_old_maps:
2221 dev_maps = new_dev_maps;
2222 active = true;
2223
2224 out_no_new_maps:
2225 /* update Tx queue numa node */
2226 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2227 (numa_node_id >= 0) ? numa_node_id :
2228 NUMA_NO_NODE);
2229
2230 if (!dev_maps)
2231 goto out_no_maps;
2232
2233 /* removes queue from unused CPUs */
2234 for_each_possible_cpu(cpu) {
2235 for (i = tc, tci = cpu * num_tc; i--; tci++)
2236 active |= remove_xps_queue(dev_maps, tci, index);
2237 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2238 active |= remove_xps_queue(dev_maps, tci, index);
2239 for (i = num_tc - tc, tci++; --i; tci++)
2240 active |= remove_xps_queue(dev_maps, tci, index);
2241 }
2242
2243 /* free map if not active */
2244 if (!active) {
2245 RCU_INIT_POINTER(dev->xps_maps, NULL);
2246 kfree_rcu(dev_maps, rcu);
2247 }
2248
2249 out_no_maps:
2250 mutex_unlock(&xps_map_mutex);
2251
2252 return 0;
2253 error:
2254 /* remove any maps that we added */
2255 for_each_possible_cpu(cpu) {
2256 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2257 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2258 map = dev_maps ?
2259 xmap_dereference(dev_maps->cpu_map[tci]) :
2260 NULL;
2261 if (new_map && new_map != map)
2262 kfree(new_map);
2263 }
2264 }
2265
2266 mutex_unlock(&xps_map_mutex);
2267
2268 kfree(new_dev_maps);
2269 return -ENOMEM;
2270 }
2271 EXPORT_SYMBOL(netif_set_xps_queue);
2272
2273 #endif
2274 void netdev_reset_tc(struct net_device *dev)
2275 {
2276 #ifdef CONFIG_XPS
2277 netif_reset_xps_queues_gt(dev, 0);
2278 #endif
2279 dev->num_tc = 0;
2280 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2281 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2282 }
2283 EXPORT_SYMBOL(netdev_reset_tc);
2284
2285 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2286 {
2287 if (tc >= dev->num_tc)
2288 return -EINVAL;
2289
2290 #ifdef CONFIG_XPS
2291 netif_reset_xps_queues(dev, offset, count);
2292 #endif
2293 dev->tc_to_txq[tc].count = count;
2294 dev->tc_to_txq[tc].offset = offset;
2295 return 0;
2296 }
2297 EXPORT_SYMBOL(netdev_set_tc_queue);
2298
2299 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2300 {
2301 if (num_tc > TC_MAX_QUEUE)
2302 return -EINVAL;
2303
2304 #ifdef CONFIG_XPS
2305 netif_reset_xps_queues_gt(dev, 0);
2306 #endif
2307 dev->num_tc = num_tc;
2308 return 0;
2309 }
2310 EXPORT_SYMBOL(netdev_set_num_tc);
2311
2312 /*
2313 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2314 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2315 */
2316 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2317 {
2318 int rc;
2319
2320 if (txq < 1 || txq > dev->num_tx_queues)
2321 return -EINVAL;
2322
2323 if (dev->reg_state == NETREG_REGISTERED ||
2324 dev->reg_state == NETREG_UNREGISTERING) {
2325 ASSERT_RTNL();
2326
2327 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2328 txq);
2329 if (rc)
2330 return rc;
2331
2332 if (dev->num_tc)
2333 netif_setup_tc(dev, txq);
2334
2335 if (txq < dev->real_num_tx_queues) {
2336 qdisc_reset_all_tx_gt(dev, txq);
2337 #ifdef CONFIG_XPS
2338 netif_reset_xps_queues_gt(dev, txq);
2339 #endif
2340 }
2341 }
2342
2343 dev->real_num_tx_queues = txq;
2344 return 0;
2345 }
2346 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2347
2348 #ifdef CONFIG_SYSFS
2349 /**
2350 * netif_set_real_num_rx_queues - set actual number of RX queues used
2351 * @dev: Network device
2352 * @rxq: Actual number of RX queues
2353 *
2354 * This must be called either with the rtnl_lock held or before
2355 * registration of the net device. Returns 0 on success, or a
2356 * negative error code. If called before registration, it always
2357 * succeeds.
2358 */
2359 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2360 {
2361 int rc;
2362
2363 if (rxq < 1 || rxq > dev->num_rx_queues)
2364 return -EINVAL;
2365
2366 if (dev->reg_state == NETREG_REGISTERED) {
2367 ASSERT_RTNL();
2368
2369 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2370 rxq);
2371 if (rc)
2372 return rc;
2373 }
2374
2375 dev->real_num_rx_queues = rxq;
2376 return 0;
2377 }
2378 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2379 #endif
2380
2381 /**
2382 * netif_get_num_default_rss_queues - default number of RSS queues
2383 *
2384 * This routine should set an upper limit on the number of RSS queues
2385 * used by default by multiqueue devices.
2386 */
2387 int netif_get_num_default_rss_queues(void)
2388 {
2389 return is_kdump_kernel() ?
2390 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2391 }
2392 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2393
2394 static void __netif_reschedule(struct Qdisc *q)
2395 {
2396 struct softnet_data *sd;
2397 unsigned long flags;
2398
2399 local_irq_save(flags);
2400 sd = this_cpu_ptr(&softnet_data);
2401 q->next_sched = NULL;
2402 *sd->output_queue_tailp = q;
2403 sd->output_queue_tailp = &q->next_sched;
2404 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2405 local_irq_restore(flags);
2406 }
2407
2408 void __netif_schedule(struct Qdisc *q)
2409 {
2410 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2411 __netif_reschedule(q);
2412 }
2413 EXPORT_SYMBOL(__netif_schedule);
2414
2415 struct dev_kfree_skb_cb {
2416 enum skb_free_reason reason;
2417 };
2418
2419 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2420 {
2421 return (struct dev_kfree_skb_cb *)skb->cb;
2422 }
2423
2424 void netif_schedule_queue(struct netdev_queue *txq)
2425 {
2426 rcu_read_lock();
2427 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2428 struct Qdisc *q = rcu_dereference(txq->qdisc);
2429
2430 __netif_schedule(q);
2431 }
2432 rcu_read_unlock();
2433 }
2434 EXPORT_SYMBOL(netif_schedule_queue);
2435
2436 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2437 {
2438 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2439 struct Qdisc *q;
2440
2441 rcu_read_lock();
2442 q = rcu_dereference(dev_queue->qdisc);
2443 __netif_schedule(q);
2444 rcu_read_unlock();
2445 }
2446 }
2447 EXPORT_SYMBOL(netif_tx_wake_queue);
2448
2449 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2450 {
2451 unsigned long flags;
2452
2453 if (likely(atomic_read(&skb->users) == 1)) {
2454 smp_rmb();
2455 atomic_set(&skb->users, 0);
2456 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2457 return;
2458 }
2459 get_kfree_skb_cb(skb)->reason = reason;
2460 local_irq_save(flags);
2461 skb->next = __this_cpu_read(softnet_data.completion_queue);
2462 __this_cpu_write(softnet_data.completion_queue, skb);
2463 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2464 local_irq_restore(flags);
2465 }
2466 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2467
2468 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2469 {
2470 if (in_irq() || irqs_disabled())
2471 __dev_kfree_skb_irq(skb, reason);
2472 else
2473 dev_kfree_skb(skb);
2474 }
2475 EXPORT_SYMBOL(__dev_kfree_skb_any);
2476
2477
2478 /**
2479 * netif_device_detach - mark device as removed
2480 * @dev: network device
2481 *
2482 * Mark device as removed from system and therefore no longer available.
2483 */
2484 void netif_device_detach(struct net_device *dev)
2485 {
2486 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2487 netif_running(dev)) {
2488 netif_tx_stop_all_queues(dev);
2489 }
2490 }
2491 EXPORT_SYMBOL(netif_device_detach);
2492
2493 /**
2494 * netif_device_attach - mark device as attached
2495 * @dev: network device
2496 *
2497 * Mark device as attached from system and restart if needed.
2498 */
2499 void netif_device_attach(struct net_device *dev)
2500 {
2501 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2502 netif_running(dev)) {
2503 netif_tx_wake_all_queues(dev);
2504 __netdev_watchdog_up(dev);
2505 }
2506 }
2507 EXPORT_SYMBOL(netif_device_attach);
2508
2509 /*
2510 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2511 * to be used as a distribution range.
2512 */
2513 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2514 unsigned int num_tx_queues)
2515 {
2516 u32 hash;
2517 u16 qoffset = 0;
2518 u16 qcount = num_tx_queues;
2519
2520 if (skb_rx_queue_recorded(skb)) {
2521 hash = skb_get_rx_queue(skb);
2522 while (unlikely(hash >= num_tx_queues))
2523 hash -= num_tx_queues;
2524 return hash;
2525 }
2526
2527 if (dev->num_tc) {
2528 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2529
2530 qoffset = dev->tc_to_txq[tc].offset;
2531 qcount = dev->tc_to_txq[tc].count;
2532 }
2533
2534 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2535 }
2536 EXPORT_SYMBOL(__skb_tx_hash);
2537
2538 static void skb_warn_bad_offload(const struct sk_buff *skb)
2539 {
2540 static const netdev_features_t null_features;
2541 struct net_device *dev = skb->dev;
2542 const char *name = "";
2543
2544 if (!net_ratelimit())
2545 return;
2546
2547 if (dev) {
2548 if (dev->dev.parent)
2549 name = dev_driver_string(dev->dev.parent);
2550 else
2551 name = netdev_name(dev);
2552 }
2553 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2554 "gso_type=%d ip_summed=%d\n",
2555 name, dev ? &dev->features : &null_features,
2556 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2557 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2558 skb_shinfo(skb)->gso_type, skb->ip_summed);
2559 }
2560
2561 /*
2562 * Invalidate hardware checksum when packet is to be mangled, and
2563 * complete checksum manually on outgoing path.
2564 */
2565 int skb_checksum_help(struct sk_buff *skb)
2566 {
2567 __wsum csum;
2568 int ret = 0, offset;
2569
2570 if (skb->ip_summed == CHECKSUM_COMPLETE)
2571 goto out_set_summed;
2572
2573 if (unlikely(skb_shinfo(skb)->gso_size)) {
2574 skb_warn_bad_offload(skb);
2575 return -EINVAL;
2576 }
2577
2578 /* Before computing a checksum, we should make sure no frag could
2579 * be modified by an external entity : checksum could be wrong.
2580 */
2581 if (skb_has_shared_frag(skb)) {
2582 ret = __skb_linearize(skb);
2583 if (ret)
2584 goto out;
2585 }
2586
2587 offset = skb_checksum_start_offset(skb);
2588 BUG_ON(offset >= skb_headlen(skb));
2589 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2590
2591 offset += skb->csum_offset;
2592 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2593
2594 if (skb_cloned(skb) &&
2595 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2596 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2597 if (ret)
2598 goto out;
2599 }
2600
2601 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2602 out_set_summed:
2603 skb->ip_summed = CHECKSUM_NONE;
2604 out:
2605 return ret;
2606 }
2607 EXPORT_SYMBOL(skb_checksum_help);
2608
2609 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2610 {
2611 __be16 type = skb->protocol;
2612
2613 /* Tunnel gso handlers can set protocol to ethernet. */
2614 if (type == htons(ETH_P_TEB)) {
2615 struct ethhdr *eth;
2616
2617 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2618 return 0;
2619
2620 eth = (struct ethhdr *)skb_mac_header(skb);
2621 type = eth->h_proto;
2622 }
2623
2624 return __vlan_get_protocol(skb, type, depth);
2625 }
2626
2627 /**
2628 * skb_mac_gso_segment - mac layer segmentation handler.
2629 * @skb: buffer to segment
2630 * @features: features for the output path (see dev->features)
2631 */
2632 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2633 netdev_features_t features)
2634 {
2635 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2636 struct packet_offload *ptype;
2637 int vlan_depth = skb->mac_len;
2638 __be16 type = skb_network_protocol(skb, &vlan_depth);
2639
2640 if (unlikely(!type))
2641 return ERR_PTR(-EINVAL);
2642
2643 __skb_pull(skb, vlan_depth);
2644
2645 rcu_read_lock();
2646 list_for_each_entry_rcu(ptype, &offload_base, list) {
2647 if (ptype->type == type && ptype->callbacks.gso_segment) {
2648 segs = ptype->callbacks.gso_segment(skb, features);
2649 break;
2650 }
2651 }
2652 rcu_read_unlock();
2653
2654 __skb_push(skb, skb->data - skb_mac_header(skb));
2655
2656 return segs;
2657 }
2658 EXPORT_SYMBOL(skb_mac_gso_segment);
2659
2660
2661 /* openvswitch calls this on rx path, so we need a different check.
2662 */
2663 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2664 {
2665 if (tx_path)
2666 return skb->ip_summed != CHECKSUM_PARTIAL &&
2667 skb->ip_summed != CHECKSUM_NONE;
2668
2669 return skb->ip_summed == CHECKSUM_NONE;
2670 }
2671
2672 /**
2673 * __skb_gso_segment - Perform segmentation on skb.
2674 * @skb: buffer to segment
2675 * @features: features for the output path (see dev->features)
2676 * @tx_path: whether it is called in TX path
2677 *
2678 * This function segments the given skb and returns a list of segments.
2679 *
2680 * It may return NULL if the skb requires no segmentation. This is
2681 * only possible when GSO is used for verifying header integrity.
2682 *
2683 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2684 */
2685 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2686 netdev_features_t features, bool tx_path)
2687 {
2688 struct sk_buff *segs;
2689
2690 if (unlikely(skb_needs_check(skb, tx_path))) {
2691 int err;
2692
2693 /* We're going to init ->check field in TCP or UDP header */
2694 err = skb_cow_head(skb, 0);
2695 if (err < 0)
2696 return ERR_PTR(err);
2697 }
2698
2699 /* Only report GSO partial support if it will enable us to
2700 * support segmentation on this frame without needing additional
2701 * work.
2702 */
2703 if (features & NETIF_F_GSO_PARTIAL) {
2704 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2705 struct net_device *dev = skb->dev;
2706
2707 partial_features |= dev->features & dev->gso_partial_features;
2708 if (!skb_gso_ok(skb, features | partial_features))
2709 features &= ~NETIF_F_GSO_PARTIAL;
2710 }
2711
2712 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2713 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2714
2715 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2716 SKB_GSO_CB(skb)->encap_level = 0;
2717
2718 skb_reset_mac_header(skb);
2719 skb_reset_mac_len(skb);
2720
2721 segs = skb_mac_gso_segment(skb, features);
2722
2723 if (unlikely(skb_needs_check(skb, tx_path)))
2724 skb_warn_bad_offload(skb);
2725
2726 return segs;
2727 }
2728 EXPORT_SYMBOL(__skb_gso_segment);
2729
2730 /* Take action when hardware reception checksum errors are detected. */
2731 #ifdef CONFIG_BUG
2732 void netdev_rx_csum_fault(struct net_device *dev)
2733 {
2734 if (net_ratelimit()) {
2735 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2736 dump_stack();
2737 }
2738 }
2739 EXPORT_SYMBOL(netdev_rx_csum_fault);
2740 #endif
2741
2742 /* Actually, we should eliminate this check as soon as we know, that:
2743 * 1. IOMMU is present and allows to map all the memory.
2744 * 2. No high memory really exists on this machine.
2745 */
2746
2747 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2748 {
2749 #ifdef CONFIG_HIGHMEM
2750 int i;
2751
2752 if (!(dev->features & NETIF_F_HIGHDMA)) {
2753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2754 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755
2756 if (PageHighMem(skb_frag_page(frag)))
2757 return 1;
2758 }
2759 }
2760
2761 if (PCI_DMA_BUS_IS_PHYS) {
2762 struct device *pdev = dev->dev.parent;
2763
2764 if (!pdev)
2765 return 0;
2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2769
2770 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2771 return 1;
2772 }
2773 }
2774 #endif
2775 return 0;
2776 }
2777
2778 /* If MPLS offload request, verify we are testing hardware MPLS features
2779 * instead of standard features for the netdev.
2780 */
2781 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2782 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2783 netdev_features_t features,
2784 __be16 type)
2785 {
2786 if (eth_p_mpls(type))
2787 features &= skb->dev->mpls_features;
2788
2789 return features;
2790 }
2791 #else
2792 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2793 netdev_features_t features,
2794 __be16 type)
2795 {
2796 return features;
2797 }
2798 #endif
2799
2800 static netdev_features_t harmonize_features(struct sk_buff *skb,
2801 netdev_features_t features)
2802 {
2803 int tmp;
2804 __be16 type;
2805
2806 type = skb_network_protocol(skb, &tmp);
2807 features = net_mpls_features(skb, features, type);
2808
2809 if (skb->ip_summed != CHECKSUM_NONE &&
2810 !can_checksum_protocol(features, type)) {
2811 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2812 }
2813 if (illegal_highdma(skb->dev, skb))
2814 features &= ~NETIF_F_SG;
2815
2816 return features;
2817 }
2818
2819 netdev_features_t passthru_features_check(struct sk_buff *skb,
2820 struct net_device *dev,
2821 netdev_features_t features)
2822 {
2823 return features;
2824 }
2825 EXPORT_SYMBOL(passthru_features_check);
2826
2827 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2828 struct net_device *dev,
2829 netdev_features_t features)
2830 {
2831 return vlan_features_check(skb, features);
2832 }
2833
2834 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2835 struct net_device *dev,
2836 netdev_features_t features)
2837 {
2838 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2839
2840 if (gso_segs > dev->gso_max_segs)
2841 return features & ~NETIF_F_GSO_MASK;
2842
2843 /* Support for GSO partial features requires software
2844 * intervention before we can actually process the packets
2845 * so we need to strip support for any partial features now
2846 * and we can pull them back in after we have partially
2847 * segmented the frame.
2848 */
2849 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2850 features &= ~dev->gso_partial_features;
2851
2852 /* Make sure to clear the IPv4 ID mangling feature if the
2853 * IPv4 header has the potential to be fragmented.
2854 */
2855 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2856 struct iphdr *iph = skb->encapsulation ?
2857 inner_ip_hdr(skb) : ip_hdr(skb);
2858
2859 if (!(iph->frag_off & htons(IP_DF)))
2860 features &= ~NETIF_F_TSO_MANGLEID;
2861 }
2862
2863 return features;
2864 }
2865
2866 netdev_features_t netif_skb_features(struct sk_buff *skb)
2867 {
2868 struct net_device *dev = skb->dev;
2869 netdev_features_t features = dev->features;
2870
2871 if (skb_is_gso(skb))
2872 features = gso_features_check(skb, dev, features);
2873
2874 /* If encapsulation offload request, verify we are testing
2875 * hardware encapsulation features instead of standard
2876 * features for the netdev
2877 */
2878 if (skb->encapsulation)
2879 features &= dev->hw_enc_features;
2880
2881 if (skb_vlan_tagged(skb))
2882 features = netdev_intersect_features(features,
2883 dev->vlan_features |
2884 NETIF_F_HW_VLAN_CTAG_TX |
2885 NETIF_F_HW_VLAN_STAG_TX);
2886
2887 if (dev->netdev_ops->ndo_features_check)
2888 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2889 features);
2890 else
2891 features &= dflt_features_check(skb, dev, features);
2892
2893 return harmonize_features(skb, features);
2894 }
2895 EXPORT_SYMBOL(netif_skb_features);
2896
2897 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2898 struct netdev_queue *txq, bool more)
2899 {
2900 unsigned int len;
2901 int rc;
2902
2903 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2904 dev_queue_xmit_nit(skb, dev);
2905
2906 len = skb->len;
2907 trace_net_dev_start_xmit(skb, dev);
2908 rc = netdev_start_xmit(skb, dev, txq, more);
2909 trace_net_dev_xmit(skb, rc, dev, len);
2910
2911 return rc;
2912 }
2913
2914 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2915 struct netdev_queue *txq, int *ret)
2916 {
2917 struct sk_buff *skb = first;
2918 int rc = NETDEV_TX_OK;
2919
2920 while (skb) {
2921 struct sk_buff *next = skb->next;
2922
2923 skb->next = NULL;
2924 rc = xmit_one(skb, dev, txq, next != NULL);
2925 if (unlikely(!dev_xmit_complete(rc))) {
2926 skb->next = next;
2927 goto out;
2928 }
2929
2930 skb = next;
2931 if (netif_xmit_stopped(txq) && skb) {
2932 rc = NETDEV_TX_BUSY;
2933 break;
2934 }
2935 }
2936
2937 out:
2938 *ret = rc;
2939 return skb;
2940 }
2941
2942 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2943 netdev_features_t features)
2944 {
2945 if (skb_vlan_tag_present(skb) &&
2946 !vlan_hw_offload_capable(features, skb->vlan_proto))
2947 skb = __vlan_hwaccel_push_inside(skb);
2948 return skb;
2949 }
2950
2951 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2952 {
2953 netdev_features_t features;
2954
2955 features = netif_skb_features(skb);
2956 skb = validate_xmit_vlan(skb, features);
2957 if (unlikely(!skb))
2958 goto out_null;
2959
2960 if (netif_needs_gso(skb, features)) {
2961 struct sk_buff *segs;
2962
2963 segs = skb_gso_segment(skb, features);
2964 if (IS_ERR(segs)) {
2965 goto out_kfree_skb;
2966 } else if (segs) {
2967 consume_skb(skb);
2968 skb = segs;
2969 }
2970 } else {
2971 if (skb_needs_linearize(skb, features) &&
2972 __skb_linearize(skb))
2973 goto out_kfree_skb;
2974
2975 /* If packet is not checksummed and device does not
2976 * support checksumming for this protocol, complete
2977 * checksumming here.
2978 */
2979 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2980 if (skb->encapsulation)
2981 skb_set_inner_transport_header(skb,
2982 skb_checksum_start_offset(skb));
2983 else
2984 skb_set_transport_header(skb,
2985 skb_checksum_start_offset(skb));
2986 if (!(features & NETIF_F_CSUM_MASK) &&
2987 skb_checksum_help(skb))
2988 goto out_kfree_skb;
2989 }
2990 }
2991
2992 return skb;
2993
2994 out_kfree_skb:
2995 kfree_skb(skb);
2996 out_null:
2997 atomic_long_inc(&dev->tx_dropped);
2998 return NULL;
2999 }
3000
3001 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3002 {
3003 struct sk_buff *next, *head = NULL, *tail;
3004
3005 for (; skb != NULL; skb = next) {
3006 next = skb->next;
3007 skb->next = NULL;
3008
3009 /* in case skb wont be segmented, point to itself */
3010 skb->prev = skb;
3011
3012 skb = validate_xmit_skb(skb, dev);
3013 if (!skb)
3014 continue;
3015
3016 if (!head)
3017 head = skb;
3018 else
3019 tail->next = skb;
3020 /* If skb was segmented, skb->prev points to
3021 * the last segment. If not, it still contains skb.
3022 */
3023 tail = skb->prev;
3024 }
3025 return head;
3026 }
3027 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3028
3029 static void qdisc_pkt_len_init(struct sk_buff *skb)
3030 {
3031 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3032
3033 qdisc_skb_cb(skb)->pkt_len = skb->len;
3034
3035 /* To get more precise estimation of bytes sent on wire,
3036 * we add to pkt_len the headers size of all segments
3037 */
3038 if (shinfo->gso_size) {
3039 unsigned int hdr_len;
3040 u16 gso_segs = shinfo->gso_segs;
3041
3042 /* mac layer + network layer */
3043 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3044
3045 /* + transport layer */
3046 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3047 hdr_len += tcp_hdrlen(skb);
3048 else
3049 hdr_len += sizeof(struct udphdr);
3050
3051 if (shinfo->gso_type & SKB_GSO_DODGY)
3052 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3053 shinfo->gso_size);
3054
3055 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3056 }
3057 }
3058
3059 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3060 struct net_device *dev,
3061 struct netdev_queue *txq)
3062 {
3063 spinlock_t *root_lock = qdisc_lock(q);
3064 struct sk_buff *to_free = NULL;
3065 bool contended;
3066 int rc;
3067
3068 qdisc_calculate_pkt_len(skb, q);
3069 /*
3070 * Heuristic to force contended enqueues to serialize on a
3071 * separate lock before trying to get qdisc main lock.
3072 * This permits qdisc->running owner to get the lock more
3073 * often and dequeue packets faster.
3074 */
3075 contended = qdisc_is_running(q);
3076 if (unlikely(contended))
3077 spin_lock(&q->busylock);
3078
3079 spin_lock(root_lock);
3080 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3081 __qdisc_drop(skb, &to_free);
3082 rc = NET_XMIT_DROP;
3083 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3084 qdisc_run_begin(q)) {
3085 /*
3086 * This is a work-conserving queue; there are no old skbs
3087 * waiting to be sent out; and the qdisc is not running -
3088 * xmit the skb directly.
3089 */
3090
3091 qdisc_bstats_update(q, skb);
3092
3093 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3094 if (unlikely(contended)) {
3095 spin_unlock(&q->busylock);
3096 contended = false;
3097 }
3098 __qdisc_run(q);
3099 } else
3100 qdisc_run_end(q);
3101
3102 rc = NET_XMIT_SUCCESS;
3103 } else {
3104 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3105 if (qdisc_run_begin(q)) {
3106 if (unlikely(contended)) {
3107 spin_unlock(&q->busylock);
3108 contended = false;
3109 }
3110 __qdisc_run(q);
3111 }
3112 }
3113 spin_unlock(root_lock);
3114 if (unlikely(to_free))
3115 kfree_skb_list(to_free);
3116 if (unlikely(contended))
3117 spin_unlock(&q->busylock);
3118 return rc;
3119 }
3120
3121 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3122 static void skb_update_prio(struct sk_buff *skb)
3123 {
3124 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3125
3126 if (!skb->priority && skb->sk && map) {
3127 unsigned int prioidx =
3128 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3129
3130 if (prioidx < map->priomap_len)
3131 skb->priority = map->priomap[prioidx];
3132 }
3133 }
3134 #else
3135 #define skb_update_prio(skb)
3136 #endif
3137
3138 DEFINE_PER_CPU(int, xmit_recursion);
3139 EXPORT_SYMBOL(xmit_recursion);
3140
3141 /**
3142 * dev_loopback_xmit - loop back @skb
3143 * @net: network namespace this loopback is happening in
3144 * @sk: sk needed to be a netfilter okfn
3145 * @skb: buffer to transmit
3146 */
3147 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3148 {
3149 skb_reset_mac_header(skb);
3150 __skb_pull(skb, skb_network_offset(skb));
3151 skb->pkt_type = PACKET_LOOPBACK;
3152 skb->ip_summed = CHECKSUM_UNNECESSARY;
3153 WARN_ON(!skb_dst(skb));
3154 skb_dst_force(skb);
3155 netif_rx_ni(skb);
3156 return 0;
3157 }
3158 EXPORT_SYMBOL(dev_loopback_xmit);
3159
3160 #ifdef CONFIG_NET_EGRESS
3161 static struct sk_buff *
3162 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3163 {
3164 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3165 struct tcf_result cl_res;
3166
3167 if (!cl)
3168 return skb;
3169
3170 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3171 qdisc_bstats_cpu_update(cl->q, skb);
3172
3173 switch (tc_classify(skb, cl, &cl_res, false)) {
3174 case TC_ACT_OK:
3175 case TC_ACT_RECLASSIFY:
3176 skb->tc_index = TC_H_MIN(cl_res.classid);
3177 break;
3178 case TC_ACT_SHOT:
3179 qdisc_qstats_cpu_drop(cl->q);
3180 *ret = NET_XMIT_DROP;
3181 kfree_skb(skb);
3182 return NULL;
3183 case TC_ACT_STOLEN:
3184 case TC_ACT_QUEUED:
3185 *ret = NET_XMIT_SUCCESS;
3186 consume_skb(skb);
3187 return NULL;
3188 case TC_ACT_REDIRECT:
3189 /* No need to push/pop skb's mac_header here on egress! */
3190 skb_do_redirect(skb);
3191 *ret = NET_XMIT_SUCCESS;
3192 return NULL;
3193 default:
3194 break;
3195 }
3196
3197 return skb;
3198 }
3199 #endif /* CONFIG_NET_EGRESS */
3200
3201 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3202 {
3203 #ifdef CONFIG_XPS
3204 struct xps_dev_maps *dev_maps;
3205 struct xps_map *map;
3206 int queue_index = -1;
3207
3208 rcu_read_lock();
3209 dev_maps = rcu_dereference(dev->xps_maps);
3210 if (dev_maps) {
3211 unsigned int tci = skb->sender_cpu - 1;
3212
3213 if (dev->num_tc) {
3214 tci *= dev->num_tc;
3215 tci += netdev_get_prio_tc_map(dev, skb->priority);
3216 }
3217
3218 map = rcu_dereference(dev_maps->cpu_map[tci]);
3219 if (map) {
3220 if (map->len == 1)
3221 queue_index = map->queues[0];
3222 else
3223 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3224 map->len)];
3225 if (unlikely(queue_index >= dev->real_num_tx_queues))
3226 queue_index = -1;
3227 }
3228 }
3229 rcu_read_unlock();
3230
3231 return queue_index;
3232 #else
3233 return -1;
3234 #endif
3235 }
3236
3237 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3238 {
3239 struct sock *sk = skb->sk;
3240 int queue_index = sk_tx_queue_get(sk);
3241
3242 if (queue_index < 0 || skb->ooo_okay ||
3243 queue_index >= dev->real_num_tx_queues) {
3244 int new_index = get_xps_queue(dev, skb);
3245
3246 if (new_index < 0)
3247 new_index = skb_tx_hash(dev, skb);
3248
3249 if (queue_index != new_index && sk &&
3250 sk_fullsock(sk) &&
3251 rcu_access_pointer(sk->sk_dst_cache))
3252 sk_tx_queue_set(sk, new_index);
3253
3254 queue_index = new_index;
3255 }
3256
3257 return queue_index;
3258 }
3259
3260 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3261 struct sk_buff *skb,
3262 void *accel_priv)
3263 {
3264 int queue_index = 0;
3265
3266 #ifdef CONFIG_XPS
3267 u32 sender_cpu = skb->sender_cpu - 1;
3268
3269 if (sender_cpu >= (u32)NR_CPUS)
3270 skb->sender_cpu = raw_smp_processor_id() + 1;
3271 #endif
3272
3273 if (dev->real_num_tx_queues != 1) {
3274 const struct net_device_ops *ops = dev->netdev_ops;
3275
3276 if (ops->ndo_select_queue)
3277 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3278 __netdev_pick_tx);
3279 else
3280 queue_index = __netdev_pick_tx(dev, skb);
3281
3282 if (!accel_priv)
3283 queue_index = netdev_cap_txqueue(dev, queue_index);
3284 }
3285
3286 skb_set_queue_mapping(skb, queue_index);
3287 return netdev_get_tx_queue(dev, queue_index);
3288 }
3289
3290 /**
3291 * __dev_queue_xmit - transmit a buffer
3292 * @skb: buffer to transmit
3293 * @accel_priv: private data used for L2 forwarding offload
3294 *
3295 * Queue a buffer for transmission to a network device. The caller must
3296 * have set the device and priority and built the buffer before calling
3297 * this function. The function can be called from an interrupt.
3298 *
3299 * A negative errno code is returned on a failure. A success does not
3300 * guarantee the frame will be transmitted as it may be dropped due
3301 * to congestion or traffic shaping.
3302 *
3303 * -----------------------------------------------------------------------------------
3304 * I notice this method can also return errors from the queue disciplines,
3305 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3306 * be positive.
3307 *
3308 * Regardless of the return value, the skb is consumed, so it is currently
3309 * difficult to retry a send to this method. (You can bump the ref count
3310 * before sending to hold a reference for retry if you are careful.)
3311 *
3312 * When calling this method, interrupts MUST be enabled. This is because
3313 * the BH enable code must have IRQs enabled so that it will not deadlock.
3314 * --BLG
3315 */
3316 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3317 {
3318 struct net_device *dev = skb->dev;
3319 struct netdev_queue *txq;
3320 struct Qdisc *q;
3321 int rc = -ENOMEM;
3322
3323 skb_reset_mac_header(skb);
3324
3325 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3326 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3327
3328 /* Disable soft irqs for various locks below. Also
3329 * stops preemption for RCU.
3330 */
3331 rcu_read_lock_bh();
3332
3333 skb_update_prio(skb);
3334
3335 qdisc_pkt_len_init(skb);
3336 #ifdef CONFIG_NET_CLS_ACT
3337 skb->tc_at_ingress = 0;
3338 # ifdef CONFIG_NET_EGRESS
3339 if (static_key_false(&egress_needed)) {
3340 skb = sch_handle_egress(skb, &rc, dev);
3341 if (!skb)
3342 goto out;
3343 }
3344 # endif
3345 #endif
3346 /* If device/qdisc don't need skb->dst, release it right now while
3347 * its hot in this cpu cache.
3348 */
3349 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3350 skb_dst_drop(skb);
3351 else
3352 skb_dst_force(skb);
3353
3354 txq = netdev_pick_tx(dev, skb, accel_priv);
3355 q = rcu_dereference_bh(txq->qdisc);
3356
3357 trace_net_dev_queue(skb);
3358 if (q->enqueue) {
3359 rc = __dev_xmit_skb(skb, q, dev, txq);
3360 goto out;
3361 }
3362
3363 /* The device has no queue. Common case for software devices:
3364 * loopback, all the sorts of tunnels...
3365
3366 * Really, it is unlikely that netif_tx_lock protection is necessary
3367 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3368 * counters.)
3369 * However, it is possible, that they rely on protection
3370 * made by us here.
3371
3372 * Check this and shot the lock. It is not prone from deadlocks.
3373 *Either shot noqueue qdisc, it is even simpler 8)
3374 */
3375 if (dev->flags & IFF_UP) {
3376 int cpu = smp_processor_id(); /* ok because BHs are off */
3377
3378 if (txq->xmit_lock_owner != cpu) {
3379 if (unlikely(__this_cpu_read(xmit_recursion) >
3380 XMIT_RECURSION_LIMIT))
3381 goto recursion_alert;
3382
3383 skb = validate_xmit_skb(skb, dev);
3384 if (!skb)
3385 goto out;
3386
3387 HARD_TX_LOCK(dev, txq, cpu);
3388
3389 if (!netif_xmit_stopped(txq)) {
3390 __this_cpu_inc(xmit_recursion);
3391 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3392 __this_cpu_dec(xmit_recursion);
3393 if (dev_xmit_complete(rc)) {
3394 HARD_TX_UNLOCK(dev, txq);
3395 goto out;
3396 }
3397 }
3398 HARD_TX_UNLOCK(dev, txq);
3399 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3400 dev->name);
3401 } else {
3402 /* Recursion is detected! It is possible,
3403 * unfortunately
3404 */
3405 recursion_alert:
3406 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3407 dev->name);
3408 }
3409 }
3410
3411 rc = -ENETDOWN;
3412 rcu_read_unlock_bh();
3413
3414 atomic_long_inc(&dev->tx_dropped);
3415 kfree_skb_list(skb);
3416 return rc;
3417 out:
3418 rcu_read_unlock_bh();
3419 return rc;
3420 }
3421
3422 int dev_queue_xmit(struct sk_buff *skb)
3423 {
3424 return __dev_queue_xmit(skb, NULL);
3425 }
3426 EXPORT_SYMBOL(dev_queue_xmit);
3427
3428 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3429 {
3430 return __dev_queue_xmit(skb, accel_priv);
3431 }
3432 EXPORT_SYMBOL(dev_queue_xmit_accel);
3433
3434
3435 /*************************************************************************
3436 * Receiver routines
3437 *************************************************************************/
3438
3439 int netdev_max_backlog __read_mostly = 1000;
3440 EXPORT_SYMBOL(netdev_max_backlog);
3441
3442 int netdev_tstamp_prequeue __read_mostly = 1;
3443 int netdev_budget __read_mostly = 300;
3444 int weight_p __read_mostly = 64; /* old backlog weight */
3445 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3446 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3447 int dev_rx_weight __read_mostly = 64;
3448 int dev_tx_weight __read_mostly = 64;
3449
3450 /* Called with irq disabled */
3451 static inline void ____napi_schedule(struct softnet_data *sd,
3452 struct napi_struct *napi)
3453 {
3454 list_add_tail(&napi->poll_list, &sd->poll_list);
3455 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3456 }
3457
3458 #ifdef CONFIG_RPS
3459
3460 /* One global table that all flow-based protocols share. */
3461 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3462 EXPORT_SYMBOL(rps_sock_flow_table);
3463 u32 rps_cpu_mask __read_mostly;
3464 EXPORT_SYMBOL(rps_cpu_mask);
3465
3466 struct static_key rps_needed __read_mostly;
3467 EXPORT_SYMBOL(rps_needed);
3468 struct static_key rfs_needed __read_mostly;
3469 EXPORT_SYMBOL(rfs_needed);
3470
3471 static struct rps_dev_flow *
3472 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3473 struct rps_dev_flow *rflow, u16 next_cpu)
3474 {
3475 if (next_cpu < nr_cpu_ids) {
3476 #ifdef CONFIG_RFS_ACCEL
3477 struct netdev_rx_queue *rxqueue;
3478 struct rps_dev_flow_table *flow_table;
3479 struct rps_dev_flow *old_rflow;
3480 u32 flow_id;
3481 u16 rxq_index;
3482 int rc;
3483
3484 /* Should we steer this flow to a different hardware queue? */
3485 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3486 !(dev->features & NETIF_F_NTUPLE))
3487 goto out;
3488 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3489 if (rxq_index == skb_get_rx_queue(skb))
3490 goto out;
3491
3492 rxqueue = dev->_rx + rxq_index;
3493 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3494 if (!flow_table)
3495 goto out;
3496 flow_id = skb_get_hash(skb) & flow_table->mask;
3497 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3498 rxq_index, flow_id);
3499 if (rc < 0)
3500 goto out;
3501 old_rflow = rflow;
3502 rflow = &flow_table->flows[flow_id];
3503 rflow->filter = rc;
3504 if (old_rflow->filter == rflow->filter)
3505 old_rflow->filter = RPS_NO_FILTER;
3506 out:
3507 #endif
3508 rflow->last_qtail =
3509 per_cpu(softnet_data, next_cpu).input_queue_head;
3510 }
3511
3512 rflow->cpu = next_cpu;
3513 return rflow;
3514 }
3515
3516 /*
3517 * get_rps_cpu is called from netif_receive_skb and returns the target
3518 * CPU from the RPS map of the receiving queue for a given skb.
3519 * rcu_read_lock must be held on entry.
3520 */
3521 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3522 struct rps_dev_flow **rflowp)
3523 {
3524 const struct rps_sock_flow_table *sock_flow_table;
3525 struct netdev_rx_queue *rxqueue = dev->_rx;
3526 struct rps_dev_flow_table *flow_table;
3527 struct rps_map *map;
3528 int cpu = -1;
3529 u32 tcpu;
3530 u32 hash;
3531
3532 if (skb_rx_queue_recorded(skb)) {
3533 u16 index = skb_get_rx_queue(skb);
3534
3535 if (unlikely(index >= dev->real_num_rx_queues)) {
3536 WARN_ONCE(dev->real_num_rx_queues > 1,
3537 "%s received packet on queue %u, but number "
3538 "of RX queues is %u\n",
3539 dev->name, index, dev->real_num_rx_queues);
3540 goto done;
3541 }
3542 rxqueue += index;
3543 }
3544
3545 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3546
3547 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3548 map = rcu_dereference(rxqueue->rps_map);
3549 if (!flow_table && !map)
3550 goto done;
3551
3552 skb_reset_network_header(skb);
3553 hash = skb_get_hash(skb);
3554 if (!hash)
3555 goto done;
3556
3557 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3558 if (flow_table && sock_flow_table) {
3559 struct rps_dev_flow *rflow;
3560 u32 next_cpu;
3561 u32 ident;
3562
3563 /* First check into global flow table if there is a match */
3564 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3565 if ((ident ^ hash) & ~rps_cpu_mask)
3566 goto try_rps;
3567
3568 next_cpu = ident & rps_cpu_mask;
3569
3570 /* OK, now we know there is a match,
3571 * we can look at the local (per receive queue) flow table
3572 */
3573 rflow = &flow_table->flows[hash & flow_table->mask];
3574 tcpu = rflow->cpu;
3575
3576 /*
3577 * If the desired CPU (where last recvmsg was done) is
3578 * different from current CPU (one in the rx-queue flow
3579 * table entry), switch if one of the following holds:
3580 * - Current CPU is unset (>= nr_cpu_ids).
3581 * - Current CPU is offline.
3582 * - The current CPU's queue tail has advanced beyond the
3583 * last packet that was enqueued using this table entry.
3584 * This guarantees that all previous packets for the flow
3585 * have been dequeued, thus preserving in order delivery.
3586 */
3587 if (unlikely(tcpu != next_cpu) &&
3588 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3589 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3590 rflow->last_qtail)) >= 0)) {
3591 tcpu = next_cpu;
3592 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3593 }
3594
3595 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3596 *rflowp = rflow;
3597 cpu = tcpu;
3598 goto done;
3599 }
3600 }
3601
3602 try_rps:
3603
3604 if (map) {
3605 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3606 if (cpu_online(tcpu)) {
3607 cpu = tcpu;
3608 goto done;
3609 }
3610 }
3611
3612 done:
3613 return cpu;
3614 }
3615
3616 #ifdef CONFIG_RFS_ACCEL
3617
3618 /**
3619 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3620 * @dev: Device on which the filter was set
3621 * @rxq_index: RX queue index
3622 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3623 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3624 *
3625 * Drivers that implement ndo_rx_flow_steer() should periodically call
3626 * this function for each installed filter and remove the filters for
3627 * which it returns %true.
3628 */
3629 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3630 u32 flow_id, u16 filter_id)
3631 {
3632 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3633 struct rps_dev_flow_table *flow_table;
3634 struct rps_dev_flow *rflow;
3635 bool expire = true;
3636 unsigned int cpu;
3637
3638 rcu_read_lock();
3639 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3640 if (flow_table && flow_id <= flow_table->mask) {
3641 rflow = &flow_table->flows[flow_id];
3642 cpu = ACCESS_ONCE(rflow->cpu);
3643 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3644 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3645 rflow->last_qtail) <
3646 (int)(10 * flow_table->mask)))
3647 expire = false;
3648 }
3649 rcu_read_unlock();
3650 return expire;
3651 }
3652 EXPORT_SYMBOL(rps_may_expire_flow);
3653
3654 #endif /* CONFIG_RFS_ACCEL */
3655
3656 /* Called from hardirq (IPI) context */
3657 static void rps_trigger_softirq(void *data)
3658 {
3659 struct softnet_data *sd = data;
3660
3661 ____napi_schedule(sd, &sd->backlog);
3662 sd->received_rps++;
3663 }
3664
3665 #endif /* CONFIG_RPS */
3666
3667 /*
3668 * Check if this softnet_data structure is another cpu one
3669 * If yes, queue it to our IPI list and return 1
3670 * If no, return 0
3671 */
3672 static int rps_ipi_queued(struct softnet_data *sd)
3673 {
3674 #ifdef CONFIG_RPS
3675 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3676
3677 if (sd != mysd) {
3678 sd->rps_ipi_next = mysd->rps_ipi_list;
3679 mysd->rps_ipi_list = sd;
3680
3681 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3682 return 1;
3683 }
3684 #endif /* CONFIG_RPS */
3685 return 0;
3686 }
3687
3688 #ifdef CONFIG_NET_FLOW_LIMIT
3689 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3690 #endif
3691
3692 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3693 {
3694 #ifdef CONFIG_NET_FLOW_LIMIT
3695 struct sd_flow_limit *fl;
3696 struct softnet_data *sd;
3697 unsigned int old_flow, new_flow;
3698
3699 if (qlen < (netdev_max_backlog >> 1))
3700 return false;
3701
3702 sd = this_cpu_ptr(&softnet_data);
3703
3704 rcu_read_lock();
3705 fl = rcu_dereference(sd->flow_limit);
3706 if (fl) {
3707 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3708 old_flow = fl->history[fl->history_head];
3709 fl->history[fl->history_head] = new_flow;
3710
3711 fl->history_head++;
3712 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3713
3714 if (likely(fl->buckets[old_flow]))
3715 fl->buckets[old_flow]--;
3716
3717 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3718 fl->count++;
3719 rcu_read_unlock();
3720 return true;
3721 }
3722 }
3723 rcu_read_unlock();
3724 #endif
3725 return false;
3726 }
3727
3728 /*
3729 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3730 * queue (may be a remote CPU queue).
3731 */
3732 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3733 unsigned int *qtail)
3734 {
3735 struct softnet_data *sd;
3736 unsigned long flags;
3737 unsigned int qlen;
3738
3739 sd = &per_cpu(softnet_data, cpu);
3740
3741 local_irq_save(flags);
3742
3743 rps_lock(sd);
3744 if (!netif_running(skb->dev))
3745 goto drop;
3746 qlen = skb_queue_len(&sd->input_pkt_queue);
3747 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3748 if (qlen) {
3749 enqueue:
3750 __skb_queue_tail(&sd->input_pkt_queue, skb);
3751 input_queue_tail_incr_save(sd, qtail);
3752 rps_unlock(sd);
3753 local_irq_restore(flags);
3754 return NET_RX_SUCCESS;
3755 }
3756
3757 /* Schedule NAPI for backlog device
3758 * We can use non atomic operation since we own the queue lock
3759 */
3760 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3761 if (!rps_ipi_queued(sd))
3762 ____napi_schedule(sd, &sd->backlog);
3763 }
3764 goto enqueue;
3765 }
3766
3767 drop:
3768 sd->dropped++;
3769 rps_unlock(sd);
3770
3771 local_irq_restore(flags);
3772
3773 atomic_long_inc(&skb->dev->rx_dropped);
3774 kfree_skb(skb);
3775 return NET_RX_DROP;
3776 }
3777
3778 static int netif_rx_internal(struct sk_buff *skb)
3779 {
3780 int ret;
3781
3782 net_timestamp_check(netdev_tstamp_prequeue, skb);
3783
3784 trace_netif_rx(skb);
3785 #ifdef CONFIG_RPS
3786 if (static_key_false(&rps_needed)) {
3787 struct rps_dev_flow voidflow, *rflow = &voidflow;
3788 int cpu;
3789
3790 preempt_disable();
3791 rcu_read_lock();
3792
3793 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3794 if (cpu < 0)
3795 cpu = smp_processor_id();
3796
3797 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3798
3799 rcu_read_unlock();
3800 preempt_enable();
3801 } else
3802 #endif
3803 {
3804 unsigned int qtail;
3805
3806 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3807 put_cpu();
3808 }
3809 return ret;
3810 }
3811
3812 /**
3813 * netif_rx - post buffer to the network code
3814 * @skb: buffer to post
3815 *
3816 * This function receives a packet from a device driver and queues it for
3817 * the upper (protocol) levels to process. It always succeeds. The buffer
3818 * may be dropped during processing for congestion control or by the
3819 * protocol layers.
3820 *
3821 * return values:
3822 * NET_RX_SUCCESS (no congestion)
3823 * NET_RX_DROP (packet was dropped)
3824 *
3825 */
3826
3827 int netif_rx(struct sk_buff *skb)
3828 {
3829 trace_netif_rx_entry(skb);
3830
3831 return netif_rx_internal(skb);
3832 }
3833 EXPORT_SYMBOL(netif_rx);
3834
3835 int netif_rx_ni(struct sk_buff *skb)
3836 {
3837 int err;
3838
3839 trace_netif_rx_ni_entry(skb);
3840
3841 preempt_disable();
3842 err = netif_rx_internal(skb);
3843 if (local_softirq_pending())
3844 do_softirq();
3845 preempt_enable();
3846
3847 return err;
3848 }
3849 EXPORT_SYMBOL(netif_rx_ni);
3850
3851 static __latent_entropy void net_tx_action(struct softirq_action *h)
3852 {
3853 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3854
3855 if (sd->completion_queue) {
3856 struct sk_buff *clist;
3857
3858 local_irq_disable();
3859 clist = sd->completion_queue;
3860 sd->completion_queue = NULL;
3861 local_irq_enable();
3862
3863 while (clist) {
3864 struct sk_buff *skb = clist;
3865
3866 clist = clist->next;
3867
3868 WARN_ON(atomic_read(&skb->users));
3869 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3870 trace_consume_skb(skb);
3871 else
3872 trace_kfree_skb(skb, net_tx_action);
3873
3874 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3875 __kfree_skb(skb);
3876 else
3877 __kfree_skb_defer(skb);
3878 }
3879
3880 __kfree_skb_flush();
3881 }
3882
3883 if (sd->output_queue) {
3884 struct Qdisc *head;
3885
3886 local_irq_disable();
3887 head = sd->output_queue;
3888 sd->output_queue = NULL;
3889 sd->output_queue_tailp = &sd->output_queue;
3890 local_irq_enable();
3891
3892 while (head) {
3893 struct Qdisc *q = head;
3894 spinlock_t *root_lock;
3895
3896 head = head->next_sched;
3897
3898 root_lock = qdisc_lock(q);
3899 spin_lock(root_lock);
3900 /* We need to make sure head->next_sched is read
3901 * before clearing __QDISC_STATE_SCHED
3902 */
3903 smp_mb__before_atomic();
3904 clear_bit(__QDISC_STATE_SCHED, &q->state);
3905 qdisc_run(q);
3906 spin_unlock(root_lock);
3907 }
3908 }
3909 }
3910
3911 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3912 /* This hook is defined here for ATM LANE */
3913 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3914 unsigned char *addr) __read_mostly;
3915 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3916 #endif
3917
3918 static inline struct sk_buff *
3919 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3920 struct net_device *orig_dev)
3921 {
3922 #ifdef CONFIG_NET_CLS_ACT
3923 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3924 struct tcf_result cl_res;
3925
3926 /* If there's at least one ingress present somewhere (so
3927 * we get here via enabled static key), remaining devices
3928 * that are not configured with an ingress qdisc will bail
3929 * out here.
3930 */
3931 if (!cl)
3932 return skb;
3933 if (*pt_prev) {
3934 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3935 *pt_prev = NULL;
3936 }
3937
3938 qdisc_skb_cb(skb)->pkt_len = skb->len;
3939 skb->tc_at_ingress = 1;
3940 qdisc_bstats_cpu_update(cl->q, skb);
3941
3942 switch (tc_classify(skb, cl, &cl_res, false)) {
3943 case TC_ACT_OK:
3944 case TC_ACT_RECLASSIFY:
3945 skb->tc_index = TC_H_MIN(cl_res.classid);
3946 break;
3947 case TC_ACT_SHOT:
3948 qdisc_qstats_cpu_drop(cl->q);
3949 kfree_skb(skb);
3950 return NULL;
3951 case TC_ACT_STOLEN:
3952 case TC_ACT_QUEUED:
3953 consume_skb(skb);
3954 return NULL;
3955 case TC_ACT_REDIRECT:
3956 /* skb_mac_header check was done by cls/act_bpf, so
3957 * we can safely push the L2 header back before
3958 * redirecting to another netdev
3959 */
3960 __skb_push(skb, skb->mac_len);
3961 skb_do_redirect(skb);
3962 return NULL;
3963 default:
3964 break;
3965 }
3966 #endif /* CONFIG_NET_CLS_ACT */
3967 return skb;
3968 }
3969
3970 /**
3971 * netdev_is_rx_handler_busy - check if receive handler is registered
3972 * @dev: device to check
3973 *
3974 * Check if a receive handler is already registered for a given device.
3975 * Return true if there one.
3976 *
3977 * The caller must hold the rtnl_mutex.
3978 */
3979 bool netdev_is_rx_handler_busy(struct net_device *dev)
3980 {
3981 ASSERT_RTNL();
3982 return dev && rtnl_dereference(dev->rx_handler);
3983 }
3984 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3985
3986 /**
3987 * netdev_rx_handler_register - register receive handler
3988 * @dev: device to register a handler for
3989 * @rx_handler: receive handler to register
3990 * @rx_handler_data: data pointer that is used by rx handler
3991 *
3992 * Register a receive handler for a device. This handler will then be
3993 * called from __netif_receive_skb. A negative errno code is returned
3994 * on a failure.
3995 *
3996 * The caller must hold the rtnl_mutex.
3997 *
3998 * For a general description of rx_handler, see enum rx_handler_result.
3999 */
4000 int netdev_rx_handler_register(struct net_device *dev,
4001 rx_handler_func_t *rx_handler,
4002 void *rx_handler_data)
4003 {
4004 if (netdev_is_rx_handler_busy(dev))
4005 return -EBUSY;
4006
4007 /* Note: rx_handler_data must be set before rx_handler */
4008 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4009 rcu_assign_pointer(dev->rx_handler, rx_handler);
4010
4011 return 0;
4012 }
4013 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4014
4015 /**
4016 * netdev_rx_handler_unregister - unregister receive handler
4017 * @dev: device to unregister a handler from
4018 *
4019 * Unregister a receive handler from a device.
4020 *
4021 * The caller must hold the rtnl_mutex.
4022 */
4023 void netdev_rx_handler_unregister(struct net_device *dev)
4024 {
4025
4026 ASSERT_RTNL();
4027 RCU_INIT_POINTER(dev->rx_handler, NULL);
4028 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4029 * section has a guarantee to see a non NULL rx_handler_data
4030 * as well.
4031 */
4032 synchronize_net();
4033 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4034 }
4035 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4036
4037 /*
4038 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4039 * the special handling of PFMEMALLOC skbs.
4040 */
4041 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4042 {
4043 switch (skb->protocol) {
4044 case htons(ETH_P_ARP):
4045 case htons(ETH_P_IP):
4046 case htons(ETH_P_IPV6):
4047 case htons(ETH_P_8021Q):
4048 case htons(ETH_P_8021AD):
4049 return true;
4050 default:
4051 return false;
4052 }
4053 }
4054
4055 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4056 int *ret, struct net_device *orig_dev)
4057 {
4058 #ifdef CONFIG_NETFILTER_INGRESS
4059 if (nf_hook_ingress_active(skb)) {
4060 int ingress_retval;
4061
4062 if (*pt_prev) {
4063 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4064 *pt_prev = NULL;
4065 }
4066
4067 rcu_read_lock();
4068 ingress_retval = nf_hook_ingress(skb);
4069 rcu_read_unlock();
4070 return ingress_retval;
4071 }
4072 #endif /* CONFIG_NETFILTER_INGRESS */
4073 return 0;
4074 }
4075
4076 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4077 {
4078 struct packet_type *ptype, *pt_prev;
4079 rx_handler_func_t *rx_handler;
4080 struct net_device *orig_dev;
4081 bool deliver_exact = false;
4082 int ret = NET_RX_DROP;
4083 __be16 type;
4084
4085 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4086
4087 trace_netif_receive_skb(skb);
4088
4089 orig_dev = skb->dev;
4090
4091 skb_reset_network_header(skb);
4092 if (!skb_transport_header_was_set(skb))
4093 skb_reset_transport_header(skb);
4094 skb_reset_mac_len(skb);
4095
4096 pt_prev = NULL;
4097
4098 another_round:
4099 skb->skb_iif = skb->dev->ifindex;
4100
4101 __this_cpu_inc(softnet_data.processed);
4102
4103 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4104 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4105 skb = skb_vlan_untag(skb);
4106 if (unlikely(!skb))
4107 goto out;
4108 }
4109
4110 if (skb_skip_tc_classify(skb))
4111 goto skip_classify;
4112
4113 if (pfmemalloc)
4114 goto skip_taps;
4115
4116 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4117 if (pt_prev)
4118 ret = deliver_skb(skb, pt_prev, orig_dev);
4119 pt_prev = ptype;
4120 }
4121
4122 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4123 if (pt_prev)
4124 ret = deliver_skb(skb, pt_prev, orig_dev);
4125 pt_prev = ptype;
4126 }
4127
4128 skip_taps:
4129 #ifdef CONFIG_NET_INGRESS
4130 if (static_key_false(&ingress_needed)) {
4131 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4132 if (!skb)
4133 goto out;
4134
4135 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4136 goto out;
4137 }
4138 #endif
4139 skb_reset_tc(skb);
4140 skip_classify:
4141 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4142 goto drop;
4143
4144 if (skb_vlan_tag_present(skb)) {
4145 if (pt_prev) {
4146 ret = deliver_skb(skb, pt_prev, orig_dev);
4147 pt_prev = NULL;
4148 }
4149 if (vlan_do_receive(&skb))
4150 goto another_round;
4151 else if (unlikely(!skb))
4152 goto out;
4153 }
4154
4155 rx_handler = rcu_dereference(skb->dev->rx_handler);
4156 if (rx_handler) {
4157 if (pt_prev) {
4158 ret = deliver_skb(skb, pt_prev, orig_dev);
4159 pt_prev = NULL;
4160 }
4161 switch (rx_handler(&skb)) {
4162 case RX_HANDLER_CONSUMED:
4163 ret = NET_RX_SUCCESS;
4164 goto out;
4165 case RX_HANDLER_ANOTHER:
4166 goto another_round;
4167 case RX_HANDLER_EXACT:
4168 deliver_exact = true;
4169 case RX_HANDLER_PASS:
4170 break;
4171 default:
4172 BUG();
4173 }
4174 }
4175
4176 if (unlikely(skb_vlan_tag_present(skb))) {
4177 if (skb_vlan_tag_get_id(skb))
4178 skb->pkt_type = PACKET_OTHERHOST;
4179 /* Note: we might in the future use prio bits
4180 * and set skb->priority like in vlan_do_receive()
4181 * For the time being, just ignore Priority Code Point
4182 */
4183 skb->vlan_tci = 0;
4184 }
4185
4186 type = skb->protocol;
4187
4188 /* deliver only exact match when indicated */
4189 if (likely(!deliver_exact)) {
4190 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4191 &ptype_base[ntohs(type) &
4192 PTYPE_HASH_MASK]);
4193 }
4194
4195 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4196 &orig_dev->ptype_specific);
4197
4198 if (unlikely(skb->dev != orig_dev)) {
4199 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4200 &skb->dev->ptype_specific);
4201 }
4202
4203 if (pt_prev) {
4204 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4205 goto drop;
4206 else
4207 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4208 } else {
4209 drop:
4210 if (!deliver_exact)
4211 atomic_long_inc(&skb->dev->rx_dropped);
4212 else
4213 atomic_long_inc(&skb->dev->rx_nohandler);
4214 kfree_skb(skb);
4215 /* Jamal, now you will not able to escape explaining
4216 * me how you were going to use this. :-)
4217 */
4218 ret = NET_RX_DROP;
4219 }
4220
4221 out:
4222 return ret;
4223 }
4224
4225 static int __netif_receive_skb(struct sk_buff *skb)
4226 {
4227 int ret;
4228
4229 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4230 unsigned long pflags = current->flags;
4231
4232 /*
4233 * PFMEMALLOC skbs are special, they should
4234 * - be delivered to SOCK_MEMALLOC sockets only
4235 * - stay away from userspace
4236 * - have bounded memory usage
4237 *
4238 * Use PF_MEMALLOC as this saves us from propagating the allocation
4239 * context down to all allocation sites.
4240 */
4241 current->flags |= PF_MEMALLOC;
4242 ret = __netif_receive_skb_core(skb, true);
4243 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4244 } else
4245 ret = __netif_receive_skb_core(skb, false);
4246
4247 return ret;
4248 }
4249
4250 static int netif_receive_skb_internal(struct sk_buff *skb)
4251 {
4252 int ret;
4253
4254 net_timestamp_check(netdev_tstamp_prequeue, skb);
4255
4256 if (skb_defer_rx_timestamp(skb))
4257 return NET_RX_SUCCESS;
4258
4259 rcu_read_lock();
4260
4261 #ifdef CONFIG_RPS
4262 if (static_key_false(&rps_needed)) {
4263 struct rps_dev_flow voidflow, *rflow = &voidflow;
4264 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4265
4266 if (cpu >= 0) {
4267 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4268 rcu_read_unlock();
4269 return ret;
4270 }
4271 }
4272 #endif
4273 ret = __netif_receive_skb(skb);
4274 rcu_read_unlock();
4275 return ret;
4276 }
4277
4278 /**
4279 * netif_receive_skb - process receive buffer from network
4280 * @skb: buffer to process
4281 *
4282 * netif_receive_skb() is the main receive data processing function.
4283 * It always succeeds. The buffer may be dropped during processing
4284 * for congestion control or by the protocol layers.
4285 *
4286 * This function may only be called from softirq context and interrupts
4287 * should be enabled.
4288 *
4289 * Return values (usually ignored):
4290 * NET_RX_SUCCESS: no congestion
4291 * NET_RX_DROP: packet was dropped
4292 */
4293 int netif_receive_skb(struct sk_buff *skb)
4294 {
4295 trace_netif_receive_skb_entry(skb);
4296
4297 return netif_receive_skb_internal(skb);
4298 }
4299 EXPORT_SYMBOL(netif_receive_skb);
4300
4301 DEFINE_PER_CPU(struct work_struct, flush_works);
4302
4303 /* Network device is going away, flush any packets still pending */
4304 static void flush_backlog(struct work_struct *work)
4305 {
4306 struct sk_buff *skb, *tmp;
4307 struct softnet_data *sd;
4308
4309 local_bh_disable();
4310 sd = this_cpu_ptr(&softnet_data);
4311
4312 local_irq_disable();
4313 rps_lock(sd);
4314 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4315 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4316 __skb_unlink(skb, &sd->input_pkt_queue);
4317 kfree_skb(skb);
4318 input_queue_head_incr(sd);
4319 }
4320 }
4321 rps_unlock(sd);
4322 local_irq_enable();
4323
4324 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4325 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4326 __skb_unlink(skb, &sd->process_queue);
4327 kfree_skb(skb);
4328 input_queue_head_incr(sd);
4329 }
4330 }
4331 local_bh_enable();
4332 }
4333
4334 static void flush_all_backlogs(void)
4335 {
4336 unsigned int cpu;
4337
4338 get_online_cpus();
4339
4340 for_each_online_cpu(cpu)
4341 queue_work_on(cpu, system_highpri_wq,
4342 per_cpu_ptr(&flush_works, cpu));
4343
4344 for_each_online_cpu(cpu)
4345 flush_work(per_cpu_ptr(&flush_works, cpu));
4346
4347 put_online_cpus();
4348 }
4349
4350 static int napi_gro_complete(struct sk_buff *skb)
4351 {
4352 struct packet_offload *ptype;
4353 __be16 type = skb->protocol;
4354 struct list_head *head = &offload_base;
4355 int err = -ENOENT;
4356
4357 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4358
4359 if (NAPI_GRO_CB(skb)->count == 1) {
4360 skb_shinfo(skb)->gso_size = 0;
4361 goto out;
4362 }
4363
4364 rcu_read_lock();
4365 list_for_each_entry_rcu(ptype, head, list) {
4366 if (ptype->type != type || !ptype->callbacks.gro_complete)
4367 continue;
4368
4369 err = ptype->callbacks.gro_complete(skb, 0);
4370 break;
4371 }
4372 rcu_read_unlock();
4373
4374 if (err) {
4375 WARN_ON(&ptype->list == head);
4376 kfree_skb(skb);
4377 return NET_RX_SUCCESS;
4378 }
4379
4380 out:
4381 return netif_receive_skb_internal(skb);
4382 }
4383
4384 /* napi->gro_list contains packets ordered by age.
4385 * youngest packets at the head of it.
4386 * Complete skbs in reverse order to reduce latencies.
4387 */
4388 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4389 {
4390 struct sk_buff *skb, *prev = NULL;
4391
4392 /* scan list and build reverse chain */
4393 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4394 skb->prev = prev;
4395 prev = skb;
4396 }
4397
4398 for (skb = prev; skb; skb = prev) {
4399 skb->next = NULL;
4400
4401 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4402 return;
4403
4404 prev = skb->prev;
4405 napi_gro_complete(skb);
4406 napi->gro_count--;
4407 }
4408
4409 napi->gro_list = NULL;
4410 }
4411 EXPORT_SYMBOL(napi_gro_flush);
4412
4413 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4414 {
4415 struct sk_buff *p;
4416 unsigned int maclen = skb->dev->hard_header_len;
4417 u32 hash = skb_get_hash_raw(skb);
4418
4419 for (p = napi->gro_list; p; p = p->next) {
4420 unsigned long diffs;
4421
4422 NAPI_GRO_CB(p)->flush = 0;
4423
4424 if (hash != skb_get_hash_raw(p)) {
4425 NAPI_GRO_CB(p)->same_flow = 0;
4426 continue;
4427 }
4428
4429 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4430 diffs |= p->vlan_tci ^ skb->vlan_tci;
4431 diffs |= skb_metadata_dst_cmp(p, skb);
4432 if (maclen == ETH_HLEN)
4433 diffs |= compare_ether_header(skb_mac_header(p),
4434 skb_mac_header(skb));
4435 else if (!diffs)
4436 diffs = memcmp(skb_mac_header(p),
4437 skb_mac_header(skb),
4438 maclen);
4439 NAPI_GRO_CB(p)->same_flow = !diffs;
4440 }
4441 }
4442
4443 static void skb_gro_reset_offset(struct sk_buff *skb)
4444 {
4445 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4446 const skb_frag_t *frag0 = &pinfo->frags[0];
4447
4448 NAPI_GRO_CB(skb)->data_offset = 0;
4449 NAPI_GRO_CB(skb)->frag0 = NULL;
4450 NAPI_GRO_CB(skb)->frag0_len = 0;
4451
4452 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4453 pinfo->nr_frags &&
4454 !PageHighMem(skb_frag_page(frag0))) {
4455 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4456 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4457 skb_frag_size(frag0),
4458 skb->end - skb->tail);
4459 }
4460 }
4461
4462 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4463 {
4464 struct skb_shared_info *pinfo = skb_shinfo(skb);
4465
4466 BUG_ON(skb->end - skb->tail < grow);
4467
4468 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4469
4470 skb->data_len -= grow;
4471 skb->tail += grow;
4472
4473 pinfo->frags[0].page_offset += grow;
4474 skb_frag_size_sub(&pinfo->frags[0], grow);
4475
4476 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4477 skb_frag_unref(skb, 0);
4478 memmove(pinfo->frags, pinfo->frags + 1,
4479 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4480 }
4481 }
4482
4483 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4484 {
4485 struct sk_buff **pp = NULL;
4486 struct packet_offload *ptype;
4487 __be16 type = skb->protocol;
4488 struct list_head *head = &offload_base;
4489 int same_flow;
4490 enum gro_result ret;
4491 int grow;
4492
4493 if (!(skb->dev->features & NETIF_F_GRO))
4494 goto normal;
4495
4496 if (skb->csum_bad)
4497 goto normal;
4498
4499 gro_list_prepare(napi, skb);
4500
4501 rcu_read_lock();
4502 list_for_each_entry_rcu(ptype, head, list) {
4503 if (ptype->type != type || !ptype->callbacks.gro_receive)
4504 continue;
4505
4506 skb_set_network_header(skb, skb_gro_offset(skb));
4507 skb_reset_mac_len(skb);
4508 NAPI_GRO_CB(skb)->same_flow = 0;
4509 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4510 NAPI_GRO_CB(skb)->free = 0;
4511 NAPI_GRO_CB(skb)->encap_mark = 0;
4512 NAPI_GRO_CB(skb)->recursion_counter = 0;
4513 NAPI_GRO_CB(skb)->is_fou = 0;
4514 NAPI_GRO_CB(skb)->is_atomic = 1;
4515 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4516
4517 /* Setup for GRO checksum validation */
4518 switch (skb->ip_summed) {
4519 case CHECKSUM_COMPLETE:
4520 NAPI_GRO_CB(skb)->csum = skb->csum;
4521 NAPI_GRO_CB(skb)->csum_valid = 1;
4522 NAPI_GRO_CB(skb)->csum_cnt = 0;
4523 break;
4524 case CHECKSUM_UNNECESSARY:
4525 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4526 NAPI_GRO_CB(skb)->csum_valid = 0;
4527 break;
4528 default:
4529 NAPI_GRO_CB(skb)->csum_cnt = 0;
4530 NAPI_GRO_CB(skb)->csum_valid = 0;
4531 }
4532
4533 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4534 break;
4535 }
4536 rcu_read_unlock();
4537
4538 if (&ptype->list == head)
4539 goto normal;
4540
4541 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4542 ret = GRO_CONSUMED;
4543 goto ok;
4544 }
4545
4546 same_flow = NAPI_GRO_CB(skb)->same_flow;
4547 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4548
4549 if (pp) {
4550 struct sk_buff *nskb = *pp;
4551
4552 *pp = nskb->next;
4553 nskb->next = NULL;
4554 napi_gro_complete(nskb);
4555 napi->gro_count--;
4556 }
4557
4558 if (same_flow)
4559 goto ok;
4560
4561 if (NAPI_GRO_CB(skb)->flush)
4562 goto normal;
4563
4564 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4565 struct sk_buff *nskb = napi->gro_list;
4566
4567 /* locate the end of the list to select the 'oldest' flow */
4568 while (nskb->next) {
4569 pp = &nskb->next;
4570 nskb = *pp;
4571 }
4572 *pp = NULL;
4573 nskb->next = NULL;
4574 napi_gro_complete(nskb);
4575 } else {
4576 napi->gro_count++;
4577 }
4578 NAPI_GRO_CB(skb)->count = 1;
4579 NAPI_GRO_CB(skb)->age = jiffies;
4580 NAPI_GRO_CB(skb)->last = skb;
4581 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4582 skb->next = napi->gro_list;
4583 napi->gro_list = skb;
4584 ret = GRO_HELD;
4585
4586 pull:
4587 grow = skb_gro_offset(skb) - skb_headlen(skb);
4588 if (grow > 0)
4589 gro_pull_from_frag0(skb, grow);
4590 ok:
4591 return ret;
4592
4593 normal:
4594 ret = GRO_NORMAL;
4595 goto pull;
4596 }
4597
4598 struct packet_offload *gro_find_receive_by_type(__be16 type)
4599 {
4600 struct list_head *offload_head = &offload_base;
4601 struct packet_offload *ptype;
4602
4603 list_for_each_entry_rcu(ptype, offload_head, list) {
4604 if (ptype->type != type || !ptype->callbacks.gro_receive)
4605 continue;
4606 return ptype;
4607 }
4608 return NULL;
4609 }
4610 EXPORT_SYMBOL(gro_find_receive_by_type);
4611
4612 struct packet_offload *gro_find_complete_by_type(__be16 type)
4613 {
4614 struct list_head *offload_head = &offload_base;
4615 struct packet_offload *ptype;
4616
4617 list_for_each_entry_rcu(ptype, offload_head, list) {
4618 if (ptype->type != type || !ptype->callbacks.gro_complete)
4619 continue;
4620 return ptype;
4621 }
4622 return NULL;
4623 }
4624 EXPORT_SYMBOL(gro_find_complete_by_type);
4625
4626 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4627 {
4628 switch (ret) {
4629 case GRO_NORMAL:
4630 if (netif_receive_skb_internal(skb))
4631 ret = GRO_DROP;
4632 break;
4633
4634 case GRO_DROP:
4635 kfree_skb(skb);
4636 break;
4637
4638 case GRO_MERGED_FREE:
4639 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4640 skb_dst_drop(skb);
4641 secpath_reset(skb);
4642 kmem_cache_free(skbuff_head_cache, skb);
4643 } else {
4644 __kfree_skb(skb);
4645 }
4646 break;
4647
4648 case GRO_HELD:
4649 case GRO_MERGED:
4650 case GRO_CONSUMED:
4651 break;
4652 }
4653
4654 return ret;
4655 }
4656
4657 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4658 {
4659 skb_mark_napi_id(skb, napi);
4660 trace_napi_gro_receive_entry(skb);
4661
4662 skb_gro_reset_offset(skb);
4663
4664 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4665 }
4666 EXPORT_SYMBOL(napi_gro_receive);
4667
4668 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4669 {
4670 if (unlikely(skb->pfmemalloc)) {
4671 consume_skb(skb);
4672 return;
4673 }
4674 __skb_pull(skb, skb_headlen(skb));
4675 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4676 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4677 skb->vlan_tci = 0;
4678 skb->dev = napi->dev;
4679 skb->skb_iif = 0;
4680 skb->encapsulation = 0;
4681 skb_shinfo(skb)->gso_type = 0;
4682 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4683 secpath_reset(skb);
4684
4685 napi->skb = skb;
4686 }
4687
4688 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4689 {
4690 struct sk_buff *skb = napi->skb;
4691
4692 if (!skb) {
4693 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4694 if (skb) {
4695 napi->skb = skb;
4696 skb_mark_napi_id(skb, napi);
4697 }
4698 }
4699 return skb;
4700 }
4701 EXPORT_SYMBOL(napi_get_frags);
4702
4703 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4704 struct sk_buff *skb,
4705 gro_result_t ret)
4706 {
4707 switch (ret) {
4708 case GRO_NORMAL:
4709 case GRO_HELD:
4710 __skb_push(skb, ETH_HLEN);
4711 skb->protocol = eth_type_trans(skb, skb->dev);
4712 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4713 ret = GRO_DROP;
4714 break;
4715
4716 case GRO_DROP:
4717 case GRO_MERGED_FREE:
4718 napi_reuse_skb(napi, skb);
4719 break;
4720
4721 case GRO_MERGED:
4722 case GRO_CONSUMED:
4723 break;
4724 }
4725
4726 return ret;
4727 }
4728
4729 /* Upper GRO stack assumes network header starts at gro_offset=0
4730 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4731 * We copy ethernet header into skb->data to have a common layout.
4732 */
4733 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4734 {
4735 struct sk_buff *skb = napi->skb;
4736 const struct ethhdr *eth;
4737 unsigned int hlen = sizeof(*eth);
4738
4739 napi->skb = NULL;
4740
4741 skb_reset_mac_header(skb);
4742 skb_gro_reset_offset(skb);
4743
4744 eth = skb_gro_header_fast(skb, 0);
4745 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4746 eth = skb_gro_header_slow(skb, hlen, 0);
4747 if (unlikely(!eth)) {
4748 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4749 __func__, napi->dev->name);
4750 napi_reuse_skb(napi, skb);
4751 return NULL;
4752 }
4753 } else {
4754 gro_pull_from_frag0(skb, hlen);
4755 NAPI_GRO_CB(skb)->frag0 += hlen;
4756 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4757 }
4758 __skb_pull(skb, hlen);
4759
4760 /*
4761 * This works because the only protocols we care about don't require
4762 * special handling.
4763 * We'll fix it up properly in napi_frags_finish()
4764 */
4765 skb->protocol = eth->h_proto;
4766
4767 return skb;
4768 }
4769
4770 gro_result_t napi_gro_frags(struct napi_struct *napi)
4771 {
4772 struct sk_buff *skb = napi_frags_skb(napi);
4773
4774 if (!skb)
4775 return GRO_DROP;
4776
4777 trace_napi_gro_frags_entry(skb);
4778
4779 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4780 }
4781 EXPORT_SYMBOL(napi_gro_frags);
4782
4783 /* Compute the checksum from gro_offset and return the folded value
4784 * after adding in any pseudo checksum.
4785 */
4786 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4787 {
4788 __wsum wsum;
4789 __sum16 sum;
4790
4791 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4792
4793 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4794 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4795 if (likely(!sum)) {
4796 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4797 !skb->csum_complete_sw)
4798 netdev_rx_csum_fault(skb->dev);
4799 }
4800
4801 NAPI_GRO_CB(skb)->csum = wsum;
4802 NAPI_GRO_CB(skb)->csum_valid = 1;
4803
4804 return sum;
4805 }
4806 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4807
4808 /*
4809 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4810 * Note: called with local irq disabled, but exits with local irq enabled.
4811 */
4812 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4813 {
4814 #ifdef CONFIG_RPS
4815 struct softnet_data *remsd = sd->rps_ipi_list;
4816
4817 if (remsd) {
4818 sd->rps_ipi_list = NULL;
4819
4820 local_irq_enable();
4821
4822 /* Send pending IPI's to kick RPS processing on remote cpus. */
4823 while (remsd) {
4824 struct softnet_data *next = remsd->rps_ipi_next;
4825
4826 if (cpu_online(remsd->cpu))
4827 smp_call_function_single_async(remsd->cpu,
4828 &remsd->csd);
4829 remsd = next;
4830 }
4831 } else
4832 #endif
4833 local_irq_enable();
4834 }
4835
4836 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4837 {
4838 #ifdef CONFIG_RPS
4839 return sd->rps_ipi_list != NULL;
4840 #else
4841 return false;
4842 #endif
4843 }
4844
4845 static int process_backlog(struct napi_struct *napi, int quota)
4846 {
4847 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4848 bool again = true;
4849 int work = 0;
4850
4851 /* Check if we have pending ipi, its better to send them now,
4852 * not waiting net_rx_action() end.
4853 */
4854 if (sd_has_rps_ipi_waiting(sd)) {
4855 local_irq_disable();
4856 net_rps_action_and_irq_enable(sd);
4857 }
4858
4859 napi->weight = dev_rx_weight;
4860 while (again) {
4861 struct sk_buff *skb;
4862
4863 while ((skb = __skb_dequeue(&sd->process_queue))) {
4864 rcu_read_lock();
4865 __netif_receive_skb(skb);
4866 rcu_read_unlock();
4867 input_queue_head_incr(sd);
4868 if (++work >= quota)
4869 return work;
4870
4871 }
4872
4873 local_irq_disable();
4874 rps_lock(sd);
4875 if (skb_queue_empty(&sd->input_pkt_queue)) {
4876 /*
4877 * Inline a custom version of __napi_complete().
4878 * only current cpu owns and manipulates this napi,
4879 * and NAPI_STATE_SCHED is the only possible flag set
4880 * on backlog.
4881 * We can use a plain write instead of clear_bit(),
4882 * and we dont need an smp_mb() memory barrier.
4883 */
4884 napi->state = 0;
4885 again = false;
4886 } else {
4887 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4888 &sd->process_queue);
4889 }
4890 rps_unlock(sd);
4891 local_irq_enable();
4892 }
4893
4894 return work;
4895 }
4896
4897 /**
4898 * __napi_schedule - schedule for receive
4899 * @n: entry to schedule
4900 *
4901 * The entry's receive function will be scheduled to run.
4902 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4903 */
4904 void __napi_schedule(struct napi_struct *n)
4905 {
4906 unsigned long flags;
4907
4908 local_irq_save(flags);
4909 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4910 local_irq_restore(flags);
4911 }
4912 EXPORT_SYMBOL(__napi_schedule);
4913
4914 /**
4915 * napi_schedule_prep - check if napi can be scheduled
4916 * @n: napi context
4917 *
4918 * Test if NAPI routine is already running, and if not mark
4919 * it as running. This is used as a condition variable
4920 * insure only one NAPI poll instance runs. We also make
4921 * sure there is no pending NAPI disable.
4922 */
4923 bool napi_schedule_prep(struct napi_struct *n)
4924 {
4925 unsigned long val, new;
4926
4927 do {
4928 val = READ_ONCE(n->state);
4929 if (unlikely(val & NAPIF_STATE_DISABLE))
4930 return false;
4931 new = val | NAPIF_STATE_SCHED;
4932
4933 /* Sets STATE_MISSED bit if STATE_SCHED was already set
4934 * This was suggested by Alexander Duyck, as compiler
4935 * emits better code than :
4936 * if (val & NAPIF_STATE_SCHED)
4937 * new |= NAPIF_STATE_MISSED;
4938 */
4939 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
4940 NAPIF_STATE_MISSED;
4941 } while (cmpxchg(&n->state, val, new) != val);
4942
4943 return !(val & NAPIF_STATE_SCHED);
4944 }
4945 EXPORT_SYMBOL(napi_schedule_prep);
4946
4947 /**
4948 * __napi_schedule_irqoff - schedule for receive
4949 * @n: entry to schedule
4950 *
4951 * Variant of __napi_schedule() assuming hard irqs are masked
4952 */
4953 void __napi_schedule_irqoff(struct napi_struct *n)
4954 {
4955 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4956 }
4957 EXPORT_SYMBOL(__napi_schedule_irqoff);
4958
4959 bool napi_complete_done(struct napi_struct *n, int work_done)
4960 {
4961 unsigned long flags, val, new;
4962
4963 /*
4964 * 1) Don't let napi dequeue from the cpu poll list
4965 * just in case its running on a different cpu.
4966 * 2) If we are busy polling, do nothing here, we have
4967 * the guarantee we will be called later.
4968 */
4969 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4970 NAPIF_STATE_IN_BUSY_POLL)))
4971 return false;
4972
4973 if (n->gro_list) {
4974 unsigned long timeout = 0;
4975
4976 if (work_done)
4977 timeout = n->dev->gro_flush_timeout;
4978
4979 if (timeout)
4980 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4981 HRTIMER_MODE_REL_PINNED);
4982 else
4983 napi_gro_flush(n, false);
4984 }
4985 if (unlikely(!list_empty(&n->poll_list))) {
4986 /* If n->poll_list is not empty, we need to mask irqs */
4987 local_irq_save(flags);
4988 list_del_init(&n->poll_list);
4989 local_irq_restore(flags);
4990 }
4991
4992 do {
4993 val = READ_ONCE(n->state);
4994
4995 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
4996
4997 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
4998
4999 /* If STATE_MISSED was set, leave STATE_SCHED set,
5000 * because we will call napi->poll() one more time.
5001 * This C code was suggested by Alexander Duyck to help gcc.
5002 */
5003 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5004 NAPIF_STATE_SCHED;
5005 } while (cmpxchg(&n->state, val, new) != val);
5006
5007 if (unlikely(val & NAPIF_STATE_MISSED)) {
5008 __napi_schedule(n);
5009 return false;
5010 }
5011
5012 return true;
5013 }
5014 EXPORT_SYMBOL(napi_complete_done);
5015
5016 /* must be called under rcu_read_lock(), as we dont take a reference */
5017 static struct napi_struct *napi_by_id(unsigned int napi_id)
5018 {
5019 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5020 struct napi_struct *napi;
5021
5022 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5023 if (napi->napi_id == napi_id)
5024 return napi;
5025
5026 return NULL;
5027 }
5028
5029 #if defined(CONFIG_NET_RX_BUSY_POLL)
5030
5031 #define BUSY_POLL_BUDGET 8
5032
5033 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5034 {
5035 int rc;
5036
5037 /* Busy polling means there is a high chance device driver hard irq
5038 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5039 * set in napi_schedule_prep().
5040 * Since we are about to call napi->poll() once more, we can safely
5041 * clear NAPI_STATE_MISSED.
5042 *
5043 * Note: x86 could use a single "lock and ..." instruction
5044 * to perform these two clear_bit()
5045 */
5046 clear_bit(NAPI_STATE_MISSED, &napi->state);
5047 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5048
5049 local_bh_disable();
5050
5051 /* All we really want here is to re-enable device interrupts.
5052 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5053 */
5054 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5055 netpoll_poll_unlock(have_poll_lock);
5056 if (rc == BUSY_POLL_BUDGET)
5057 __napi_schedule(napi);
5058 local_bh_enable();
5059 if (local_softirq_pending())
5060 do_softirq();
5061 }
5062
5063 void sk_busy_loop(struct sock *sk, int nonblock)
5064 {
5065 unsigned long start_time = nonblock ? 0 : busy_loop_current_time();
5066 int (*napi_poll)(struct napi_struct *napi, int budget);
5067 void *have_poll_lock = NULL;
5068 struct napi_struct *napi;
5069 unsigned int napi_id;
5070
5071 restart:
5072 napi_id = READ_ONCE(sk->sk_napi_id);
5073 if (napi_id < MIN_NAPI_ID)
5074 return;
5075
5076 napi_poll = NULL;
5077
5078 rcu_read_lock();
5079
5080 napi = napi_by_id(napi_id);
5081 if (!napi)
5082 goto out;
5083
5084 preempt_disable();
5085 for (;;) {
5086 int work = 0;
5087
5088 local_bh_disable();
5089 if (!napi_poll) {
5090 unsigned long val = READ_ONCE(napi->state);
5091
5092 /* If multiple threads are competing for this napi,
5093 * we avoid dirtying napi->state as much as we can.
5094 */
5095 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5096 NAPIF_STATE_IN_BUSY_POLL))
5097 goto count;
5098 if (cmpxchg(&napi->state, val,
5099 val | NAPIF_STATE_IN_BUSY_POLL |
5100 NAPIF_STATE_SCHED) != val)
5101 goto count;
5102 have_poll_lock = netpoll_poll_lock(napi);
5103 napi_poll = napi->poll;
5104 }
5105 work = napi_poll(napi, BUSY_POLL_BUDGET);
5106 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5107 count:
5108 if (work > 0)
5109 __NET_ADD_STATS(sock_net(sk),
5110 LINUX_MIB_BUSYPOLLRXPACKETS, work);
5111 local_bh_enable();
5112
5113 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5114 sk_busy_loop_timeout(sk, start_time))
5115 break;
5116
5117 if (unlikely(need_resched())) {
5118 if (napi_poll)
5119 busy_poll_stop(napi, have_poll_lock);
5120 preempt_enable();
5121 rcu_read_unlock();
5122 cond_resched();
5123 if (!skb_queue_empty(&sk->sk_receive_queue) ||
5124 sk_busy_loop_timeout(sk, start_time))
5125 return;
5126 goto restart;
5127 }
5128 cpu_relax();
5129 }
5130 if (napi_poll)
5131 busy_poll_stop(napi, have_poll_lock);
5132 preempt_enable();
5133 out:
5134 rcu_read_unlock();
5135 }
5136 EXPORT_SYMBOL(sk_busy_loop);
5137
5138 #endif /* CONFIG_NET_RX_BUSY_POLL */
5139
5140 static void napi_hash_add(struct napi_struct *napi)
5141 {
5142 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5143 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5144 return;
5145
5146 spin_lock(&napi_hash_lock);
5147
5148 /* 0..NR_CPUS range is reserved for sender_cpu use */
5149 do {
5150 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5151 napi_gen_id = MIN_NAPI_ID;
5152 } while (napi_by_id(napi_gen_id));
5153 napi->napi_id = napi_gen_id;
5154
5155 hlist_add_head_rcu(&napi->napi_hash_node,
5156 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5157
5158 spin_unlock(&napi_hash_lock);
5159 }
5160
5161 /* Warning : caller is responsible to make sure rcu grace period
5162 * is respected before freeing memory containing @napi
5163 */
5164 bool napi_hash_del(struct napi_struct *napi)
5165 {
5166 bool rcu_sync_needed = false;
5167
5168 spin_lock(&napi_hash_lock);
5169
5170 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5171 rcu_sync_needed = true;
5172 hlist_del_rcu(&napi->napi_hash_node);
5173 }
5174 spin_unlock(&napi_hash_lock);
5175 return rcu_sync_needed;
5176 }
5177 EXPORT_SYMBOL_GPL(napi_hash_del);
5178
5179 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5180 {
5181 struct napi_struct *napi;
5182
5183 napi = container_of(timer, struct napi_struct, timer);
5184
5185 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5186 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5187 */
5188 if (napi->gro_list && !napi_disable_pending(napi) &&
5189 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5190 __napi_schedule_irqoff(napi);
5191
5192 return HRTIMER_NORESTART;
5193 }
5194
5195 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5196 int (*poll)(struct napi_struct *, int), int weight)
5197 {
5198 INIT_LIST_HEAD(&napi->poll_list);
5199 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5200 napi->timer.function = napi_watchdog;
5201 napi->gro_count = 0;
5202 napi->gro_list = NULL;
5203 napi->skb = NULL;
5204 napi->poll = poll;
5205 if (weight > NAPI_POLL_WEIGHT)
5206 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5207 weight, dev->name);
5208 napi->weight = weight;
5209 list_add(&napi->dev_list, &dev->napi_list);
5210 napi->dev = dev;
5211 #ifdef CONFIG_NETPOLL
5212 napi->poll_owner = -1;
5213 #endif
5214 set_bit(NAPI_STATE_SCHED, &napi->state);
5215 napi_hash_add(napi);
5216 }
5217 EXPORT_SYMBOL(netif_napi_add);
5218
5219 void napi_disable(struct napi_struct *n)
5220 {
5221 might_sleep();
5222 set_bit(NAPI_STATE_DISABLE, &n->state);
5223
5224 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5225 msleep(1);
5226 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5227 msleep(1);
5228
5229 hrtimer_cancel(&n->timer);
5230
5231 clear_bit(NAPI_STATE_DISABLE, &n->state);
5232 }
5233 EXPORT_SYMBOL(napi_disable);
5234
5235 /* Must be called in process context */
5236 void netif_napi_del(struct napi_struct *napi)
5237 {
5238 might_sleep();
5239 if (napi_hash_del(napi))
5240 synchronize_net();
5241 list_del_init(&napi->dev_list);
5242 napi_free_frags(napi);
5243
5244 kfree_skb_list(napi->gro_list);
5245 napi->gro_list = NULL;
5246 napi->gro_count = 0;
5247 }
5248 EXPORT_SYMBOL(netif_napi_del);
5249
5250 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5251 {
5252 void *have;
5253 int work, weight;
5254
5255 list_del_init(&n->poll_list);
5256
5257 have = netpoll_poll_lock(n);
5258
5259 weight = n->weight;
5260
5261 /* This NAPI_STATE_SCHED test is for avoiding a race
5262 * with netpoll's poll_napi(). Only the entity which
5263 * obtains the lock and sees NAPI_STATE_SCHED set will
5264 * actually make the ->poll() call. Therefore we avoid
5265 * accidentally calling ->poll() when NAPI is not scheduled.
5266 */
5267 work = 0;
5268 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5269 work = n->poll(n, weight);
5270 trace_napi_poll(n, work, weight);
5271 }
5272
5273 WARN_ON_ONCE(work > weight);
5274
5275 if (likely(work < weight))
5276 goto out_unlock;
5277
5278 /* Drivers must not modify the NAPI state if they
5279 * consume the entire weight. In such cases this code
5280 * still "owns" the NAPI instance and therefore can
5281 * move the instance around on the list at-will.
5282 */
5283 if (unlikely(napi_disable_pending(n))) {
5284 napi_complete(n);
5285 goto out_unlock;
5286 }
5287
5288 if (n->gro_list) {
5289 /* flush too old packets
5290 * If HZ < 1000, flush all packets.
5291 */
5292 napi_gro_flush(n, HZ >= 1000);
5293 }
5294
5295 /* Some drivers may have called napi_schedule
5296 * prior to exhausting their budget.
5297 */
5298 if (unlikely(!list_empty(&n->poll_list))) {
5299 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5300 n->dev ? n->dev->name : "backlog");
5301 goto out_unlock;
5302 }
5303
5304 list_add_tail(&n->poll_list, repoll);
5305
5306 out_unlock:
5307 netpoll_poll_unlock(have);
5308
5309 return work;
5310 }
5311
5312 static __latent_entropy void net_rx_action(struct softirq_action *h)
5313 {
5314 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5315 unsigned long time_limit = jiffies + 2;
5316 int budget = netdev_budget;
5317 LIST_HEAD(list);
5318 LIST_HEAD(repoll);
5319
5320 local_irq_disable();
5321 list_splice_init(&sd->poll_list, &list);
5322 local_irq_enable();
5323
5324 for (;;) {
5325 struct napi_struct *n;
5326
5327 if (list_empty(&list)) {
5328 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5329 goto out;
5330 break;
5331 }
5332
5333 n = list_first_entry(&list, struct napi_struct, poll_list);
5334 budget -= napi_poll(n, &repoll);
5335
5336 /* If softirq window is exhausted then punt.
5337 * Allow this to run for 2 jiffies since which will allow
5338 * an average latency of 1.5/HZ.
5339 */
5340 if (unlikely(budget <= 0 ||
5341 time_after_eq(jiffies, time_limit))) {
5342 sd->time_squeeze++;
5343 break;
5344 }
5345 }
5346
5347 local_irq_disable();
5348
5349 list_splice_tail_init(&sd->poll_list, &list);
5350 list_splice_tail(&repoll, &list);
5351 list_splice(&list, &sd->poll_list);
5352 if (!list_empty(&sd->poll_list))
5353 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5354
5355 net_rps_action_and_irq_enable(sd);
5356 out:
5357 __kfree_skb_flush();
5358 }
5359
5360 struct netdev_adjacent {
5361 struct net_device *dev;
5362
5363 /* upper master flag, there can only be one master device per list */
5364 bool master;
5365
5366 /* counter for the number of times this device was added to us */
5367 u16 ref_nr;
5368
5369 /* private field for the users */
5370 void *private;
5371
5372 struct list_head list;
5373 struct rcu_head rcu;
5374 };
5375
5376 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5377 struct list_head *adj_list)
5378 {
5379 struct netdev_adjacent *adj;
5380
5381 list_for_each_entry(adj, adj_list, list) {
5382 if (adj->dev == adj_dev)
5383 return adj;
5384 }
5385 return NULL;
5386 }
5387
5388 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5389 {
5390 struct net_device *dev = data;
5391
5392 return upper_dev == dev;
5393 }
5394
5395 /**
5396 * netdev_has_upper_dev - Check if device is linked to an upper device
5397 * @dev: device
5398 * @upper_dev: upper device to check
5399 *
5400 * Find out if a device is linked to specified upper device and return true
5401 * in case it is. Note that this checks only immediate upper device,
5402 * not through a complete stack of devices. The caller must hold the RTNL lock.
5403 */
5404 bool netdev_has_upper_dev(struct net_device *dev,
5405 struct net_device *upper_dev)
5406 {
5407 ASSERT_RTNL();
5408
5409 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5410 upper_dev);
5411 }
5412 EXPORT_SYMBOL(netdev_has_upper_dev);
5413
5414 /**
5415 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5416 * @dev: device
5417 * @upper_dev: upper device to check
5418 *
5419 * Find out if a device is linked to specified upper device and return true
5420 * in case it is. Note that this checks the entire upper device chain.
5421 * The caller must hold rcu lock.
5422 */
5423
5424 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5425 struct net_device *upper_dev)
5426 {
5427 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5428 upper_dev);
5429 }
5430 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5431
5432 /**
5433 * netdev_has_any_upper_dev - Check if device is linked to some device
5434 * @dev: device
5435 *
5436 * Find out if a device is linked to an upper device and return true in case
5437 * it is. The caller must hold the RTNL lock.
5438 */
5439 static bool netdev_has_any_upper_dev(struct net_device *dev)
5440 {
5441 ASSERT_RTNL();
5442
5443 return !list_empty(&dev->adj_list.upper);
5444 }
5445
5446 /**
5447 * netdev_master_upper_dev_get - Get master upper device
5448 * @dev: device
5449 *
5450 * Find a master upper device and return pointer to it or NULL in case
5451 * it's not there. The caller must hold the RTNL lock.
5452 */
5453 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5454 {
5455 struct netdev_adjacent *upper;
5456
5457 ASSERT_RTNL();
5458
5459 if (list_empty(&dev->adj_list.upper))
5460 return NULL;
5461
5462 upper = list_first_entry(&dev->adj_list.upper,
5463 struct netdev_adjacent, list);
5464 if (likely(upper->master))
5465 return upper->dev;
5466 return NULL;
5467 }
5468 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5469
5470 /**
5471 * netdev_has_any_lower_dev - Check if device is linked to some device
5472 * @dev: device
5473 *
5474 * Find out if a device is linked to a lower device and return true in case
5475 * it is. The caller must hold the RTNL lock.
5476 */
5477 static bool netdev_has_any_lower_dev(struct net_device *dev)
5478 {
5479 ASSERT_RTNL();
5480
5481 return !list_empty(&dev->adj_list.lower);
5482 }
5483
5484 void *netdev_adjacent_get_private(struct list_head *adj_list)
5485 {
5486 struct netdev_adjacent *adj;
5487
5488 adj = list_entry(adj_list, struct netdev_adjacent, list);
5489
5490 return adj->private;
5491 }
5492 EXPORT_SYMBOL(netdev_adjacent_get_private);
5493
5494 /**
5495 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5496 * @dev: device
5497 * @iter: list_head ** of the current position
5498 *
5499 * Gets the next device from the dev's upper list, starting from iter
5500 * position. The caller must hold RCU read lock.
5501 */
5502 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5503 struct list_head **iter)
5504 {
5505 struct netdev_adjacent *upper;
5506
5507 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5508
5509 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5510
5511 if (&upper->list == &dev->adj_list.upper)
5512 return NULL;
5513
5514 *iter = &upper->list;
5515
5516 return upper->dev;
5517 }
5518 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5519
5520 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5521 struct list_head **iter)
5522 {
5523 struct netdev_adjacent *upper;
5524
5525 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5526
5527 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5528
5529 if (&upper->list == &dev->adj_list.upper)
5530 return NULL;
5531
5532 *iter = &upper->list;
5533
5534 return upper->dev;
5535 }
5536
5537 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5538 int (*fn)(struct net_device *dev,
5539 void *data),
5540 void *data)
5541 {
5542 struct net_device *udev;
5543 struct list_head *iter;
5544 int ret;
5545
5546 for (iter = &dev->adj_list.upper,
5547 udev = netdev_next_upper_dev_rcu(dev, &iter);
5548 udev;
5549 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5550 /* first is the upper device itself */
5551 ret = fn(udev, data);
5552 if (ret)
5553 return ret;
5554
5555 /* then look at all of its upper devices */
5556 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5557 if (ret)
5558 return ret;
5559 }
5560
5561 return 0;
5562 }
5563 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5564
5565 /**
5566 * netdev_lower_get_next_private - Get the next ->private from the
5567 * lower neighbour list
5568 * @dev: device
5569 * @iter: list_head ** of the current position
5570 *
5571 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5572 * list, starting from iter position. The caller must hold either hold the
5573 * RTNL lock or its own locking that guarantees that the neighbour lower
5574 * list will remain unchanged.
5575 */
5576 void *netdev_lower_get_next_private(struct net_device *dev,
5577 struct list_head **iter)
5578 {
5579 struct netdev_adjacent *lower;
5580
5581 lower = list_entry(*iter, struct netdev_adjacent, list);
5582
5583 if (&lower->list == &dev->adj_list.lower)
5584 return NULL;
5585
5586 *iter = lower->list.next;
5587
5588 return lower->private;
5589 }
5590 EXPORT_SYMBOL(netdev_lower_get_next_private);
5591
5592 /**
5593 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5594 * lower neighbour list, RCU
5595 * variant
5596 * @dev: device
5597 * @iter: list_head ** of the current position
5598 *
5599 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5600 * list, starting from iter position. The caller must hold RCU read lock.
5601 */
5602 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5603 struct list_head **iter)
5604 {
5605 struct netdev_adjacent *lower;
5606
5607 WARN_ON_ONCE(!rcu_read_lock_held());
5608
5609 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5610
5611 if (&lower->list == &dev->adj_list.lower)
5612 return NULL;
5613
5614 *iter = &lower->list;
5615
5616 return lower->private;
5617 }
5618 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5619
5620 /**
5621 * netdev_lower_get_next - Get the next device from the lower neighbour
5622 * list
5623 * @dev: device
5624 * @iter: list_head ** of the current position
5625 *
5626 * Gets the next netdev_adjacent from the dev's lower neighbour
5627 * list, starting from iter position. The caller must hold RTNL lock or
5628 * its own locking that guarantees that the neighbour lower
5629 * list will remain unchanged.
5630 */
5631 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5632 {
5633 struct netdev_adjacent *lower;
5634
5635 lower = list_entry(*iter, struct netdev_adjacent, list);
5636
5637 if (&lower->list == &dev->adj_list.lower)
5638 return NULL;
5639
5640 *iter = lower->list.next;
5641
5642 return lower->dev;
5643 }
5644 EXPORT_SYMBOL(netdev_lower_get_next);
5645
5646 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5647 struct list_head **iter)
5648 {
5649 struct netdev_adjacent *lower;
5650
5651 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5652
5653 if (&lower->list == &dev->adj_list.lower)
5654 return NULL;
5655
5656 *iter = &lower->list;
5657
5658 return lower->dev;
5659 }
5660
5661 int netdev_walk_all_lower_dev(struct net_device *dev,
5662 int (*fn)(struct net_device *dev,
5663 void *data),
5664 void *data)
5665 {
5666 struct net_device *ldev;
5667 struct list_head *iter;
5668 int ret;
5669
5670 for (iter = &dev->adj_list.lower,
5671 ldev = netdev_next_lower_dev(dev, &iter);
5672 ldev;
5673 ldev = netdev_next_lower_dev(dev, &iter)) {
5674 /* first is the lower device itself */
5675 ret = fn(ldev, data);
5676 if (ret)
5677 return ret;
5678
5679 /* then look at all of its lower devices */
5680 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5681 if (ret)
5682 return ret;
5683 }
5684
5685 return 0;
5686 }
5687 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5688
5689 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5690 struct list_head **iter)
5691 {
5692 struct netdev_adjacent *lower;
5693
5694 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5695 if (&lower->list == &dev->adj_list.lower)
5696 return NULL;
5697
5698 *iter = &lower->list;
5699
5700 return lower->dev;
5701 }
5702
5703 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5704 int (*fn)(struct net_device *dev,
5705 void *data),
5706 void *data)
5707 {
5708 struct net_device *ldev;
5709 struct list_head *iter;
5710 int ret;
5711
5712 for (iter = &dev->adj_list.lower,
5713 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5714 ldev;
5715 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5716 /* first is the lower device itself */
5717 ret = fn(ldev, data);
5718 if (ret)
5719 return ret;
5720
5721 /* then look at all of its lower devices */
5722 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5723 if (ret)
5724 return ret;
5725 }
5726
5727 return 0;
5728 }
5729 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5730
5731 /**
5732 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5733 * lower neighbour list, RCU
5734 * variant
5735 * @dev: device
5736 *
5737 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5738 * list. The caller must hold RCU read lock.
5739 */
5740 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5741 {
5742 struct netdev_adjacent *lower;
5743
5744 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5745 struct netdev_adjacent, list);
5746 if (lower)
5747 return lower->private;
5748 return NULL;
5749 }
5750 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5751
5752 /**
5753 * netdev_master_upper_dev_get_rcu - Get master upper device
5754 * @dev: device
5755 *
5756 * Find a master upper device and return pointer to it or NULL in case
5757 * it's not there. The caller must hold the RCU read lock.
5758 */
5759 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5760 {
5761 struct netdev_adjacent *upper;
5762
5763 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5764 struct netdev_adjacent, list);
5765 if (upper && likely(upper->master))
5766 return upper->dev;
5767 return NULL;
5768 }
5769 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5770
5771 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5772 struct net_device *adj_dev,
5773 struct list_head *dev_list)
5774 {
5775 char linkname[IFNAMSIZ+7];
5776
5777 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5778 "upper_%s" : "lower_%s", adj_dev->name);
5779 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5780 linkname);
5781 }
5782 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5783 char *name,
5784 struct list_head *dev_list)
5785 {
5786 char linkname[IFNAMSIZ+7];
5787
5788 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5789 "upper_%s" : "lower_%s", name);
5790 sysfs_remove_link(&(dev->dev.kobj), linkname);
5791 }
5792
5793 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5794 struct net_device *adj_dev,
5795 struct list_head *dev_list)
5796 {
5797 return (dev_list == &dev->adj_list.upper ||
5798 dev_list == &dev->adj_list.lower) &&
5799 net_eq(dev_net(dev), dev_net(adj_dev));
5800 }
5801
5802 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5803 struct net_device *adj_dev,
5804 struct list_head *dev_list,
5805 void *private, bool master)
5806 {
5807 struct netdev_adjacent *adj;
5808 int ret;
5809
5810 adj = __netdev_find_adj(adj_dev, dev_list);
5811
5812 if (adj) {
5813 adj->ref_nr += 1;
5814 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5815 dev->name, adj_dev->name, adj->ref_nr);
5816
5817 return 0;
5818 }
5819
5820 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5821 if (!adj)
5822 return -ENOMEM;
5823
5824 adj->dev = adj_dev;
5825 adj->master = master;
5826 adj->ref_nr = 1;
5827 adj->private = private;
5828 dev_hold(adj_dev);
5829
5830 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5831 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5832
5833 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5834 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5835 if (ret)
5836 goto free_adj;
5837 }
5838
5839 /* Ensure that master link is always the first item in list. */
5840 if (master) {
5841 ret = sysfs_create_link(&(dev->dev.kobj),
5842 &(adj_dev->dev.kobj), "master");
5843 if (ret)
5844 goto remove_symlinks;
5845
5846 list_add_rcu(&adj->list, dev_list);
5847 } else {
5848 list_add_tail_rcu(&adj->list, dev_list);
5849 }
5850
5851 return 0;
5852
5853 remove_symlinks:
5854 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5855 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5856 free_adj:
5857 kfree(adj);
5858 dev_put(adj_dev);
5859
5860 return ret;
5861 }
5862
5863 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5864 struct net_device *adj_dev,
5865 u16 ref_nr,
5866 struct list_head *dev_list)
5867 {
5868 struct netdev_adjacent *adj;
5869
5870 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5871 dev->name, adj_dev->name, ref_nr);
5872
5873 adj = __netdev_find_adj(adj_dev, dev_list);
5874
5875 if (!adj) {
5876 pr_err("Adjacency does not exist for device %s from %s\n",
5877 dev->name, adj_dev->name);
5878 WARN_ON(1);
5879 return;
5880 }
5881
5882 if (adj->ref_nr > ref_nr) {
5883 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5884 dev->name, adj_dev->name, ref_nr,
5885 adj->ref_nr - ref_nr);
5886 adj->ref_nr -= ref_nr;
5887 return;
5888 }
5889
5890 if (adj->master)
5891 sysfs_remove_link(&(dev->dev.kobj), "master");
5892
5893 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5894 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5895
5896 list_del_rcu(&adj->list);
5897 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5898 adj_dev->name, dev->name, adj_dev->name);
5899 dev_put(adj_dev);
5900 kfree_rcu(adj, rcu);
5901 }
5902
5903 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5904 struct net_device *upper_dev,
5905 struct list_head *up_list,
5906 struct list_head *down_list,
5907 void *private, bool master)
5908 {
5909 int ret;
5910
5911 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5912 private, master);
5913 if (ret)
5914 return ret;
5915
5916 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5917 private, false);
5918 if (ret) {
5919 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5920 return ret;
5921 }
5922
5923 return 0;
5924 }
5925
5926 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5927 struct net_device *upper_dev,
5928 u16 ref_nr,
5929 struct list_head *up_list,
5930 struct list_head *down_list)
5931 {
5932 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5933 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5934 }
5935
5936 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5937 struct net_device *upper_dev,
5938 void *private, bool master)
5939 {
5940 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5941 &dev->adj_list.upper,
5942 &upper_dev->adj_list.lower,
5943 private, master);
5944 }
5945
5946 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5947 struct net_device *upper_dev)
5948 {
5949 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5950 &dev->adj_list.upper,
5951 &upper_dev->adj_list.lower);
5952 }
5953
5954 static int __netdev_upper_dev_link(struct net_device *dev,
5955 struct net_device *upper_dev, bool master,
5956 void *upper_priv, void *upper_info)
5957 {
5958 struct netdev_notifier_changeupper_info changeupper_info;
5959 int ret = 0;
5960
5961 ASSERT_RTNL();
5962
5963 if (dev == upper_dev)
5964 return -EBUSY;
5965
5966 /* To prevent loops, check if dev is not upper device to upper_dev. */
5967 if (netdev_has_upper_dev(upper_dev, dev))
5968 return -EBUSY;
5969
5970 if (netdev_has_upper_dev(dev, upper_dev))
5971 return -EEXIST;
5972
5973 if (master && netdev_master_upper_dev_get(dev))
5974 return -EBUSY;
5975
5976 changeupper_info.upper_dev = upper_dev;
5977 changeupper_info.master = master;
5978 changeupper_info.linking = true;
5979 changeupper_info.upper_info = upper_info;
5980
5981 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5982 &changeupper_info.info);
5983 ret = notifier_to_errno(ret);
5984 if (ret)
5985 return ret;
5986
5987 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5988 master);
5989 if (ret)
5990 return ret;
5991
5992 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5993 &changeupper_info.info);
5994 ret = notifier_to_errno(ret);
5995 if (ret)
5996 goto rollback;
5997
5998 return 0;
5999
6000 rollback:
6001 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6002
6003 return ret;
6004 }
6005
6006 /**
6007 * netdev_upper_dev_link - Add a link to the upper device
6008 * @dev: device
6009 * @upper_dev: new upper device
6010 *
6011 * Adds a link to device which is upper to this one. The caller must hold
6012 * the RTNL lock. On a failure a negative errno code is returned.
6013 * On success the reference counts are adjusted and the function
6014 * returns zero.
6015 */
6016 int netdev_upper_dev_link(struct net_device *dev,
6017 struct net_device *upper_dev)
6018 {
6019 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6020 }
6021 EXPORT_SYMBOL(netdev_upper_dev_link);
6022
6023 /**
6024 * netdev_master_upper_dev_link - Add a master link to the upper device
6025 * @dev: device
6026 * @upper_dev: new upper device
6027 * @upper_priv: upper device private
6028 * @upper_info: upper info to be passed down via notifier
6029 *
6030 * Adds a link to device which is upper to this one. In this case, only
6031 * one master upper device can be linked, although other non-master devices
6032 * might be linked as well. The caller must hold the RTNL lock.
6033 * On a failure a negative errno code is returned. On success the reference
6034 * counts are adjusted and the function returns zero.
6035 */
6036 int netdev_master_upper_dev_link(struct net_device *dev,
6037 struct net_device *upper_dev,
6038 void *upper_priv, void *upper_info)
6039 {
6040 return __netdev_upper_dev_link(dev, upper_dev, true,
6041 upper_priv, upper_info);
6042 }
6043 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6044
6045 /**
6046 * netdev_upper_dev_unlink - Removes a link to upper device
6047 * @dev: device
6048 * @upper_dev: new upper device
6049 *
6050 * Removes a link to device which is upper to this one. The caller must hold
6051 * the RTNL lock.
6052 */
6053 void netdev_upper_dev_unlink(struct net_device *dev,
6054 struct net_device *upper_dev)
6055 {
6056 struct netdev_notifier_changeupper_info changeupper_info;
6057
6058 ASSERT_RTNL();
6059
6060 changeupper_info.upper_dev = upper_dev;
6061 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6062 changeupper_info.linking = false;
6063
6064 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6065 &changeupper_info.info);
6066
6067 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6068
6069 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6070 &changeupper_info.info);
6071 }
6072 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6073
6074 /**
6075 * netdev_bonding_info_change - Dispatch event about slave change
6076 * @dev: device
6077 * @bonding_info: info to dispatch
6078 *
6079 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6080 * The caller must hold the RTNL lock.
6081 */
6082 void netdev_bonding_info_change(struct net_device *dev,
6083 struct netdev_bonding_info *bonding_info)
6084 {
6085 struct netdev_notifier_bonding_info info;
6086
6087 memcpy(&info.bonding_info, bonding_info,
6088 sizeof(struct netdev_bonding_info));
6089 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6090 &info.info);
6091 }
6092 EXPORT_SYMBOL(netdev_bonding_info_change);
6093
6094 static void netdev_adjacent_add_links(struct net_device *dev)
6095 {
6096 struct netdev_adjacent *iter;
6097
6098 struct net *net = dev_net(dev);
6099
6100 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6101 if (!net_eq(net, dev_net(iter->dev)))
6102 continue;
6103 netdev_adjacent_sysfs_add(iter->dev, dev,
6104 &iter->dev->adj_list.lower);
6105 netdev_adjacent_sysfs_add(dev, iter->dev,
6106 &dev->adj_list.upper);
6107 }
6108
6109 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6110 if (!net_eq(net, dev_net(iter->dev)))
6111 continue;
6112 netdev_adjacent_sysfs_add(iter->dev, dev,
6113 &iter->dev->adj_list.upper);
6114 netdev_adjacent_sysfs_add(dev, iter->dev,
6115 &dev->adj_list.lower);
6116 }
6117 }
6118
6119 static void netdev_adjacent_del_links(struct net_device *dev)
6120 {
6121 struct netdev_adjacent *iter;
6122
6123 struct net *net = dev_net(dev);
6124
6125 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6126 if (!net_eq(net, dev_net(iter->dev)))
6127 continue;
6128 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6129 &iter->dev->adj_list.lower);
6130 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6131 &dev->adj_list.upper);
6132 }
6133
6134 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6135 if (!net_eq(net, dev_net(iter->dev)))
6136 continue;
6137 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6138 &iter->dev->adj_list.upper);
6139 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6140 &dev->adj_list.lower);
6141 }
6142 }
6143
6144 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6145 {
6146 struct netdev_adjacent *iter;
6147
6148 struct net *net = dev_net(dev);
6149
6150 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6151 if (!net_eq(net, dev_net(iter->dev)))
6152 continue;
6153 netdev_adjacent_sysfs_del(iter->dev, oldname,
6154 &iter->dev->adj_list.lower);
6155 netdev_adjacent_sysfs_add(iter->dev, dev,
6156 &iter->dev->adj_list.lower);
6157 }
6158
6159 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6160 if (!net_eq(net, dev_net(iter->dev)))
6161 continue;
6162 netdev_adjacent_sysfs_del(iter->dev, oldname,
6163 &iter->dev->adj_list.upper);
6164 netdev_adjacent_sysfs_add(iter->dev, dev,
6165 &iter->dev->adj_list.upper);
6166 }
6167 }
6168
6169 void *netdev_lower_dev_get_private(struct net_device *dev,
6170 struct net_device *lower_dev)
6171 {
6172 struct netdev_adjacent *lower;
6173
6174 if (!lower_dev)
6175 return NULL;
6176 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6177 if (!lower)
6178 return NULL;
6179
6180 return lower->private;
6181 }
6182 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6183
6184
6185 int dev_get_nest_level(struct net_device *dev)
6186 {
6187 struct net_device *lower = NULL;
6188 struct list_head *iter;
6189 int max_nest = -1;
6190 int nest;
6191
6192 ASSERT_RTNL();
6193
6194 netdev_for_each_lower_dev(dev, lower, iter) {
6195 nest = dev_get_nest_level(lower);
6196 if (max_nest < nest)
6197 max_nest = nest;
6198 }
6199
6200 return max_nest + 1;
6201 }
6202 EXPORT_SYMBOL(dev_get_nest_level);
6203
6204 /**
6205 * netdev_lower_change - Dispatch event about lower device state change
6206 * @lower_dev: device
6207 * @lower_state_info: state to dispatch
6208 *
6209 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6210 * The caller must hold the RTNL lock.
6211 */
6212 void netdev_lower_state_changed(struct net_device *lower_dev,
6213 void *lower_state_info)
6214 {
6215 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6216
6217 ASSERT_RTNL();
6218 changelowerstate_info.lower_state_info = lower_state_info;
6219 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6220 &changelowerstate_info.info);
6221 }
6222 EXPORT_SYMBOL(netdev_lower_state_changed);
6223
6224 static void dev_change_rx_flags(struct net_device *dev, int flags)
6225 {
6226 const struct net_device_ops *ops = dev->netdev_ops;
6227
6228 if (ops->ndo_change_rx_flags)
6229 ops->ndo_change_rx_flags(dev, flags);
6230 }
6231
6232 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6233 {
6234 unsigned int old_flags = dev->flags;
6235 kuid_t uid;
6236 kgid_t gid;
6237
6238 ASSERT_RTNL();
6239
6240 dev->flags |= IFF_PROMISC;
6241 dev->promiscuity += inc;
6242 if (dev->promiscuity == 0) {
6243 /*
6244 * Avoid overflow.
6245 * If inc causes overflow, untouch promisc and return error.
6246 */
6247 if (inc < 0)
6248 dev->flags &= ~IFF_PROMISC;
6249 else {
6250 dev->promiscuity -= inc;
6251 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6252 dev->name);
6253 return -EOVERFLOW;
6254 }
6255 }
6256 if (dev->flags != old_flags) {
6257 pr_info("device %s %s promiscuous mode\n",
6258 dev->name,
6259 dev->flags & IFF_PROMISC ? "entered" : "left");
6260 if (audit_enabled) {
6261 current_uid_gid(&uid, &gid);
6262 audit_log(current->audit_context, GFP_ATOMIC,
6263 AUDIT_ANOM_PROMISCUOUS,
6264 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6265 dev->name, (dev->flags & IFF_PROMISC),
6266 (old_flags & IFF_PROMISC),
6267 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6268 from_kuid(&init_user_ns, uid),
6269 from_kgid(&init_user_ns, gid),
6270 audit_get_sessionid(current));
6271 }
6272
6273 dev_change_rx_flags(dev, IFF_PROMISC);
6274 }
6275 if (notify)
6276 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6277 return 0;
6278 }
6279
6280 /**
6281 * dev_set_promiscuity - update promiscuity count on a device
6282 * @dev: device
6283 * @inc: modifier
6284 *
6285 * Add or remove promiscuity from a device. While the count in the device
6286 * remains above zero the interface remains promiscuous. Once it hits zero
6287 * the device reverts back to normal filtering operation. A negative inc
6288 * value is used to drop promiscuity on the device.
6289 * Return 0 if successful or a negative errno code on error.
6290 */
6291 int dev_set_promiscuity(struct net_device *dev, int inc)
6292 {
6293 unsigned int old_flags = dev->flags;
6294 int err;
6295
6296 err = __dev_set_promiscuity(dev, inc, true);
6297 if (err < 0)
6298 return err;
6299 if (dev->flags != old_flags)
6300 dev_set_rx_mode(dev);
6301 return err;
6302 }
6303 EXPORT_SYMBOL(dev_set_promiscuity);
6304
6305 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6306 {
6307 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6308
6309 ASSERT_RTNL();
6310
6311 dev->flags |= IFF_ALLMULTI;
6312 dev->allmulti += inc;
6313 if (dev->allmulti == 0) {
6314 /*
6315 * Avoid overflow.
6316 * If inc causes overflow, untouch allmulti and return error.
6317 */
6318 if (inc < 0)
6319 dev->flags &= ~IFF_ALLMULTI;
6320 else {
6321 dev->allmulti -= inc;
6322 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6323 dev->name);
6324 return -EOVERFLOW;
6325 }
6326 }
6327 if (dev->flags ^ old_flags) {
6328 dev_change_rx_flags(dev, IFF_ALLMULTI);
6329 dev_set_rx_mode(dev);
6330 if (notify)
6331 __dev_notify_flags(dev, old_flags,
6332 dev->gflags ^ old_gflags);
6333 }
6334 return 0;
6335 }
6336
6337 /**
6338 * dev_set_allmulti - update allmulti count on a device
6339 * @dev: device
6340 * @inc: modifier
6341 *
6342 * Add or remove reception of all multicast frames to a device. While the
6343 * count in the device remains above zero the interface remains listening
6344 * to all interfaces. Once it hits zero the device reverts back to normal
6345 * filtering operation. A negative @inc value is used to drop the counter
6346 * when releasing a resource needing all multicasts.
6347 * Return 0 if successful or a negative errno code on error.
6348 */
6349
6350 int dev_set_allmulti(struct net_device *dev, int inc)
6351 {
6352 return __dev_set_allmulti(dev, inc, true);
6353 }
6354 EXPORT_SYMBOL(dev_set_allmulti);
6355
6356 /*
6357 * Upload unicast and multicast address lists to device and
6358 * configure RX filtering. When the device doesn't support unicast
6359 * filtering it is put in promiscuous mode while unicast addresses
6360 * are present.
6361 */
6362 void __dev_set_rx_mode(struct net_device *dev)
6363 {
6364 const struct net_device_ops *ops = dev->netdev_ops;
6365
6366 /* dev_open will call this function so the list will stay sane. */
6367 if (!(dev->flags&IFF_UP))
6368 return;
6369
6370 if (!netif_device_present(dev))
6371 return;
6372
6373 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6374 /* Unicast addresses changes may only happen under the rtnl,
6375 * therefore calling __dev_set_promiscuity here is safe.
6376 */
6377 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6378 __dev_set_promiscuity(dev, 1, false);
6379 dev->uc_promisc = true;
6380 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6381 __dev_set_promiscuity(dev, -1, false);
6382 dev->uc_promisc = false;
6383 }
6384 }
6385
6386 if (ops->ndo_set_rx_mode)
6387 ops->ndo_set_rx_mode(dev);
6388 }
6389
6390 void dev_set_rx_mode(struct net_device *dev)
6391 {
6392 netif_addr_lock_bh(dev);
6393 __dev_set_rx_mode(dev);
6394 netif_addr_unlock_bh(dev);
6395 }
6396
6397 /**
6398 * dev_get_flags - get flags reported to userspace
6399 * @dev: device
6400 *
6401 * Get the combination of flag bits exported through APIs to userspace.
6402 */
6403 unsigned int dev_get_flags(const struct net_device *dev)
6404 {
6405 unsigned int flags;
6406
6407 flags = (dev->flags & ~(IFF_PROMISC |
6408 IFF_ALLMULTI |
6409 IFF_RUNNING |
6410 IFF_LOWER_UP |
6411 IFF_DORMANT)) |
6412 (dev->gflags & (IFF_PROMISC |
6413 IFF_ALLMULTI));
6414
6415 if (netif_running(dev)) {
6416 if (netif_oper_up(dev))
6417 flags |= IFF_RUNNING;
6418 if (netif_carrier_ok(dev))
6419 flags |= IFF_LOWER_UP;
6420 if (netif_dormant(dev))
6421 flags |= IFF_DORMANT;
6422 }
6423
6424 return flags;
6425 }
6426 EXPORT_SYMBOL(dev_get_flags);
6427
6428 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6429 {
6430 unsigned int old_flags = dev->flags;
6431 int ret;
6432
6433 ASSERT_RTNL();
6434
6435 /*
6436 * Set the flags on our device.
6437 */
6438
6439 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6440 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6441 IFF_AUTOMEDIA)) |
6442 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6443 IFF_ALLMULTI));
6444
6445 /*
6446 * Load in the correct multicast list now the flags have changed.
6447 */
6448
6449 if ((old_flags ^ flags) & IFF_MULTICAST)
6450 dev_change_rx_flags(dev, IFF_MULTICAST);
6451
6452 dev_set_rx_mode(dev);
6453
6454 /*
6455 * Have we downed the interface. We handle IFF_UP ourselves
6456 * according to user attempts to set it, rather than blindly
6457 * setting it.
6458 */
6459
6460 ret = 0;
6461 if ((old_flags ^ flags) & IFF_UP)
6462 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6463
6464 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6465 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6466 unsigned int old_flags = dev->flags;
6467
6468 dev->gflags ^= IFF_PROMISC;
6469
6470 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6471 if (dev->flags != old_flags)
6472 dev_set_rx_mode(dev);
6473 }
6474
6475 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6476 * is important. Some (broken) drivers set IFF_PROMISC, when
6477 * IFF_ALLMULTI is requested not asking us and not reporting.
6478 */
6479 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6480 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6481
6482 dev->gflags ^= IFF_ALLMULTI;
6483 __dev_set_allmulti(dev, inc, false);
6484 }
6485
6486 return ret;
6487 }
6488
6489 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6490 unsigned int gchanges)
6491 {
6492 unsigned int changes = dev->flags ^ old_flags;
6493
6494 if (gchanges)
6495 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6496
6497 if (changes & IFF_UP) {
6498 if (dev->flags & IFF_UP)
6499 call_netdevice_notifiers(NETDEV_UP, dev);
6500 else
6501 call_netdevice_notifiers(NETDEV_DOWN, dev);
6502 }
6503
6504 if (dev->flags & IFF_UP &&
6505 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6506 struct netdev_notifier_change_info change_info;
6507
6508 change_info.flags_changed = changes;
6509 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6510 &change_info.info);
6511 }
6512 }
6513
6514 /**
6515 * dev_change_flags - change device settings
6516 * @dev: device
6517 * @flags: device state flags
6518 *
6519 * Change settings on device based state flags. The flags are
6520 * in the userspace exported format.
6521 */
6522 int dev_change_flags(struct net_device *dev, unsigned int flags)
6523 {
6524 int ret;
6525 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6526
6527 ret = __dev_change_flags(dev, flags);
6528 if (ret < 0)
6529 return ret;
6530
6531 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6532 __dev_notify_flags(dev, old_flags, changes);
6533 return ret;
6534 }
6535 EXPORT_SYMBOL(dev_change_flags);
6536
6537 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6538 {
6539 const struct net_device_ops *ops = dev->netdev_ops;
6540
6541 if (ops->ndo_change_mtu)
6542 return ops->ndo_change_mtu(dev, new_mtu);
6543
6544 dev->mtu = new_mtu;
6545 return 0;
6546 }
6547
6548 /**
6549 * dev_set_mtu - Change maximum transfer unit
6550 * @dev: device
6551 * @new_mtu: new transfer unit
6552 *
6553 * Change the maximum transfer size of the network device.
6554 */
6555 int dev_set_mtu(struct net_device *dev, int new_mtu)
6556 {
6557 int err, orig_mtu;
6558
6559 if (new_mtu == dev->mtu)
6560 return 0;
6561
6562 /* MTU must be positive, and in range */
6563 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6564 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6565 dev->name, new_mtu, dev->min_mtu);
6566 return -EINVAL;
6567 }
6568
6569 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6570 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6571 dev->name, new_mtu, dev->max_mtu);
6572 return -EINVAL;
6573 }
6574
6575 if (!netif_device_present(dev))
6576 return -ENODEV;
6577
6578 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6579 err = notifier_to_errno(err);
6580 if (err)
6581 return err;
6582
6583 orig_mtu = dev->mtu;
6584 err = __dev_set_mtu(dev, new_mtu);
6585
6586 if (!err) {
6587 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6588 err = notifier_to_errno(err);
6589 if (err) {
6590 /* setting mtu back and notifying everyone again,
6591 * so that they have a chance to revert changes.
6592 */
6593 __dev_set_mtu(dev, orig_mtu);
6594 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6595 }
6596 }
6597 return err;
6598 }
6599 EXPORT_SYMBOL(dev_set_mtu);
6600
6601 /**
6602 * dev_set_group - Change group this device belongs to
6603 * @dev: device
6604 * @new_group: group this device should belong to
6605 */
6606 void dev_set_group(struct net_device *dev, int new_group)
6607 {
6608 dev->group = new_group;
6609 }
6610 EXPORT_SYMBOL(dev_set_group);
6611
6612 /**
6613 * dev_set_mac_address - Change Media Access Control Address
6614 * @dev: device
6615 * @sa: new address
6616 *
6617 * Change the hardware (MAC) address of the device
6618 */
6619 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6620 {
6621 const struct net_device_ops *ops = dev->netdev_ops;
6622 int err;
6623
6624 if (!ops->ndo_set_mac_address)
6625 return -EOPNOTSUPP;
6626 if (sa->sa_family != dev->type)
6627 return -EINVAL;
6628 if (!netif_device_present(dev))
6629 return -ENODEV;
6630 err = ops->ndo_set_mac_address(dev, sa);
6631 if (err)
6632 return err;
6633 dev->addr_assign_type = NET_ADDR_SET;
6634 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6635 add_device_randomness(dev->dev_addr, dev->addr_len);
6636 return 0;
6637 }
6638 EXPORT_SYMBOL(dev_set_mac_address);
6639
6640 /**
6641 * dev_change_carrier - Change device carrier
6642 * @dev: device
6643 * @new_carrier: new value
6644 *
6645 * Change device carrier
6646 */
6647 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6648 {
6649 const struct net_device_ops *ops = dev->netdev_ops;
6650
6651 if (!ops->ndo_change_carrier)
6652 return -EOPNOTSUPP;
6653 if (!netif_device_present(dev))
6654 return -ENODEV;
6655 return ops->ndo_change_carrier(dev, new_carrier);
6656 }
6657 EXPORT_SYMBOL(dev_change_carrier);
6658
6659 /**
6660 * dev_get_phys_port_id - Get device physical port ID
6661 * @dev: device
6662 * @ppid: port ID
6663 *
6664 * Get device physical port ID
6665 */
6666 int dev_get_phys_port_id(struct net_device *dev,
6667 struct netdev_phys_item_id *ppid)
6668 {
6669 const struct net_device_ops *ops = dev->netdev_ops;
6670
6671 if (!ops->ndo_get_phys_port_id)
6672 return -EOPNOTSUPP;
6673 return ops->ndo_get_phys_port_id(dev, ppid);
6674 }
6675 EXPORT_SYMBOL(dev_get_phys_port_id);
6676
6677 /**
6678 * dev_get_phys_port_name - Get device physical port name
6679 * @dev: device
6680 * @name: port name
6681 * @len: limit of bytes to copy to name
6682 *
6683 * Get device physical port name
6684 */
6685 int dev_get_phys_port_name(struct net_device *dev,
6686 char *name, size_t len)
6687 {
6688 const struct net_device_ops *ops = dev->netdev_ops;
6689
6690 if (!ops->ndo_get_phys_port_name)
6691 return -EOPNOTSUPP;
6692 return ops->ndo_get_phys_port_name(dev, name, len);
6693 }
6694 EXPORT_SYMBOL(dev_get_phys_port_name);
6695
6696 /**
6697 * dev_change_proto_down - update protocol port state information
6698 * @dev: device
6699 * @proto_down: new value
6700 *
6701 * This info can be used by switch drivers to set the phys state of the
6702 * port.
6703 */
6704 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6705 {
6706 const struct net_device_ops *ops = dev->netdev_ops;
6707
6708 if (!ops->ndo_change_proto_down)
6709 return -EOPNOTSUPP;
6710 if (!netif_device_present(dev))
6711 return -ENODEV;
6712 return ops->ndo_change_proto_down(dev, proto_down);
6713 }
6714 EXPORT_SYMBOL(dev_change_proto_down);
6715
6716 /**
6717 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6718 * @dev: device
6719 * @fd: new program fd or negative value to clear
6720 * @flags: xdp-related flags
6721 *
6722 * Set or clear a bpf program for a device
6723 */
6724 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6725 {
6726 const struct net_device_ops *ops = dev->netdev_ops;
6727 struct bpf_prog *prog = NULL;
6728 struct netdev_xdp xdp;
6729 int err;
6730
6731 ASSERT_RTNL();
6732
6733 if (!ops->ndo_xdp)
6734 return -EOPNOTSUPP;
6735 if (fd >= 0) {
6736 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6737 memset(&xdp, 0, sizeof(xdp));
6738 xdp.command = XDP_QUERY_PROG;
6739
6740 err = ops->ndo_xdp(dev, &xdp);
6741 if (err < 0)
6742 return err;
6743 if (xdp.prog_attached)
6744 return -EBUSY;
6745 }
6746
6747 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6748 if (IS_ERR(prog))
6749 return PTR_ERR(prog);
6750 }
6751
6752 memset(&xdp, 0, sizeof(xdp));
6753 xdp.command = XDP_SETUP_PROG;
6754 xdp.prog = prog;
6755
6756 err = ops->ndo_xdp(dev, &xdp);
6757 if (err < 0 && prog)
6758 bpf_prog_put(prog);
6759
6760 return err;
6761 }
6762 EXPORT_SYMBOL(dev_change_xdp_fd);
6763
6764 /**
6765 * dev_new_index - allocate an ifindex
6766 * @net: the applicable net namespace
6767 *
6768 * Returns a suitable unique value for a new device interface
6769 * number. The caller must hold the rtnl semaphore or the
6770 * dev_base_lock to be sure it remains unique.
6771 */
6772 static int dev_new_index(struct net *net)
6773 {
6774 int ifindex = net->ifindex;
6775
6776 for (;;) {
6777 if (++ifindex <= 0)
6778 ifindex = 1;
6779 if (!__dev_get_by_index(net, ifindex))
6780 return net->ifindex = ifindex;
6781 }
6782 }
6783
6784 /* Delayed registration/unregisteration */
6785 static LIST_HEAD(net_todo_list);
6786 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6787
6788 static void net_set_todo(struct net_device *dev)
6789 {
6790 list_add_tail(&dev->todo_list, &net_todo_list);
6791 dev_net(dev)->dev_unreg_count++;
6792 }
6793
6794 static void rollback_registered_many(struct list_head *head)
6795 {
6796 struct net_device *dev, *tmp;
6797 LIST_HEAD(close_head);
6798
6799 BUG_ON(dev_boot_phase);
6800 ASSERT_RTNL();
6801
6802 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6803 /* Some devices call without registering
6804 * for initialization unwind. Remove those
6805 * devices and proceed with the remaining.
6806 */
6807 if (dev->reg_state == NETREG_UNINITIALIZED) {
6808 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6809 dev->name, dev);
6810
6811 WARN_ON(1);
6812 list_del(&dev->unreg_list);
6813 continue;
6814 }
6815 dev->dismantle = true;
6816 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6817 }
6818
6819 /* If device is running, close it first. */
6820 list_for_each_entry(dev, head, unreg_list)
6821 list_add_tail(&dev->close_list, &close_head);
6822 dev_close_many(&close_head, true);
6823
6824 list_for_each_entry(dev, head, unreg_list) {
6825 /* And unlink it from device chain. */
6826 unlist_netdevice(dev);
6827
6828 dev->reg_state = NETREG_UNREGISTERING;
6829 }
6830 flush_all_backlogs();
6831
6832 synchronize_net();
6833
6834 list_for_each_entry(dev, head, unreg_list) {
6835 struct sk_buff *skb = NULL;
6836
6837 /* Shutdown queueing discipline. */
6838 dev_shutdown(dev);
6839
6840
6841 /* Notify protocols, that we are about to destroy
6842 * this device. They should clean all the things.
6843 */
6844 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6845
6846 if (!dev->rtnl_link_ops ||
6847 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6848 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6849 GFP_KERNEL);
6850
6851 /*
6852 * Flush the unicast and multicast chains
6853 */
6854 dev_uc_flush(dev);
6855 dev_mc_flush(dev);
6856
6857 if (dev->netdev_ops->ndo_uninit)
6858 dev->netdev_ops->ndo_uninit(dev);
6859
6860 if (skb)
6861 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6862
6863 /* Notifier chain MUST detach us all upper devices. */
6864 WARN_ON(netdev_has_any_upper_dev(dev));
6865 WARN_ON(netdev_has_any_lower_dev(dev));
6866
6867 /* Remove entries from kobject tree */
6868 netdev_unregister_kobject(dev);
6869 #ifdef CONFIG_XPS
6870 /* Remove XPS queueing entries */
6871 netif_reset_xps_queues_gt(dev, 0);
6872 #endif
6873 }
6874
6875 synchronize_net();
6876
6877 list_for_each_entry(dev, head, unreg_list)
6878 dev_put(dev);
6879 }
6880
6881 static void rollback_registered(struct net_device *dev)
6882 {
6883 LIST_HEAD(single);
6884
6885 list_add(&dev->unreg_list, &single);
6886 rollback_registered_many(&single);
6887 list_del(&single);
6888 }
6889
6890 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6891 struct net_device *upper, netdev_features_t features)
6892 {
6893 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6894 netdev_features_t feature;
6895 int feature_bit;
6896
6897 for_each_netdev_feature(&upper_disables, feature_bit) {
6898 feature = __NETIF_F_BIT(feature_bit);
6899 if (!(upper->wanted_features & feature)
6900 && (features & feature)) {
6901 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6902 &feature, upper->name);
6903 features &= ~feature;
6904 }
6905 }
6906
6907 return features;
6908 }
6909
6910 static void netdev_sync_lower_features(struct net_device *upper,
6911 struct net_device *lower, netdev_features_t features)
6912 {
6913 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6914 netdev_features_t feature;
6915 int feature_bit;
6916
6917 for_each_netdev_feature(&upper_disables, feature_bit) {
6918 feature = __NETIF_F_BIT(feature_bit);
6919 if (!(features & feature) && (lower->features & feature)) {
6920 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6921 &feature, lower->name);
6922 lower->wanted_features &= ~feature;
6923 netdev_update_features(lower);
6924
6925 if (unlikely(lower->features & feature))
6926 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6927 &feature, lower->name);
6928 }
6929 }
6930 }
6931
6932 static netdev_features_t netdev_fix_features(struct net_device *dev,
6933 netdev_features_t features)
6934 {
6935 /* Fix illegal checksum combinations */
6936 if ((features & NETIF_F_HW_CSUM) &&
6937 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6938 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6939 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6940 }
6941
6942 /* TSO requires that SG is present as well. */
6943 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6944 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6945 features &= ~NETIF_F_ALL_TSO;
6946 }
6947
6948 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6949 !(features & NETIF_F_IP_CSUM)) {
6950 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6951 features &= ~NETIF_F_TSO;
6952 features &= ~NETIF_F_TSO_ECN;
6953 }
6954
6955 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6956 !(features & NETIF_F_IPV6_CSUM)) {
6957 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6958 features &= ~NETIF_F_TSO6;
6959 }
6960
6961 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6962 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6963 features &= ~NETIF_F_TSO_MANGLEID;
6964
6965 /* TSO ECN requires that TSO is present as well. */
6966 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6967 features &= ~NETIF_F_TSO_ECN;
6968
6969 /* Software GSO depends on SG. */
6970 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6971 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6972 features &= ~NETIF_F_GSO;
6973 }
6974
6975 /* UFO needs SG and checksumming */
6976 if (features & NETIF_F_UFO) {
6977 /* maybe split UFO into V4 and V6? */
6978 if (!(features & NETIF_F_HW_CSUM) &&
6979 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6980 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6981 netdev_dbg(dev,
6982 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6983 features &= ~NETIF_F_UFO;
6984 }
6985
6986 if (!(features & NETIF_F_SG)) {
6987 netdev_dbg(dev,
6988 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6989 features &= ~NETIF_F_UFO;
6990 }
6991 }
6992
6993 /* GSO partial features require GSO partial be set */
6994 if ((features & dev->gso_partial_features) &&
6995 !(features & NETIF_F_GSO_PARTIAL)) {
6996 netdev_dbg(dev,
6997 "Dropping partially supported GSO features since no GSO partial.\n");
6998 features &= ~dev->gso_partial_features;
6999 }
7000
7001 return features;
7002 }
7003
7004 int __netdev_update_features(struct net_device *dev)
7005 {
7006 struct net_device *upper, *lower;
7007 netdev_features_t features;
7008 struct list_head *iter;
7009 int err = -1;
7010
7011 ASSERT_RTNL();
7012
7013 features = netdev_get_wanted_features(dev);
7014
7015 if (dev->netdev_ops->ndo_fix_features)
7016 features = dev->netdev_ops->ndo_fix_features(dev, features);
7017
7018 /* driver might be less strict about feature dependencies */
7019 features = netdev_fix_features(dev, features);
7020
7021 /* some features can't be enabled if they're off an an upper device */
7022 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7023 features = netdev_sync_upper_features(dev, upper, features);
7024
7025 if (dev->features == features)
7026 goto sync_lower;
7027
7028 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7029 &dev->features, &features);
7030
7031 if (dev->netdev_ops->ndo_set_features)
7032 err = dev->netdev_ops->ndo_set_features(dev, features);
7033 else
7034 err = 0;
7035
7036 if (unlikely(err < 0)) {
7037 netdev_err(dev,
7038 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7039 err, &features, &dev->features);
7040 /* return non-0 since some features might have changed and
7041 * it's better to fire a spurious notification than miss it
7042 */
7043 return -1;
7044 }
7045
7046 sync_lower:
7047 /* some features must be disabled on lower devices when disabled
7048 * on an upper device (think: bonding master or bridge)
7049 */
7050 netdev_for_each_lower_dev(dev, lower, iter)
7051 netdev_sync_lower_features(dev, lower, features);
7052
7053 if (!err)
7054 dev->features = features;
7055
7056 return err < 0 ? 0 : 1;
7057 }
7058
7059 /**
7060 * netdev_update_features - recalculate device features
7061 * @dev: the device to check
7062 *
7063 * Recalculate dev->features set and send notifications if it
7064 * has changed. Should be called after driver or hardware dependent
7065 * conditions might have changed that influence the features.
7066 */
7067 void netdev_update_features(struct net_device *dev)
7068 {
7069 if (__netdev_update_features(dev))
7070 netdev_features_change(dev);
7071 }
7072 EXPORT_SYMBOL(netdev_update_features);
7073
7074 /**
7075 * netdev_change_features - recalculate device features
7076 * @dev: the device to check
7077 *
7078 * Recalculate dev->features set and send notifications even
7079 * if they have not changed. Should be called instead of
7080 * netdev_update_features() if also dev->vlan_features might
7081 * have changed to allow the changes to be propagated to stacked
7082 * VLAN devices.
7083 */
7084 void netdev_change_features(struct net_device *dev)
7085 {
7086 __netdev_update_features(dev);
7087 netdev_features_change(dev);
7088 }
7089 EXPORT_SYMBOL(netdev_change_features);
7090
7091 /**
7092 * netif_stacked_transfer_operstate - transfer operstate
7093 * @rootdev: the root or lower level device to transfer state from
7094 * @dev: the device to transfer operstate to
7095 *
7096 * Transfer operational state from root to device. This is normally
7097 * called when a stacking relationship exists between the root
7098 * device and the device(a leaf device).
7099 */
7100 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7101 struct net_device *dev)
7102 {
7103 if (rootdev->operstate == IF_OPER_DORMANT)
7104 netif_dormant_on(dev);
7105 else
7106 netif_dormant_off(dev);
7107
7108 if (netif_carrier_ok(rootdev)) {
7109 if (!netif_carrier_ok(dev))
7110 netif_carrier_on(dev);
7111 } else {
7112 if (netif_carrier_ok(dev))
7113 netif_carrier_off(dev);
7114 }
7115 }
7116 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7117
7118 #ifdef CONFIG_SYSFS
7119 static int netif_alloc_rx_queues(struct net_device *dev)
7120 {
7121 unsigned int i, count = dev->num_rx_queues;
7122 struct netdev_rx_queue *rx;
7123 size_t sz = count * sizeof(*rx);
7124
7125 BUG_ON(count < 1);
7126
7127 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7128 if (!rx) {
7129 rx = vzalloc(sz);
7130 if (!rx)
7131 return -ENOMEM;
7132 }
7133 dev->_rx = rx;
7134
7135 for (i = 0; i < count; i++)
7136 rx[i].dev = dev;
7137 return 0;
7138 }
7139 #endif
7140
7141 static void netdev_init_one_queue(struct net_device *dev,
7142 struct netdev_queue *queue, void *_unused)
7143 {
7144 /* Initialize queue lock */
7145 spin_lock_init(&queue->_xmit_lock);
7146 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7147 queue->xmit_lock_owner = -1;
7148 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7149 queue->dev = dev;
7150 #ifdef CONFIG_BQL
7151 dql_init(&queue->dql, HZ);
7152 #endif
7153 }
7154
7155 static void netif_free_tx_queues(struct net_device *dev)
7156 {
7157 kvfree(dev->_tx);
7158 }
7159
7160 static int netif_alloc_netdev_queues(struct net_device *dev)
7161 {
7162 unsigned int count = dev->num_tx_queues;
7163 struct netdev_queue *tx;
7164 size_t sz = count * sizeof(*tx);
7165
7166 if (count < 1 || count > 0xffff)
7167 return -EINVAL;
7168
7169 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7170 if (!tx) {
7171 tx = vzalloc(sz);
7172 if (!tx)
7173 return -ENOMEM;
7174 }
7175 dev->_tx = tx;
7176
7177 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7178 spin_lock_init(&dev->tx_global_lock);
7179
7180 return 0;
7181 }
7182
7183 void netif_tx_stop_all_queues(struct net_device *dev)
7184 {
7185 unsigned int i;
7186
7187 for (i = 0; i < dev->num_tx_queues; i++) {
7188 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7189
7190 netif_tx_stop_queue(txq);
7191 }
7192 }
7193 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7194
7195 /**
7196 * register_netdevice - register a network device
7197 * @dev: device to register
7198 *
7199 * Take a completed network device structure and add it to the kernel
7200 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7201 * chain. 0 is returned on success. A negative errno code is returned
7202 * on a failure to set up the device, or if the name is a duplicate.
7203 *
7204 * Callers must hold the rtnl semaphore. You may want
7205 * register_netdev() instead of this.
7206 *
7207 * BUGS:
7208 * The locking appears insufficient to guarantee two parallel registers
7209 * will not get the same name.
7210 */
7211
7212 int register_netdevice(struct net_device *dev)
7213 {
7214 int ret;
7215 struct net *net = dev_net(dev);
7216
7217 BUG_ON(dev_boot_phase);
7218 ASSERT_RTNL();
7219
7220 might_sleep();
7221
7222 /* When net_device's are persistent, this will be fatal. */
7223 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7224 BUG_ON(!net);
7225
7226 spin_lock_init(&dev->addr_list_lock);
7227 netdev_set_addr_lockdep_class(dev);
7228
7229 ret = dev_get_valid_name(net, dev, dev->name);
7230 if (ret < 0)
7231 goto out;
7232
7233 /* Init, if this function is available */
7234 if (dev->netdev_ops->ndo_init) {
7235 ret = dev->netdev_ops->ndo_init(dev);
7236 if (ret) {
7237 if (ret > 0)
7238 ret = -EIO;
7239 goto out;
7240 }
7241 }
7242
7243 if (((dev->hw_features | dev->features) &
7244 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7245 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7246 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7247 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7248 ret = -EINVAL;
7249 goto err_uninit;
7250 }
7251
7252 ret = -EBUSY;
7253 if (!dev->ifindex)
7254 dev->ifindex = dev_new_index(net);
7255 else if (__dev_get_by_index(net, dev->ifindex))
7256 goto err_uninit;
7257
7258 /* Transfer changeable features to wanted_features and enable
7259 * software offloads (GSO and GRO).
7260 */
7261 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7262 dev->features |= NETIF_F_SOFT_FEATURES;
7263 dev->wanted_features = dev->features & dev->hw_features;
7264
7265 if (!(dev->flags & IFF_LOOPBACK))
7266 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7267
7268 /* If IPv4 TCP segmentation offload is supported we should also
7269 * allow the device to enable segmenting the frame with the option
7270 * of ignoring a static IP ID value. This doesn't enable the
7271 * feature itself but allows the user to enable it later.
7272 */
7273 if (dev->hw_features & NETIF_F_TSO)
7274 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7275 if (dev->vlan_features & NETIF_F_TSO)
7276 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7277 if (dev->mpls_features & NETIF_F_TSO)
7278 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7279 if (dev->hw_enc_features & NETIF_F_TSO)
7280 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7281
7282 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7283 */
7284 dev->vlan_features |= NETIF_F_HIGHDMA;
7285
7286 /* Make NETIF_F_SG inheritable to tunnel devices.
7287 */
7288 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7289
7290 /* Make NETIF_F_SG inheritable to MPLS.
7291 */
7292 dev->mpls_features |= NETIF_F_SG;
7293
7294 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7295 ret = notifier_to_errno(ret);
7296 if (ret)
7297 goto err_uninit;
7298
7299 ret = netdev_register_kobject(dev);
7300 if (ret)
7301 goto err_uninit;
7302 dev->reg_state = NETREG_REGISTERED;
7303
7304 __netdev_update_features(dev);
7305
7306 /*
7307 * Default initial state at registry is that the
7308 * device is present.
7309 */
7310
7311 set_bit(__LINK_STATE_PRESENT, &dev->state);
7312
7313 linkwatch_init_dev(dev);
7314
7315 dev_init_scheduler(dev);
7316 dev_hold(dev);
7317 list_netdevice(dev);
7318 add_device_randomness(dev->dev_addr, dev->addr_len);
7319
7320 /* If the device has permanent device address, driver should
7321 * set dev_addr and also addr_assign_type should be set to
7322 * NET_ADDR_PERM (default value).
7323 */
7324 if (dev->addr_assign_type == NET_ADDR_PERM)
7325 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7326
7327 /* Notify protocols, that a new device appeared. */
7328 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7329 ret = notifier_to_errno(ret);
7330 if (ret) {
7331 rollback_registered(dev);
7332 dev->reg_state = NETREG_UNREGISTERED;
7333 }
7334 /*
7335 * Prevent userspace races by waiting until the network
7336 * device is fully setup before sending notifications.
7337 */
7338 if (!dev->rtnl_link_ops ||
7339 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7340 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7341
7342 out:
7343 return ret;
7344
7345 err_uninit:
7346 if (dev->netdev_ops->ndo_uninit)
7347 dev->netdev_ops->ndo_uninit(dev);
7348 goto out;
7349 }
7350 EXPORT_SYMBOL(register_netdevice);
7351
7352 /**
7353 * init_dummy_netdev - init a dummy network device for NAPI
7354 * @dev: device to init
7355 *
7356 * This takes a network device structure and initialize the minimum
7357 * amount of fields so it can be used to schedule NAPI polls without
7358 * registering a full blown interface. This is to be used by drivers
7359 * that need to tie several hardware interfaces to a single NAPI
7360 * poll scheduler due to HW limitations.
7361 */
7362 int init_dummy_netdev(struct net_device *dev)
7363 {
7364 /* Clear everything. Note we don't initialize spinlocks
7365 * are they aren't supposed to be taken by any of the
7366 * NAPI code and this dummy netdev is supposed to be
7367 * only ever used for NAPI polls
7368 */
7369 memset(dev, 0, sizeof(struct net_device));
7370
7371 /* make sure we BUG if trying to hit standard
7372 * register/unregister code path
7373 */
7374 dev->reg_state = NETREG_DUMMY;
7375
7376 /* NAPI wants this */
7377 INIT_LIST_HEAD(&dev->napi_list);
7378
7379 /* a dummy interface is started by default */
7380 set_bit(__LINK_STATE_PRESENT, &dev->state);
7381 set_bit(__LINK_STATE_START, &dev->state);
7382
7383 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7384 * because users of this 'device' dont need to change
7385 * its refcount.
7386 */
7387
7388 return 0;
7389 }
7390 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7391
7392
7393 /**
7394 * register_netdev - register a network device
7395 * @dev: device to register
7396 *
7397 * Take a completed network device structure and add it to the kernel
7398 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7399 * chain. 0 is returned on success. A negative errno code is returned
7400 * on a failure to set up the device, or if the name is a duplicate.
7401 *
7402 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7403 * and expands the device name if you passed a format string to
7404 * alloc_netdev.
7405 */
7406 int register_netdev(struct net_device *dev)
7407 {
7408 int err;
7409
7410 rtnl_lock();
7411 err = register_netdevice(dev);
7412 rtnl_unlock();
7413 return err;
7414 }
7415 EXPORT_SYMBOL(register_netdev);
7416
7417 int netdev_refcnt_read(const struct net_device *dev)
7418 {
7419 int i, refcnt = 0;
7420
7421 for_each_possible_cpu(i)
7422 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7423 return refcnt;
7424 }
7425 EXPORT_SYMBOL(netdev_refcnt_read);
7426
7427 /**
7428 * netdev_wait_allrefs - wait until all references are gone.
7429 * @dev: target net_device
7430 *
7431 * This is called when unregistering network devices.
7432 *
7433 * Any protocol or device that holds a reference should register
7434 * for netdevice notification, and cleanup and put back the
7435 * reference if they receive an UNREGISTER event.
7436 * We can get stuck here if buggy protocols don't correctly
7437 * call dev_put.
7438 */
7439 static void netdev_wait_allrefs(struct net_device *dev)
7440 {
7441 unsigned long rebroadcast_time, warning_time;
7442 int refcnt;
7443
7444 linkwatch_forget_dev(dev);
7445
7446 rebroadcast_time = warning_time = jiffies;
7447 refcnt = netdev_refcnt_read(dev);
7448
7449 while (refcnt != 0) {
7450 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7451 rtnl_lock();
7452
7453 /* Rebroadcast unregister notification */
7454 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7455
7456 __rtnl_unlock();
7457 rcu_barrier();
7458 rtnl_lock();
7459
7460 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7461 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7462 &dev->state)) {
7463 /* We must not have linkwatch events
7464 * pending on unregister. If this
7465 * happens, we simply run the queue
7466 * unscheduled, resulting in a noop
7467 * for this device.
7468 */
7469 linkwatch_run_queue();
7470 }
7471
7472 __rtnl_unlock();
7473
7474 rebroadcast_time = jiffies;
7475 }
7476
7477 msleep(250);
7478
7479 refcnt = netdev_refcnt_read(dev);
7480
7481 if (time_after(jiffies, warning_time + 10 * HZ)) {
7482 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7483 dev->name, refcnt);
7484 warning_time = jiffies;
7485 }
7486 }
7487 }
7488
7489 /* The sequence is:
7490 *
7491 * rtnl_lock();
7492 * ...
7493 * register_netdevice(x1);
7494 * register_netdevice(x2);
7495 * ...
7496 * unregister_netdevice(y1);
7497 * unregister_netdevice(y2);
7498 * ...
7499 * rtnl_unlock();
7500 * free_netdev(y1);
7501 * free_netdev(y2);
7502 *
7503 * We are invoked by rtnl_unlock().
7504 * This allows us to deal with problems:
7505 * 1) We can delete sysfs objects which invoke hotplug
7506 * without deadlocking with linkwatch via keventd.
7507 * 2) Since we run with the RTNL semaphore not held, we can sleep
7508 * safely in order to wait for the netdev refcnt to drop to zero.
7509 *
7510 * We must not return until all unregister events added during
7511 * the interval the lock was held have been completed.
7512 */
7513 void netdev_run_todo(void)
7514 {
7515 struct list_head list;
7516
7517 /* Snapshot list, allow later requests */
7518 list_replace_init(&net_todo_list, &list);
7519
7520 __rtnl_unlock();
7521
7522
7523 /* Wait for rcu callbacks to finish before next phase */
7524 if (!list_empty(&list))
7525 rcu_barrier();
7526
7527 while (!list_empty(&list)) {
7528 struct net_device *dev
7529 = list_first_entry(&list, struct net_device, todo_list);
7530 list_del(&dev->todo_list);
7531
7532 rtnl_lock();
7533 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7534 __rtnl_unlock();
7535
7536 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7537 pr_err("network todo '%s' but state %d\n",
7538 dev->name, dev->reg_state);
7539 dump_stack();
7540 continue;
7541 }
7542
7543 dev->reg_state = NETREG_UNREGISTERED;
7544
7545 netdev_wait_allrefs(dev);
7546
7547 /* paranoia */
7548 BUG_ON(netdev_refcnt_read(dev));
7549 BUG_ON(!list_empty(&dev->ptype_all));
7550 BUG_ON(!list_empty(&dev->ptype_specific));
7551 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7552 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7553 WARN_ON(dev->dn_ptr);
7554
7555 if (dev->destructor)
7556 dev->destructor(dev);
7557
7558 /* Report a network device has been unregistered */
7559 rtnl_lock();
7560 dev_net(dev)->dev_unreg_count--;
7561 __rtnl_unlock();
7562 wake_up(&netdev_unregistering_wq);
7563
7564 /* Free network device */
7565 kobject_put(&dev->dev.kobj);
7566 }
7567 }
7568
7569 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7570 * all the same fields in the same order as net_device_stats, with only
7571 * the type differing, but rtnl_link_stats64 may have additional fields
7572 * at the end for newer counters.
7573 */
7574 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7575 const struct net_device_stats *netdev_stats)
7576 {
7577 #if BITS_PER_LONG == 64
7578 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7579 memcpy(stats64, netdev_stats, sizeof(*stats64));
7580 /* zero out counters that only exist in rtnl_link_stats64 */
7581 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7582 sizeof(*stats64) - sizeof(*netdev_stats));
7583 #else
7584 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7585 const unsigned long *src = (const unsigned long *)netdev_stats;
7586 u64 *dst = (u64 *)stats64;
7587
7588 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7589 for (i = 0; i < n; i++)
7590 dst[i] = src[i];
7591 /* zero out counters that only exist in rtnl_link_stats64 */
7592 memset((char *)stats64 + n * sizeof(u64), 0,
7593 sizeof(*stats64) - n * sizeof(u64));
7594 #endif
7595 }
7596 EXPORT_SYMBOL(netdev_stats_to_stats64);
7597
7598 /**
7599 * dev_get_stats - get network device statistics
7600 * @dev: device to get statistics from
7601 * @storage: place to store stats
7602 *
7603 * Get network statistics from device. Return @storage.
7604 * The device driver may provide its own method by setting
7605 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7606 * otherwise the internal statistics structure is used.
7607 */
7608 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7609 struct rtnl_link_stats64 *storage)
7610 {
7611 const struct net_device_ops *ops = dev->netdev_ops;
7612
7613 if (ops->ndo_get_stats64) {
7614 memset(storage, 0, sizeof(*storage));
7615 ops->ndo_get_stats64(dev, storage);
7616 } else if (ops->ndo_get_stats) {
7617 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7618 } else {
7619 netdev_stats_to_stats64(storage, &dev->stats);
7620 }
7621 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7622 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7623 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7624 return storage;
7625 }
7626 EXPORT_SYMBOL(dev_get_stats);
7627
7628 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7629 {
7630 struct netdev_queue *queue = dev_ingress_queue(dev);
7631
7632 #ifdef CONFIG_NET_CLS_ACT
7633 if (queue)
7634 return queue;
7635 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7636 if (!queue)
7637 return NULL;
7638 netdev_init_one_queue(dev, queue, NULL);
7639 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7640 queue->qdisc_sleeping = &noop_qdisc;
7641 rcu_assign_pointer(dev->ingress_queue, queue);
7642 #endif
7643 return queue;
7644 }
7645
7646 static const struct ethtool_ops default_ethtool_ops;
7647
7648 void netdev_set_default_ethtool_ops(struct net_device *dev,
7649 const struct ethtool_ops *ops)
7650 {
7651 if (dev->ethtool_ops == &default_ethtool_ops)
7652 dev->ethtool_ops = ops;
7653 }
7654 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7655
7656 void netdev_freemem(struct net_device *dev)
7657 {
7658 char *addr = (char *)dev - dev->padded;
7659
7660 kvfree(addr);
7661 }
7662
7663 /**
7664 * alloc_netdev_mqs - allocate network device
7665 * @sizeof_priv: size of private data to allocate space for
7666 * @name: device name format string
7667 * @name_assign_type: origin of device name
7668 * @setup: callback to initialize device
7669 * @txqs: the number of TX subqueues to allocate
7670 * @rxqs: the number of RX subqueues to allocate
7671 *
7672 * Allocates a struct net_device with private data area for driver use
7673 * and performs basic initialization. Also allocates subqueue structs
7674 * for each queue on the device.
7675 */
7676 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7677 unsigned char name_assign_type,
7678 void (*setup)(struct net_device *),
7679 unsigned int txqs, unsigned int rxqs)
7680 {
7681 struct net_device *dev;
7682 size_t alloc_size;
7683 struct net_device *p;
7684
7685 BUG_ON(strlen(name) >= sizeof(dev->name));
7686
7687 if (txqs < 1) {
7688 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7689 return NULL;
7690 }
7691
7692 #ifdef CONFIG_SYSFS
7693 if (rxqs < 1) {
7694 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7695 return NULL;
7696 }
7697 #endif
7698
7699 alloc_size = sizeof(struct net_device);
7700 if (sizeof_priv) {
7701 /* ensure 32-byte alignment of private area */
7702 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7703 alloc_size += sizeof_priv;
7704 }
7705 /* ensure 32-byte alignment of whole construct */
7706 alloc_size += NETDEV_ALIGN - 1;
7707
7708 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7709 if (!p)
7710 p = vzalloc(alloc_size);
7711 if (!p)
7712 return NULL;
7713
7714 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7715 dev->padded = (char *)dev - (char *)p;
7716
7717 dev->pcpu_refcnt = alloc_percpu(int);
7718 if (!dev->pcpu_refcnt)
7719 goto free_dev;
7720
7721 if (dev_addr_init(dev))
7722 goto free_pcpu;
7723
7724 dev_mc_init(dev);
7725 dev_uc_init(dev);
7726
7727 dev_net_set(dev, &init_net);
7728
7729 dev->gso_max_size = GSO_MAX_SIZE;
7730 dev->gso_max_segs = GSO_MAX_SEGS;
7731
7732 INIT_LIST_HEAD(&dev->napi_list);
7733 INIT_LIST_HEAD(&dev->unreg_list);
7734 INIT_LIST_HEAD(&dev->close_list);
7735 INIT_LIST_HEAD(&dev->link_watch_list);
7736 INIT_LIST_HEAD(&dev->adj_list.upper);
7737 INIT_LIST_HEAD(&dev->adj_list.lower);
7738 INIT_LIST_HEAD(&dev->ptype_all);
7739 INIT_LIST_HEAD(&dev->ptype_specific);
7740 #ifdef CONFIG_NET_SCHED
7741 hash_init(dev->qdisc_hash);
7742 #endif
7743 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7744 setup(dev);
7745
7746 if (!dev->tx_queue_len) {
7747 dev->priv_flags |= IFF_NO_QUEUE;
7748 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7749 }
7750
7751 dev->num_tx_queues = txqs;
7752 dev->real_num_tx_queues = txqs;
7753 if (netif_alloc_netdev_queues(dev))
7754 goto free_all;
7755
7756 #ifdef CONFIG_SYSFS
7757 dev->num_rx_queues = rxqs;
7758 dev->real_num_rx_queues = rxqs;
7759 if (netif_alloc_rx_queues(dev))
7760 goto free_all;
7761 #endif
7762
7763 strcpy(dev->name, name);
7764 dev->name_assign_type = name_assign_type;
7765 dev->group = INIT_NETDEV_GROUP;
7766 if (!dev->ethtool_ops)
7767 dev->ethtool_ops = &default_ethtool_ops;
7768
7769 nf_hook_ingress_init(dev);
7770
7771 return dev;
7772
7773 free_all:
7774 free_netdev(dev);
7775 return NULL;
7776
7777 free_pcpu:
7778 free_percpu(dev->pcpu_refcnt);
7779 free_dev:
7780 netdev_freemem(dev);
7781 return NULL;
7782 }
7783 EXPORT_SYMBOL(alloc_netdev_mqs);
7784
7785 /**
7786 * free_netdev - free network device
7787 * @dev: device
7788 *
7789 * This function does the last stage of destroying an allocated device
7790 * interface. The reference to the device object is released. If this
7791 * is the last reference then it will be freed.Must be called in process
7792 * context.
7793 */
7794 void free_netdev(struct net_device *dev)
7795 {
7796 struct napi_struct *p, *n;
7797
7798 might_sleep();
7799 netif_free_tx_queues(dev);
7800 #ifdef CONFIG_SYSFS
7801 kvfree(dev->_rx);
7802 #endif
7803
7804 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7805
7806 /* Flush device addresses */
7807 dev_addr_flush(dev);
7808
7809 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7810 netif_napi_del(p);
7811
7812 free_percpu(dev->pcpu_refcnt);
7813 dev->pcpu_refcnt = NULL;
7814
7815 /* Compatibility with error handling in drivers */
7816 if (dev->reg_state == NETREG_UNINITIALIZED) {
7817 netdev_freemem(dev);
7818 return;
7819 }
7820
7821 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7822 dev->reg_state = NETREG_RELEASED;
7823
7824 /* will free via device release */
7825 put_device(&dev->dev);
7826 }
7827 EXPORT_SYMBOL(free_netdev);
7828
7829 /**
7830 * synchronize_net - Synchronize with packet receive processing
7831 *
7832 * Wait for packets currently being received to be done.
7833 * Does not block later packets from starting.
7834 */
7835 void synchronize_net(void)
7836 {
7837 might_sleep();
7838 if (rtnl_is_locked())
7839 synchronize_rcu_expedited();
7840 else
7841 synchronize_rcu();
7842 }
7843 EXPORT_SYMBOL(synchronize_net);
7844
7845 /**
7846 * unregister_netdevice_queue - remove device from the kernel
7847 * @dev: device
7848 * @head: list
7849 *
7850 * This function shuts down a device interface and removes it
7851 * from the kernel tables.
7852 * If head not NULL, device is queued to be unregistered later.
7853 *
7854 * Callers must hold the rtnl semaphore. You may want
7855 * unregister_netdev() instead of this.
7856 */
7857
7858 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7859 {
7860 ASSERT_RTNL();
7861
7862 if (head) {
7863 list_move_tail(&dev->unreg_list, head);
7864 } else {
7865 rollback_registered(dev);
7866 /* Finish processing unregister after unlock */
7867 net_set_todo(dev);
7868 }
7869 }
7870 EXPORT_SYMBOL(unregister_netdevice_queue);
7871
7872 /**
7873 * unregister_netdevice_many - unregister many devices
7874 * @head: list of devices
7875 *
7876 * Note: As most callers use a stack allocated list_head,
7877 * we force a list_del() to make sure stack wont be corrupted later.
7878 */
7879 void unregister_netdevice_many(struct list_head *head)
7880 {
7881 struct net_device *dev;
7882
7883 if (!list_empty(head)) {
7884 rollback_registered_many(head);
7885 list_for_each_entry(dev, head, unreg_list)
7886 net_set_todo(dev);
7887 list_del(head);
7888 }
7889 }
7890 EXPORT_SYMBOL(unregister_netdevice_many);
7891
7892 /**
7893 * unregister_netdev - remove device from the kernel
7894 * @dev: device
7895 *
7896 * This function shuts down a device interface and removes it
7897 * from the kernel tables.
7898 *
7899 * This is just a wrapper for unregister_netdevice that takes
7900 * the rtnl semaphore. In general you want to use this and not
7901 * unregister_netdevice.
7902 */
7903 void unregister_netdev(struct net_device *dev)
7904 {
7905 rtnl_lock();
7906 unregister_netdevice(dev);
7907 rtnl_unlock();
7908 }
7909 EXPORT_SYMBOL(unregister_netdev);
7910
7911 /**
7912 * dev_change_net_namespace - move device to different nethost namespace
7913 * @dev: device
7914 * @net: network namespace
7915 * @pat: If not NULL name pattern to try if the current device name
7916 * is already taken in the destination network namespace.
7917 *
7918 * This function shuts down a device interface and moves it
7919 * to a new network namespace. On success 0 is returned, on
7920 * a failure a netagive errno code is returned.
7921 *
7922 * Callers must hold the rtnl semaphore.
7923 */
7924
7925 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7926 {
7927 int err;
7928
7929 ASSERT_RTNL();
7930
7931 /* Don't allow namespace local devices to be moved. */
7932 err = -EINVAL;
7933 if (dev->features & NETIF_F_NETNS_LOCAL)
7934 goto out;
7935
7936 /* Ensure the device has been registrered */
7937 if (dev->reg_state != NETREG_REGISTERED)
7938 goto out;
7939
7940 /* Get out if there is nothing todo */
7941 err = 0;
7942 if (net_eq(dev_net(dev), net))
7943 goto out;
7944
7945 /* Pick the destination device name, and ensure
7946 * we can use it in the destination network namespace.
7947 */
7948 err = -EEXIST;
7949 if (__dev_get_by_name(net, dev->name)) {
7950 /* We get here if we can't use the current device name */
7951 if (!pat)
7952 goto out;
7953 if (dev_get_valid_name(net, dev, pat) < 0)
7954 goto out;
7955 }
7956
7957 /*
7958 * And now a mini version of register_netdevice unregister_netdevice.
7959 */
7960
7961 /* If device is running close it first. */
7962 dev_close(dev);
7963
7964 /* And unlink it from device chain */
7965 err = -ENODEV;
7966 unlist_netdevice(dev);
7967
7968 synchronize_net();
7969
7970 /* Shutdown queueing discipline. */
7971 dev_shutdown(dev);
7972
7973 /* Notify protocols, that we are about to destroy
7974 * this device. They should clean all the things.
7975 *
7976 * Note that dev->reg_state stays at NETREG_REGISTERED.
7977 * This is wanted because this way 8021q and macvlan know
7978 * the device is just moving and can keep their slaves up.
7979 */
7980 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7981 rcu_barrier();
7982 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7983 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7984
7985 /*
7986 * Flush the unicast and multicast chains
7987 */
7988 dev_uc_flush(dev);
7989 dev_mc_flush(dev);
7990
7991 /* Send a netdev-removed uevent to the old namespace */
7992 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7993 netdev_adjacent_del_links(dev);
7994
7995 /* Actually switch the network namespace */
7996 dev_net_set(dev, net);
7997
7998 /* If there is an ifindex conflict assign a new one */
7999 if (__dev_get_by_index(net, dev->ifindex))
8000 dev->ifindex = dev_new_index(net);
8001
8002 /* Send a netdev-add uevent to the new namespace */
8003 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8004 netdev_adjacent_add_links(dev);
8005
8006 /* Fixup kobjects */
8007 err = device_rename(&dev->dev, dev->name);
8008 WARN_ON(err);
8009
8010 /* Add the device back in the hashes */
8011 list_netdevice(dev);
8012
8013 /* Notify protocols, that a new device appeared. */
8014 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8015
8016 /*
8017 * Prevent userspace races by waiting until the network
8018 * device is fully setup before sending notifications.
8019 */
8020 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8021
8022 synchronize_net();
8023 err = 0;
8024 out:
8025 return err;
8026 }
8027 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8028
8029 static int dev_cpu_dead(unsigned int oldcpu)
8030 {
8031 struct sk_buff **list_skb;
8032 struct sk_buff *skb;
8033 unsigned int cpu;
8034 struct softnet_data *sd, *oldsd;
8035
8036 local_irq_disable();
8037 cpu = smp_processor_id();
8038 sd = &per_cpu(softnet_data, cpu);
8039 oldsd = &per_cpu(softnet_data, oldcpu);
8040
8041 /* Find end of our completion_queue. */
8042 list_skb = &sd->completion_queue;
8043 while (*list_skb)
8044 list_skb = &(*list_skb)->next;
8045 /* Append completion queue from offline CPU. */
8046 *list_skb = oldsd->completion_queue;
8047 oldsd->completion_queue = NULL;
8048
8049 /* Append output queue from offline CPU. */
8050 if (oldsd->output_queue) {
8051 *sd->output_queue_tailp = oldsd->output_queue;
8052 sd->output_queue_tailp = oldsd->output_queue_tailp;
8053 oldsd->output_queue = NULL;
8054 oldsd->output_queue_tailp = &oldsd->output_queue;
8055 }
8056 /* Append NAPI poll list from offline CPU, with one exception :
8057 * process_backlog() must be called by cpu owning percpu backlog.
8058 * We properly handle process_queue & input_pkt_queue later.
8059 */
8060 while (!list_empty(&oldsd->poll_list)) {
8061 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8062 struct napi_struct,
8063 poll_list);
8064
8065 list_del_init(&napi->poll_list);
8066 if (napi->poll == process_backlog)
8067 napi->state = 0;
8068 else
8069 ____napi_schedule(sd, napi);
8070 }
8071
8072 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8073 local_irq_enable();
8074
8075 /* Process offline CPU's input_pkt_queue */
8076 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8077 netif_rx_ni(skb);
8078 input_queue_head_incr(oldsd);
8079 }
8080 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8081 netif_rx_ni(skb);
8082 input_queue_head_incr(oldsd);
8083 }
8084
8085 return 0;
8086 }
8087
8088 /**
8089 * netdev_increment_features - increment feature set by one
8090 * @all: current feature set
8091 * @one: new feature set
8092 * @mask: mask feature set
8093 *
8094 * Computes a new feature set after adding a device with feature set
8095 * @one to the master device with current feature set @all. Will not
8096 * enable anything that is off in @mask. Returns the new feature set.
8097 */
8098 netdev_features_t netdev_increment_features(netdev_features_t all,
8099 netdev_features_t one, netdev_features_t mask)
8100 {
8101 if (mask & NETIF_F_HW_CSUM)
8102 mask |= NETIF_F_CSUM_MASK;
8103 mask |= NETIF_F_VLAN_CHALLENGED;
8104
8105 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8106 all &= one | ~NETIF_F_ALL_FOR_ALL;
8107
8108 /* If one device supports hw checksumming, set for all. */
8109 if (all & NETIF_F_HW_CSUM)
8110 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8111
8112 return all;
8113 }
8114 EXPORT_SYMBOL(netdev_increment_features);
8115
8116 static struct hlist_head * __net_init netdev_create_hash(void)
8117 {
8118 int i;
8119 struct hlist_head *hash;
8120
8121 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8122 if (hash != NULL)
8123 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8124 INIT_HLIST_HEAD(&hash[i]);
8125
8126 return hash;
8127 }
8128
8129 /* Initialize per network namespace state */
8130 static int __net_init netdev_init(struct net *net)
8131 {
8132 if (net != &init_net)
8133 INIT_LIST_HEAD(&net->dev_base_head);
8134
8135 net->dev_name_head = netdev_create_hash();
8136 if (net->dev_name_head == NULL)
8137 goto err_name;
8138
8139 net->dev_index_head = netdev_create_hash();
8140 if (net->dev_index_head == NULL)
8141 goto err_idx;
8142
8143 return 0;
8144
8145 err_idx:
8146 kfree(net->dev_name_head);
8147 err_name:
8148 return -ENOMEM;
8149 }
8150
8151 /**
8152 * netdev_drivername - network driver for the device
8153 * @dev: network device
8154 *
8155 * Determine network driver for device.
8156 */
8157 const char *netdev_drivername(const struct net_device *dev)
8158 {
8159 const struct device_driver *driver;
8160 const struct device *parent;
8161 const char *empty = "";
8162
8163 parent = dev->dev.parent;
8164 if (!parent)
8165 return empty;
8166
8167 driver = parent->driver;
8168 if (driver && driver->name)
8169 return driver->name;
8170 return empty;
8171 }
8172
8173 static void __netdev_printk(const char *level, const struct net_device *dev,
8174 struct va_format *vaf)
8175 {
8176 if (dev && dev->dev.parent) {
8177 dev_printk_emit(level[1] - '0',
8178 dev->dev.parent,
8179 "%s %s %s%s: %pV",
8180 dev_driver_string(dev->dev.parent),
8181 dev_name(dev->dev.parent),
8182 netdev_name(dev), netdev_reg_state(dev),
8183 vaf);
8184 } else if (dev) {
8185 printk("%s%s%s: %pV",
8186 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8187 } else {
8188 printk("%s(NULL net_device): %pV", level, vaf);
8189 }
8190 }
8191
8192 void netdev_printk(const char *level, const struct net_device *dev,
8193 const char *format, ...)
8194 {
8195 struct va_format vaf;
8196 va_list args;
8197
8198 va_start(args, format);
8199
8200 vaf.fmt = format;
8201 vaf.va = &args;
8202
8203 __netdev_printk(level, dev, &vaf);
8204
8205 va_end(args);
8206 }
8207 EXPORT_SYMBOL(netdev_printk);
8208
8209 #define define_netdev_printk_level(func, level) \
8210 void func(const struct net_device *dev, const char *fmt, ...) \
8211 { \
8212 struct va_format vaf; \
8213 va_list args; \
8214 \
8215 va_start(args, fmt); \
8216 \
8217 vaf.fmt = fmt; \
8218 vaf.va = &args; \
8219 \
8220 __netdev_printk(level, dev, &vaf); \
8221 \
8222 va_end(args); \
8223 } \
8224 EXPORT_SYMBOL(func);
8225
8226 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8227 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8228 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8229 define_netdev_printk_level(netdev_err, KERN_ERR);
8230 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8231 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8232 define_netdev_printk_level(netdev_info, KERN_INFO);
8233
8234 static void __net_exit netdev_exit(struct net *net)
8235 {
8236 kfree(net->dev_name_head);
8237 kfree(net->dev_index_head);
8238 }
8239
8240 static struct pernet_operations __net_initdata netdev_net_ops = {
8241 .init = netdev_init,
8242 .exit = netdev_exit,
8243 };
8244
8245 static void __net_exit default_device_exit(struct net *net)
8246 {
8247 struct net_device *dev, *aux;
8248 /*
8249 * Push all migratable network devices back to the
8250 * initial network namespace
8251 */
8252 rtnl_lock();
8253 for_each_netdev_safe(net, dev, aux) {
8254 int err;
8255 char fb_name[IFNAMSIZ];
8256
8257 /* Ignore unmoveable devices (i.e. loopback) */
8258 if (dev->features & NETIF_F_NETNS_LOCAL)
8259 continue;
8260
8261 /* Leave virtual devices for the generic cleanup */
8262 if (dev->rtnl_link_ops)
8263 continue;
8264
8265 /* Push remaining network devices to init_net */
8266 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8267 err = dev_change_net_namespace(dev, &init_net, fb_name);
8268 if (err) {
8269 pr_emerg("%s: failed to move %s to init_net: %d\n",
8270 __func__, dev->name, err);
8271 BUG();
8272 }
8273 }
8274 rtnl_unlock();
8275 }
8276
8277 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8278 {
8279 /* Return with the rtnl_lock held when there are no network
8280 * devices unregistering in any network namespace in net_list.
8281 */
8282 struct net *net;
8283 bool unregistering;
8284 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8285
8286 add_wait_queue(&netdev_unregistering_wq, &wait);
8287 for (;;) {
8288 unregistering = false;
8289 rtnl_lock();
8290 list_for_each_entry(net, net_list, exit_list) {
8291 if (net->dev_unreg_count > 0) {
8292 unregistering = true;
8293 break;
8294 }
8295 }
8296 if (!unregistering)
8297 break;
8298 __rtnl_unlock();
8299
8300 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8301 }
8302 remove_wait_queue(&netdev_unregistering_wq, &wait);
8303 }
8304
8305 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8306 {
8307 /* At exit all network devices most be removed from a network
8308 * namespace. Do this in the reverse order of registration.
8309 * Do this across as many network namespaces as possible to
8310 * improve batching efficiency.
8311 */
8312 struct net_device *dev;
8313 struct net *net;
8314 LIST_HEAD(dev_kill_list);
8315
8316 /* To prevent network device cleanup code from dereferencing
8317 * loopback devices or network devices that have been freed
8318 * wait here for all pending unregistrations to complete,
8319 * before unregistring the loopback device and allowing the
8320 * network namespace be freed.
8321 *
8322 * The netdev todo list containing all network devices
8323 * unregistrations that happen in default_device_exit_batch
8324 * will run in the rtnl_unlock() at the end of
8325 * default_device_exit_batch.
8326 */
8327 rtnl_lock_unregistering(net_list);
8328 list_for_each_entry(net, net_list, exit_list) {
8329 for_each_netdev_reverse(net, dev) {
8330 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8331 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8332 else
8333 unregister_netdevice_queue(dev, &dev_kill_list);
8334 }
8335 }
8336 unregister_netdevice_many(&dev_kill_list);
8337 rtnl_unlock();
8338 }
8339
8340 static struct pernet_operations __net_initdata default_device_ops = {
8341 .exit = default_device_exit,
8342 .exit_batch = default_device_exit_batch,
8343 };
8344
8345 /*
8346 * Initialize the DEV module. At boot time this walks the device list and
8347 * unhooks any devices that fail to initialise (normally hardware not
8348 * present) and leaves us with a valid list of present and active devices.
8349 *
8350 */
8351
8352 /*
8353 * This is called single threaded during boot, so no need
8354 * to take the rtnl semaphore.
8355 */
8356 static int __init net_dev_init(void)
8357 {
8358 int i, rc = -ENOMEM;
8359
8360 BUG_ON(!dev_boot_phase);
8361
8362 if (dev_proc_init())
8363 goto out;
8364
8365 if (netdev_kobject_init())
8366 goto out;
8367
8368 INIT_LIST_HEAD(&ptype_all);
8369 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8370 INIT_LIST_HEAD(&ptype_base[i]);
8371
8372 INIT_LIST_HEAD(&offload_base);
8373
8374 if (register_pernet_subsys(&netdev_net_ops))
8375 goto out;
8376
8377 /*
8378 * Initialise the packet receive queues.
8379 */
8380
8381 for_each_possible_cpu(i) {
8382 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8383 struct softnet_data *sd = &per_cpu(softnet_data, i);
8384
8385 INIT_WORK(flush, flush_backlog);
8386
8387 skb_queue_head_init(&sd->input_pkt_queue);
8388 skb_queue_head_init(&sd->process_queue);
8389 INIT_LIST_HEAD(&sd->poll_list);
8390 sd->output_queue_tailp = &sd->output_queue;
8391 #ifdef CONFIG_RPS
8392 sd->csd.func = rps_trigger_softirq;
8393 sd->csd.info = sd;
8394 sd->cpu = i;
8395 #endif
8396
8397 sd->backlog.poll = process_backlog;
8398 sd->backlog.weight = weight_p;
8399 }
8400
8401 dev_boot_phase = 0;
8402
8403 /* The loopback device is special if any other network devices
8404 * is present in a network namespace the loopback device must
8405 * be present. Since we now dynamically allocate and free the
8406 * loopback device ensure this invariant is maintained by
8407 * keeping the loopback device as the first device on the
8408 * list of network devices. Ensuring the loopback devices
8409 * is the first device that appears and the last network device
8410 * that disappears.
8411 */
8412 if (register_pernet_device(&loopback_net_ops))
8413 goto out;
8414
8415 if (register_pernet_device(&default_device_ops))
8416 goto out;
8417
8418 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8419 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8420
8421 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8422 NULL, dev_cpu_dead);
8423 WARN_ON(rc < 0);
8424 dst_subsys_init();
8425 rc = 0;
8426 out:
8427 return rc;
8428 }
8429
8430 subsys_initcall(net_dev_init);