]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/dev.c
net: skb->dst accessors
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/napi.h>
130
131 #include "net-sysfs.h"
132
133 /* Instead of increasing this, you should create a hash table. */
134 #define MAX_GRO_SKBS 8
135
136 /* This should be increased if a protocol with a bigger head is added. */
137 #define GRO_MAX_HEAD (MAX_HEADER + 128)
138
139 /*
140 * The list of packet types we will receive (as opposed to discard)
141 * and the routines to invoke.
142 *
143 * Why 16. Because with 16 the only overlap we get on a hash of the
144 * low nibble of the protocol value is RARP/SNAP/X.25.
145 *
146 * NOTE: That is no longer true with the addition of VLAN tags. Not
147 * sure which should go first, but I bet it won't make much
148 * difference if we are running VLANs. The good news is that
149 * this protocol won't be in the list unless compiled in, so
150 * the average user (w/out VLANs) will not be adversely affected.
151 * --BLG
152 *
153 * 0800 IP
154 * 8100 802.1Q VLAN
155 * 0001 802.3
156 * 0002 AX.25
157 * 0004 802.2
158 * 8035 RARP
159 * 0005 SNAP
160 * 0805 X.25
161 * 0806 ARP
162 * 8137 IPX
163 * 0009 Localtalk
164 * 86DD IPv6
165 */
166
167 #define PTYPE_HASH_SIZE (16)
168 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
169
170 static DEFINE_SPINLOCK(ptype_lock);
171 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
172 static struct list_head ptype_all __read_mostly; /* Taps */
173
174 /*
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
177 *
178 * Pure readers hold dev_base_lock for reading.
179 *
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
184 *
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
188 *
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
192 */
193 DEFINE_RWLOCK(dev_base_lock);
194
195 EXPORT_SYMBOL(dev_base_lock);
196
197 #define NETDEV_HASHBITS 8
198 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
199
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
209 }
210
211 /* Device list insertion */
212 static int list_netdevice(struct net_device *dev)
213 {
214 struct net *net = dev_net(dev);
215
216 ASSERT_RTNL();
217
218 write_lock_bh(&dev_base_lock);
219 list_add_tail(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223 return 0;
224 }
225
226 /* Device list removal */
227 static void unlist_netdevice(struct net_device *dev)
228 {
229 ASSERT_RTNL();
230
231 /* Unlink dev from the device chain */
232 write_lock_bh(&dev_base_lock);
233 list_del(&dev->dev_list);
234 hlist_del(&dev->name_hlist);
235 hlist_del(&dev->index_hlist);
236 write_unlock_bh(&dev_base_lock);
237 }
238
239 /*
240 * Our notifier list
241 */
242
243 static RAW_NOTIFIER_HEAD(netdev_chain);
244
245 /*
246 * Device drivers call our routines to queue packets here. We empty the
247 * queue in the local softnet handler.
248 */
249
250 DEFINE_PER_CPU(struct softnet_data, softnet_data);
251
252 #ifdef CONFIG_LOCKDEP
253 /*
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
256 */
257 static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
271 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
272 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
273
274 static const char *netdev_lock_name[] =
275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
288 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
289 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
290
291 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
293
294 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
295 {
296 int i;
297
298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 if (netdev_lock_type[i] == dev_type)
300 return i;
301 /* the last key is used by default */
302 return ARRAY_SIZE(netdev_lock_type) - 1;
303 }
304
305 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 unsigned short dev_type)
307 {
308 int i;
309
310 i = netdev_lock_pos(dev_type);
311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 netdev_lock_name[i]);
313 }
314
315 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
316 {
317 int i;
318
319 i = netdev_lock_pos(dev->type);
320 lockdep_set_class_and_name(&dev->addr_list_lock,
321 &netdev_addr_lock_key[i],
322 netdev_lock_name[i]);
323 }
324 #else
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 }
329 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
330 {
331 }
332 #endif
333
334 /*******************************************************************************
335
336 Protocol management and registration routines
337
338 *******************************************************************************/
339
340 /*
341 * Add a protocol ID to the list. Now that the input handler is
342 * smarter we can dispense with all the messy stuff that used to be
343 * here.
344 *
345 * BEWARE!!! Protocol handlers, mangling input packets,
346 * MUST BE last in hash buckets and checking protocol handlers
347 * MUST start from promiscuous ptype_all chain in net_bh.
348 * It is true now, do not change it.
349 * Explanation follows: if protocol handler, mangling packet, will
350 * be the first on list, it is not able to sense, that packet
351 * is cloned and should be copied-on-write, so that it will
352 * change it and subsequent readers will get broken packet.
353 * --ANK (980803)
354 */
355
356 /**
357 * dev_add_pack - add packet handler
358 * @pt: packet type declaration
359 *
360 * Add a protocol handler to the networking stack. The passed &packet_type
361 * is linked into kernel lists and may not be freed until it has been
362 * removed from the kernel lists.
363 *
364 * This call does not sleep therefore it can not
365 * guarantee all CPU's that are in middle of receiving packets
366 * will see the new packet type (until the next received packet).
367 */
368
369 void dev_add_pack(struct packet_type *pt)
370 {
371 int hash;
372
373 spin_lock_bh(&ptype_lock);
374 if (pt->type == htons(ETH_P_ALL))
375 list_add_rcu(&pt->list, &ptype_all);
376 else {
377 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
378 list_add_rcu(&pt->list, &ptype_base[hash]);
379 }
380 spin_unlock_bh(&ptype_lock);
381 }
382
383 /**
384 * __dev_remove_pack - remove packet handler
385 * @pt: packet type declaration
386 *
387 * Remove a protocol handler that was previously added to the kernel
388 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
389 * from the kernel lists and can be freed or reused once this function
390 * returns.
391 *
392 * The packet type might still be in use by receivers
393 * and must not be freed until after all the CPU's have gone
394 * through a quiescent state.
395 */
396 void __dev_remove_pack(struct packet_type *pt)
397 {
398 struct list_head *head;
399 struct packet_type *pt1;
400
401 spin_lock_bh(&ptype_lock);
402
403 if (pt->type == htons(ETH_P_ALL))
404 head = &ptype_all;
405 else
406 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
407
408 list_for_each_entry(pt1, head, list) {
409 if (pt == pt1) {
410 list_del_rcu(&pt->list);
411 goto out;
412 }
413 }
414
415 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
416 out:
417 spin_unlock_bh(&ptype_lock);
418 }
419 /**
420 * dev_remove_pack - remove packet handler
421 * @pt: packet type declaration
422 *
423 * Remove a protocol handler that was previously added to the kernel
424 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
425 * from the kernel lists and can be freed or reused once this function
426 * returns.
427 *
428 * This call sleeps to guarantee that no CPU is looking at the packet
429 * type after return.
430 */
431 void dev_remove_pack(struct packet_type *pt)
432 {
433 __dev_remove_pack(pt);
434
435 synchronize_net();
436 }
437
438 /******************************************************************************
439
440 Device Boot-time Settings Routines
441
442 *******************************************************************************/
443
444 /* Boot time configuration table */
445 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
446
447 /**
448 * netdev_boot_setup_add - add new setup entry
449 * @name: name of the device
450 * @map: configured settings for the device
451 *
452 * Adds new setup entry to the dev_boot_setup list. The function
453 * returns 0 on error and 1 on success. This is a generic routine to
454 * all netdevices.
455 */
456 static int netdev_boot_setup_add(char *name, struct ifmap *map)
457 {
458 struct netdev_boot_setup *s;
459 int i;
460
461 s = dev_boot_setup;
462 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
463 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
464 memset(s[i].name, 0, sizeof(s[i].name));
465 strlcpy(s[i].name, name, IFNAMSIZ);
466 memcpy(&s[i].map, map, sizeof(s[i].map));
467 break;
468 }
469 }
470
471 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
472 }
473
474 /**
475 * netdev_boot_setup_check - check boot time settings
476 * @dev: the netdevice
477 *
478 * Check boot time settings for the device.
479 * The found settings are set for the device to be used
480 * later in the device probing.
481 * Returns 0 if no settings found, 1 if they are.
482 */
483 int netdev_boot_setup_check(struct net_device *dev)
484 {
485 struct netdev_boot_setup *s = dev_boot_setup;
486 int i;
487
488 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
489 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
490 !strcmp(dev->name, s[i].name)) {
491 dev->irq = s[i].map.irq;
492 dev->base_addr = s[i].map.base_addr;
493 dev->mem_start = s[i].map.mem_start;
494 dev->mem_end = s[i].map.mem_end;
495 return 1;
496 }
497 }
498 return 0;
499 }
500
501
502 /**
503 * netdev_boot_base - get address from boot time settings
504 * @prefix: prefix for network device
505 * @unit: id for network device
506 *
507 * Check boot time settings for the base address of device.
508 * The found settings are set for the device to be used
509 * later in the device probing.
510 * Returns 0 if no settings found.
511 */
512 unsigned long netdev_boot_base(const char *prefix, int unit)
513 {
514 const struct netdev_boot_setup *s = dev_boot_setup;
515 char name[IFNAMSIZ];
516 int i;
517
518 sprintf(name, "%s%d", prefix, unit);
519
520 /*
521 * If device already registered then return base of 1
522 * to indicate not to probe for this interface
523 */
524 if (__dev_get_by_name(&init_net, name))
525 return 1;
526
527 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
528 if (!strcmp(name, s[i].name))
529 return s[i].map.base_addr;
530 return 0;
531 }
532
533 /*
534 * Saves at boot time configured settings for any netdevice.
535 */
536 int __init netdev_boot_setup(char *str)
537 {
538 int ints[5];
539 struct ifmap map;
540
541 str = get_options(str, ARRAY_SIZE(ints), ints);
542 if (!str || !*str)
543 return 0;
544
545 /* Save settings */
546 memset(&map, 0, sizeof(map));
547 if (ints[0] > 0)
548 map.irq = ints[1];
549 if (ints[0] > 1)
550 map.base_addr = ints[2];
551 if (ints[0] > 2)
552 map.mem_start = ints[3];
553 if (ints[0] > 3)
554 map.mem_end = ints[4];
555
556 /* Add new entry to the list */
557 return netdev_boot_setup_add(str, &map);
558 }
559
560 __setup("netdev=", netdev_boot_setup);
561
562 /*******************************************************************************
563
564 Device Interface Subroutines
565
566 *******************************************************************************/
567
568 /**
569 * __dev_get_by_name - find a device by its name
570 * @net: the applicable net namespace
571 * @name: name to find
572 *
573 * Find an interface by name. Must be called under RTNL semaphore
574 * or @dev_base_lock. If the name is found a pointer to the device
575 * is returned. If the name is not found then %NULL is returned. The
576 * reference counters are not incremented so the caller must be
577 * careful with locks.
578 */
579
580 struct net_device *__dev_get_by_name(struct net *net, const char *name)
581 {
582 struct hlist_node *p;
583
584 hlist_for_each(p, dev_name_hash(net, name)) {
585 struct net_device *dev
586 = hlist_entry(p, struct net_device, name_hlist);
587 if (!strncmp(dev->name, name, IFNAMSIZ))
588 return dev;
589 }
590 return NULL;
591 }
592
593 /**
594 * dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. This can be called from any
599 * context and does its own locking. The returned handle has
600 * the usage count incremented and the caller must use dev_put() to
601 * release it when it is no longer needed. %NULL is returned if no
602 * matching device is found.
603 */
604
605 struct net_device *dev_get_by_name(struct net *net, const char *name)
606 {
607 struct net_device *dev;
608
609 read_lock(&dev_base_lock);
610 dev = __dev_get_by_name(net, name);
611 if (dev)
612 dev_hold(dev);
613 read_unlock(&dev_base_lock);
614 return dev;
615 }
616
617 /**
618 * __dev_get_by_index - find a device by its ifindex
619 * @net: the applicable net namespace
620 * @ifindex: index of device
621 *
622 * Search for an interface by index. Returns %NULL if the device
623 * is not found or a pointer to the device. The device has not
624 * had its reference counter increased so the caller must be careful
625 * about locking. The caller must hold either the RTNL semaphore
626 * or @dev_base_lock.
627 */
628
629 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
630 {
631 struct hlist_node *p;
632
633 hlist_for_each(p, dev_index_hash(net, ifindex)) {
634 struct net_device *dev
635 = hlist_entry(p, struct net_device, index_hlist);
636 if (dev->ifindex == ifindex)
637 return dev;
638 }
639 return NULL;
640 }
641
642
643 /**
644 * dev_get_by_index - find a device by its ifindex
645 * @net: the applicable net namespace
646 * @ifindex: index of device
647 *
648 * Search for an interface by index. Returns NULL if the device
649 * is not found or a pointer to the device. The device returned has
650 * had a reference added and the pointer is safe until the user calls
651 * dev_put to indicate they have finished with it.
652 */
653
654 struct net_device *dev_get_by_index(struct net *net, int ifindex)
655 {
656 struct net_device *dev;
657
658 read_lock(&dev_base_lock);
659 dev = __dev_get_by_index(net, ifindex);
660 if (dev)
661 dev_hold(dev);
662 read_unlock(&dev_base_lock);
663 return dev;
664 }
665
666 /**
667 * dev_getbyhwaddr - find a device by its hardware address
668 * @net: the applicable net namespace
669 * @type: media type of device
670 * @ha: hardware address
671 *
672 * Search for an interface by MAC address. Returns NULL if the device
673 * is not found or a pointer to the device. The caller must hold the
674 * rtnl semaphore. The returned device has not had its ref count increased
675 * and the caller must therefore be careful about locking
676 *
677 * BUGS:
678 * If the API was consistent this would be __dev_get_by_hwaddr
679 */
680
681 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
682 {
683 struct net_device *dev;
684
685 ASSERT_RTNL();
686
687 for_each_netdev(net, dev)
688 if (dev->type == type &&
689 !memcmp(dev->dev_addr, ha, dev->addr_len))
690 return dev;
691
692 return NULL;
693 }
694
695 EXPORT_SYMBOL(dev_getbyhwaddr);
696
697 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
698 {
699 struct net_device *dev;
700
701 ASSERT_RTNL();
702 for_each_netdev(net, dev)
703 if (dev->type == type)
704 return dev;
705
706 return NULL;
707 }
708
709 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
710
711 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
712 {
713 struct net_device *dev;
714
715 rtnl_lock();
716 dev = __dev_getfirstbyhwtype(net, type);
717 if (dev)
718 dev_hold(dev);
719 rtnl_unlock();
720 return dev;
721 }
722
723 EXPORT_SYMBOL(dev_getfirstbyhwtype);
724
725 /**
726 * dev_get_by_flags - find any device with given flags
727 * @net: the applicable net namespace
728 * @if_flags: IFF_* values
729 * @mask: bitmask of bits in if_flags to check
730 *
731 * Search for any interface with the given flags. Returns NULL if a device
732 * is not found or a pointer to the device. The device returned has
733 * had a reference added and the pointer is safe until the user calls
734 * dev_put to indicate they have finished with it.
735 */
736
737 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
738 {
739 struct net_device *dev, *ret;
740
741 ret = NULL;
742 read_lock(&dev_base_lock);
743 for_each_netdev(net, dev) {
744 if (((dev->flags ^ if_flags) & mask) == 0) {
745 dev_hold(dev);
746 ret = dev;
747 break;
748 }
749 }
750 read_unlock(&dev_base_lock);
751 return ret;
752 }
753
754 /**
755 * dev_valid_name - check if name is okay for network device
756 * @name: name string
757 *
758 * Network device names need to be valid file names to
759 * to allow sysfs to work. We also disallow any kind of
760 * whitespace.
761 */
762 int dev_valid_name(const char *name)
763 {
764 if (*name == '\0')
765 return 0;
766 if (strlen(name) >= IFNAMSIZ)
767 return 0;
768 if (!strcmp(name, ".") || !strcmp(name, ".."))
769 return 0;
770
771 while (*name) {
772 if (*name == '/' || isspace(*name))
773 return 0;
774 name++;
775 }
776 return 1;
777 }
778
779 /**
780 * __dev_alloc_name - allocate a name for a device
781 * @net: network namespace to allocate the device name in
782 * @name: name format string
783 * @buf: scratch buffer and result name string
784 *
785 * Passed a format string - eg "lt%d" it will try and find a suitable
786 * id. It scans list of devices to build up a free map, then chooses
787 * the first empty slot. The caller must hold the dev_base or rtnl lock
788 * while allocating the name and adding the device in order to avoid
789 * duplicates.
790 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
791 * Returns the number of the unit assigned or a negative errno code.
792 */
793
794 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
795 {
796 int i = 0;
797 const char *p;
798 const int max_netdevices = 8*PAGE_SIZE;
799 unsigned long *inuse;
800 struct net_device *d;
801
802 p = strnchr(name, IFNAMSIZ-1, '%');
803 if (p) {
804 /*
805 * Verify the string as this thing may have come from
806 * the user. There must be either one "%d" and no other "%"
807 * characters.
808 */
809 if (p[1] != 'd' || strchr(p + 2, '%'))
810 return -EINVAL;
811
812 /* Use one page as a bit array of possible slots */
813 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
814 if (!inuse)
815 return -ENOMEM;
816
817 for_each_netdev(net, d) {
818 if (!sscanf(d->name, name, &i))
819 continue;
820 if (i < 0 || i >= max_netdevices)
821 continue;
822
823 /* avoid cases where sscanf is not exact inverse of printf */
824 snprintf(buf, IFNAMSIZ, name, i);
825 if (!strncmp(buf, d->name, IFNAMSIZ))
826 set_bit(i, inuse);
827 }
828
829 i = find_first_zero_bit(inuse, max_netdevices);
830 free_page((unsigned long) inuse);
831 }
832
833 snprintf(buf, IFNAMSIZ, name, i);
834 if (!__dev_get_by_name(net, buf))
835 return i;
836
837 /* It is possible to run out of possible slots
838 * when the name is long and there isn't enough space left
839 * for the digits, or if all bits are used.
840 */
841 return -ENFILE;
842 }
843
844 /**
845 * dev_alloc_name - allocate a name for a device
846 * @dev: device
847 * @name: name format string
848 *
849 * Passed a format string - eg "lt%d" it will try and find a suitable
850 * id. It scans list of devices to build up a free map, then chooses
851 * the first empty slot. The caller must hold the dev_base or rtnl lock
852 * while allocating the name and adding the device in order to avoid
853 * duplicates.
854 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
855 * Returns the number of the unit assigned or a negative errno code.
856 */
857
858 int dev_alloc_name(struct net_device *dev, const char *name)
859 {
860 char buf[IFNAMSIZ];
861 struct net *net;
862 int ret;
863
864 BUG_ON(!dev_net(dev));
865 net = dev_net(dev);
866 ret = __dev_alloc_name(net, name, buf);
867 if (ret >= 0)
868 strlcpy(dev->name, buf, IFNAMSIZ);
869 return ret;
870 }
871
872
873 /**
874 * dev_change_name - change name of a device
875 * @dev: device
876 * @newname: name (or format string) must be at least IFNAMSIZ
877 *
878 * Change name of a device, can pass format strings "eth%d".
879 * for wildcarding.
880 */
881 int dev_change_name(struct net_device *dev, const char *newname)
882 {
883 char oldname[IFNAMSIZ];
884 int err = 0;
885 int ret;
886 struct net *net;
887
888 ASSERT_RTNL();
889 BUG_ON(!dev_net(dev));
890
891 net = dev_net(dev);
892 if (dev->flags & IFF_UP)
893 return -EBUSY;
894
895 if (!dev_valid_name(newname))
896 return -EINVAL;
897
898 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
899 return 0;
900
901 memcpy(oldname, dev->name, IFNAMSIZ);
902
903 if (strchr(newname, '%')) {
904 err = dev_alloc_name(dev, newname);
905 if (err < 0)
906 return err;
907 }
908 else if (__dev_get_by_name(net, newname))
909 return -EEXIST;
910 else
911 strlcpy(dev->name, newname, IFNAMSIZ);
912
913 rollback:
914 /* For now only devices in the initial network namespace
915 * are in sysfs.
916 */
917 if (net == &init_net) {
918 ret = device_rename(&dev->dev, dev->name);
919 if (ret) {
920 memcpy(dev->name, oldname, IFNAMSIZ);
921 return ret;
922 }
923 }
924
925 write_lock_bh(&dev_base_lock);
926 hlist_del(&dev->name_hlist);
927 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
928 write_unlock_bh(&dev_base_lock);
929
930 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
931 ret = notifier_to_errno(ret);
932
933 if (ret) {
934 if (err) {
935 printk(KERN_ERR
936 "%s: name change rollback failed: %d.\n",
937 dev->name, ret);
938 } else {
939 err = ret;
940 memcpy(dev->name, oldname, IFNAMSIZ);
941 goto rollback;
942 }
943 }
944
945 return err;
946 }
947
948 /**
949 * dev_set_alias - change ifalias of a device
950 * @dev: device
951 * @alias: name up to IFALIASZ
952 * @len: limit of bytes to copy from info
953 *
954 * Set ifalias for a device,
955 */
956 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
957 {
958 ASSERT_RTNL();
959
960 if (len >= IFALIASZ)
961 return -EINVAL;
962
963 if (!len) {
964 if (dev->ifalias) {
965 kfree(dev->ifalias);
966 dev->ifalias = NULL;
967 }
968 return 0;
969 }
970
971 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
972 if (!dev->ifalias)
973 return -ENOMEM;
974
975 strlcpy(dev->ifalias, alias, len+1);
976 return len;
977 }
978
979
980 /**
981 * netdev_features_change - device changes features
982 * @dev: device to cause notification
983 *
984 * Called to indicate a device has changed features.
985 */
986 void netdev_features_change(struct net_device *dev)
987 {
988 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
989 }
990 EXPORT_SYMBOL(netdev_features_change);
991
992 /**
993 * netdev_state_change - device changes state
994 * @dev: device to cause notification
995 *
996 * Called to indicate a device has changed state. This function calls
997 * the notifier chains for netdev_chain and sends a NEWLINK message
998 * to the routing socket.
999 */
1000 void netdev_state_change(struct net_device *dev)
1001 {
1002 if (dev->flags & IFF_UP) {
1003 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1004 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1005 }
1006 }
1007
1008 void netdev_bonding_change(struct net_device *dev)
1009 {
1010 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1011 }
1012 EXPORT_SYMBOL(netdev_bonding_change);
1013
1014 /**
1015 * dev_load - load a network module
1016 * @net: the applicable net namespace
1017 * @name: name of interface
1018 *
1019 * If a network interface is not present and the process has suitable
1020 * privileges this function loads the module. If module loading is not
1021 * available in this kernel then it becomes a nop.
1022 */
1023
1024 void dev_load(struct net *net, const char *name)
1025 {
1026 struct net_device *dev;
1027
1028 read_lock(&dev_base_lock);
1029 dev = __dev_get_by_name(net, name);
1030 read_unlock(&dev_base_lock);
1031
1032 if (!dev && capable(CAP_SYS_MODULE))
1033 request_module("%s", name);
1034 }
1035
1036 /**
1037 * dev_open - prepare an interface for use.
1038 * @dev: device to open
1039 *
1040 * Takes a device from down to up state. The device's private open
1041 * function is invoked and then the multicast lists are loaded. Finally
1042 * the device is moved into the up state and a %NETDEV_UP message is
1043 * sent to the netdev notifier chain.
1044 *
1045 * Calling this function on an active interface is a nop. On a failure
1046 * a negative errno code is returned.
1047 */
1048 int dev_open(struct net_device *dev)
1049 {
1050 const struct net_device_ops *ops = dev->netdev_ops;
1051 int ret = 0;
1052
1053 ASSERT_RTNL();
1054
1055 /*
1056 * Is it already up?
1057 */
1058
1059 if (dev->flags & IFF_UP)
1060 return 0;
1061
1062 /*
1063 * Is it even present?
1064 */
1065 if (!netif_device_present(dev))
1066 return -ENODEV;
1067
1068 /*
1069 * Call device private open method
1070 */
1071 set_bit(__LINK_STATE_START, &dev->state);
1072
1073 if (ops->ndo_validate_addr)
1074 ret = ops->ndo_validate_addr(dev);
1075
1076 if (!ret && ops->ndo_open)
1077 ret = ops->ndo_open(dev);
1078
1079 /*
1080 * If it went open OK then:
1081 */
1082
1083 if (ret)
1084 clear_bit(__LINK_STATE_START, &dev->state);
1085 else {
1086 /*
1087 * Set the flags.
1088 */
1089 dev->flags |= IFF_UP;
1090
1091 /*
1092 * Enable NET_DMA
1093 */
1094 net_dmaengine_get();
1095
1096 /*
1097 * Initialize multicasting status
1098 */
1099 dev_set_rx_mode(dev);
1100
1101 /*
1102 * Wakeup transmit queue engine
1103 */
1104 dev_activate(dev);
1105
1106 /*
1107 * ... and announce new interface.
1108 */
1109 call_netdevice_notifiers(NETDEV_UP, dev);
1110 }
1111
1112 return ret;
1113 }
1114
1115 /**
1116 * dev_close - shutdown an interface.
1117 * @dev: device to shutdown
1118 *
1119 * This function moves an active device into down state. A
1120 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1121 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1122 * chain.
1123 */
1124 int dev_close(struct net_device *dev)
1125 {
1126 const struct net_device_ops *ops = dev->netdev_ops;
1127 ASSERT_RTNL();
1128
1129 might_sleep();
1130
1131 if (!(dev->flags & IFF_UP))
1132 return 0;
1133
1134 /*
1135 * Tell people we are going down, so that they can
1136 * prepare to death, when device is still operating.
1137 */
1138 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1139
1140 clear_bit(__LINK_STATE_START, &dev->state);
1141
1142 /* Synchronize to scheduled poll. We cannot touch poll list,
1143 * it can be even on different cpu. So just clear netif_running().
1144 *
1145 * dev->stop() will invoke napi_disable() on all of it's
1146 * napi_struct instances on this device.
1147 */
1148 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1149
1150 dev_deactivate(dev);
1151
1152 /*
1153 * Call the device specific close. This cannot fail.
1154 * Only if device is UP
1155 *
1156 * We allow it to be called even after a DETACH hot-plug
1157 * event.
1158 */
1159 if (ops->ndo_stop)
1160 ops->ndo_stop(dev);
1161
1162 /*
1163 * Device is now down.
1164 */
1165
1166 dev->flags &= ~IFF_UP;
1167
1168 /*
1169 * Tell people we are down
1170 */
1171 call_netdevice_notifiers(NETDEV_DOWN, dev);
1172
1173 /*
1174 * Shutdown NET_DMA
1175 */
1176 net_dmaengine_put();
1177
1178 return 0;
1179 }
1180
1181
1182 /**
1183 * dev_disable_lro - disable Large Receive Offload on a device
1184 * @dev: device
1185 *
1186 * Disable Large Receive Offload (LRO) on a net device. Must be
1187 * called under RTNL. This is needed if received packets may be
1188 * forwarded to another interface.
1189 */
1190 void dev_disable_lro(struct net_device *dev)
1191 {
1192 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1193 dev->ethtool_ops->set_flags) {
1194 u32 flags = dev->ethtool_ops->get_flags(dev);
1195 if (flags & ETH_FLAG_LRO) {
1196 flags &= ~ETH_FLAG_LRO;
1197 dev->ethtool_ops->set_flags(dev, flags);
1198 }
1199 }
1200 WARN_ON(dev->features & NETIF_F_LRO);
1201 }
1202 EXPORT_SYMBOL(dev_disable_lro);
1203
1204
1205 static int dev_boot_phase = 1;
1206
1207 /*
1208 * Device change register/unregister. These are not inline or static
1209 * as we export them to the world.
1210 */
1211
1212 /**
1213 * register_netdevice_notifier - register a network notifier block
1214 * @nb: notifier
1215 *
1216 * Register a notifier to be called when network device events occur.
1217 * The notifier passed is linked into the kernel structures and must
1218 * not be reused until it has been unregistered. A negative errno code
1219 * is returned on a failure.
1220 *
1221 * When registered all registration and up events are replayed
1222 * to the new notifier to allow device to have a race free
1223 * view of the network device list.
1224 */
1225
1226 int register_netdevice_notifier(struct notifier_block *nb)
1227 {
1228 struct net_device *dev;
1229 struct net_device *last;
1230 struct net *net;
1231 int err;
1232
1233 rtnl_lock();
1234 err = raw_notifier_chain_register(&netdev_chain, nb);
1235 if (err)
1236 goto unlock;
1237 if (dev_boot_phase)
1238 goto unlock;
1239 for_each_net(net) {
1240 for_each_netdev(net, dev) {
1241 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1242 err = notifier_to_errno(err);
1243 if (err)
1244 goto rollback;
1245
1246 if (!(dev->flags & IFF_UP))
1247 continue;
1248
1249 nb->notifier_call(nb, NETDEV_UP, dev);
1250 }
1251 }
1252
1253 unlock:
1254 rtnl_unlock();
1255 return err;
1256
1257 rollback:
1258 last = dev;
1259 for_each_net(net) {
1260 for_each_netdev(net, dev) {
1261 if (dev == last)
1262 break;
1263
1264 if (dev->flags & IFF_UP) {
1265 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1266 nb->notifier_call(nb, NETDEV_DOWN, dev);
1267 }
1268 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1269 }
1270 }
1271
1272 raw_notifier_chain_unregister(&netdev_chain, nb);
1273 goto unlock;
1274 }
1275
1276 /**
1277 * unregister_netdevice_notifier - unregister a network notifier block
1278 * @nb: notifier
1279 *
1280 * Unregister a notifier previously registered by
1281 * register_netdevice_notifier(). The notifier is unlinked into the
1282 * kernel structures and may then be reused. A negative errno code
1283 * is returned on a failure.
1284 */
1285
1286 int unregister_netdevice_notifier(struct notifier_block *nb)
1287 {
1288 int err;
1289
1290 rtnl_lock();
1291 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1292 rtnl_unlock();
1293 return err;
1294 }
1295
1296 /**
1297 * call_netdevice_notifiers - call all network notifier blocks
1298 * @val: value passed unmodified to notifier function
1299 * @dev: net_device pointer passed unmodified to notifier function
1300 *
1301 * Call all network notifier blocks. Parameters and return value
1302 * are as for raw_notifier_call_chain().
1303 */
1304
1305 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1306 {
1307 return raw_notifier_call_chain(&netdev_chain, val, dev);
1308 }
1309
1310 /* When > 0 there are consumers of rx skb time stamps */
1311 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1312
1313 void net_enable_timestamp(void)
1314 {
1315 atomic_inc(&netstamp_needed);
1316 }
1317
1318 void net_disable_timestamp(void)
1319 {
1320 atomic_dec(&netstamp_needed);
1321 }
1322
1323 static inline void net_timestamp(struct sk_buff *skb)
1324 {
1325 if (atomic_read(&netstamp_needed))
1326 __net_timestamp(skb);
1327 else
1328 skb->tstamp.tv64 = 0;
1329 }
1330
1331 /*
1332 * Support routine. Sends outgoing frames to any network
1333 * taps currently in use.
1334 */
1335
1336 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1337 {
1338 struct packet_type *ptype;
1339
1340 #ifdef CONFIG_NET_CLS_ACT
1341 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1342 net_timestamp(skb);
1343 #else
1344 net_timestamp(skb);
1345 #endif
1346
1347 rcu_read_lock();
1348 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1349 /* Never send packets back to the socket
1350 * they originated from - MvS (miquels@drinkel.ow.org)
1351 */
1352 if ((ptype->dev == dev || !ptype->dev) &&
1353 (ptype->af_packet_priv == NULL ||
1354 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1355 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1356 if (!skb2)
1357 break;
1358
1359 /* skb->nh should be correctly
1360 set by sender, so that the second statement is
1361 just protection against buggy protocols.
1362 */
1363 skb_reset_mac_header(skb2);
1364
1365 if (skb_network_header(skb2) < skb2->data ||
1366 skb2->network_header > skb2->tail) {
1367 if (net_ratelimit())
1368 printk(KERN_CRIT "protocol %04x is "
1369 "buggy, dev %s\n",
1370 skb2->protocol, dev->name);
1371 skb_reset_network_header(skb2);
1372 }
1373
1374 skb2->transport_header = skb2->network_header;
1375 skb2->pkt_type = PACKET_OUTGOING;
1376 ptype->func(skb2, skb->dev, ptype, skb->dev);
1377 }
1378 }
1379 rcu_read_unlock();
1380 }
1381
1382
1383 static inline void __netif_reschedule(struct Qdisc *q)
1384 {
1385 struct softnet_data *sd;
1386 unsigned long flags;
1387
1388 local_irq_save(flags);
1389 sd = &__get_cpu_var(softnet_data);
1390 q->next_sched = sd->output_queue;
1391 sd->output_queue = q;
1392 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1393 local_irq_restore(flags);
1394 }
1395
1396 void __netif_schedule(struct Qdisc *q)
1397 {
1398 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1399 __netif_reschedule(q);
1400 }
1401 EXPORT_SYMBOL(__netif_schedule);
1402
1403 void dev_kfree_skb_irq(struct sk_buff *skb)
1404 {
1405 if (atomic_dec_and_test(&skb->users)) {
1406 struct softnet_data *sd;
1407 unsigned long flags;
1408
1409 local_irq_save(flags);
1410 sd = &__get_cpu_var(softnet_data);
1411 skb->next = sd->completion_queue;
1412 sd->completion_queue = skb;
1413 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1414 local_irq_restore(flags);
1415 }
1416 }
1417 EXPORT_SYMBOL(dev_kfree_skb_irq);
1418
1419 void dev_kfree_skb_any(struct sk_buff *skb)
1420 {
1421 if (in_irq() || irqs_disabled())
1422 dev_kfree_skb_irq(skb);
1423 else
1424 dev_kfree_skb(skb);
1425 }
1426 EXPORT_SYMBOL(dev_kfree_skb_any);
1427
1428
1429 /**
1430 * netif_device_detach - mark device as removed
1431 * @dev: network device
1432 *
1433 * Mark device as removed from system and therefore no longer available.
1434 */
1435 void netif_device_detach(struct net_device *dev)
1436 {
1437 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1438 netif_running(dev)) {
1439 netif_tx_stop_all_queues(dev);
1440 }
1441 }
1442 EXPORT_SYMBOL(netif_device_detach);
1443
1444 /**
1445 * netif_device_attach - mark device as attached
1446 * @dev: network device
1447 *
1448 * Mark device as attached from system and restart if needed.
1449 */
1450 void netif_device_attach(struct net_device *dev)
1451 {
1452 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1453 netif_running(dev)) {
1454 netif_tx_wake_all_queues(dev);
1455 __netdev_watchdog_up(dev);
1456 }
1457 }
1458 EXPORT_SYMBOL(netif_device_attach);
1459
1460 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1461 {
1462 return ((features & NETIF_F_GEN_CSUM) ||
1463 ((features & NETIF_F_IP_CSUM) &&
1464 protocol == htons(ETH_P_IP)) ||
1465 ((features & NETIF_F_IPV6_CSUM) &&
1466 protocol == htons(ETH_P_IPV6)) ||
1467 ((features & NETIF_F_FCOE_CRC) &&
1468 protocol == htons(ETH_P_FCOE)));
1469 }
1470
1471 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1472 {
1473 if (can_checksum_protocol(dev->features, skb->protocol))
1474 return true;
1475
1476 if (skb->protocol == htons(ETH_P_8021Q)) {
1477 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1478 if (can_checksum_protocol(dev->features & dev->vlan_features,
1479 veh->h_vlan_encapsulated_proto))
1480 return true;
1481 }
1482
1483 return false;
1484 }
1485
1486 /*
1487 * Invalidate hardware checksum when packet is to be mangled, and
1488 * complete checksum manually on outgoing path.
1489 */
1490 int skb_checksum_help(struct sk_buff *skb)
1491 {
1492 __wsum csum;
1493 int ret = 0, offset;
1494
1495 if (skb->ip_summed == CHECKSUM_COMPLETE)
1496 goto out_set_summed;
1497
1498 if (unlikely(skb_shinfo(skb)->gso_size)) {
1499 /* Let GSO fix up the checksum. */
1500 goto out_set_summed;
1501 }
1502
1503 offset = skb->csum_start - skb_headroom(skb);
1504 BUG_ON(offset >= skb_headlen(skb));
1505 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1506
1507 offset += skb->csum_offset;
1508 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1509
1510 if (skb_cloned(skb) &&
1511 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1512 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1513 if (ret)
1514 goto out;
1515 }
1516
1517 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1518 out_set_summed:
1519 skb->ip_summed = CHECKSUM_NONE;
1520 out:
1521 return ret;
1522 }
1523
1524 /**
1525 * skb_gso_segment - Perform segmentation on skb.
1526 * @skb: buffer to segment
1527 * @features: features for the output path (see dev->features)
1528 *
1529 * This function segments the given skb and returns a list of segments.
1530 *
1531 * It may return NULL if the skb requires no segmentation. This is
1532 * only possible when GSO is used for verifying header integrity.
1533 */
1534 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1535 {
1536 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1537 struct packet_type *ptype;
1538 __be16 type = skb->protocol;
1539 int err;
1540
1541 skb_reset_mac_header(skb);
1542 skb->mac_len = skb->network_header - skb->mac_header;
1543 __skb_pull(skb, skb->mac_len);
1544
1545 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1546 struct net_device *dev = skb->dev;
1547 struct ethtool_drvinfo info = {};
1548
1549 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1550 dev->ethtool_ops->get_drvinfo(dev, &info);
1551
1552 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1553 "ip_summed=%d",
1554 info.driver, dev ? dev->features : 0L,
1555 skb->sk ? skb->sk->sk_route_caps : 0L,
1556 skb->len, skb->data_len, skb->ip_summed);
1557
1558 if (skb_header_cloned(skb) &&
1559 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1560 return ERR_PTR(err);
1561 }
1562
1563 rcu_read_lock();
1564 list_for_each_entry_rcu(ptype,
1565 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1566 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1567 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1568 err = ptype->gso_send_check(skb);
1569 segs = ERR_PTR(err);
1570 if (err || skb_gso_ok(skb, features))
1571 break;
1572 __skb_push(skb, (skb->data -
1573 skb_network_header(skb)));
1574 }
1575 segs = ptype->gso_segment(skb, features);
1576 break;
1577 }
1578 }
1579 rcu_read_unlock();
1580
1581 __skb_push(skb, skb->data - skb_mac_header(skb));
1582
1583 return segs;
1584 }
1585
1586 EXPORT_SYMBOL(skb_gso_segment);
1587
1588 /* Take action when hardware reception checksum errors are detected. */
1589 #ifdef CONFIG_BUG
1590 void netdev_rx_csum_fault(struct net_device *dev)
1591 {
1592 if (net_ratelimit()) {
1593 printk(KERN_ERR "%s: hw csum failure.\n",
1594 dev ? dev->name : "<unknown>");
1595 dump_stack();
1596 }
1597 }
1598 EXPORT_SYMBOL(netdev_rx_csum_fault);
1599 #endif
1600
1601 /* Actually, we should eliminate this check as soon as we know, that:
1602 * 1. IOMMU is present and allows to map all the memory.
1603 * 2. No high memory really exists on this machine.
1604 */
1605
1606 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1607 {
1608 #ifdef CONFIG_HIGHMEM
1609 int i;
1610
1611 if (dev->features & NETIF_F_HIGHDMA)
1612 return 0;
1613
1614 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1615 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1616 return 1;
1617
1618 #endif
1619 return 0;
1620 }
1621
1622 struct dev_gso_cb {
1623 void (*destructor)(struct sk_buff *skb);
1624 };
1625
1626 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1627
1628 static void dev_gso_skb_destructor(struct sk_buff *skb)
1629 {
1630 struct dev_gso_cb *cb;
1631
1632 do {
1633 struct sk_buff *nskb = skb->next;
1634
1635 skb->next = nskb->next;
1636 nskb->next = NULL;
1637 kfree_skb(nskb);
1638 } while (skb->next);
1639
1640 cb = DEV_GSO_CB(skb);
1641 if (cb->destructor)
1642 cb->destructor(skb);
1643 }
1644
1645 /**
1646 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1647 * @skb: buffer to segment
1648 *
1649 * This function segments the given skb and stores the list of segments
1650 * in skb->next.
1651 */
1652 static int dev_gso_segment(struct sk_buff *skb)
1653 {
1654 struct net_device *dev = skb->dev;
1655 struct sk_buff *segs;
1656 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1657 NETIF_F_SG : 0);
1658
1659 segs = skb_gso_segment(skb, features);
1660
1661 /* Verifying header integrity only. */
1662 if (!segs)
1663 return 0;
1664
1665 if (IS_ERR(segs))
1666 return PTR_ERR(segs);
1667
1668 skb->next = segs;
1669 DEV_GSO_CB(skb)->destructor = skb->destructor;
1670 skb->destructor = dev_gso_skb_destructor;
1671
1672 return 0;
1673 }
1674
1675 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1676 struct netdev_queue *txq)
1677 {
1678 const struct net_device_ops *ops = dev->netdev_ops;
1679 int rc;
1680
1681 if (likely(!skb->next)) {
1682 if (!list_empty(&ptype_all))
1683 dev_queue_xmit_nit(skb, dev);
1684
1685 if (netif_needs_gso(dev, skb)) {
1686 if (unlikely(dev_gso_segment(skb)))
1687 goto out_kfree_skb;
1688 if (skb->next)
1689 goto gso;
1690 }
1691
1692 /*
1693 * If device doesnt need skb->dst, release it right now while
1694 * its hot in this cpu cache
1695 */
1696 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1697 skb_dst_drop(skb);
1698
1699 rc = ops->ndo_start_xmit(skb, dev);
1700 if (rc == 0)
1701 txq_trans_update(txq);
1702 /*
1703 * TODO: if skb_orphan() was called by
1704 * dev->hard_start_xmit() (for example, the unmodified
1705 * igb driver does that; bnx2 doesn't), then
1706 * skb_tx_software_timestamp() will be unable to send
1707 * back the time stamp.
1708 *
1709 * How can this be prevented? Always create another
1710 * reference to the socket before calling
1711 * dev->hard_start_xmit()? Prevent that skb_orphan()
1712 * does anything in dev->hard_start_xmit() by clearing
1713 * the skb destructor before the call and restoring it
1714 * afterwards, then doing the skb_orphan() ourselves?
1715 */
1716 return rc;
1717 }
1718
1719 gso:
1720 do {
1721 struct sk_buff *nskb = skb->next;
1722
1723 skb->next = nskb->next;
1724 nskb->next = NULL;
1725 rc = ops->ndo_start_xmit(nskb, dev);
1726 if (unlikely(rc)) {
1727 nskb->next = skb->next;
1728 skb->next = nskb;
1729 return rc;
1730 }
1731 txq_trans_update(txq);
1732 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1733 return NETDEV_TX_BUSY;
1734 } while (skb->next);
1735
1736 skb->destructor = DEV_GSO_CB(skb)->destructor;
1737
1738 out_kfree_skb:
1739 kfree_skb(skb);
1740 return 0;
1741 }
1742
1743 static u32 skb_tx_hashrnd;
1744
1745 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1746 {
1747 u32 hash;
1748
1749 if (skb_rx_queue_recorded(skb)) {
1750 hash = skb_get_rx_queue(skb);
1751 while (unlikely (hash >= dev->real_num_tx_queues))
1752 hash -= dev->real_num_tx_queues;
1753 return hash;
1754 }
1755
1756 if (skb->sk && skb->sk->sk_hash)
1757 hash = skb->sk->sk_hash;
1758 else
1759 hash = skb->protocol;
1760
1761 hash = jhash_1word(hash, skb_tx_hashrnd);
1762
1763 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1764 }
1765 EXPORT_SYMBOL(skb_tx_hash);
1766
1767 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1768 struct sk_buff *skb)
1769 {
1770 const struct net_device_ops *ops = dev->netdev_ops;
1771 u16 queue_index = 0;
1772
1773 if (ops->ndo_select_queue)
1774 queue_index = ops->ndo_select_queue(dev, skb);
1775 else if (dev->real_num_tx_queues > 1)
1776 queue_index = skb_tx_hash(dev, skb);
1777
1778 skb_set_queue_mapping(skb, queue_index);
1779 return netdev_get_tx_queue(dev, queue_index);
1780 }
1781
1782 /**
1783 * dev_queue_xmit - transmit a buffer
1784 * @skb: buffer to transmit
1785 *
1786 * Queue a buffer for transmission to a network device. The caller must
1787 * have set the device and priority and built the buffer before calling
1788 * this function. The function can be called from an interrupt.
1789 *
1790 * A negative errno code is returned on a failure. A success does not
1791 * guarantee the frame will be transmitted as it may be dropped due
1792 * to congestion or traffic shaping.
1793 *
1794 * -----------------------------------------------------------------------------------
1795 * I notice this method can also return errors from the queue disciplines,
1796 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1797 * be positive.
1798 *
1799 * Regardless of the return value, the skb is consumed, so it is currently
1800 * difficult to retry a send to this method. (You can bump the ref count
1801 * before sending to hold a reference for retry if you are careful.)
1802 *
1803 * When calling this method, interrupts MUST be enabled. This is because
1804 * the BH enable code must have IRQs enabled so that it will not deadlock.
1805 * --BLG
1806 */
1807 int dev_queue_xmit(struct sk_buff *skb)
1808 {
1809 struct net_device *dev = skb->dev;
1810 struct netdev_queue *txq;
1811 struct Qdisc *q;
1812 int rc = -ENOMEM;
1813
1814 /* GSO will handle the following emulations directly. */
1815 if (netif_needs_gso(dev, skb))
1816 goto gso;
1817
1818 if (skb_shinfo(skb)->frag_list &&
1819 !(dev->features & NETIF_F_FRAGLIST) &&
1820 __skb_linearize(skb))
1821 goto out_kfree_skb;
1822
1823 /* Fragmented skb is linearized if device does not support SG,
1824 * or if at least one of fragments is in highmem and device
1825 * does not support DMA from it.
1826 */
1827 if (skb_shinfo(skb)->nr_frags &&
1828 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1829 __skb_linearize(skb))
1830 goto out_kfree_skb;
1831
1832 /* If packet is not checksummed and device does not support
1833 * checksumming for this protocol, complete checksumming here.
1834 */
1835 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1836 skb_set_transport_header(skb, skb->csum_start -
1837 skb_headroom(skb));
1838 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1839 goto out_kfree_skb;
1840 }
1841
1842 gso:
1843 /* Disable soft irqs for various locks below. Also
1844 * stops preemption for RCU.
1845 */
1846 rcu_read_lock_bh();
1847
1848 txq = dev_pick_tx(dev, skb);
1849 q = rcu_dereference(txq->qdisc);
1850
1851 #ifdef CONFIG_NET_CLS_ACT
1852 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1853 #endif
1854 if (q->enqueue) {
1855 spinlock_t *root_lock = qdisc_lock(q);
1856
1857 spin_lock(root_lock);
1858
1859 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1860 kfree_skb(skb);
1861 rc = NET_XMIT_DROP;
1862 } else {
1863 rc = qdisc_enqueue_root(skb, q);
1864 qdisc_run(q);
1865 }
1866 spin_unlock(root_lock);
1867
1868 goto out;
1869 }
1870
1871 /* The device has no queue. Common case for software devices:
1872 loopback, all the sorts of tunnels...
1873
1874 Really, it is unlikely that netif_tx_lock protection is necessary
1875 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1876 counters.)
1877 However, it is possible, that they rely on protection
1878 made by us here.
1879
1880 Check this and shot the lock. It is not prone from deadlocks.
1881 Either shot noqueue qdisc, it is even simpler 8)
1882 */
1883 if (dev->flags & IFF_UP) {
1884 int cpu = smp_processor_id(); /* ok because BHs are off */
1885
1886 if (txq->xmit_lock_owner != cpu) {
1887
1888 HARD_TX_LOCK(dev, txq, cpu);
1889
1890 if (!netif_tx_queue_stopped(txq)) {
1891 rc = 0;
1892 if (!dev_hard_start_xmit(skb, dev, txq)) {
1893 HARD_TX_UNLOCK(dev, txq);
1894 goto out;
1895 }
1896 }
1897 HARD_TX_UNLOCK(dev, txq);
1898 if (net_ratelimit())
1899 printk(KERN_CRIT "Virtual device %s asks to "
1900 "queue packet!\n", dev->name);
1901 } else {
1902 /* Recursion is detected! It is possible,
1903 * unfortunately */
1904 if (net_ratelimit())
1905 printk(KERN_CRIT "Dead loop on virtual device "
1906 "%s, fix it urgently!\n", dev->name);
1907 }
1908 }
1909
1910 rc = -ENETDOWN;
1911 rcu_read_unlock_bh();
1912
1913 out_kfree_skb:
1914 kfree_skb(skb);
1915 return rc;
1916 out:
1917 rcu_read_unlock_bh();
1918 return rc;
1919 }
1920
1921
1922 /*=======================================================================
1923 Receiver routines
1924 =======================================================================*/
1925
1926 int netdev_max_backlog __read_mostly = 1000;
1927 int netdev_budget __read_mostly = 300;
1928 int weight_p __read_mostly = 64; /* old backlog weight */
1929
1930 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1931
1932
1933 /**
1934 * netif_rx - post buffer to the network code
1935 * @skb: buffer to post
1936 *
1937 * This function receives a packet from a device driver and queues it for
1938 * the upper (protocol) levels to process. It always succeeds. The buffer
1939 * may be dropped during processing for congestion control or by the
1940 * protocol layers.
1941 *
1942 * return values:
1943 * NET_RX_SUCCESS (no congestion)
1944 * NET_RX_DROP (packet was dropped)
1945 *
1946 */
1947
1948 int netif_rx(struct sk_buff *skb)
1949 {
1950 struct softnet_data *queue;
1951 unsigned long flags;
1952
1953 /* if netpoll wants it, pretend we never saw it */
1954 if (netpoll_rx(skb))
1955 return NET_RX_DROP;
1956
1957 if (!skb->tstamp.tv64)
1958 net_timestamp(skb);
1959
1960 /*
1961 * The code is rearranged so that the path is the most
1962 * short when CPU is congested, but is still operating.
1963 */
1964 local_irq_save(flags);
1965 queue = &__get_cpu_var(softnet_data);
1966
1967 __get_cpu_var(netdev_rx_stat).total++;
1968 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1969 if (queue->input_pkt_queue.qlen) {
1970 enqueue:
1971 __skb_queue_tail(&queue->input_pkt_queue, skb);
1972 local_irq_restore(flags);
1973 return NET_RX_SUCCESS;
1974 }
1975
1976 napi_schedule(&queue->backlog);
1977 goto enqueue;
1978 }
1979
1980 __get_cpu_var(netdev_rx_stat).dropped++;
1981 local_irq_restore(flags);
1982
1983 kfree_skb(skb);
1984 return NET_RX_DROP;
1985 }
1986
1987 int netif_rx_ni(struct sk_buff *skb)
1988 {
1989 int err;
1990
1991 preempt_disable();
1992 err = netif_rx(skb);
1993 if (local_softirq_pending())
1994 do_softirq();
1995 preempt_enable();
1996
1997 return err;
1998 }
1999
2000 EXPORT_SYMBOL(netif_rx_ni);
2001
2002 static void net_tx_action(struct softirq_action *h)
2003 {
2004 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2005
2006 if (sd->completion_queue) {
2007 struct sk_buff *clist;
2008
2009 local_irq_disable();
2010 clist = sd->completion_queue;
2011 sd->completion_queue = NULL;
2012 local_irq_enable();
2013
2014 while (clist) {
2015 struct sk_buff *skb = clist;
2016 clist = clist->next;
2017
2018 WARN_ON(atomic_read(&skb->users));
2019 __kfree_skb(skb);
2020 }
2021 }
2022
2023 if (sd->output_queue) {
2024 struct Qdisc *head;
2025
2026 local_irq_disable();
2027 head = sd->output_queue;
2028 sd->output_queue = NULL;
2029 local_irq_enable();
2030
2031 while (head) {
2032 struct Qdisc *q = head;
2033 spinlock_t *root_lock;
2034
2035 head = head->next_sched;
2036
2037 root_lock = qdisc_lock(q);
2038 if (spin_trylock(root_lock)) {
2039 smp_mb__before_clear_bit();
2040 clear_bit(__QDISC_STATE_SCHED,
2041 &q->state);
2042 qdisc_run(q);
2043 spin_unlock(root_lock);
2044 } else {
2045 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2046 &q->state)) {
2047 __netif_reschedule(q);
2048 } else {
2049 smp_mb__before_clear_bit();
2050 clear_bit(__QDISC_STATE_SCHED,
2051 &q->state);
2052 }
2053 }
2054 }
2055 }
2056 }
2057
2058 static inline int deliver_skb(struct sk_buff *skb,
2059 struct packet_type *pt_prev,
2060 struct net_device *orig_dev)
2061 {
2062 atomic_inc(&skb->users);
2063 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2064 }
2065
2066 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2067 /* These hooks defined here for ATM */
2068 struct net_bridge;
2069 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2070 unsigned char *addr);
2071 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2072
2073 /*
2074 * If bridge module is loaded call bridging hook.
2075 * returns NULL if packet was consumed.
2076 */
2077 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2078 struct sk_buff *skb) __read_mostly;
2079 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2080 struct packet_type **pt_prev, int *ret,
2081 struct net_device *orig_dev)
2082 {
2083 struct net_bridge_port *port;
2084
2085 if (skb->pkt_type == PACKET_LOOPBACK ||
2086 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2087 return skb;
2088
2089 if (*pt_prev) {
2090 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2091 *pt_prev = NULL;
2092 }
2093
2094 return br_handle_frame_hook(port, skb);
2095 }
2096 #else
2097 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2098 #endif
2099
2100 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2101 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2102 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2103
2104 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2105 struct packet_type **pt_prev,
2106 int *ret,
2107 struct net_device *orig_dev)
2108 {
2109 if (skb->dev->macvlan_port == NULL)
2110 return skb;
2111
2112 if (*pt_prev) {
2113 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2114 *pt_prev = NULL;
2115 }
2116 return macvlan_handle_frame_hook(skb);
2117 }
2118 #else
2119 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2120 #endif
2121
2122 #ifdef CONFIG_NET_CLS_ACT
2123 /* TODO: Maybe we should just force sch_ingress to be compiled in
2124 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2125 * a compare and 2 stores extra right now if we dont have it on
2126 * but have CONFIG_NET_CLS_ACT
2127 * NOTE: This doesnt stop any functionality; if you dont have
2128 * the ingress scheduler, you just cant add policies on ingress.
2129 *
2130 */
2131 static int ing_filter(struct sk_buff *skb)
2132 {
2133 struct net_device *dev = skb->dev;
2134 u32 ttl = G_TC_RTTL(skb->tc_verd);
2135 struct netdev_queue *rxq;
2136 int result = TC_ACT_OK;
2137 struct Qdisc *q;
2138
2139 if (MAX_RED_LOOP < ttl++) {
2140 printk(KERN_WARNING
2141 "Redir loop detected Dropping packet (%d->%d)\n",
2142 skb->iif, dev->ifindex);
2143 return TC_ACT_SHOT;
2144 }
2145
2146 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2147 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2148
2149 rxq = &dev->rx_queue;
2150
2151 q = rxq->qdisc;
2152 if (q != &noop_qdisc) {
2153 spin_lock(qdisc_lock(q));
2154 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2155 result = qdisc_enqueue_root(skb, q);
2156 spin_unlock(qdisc_lock(q));
2157 }
2158
2159 return result;
2160 }
2161
2162 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2163 struct packet_type **pt_prev,
2164 int *ret, struct net_device *orig_dev)
2165 {
2166 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2167 goto out;
2168
2169 if (*pt_prev) {
2170 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2171 *pt_prev = NULL;
2172 } else {
2173 /* Huh? Why does turning on AF_PACKET affect this? */
2174 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2175 }
2176
2177 switch (ing_filter(skb)) {
2178 case TC_ACT_SHOT:
2179 case TC_ACT_STOLEN:
2180 kfree_skb(skb);
2181 return NULL;
2182 }
2183
2184 out:
2185 skb->tc_verd = 0;
2186 return skb;
2187 }
2188 #endif
2189
2190 /*
2191 * netif_nit_deliver - deliver received packets to network taps
2192 * @skb: buffer
2193 *
2194 * This function is used to deliver incoming packets to network
2195 * taps. It should be used when the normal netif_receive_skb path
2196 * is bypassed, for example because of VLAN acceleration.
2197 */
2198 void netif_nit_deliver(struct sk_buff *skb)
2199 {
2200 struct packet_type *ptype;
2201
2202 if (list_empty(&ptype_all))
2203 return;
2204
2205 skb_reset_network_header(skb);
2206 skb_reset_transport_header(skb);
2207 skb->mac_len = skb->network_header - skb->mac_header;
2208
2209 rcu_read_lock();
2210 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2211 if (!ptype->dev || ptype->dev == skb->dev)
2212 deliver_skb(skb, ptype, skb->dev);
2213 }
2214 rcu_read_unlock();
2215 }
2216
2217 /**
2218 * netif_receive_skb - process receive buffer from network
2219 * @skb: buffer to process
2220 *
2221 * netif_receive_skb() is the main receive data processing function.
2222 * It always succeeds. The buffer may be dropped during processing
2223 * for congestion control or by the protocol layers.
2224 *
2225 * This function may only be called from softirq context and interrupts
2226 * should be enabled.
2227 *
2228 * Return values (usually ignored):
2229 * NET_RX_SUCCESS: no congestion
2230 * NET_RX_DROP: packet was dropped
2231 */
2232 int netif_receive_skb(struct sk_buff *skb)
2233 {
2234 struct packet_type *ptype, *pt_prev;
2235 struct net_device *orig_dev;
2236 struct net_device *null_or_orig;
2237 int ret = NET_RX_DROP;
2238 __be16 type;
2239
2240 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2241 return NET_RX_SUCCESS;
2242
2243 /* if we've gotten here through NAPI, check netpoll */
2244 if (netpoll_receive_skb(skb))
2245 return NET_RX_DROP;
2246
2247 if (!skb->tstamp.tv64)
2248 net_timestamp(skb);
2249
2250 if (!skb->iif)
2251 skb->iif = skb->dev->ifindex;
2252
2253 null_or_orig = NULL;
2254 orig_dev = skb->dev;
2255 if (orig_dev->master) {
2256 if (skb_bond_should_drop(skb))
2257 null_or_orig = orig_dev; /* deliver only exact match */
2258 else
2259 skb->dev = orig_dev->master;
2260 }
2261
2262 __get_cpu_var(netdev_rx_stat).total++;
2263
2264 skb_reset_network_header(skb);
2265 skb_reset_transport_header(skb);
2266 skb->mac_len = skb->network_header - skb->mac_header;
2267
2268 pt_prev = NULL;
2269
2270 rcu_read_lock();
2271
2272 #ifdef CONFIG_NET_CLS_ACT
2273 if (skb->tc_verd & TC_NCLS) {
2274 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2275 goto ncls;
2276 }
2277 #endif
2278
2279 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2280 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2281 ptype->dev == orig_dev) {
2282 if (pt_prev)
2283 ret = deliver_skb(skb, pt_prev, orig_dev);
2284 pt_prev = ptype;
2285 }
2286 }
2287
2288 #ifdef CONFIG_NET_CLS_ACT
2289 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2290 if (!skb)
2291 goto out;
2292 ncls:
2293 #endif
2294
2295 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2296 if (!skb)
2297 goto out;
2298 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2299 if (!skb)
2300 goto out;
2301
2302 skb_orphan(skb);
2303
2304 type = skb->protocol;
2305 list_for_each_entry_rcu(ptype,
2306 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2307 if (ptype->type == type &&
2308 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2309 ptype->dev == orig_dev)) {
2310 if (pt_prev)
2311 ret = deliver_skb(skb, pt_prev, orig_dev);
2312 pt_prev = ptype;
2313 }
2314 }
2315
2316 if (pt_prev) {
2317 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2318 } else {
2319 kfree_skb(skb);
2320 /* Jamal, now you will not able to escape explaining
2321 * me how you were going to use this. :-)
2322 */
2323 ret = NET_RX_DROP;
2324 }
2325
2326 out:
2327 rcu_read_unlock();
2328 return ret;
2329 }
2330
2331 /* Network device is going away, flush any packets still pending */
2332 static void flush_backlog(void *arg)
2333 {
2334 struct net_device *dev = arg;
2335 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2336 struct sk_buff *skb, *tmp;
2337
2338 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2339 if (skb->dev == dev) {
2340 __skb_unlink(skb, &queue->input_pkt_queue);
2341 kfree_skb(skb);
2342 }
2343 }
2344
2345 static int napi_gro_complete(struct sk_buff *skb)
2346 {
2347 struct packet_type *ptype;
2348 __be16 type = skb->protocol;
2349 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2350 int err = -ENOENT;
2351
2352 if (NAPI_GRO_CB(skb)->count == 1) {
2353 skb_shinfo(skb)->gso_size = 0;
2354 goto out;
2355 }
2356
2357 rcu_read_lock();
2358 list_for_each_entry_rcu(ptype, head, list) {
2359 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2360 continue;
2361
2362 err = ptype->gro_complete(skb);
2363 break;
2364 }
2365 rcu_read_unlock();
2366
2367 if (err) {
2368 WARN_ON(&ptype->list == head);
2369 kfree_skb(skb);
2370 return NET_RX_SUCCESS;
2371 }
2372
2373 out:
2374 return netif_receive_skb(skb);
2375 }
2376
2377 void napi_gro_flush(struct napi_struct *napi)
2378 {
2379 struct sk_buff *skb, *next;
2380
2381 for (skb = napi->gro_list; skb; skb = next) {
2382 next = skb->next;
2383 skb->next = NULL;
2384 napi_gro_complete(skb);
2385 }
2386
2387 napi->gro_count = 0;
2388 napi->gro_list = NULL;
2389 }
2390 EXPORT_SYMBOL(napi_gro_flush);
2391
2392 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2393 {
2394 struct sk_buff **pp = NULL;
2395 struct packet_type *ptype;
2396 __be16 type = skb->protocol;
2397 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2398 int same_flow;
2399 int mac_len;
2400 int ret;
2401
2402 if (!(skb->dev->features & NETIF_F_GRO))
2403 goto normal;
2404
2405 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2406 goto normal;
2407
2408 rcu_read_lock();
2409 list_for_each_entry_rcu(ptype, head, list) {
2410 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2411 continue;
2412
2413 skb_set_network_header(skb, skb_gro_offset(skb));
2414 mac_len = skb->network_header - skb->mac_header;
2415 skb->mac_len = mac_len;
2416 NAPI_GRO_CB(skb)->same_flow = 0;
2417 NAPI_GRO_CB(skb)->flush = 0;
2418 NAPI_GRO_CB(skb)->free = 0;
2419
2420 pp = ptype->gro_receive(&napi->gro_list, skb);
2421 break;
2422 }
2423 rcu_read_unlock();
2424
2425 if (&ptype->list == head)
2426 goto normal;
2427
2428 same_flow = NAPI_GRO_CB(skb)->same_flow;
2429 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2430
2431 if (pp) {
2432 struct sk_buff *nskb = *pp;
2433
2434 *pp = nskb->next;
2435 nskb->next = NULL;
2436 napi_gro_complete(nskb);
2437 napi->gro_count--;
2438 }
2439
2440 if (same_flow)
2441 goto ok;
2442
2443 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2444 goto normal;
2445
2446 napi->gro_count++;
2447 NAPI_GRO_CB(skb)->count = 1;
2448 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2449 skb->next = napi->gro_list;
2450 napi->gro_list = skb;
2451 ret = GRO_HELD;
2452
2453 pull:
2454 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2455 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2456
2457 BUG_ON(skb->end - skb->tail < grow);
2458
2459 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2460
2461 skb->tail += grow;
2462 skb->data_len -= grow;
2463
2464 skb_shinfo(skb)->frags[0].page_offset += grow;
2465 skb_shinfo(skb)->frags[0].size -= grow;
2466
2467 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2468 put_page(skb_shinfo(skb)->frags[0].page);
2469 memmove(skb_shinfo(skb)->frags,
2470 skb_shinfo(skb)->frags + 1,
2471 --skb_shinfo(skb)->nr_frags);
2472 }
2473 }
2474
2475 ok:
2476 return ret;
2477
2478 normal:
2479 ret = GRO_NORMAL;
2480 goto pull;
2481 }
2482 EXPORT_SYMBOL(dev_gro_receive);
2483
2484 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2485 {
2486 struct sk_buff *p;
2487
2488 if (netpoll_rx_on(skb))
2489 return GRO_NORMAL;
2490
2491 for (p = napi->gro_list; p; p = p->next) {
2492 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2493 && !compare_ether_header(skb_mac_header(p),
2494 skb_gro_mac_header(skb));
2495 NAPI_GRO_CB(p)->flush = 0;
2496 }
2497
2498 return dev_gro_receive(napi, skb);
2499 }
2500
2501 int napi_skb_finish(int ret, struct sk_buff *skb)
2502 {
2503 int err = NET_RX_SUCCESS;
2504
2505 switch (ret) {
2506 case GRO_NORMAL:
2507 return netif_receive_skb(skb);
2508
2509 case GRO_DROP:
2510 err = NET_RX_DROP;
2511 /* fall through */
2512
2513 case GRO_MERGED_FREE:
2514 kfree_skb(skb);
2515 break;
2516 }
2517
2518 return err;
2519 }
2520 EXPORT_SYMBOL(napi_skb_finish);
2521
2522 void skb_gro_reset_offset(struct sk_buff *skb)
2523 {
2524 NAPI_GRO_CB(skb)->data_offset = 0;
2525 NAPI_GRO_CB(skb)->frag0 = NULL;
2526 NAPI_GRO_CB(skb)->frag0_len = 0;
2527
2528 if (skb->mac_header == skb->tail &&
2529 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2530 NAPI_GRO_CB(skb)->frag0 =
2531 page_address(skb_shinfo(skb)->frags[0].page) +
2532 skb_shinfo(skb)->frags[0].page_offset;
2533 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2534 }
2535 }
2536 EXPORT_SYMBOL(skb_gro_reset_offset);
2537
2538 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2539 {
2540 skb_gro_reset_offset(skb);
2541
2542 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2543 }
2544 EXPORT_SYMBOL(napi_gro_receive);
2545
2546 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2547 {
2548 __skb_pull(skb, skb_headlen(skb));
2549 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2550
2551 napi->skb = skb;
2552 }
2553 EXPORT_SYMBOL(napi_reuse_skb);
2554
2555 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2556 {
2557 struct net_device *dev = napi->dev;
2558 struct sk_buff *skb = napi->skb;
2559
2560 if (!skb) {
2561 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2562 if (!skb)
2563 goto out;
2564
2565 skb_reserve(skb, NET_IP_ALIGN);
2566
2567 napi->skb = skb;
2568 }
2569
2570 out:
2571 return skb;
2572 }
2573 EXPORT_SYMBOL(napi_get_frags);
2574
2575 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2576 {
2577 int err = NET_RX_SUCCESS;
2578
2579 switch (ret) {
2580 case GRO_NORMAL:
2581 case GRO_HELD:
2582 skb->protocol = eth_type_trans(skb, napi->dev);
2583
2584 if (ret == GRO_NORMAL)
2585 return netif_receive_skb(skb);
2586
2587 skb_gro_pull(skb, -ETH_HLEN);
2588 break;
2589
2590 case GRO_DROP:
2591 err = NET_RX_DROP;
2592 /* fall through */
2593
2594 case GRO_MERGED_FREE:
2595 napi_reuse_skb(napi, skb);
2596 break;
2597 }
2598
2599 return err;
2600 }
2601 EXPORT_SYMBOL(napi_frags_finish);
2602
2603 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2604 {
2605 struct sk_buff *skb = napi->skb;
2606 struct ethhdr *eth;
2607 unsigned int hlen;
2608 unsigned int off;
2609
2610 napi->skb = NULL;
2611
2612 skb_reset_mac_header(skb);
2613 skb_gro_reset_offset(skb);
2614
2615 off = skb_gro_offset(skb);
2616 hlen = off + sizeof(*eth);
2617 eth = skb_gro_header_fast(skb, off);
2618 if (skb_gro_header_hard(skb, hlen)) {
2619 eth = skb_gro_header_slow(skb, hlen, off);
2620 if (unlikely(!eth)) {
2621 napi_reuse_skb(napi, skb);
2622 skb = NULL;
2623 goto out;
2624 }
2625 }
2626
2627 skb_gro_pull(skb, sizeof(*eth));
2628
2629 /*
2630 * This works because the only protocols we care about don't require
2631 * special handling. We'll fix it up properly at the end.
2632 */
2633 skb->protocol = eth->h_proto;
2634
2635 out:
2636 return skb;
2637 }
2638 EXPORT_SYMBOL(napi_frags_skb);
2639
2640 int napi_gro_frags(struct napi_struct *napi)
2641 {
2642 struct sk_buff *skb = napi_frags_skb(napi);
2643
2644 if (!skb)
2645 return NET_RX_DROP;
2646
2647 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2648 }
2649 EXPORT_SYMBOL(napi_gro_frags);
2650
2651 static int process_backlog(struct napi_struct *napi, int quota)
2652 {
2653 int work = 0;
2654 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2655 unsigned long start_time = jiffies;
2656
2657 napi->weight = weight_p;
2658 do {
2659 struct sk_buff *skb;
2660
2661 local_irq_disable();
2662 skb = __skb_dequeue(&queue->input_pkt_queue);
2663 if (!skb) {
2664 __napi_complete(napi);
2665 local_irq_enable();
2666 break;
2667 }
2668 local_irq_enable();
2669
2670 netif_receive_skb(skb);
2671 } while (++work < quota && jiffies == start_time);
2672
2673 return work;
2674 }
2675
2676 /**
2677 * __napi_schedule - schedule for receive
2678 * @n: entry to schedule
2679 *
2680 * The entry's receive function will be scheduled to run
2681 */
2682 void __napi_schedule(struct napi_struct *n)
2683 {
2684 unsigned long flags;
2685
2686 local_irq_save(flags);
2687 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2688 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2689 local_irq_restore(flags);
2690 }
2691 EXPORT_SYMBOL(__napi_schedule);
2692
2693 void __napi_complete(struct napi_struct *n)
2694 {
2695 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2696 BUG_ON(n->gro_list);
2697
2698 list_del(&n->poll_list);
2699 smp_mb__before_clear_bit();
2700 clear_bit(NAPI_STATE_SCHED, &n->state);
2701 }
2702 EXPORT_SYMBOL(__napi_complete);
2703
2704 void napi_complete(struct napi_struct *n)
2705 {
2706 unsigned long flags;
2707
2708 /*
2709 * don't let napi dequeue from the cpu poll list
2710 * just in case its running on a different cpu
2711 */
2712 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2713 return;
2714
2715 napi_gro_flush(n);
2716 local_irq_save(flags);
2717 __napi_complete(n);
2718 local_irq_restore(flags);
2719 }
2720 EXPORT_SYMBOL(napi_complete);
2721
2722 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2723 int (*poll)(struct napi_struct *, int), int weight)
2724 {
2725 INIT_LIST_HEAD(&napi->poll_list);
2726 napi->gro_count = 0;
2727 napi->gro_list = NULL;
2728 napi->skb = NULL;
2729 napi->poll = poll;
2730 napi->weight = weight;
2731 list_add(&napi->dev_list, &dev->napi_list);
2732 napi->dev = dev;
2733 #ifdef CONFIG_NETPOLL
2734 spin_lock_init(&napi->poll_lock);
2735 napi->poll_owner = -1;
2736 #endif
2737 set_bit(NAPI_STATE_SCHED, &napi->state);
2738 }
2739 EXPORT_SYMBOL(netif_napi_add);
2740
2741 void netif_napi_del(struct napi_struct *napi)
2742 {
2743 struct sk_buff *skb, *next;
2744
2745 list_del_init(&napi->dev_list);
2746 napi_free_frags(napi);
2747
2748 for (skb = napi->gro_list; skb; skb = next) {
2749 next = skb->next;
2750 skb->next = NULL;
2751 kfree_skb(skb);
2752 }
2753
2754 napi->gro_list = NULL;
2755 napi->gro_count = 0;
2756 }
2757 EXPORT_SYMBOL(netif_napi_del);
2758
2759
2760 static void net_rx_action(struct softirq_action *h)
2761 {
2762 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2763 unsigned long time_limit = jiffies + 2;
2764 int budget = netdev_budget;
2765 void *have;
2766
2767 local_irq_disable();
2768
2769 while (!list_empty(list)) {
2770 struct napi_struct *n;
2771 int work, weight;
2772
2773 /* If softirq window is exhuasted then punt.
2774 * Allow this to run for 2 jiffies since which will allow
2775 * an average latency of 1.5/HZ.
2776 */
2777 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2778 goto softnet_break;
2779
2780 local_irq_enable();
2781
2782 /* Even though interrupts have been re-enabled, this
2783 * access is safe because interrupts can only add new
2784 * entries to the tail of this list, and only ->poll()
2785 * calls can remove this head entry from the list.
2786 */
2787 n = list_entry(list->next, struct napi_struct, poll_list);
2788
2789 have = netpoll_poll_lock(n);
2790
2791 weight = n->weight;
2792
2793 /* This NAPI_STATE_SCHED test is for avoiding a race
2794 * with netpoll's poll_napi(). Only the entity which
2795 * obtains the lock and sees NAPI_STATE_SCHED set will
2796 * actually make the ->poll() call. Therefore we avoid
2797 * accidently calling ->poll() when NAPI is not scheduled.
2798 */
2799 work = 0;
2800 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
2801 work = n->poll(n, weight);
2802 trace_napi_poll(n);
2803 }
2804
2805 WARN_ON_ONCE(work > weight);
2806
2807 budget -= work;
2808
2809 local_irq_disable();
2810
2811 /* Drivers must not modify the NAPI state if they
2812 * consume the entire weight. In such cases this code
2813 * still "owns" the NAPI instance and therefore can
2814 * move the instance around on the list at-will.
2815 */
2816 if (unlikely(work == weight)) {
2817 if (unlikely(napi_disable_pending(n)))
2818 __napi_complete(n);
2819 else
2820 list_move_tail(&n->poll_list, list);
2821 }
2822
2823 netpoll_poll_unlock(have);
2824 }
2825 out:
2826 local_irq_enable();
2827
2828 #ifdef CONFIG_NET_DMA
2829 /*
2830 * There may not be any more sk_buffs coming right now, so push
2831 * any pending DMA copies to hardware
2832 */
2833 dma_issue_pending_all();
2834 #endif
2835
2836 return;
2837
2838 softnet_break:
2839 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2840 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2841 goto out;
2842 }
2843
2844 static gifconf_func_t * gifconf_list [NPROTO];
2845
2846 /**
2847 * register_gifconf - register a SIOCGIF handler
2848 * @family: Address family
2849 * @gifconf: Function handler
2850 *
2851 * Register protocol dependent address dumping routines. The handler
2852 * that is passed must not be freed or reused until it has been replaced
2853 * by another handler.
2854 */
2855 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2856 {
2857 if (family >= NPROTO)
2858 return -EINVAL;
2859 gifconf_list[family] = gifconf;
2860 return 0;
2861 }
2862
2863
2864 /*
2865 * Map an interface index to its name (SIOCGIFNAME)
2866 */
2867
2868 /*
2869 * We need this ioctl for efficient implementation of the
2870 * if_indextoname() function required by the IPv6 API. Without
2871 * it, we would have to search all the interfaces to find a
2872 * match. --pb
2873 */
2874
2875 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2876 {
2877 struct net_device *dev;
2878 struct ifreq ifr;
2879
2880 /*
2881 * Fetch the caller's info block.
2882 */
2883
2884 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2885 return -EFAULT;
2886
2887 read_lock(&dev_base_lock);
2888 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2889 if (!dev) {
2890 read_unlock(&dev_base_lock);
2891 return -ENODEV;
2892 }
2893
2894 strcpy(ifr.ifr_name, dev->name);
2895 read_unlock(&dev_base_lock);
2896
2897 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2898 return -EFAULT;
2899 return 0;
2900 }
2901
2902 /*
2903 * Perform a SIOCGIFCONF call. This structure will change
2904 * size eventually, and there is nothing I can do about it.
2905 * Thus we will need a 'compatibility mode'.
2906 */
2907
2908 static int dev_ifconf(struct net *net, char __user *arg)
2909 {
2910 struct ifconf ifc;
2911 struct net_device *dev;
2912 char __user *pos;
2913 int len;
2914 int total;
2915 int i;
2916
2917 /*
2918 * Fetch the caller's info block.
2919 */
2920
2921 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2922 return -EFAULT;
2923
2924 pos = ifc.ifc_buf;
2925 len = ifc.ifc_len;
2926
2927 /*
2928 * Loop over the interfaces, and write an info block for each.
2929 */
2930
2931 total = 0;
2932 for_each_netdev(net, dev) {
2933 for (i = 0; i < NPROTO; i++) {
2934 if (gifconf_list[i]) {
2935 int done;
2936 if (!pos)
2937 done = gifconf_list[i](dev, NULL, 0);
2938 else
2939 done = gifconf_list[i](dev, pos + total,
2940 len - total);
2941 if (done < 0)
2942 return -EFAULT;
2943 total += done;
2944 }
2945 }
2946 }
2947
2948 /*
2949 * All done. Write the updated control block back to the caller.
2950 */
2951 ifc.ifc_len = total;
2952
2953 /*
2954 * Both BSD and Solaris return 0 here, so we do too.
2955 */
2956 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2957 }
2958
2959 #ifdef CONFIG_PROC_FS
2960 /*
2961 * This is invoked by the /proc filesystem handler to display a device
2962 * in detail.
2963 */
2964 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2965 __acquires(dev_base_lock)
2966 {
2967 struct net *net = seq_file_net(seq);
2968 loff_t off;
2969 struct net_device *dev;
2970
2971 read_lock(&dev_base_lock);
2972 if (!*pos)
2973 return SEQ_START_TOKEN;
2974
2975 off = 1;
2976 for_each_netdev(net, dev)
2977 if (off++ == *pos)
2978 return dev;
2979
2980 return NULL;
2981 }
2982
2983 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2984 {
2985 struct net *net = seq_file_net(seq);
2986 ++*pos;
2987 return v == SEQ_START_TOKEN ?
2988 first_net_device(net) : next_net_device((struct net_device *)v);
2989 }
2990
2991 void dev_seq_stop(struct seq_file *seq, void *v)
2992 __releases(dev_base_lock)
2993 {
2994 read_unlock(&dev_base_lock);
2995 }
2996
2997 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2998 {
2999 const struct net_device_stats *stats = dev_get_stats(dev);
3000
3001 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3002 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3003 dev->name, stats->rx_bytes, stats->rx_packets,
3004 stats->rx_errors,
3005 stats->rx_dropped + stats->rx_missed_errors,
3006 stats->rx_fifo_errors,
3007 stats->rx_length_errors + stats->rx_over_errors +
3008 stats->rx_crc_errors + stats->rx_frame_errors,
3009 stats->rx_compressed, stats->multicast,
3010 stats->tx_bytes, stats->tx_packets,
3011 stats->tx_errors, stats->tx_dropped,
3012 stats->tx_fifo_errors, stats->collisions,
3013 stats->tx_carrier_errors +
3014 stats->tx_aborted_errors +
3015 stats->tx_window_errors +
3016 stats->tx_heartbeat_errors,
3017 stats->tx_compressed);
3018 }
3019
3020 /*
3021 * Called from the PROCfs module. This now uses the new arbitrary sized
3022 * /proc/net interface to create /proc/net/dev
3023 */
3024 static int dev_seq_show(struct seq_file *seq, void *v)
3025 {
3026 if (v == SEQ_START_TOKEN)
3027 seq_puts(seq, "Inter-| Receive "
3028 " | Transmit\n"
3029 " face |bytes packets errs drop fifo frame "
3030 "compressed multicast|bytes packets errs "
3031 "drop fifo colls carrier compressed\n");
3032 else
3033 dev_seq_printf_stats(seq, v);
3034 return 0;
3035 }
3036
3037 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3038 {
3039 struct netif_rx_stats *rc = NULL;
3040
3041 while (*pos < nr_cpu_ids)
3042 if (cpu_online(*pos)) {
3043 rc = &per_cpu(netdev_rx_stat, *pos);
3044 break;
3045 } else
3046 ++*pos;
3047 return rc;
3048 }
3049
3050 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3051 {
3052 return softnet_get_online(pos);
3053 }
3054
3055 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3056 {
3057 ++*pos;
3058 return softnet_get_online(pos);
3059 }
3060
3061 static void softnet_seq_stop(struct seq_file *seq, void *v)
3062 {
3063 }
3064
3065 static int softnet_seq_show(struct seq_file *seq, void *v)
3066 {
3067 struct netif_rx_stats *s = v;
3068
3069 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3070 s->total, s->dropped, s->time_squeeze, 0,
3071 0, 0, 0, 0, /* was fastroute */
3072 s->cpu_collision );
3073 return 0;
3074 }
3075
3076 static const struct seq_operations dev_seq_ops = {
3077 .start = dev_seq_start,
3078 .next = dev_seq_next,
3079 .stop = dev_seq_stop,
3080 .show = dev_seq_show,
3081 };
3082
3083 static int dev_seq_open(struct inode *inode, struct file *file)
3084 {
3085 return seq_open_net(inode, file, &dev_seq_ops,
3086 sizeof(struct seq_net_private));
3087 }
3088
3089 static const struct file_operations dev_seq_fops = {
3090 .owner = THIS_MODULE,
3091 .open = dev_seq_open,
3092 .read = seq_read,
3093 .llseek = seq_lseek,
3094 .release = seq_release_net,
3095 };
3096
3097 static const struct seq_operations softnet_seq_ops = {
3098 .start = softnet_seq_start,
3099 .next = softnet_seq_next,
3100 .stop = softnet_seq_stop,
3101 .show = softnet_seq_show,
3102 };
3103
3104 static int softnet_seq_open(struct inode *inode, struct file *file)
3105 {
3106 return seq_open(file, &softnet_seq_ops);
3107 }
3108
3109 static const struct file_operations softnet_seq_fops = {
3110 .owner = THIS_MODULE,
3111 .open = softnet_seq_open,
3112 .read = seq_read,
3113 .llseek = seq_lseek,
3114 .release = seq_release,
3115 };
3116
3117 static void *ptype_get_idx(loff_t pos)
3118 {
3119 struct packet_type *pt = NULL;
3120 loff_t i = 0;
3121 int t;
3122
3123 list_for_each_entry_rcu(pt, &ptype_all, list) {
3124 if (i == pos)
3125 return pt;
3126 ++i;
3127 }
3128
3129 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3130 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3131 if (i == pos)
3132 return pt;
3133 ++i;
3134 }
3135 }
3136 return NULL;
3137 }
3138
3139 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3140 __acquires(RCU)
3141 {
3142 rcu_read_lock();
3143 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3144 }
3145
3146 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3147 {
3148 struct packet_type *pt;
3149 struct list_head *nxt;
3150 int hash;
3151
3152 ++*pos;
3153 if (v == SEQ_START_TOKEN)
3154 return ptype_get_idx(0);
3155
3156 pt = v;
3157 nxt = pt->list.next;
3158 if (pt->type == htons(ETH_P_ALL)) {
3159 if (nxt != &ptype_all)
3160 goto found;
3161 hash = 0;
3162 nxt = ptype_base[0].next;
3163 } else
3164 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3165
3166 while (nxt == &ptype_base[hash]) {
3167 if (++hash >= PTYPE_HASH_SIZE)
3168 return NULL;
3169 nxt = ptype_base[hash].next;
3170 }
3171 found:
3172 return list_entry(nxt, struct packet_type, list);
3173 }
3174
3175 static void ptype_seq_stop(struct seq_file *seq, void *v)
3176 __releases(RCU)
3177 {
3178 rcu_read_unlock();
3179 }
3180
3181 static int ptype_seq_show(struct seq_file *seq, void *v)
3182 {
3183 struct packet_type *pt = v;
3184
3185 if (v == SEQ_START_TOKEN)
3186 seq_puts(seq, "Type Device Function\n");
3187 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3188 if (pt->type == htons(ETH_P_ALL))
3189 seq_puts(seq, "ALL ");
3190 else
3191 seq_printf(seq, "%04x", ntohs(pt->type));
3192
3193 seq_printf(seq, " %-8s %pF\n",
3194 pt->dev ? pt->dev->name : "", pt->func);
3195 }
3196
3197 return 0;
3198 }
3199
3200 static const struct seq_operations ptype_seq_ops = {
3201 .start = ptype_seq_start,
3202 .next = ptype_seq_next,
3203 .stop = ptype_seq_stop,
3204 .show = ptype_seq_show,
3205 };
3206
3207 static int ptype_seq_open(struct inode *inode, struct file *file)
3208 {
3209 return seq_open_net(inode, file, &ptype_seq_ops,
3210 sizeof(struct seq_net_private));
3211 }
3212
3213 static const struct file_operations ptype_seq_fops = {
3214 .owner = THIS_MODULE,
3215 .open = ptype_seq_open,
3216 .read = seq_read,
3217 .llseek = seq_lseek,
3218 .release = seq_release_net,
3219 };
3220
3221
3222 static int __net_init dev_proc_net_init(struct net *net)
3223 {
3224 int rc = -ENOMEM;
3225
3226 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3227 goto out;
3228 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3229 goto out_dev;
3230 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3231 goto out_softnet;
3232
3233 if (wext_proc_init(net))
3234 goto out_ptype;
3235 rc = 0;
3236 out:
3237 return rc;
3238 out_ptype:
3239 proc_net_remove(net, "ptype");
3240 out_softnet:
3241 proc_net_remove(net, "softnet_stat");
3242 out_dev:
3243 proc_net_remove(net, "dev");
3244 goto out;
3245 }
3246
3247 static void __net_exit dev_proc_net_exit(struct net *net)
3248 {
3249 wext_proc_exit(net);
3250
3251 proc_net_remove(net, "ptype");
3252 proc_net_remove(net, "softnet_stat");
3253 proc_net_remove(net, "dev");
3254 }
3255
3256 static struct pernet_operations __net_initdata dev_proc_ops = {
3257 .init = dev_proc_net_init,
3258 .exit = dev_proc_net_exit,
3259 };
3260
3261 static int __init dev_proc_init(void)
3262 {
3263 return register_pernet_subsys(&dev_proc_ops);
3264 }
3265 #else
3266 #define dev_proc_init() 0
3267 #endif /* CONFIG_PROC_FS */
3268
3269
3270 /**
3271 * netdev_set_master - set up master/slave pair
3272 * @slave: slave device
3273 * @master: new master device
3274 *
3275 * Changes the master device of the slave. Pass %NULL to break the
3276 * bonding. The caller must hold the RTNL semaphore. On a failure
3277 * a negative errno code is returned. On success the reference counts
3278 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3279 * function returns zero.
3280 */
3281 int netdev_set_master(struct net_device *slave, struct net_device *master)
3282 {
3283 struct net_device *old = slave->master;
3284
3285 ASSERT_RTNL();
3286
3287 if (master) {
3288 if (old)
3289 return -EBUSY;
3290 dev_hold(master);
3291 }
3292
3293 slave->master = master;
3294
3295 synchronize_net();
3296
3297 if (old)
3298 dev_put(old);
3299
3300 if (master)
3301 slave->flags |= IFF_SLAVE;
3302 else
3303 slave->flags &= ~IFF_SLAVE;
3304
3305 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3306 return 0;
3307 }
3308
3309 static void dev_change_rx_flags(struct net_device *dev, int flags)
3310 {
3311 const struct net_device_ops *ops = dev->netdev_ops;
3312
3313 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3314 ops->ndo_change_rx_flags(dev, flags);
3315 }
3316
3317 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3318 {
3319 unsigned short old_flags = dev->flags;
3320 uid_t uid;
3321 gid_t gid;
3322
3323 ASSERT_RTNL();
3324
3325 dev->flags |= IFF_PROMISC;
3326 dev->promiscuity += inc;
3327 if (dev->promiscuity == 0) {
3328 /*
3329 * Avoid overflow.
3330 * If inc causes overflow, untouch promisc and return error.
3331 */
3332 if (inc < 0)
3333 dev->flags &= ~IFF_PROMISC;
3334 else {
3335 dev->promiscuity -= inc;
3336 printk(KERN_WARNING "%s: promiscuity touches roof, "
3337 "set promiscuity failed, promiscuity feature "
3338 "of device might be broken.\n", dev->name);
3339 return -EOVERFLOW;
3340 }
3341 }
3342 if (dev->flags != old_flags) {
3343 printk(KERN_INFO "device %s %s promiscuous mode\n",
3344 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3345 "left");
3346 if (audit_enabled) {
3347 current_uid_gid(&uid, &gid);
3348 audit_log(current->audit_context, GFP_ATOMIC,
3349 AUDIT_ANOM_PROMISCUOUS,
3350 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3351 dev->name, (dev->flags & IFF_PROMISC),
3352 (old_flags & IFF_PROMISC),
3353 audit_get_loginuid(current),
3354 uid, gid,
3355 audit_get_sessionid(current));
3356 }
3357
3358 dev_change_rx_flags(dev, IFF_PROMISC);
3359 }
3360 return 0;
3361 }
3362
3363 /**
3364 * dev_set_promiscuity - update promiscuity count on a device
3365 * @dev: device
3366 * @inc: modifier
3367 *
3368 * Add or remove promiscuity from a device. While the count in the device
3369 * remains above zero the interface remains promiscuous. Once it hits zero
3370 * the device reverts back to normal filtering operation. A negative inc
3371 * value is used to drop promiscuity on the device.
3372 * Return 0 if successful or a negative errno code on error.
3373 */
3374 int dev_set_promiscuity(struct net_device *dev, int inc)
3375 {
3376 unsigned short old_flags = dev->flags;
3377 int err;
3378
3379 err = __dev_set_promiscuity(dev, inc);
3380 if (err < 0)
3381 return err;
3382 if (dev->flags != old_flags)
3383 dev_set_rx_mode(dev);
3384 return err;
3385 }
3386
3387 /**
3388 * dev_set_allmulti - update allmulti count on a device
3389 * @dev: device
3390 * @inc: modifier
3391 *
3392 * Add or remove reception of all multicast frames to a device. While the
3393 * count in the device remains above zero the interface remains listening
3394 * to all interfaces. Once it hits zero the device reverts back to normal
3395 * filtering operation. A negative @inc value is used to drop the counter
3396 * when releasing a resource needing all multicasts.
3397 * Return 0 if successful or a negative errno code on error.
3398 */
3399
3400 int dev_set_allmulti(struct net_device *dev, int inc)
3401 {
3402 unsigned short old_flags = dev->flags;
3403
3404 ASSERT_RTNL();
3405
3406 dev->flags |= IFF_ALLMULTI;
3407 dev->allmulti += inc;
3408 if (dev->allmulti == 0) {
3409 /*
3410 * Avoid overflow.
3411 * If inc causes overflow, untouch allmulti and return error.
3412 */
3413 if (inc < 0)
3414 dev->flags &= ~IFF_ALLMULTI;
3415 else {
3416 dev->allmulti -= inc;
3417 printk(KERN_WARNING "%s: allmulti touches roof, "
3418 "set allmulti failed, allmulti feature of "
3419 "device might be broken.\n", dev->name);
3420 return -EOVERFLOW;
3421 }
3422 }
3423 if (dev->flags ^ old_flags) {
3424 dev_change_rx_flags(dev, IFF_ALLMULTI);
3425 dev_set_rx_mode(dev);
3426 }
3427 return 0;
3428 }
3429
3430 /*
3431 * Upload unicast and multicast address lists to device and
3432 * configure RX filtering. When the device doesn't support unicast
3433 * filtering it is put in promiscuous mode while unicast addresses
3434 * are present.
3435 */
3436 void __dev_set_rx_mode(struct net_device *dev)
3437 {
3438 const struct net_device_ops *ops = dev->netdev_ops;
3439
3440 /* dev_open will call this function so the list will stay sane. */
3441 if (!(dev->flags&IFF_UP))
3442 return;
3443
3444 if (!netif_device_present(dev))
3445 return;
3446
3447 if (ops->ndo_set_rx_mode)
3448 ops->ndo_set_rx_mode(dev);
3449 else {
3450 /* Unicast addresses changes may only happen under the rtnl,
3451 * therefore calling __dev_set_promiscuity here is safe.
3452 */
3453 if (dev->uc_count > 0 && !dev->uc_promisc) {
3454 __dev_set_promiscuity(dev, 1);
3455 dev->uc_promisc = 1;
3456 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3457 __dev_set_promiscuity(dev, -1);
3458 dev->uc_promisc = 0;
3459 }
3460
3461 if (ops->ndo_set_multicast_list)
3462 ops->ndo_set_multicast_list(dev);
3463 }
3464 }
3465
3466 void dev_set_rx_mode(struct net_device *dev)
3467 {
3468 netif_addr_lock_bh(dev);
3469 __dev_set_rx_mode(dev);
3470 netif_addr_unlock_bh(dev);
3471 }
3472
3473 /* hw addresses list handling functions */
3474
3475 static int __hw_addr_add(struct list_head *list, int *delta,
3476 unsigned char *addr, int addr_len,
3477 unsigned char addr_type)
3478 {
3479 struct netdev_hw_addr *ha;
3480 int alloc_size;
3481
3482 if (addr_len > MAX_ADDR_LEN)
3483 return -EINVAL;
3484
3485 list_for_each_entry(ha, list, list) {
3486 if (!memcmp(ha->addr, addr, addr_len) &&
3487 ha->type == addr_type) {
3488 ha->refcount++;
3489 return 0;
3490 }
3491 }
3492
3493
3494 alloc_size = sizeof(*ha);
3495 if (alloc_size < L1_CACHE_BYTES)
3496 alloc_size = L1_CACHE_BYTES;
3497 ha = kmalloc(alloc_size, GFP_ATOMIC);
3498 if (!ha)
3499 return -ENOMEM;
3500 memcpy(ha->addr, addr, addr_len);
3501 ha->type = addr_type;
3502 ha->refcount = 1;
3503 ha->synced = false;
3504 list_add_tail_rcu(&ha->list, list);
3505 if (delta)
3506 (*delta)++;
3507 return 0;
3508 }
3509
3510 static void ha_rcu_free(struct rcu_head *head)
3511 {
3512 struct netdev_hw_addr *ha;
3513
3514 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3515 kfree(ha);
3516 }
3517
3518 static int __hw_addr_del(struct list_head *list, int *delta,
3519 unsigned char *addr, int addr_len,
3520 unsigned char addr_type)
3521 {
3522 struct netdev_hw_addr *ha;
3523
3524 list_for_each_entry(ha, list, list) {
3525 if (!memcmp(ha->addr, addr, addr_len) &&
3526 (ha->type == addr_type || !addr_type)) {
3527 if (--ha->refcount)
3528 return 0;
3529 list_del_rcu(&ha->list);
3530 call_rcu(&ha->rcu_head, ha_rcu_free);
3531 if (delta)
3532 (*delta)--;
3533 return 0;
3534 }
3535 }
3536 return -ENOENT;
3537 }
3538
3539 static int __hw_addr_add_multiple(struct list_head *to_list, int *to_delta,
3540 struct list_head *from_list, int addr_len,
3541 unsigned char addr_type)
3542 {
3543 int err;
3544 struct netdev_hw_addr *ha, *ha2;
3545 unsigned char type;
3546
3547 list_for_each_entry(ha, from_list, list) {
3548 type = addr_type ? addr_type : ha->type;
3549 err = __hw_addr_add(to_list, to_delta, ha->addr,
3550 addr_len, type);
3551 if (err)
3552 goto unroll;
3553 }
3554 return 0;
3555
3556 unroll:
3557 list_for_each_entry(ha2, from_list, list) {
3558 if (ha2 == ha)
3559 break;
3560 type = addr_type ? addr_type : ha2->type;
3561 __hw_addr_del(to_list, to_delta, ha2->addr,
3562 addr_len, type);
3563 }
3564 return err;
3565 }
3566
3567 static void __hw_addr_del_multiple(struct list_head *to_list, int *to_delta,
3568 struct list_head *from_list, int addr_len,
3569 unsigned char addr_type)
3570 {
3571 struct netdev_hw_addr *ha;
3572 unsigned char type;
3573
3574 list_for_each_entry(ha, from_list, list) {
3575 type = addr_type ? addr_type : ha->type;
3576 __hw_addr_del(to_list, to_delta, ha->addr,
3577 addr_len, addr_type);
3578 }
3579 }
3580
3581 static int __hw_addr_sync(struct list_head *to_list, int *to_delta,
3582 struct list_head *from_list, int *from_delta,
3583 int addr_len)
3584 {
3585 int err = 0;
3586 struct netdev_hw_addr *ha, *tmp;
3587
3588 list_for_each_entry_safe(ha, tmp, from_list, list) {
3589 if (!ha->synced) {
3590 err = __hw_addr_add(to_list, to_delta, ha->addr,
3591 addr_len, ha->type);
3592 if (err)
3593 break;
3594 ha->synced = true;
3595 ha->refcount++;
3596 } else if (ha->refcount == 1) {
3597 __hw_addr_del(to_list, to_delta, ha->addr,
3598 addr_len, ha->type);
3599 __hw_addr_del(from_list, from_delta, ha->addr,
3600 addr_len, ha->type);
3601 }
3602 }
3603 return err;
3604 }
3605
3606 static void __hw_addr_unsync(struct list_head *to_list, int *to_delta,
3607 struct list_head *from_list, int *from_delta,
3608 int addr_len)
3609 {
3610 struct netdev_hw_addr *ha, *tmp;
3611
3612 list_for_each_entry_safe(ha, tmp, from_list, list) {
3613 if (ha->synced) {
3614 __hw_addr_del(to_list, to_delta, ha->addr,
3615 addr_len, ha->type);
3616 ha->synced = false;
3617 __hw_addr_del(from_list, from_delta, ha->addr,
3618 addr_len, ha->type);
3619 }
3620 }
3621 }
3622
3623
3624 static void __hw_addr_flush(struct list_head *list)
3625 {
3626 struct netdev_hw_addr *ha, *tmp;
3627
3628 list_for_each_entry_safe(ha, tmp, list, list) {
3629 list_del_rcu(&ha->list);
3630 call_rcu(&ha->rcu_head, ha_rcu_free);
3631 }
3632 }
3633
3634 /* Device addresses handling functions */
3635
3636 static void dev_addr_flush(struct net_device *dev)
3637 {
3638 /* rtnl_mutex must be held here */
3639
3640 __hw_addr_flush(&dev->dev_addr_list);
3641 dev->dev_addr = NULL;
3642 }
3643
3644 static int dev_addr_init(struct net_device *dev)
3645 {
3646 unsigned char addr[MAX_ADDR_LEN];
3647 struct netdev_hw_addr *ha;
3648 int err;
3649
3650 /* rtnl_mutex must be held here */
3651
3652 INIT_LIST_HEAD(&dev->dev_addr_list);
3653 memset(addr, 0, sizeof(*addr));
3654 err = __hw_addr_add(&dev->dev_addr_list, NULL, addr, sizeof(*addr),
3655 NETDEV_HW_ADDR_T_LAN);
3656 if (!err) {
3657 /*
3658 * Get the first (previously created) address from the list
3659 * and set dev_addr pointer to this location.
3660 */
3661 ha = list_first_entry(&dev->dev_addr_list,
3662 struct netdev_hw_addr, list);
3663 dev->dev_addr = ha->addr;
3664 }
3665 return err;
3666 }
3667
3668 /**
3669 * dev_addr_add - Add a device address
3670 * @dev: device
3671 * @addr: address to add
3672 * @addr_type: address type
3673 *
3674 * Add a device address to the device or increase the reference count if
3675 * it already exists.
3676 *
3677 * The caller must hold the rtnl_mutex.
3678 */
3679 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3680 unsigned char addr_type)
3681 {
3682 int err;
3683
3684 ASSERT_RTNL();
3685
3686 err = __hw_addr_add(&dev->dev_addr_list, NULL, addr, dev->addr_len,
3687 addr_type);
3688 if (!err)
3689 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3690 return err;
3691 }
3692 EXPORT_SYMBOL(dev_addr_add);
3693
3694 /**
3695 * dev_addr_del - Release a device address.
3696 * @dev: device
3697 * @addr: address to delete
3698 * @addr_type: address type
3699 *
3700 * Release reference to a device address and remove it from the device
3701 * if the reference count drops to zero.
3702 *
3703 * The caller must hold the rtnl_mutex.
3704 */
3705 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3706 unsigned char addr_type)
3707 {
3708 int err;
3709 struct netdev_hw_addr *ha;
3710
3711 ASSERT_RTNL();
3712
3713 /*
3714 * We can not remove the first address from the list because
3715 * dev->dev_addr points to that.
3716 */
3717 ha = list_first_entry(&dev->dev_addr_list, struct netdev_hw_addr, list);
3718 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3719 return -ENOENT;
3720
3721 err = __hw_addr_del(&dev->dev_addr_list, NULL, addr, dev->addr_len,
3722 addr_type);
3723 if (!err)
3724 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3725 return err;
3726 }
3727 EXPORT_SYMBOL(dev_addr_del);
3728
3729 /**
3730 * dev_addr_add_multiple - Add device addresses from another device
3731 * @to_dev: device to which addresses will be added
3732 * @from_dev: device from which addresses will be added
3733 * @addr_type: address type - 0 means type will be used from from_dev
3734 *
3735 * Add device addresses of the one device to another.
3736 **
3737 * The caller must hold the rtnl_mutex.
3738 */
3739 int dev_addr_add_multiple(struct net_device *to_dev,
3740 struct net_device *from_dev,
3741 unsigned char addr_type)
3742 {
3743 int err;
3744
3745 ASSERT_RTNL();
3746
3747 if (from_dev->addr_len != to_dev->addr_len)
3748 return -EINVAL;
3749 err = __hw_addr_add_multiple(&to_dev->dev_addr_list, NULL,
3750 &from_dev->dev_addr_list,
3751 to_dev->addr_len, addr_type);
3752 if (!err)
3753 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3754 return err;
3755 }
3756 EXPORT_SYMBOL(dev_addr_add_multiple);
3757
3758 /**
3759 * dev_addr_del_multiple - Delete device addresses by another device
3760 * @to_dev: device where the addresses will be deleted
3761 * @from_dev: device by which addresses the addresses will be deleted
3762 * @addr_type: address type - 0 means type will used from from_dev
3763 *
3764 * Deletes addresses in to device by the list of addresses in from device.
3765 *
3766 * The caller must hold the rtnl_mutex.
3767 */
3768 int dev_addr_del_multiple(struct net_device *to_dev,
3769 struct net_device *from_dev,
3770 unsigned char addr_type)
3771 {
3772 ASSERT_RTNL();
3773
3774 if (from_dev->addr_len != to_dev->addr_len)
3775 return -EINVAL;
3776 __hw_addr_del_multiple(&to_dev->dev_addr_list, NULL,
3777 &from_dev->dev_addr_list,
3778 to_dev->addr_len, addr_type);
3779 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3780 return 0;
3781 }
3782 EXPORT_SYMBOL(dev_addr_del_multiple);
3783
3784 /* unicast and multicast addresses handling functions */
3785
3786 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3787 void *addr, int alen, int glbl)
3788 {
3789 struct dev_addr_list *da;
3790
3791 for (; (da = *list) != NULL; list = &da->next) {
3792 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3793 alen == da->da_addrlen) {
3794 if (glbl) {
3795 int old_glbl = da->da_gusers;
3796 da->da_gusers = 0;
3797 if (old_glbl == 0)
3798 break;
3799 }
3800 if (--da->da_users)
3801 return 0;
3802
3803 *list = da->next;
3804 kfree(da);
3805 (*count)--;
3806 return 0;
3807 }
3808 }
3809 return -ENOENT;
3810 }
3811
3812 int __dev_addr_add(struct dev_addr_list **list, int *count,
3813 void *addr, int alen, int glbl)
3814 {
3815 struct dev_addr_list *da;
3816
3817 for (da = *list; da != NULL; da = da->next) {
3818 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3819 da->da_addrlen == alen) {
3820 if (glbl) {
3821 int old_glbl = da->da_gusers;
3822 da->da_gusers = 1;
3823 if (old_glbl)
3824 return 0;
3825 }
3826 da->da_users++;
3827 return 0;
3828 }
3829 }
3830
3831 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3832 if (da == NULL)
3833 return -ENOMEM;
3834 memcpy(da->da_addr, addr, alen);
3835 da->da_addrlen = alen;
3836 da->da_users = 1;
3837 da->da_gusers = glbl ? 1 : 0;
3838 da->next = *list;
3839 *list = da;
3840 (*count)++;
3841 return 0;
3842 }
3843
3844 /**
3845 * dev_unicast_delete - Release secondary unicast address.
3846 * @dev: device
3847 * @addr: address to delete
3848 *
3849 * Release reference to a secondary unicast address and remove it
3850 * from the device if the reference count drops to zero.
3851 *
3852 * The caller must hold the rtnl_mutex.
3853 */
3854 int dev_unicast_delete(struct net_device *dev, void *addr)
3855 {
3856 int err;
3857
3858 ASSERT_RTNL();
3859
3860 err = __hw_addr_del(&dev->uc_list, &dev->uc_count, addr,
3861 dev->addr_len, NETDEV_HW_ADDR_T_UNICAST);
3862 if (!err)
3863 __dev_set_rx_mode(dev);
3864 return err;
3865 }
3866 EXPORT_SYMBOL(dev_unicast_delete);
3867
3868 /**
3869 * dev_unicast_add - add a secondary unicast address
3870 * @dev: device
3871 * @addr: address to add
3872 *
3873 * Add a secondary unicast address to the device or increase
3874 * the reference count if it already exists.
3875 *
3876 * The caller must hold the rtnl_mutex.
3877 */
3878 int dev_unicast_add(struct net_device *dev, void *addr)
3879 {
3880 int err;
3881
3882 ASSERT_RTNL();
3883
3884 err = __hw_addr_add(&dev->uc_list, &dev->uc_count, addr,
3885 dev->addr_len, NETDEV_HW_ADDR_T_UNICAST);
3886 if (!err)
3887 __dev_set_rx_mode(dev);
3888 return err;
3889 }
3890 EXPORT_SYMBOL(dev_unicast_add);
3891
3892 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3893 struct dev_addr_list **from, int *from_count)
3894 {
3895 struct dev_addr_list *da, *next;
3896 int err = 0;
3897
3898 da = *from;
3899 while (da != NULL) {
3900 next = da->next;
3901 if (!da->da_synced) {
3902 err = __dev_addr_add(to, to_count,
3903 da->da_addr, da->da_addrlen, 0);
3904 if (err < 0)
3905 break;
3906 da->da_synced = 1;
3907 da->da_users++;
3908 } else if (da->da_users == 1) {
3909 __dev_addr_delete(to, to_count,
3910 da->da_addr, da->da_addrlen, 0);
3911 __dev_addr_delete(from, from_count,
3912 da->da_addr, da->da_addrlen, 0);
3913 }
3914 da = next;
3915 }
3916 return err;
3917 }
3918
3919 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3920 struct dev_addr_list **from, int *from_count)
3921 {
3922 struct dev_addr_list *da, *next;
3923
3924 da = *from;
3925 while (da != NULL) {
3926 next = da->next;
3927 if (da->da_synced) {
3928 __dev_addr_delete(to, to_count,
3929 da->da_addr, da->da_addrlen, 0);
3930 da->da_synced = 0;
3931 __dev_addr_delete(from, from_count,
3932 da->da_addr, da->da_addrlen, 0);
3933 }
3934 da = next;
3935 }
3936 }
3937
3938 /**
3939 * dev_unicast_sync - Synchronize device's unicast list to another device
3940 * @to: destination device
3941 * @from: source device
3942 *
3943 * Add newly added addresses to the destination device and release
3944 * addresses that have no users left.
3945 *
3946 * This function is intended to be called from the dev->set_rx_mode
3947 * function of layered software devices.
3948 */
3949 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3950 {
3951 int err = 0;
3952
3953 ASSERT_RTNL();
3954
3955 if (to->addr_len != from->addr_len)
3956 return -EINVAL;
3957
3958 err = __hw_addr_sync(&to->uc_list, &to->uc_count,
3959 &from->uc_list, &from->uc_count, to->addr_len);
3960 if (!err)
3961 __dev_set_rx_mode(to);
3962 return err;
3963 }
3964 EXPORT_SYMBOL(dev_unicast_sync);
3965
3966 /**
3967 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3968 * @to: destination device
3969 * @from: source device
3970 *
3971 * Remove all addresses that were added to the destination device by
3972 * dev_unicast_sync(). This function is intended to be called from the
3973 * dev->stop function of layered software devices.
3974 */
3975 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3976 {
3977 ASSERT_RTNL();
3978
3979 if (to->addr_len != from->addr_len)
3980 return;
3981
3982 __hw_addr_unsync(&to->uc_list, &to->uc_count,
3983 &from->uc_list, &from->uc_count, to->addr_len);
3984 __dev_set_rx_mode(to);
3985 }
3986 EXPORT_SYMBOL(dev_unicast_unsync);
3987
3988 static void dev_unicast_flush(struct net_device *dev)
3989 {
3990 /* rtnl_mutex must be held here */
3991
3992 __hw_addr_flush(&dev->uc_list);
3993 dev->uc_count = 0;
3994 }
3995
3996 static void dev_unicast_init(struct net_device *dev)
3997 {
3998 /* rtnl_mutex must be held here */
3999
4000 INIT_LIST_HEAD(&dev->uc_list);
4001 }
4002
4003
4004 static void __dev_addr_discard(struct dev_addr_list **list)
4005 {
4006 struct dev_addr_list *tmp;
4007
4008 while (*list != NULL) {
4009 tmp = *list;
4010 *list = tmp->next;
4011 if (tmp->da_users > tmp->da_gusers)
4012 printk("__dev_addr_discard: address leakage! "
4013 "da_users=%d\n", tmp->da_users);
4014 kfree(tmp);
4015 }
4016 }
4017
4018 static void dev_addr_discard(struct net_device *dev)
4019 {
4020 netif_addr_lock_bh(dev);
4021
4022 __dev_addr_discard(&dev->mc_list);
4023 dev->mc_count = 0;
4024
4025 netif_addr_unlock_bh(dev);
4026 }
4027
4028 /**
4029 * dev_get_flags - get flags reported to userspace
4030 * @dev: device
4031 *
4032 * Get the combination of flag bits exported through APIs to userspace.
4033 */
4034 unsigned dev_get_flags(const struct net_device *dev)
4035 {
4036 unsigned flags;
4037
4038 flags = (dev->flags & ~(IFF_PROMISC |
4039 IFF_ALLMULTI |
4040 IFF_RUNNING |
4041 IFF_LOWER_UP |
4042 IFF_DORMANT)) |
4043 (dev->gflags & (IFF_PROMISC |
4044 IFF_ALLMULTI));
4045
4046 if (netif_running(dev)) {
4047 if (netif_oper_up(dev))
4048 flags |= IFF_RUNNING;
4049 if (netif_carrier_ok(dev))
4050 flags |= IFF_LOWER_UP;
4051 if (netif_dormant(dev))
4052 flags |= IFF_DORMANT;
4053 }
4054
4055 return flags;
4056 }
4057
4058 /**
4059 * dev_change_flags - change device settings
4060 * @dev: device
4061 * @flags: device state flags
4062 *
4063 * Change settings on device based state flags. The flags are
4064 * in the userspace exported format.
4065 */
4066 int dev_change_flags(struct net_device *dev, unsigned flags)
4067 {
4068 int ret, changes;
4069 int old_flags = dev->flags;
4070
4071 ASSERT_RTNL();
4072
4073 /*
4074 * Set the flags on our device.
4075 */
4076
4077 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4078 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4079 IFF_AUTOMEDIA)) |
4080 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4081 IFF_ALLMULTI));
4082
4083 /*
4084 * Load in the correct multicast list now the flags have changed.
4085 */
4086
4087 if ((old_flags ^ flags) & IFF_MULTICAST)
4088 dev_change_rx_flags(dev, IFF_MULTICAST);
4089
4090 dev_set_rx_mode(dev);
4091
4092 /*
4093 * Have we downed the interface. We handle IFF_UP ourselves
4094 * according to user attempts to set it, rather than blindly
4095 * setting it.
4096 */
4097
4098 ret = 0;
4099 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4100 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4101
4102 if (!ret)
4103 dev_set_rx_mode(dev);
4104 }
4105
4106 if (dev->flags & IFF_UP &&
4107 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4108 IFF_VOLATILE)))
4109 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4110
4111 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4112 int inc = (flags & IFF_PROMISC) ? +1 : -1;
4113 dev->gflags ^= IFF_PROMISC;
4114 dev_set_promiscuity(dev, inc);
4115 }
4116
4117 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4118 is important. Some (broken) drivers set IFF_PROMISC, when
4119 IFF_ALLMULTI is requested not asking us and not reporting.
4120 */
4121 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4122 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
4123 dev->gflags ^= IFF_ALLMULTI;
4124 dev_set_allmulti(dev, inc);
4125 }
4126
4127 /* Exclude state transition flags, already notified */
4128 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4129 if (changes)
4130 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4131
4132 return ret;
4133 }
4134
4135 /**
4136 * dev_set_mtu - Change maximum transfer unit
4137 * @dev: device
4138 * @new_mtu: new transfer unit
4139 *
4140 * Change the maximum transfer size of the network device.
4141 */
4142 int dev_set_mtu(struct net_device *dev, int new_mtu)
4143 {
4144 const struct net_device_ops *ops = dev->netdev_ops;
4145 int err;
4146
4147 if (new_mtu == dev->mtu)
4148 return 0;
4149
4150 /* MTU must be positive. */
4151 if (new_mtu < 0)
4152 return -EINVAL;
4153
4154 if (!netif_device_present(dev))
4155 return -ENODEV;
4156
4157 err = 0;
4158 if (ops->ndo_change_mtu)
4159 err = ops->ndo_change_mtu(dev, new_mtu);
4160 else
4161 dev->mtu = new_mtu;
4162
4163 if (!err && dev->flags & IFF_UP)
4164 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4165 return err;
4166 }
4167
4168 /**
4169 * dev_set_mac_address - Change Media Access Control Address
4170 * @dev: device
4171 * @sa: new address
4172 *
4173 * Change the hardware (MAC) address of the device
4174 */
4175 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4176 {
4177 const struct net_device_ops *ops = dev->netdev_ops;
4178 int err;
4179
4180 if (!ops->ndo_set_mac_address)
4181 return -EOPNOTSUPP;
4182 if (sa->sa_family != dev->type)
4183 return -EINVAL;
4184 if (!netif_device_present(dev))
4185 return -ENODEV;
4186 err = ops->ndo_set_mac_address(dev, sa);
4187 if (!err)
4188 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4189 return err;
4190 }
4191
4192 /*
4193 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
4194 */
4195 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4196 {
4197 int err;
4198 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4199
4200 if (!dev)
4201 return -ENODEV;
4202
4203 switch (cmd) {
4204 case SIOCGIFFLAGS: /* Get interface flags */
4205 ifr->ifr_flags = dev_get_flags(dev);
4206 return 0;
4207
4208 case SIOCGIFMETRIC: /* Get the metric on the interface
4209 (currently unused) */
4210 ifr->ifr_metric = 0;
4211 return 0;
4212
4213 case SIOCGIFMTU: /* Get the MTU of a device */
4214 ifr->ifr_mtu = dev->mtu;
4215 return 0;
4216
4217 case SIOCGIFHWADDR:
4218 if (!dev->addr_len)
4219 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4220 else
4221 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4222 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4223 ifr->ifr_hwaddr.sa_family = dev->type;
4224 return 0;
4225
4226 case SIOCGIFSLAVE:
4227 err = -EINVAL;
4228 break;
4229
4230 case SIOCGIFMAP:
4231 ifr->ifr_map.mem_start = dev->mem_start;
4232 ifr->ifr_map.mem_end = dev->mem_end;
4233 ifr->ifr_map.base_addr = dev->base_addr;
4234 ifr->ifr_map.irq = dev->irq;
4235 ifr->ifr_map.dma = dev->dma;
4236 ifr->ifr_map.port = dev->if_port;
4237 return 0;
4238
4239 case SIOCGIFINDEX:
4240 ifr->ifr_ifindex = dev->ifindex;
4241 return 0;
4242
4243 case SIOCGIFTXQLEN:
4244 ifr->ifr_qlen = dev->tx_queue_len;
4245 return 0;
4246
4247 default:
4248 /* dev_ioctl() should ensure this case
4249 * is never reached
4250 */
4251 WARN_ON(1);
4252 err = -EINVAL;
4253 break;
4254
4255 }
4256 return err;
4257 }
4258
4259 /*
4260 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4261 */
4262 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4263 {
4264 int err;
4265 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4266 const struct net_device_ops *ops;
4267
4268 if (!dev)
4269 return -ENODEV;
4270
4271 ops = dev->netdev_ops;
4272
4273 switch (cmd) {
4274 case SIOCSIFFLAGS: /* Set interface flags */
4275 return dev_change_flags(dev, ifr->ifr_flags);
4276
4277 case SIOCSIFMETRIC: /* Set the metric on the interface
4278 (currently unused) */
4279 return -EOPNOTSUPP;
4280
4281 case SIOCSIFMTU: /* Set the MTU of a device */
4282 return dev_set_mtu(dev, ifr->ifr_mtu);
4283
4284 case SIOCSIFHWADDR:
4285 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4286
4287 case SIOCSIFHWBROADCAST:
4288 if (ifr->ifr_hwaddr.sa_family != dev->type)
4289 return -EINVAL;
4290 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4291 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4292 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4293 return 0;
4294
4295 case SIOCSIFMAP:
4296 if (ops->ndo_set_config) {
4297 if (!netif_device_present(dev))
4298 return -ENODEV;
4299 return ops->ndo_set_config(dev, &ifr->ifr_map);
4300 }
4301 return -EOPNOTSUPP;
4302
4303 case SIOCADDMULTI:
4304 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4305 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4306 return -EINVAL;
4307 if (!netif_device_present(dev))
4308 return -ENODEV;
4309 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4310 dev->addr_len, 1);
4311
4312 case SIOCDELMULTI:
4313 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4314 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4315 return -EINVAL;
4316 if (!netif_device_present(dev))
4317 return -ENODEV;
4318 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4319 dev->addr_len, 1);
4320
4321 case SIOCSIFTXQLEN:
4322 if (ifr->ifr_qlen < 0)
4323 return -EINVAL;
4324 dev->tx_queue_len = ifr->ifr_qlen;
4325 return 0;
4326
4327 case SIOCSIFNAME:
4328 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4329 return dev_change_name(dev, ifr->ifr_newname);
4330
4331 /*
4332 * Unknown or private ioctl
4333 */
4334
4335 default:
4336 if ((cmd >= SIOCDEVPRIVATE &&
4337 cmd <= SIOCDEVPRIVATE + 15) ||
4338 cmd == SIOCBONDENSLAVE ||
4339 cmd == SIOCBONDRELEASE ||
4340 cmd == SIOCBONDSETHWADDR ||
4341 cmd == SIOCBONDSLAVEINFOQUERY ||
4342 cmd == SIOCBONDINFOQUERY ||
4343 cmd == SIOCBONDCHANGEACTIVE ||
4344 cmd == SIOCGMIIPHY ||
4345 cmd == SIOCGMIIREG ||
4346 cmd == SIOCSMIIREG ||
4347 cmd == SIOCBRADDIF ||
4348 cmd == SIOCBRDELIF ||
4349 cmd == SIOCSHWTSTAMP ||
4350 cmd == SIOCWANDEV) {
4351 err = -EOPNOTSUPP;
4352 if (ops->ndo_do_ioctl) {
4353 if (netif_device_present(dev))
4354 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4355 else
4356 err = -ENODEV;
4357 }
4358 } else
4359 err = -EINVAL;
4360
4361 }
4362 return err;
4363 }
4364
4365 /*
4366 * This function handles all "interface"-type I/O control requests. The actual
4367 * 'doing' part of this is dev_ifsioc above.
4368 */
4369
4370 /**
4371 * dev_ioctl - network device ioctl
4372 * @net: the applicable net namespace
4373 * @cmd: command to issue
4374 * @arg: pointer to a struct ifreq in user space
4375 *
4376 * Issue ioctl functions to devices. This is normally called by the
4377 * user space syscall interfaces but can sometimes be useful for
4378 * other purposes. The return value is the return from the syscall if
4379 * positive or a negative errno code on error.
4380 */
4381
4382 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4383 {
4384 struct ifreq ifr;
4385 int ret;
4386 char *colon;
4387
4388 /* One special case: SIOCGIFCONF takes ifconf argument
4389 and requires shared lock, because it sleeps writing
4390 to user space.
4391 */
4392
4393 if (cmd == SIOCGIFCONF) {
4394 rtnl_lock();
4395 ret = dev_ifconf(net, (char __user *) arg);
4396 rtnl_unlock();
4397 return ret;
4398 }
4399 if (cmd == SIOCGIFNAME)
4400 return dev_ifname(net, (struct ifreq __user *)arg);
4401
4402 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4403 return -EFAULT;
4404
4405 ifr.ifr_name[IFNAMSIZ-1] = 0;
4406
4407 colon = strchr(ifr.ifr_name, ':');
4408 if (colon)
4409 *colon = 0;
4410
4411 /*
4412 * See which interface the caller is talking about.
4413 */
4414
4415 switch (cmd) {
4416 /*
4417 * These ioctl calls:
4418 * - can be done by all.
4419 * - atomic and do not require locking.
4420 * - return a value
4421 */
4422 case SIOCGIFFLAGS:
4423 case SIOCGIFMETRIC:
4424 case SIOCGIFMTU:
4425 case SIOCGIFHWADDR:
4426 case SIOCGIFSLAVE:
4427 case SIOCGIFMAP:
4428 case SIOCGIFINDEX:
4429 case SIOCGIFTXQLEN:
4430 dev_load(net, ifr.ifr_name);
4431 read_lock(&dev_base_lock);
4432 ret = dev_ifsioc_locked(net, &ifr, cmd);
4433 read_unlock(&dev_base_lock);
4434 if (!ret) {
4435 if (colon)
4436 *colon = ':';
4437 if (copy_to_user(arg, &ifr,
4438 sizeof(struct ifreq)))
4439 ret = -EFAULT;
4440 }
4441 return ret;
4442
4443 case SIOCETHTOOL:
4444 dev_load(net, ifr.ifr_name);
4445 rtnl_lock();
4446 ret = dev_ethtool(net, &ifr);
4447 rtnl_unlock();
4448 if (!ret) {
4449 if (colon)
4450 *colon = ':';
4451 if (copy_to_user(arg, &ifr,
4452 sizeof(struct ifreq)))
4453 ret = -EFAULT;
4454 }
4455 return ret;
4456
4457 /*
4458 * These ioctl calls:
4459 * - require superuser power.
4460 * - require strict serialization.
4461 * - return a value
4462 */
4463 case SIOCGMIIPHY:
4464 case SIOCGMIIREG:
4465 case SIOCSIFNAME:
4466 if (!capable(CAP_NET_ADMIN))
4467 return -EPERM;
4468 dev_load(net, ifr.ifr_name);
4469 rtnl_lock();
4470 ret = dev_ifsioc(net, &ifr, cmd);
4471 rtnl_unlock();
4472 if (!ret) {
4473 if (colon)
4474 *colon = ':';
4475 if (copy_to_user(arg, &ifr,
4476 sizeof(struct ifreq)))
4477 ret = -EFAULT;
4478 }
4479 return ret;
4480
4481 /*
4482 * These ioctl calls:
4483 * - require superuser power.
4484 * - require strict serialization.
4485 * - do not return a value
4486 */
4487 case SIOCSIFFLAGS:
4488 case SIOCSIFMETRIC:
4489 case SIOCSIFMTU:
4490 case SIOCSIFMAP:
4491 case SIOCSIFHWADDR:
4492 case SIOCSIFSLAVE:
4493 case SIOCADDMULTI:
4494 case SIOCDELMULTI:
4495 case SIOCSIFHWBROADCAST:
4496 case SIOCSIFTXQLEN:
4497 case SIOCSMIIREG:
4498 case SIOCBONDENSLAVE:
4499 case SIOCBONDRELEASE:
4500 case SIOCBONDSETHWADDR:
4501 case SIOCBONDCHANGEACTIVE:
4502 case SIOCBRADDIF:
4503 case SIOCBRDELIF:
4504 case SIOCSHWTSTAMP:
4505 if (!capable(CAP_NET_ADMIN))
4506 return -EPERM;
4507 /* fall through */
4508 case SIOCBONDSLAVEINFOQUERY:
4509 case SIOCBONDINFOQUERY:
4510 dev_load(net, ifr.ifr_name);
4511 rtnl_lock();
4512 ret = dev_ifsioc(net, &ifr, cmd);
4513 rtnl_unlock();
4514 return ret;
4515
4516 case SIOCGIFMEM:
4517 /* Get the per device memory space. We can add this but
4518 * currently do not support it */
4519 case SIOCSIFMEM:
4520 /* Set the per device memory buffer space.
4521 * Not applicable in our case */
4522 case SIOCSIFLINK:
4523 return -EINVAL;
4524
4525 /*
4526 * Unknown or private ioctl.
4527 */
4528 default:
4529 if (cmd == SIOCWANDEV ||
4530 (cmd >= SIOCDEVPRIVATE &&
4531 cmd <= SIOCDEVPRIVATE + 15)) {
4532 dev_load(net, ifr.ifr_name);
4533 rtnl_lock();
4534 ret = dev_ifsioc(net, &ifr, cmd);
4535 rtnl_unlock();
4536 if (!ret && copy_to_user(arg, &ifr,
4537 sizeof(struct ifreq)))
4538 ret = -EFAULT;
4539 return ret;
4540 }
4541 /* Take care of Wireless Extensions */
4542 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4543 return wext_handle_ioctl(net, &ifr, cmd, arg);
4544 return -EINVAL;
4545 }
4546 }
4547
4548
4549 /**
4550 * dev_new_index - allocate an ifindex
4551 * @net: the applicable net namespace
4552 *
4553 * Returns a suitable unique value for a new device interface
4554 * number. The caller must hold the rtnl semaphore or the
4555 * dev_base_lock to be sure it remains unique.
4556 */
4557 static int dev_new_index(struct net *net)
4558 {
4559 static int ifindex;
4560 for (;;) {
4561 if (++ifindex <= 0)
4562 ifindex = 1;
4563 if (!__dev_get_by_index(net, ifindex))
4564 return ifindex;
4565 }
4566 }
4567
4568 /* Delayed registration/unregisteration */
4569 static LIST_HEAD(net_todo_list);
4570
4571 static void net_set_todo(struct net_device *dev)
4572 {
4573 list_add_tail(&dev->todo_list, &net_todo_list);
4574 }
4575
4576 static void rollback_registered(struct net_device *dev)
4577 {
4578 BUG_ON(dev_boot_phase);
4579 ASSERT_RTNL();
4580
4581 /* Some devices call without registering for initialization unwind. */
4582 if (dev->reg_state == NETREG_UNINITIALIZED) {
4583 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4584 "was registered\n", dev->name, dev);
4585
4586 WARN_ON(1);
4587 return;
4588 }
4589
4590 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4591
4592 /* If device is running, close it first. */
4593 dev_close(dev);
4594
4595 /* And unlink it from device chain. */
4596 unlist_netdevice(dev);
4597
4598 dev->reg_state = NETREG_UNREGISTERING;
4599
4600 synchronize_net();
4601
4602 /* Shutdown queueing discipline. */
4603 dev_shutdown(dev);
4604
4605
4606 /* Notify protocols, that we are about to destroy
4607 this device. They should clean all the things.
4608 */
4609 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4610
4611 /*
4612 * Flush the unicast and multicast chains
4613 */
4614 dev_unicast_flush(dev);
4615 dev_addr_discard(dev);
4616
4617 if (dev->netdev_ops->ndo_uninit)
4618 dev->netdev_ops->ndo_uninit(dev);
4619
4620 /* Notifier chain MUST detach us from master device. */
4621 WARN_ON(dev->master);
4622
4623 /* Remove entries from kobject tree */
4624 netdev_unregister_kobject(dev);
4625
4626 synchronize_net();
4627
4628 dev_put(dev);
4629 }
4630
4631 static void __netdev_init_queue_locks_one(struct net_device *dev,
4632 struct netdev_queue *dev_queue,
4633 void *_unused)
4634 {
4635 spin_lock_init(&dev_queue->_xmit_lock);
4636 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4637 dev_queue->xmit_lock_owner = -1;
4638 }
4639
4640 static void netdev_init_queue_locks(struct net_device *dev)
4641 {
4642 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4643 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4644 }
4645
4646 unsigned long netdev_fix_features(unsigned long features, const char *name)
4647 {
4648 /* Fix illegal SG+CSUM combinations. */
4649 if ((features & NETIF_F_SG) &&
4650 !(features & NETIF_F_ALL_CSUM)) {
4651 if (name)
4652 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4653 "checksum feature.\n", name);
4654 features &= ~NETIF_F_SG;
4655 }
4656
4657 /* TSO requires that SG is present as well. */
4658 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4659 if (name)
4660 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4661 "SG feature.\n", name);
4662 features &= ~NETIF_F_TSO;
4663 }
4664
4665 if (features & NETIF_F_UFO) {
4666 if (!(features & NETIF_F_GEN_CSUM)) {
4667 if (name)
4668 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4669 "since no NETIF_F_HW_CSUM feature.\n",
4670 name);
4671 features &= ~NETIF_F_UFO;
4672 }
4673
4674 if (!(features & NETIF_F_SG)) {
4675 if (name)
4676 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4677 "since no NETIF_F_SG feature.\n", name);
4678 features &= ~NETIF_F_UFO;
4679 }
4680 }
4681
4682 return features;
4683 }
4684 EXPORT_SYMBOL(netdev_fix_features);
4685
4686 /**
4687 * register_netdevice - register a network device
4688 * @dev: device to register
4689 *
4690 * Take a completed network device structure and add it to the kernel
4691 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4692 * chain. 0 is returned on success. A negative errno code is returned
4693 * on a failure to set up the device, or if the name is a duplicate.
4694 *
4695 * Callers must hold the rtnl semaphore. You may want
4696 * register_netdev() instead of this.
4697 *
4698 * BUGS:
4699 * The locking appears insufficient to guarantee two parallel registers
4700 * will not get the same name.
4701 */
4702
4703 int register_netdevice(struct net_device *dev)
4704 {
4705 struct hlist_head *head;
4706 struct hlist_node *p;
4707 int ret;
4708 struct net *net = dev_net(dev);
4709
4710 BUG_ON(dev_boot_phase);
4711 ASSERT_RTNL();
4712
4713 might_sleep();
4714
4715 /* When net_device's are persistent, this will be fatal. */
4716 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4717 BUG_ON(!net);
4718
4719 spin_lock_init(&dev->addr_list_lock);
4720 netdev_set_addr_lockdep_class(dev);
4721 netdev_init_queue_locks(dev);
4722
4723 dev->iflink = -1;
4724
4725 /* Init, if this function is available */
4726 if (dev->netdev_ops->ndo_init) {
4727 ret = dev->netdev_ops->ndo_init(dev);
4728 if (ret) {
4729 if (ret > 0)
4730 ret = -EIO;
4731 goto out;
4732 }
4733 }
4734
4735 if (!dev_valid_name(dev->name)) {
4736 ret = -EINVAL;
4737 goto err_uninit;
4738 }
4739
4740 dev->ifindex = dev_new_index(net);
4741 if (dev->iflink == -1)
4742 dev->iflink = dev->ifindex;
4743
4744 /* Check for existence of name */
4745 head = dev_name_hash(net, dev->name);
4746 hlist_for_each(p, head) {
4747 struct net_device *d
4748 = hlist_entry(p, struct net_device, name_hlist);
4749 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4750 ret = -EEXIST;
4751 goto err_uninit;
4752 }
4753 }
4754
4755 /* Fix illegal checksum combinations */
4756 if ((dev->features & NETIF_F_HW_CSUM) &&
4757 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4758 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4759 dev->name);
4760 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4761 }
4762
4763 if ((dev->features & NETIF_F_NO_CSUM) &&
4764 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4765 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4766 dev->name);
4767 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4768 }
4769
4770 dev->features = netdev_fix_features(dev->features, dev->name);
4771
4772 /* Enable software GSO if SG is supported. */
4773 if (dev->features & NETIF_F_SG)
4774 dev->features |= NETIF_F_GSO;
4775
4776 netdev_initialize_kobject(dev);
4777 ret = netdev_register_kobject(dev);
4778 if (ret)
4779 goto err_uninit;
4780 dev->reg_state = NETREG_REGISTERED;
4781
4782 /*
4783 * Default initial state at registry is that the
4784 * device is present.
4785 */
4786
4787 set_bit(__LINK_STATE_PRESENT, &dev->state);
4788
4789 dev_init_scheduler(dev);
4790 dev_hold(dev);
4791 list_netdevice(dev);
4792
4793 /* Notify protocols, that a new device appeared. */
4794 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4795 ret = notifier_to_errno(ret);
4796 if (ret) {
4797 rollback_registered(dev);
4798 dev->reg_state = NETREG_UNREGISTERED;
4799 }
4800
4801 out:
4802 return ret;
4803
4804 err_uninit:
4805 if (dev->netdev_ops->ndo_uninit)
4806 dev->netdev_ops->ndo_uninit(dev);
4807 goto out;
4808 }
4809
4810 /**
4811 * init_dummy_netdev - init a dummy network device for NAPI
4812 * @dev: device to init
4813 *
4814 * This takes a network device structure and initialize the minimum
4815 * amount of fields so it can be used to schedule NAPI polls without
4816 * registering a full blown interface. This is to be used by drivers
4817 * that need to tie several hardware interfaces to a single NAPI
4818 * poll scheduler due to HW limitations.
4819 */
4820 int init_dummy_netdev(struct net_device *dev)
4821 {
4822 /* Clear everything. Note we don't initialize spinlocks
4823 * are they aren't supposed to be taken by any of the
4824 * NAPI code and this dummy netdev is supposed to be
4825 * only ever used for NAPI polls
4826 */
4827 memset(dev, 0, sizeof(struct net_device));
4828
4829 /* make sure we BUG if trying to hit standard
4830 * register/unregister code path
4831 */
4832 dev->reg_state = NETREG_DUMMY;
4833
4834 /* initialize the ref count */
4835 atomic_set(&dev->refcnt, 1);
4836
4837 /* NAPI wants this */
4838 INIT_LIST_HEAD(&dev->napi_list);
4839
4840 /* a dummy interface is started by default */
4841 set_bit(__LINK_STATE_PRESENT, &dev->state);
4842 set_bit(__LINK_STATE_START, &dev->state);
4843
4844 return 0;
4845 }
4846 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4847
4848
4849 /**
4850 * register_netdev - register a network device
4851 * @dev: device to register
4852 *
4853 * Take a completed network device structure and add it to the kernel
4854 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4855 * chain. 0 is returned on success. A negative errno code is returned
4856 * on a failure to set up the device, or if the name is a duplicate.
4857 *
4858 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4859 * and expands the device name if you passed a format string to
4860 * alloc_netdev.
4861 */
4862 int register_netdev(struct net_device *dev)
4863 {
4864 int err;
4865
4866 rtnl_lock();
4867
4868 /*
4869 * If the name is a format string the caller wants us to do a
4870 * name allocation.
4871 */
4872 if (strchr(dev->name, '%')) {
4873 err = dev_alloc_name(dev, dev->name);
4874 if (err < 0)
4875 goto out;
4876 }
4877
4878 err = register_netdevice(dev);
4879 out:
4880 rtnl_unlock();
4881 return err;
4882 }
4883 EXPORT_SYMBOL(register_netdev);
4884
4885 /*
4886 * netdev_wait_allrefs - wait until all references are gone.
4887 *
4888 * This is called when unregistering network devices.
4889 *
4890 * Any protocol or device that holds a reference should register
4891 * for netdevice notification, and cleanup and put back the
4892 * reference if they receive an UNREGISTER event.
4893 * We can get stuck here if buggy protocols don't correctly
4894 * call dev_put.
4895 */
4896 static void netdev_wait_allrefs(struct net_device *dev)
4897 {
4898 unsigned long rebroadcast_time, warning_time;
4899
4900 rebroadcast_time = warning_time = jiffies;
4901 while (atomic_read(&dev->refcnt) != 0) {
4902 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4903 rtnl_lock();
4904
4905 /* Rebroadcast unregister notification */
4906 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4907
4908 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4909 &dev->state)) {
4910 /* We must not have linkwatch events
4911 * pending on unregister. If this
4912 * happens, we simply run the queue
4913 * unscheduled, resulting in a noop
4914 * for this device.
4915 */
4916 linkwatch_run_queue();
4917 }
4918
4919 __rtnl_unlock();
4920
4921 rebroadcast_time = jiffies;
4922 }
4923
4924 msleep(250);
4925
4926 if (time_after(jiffies, warning_time + 10 * HZ)) {
4927 printk(KERN_EMERG "unregister_netdevice: "
4928 "waiting for %s to become free. Usage "
4929 "count = %d\n",
4930 dev->name, atomic_read(&dev->refcnt));
4931 warning_time = jiffies;
4932 }
4933 }
4934 }
4935
4936 /* The sequence is:
4937 *
4938 * rtnl_lock();
4939 * ...
4940 * register_netdevice(x1);
4941 * register_netdevice(x2);
4942 * ...
4943 * unregister_netdevice(y1);
4944 * unregister_netdevice(y2);
4945 * ...
4946 * rtnl_unlock();
4947 * free_netdev(y1);
4948 * free_netdev(y2);
4949 *
4950 * We are invoked by rtnl_unlock().
4951 * This allows us to deal with problems:
4952 * 1) We can delete sysfs objects which invoke hotplug
4953 * without deadlocking with linkwatch via keventd.
4954 * 2) Since we run with the RTNL semaphore not held, we can sleep
4955 * safely in order to wait for the netdev refcnt to drop to zero.
4956 *
4957 * We must not return until all unregister events added during
4958 * the interval the lock was held have been completed.
4959 */
4960 void netdev_run_todo(void)
4961 {
4962 struct list_head list;
4963
4964 /* Snapshot list, allow later requests */
4965 list_replace_init(&net_todo_list, &list);
4966
4967 __rtnl_unlock();
4968
4969 while (!list_empty(&list)) {
4970 struct net_device *dev
4971 = list_entry(list.next, struct net_device, todo_list);
4972 list_del(&dev->todo_list);
4973
4974 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4975 printk(KERN_ERR "network todo '%s' but state %d\n",
4976 dev->name, dev->reg_state);
4977 dump_stack();
4978 continue;
4979 }
4980
4981 dev->reg_state = NETREG_UNREGISTERED;
4982
4983 on_each_cpu(flush_backlog, dev, 1);
4984
4985 netdev_wait_allrefs(dev);
4986
4987 /* paranoia */
4988 BUG_ON(atomic_read(&dev->refcnt));
4989 WARN_ON(dev->ip_ptr);
4990 WARN_ON(dev->ip6_ptr);
4991 WARN_ON(dev->dn_ptr);
4992
4993 if (dev->destructor)
4994 dev->destructor(dev);
4995
4996 /* Free network device */
4997 kobject_put(&dev->dev.kobj);
4998 }
4999 }
5000
5001 /**
5002 * dev_get_stats - get network device statistics
5003 * @dev: device to get statistics from
5004 *
5005 * Get network statistics from device. The device driver may provide
5006 * its own method by setting dev->netdev_ops->get_stats; otherwise
5007 * the internal statistics structure is used.
5008 */
5009 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5010 {
5011 const struct net_device_ops *ops = dev->netdev_ops;
5012
5013 if (ops->ndo_get_stats)
5014 return ops->ndo_get_stats(dev);
5015 else {
5016 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5017 struct net_device_stats *stats = &dev->stats;
5018 unsigned int i;
5019 struct netdev_queue *txq;
5020
5021 for (i = 0; i < dev->num_tx_queues; i++) {
5022 txq = netdev_get_tx_queue(dev, i);
5023 tx_bytes += txq->tx_bytes;
5024 tx_packets += txq->tx_packets;
5025 tx_dropped += txq->tx_dropped;
5026 }
5027 if (tx_bytes || tx_packets || tx_dropped) {
5028 stats->tx_bytes = tx_bytes;
5029 stats->tx_packets = tx_packets;
5030 stats->tx_dropped = tx_dropped;
5031 }
5032 return stats;
5033 }
5034 }
5035 EXPORT_SYMBOL(dev_get_stats);
5036
5037 static void netdev_init_one_queue(struct net_device *dev,
5038 struct netdev_queue *queue,
5039 void *_unused)
5040 {
5041 queue->dev = dev;
5042 }
5043
5044 static void netdev_init_queues(struct net_device *dev)
5045 {
5046 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5047 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5048 spin_lock_init(&dev->tx_global_lock);
5049 }
5050
5051 /**
5052 * alloc_netdev_mq - allocate network device
5053 * @sizeof_priv: size of private data to allocate space for
5054 * @name: device name format string
5055 * @setup: callback to initialize device
5056 * @queue_count: the number of subqueues to allocate
5057 *
5058 * Allocates a struct net_device with private data area for driver use
5059 * and performs basic initialization. Also allocates subquue structs
5060 * for each queue on the device at the end of the netdevice.
5061 */
5062 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5063 void (*setup)(struct net_device *), unsigned int queue_count)
5064 {
5065 struct netdev_queue *tx;
5066 struct net_device *dev;
5067 size_t alloc_size;
5068 struct net_device *p;
5069
5070 BUG_ON(strlen(name) >= sizeof(dev->name));
5071
5072 alloc_size = sizeof(struct net_device);
5073 if (sizeof_priv) {
5074 /* ensure 32-byte alignment of private area */
5075 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5076 alloc_size += sizeof_priv;
5077 }
5078 /* ensure 32-byte alignment of whole construct */
5079 alloc_size += NETDEV_ALIGN - 1;
5080
5081 p = kzalloc(alloc_size, GFP_KERNEL);
5082 if (!p) {
5083 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5084 return NULL;
5085 }
5086
5087 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5088 if (!tx) {
5089 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5090 "tx qdiscs.\n");
5091 goto free_p;
5092 }
5093
5094 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5095 dev->padded = (char *)dev - (char *)p;
5096
5097 if (dev_addr_init(dev))
5098 goto free_tx;
5099
5100 dev_unicast_init(dev);
5101
5102 dev_net_set(dev, &init_net);
5103
5104 dev->_tx = tx;
5105 dev->num_tx_queues = queue_count;
5106 dev->real_num_tx_queues = queue_count;
5107
5108 dev->gso_max_size = GSO_MAX_SIZE;
5109
5110 netdev_init_queues(dev);
5111
5112 INIT_LIST_HEAD(&dev->napi_list);
5113 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5114 setup(dev);
5115 strcpy(dev->name, name);
5116 return dev;
5117
5118 free_tx:
5119 kfree(tx);
5120
5121 free_p:
5122 kfree(p);
5123 return NULL;
5124 }
5125 EXPORT_SYMBOL(alloc_netdev_mq);
5126
5127 /**
5128 * free_netdev - free network device
5129 * @dev: device
5130 *
5131 * This function does the last stage of destroying an allocated device
5132 * interface. The reference to the device object is released.
5133 * If this is the last reference then it will be freed.
5134 */
5135 void free_netdev(struct net_device *dev)
5136 {
5137 struct napi_struct *p, *n;
5138
5139 release_net(dev_net(dev));
5140
5141 kfree(dev->_tx);
5142
5143 /* Flush device addresses */
5144 dev_addr_flush(dev);
5145
5146 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5147 netif_napi_del(p);
5148
5149 /* Compatibility with error handling in drivers */
5150 if (dev->reg_state == NETREG_UNINITIALIZED) {
5151 kfree((char *)dev - dev->padded);
5152 return;
5153 }
5154
5155 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5156 dev->reg_state = NETREG_RELEASED;
5157
5158 /* will free via device release */
5159 put_device(&dev->dev);
5160 }
5161
5162 /**
5163 * synchronize_net - Synchronize with packet receive processing
5164 *
5165 * Wait for packets currently being received to be done.
5166 * Does not block later packets from starting.
5167 */
5168 void synchronize_net(void)
5169 {
5170 might_sleep();
5171 synchronize_rcu();
5172 }
5173
5174 /**
5175 * unregister_netdevice - remove device from the kernel
5176 * @dev: device
5177 *
5178 * This function shuts down a device interface and removes it
5179 * from the kernel tables.
5180 *
5181 * Callers must hold the rtnl semaphore. You may want
5182 * unregister_netdev() instead of this.
5183 */
5184
5185 void unregister_netdevice(struct net_device *dev)
5186 {
5187 ASSERT_RTNL();
5188
5189 rollback_registered(dev);
5190 /* Finish processing unregister after unlock */
5191 net_set_todo(dev);
5192 }
5193
5194 /**
5195 * unregister_netdev - remove device from the kernel
5196 * @dev: device
5197 *
5198 * This function shuts down a device interface and removes it
5199 * from the kernel tables.
5200 *
5201 * This is just a wrapper for unregister_netdevice that takes
5202 * the rtnl semaphore. In general you want to use this and not
5203 * unregister_netdevice.
5204 */
5205 void unregister_netdev(struct net_device *dev)
5206 {
5207 rtnl_lock();
5208 unregister_netdevice(dev);
5209 rtnl_unlock();
5210 }
5211
5212 EXPORT_SYMBOL(unregister_netdev);
5213
5214 /**
5215 * dev_change_net_namespace - move device to different nethost namespace
5216 * @dev: device
5217 * @net: network namespace
5218 * @pat: If not NULL name pattern to try if the current device name
5219 * is already taken in the destination network namespace.
5220 *
5221 * This function shuts down a device interface and moves it
5222 * to a new network namespace. On success 0 is returned, on
5223 * a failure a netagive errno code is returned.
5224 *
5225 * Callers must hold the rtnl semaphore.
5226 */
5227
5228 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5229 {
5230 char buf[IFNAMSIZ];
5231 const char *destname;
5232 int err;
5233
5234 ASSERT_RTNL();
5235
5236 /* Don't allow namespace local devices to be moved. */
5237 err = -EINVAL;
5238 if (dev->features & NETIF_F_NETNS_LOCAL)
5239 goto out;
5240
5241 #ifdef CONFIG_SYSFS
5242 /* Don't allow real devices to be moved when sysfs
5243 * is enabled.
5244 */
5245 err = -EINVAL;
5246 if (dev->dev.parent)
5247 goto out;
5248 #endif
5249
5250 /* Ensure the device has been registrered */
5251 err = -EINVAL;
5252 if (dev->reg_state != NETREG_REGISTERED)
5253 goto out;
5254
5255 /* Get out if there is nothing todo */
5256 err = 0;
5257 if (net_eq(dev_net(dev), net))
5258 goto out;
5259
5260 /* Pick the destination device name, and ensure
5261 * we can use it in the destination network namespace.
5262 */
5263 err = -EEXIST;
5264 destname = dev->name;
5265 if (__dev_get_by_name(net, destname)) {
5266 /* We get here if we can't use the current device name */
5267 if (!pat)
5268 goto out;
5269 if (!dev_valid_name(pat))
5270 goto out;
5271 if (strchr(pat, '%')) {
5272 if (__dev_alloc_name(net, pat, buf) < 0)
5273 goto out;
5274 destname = buf;
5275 } else
5276 destname = pat;
5277 if (__dev_get_by_name(net, destname))
5278 goto out;
5279 }
5280
5281 /*
5282 * And now a mini version of register_netdevice unregister_netdevice.
5283 */
5284
5285 /* If device is running close it first. */
5286 dev_close(dev);
5287
5288 /* And unlink it from device chain */
5289 err = -ENODEV;
5290 unlist_netdevice(dev);
5291
5292 synchronize_net();
5293
5294 /* Shutdown queueing discipline. */
5295 dev_shutdown(dev);
5296
5297 /* Notify protocols, that we are about to destroy
5298 this device. They should clean all the things.
5299 */
5300 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5301
5302 /*
5303 * Flush the unicast and multicast chains
5304 */
5305 dev_unicast_flush(dev);
5306 dev_addr_discard(dev);
5307
5308 netdev_unregister_kobject(dev);
5309
5310 /* Actually switch the network namespace */
5311 dev_net_set(dev, net);
5312
5313 /* Assign the new device name */
5314 if (destname != dev->name)
5315 strcpy(dev->name, destname);
5316
5317 /* If there is an ifindex conflict assign a new one */
5318 if (__dev_get_by_index(net, dev->ifindex)) {
5319 int iflink = (dev->iflink == dev->ifindex);
5320 dev->ifindex = dev_new_index(net);
5321 if (iflink)
5322 dev->iflink = dev->ifindex;
5323 }
5324
5325 /* Fixup kobjects */
5326 err = netdev_register_kobject(dev);
5327 WARN_ON(err);
5328
5329 /* Add the device back in the hashes */
5330 list_netdevice(dev);
5331
5332 /* Notify protocols, that a new device appeared. */
5333 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5334
5335 synchronize_net();
5336 err = 0;
5337 out:
5338 return err;
5339 }
5340
5341 static int dev_cpu_callback(struct notifier_block *nfb,
5342 unsigned long action,
5343 void *ocpu)
5344 {
5345 struct sk_buff **list_skb;
5346 struct Qdisc **list_net;
5347 struct sk_buff *skb;
5348 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5349 struct softnet_data *sd, *oldsd;
5350
5351 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5352 return NOTIFY_OK;
5353
5354 local_irq_disable();
5355 cpu = smp_processor_id();
5356 sd = &per_cpu(softnet_data, cpu);
5357 oldsd = &per_cpu(softnet_data, oldcpu);
5358
5359 /* Find end of our completion_queue. */
5360 list_skb = &sd->completion_queue;
5361 while (*list_skb)
5362 list_skb = &(*list_skb)->next;
5363 /* Append completion queue from offline CPU. */
5364 *list_skb = oldsd->completion_queue;
5365 oldsd->completion_queue = NULL;
5366
5367 /* Find end of our output_queue. */
5368 list_net = &sd->output_queue;
5369 while (*list_net)
5370 list_net = &(*list_net)->next_sched;
5371 /* Append output queue from offline CPU. */
5372 *list_net = oldsd->output_queue;
5373 oldsd->output_queue = NULL;
5374
5375 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5376 local_irq_enable();
5377
5378 /* Process offline CPU's input_pkt_queue */
5379 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5380 netif_rx(skb);
5381
5382 return NOTIFY_OK;
5383 }
5384
5385
5386 /**
5387 * netdev_increment_features - increment feature set by one
5388 * @all: current feature set
5389 * @one: new feature set
5390 * @mask: mask feature set
5391 *
5392 * Computes a new feature set after adding a device with feature set
5393 * @one to the master device with current feature set @all. Will not
5394 * enable anything that is off in @mask. Returns the new feature set.
5395 */
5396 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5397 unsigned long mask)
5398 {
5399 /* If device needs checksumming, downgrade to it. */
5400 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5401 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5402 else if (mask & NETIF_F_ALL_CSUM) {
5403 /* If one device supports v4/v6 checksumming, set for all. */
5404 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5405 !(all & NETIF_F_GEN_CSUM)) {
5406 all &= ~NETIF_F_ALL_CSUM;
5407 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5408 }
5409
5410 /* If one device supports hw checksumming, set for all. */
5411 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5412 all &= ~NETIF_F_ALL_CSUM;
5413 all |= NETIF_F_HW_CSUM;
5414 }
5415 }
5416
5417 one |= NETIF_F_ALL_CSUM;
5418
5419 one |= all & NETIF_F_ONE_FOR_ALL;
5420 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5421 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5422
5423 return all;
5424 }
5425 EXPORT_SYMBOL(netdev_increment_features);
5426
5427 static struct hlist_head *netdev_create_hash(void)
5428 {
5429 int i;
5430 struct hlist_head *hash;
5431
5432 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5433 if (hash != NULL)
5434 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5435 INIT_HLIST_HEAD(&hash[i]);
5436
5437 return hash;
5438 }
5439
5440 /* Initialize per network namespace state */
5441 static int __net_init netdev_init(struct net *net)
5442 {
5443 INIT_LIST_HEAD(&net->dev_base_head);
5444
5445 net->dev_name_head = netdev_create_hash();
5446 if (net->dev_name_head == NULL)
5447 goto err_name;
5448
5449 net->dev_index_head = netdev_create_hash();
5450 if (net->dev_index_head == NULL)
5451 goto err_idx;
5452
5453 return 0;
5454
5455 err_idx:
5456 kfree(net->dev_name_head);
5457 err_name:
5458 return -ENOMEM;
5459 }
5460
5461 /**
5462 * netdev_drivername - network driver for the device
5463 * @dev: network device
5464 * @buffer: buffer for resulting name
5465 * @len: size of buffer
5466 *
5467 * Determine network driver for device.
5468 */
5469 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5470 {
5471 const struct device_driver *driver;
5472 const struct device *parent;
5473
5474 if (len <= 0 || !buffer)
5475 return buffer;
5476 buffer[0] = 0;
5477
5478 parent = dev->dev.parent;
5479
5480 if (!parent)
5481 return buffer;
5482
5483 driver = parent->driver;
5484 if (driver && driver->name)
5485 strlcpy(buffer, driver->name, len);
5486 return buffer;
5487 }
5488
5489 static void __net_exit netdev_exit(struct net *net)
5490 {
5491 kfree(net->dev_name_head);
5492 kfree(net->dev_index_head);
5493 }
5494
5495 static struct pernet_operations __net_initdata netdev_net_ops = {
5496 .init = netdev_init,
5497 .exit = netdev_exit,
5498 };
5499
5500 static void __net_exit default_device_exit(struct net *net)
5501 {
5502 struct net_device *dev;
5503 /*
5504 * Push all migratable of the network devices back to the
5505 * initial network namespace
5506 */
5507 rtnl_lock();
5508 restart:
5509 for_each_netdev(net, dev) {
5510 int err;
5511 char fb_name[IFNAMSIZ];
5512
5513 /* Ignore unmoveable devices (i.e. loopback) */
5514 if (dev->features & NETIF_F_NETNS_LOCAL)
5515 continue;
5516
5517 /* Delete virtual devices */
5518 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5519 dev->rtnl_link_ops->dellink(dev);
5520 goto restart;
5521 }
5522
5523 /* Push remaing network devices to init_net */
5524 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5525 err = dev_change_net_namespace(dev, &init_net, fb_name);
5526 if (err) {
5527 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5528 __func__, dev->name, err);
5529 BUG();
5530 }
5531 goto restart;
5532 }
5533 rtnl_unlock();
5534 }
5535
5536 static struct pernet_operations __net_initdata default_device_ops = {
5537 .exit = default_device_exit,
5538 };
5539
5540 /*
5541 * Initialize the DEV module. At boot time this walks the device list and
5542 * unhooks any devices that fail to initialise (normally hardware not
5543 * present) and leaves us with a valid list of present and active devices.
5544 *
5545 */
5546
5547 /*
5548 * This is called single threaded during boot, so no need
5549 * to take the rtnl semaphore.
5550 */
5551 static int __init net_dev_init(void)
5552 {
5553 int i, rc = -ENOMEM;
5554
5555 BUG_ON(!dev_boot_phase);
5556
5557 if (dev_proc_init())
5558 goto out;
5559
5560 if (netdev_kobject_init())
5561 goto out;
5562
5563 INIT_LIST_HEAD(&ptype_all);
5564 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5565 INIT_LIST_HEAD(&ptype_base[i]);
5566
5567 if (register_pernet_subsys(&netdev_net_ops))
5568 goto out;
5569
5570 /*
5571 * Initialise the packet receive queues.
5572 */
5573
5574 for_each_possible_cpu(i) {
5575 struct softnet_data *queue;
5576
5577 queue = &per_cpu(softnet_data, i);
5578 skb_queue_head_init(&queue->input_pkt_queue);
5579 queue->completion_queue = NULL;
5580 INIT_LIST_HEAD(&queue->poll_list);
5581
5582 queue->backlog.poll = process_backlog;
5583 queue->backlog.weight = weight_p;
5584 queue->backlog.gro_list = NULL;
5585 queue->backlog.gro_count = 0;
5586 }
5587
5588 dev_boot_phase = 0;
5589
5590 /* The loopback device is special if any other network devices
5591 * is present in a network namespace the loopback device must
5592 * be present. Since we now dynamically allocate and free the
5593 * loopback device ensure this invariant is maintained by
5594 * keeping the loopback device as the first device on the
5595 * list of network devices. Ensuring the loopback devices
5596 * is the first device that appears and the last network device
5597 * that disappears.
5598 */
5599 if (register_pernet_device(&loopback_net_ops))
5600 goto out;
5601
5602 if (register_pernet_device(&default_device_ops))
5603 goto out;
5604
5605 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5606 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5607
5608 hotcpu_notifier(dev_cpu_callback, 0);
5609 dst_init();
5610 dev_mcast_init();
5611 rc = 0;
5612 out:
5613 return rc;
5614 }
5615
5616 subsys_initcall(net_dev_init);
5617
5618 static int __init initialize_hashrnd(void)
5619 {
5620 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5621 return 0;
5622 }
5623
5624 late_initcall_sync(initialize_hashrnd);
5625
5626 EXPORT_SYMBOL(__dev_get_by_index);
5627 EXPORT_SYMBOL(__dev_get_by_name);
5628 EXPORT_SYMBOL(__dev_remove_pack);
5629 EXPORT_SYMBOL(dev_valid_name);
5630 EXPORT_SYMBOL(dev_add_pack);
5631 EXPORT_SYMBOL(dev_alloc_name);
5632 EXPORT_SYMBOL(dev_close);
5633 EXPORT_SYMBOL(dev_get_by_flags);
5634 EXPORT_SYMBOL(dev_get_by_index);
5635 EXPORT_SYMBOL(dev_get_by_name);
5636 EXPORT_SYMBOL(dev_open);
5637 EXPORT_SYMBOL(dev_queue_xmit);
5638 EXPORT_SYMBOL(dev_remove_pack);
5639 EXPORT_SYMBOL(dev_set_allmulti);
5640 EXPORT_SYMBOL(dev_set_promiscuity);
5641 EXPORT_SYMBOL(dev_change_flags);
5642 EXPORT_SYMBOL(dev_set_mtu);
5643 EXPORT_SYMBOL(dev_set_mac_address);
5644 EXPORT_SYMBOL(free_netdev);
5645 EXPORT_SYMBOL(netdev_boot_setup_check);
5646 EXPORT_SYMBOL(netdev_set_master);
5647 EXPORT_SYMBOL(netdev_state_change);
5648 EXPORT_SYMBOL(netif_receive_skb);
5649 EXPORT_SYMBOL(netif_rx);
5650 EXPORT_SYMBOL(register_gifconf);
5651 EXPORT_SYMBOL(register_netdevice);
5652 EXPORT_SYMBOL(register_netdevice_notifier);
5653 EXPORT_SYMBOL(skb_checksum_help);
5654 EXPORT_SYMBOL(synchronize_net);
5655 EXPORT_SYMBOL(unregister_netdevice);
5656 EXPORT_SYMBOL(unregister_netdevice_notifier);
5657 EXPORT_SYMBOL(net_enable_timestamp);
5658 EXPORT_SYMBOL(net_disable_timestamp);
5659 EXPORT_SYMBOL(dev_get_flags);
5660
5661 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5662 EXPORT_SYMBOL(br_handle_frame_hook);
5663 EXPORT_SYMBOL(br_fdb_get_hook);
5664 EXPORT_SYMBOL(br_fdb_put_hook);
5665 #endif
5666
5667 EXPORT_SYMBOL(dev_load);
5668
5669 EXPORT_PER_CPU_SYMBOL(softnet_data);