]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/core/dev.c
inet: constify ip headers and in6_addr
[mirror_ubuntu-jammy-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136
137 #include "net-sysfs.h"
138
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145 /*
146 * The list of packet types we will receive (as opposed to discard)
147 * and the routines to invoke.
148 *
149 * Why 16. Because with 16 the only overlap we get on a hash of the
150 * low nibble of the protocol value is RARP/SNAP/X.25.
151 *
152 * NOTE: That is no longer true with the addition of VLAN tags. Not
153 * sure which should go first, but I bet it won't make much
154 * difference if we are running VLANs. The good news is that
155 * this protocol won't be in the list unless compiled in, so
156 * the average user (w/out VLANs) will not be adversely affected.
157 * --BLG
158 *
159 * 0800 IP
160 * 8100 802.1Q VLAN
161 * 0001 802.3
162 * 0002 AX.25
163 * 0004 802.2
164 * 8035 RARP
165 * 0005 SNAP
166 * 0805 X.25
167 * 0806 ARP
168 * 8137 IPX
169 * 0009 Localtalk
170 * 86DD IPv6
171 */
172
173 #define PTYPE_HASH_SIZE (16)
174 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
175
176 static DEFINE_SPINLOCK(ptype_lock);
177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
178 static struct list_head ptype_all __read_mostly; /* Taps */
179
180 /*
181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
182 * semaphore.
183 *
184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
185 *
186 * Writers must hold the rtnl semaphore while they loop through the
187 * dev_base_head list, and hold dev_base_lock for writing when they do the
188 * actual updates. This allows pure readers to access the list even
189 * while a writer is preparing to update it.
190 *
191 * To put it another way, dev_base_lock is held for writing only to
192 * protect against pure readers; the rtnl semaphore provides the
193 * protection against other writers.
194 *
195 * See, for example usages, register_netdevice() and
196 * unregister_netdevice(), which must be called with the rtnl
197 * semaphore held.
198 */
199 DEFINE_RWLOCK(dev_base_lock);
200 EXPORT_SYMBOL(dev_base_lock);
201
202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203 {
204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 }
207
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 }
212
213 static inline void rps_lock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 spin_lock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 static inline void rps_unlock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 spin_unlock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226
227 /* Device list insertion */
228 static int list_netdevice(struct net_device *dev)
229 {
230 struct net *net = dev_net(dev);
231
232 ASSERT_RTNL();
233
234 write_lock_bh(&dev_base_lock);
235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 hlist_add_head_rcu(&dev->index_hlist,
238 dev_index_hash(net, dev->ifindex));
239 write_unlock_bh(&dev_base_lock);
240 return 0;
241 }
242
243 /* Device list removal
244 * caller must respect a RCU grace period before freeing/reusing dev
245 */
246 static void unlist_netdevice(struct net_device *dev)
247 {
248 ASSERT_RTNL();
249
250 /* Unlink dev from the device chain */
251 write_lock_bh(&dev_base_lock);
252 list_del_rcu(&dev->dev_list);
253 hlist_del_rcu(&dev->name_hlist);
254 hlist_del_rcu(&dev->index_hlist);
255 write_unlock_bh(&dev_base_lock);
256 }
257
258 /*
259 * Our notifier list
260 */
261
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263
264 /*
265 * Device drivers call our routines to queue packets here. We empty the
266 * queue in the local softnet handler.
267 */
268
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271
272 #ifdef CONFIG_LOCKDEP
273 /*
274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275 * according to dev->type
276 */
277 static const unsigned short netdev_lock_type[] =
278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
291 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
292 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
293 ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
309 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
310 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
311 "_xmit_VOID", "_xmit_NONE"};
312
313 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
315
316 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
317 {
318 int i;
319
320 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
321 if (netdev_lock_type[i] == dev_type)
322 return i;
323 /* the last key is used by default */
324 return ARRAY_SIZE(netdev_lock_type) - 1;
325 }
326
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
329 {
330 int i;
331
332 i = netdev_lock_pos(dev_type);
333 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
334 netdev_lock_name[i]);
335 }
336
337 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
338 {
339 int i;
340
341 i = netdev_lock_pos(dev->type);
342 lockdep_set_class_and_name(&dev->addr_list_lock,
343 &netdev_addr_lock_key[i],
344 netdev_lock_name[i]);
345 }
346 #else
347 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
348 unsigned short dev_type)
349 {
350 }
351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 {
353 }
354 #endif
355
356 /*******************************************************************************
357
358 Protocol management and registration routines
359
360 *******************************************************************************/
361
362 /*
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
365 * here.
366 *
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
375 * --ANK (980803)
376 */
377
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380 if (pt->type == htons(ETH_P_ALL))
381 return &ptype_all;
382 else
383 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
394 * This call does not sleep therefore it can not
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401 struct list_head *head = ptype_head(pt);
402
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 struct list_head *head = ptype_head(pt);
425 struct packet_type *pt1;
426
427 spin_lock(&ptype_lock);
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr_rcu - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device.
754 * The caller must hold RCU or RTNL.
755 * The returned device has not had its ref count increased
756 * and the caller must therefore be careful about locking
757 *
758 */
759
760 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
761 const char *ha)
762 {
763 struct net_device *dev;
764
765 for_each_netdev_rcu(net, dev)
766 if (dev->type == type &&
767 !memcmp(dev->dev_addr, ha, dev->addr_len))
768 return dev;
769
770 return NULL;
771 }
772 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
773
774 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 {
776 struct net_device *dev;
777
778 ASSERT_RTNL();
779 for_each_netdev(net, dev)
780 if (dev->type == type)
781 return dev;
782
783 return NULL;
784 }
785 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
786
787 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
788 {
789 struct net_device *dev, *ret = NULL;
790
791 rcu_read_lock();
792 for_each_netdev_rcu(net, dev)
793 if (dev->type == type) {
794 dev_hold(dev);
795 ret = dev;
796 break;
797 }
798 rcu_read_unlock();
799 return ret;
800 }
801 EXPORT_SYMBOL(dev_getfirstbyhwtype);
802
803 /**
804 * dev_get_by_flags_rcu - find any device with given flags
805 * @net: the applicable net namespace
806 * @if_flags: IFF_* values
807 * @mask: bitmask of bits in if_flags to check
808 *
809 * Search for any interface with the given flags. Returns NULL if a device
810 * is not found or a pointer to the device. Must be called inside
811 * rcu_read_lock(), and result refcount is unchanged.
812 */
813
814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
815 unsigned short mask)
816 {
817 struct net_device *dev, *ret;
818
819 ret = NULL;
820 for_each_netdev_rcu(net, dev) {
821 if (((dev->flags ^ if_flags) & mask) == 0) {
822 ret = dev;
823 break;
824 }
825 }
826 return ret;
827 }
828 EXPORT_SYMBOL(dev_get_by_flags_rcu);
829
830 /**
831 * dev_valid_name - check if name is okay for network device
832 * @name: name string
833 *
834 * Network device names need to be valid file names to
835 * to allow sysfs to work. We also disallow any kind of
836 * whitespace.
837 */
838 int dev_valid_name(const char *name)
839 {
840 if (*name == '\0')
841 return 0;
842 if (strlen(name) >= IFNAMSIZ)
843 return 0;
844 if (!strcmp(name, ".") || !strcmp(name, ".."))
845 return 0;
846
847 while (*name) {
848 if (*name == '/' || isspace(*name))
849 return 0;
850 name++;
851 }
852 return 1;
853 }
854 EXPORT_SYMBOL(dev_valid_name);
855
856 /**
857 * __dev_alloc_name - allocate a name for a device
858 * @net: network namespace to allocate the device name in
859 * @name: name format string
860 * @buf: scratch buffer and result name string
861 *
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
869 */
870
871 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
872 {
873 int i = 0;
874 const char *p;
875 const int max_netdevices = 8*PAGE_SIZE;
876 unsigned long *inuse;
877 struct net_device *d;
878
879 p = strnchr(name, IFNAMSIZ-1, '%');
880 if (p) {
881 /*
882 * Verify the string as this thing may have come from
883 * the user. There must be either one "%d" and no other "%"
884 * characters.
885 */
886 if (p[1] != 'd' || strchr(p + 2, '%'))
887 return -EINVAL;
888
889 /* Use one page as a bit array of possible slots */
890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
891 if (!inuse)
892 return -ENOMEM;
893
894 for_each_netdev(net, d) {
895 if (!sscanf(d->name, name, &i))
896 continue;
897 if (i < 0 || i >= max_netdevices)
898 continue;
899
900 /* avoid cases where sscanf is not exact inverse of printf */
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!strncmp(buf, d->name, IFNAMSIZ))
903 set_bit(i, inuse);
904 }
905
906 i = find_first_zero_bit(inuse, max_netdevices);
907 free_page((unsigned long) inuse);
908 }
909
910 if (buf != name)
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!__dev_get_by_name(net, buf))
913 return i;
914
915 /* It is possible to run out of possible slots
916 * when the name is long and there isn't enough space left
917 * for the digits, or if all bits are used.
918 */
919 return -ENFILE;
920 }
921
922 /**
923 * dev_alloc_name - allocate a name for a device
924 * @dev: device
925 * @name: name format string
926 *
927 * Passed a format string - eg "lt%d" it will try and find a suitable
928 * id. It scans list of devices to build up a free map, then chooses
929 * the first empty slot. The caller must hold the dev_base or rtnl lock
930 * while allocating the name and adding the device in order to avoid
931 * duplicates.
932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933 * Returns the number of the unit assigned or a negative errno code.
934 */
935
936 int dev_alloc_name(struct net_device *dev, const char *name)
937 {
938 char buf[IFNAMSIZ];
939 struct net *net;
940 int ret;
941
942 BUG_ON(!dev_net(dev));
943 net = dev_net(dev);
944 ret = __dev_alloc_name(net, name, buf);
945 if (ret >= 0)
946 strlcpy(dev->name, buf, IFNAMSIZ);
947 return ret;
948 }
949 EXPORT_SYMBOL(dev_alloc_name);
950
951 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
952 {
953 struct net *net;
954
955 BUG_ON(!dev_net(dev));
956 net = dev_net(dev);
957
958 if (!dev_valid_name(name))
959 return -EINVAL;
960
961 if (fmt && strchr(name, '%'))
962 return dev_alloc_name(dev, name);
963 else if (__dev_get_by_name(net, name))
964 return -EEXIST;
965 else if (dev->name != name)
966 strlcpy(dev->name, name, IFNAMSIZ);
967
968 return 0;
969 }
970
971 /**
972 * dev_change_name - change name of a device
973 * @dev: device
974 * @newname: name (or format string) must be at least IFNAMSIZ
975 *
976 * Change name of a device, can pass format strings "eth%d".
977 * for wildcarding.
978 */
979 int dev_change_name(struct net_device *dev, const char *newname)
980 {
981 char oldname[IFNAMSIZ];
982 int err = 0;
983 int ret;
984 struct net *net;
985
986 ASSERT_RTNL();
987 BUG_ON(!dev_net(dev));
988
989 net = dev_net(dev);
990 if (dev->flags & IFF_UP)
991 return -EBUSY;
992
993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
994 return 0;
995
996 memcpy(oldname, dev->name, IFNAMSIZ);
997
998 err = dev_get_valid_name(dev, newname, 1);
999 if (err < 0)
1000 return err;
1001
1002 rollback:
1003 ret = device_rename(&dev->dev, dev->name);
1004 if (ret) {
1005 memcpy(dev->name, oldname, IFNAMSIZ);
1006 return ret;
1007 }
1008
1009 write_lock_bh(&dev_base_lock);
1010 hlist_del(&dev->name_hlist);
1011 write_unlock_bh(&dev_base_lock);
1012
1013 synchronize_rcu();
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 write_unlock_bh(&dev_base_lock);
1018
1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 ret = notifier_to_errno(ret);
1021
1022 if (ret) {
1023 /* err >= 0 after dev_alloc_name() or stores the first errno */
1024 if (err >= 0) {
1025 err = ret;
1026 memcpy(dev->name, oldname, IFNAMSIZ);
1027 goto rollback;
1028 } else {
1029 printk(KERN_ERR
1030 "%s: name change rollback failed: %d.\n",
1031 dev->name, ret);
1032 }
1033 }
1034
1035 return err;
1036 }
1037
1038 /**
1039 * dev_set_alias - change ifalias of a device
1040 * @dev: device
1041 * @alias: name up to IFALIASZ
1042 * @len: limit of bytes to copy from info
1043 *
1044 * Set ifalias for a device,
1045 */
1046 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1047 {
1048 ASSERT_RTNL();
1049
1050 if (len >= IFALIASZ)
1051 return -EINVAL;
1052
1053 if (!len) {
1054 if (dev->ifalias) {
1055 kfree(dev->ifalias);
1056 dev->ifalias = NULL;
1057 }
1058 return 0;
1059 }
1060
1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1062 if (!dev->ifalias)
1063 return -ENOMEM;
1064
1065 strlcpy(dev->ifalias, alias, len+1);
1066 return len;
1067 }
1068
1069
1070 /**
1071 * netdev_features_change - device changes features
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed features.
1075 */
1076 void netdev_features_change(struct net_device *dev)
1077 {
1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1079 }
1080 EXPORT_SYMBOL(netdev_features_change);
1081
1082 /**
1083 * netdev_state_change - device changes state
1084 * @dev: device to cause notification
1085 *
1086 * Called to indicate a device has changed state. This function calls
1087 * the notifier chains for netdev_chain and sends a NEWLINK message
1088 * to the routing socket.
1089 */
1090 void netdev_state_change(struct net_device *dev)
1091 {
1092 if (dev->flags & IFF_UP) {
1093 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1095 }
1096 }
1097 EXPORT_SYMBOL(netdev_state_change);
1098
1099 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1100 {
1101 return call_netdevice_notifiers(event, dev);
1102 }
1103 EXPORT_SYMBOL(netdev_bonding_change);
1104
1105 /**
1106 * dev_load - load a network module
1107 * @net: the applicable net namespace
1108 * @name: name of interface
1109 *
1110 * If a network interface is not present and the process has suitable
1111 * privileges this function loads the module. If module loading is not
1112 * available in this kernel then it becomes a nop.
1113 */
1114
1115 void dev_load(struct net *net, const char *name)
1116 {
1117 struct net_device *dev;
1118 int no_module;
1119
1120 rcu_read_lock();
1121 dev = dev_get_by_name_rcu(net, name);
1122 rcu_read_unlock();
1123
1124 no_module = !dev;
1125 if (no_module && capable(CAP_NET_ADMIN))
1126 no_module = request_module("netdev-%s", name);
1127 if (no_module && capable(CAP_SYS_MODULE)) {
1128 if (!request_module("%s", name))
1129 pr_err("Loading kernel module for a network device "
1130 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s "
1131 "instead\n", name);
1132 }
1133 }
1134 EXPORT_SYMBOL(dev_load);
1135
1136 static int __dev_open(struct net_device *dev)
1137 {
1138 const struct net_device_ops *ops = dev->netdev_ops;
1139 int ret;
1140
1141 ASSERT_RTNL();
1142
1143 if (!netif_device_present(dev))
1144 return -ENODEV;
1145
1146 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1147 ret = notifier_to_errno(ret);
1148 if (ret)
1149 return ret;
1150
1151 set_bit(__LINK_STATE_START, &dev->state);
1152
1153 if (ops->ndo_validate_addr)
1154 ret = ops->ndo_validate_addr(dev);
1155
1156 if (!ret && ops->ndo_open)
1157 ret = ops->ndo_open(dev);
1158
1159 if (ret)
1160 clear_bit(__LINK_STATE_START, &dev->state);
1161 else {
1162 dev->flags |= IFF_UP;
1163 net_dmaengine_get();
1164 dev_set_rx_mode(dev);
1165 dev_activate(dev);
1166 }
1167
1168 return ret;
1169 }
1170
1171 /**
1172 * dev_open - prepare an interface for use.
1173 * @dev: device to open
1174 *
1175 * Takes a device from down to up state. The device's private open
1176 * function is invoked and then the multicast lists are loaded. Finally
1177 * the device is moved into the up state and a %NETDEV_UP message is
1178 * sent to the netdev notifier chain.
1179 *
1180 * Calling this function on an active interface is a nop. On a failure
1181 * a negative errno code is returned.
1182 */
1183 int dev_open(struct net_device *dev)
1184 {
1185 int ret;
1186
1187 if (dev->flags & IFF_UP)
1188 return 0;
1189
1190 ret = __dev_open(dev);
1191 if (ret < 0)
1192 return ret;
1193
1194 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1195 call_netdevice_notifiers(NETDEV_UP, dev);
1196
1197 return ret;
1198 }
1199 EXPORT_SYMBOL(dev_open);
1200
1201 static int __dev_close_many(struct list_head *head)
1202 {
1203 struct net_device *dev;
1204
1205 ASSERT_RTNL();
1206 might_sleep();
1207
1208 list_for_each_entry(dev, head, unreg_list) {
1209 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1210
1211 clear_bit(__LINK_STATE_START, &dev->state);
1212
1213 /* Synchronize to scheduled poll. We cannot touch poll list, it
1214 * can be even on different cpu. So just clear netif_running().
1215 *
1216 * dev->stop() will invoke napi_disable() on all of it's
1217 * napi_struct instances on this device.
1218 */
1219 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1220 }
1221
1222 dev_deactivate_many(head);
1223
1224 list_for_each_entry(dev, head, unreg_list) {
1225 const struct net_device_ops *ops = dev->netdev_ops;
1226
1227 /*
1228 * Call the device specific close. This cannot fail.
1229 * Only if device is UP
1230 *
1231 * We allow it to be called even after a DETACH hot-plug
1232 * event.
1233 */
1234 if (ops->ndo_stop)
1235 ops->ndo_stop(dev);
1236
1237 dev->flags &= ~IFF_UP;
1238 net_dmaengine_put();
1239 }
1240
1241 return 0;
1242 }
1243
1244 static int __dev_close(struct net_device *dev)
1245 {
1246 int retval;
1247 LIST_HEAD(single);
1248
1249 list_add(&dev->unreg_list, &single);
1250 retval = __dev_close_many(&single);
1251 list_del(&single);
1252 return retval;
1253 }
1254
1255 static int dev_close_many(struct list_head *head)
1256 {
1257 struct net_device *dev, *tmp;
1258 LIST_HEAD(tmp_list);
1259
1260 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1261 if (!(dev->flags & IFF_UP))
1262 list_move(&dev->unreg_list, &tmp_list);
1263
1264 __dev_close_many(head);
1265
1266 list_for_each_entry(dev, head, unreg_list) {
1267 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1268 call_netdevice_notifiers(NETDEV_DOWN, dev);
1269 }
1270
1271 /* rollback_registered_many needs the complete original list */
1272 list_splice(&tmp_list, head);
1273 return 0;
1274 }
1275
1276 /**
1277 * dev_close - shutdown an interface.
1278 * @dev: device to shutdown
1279 *
1280 * This function moves an active device into down state. A
1281 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1282 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1283 * chain.
1284 */
1285 int dev_close(struct net_device *dev)
1286 {
1287 LIST_HEAD(single);
1288
1289 list_add(&dev->unreg_list, &single);
1290 dev_close_many(&single);
1291 list_del(&single);
1292 return 0;
1293 }
1294 EXPORT_SYMBOL(dev_close);
1295
1296
1297 /**
1298 * dev_disable_lro - disable Large Receive Offload on a device
1299 * @dev: device
1300 *
1301 * Disable Large Receive Offload (LRO) on a net device. Must be
1302 * called under RTNL. This is needed if received packets may be
1303 * forwarded to another interface.
1304 */
1305 void dev_disable_lro(struct net_device *dev)
1306 {
1307 u32 flags;
1308
1309 if (dev->ethtool_ops && dev->ethtool_ops->get_flags)
1310 flags = dev->ethtool_ops->get_flags(dev);
1311 else
1312 flags = ethtool_op_get_flags(dev);
1313
1314 if (!(flags & ETH_FLAG_LRO))
1315 return;
1316
1317 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO);
1318 WARN_ON(dev->features & NETIF_F_LRO);
1319 }
1320 EXPORT_SYMBOL(dev_disable_lro);
1321
1322
1323 static int dev_boot_phase = 1;
1324
1325 /**
1326 * register_netdevice_notifier - register a network notifier block
1327 * @nb: notifier
1328 *
1329 * Register a notifier to be called when network device events occur.
1330 * The notifier passed is linked into the kernel structures and must
1331 * not be reused until it has been unregistered. A negative errno code
1332 * is returned on a failure.
1333 *
1334 * When registered all registration and up events are replayed
1335 * to the new notifier to allow device to have a race free
1336 * view of the network device list.
1337 */
1338
1339 int register_netdevice_notifier(struct notifier_block *nb)
1340 {
1341 struct net_device *dev;
1342 struct net_device *last;
1343 struct net *net;
1344 int err;
1345
1346 rtnl_lock();
1347 err = raw_notifier_chain_register(&netdev_chain, nb);
1348 if (err)
1349 goto unlock;
1350 if (dev_boot_phase)
1351 goto unlock;
1352 for_each_net(net) {
1353 for_each_netdev(net, dev) {
1354 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1355 err = notifier_to_errno(err);
1356 if (err)
1357 goto rollback;
1358
1359 if (!(dev->flags & IFF_UP))
1360 continue;
1361
1362 nb->notifier_call(nb, NETDEV_UP, dev);
1363 }
1364 }
1365
1366 unlock:
1367 rtnl_unlock();
1368 return err;
1369
1370 rollback:
1371 last = dev;
1372 for_each_net(net) {
1373 for_each_netdev(net, dev) {
1374 if (dev == last)
1375 break;
1376
1377 if (dev->flags & IFF_UP) {
1378 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1379 nb->notifier_call(nb, NETDEV_DOWN, dev);
1380 }
1381 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1382 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1383 }
1384 }
1385
1386 raw_notifier_chain_unregister(&netdev_chain, nb);
1387 goto unlock;
1388 }
1389 EXPORT_SYMBOL(register_netdevice_notifier);
1390
1391 /**
1392 * unregister_netdevice_notifier - unregister a network notifier block
1393 * @nb: notifier
1394 *
1395 * Unregister a notifier previously registered by
1396 * register_netdevice_notifier(). The notifier is unlinked into the
1397 * kernel structures and may then be reused. A negative errno code
1398 * is returned on a failure.
1399 */
1400
1401 int unregister_netdevice_notifier(struct notifier_block *nb)
1402 {
1403 int err;
1404
1405 rtnl_lock();
1406 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1407 rtnl_unlock();
1408 return err;
1409 }
1410 EXPORT_SYMBOL(unregister_netdevice_notifier);
1411
1412 /**
1413 * call_netdevice_notifiers - call all network notifier blocks
1414 * @val: value passed unmodified to notifier function
1415 * @dev: net_device pointer passed unmodified to notifier function
1416 *
1417 * Call all network notifier blocks. Parameters and return value
1418 * are as for raw_notifier_call_chain().
1419 */
1420
1421 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1422 {
1423 ASSERT_RTNL();
1424 return raw_notifier_call_chain(&netdev_chain, val, dev);
1425 }
1426 EXPORT_SYMBOL(call_netdevice_notifiers);
1427
1428 /* When > 0 there are consumers of rx skb time stamps */
1429 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1430
1431 void net_enable_timestamp(void)
1432 {
1433 atomic_inc(&netstamp_needed);
1434 }
1435 EXPORT_SYMBOL(net_enable_timestamp);
1436
1437 void net_disable_timestamp(void)
1438 {
1439 atomic_dec(&netstamp_needed);
1440 }
1441 EXPORT_SYMBOL(net_disable_timestamp);
1442
1443 static inline void net_timestamp_set(struct sk_buff *skb)
1444 {
1445 if (atomic_read(&netstamp_needed))
1446 __net_timestamp(skb);
1447 else
1448 skb->tstamp.tv64 = 0;
1449 }
1450
1451 static inline void net_timestamp_check(struct sk_buff *skb)
1452 {
1453 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1454 __net_timestamp(skb);
1455 }
1456
1457 static inline bool is_skb_forwardable(struct net_device *dev,
1458 struct sk_buff *skb)
1459 {
1460 unsigned int len;
1461
1462 if (!(dev->flags & IFF_UP))
1463 return false;
1464
1465 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1466 if (skb->len <= len)
1467 return true;
1468
1469 /* if TSO is enabled, we don't care about the length as the packet
1470 * could be forwarded without being segmented before
1471 */
1472 if (skb_is_gso(skb))
1473 return true;
1474
1475 return false;
1476 }
1477
1478 /**
1479 * dev_forward_skb - loopback an skb to another netif
1480 *
1481 * @dev: destination network device
1482 * @skb: buffer to forward
1483 *
1484 * return values:
1485 * NET_RX_SUCCESS (no congestion)
1486 * NET_RX_DROP (packet was dropped, but freed)
1487 *
1488 * dev_forward_skb can be used for injecting an skb from the
1489 * start_xmit function of one device into the receive queue
1490 * of another device.
1491 *
1492 * The receiving device may be in another namespace, so
1493 * we have to clear all information in the skb that could
1494 * impact namespace isolation.
1495 */
1496 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1497 {
1498 skb_orphan(skb);
1499 nf_reset(skb);
1500
1501 if (unlikely(!is_skb_forwardable(dev, skb))) {
1502 atomic_long_inc(&dev->rx_dropped);
1503 kfree_skb(skb);
1504 return NET_RX_DROP;
1505 }
1506 skb_set_dev(skb, dev);
1507 skb->tstamp.tv64 = 0;
1508 skb->pkt_type = PACKET_HOST;
1509 skb->protocol = eth_type_trans(skb, dev);
1510 return netif_rx(skb);
1511 }
1512 EXPORT_SYMBOL_GPL(dev_forward_skb);
1513
1514 static inline int deliver_skb(struct sk_buff *skb,
1515 struct packet_type *pt_prev,
1516 struct net_device *orig_dev)
1517 {
1518 atomic_inc(&skb->users);
1519 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1520 }
1521
1522 /*
1523 * Support routine. Sends outgoing frames to any network
1524 * taps currently in use.
1525 */
1526
1527 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1528 {
1529 struct packet_type *ptype;
1530 struct sk_buff *skb2 = NULL;
1531 struct packet_type *pt_prev = NULL;
1532
1533 rcu_read_lock();
1534 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1535 /* Never send packets back to the socket
1536 * they originated from - MvS (miquels@drinkel.ow.org)
1537 */
1538 if ((ptype->dev == dev || !ptype->dev) &&
1539 (ptype->af_packet_priv == NULL ||
1540 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1541 if (pt_prev) {
1542 deliver_skb(skb2, pt_prev, skb->dev);
1543 pt_prev = ptype;
1544 continue;
1545 }
1546
1547 skb2 = skb_clone(skb, GFP_ATOMIC);
1548 if (!skb2)
1549 break;
1550
1551 net_timestamp_set(skb2);
1552
1553 /* skb->nh should be correctly
1554 set by sender, so that the second statement is
1555 just protection against buggy protocols.
1556 */
1557 skb_reset_mac_header(skb2);
1558
1559 if (skb_network_header(skb2) < skb2->data ||
1560 skb2->network_header > skb2->tail) {
1561 if (net_ratelimit())
1562 printk(KERN_CRIT "protocol %04x is "
1563 "buggy, dev %s\n",
1564 ntohs(skb2->protocol),
1565 dev->name);
1566 skb_reset_network_header(skb2);
1567 }
1568
1569 skb2->transport_header = skb2->network_header;
1570 skb2->pkt_type = PACKET_OUTGOING;
1571 pt_prev = ptype;
1572 }
1573 }
1574 if (pt_prev)
1575 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1576 rcu_read_unlock();
1577 }
1578
1579 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1580 * @dev: Network device
1581 * @txq: number of queues available
1582 *
1583 * If real_num_tx_queues is changed the tc mappings may no longer be
1584 * valid. To resolve this verify the tc mapping remains valid and if
1585 * not NULL the mapping. With no priorities mapping to this
1586 * offset/count pair it will no longer be used. In the worst case TC0
1587 * is invalid nothing can be done so disable priority mappings. If is
1588 * expected that drivers will fix this mapping if they can before
1589 * calling netif_set_real_num_tx_queues.
1590 */
1591 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1592 {
1593 int i;
1594 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1595
1596 /* If TC0 is invalidated disable TC mapping */
1597 if (tc->offset + tc->count > txq) {
1598 pr_warning("Number of in use tx queues changed "
1599 "invalidating tc mappings. Priority "
1600 "traffic classification disabled!\n");
1601 dev->num_tc = 0;
1602 return;
1603 }
1604
1605 /* Invalidated prio to tc mappings set to TC0 */
1606 for (i = 1; i < TC_BITMASK + 1; i++) {
1607 int q = netdev_get_prio_tc_map(dev, i);
1608
1609 tc = &dev->tc_to_txq[q];
1610 if (tc->offset + tc->count > txq) {
1611 pr_warning("Number of in use tx queues "
1612 "changed. Priority %i to tc "
1613 "mapping %i is no longer valid "
1614 "setting map to 0\n",
1615 i, q);
1616 netdev_set_prio_tc_map(dev, i, 0);
1617 }
1618 }
1619 }
1620
1621 /*
1622 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1623 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1624 */
1625 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1626 {
1627 int rc;
1628
1629 if (txq < 1 || txq > dev->num_tx_queues)
1630 return -EINVAL;
1631
1632 if (dev->reg_state == NETREG_REGISTERED ||
1633 dev->reg_state == NETREG_UNREGISTERING) {
1634 ASSERT_RTNL();
1635
1636 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1637 txq);
1638 if (rc)
1639 return rc;
1640
1641 if (dev->num_tc)
1642 netif_setup_tc(dev, txq);
1643
1644 if (txq < dev->real_num_tx_queues)
1645 qdisc_reset_all_tx_gt(dev, txq);
1646 }
1647
1648 dev->real_num_tx_queues = txq;
1649 return 0;
1650 }
1651 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1652
1653 #ifdef CONFIG_RPS
1654 /**
1655 * netif_set_real_num_rx_queues - set actual number of RX queues used
1656 * @dev: Network device
1657 * @rxq: Actual number of RX queues
1658 *
1659 * This must be called either with the rtnl_lock held or before
1660 * registration of the net device. Returns 0 on success, or a
1661 * negative error code. If called before registration, it always
1662 * succeeds.
1663 */
1664 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1665 {
1666 int rc;
1667
1668 if (rxq < 1 || rxq > dev->num_rx_queues)
1669 return -EINVAL;
1670
1671 if (dev->reg_state == NETREG_REGISTERED) {
1672 ASSERT_RTNL();
1673
1674 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1675 rxq);
1676 if (rc)
1677 return rc;
1678 }
1679
1680 dev->real_num_rx_queues = rxq;
1681 return 0;
1682 }
1683 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1684 #endif
1685
1686 static inline void __netif_reschedule(struct Qdisc *q)
1687 {
1688 struct softnet_data *sd;
1689 unsigned long flags;
1690
1691 local_irq_save(flags);
1692 sd = &__get_cpu_var(softnet_data);
1693 q->next_sched = NULL;
1694 *sd->output_queue_tailp = q;
1695 sd->output_queue_tailp = &q->next_sched;
1696 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1697 local_irq_restore(flags);
1698 }
1699
1700 void __netif_schedule(struct Qdisc *q)
1701 {
1702 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1703 __netif_reschedule(q);
1704 }
1705 EXPORT_SYMBOL(__netif_schedule);
1706
1707 void dev_kfree_skb_irq(struct sk_buff *skb)
1708 {
1709 if (atomic_dec_and_test(&skb->users)) {
1710 struct softnet_data *sd;
1711 unsigned long flags;
1712
1713 local_irq_save(flags);
1714 sd = &__get_cpu_var(softnet_data);
1715 skb->next = sd->completion_queue;
1716 sd->completion_queue = skb;
1717 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1718 local_irq_restore(flags);
1719 }
1720 }
1721 EXPORT_SYMBOL(dev_kfree_skb_irq);
1722
1723 void dev_kfree_skb_any(struct sk_buff *skb)
1724 {
1725 if (in_irq() || irqs_disabled())
1726 dev_kfree_skb_irq(skb);
1727 else
1728 dev_kfree_skb(skb);
1729 }
1730 EXPORT_SYMBOL(dev_kfree_skb_any);
1731
1732
1733 /**
1734 * netif_device_detach - mark device as removed
1735 * @dev: network device
1736 *
1737 * Mark device as removed from system and therefore no longer available.
1738 */
1739 void netif_device_detach(struct net_device *dev)
1740 {
1741 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1742 netif_running(dev)) {
1743 netif_tx_stop_all_queues(dev);
1744 }
1745 }
1746 EXPORT_SYMBOL(netif_device_detach);
1747
1748 /**
1749 * netif_device_attach - mark device as attached
1750 * @dev: network device
1751 *
1752 * Mark device as attached from system and restart if needed.
1753 */
1754 void netif_device_attach(struct net_device *dev)
1755 {
1756 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1757 netif_running(dev)) {
1758 netif_tx_wake_all_queues(dev);
1759 __netdev_watchdog_up(dev);
1760 }
1761 }
1762 EXPORT_SYMBOL(netif_device_attach);
1763
1764 /**
1765 * skb_dev_set -- assign a new device to a buffer
1766 * @skb: buffer for the new device
1767 * @dev: network device
1768 *
1769 * If an skb is owned by a device already, we have to reset
1770 * all data private to the namespace a device belongs to
1771 * before assigning it a new device.
1772 */
1773 #ifdef CONFIG_NET_NS
1774 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1775 {
1776 skb_dst_drop(skb);
1777 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1778 secpath_reset(skb);
1779 nf_reset(skb);
1780 skb_init_secmark(skb);
1781 skb->mark = 0;
1782 skb->priority = 0;
1783 skb->nf_trace = 0;
1784 skb->ipvs_property = 0;
1785 #ifdef CONFIG_NET_SCHED
1786 skb->tc_index = 0;
1787 #endif
1788 }
1789 skb->dev = dev;
1790 }
1791 EXPORT_SYMBOL(skb_set_dev);
1792 #endif /* CONFIG_NET_NS */
1793
1794 /*
1795 * Invalidate hardware checksum when packet is to be mangled, and
1796 * complete checksum manually on outgoing path.
1797 */
1798 int skb_checksum_help(struct sk_buff *skb)
1799 {
1800 __wsum csum;
1801 int ret = 0, offset;
1802
1803 if (skb->ip_summed == CHECKSUM_COMPLETE)
1804 goto out_set_summed;
1805
1806 if (unlikely(skb_shinfo(skb)->gso_size)) {
1807 /* Let GSO fix up the checksum. */
1808 goto out_set_summed;
1809 }
1810
1811 offset = skb_checksum_start_offset(skb);
1812 BUG_ON(offset >= skb_headlen(skb));
1813 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1814
1815 offset += skb->csum_offset;
1816 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1817
1818 if (skb_cloned(skb) &&
1819 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1820 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1821 if (ret)
1822 goto out;
1823 }
1824
1825 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1826 out_set_summed:
1827 skb->ip_summed = CHECKSUM_NONE;
1828 out:
1829 return ret;
1830 }
1831 EXPORT_SYMBOL(skb_checksum_help);
1832
1833 /**
1834 * skb_gso_segment - Perform segmentation on skb.
1835 * @skb: buffer to segment
1836 * @features: features for the output path (see dev->features)
1837 *
1838 * This function segments the given skb and returns a list of segments.
1839 *
1840 * It may return NULL if the skb requires no segmentation. This is
1841 * only possible when GSO is used for verifying header integrity.
1842 */
1843 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1844 {
1845 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1846 struct packet_type *ptype;
1847 __be16 type = skb->protocol;
1848 int vlan_depth = ETH_HLEN;
1849 int err;
1850
1851 while (type == htons(ETH_P_8021Q)) {
1852 struct vlan_hdr *vh;
1853
1854 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1855 return ERR_PTR(-EINVAL);
1856
1857 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1858 type = vh->h_vlan_encapsulated_proto;
1859 vlan_depth += VLAN_HLEN;
1860 }
1861
1862 skb_reset_mac_header(skb);
1863 skb->mac_len = skb->network_header - skb->mac_header;
1864 __skb_pull(skb, skb->mac_len);
1865
1866 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1867 struct net_device *dev = skb->dev;
1868 struct ethtool_drvinfo info = {};
1869
1870 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1871 dev->ethtool_ops->get_drvinfo(dev, &info);
1872
1873 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1874 info.driver, dev ? dev->features : 0L,
1875 skb->sk ? skb->sk->sk_route_caps : 0L,
1876 skb->len, skb->data_len, skb->ip_summed);
1877
1878 if (skb_header_cloned(skb) &&
1879 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1880 return ERR_PTR(err);
1881 }
1882
1883 rcu_read_lock();
1884 list_for_each_entry_rcu(ptype,
1885 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1886 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1887 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1888 err = ptype->gso_send_check(skb);
1889 segs = ERR_PTR(err);
1890 if (err || skb_gso_ok(skb, features))
1891 break;
1892 __skb_push(skb, (skb->data -
1893 skb_network_header(skb)));
1894 }
1895 segs = ptype->gso_segment(skb, features);
1896 break;
1897 }
1898 }
1899 rcu_read_unlock();
1900
1901 __skb_push(skb, skb->data - skb_mac_header(skb));
1902
1903 return segs;
1904 }
1905 EXPORT_SYMBOL(skb_gso_segment);
1906
1907 /* Take action when hardware reception checksum errors are detected. */
1908 #ifdef CONFIG_BUG
1909 void netdev_rx_csum_fault(struct net_device *dev)
1910 {
1911 if (net_ratelimit()) {
1912 printk(KERN_ERR "%s: hw csum failure.\n",
1913 dev ? dev->name : "<unknown>");
1914 dump_stack();
1915 }
1916 }
1917 EXPORT_SYMBOL(netdev_rx_csum_fault);
1918 #endif
1919
1920 /* Actually, we should eliminate this check as soon as we know, that:
1921 * 1. IOMMU is present and allows to map all the memory.
1922 * 2. No high memory really exists on this machine.
1923 */
1924
1925 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1926 {
1927 #ifdef CONFIG_HIGHMEM
1928 int i;
1929 if (!(dev->features & NETIF_F_HIGHDMA)) {
1930 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1931 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1932 return 1;
1933 }
1934
1935 if (PCI_DMA_BUS_IS_PHYS) {
1936 struct device *pdev = dev->dev.parent;
1937
1938 if (!pdev)
1939 return 0;
1940 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1941 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1942 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1943 return 1;
1944 }
1945 }
1946 #endif
1947 return 0;
1948 }
1949
1950 struct dev_gso_cb {
1951 void (*destructor)(struct sk_buff *skb);
1952 };
1953
1954 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1955
1956 static void dev_gso_skb_destructor(struct sk_buff *skb)
1957 {
1958 struct dev_gso_cb *cb;
1959
1960 do {
1961 struct sk_buff *nskb = skb->next;
1962
1963 skb->next = nskb->next;
1964 nskb->next = NULL;
1965 kfree_skb(nskb);
1966 } while (skb->next);
1967
1968 cb = DEV_GSO_CB(skb);
1969 if (cb->destructor)
1970 cb->destructor(skb);
1971 }
1972
1973 /**
1974 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1975 * @skb: buffer to segment
1976 * @features: device features as applicable to this skb
1977 *
1978 * This function segments the given skb and stores the list of segments
1979 * in skb->next.
1980 */
1981 static int dev_gso_segment(struct sk_buff *skb, int features)
1982 {
1983 struct sk_buff *segs;
1984
1985 segs = skb_gso_segment(skb, features);
1986
1987 /* Verifying header integrity only. */
1988 if (!segs)
1989 return 0;
1990
1991 if (IS_ERR(segs))
1992 return PTR_ERR(segs);
1993
1994 skb->next = segs;
1995 DEV_GSO_CB(skb)->destructor = skb->destructor;
1996 skb->destructor = dev_gso_skb_destructor;
1997
1998 return 0;
1999 }
2000
2001 /*
2002 * Try to orphan skb early, right before transmission by the device.
2003 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2004 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2005 */
2006 static inline void skb_orphan_try(struct sk_buff *skb)
2007 {
2008 struct sock *sk = skb->sk;
2009
2010 if (sk && !skb_shinfo(skb)->tx_flags) {
2011 /* skb_tx_hash() wont be able to get sk.
2012 * We copy sk_hash into skb->rxhash
2013 */
2014 if (!skb->rxhash)
2015 skb->rxhash = sk->sk_hash;
2016 skb_orphan(skb);
2017 }
2018 }
2019
2020 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2021 {
2022 return ((features & NETIF_F_GEN_CSUM) ||
2023 ((features & NETIF_F_V4_CSUM) &&
2024 protocol == htons(ETH_P_IP)) ||
2025 ((features & NETIF_F_V6_CSUM) &&
2026 protocol == htons(ETH_P_IPV6)) ||
2027 ((features & NETIF_F_FCOE_CRC) &&
2028 protocol == htons(ETH_P_FCOE)));
2029 }
2030
2031 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2032 {
2033 if (!can_checksum_protocol(features, protocol)) {
2034 features &= ~NETIF_F_ALL_CSUM;
2035 features &= ~NETIF_F_SG;
2036 } else if (illegal_highdma(skb->dev, skb)) {
2037 features &= ~NETIF_F_SG;
2038 }
2039
2040 return features;
2041 }
2042
2043 u32 netif_skb_features(struct sk_buff *skb)
2044 {
2045 __be16 protocol = skb->protocol;
2046 u32 features = skb->dev->features;
2047
2048 if (protocol == htons(ETH_P_8021Q)) {
2049 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2050 protocol = veh->h_vlan_encapsulated_proto;
2051 } else if (!vlan_tx_tag_present(skb)) {
2052 return harmonize_features(skb, protocol, features);
2053 }
2054
2055 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2056
2057 if (protocol != htons(ETH_P_8021Q)) {
2058 return harmonize_features(skb, protocol, features);
2059 } else {
2060 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2061 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2062 return harmonize_features(skb, protocol, features);
2063 }
2064 }
2065 EXPORT_SYMBOL(netif_skb_features);
2066
2067 /*
2068 * Returns true if either:
2069 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2070 * 2. skb is fragmented and the device does not support SG, or if
2071 * at least one of fragments is in highmem and device does not
2072 * support DMA from it.
2073 */
2074 static inline int skb_needs_linearize(struct sk_buff *skb,
2075 int features)
2076 {
2077 return skb_is_nonlinear(skb) &&
2078 ((skb_has_frag_list(skb) &&
2079 !(features & NETIF_F_FRAGLIST)) ||
2080 (skb_shinfo(skb)->nr_frags &&
2081 !(features & NETIF_F_SG)));
2082 }
2083
2084 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2085 struct netdev_queue *txq)
2086 {
2087 const struct net_device_ops *ops = dev->netdev_ops;
2088 int rc = NETDEV_TX_OK;
2089
2090 if (likely(!skb->next)) {
2091 u32 features;
2092
2093 /*
2094 * If device doesn't need skb->dst, release it right now while
2095 * its hot in this cpu cache
2096 */
2097 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2098 skb_dst_drop(skb);
2099
2100 if (!list_empty(&ptype_all))
2101 dev_queue_xmit_nit(skb, dev);
2102
2103 skb_orphan_try(skb);
2104
2105 features = netif_skb_features(skb);
2106
2107 if (vlan_tx_tag_present(skb) &&
2108 !(features & NETIF_F_HW_VLAN_TX)) {
2109 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2110 if (unlikely(!skb))
2111 goto out;
2112
2113 skb->vlan_tci = 0;
2114 }
2115
2116 if (netif_needs_gso(skb, features)) {
2117 if (unlikely(dev_gso_segment(skb, features)))
2118 goto out_kfree_skb;
2119 if (skb->next)
2120 goto gso;
2121 } else {
2122 if (skb_needs_linearize(skb, features) &&
2123 __skb_linearize(skb))
2124 goto out_kfree_skb;
2125
2126 /* If packet is not checksummed and device does not
2127 * support checksumming for this protocol, complete
2128 * checksumming here.
2129 */
2130 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2131 skb_set_transport_header(skb,
2132 skb_checksum_start_offset(skb));
2133 if (!(features & NETIF_F_ALL_CSUM) &&
2134 skb_checksum_help(skb))
2135 goto out_kfree_skb;
2136 }
2137 }
2138
2139 rc = ops->ndo_start_xmit(skb, dev);
2140 trace_net_dev_xmit(skb, rc);
2141 if (rc == NETDEV_TX_OK)
2142 txq_trans_update(txq);
2143 return rc;
2144 }
2145
2146 gso:
2147 do {
2148 struct sk_buff *nskb = skb->next;
2149
2150 skb->next = nskb->next;
2151 nskb->next = NULL;
2152
2153 /*
2154 * If device doesn't need nskb->dst, release it right now while
2155 * its hot in this cpu cache
2156 */
2157 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2158 skb_dst_drop(nskb);
2159
2160 rc = ops->ndo_start_xmit(nskb, dev);
2161 trace_net_dev_xmit(nskb, rc);
2162 if (unlikely(rc != NETDEV_TX_OK)) {
2163 if (rc & ~NETDEV_TX_MASK)
2164 goto out_kfree_gso_skb;
2165 nskb->next = skb->next;
2166 skb->next = nskb;
2167 return rc;
2168 }
2169 txq_trans_update(txq);
2170 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2171 return NETDEV_TX_BUSY;
2172 } while (skb->next);
2173
2174 out_kfree_gso_skb:
2175 if (likely(skb->next == NULL))
2176 skb->destructor = DEV_GSO_CB(skb)->destructor;
2177 out_kfree_skb:
2178 kfree_skb(skb);
2179 out:
2180 return rc;
2181 }
2182
2183 static u32 hashrnd __read_mostly;
2184
2185 /*
2186 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2187 * to be used as a distribution range.
2188 */
2189 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2190 unsigned int num_tx_queues)
2191 {
2192 u32 hash;
2193 u16 qoffset = 0;
2194 u16 qcount = num_tx_queues;
2195
2196 if (skb_rx_queue_recorded(skb)) {
2197 hash = skb_get_rx_queue(skb);
2198 while (unlikely(hash >= num_tx_queues))
2199 hash -= num_tx_queues;
2200 return hash;
2201 }
2202
2203 if (dev->num_tc) {
2204 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2205 qoffset = dev->tc_to_txq[tc].offset;
2206 qcount = dev->tc_to_txq[tc].count;
2207 }
2208
2209 if (skb->sk && skb->sk->sk_hash)
2210 hash = skb->sk->sk_hash;
2211 else
2212 hash = (__force u16) skb->protocol ^ skb->rxhash;
2213 hash = jhash_1word(hash, hashrnd);
2214
2215 return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2216 }
2217 EXPORT_SYMBOL(__skb_tx_hash);
2218
2219 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2220 {
2221 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2222 if (net_ratelimit()) {
2223 pr_warning("%s selects TX queue %d, but "
2224 "real number of TX queues is %d\n",
2225 dev->name, queue_index, dev->real_num_tx_queues);
2226 }
2227 return 0;
2228 }
2229 return queue_index;
2230 }
2231
2232 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2233 {
2234 #ifdef CONFIG_XPS
2235 struct xps_dev_maps *dev_maps;
2236 struct xps_map *map;
2237 int queue_index = -1;
2238
2239 rcu_read_lock();
2240 dev_maps = rcu_dereference(dev->xps_maps);
2241 if (dev_maps) {
2242 map = rcu_dereference(
2243 dev_maps->cpu_map[raw_smp_processor_id()]);
2244 if (map) {
2245 if (map->len == 1)
2246 queue_index = map->queues[0];
2247 else {
2248 u32 hash;
2249 if (skb->sk && skb->sk->sk_hash)
2250 hash = skb->sk->sk_hash;
2251 else
2252 hash = (__force u16) skb->protocol ^
2253 skb->rxhash;
2254 hash = jhash_1word(hash, hashrnd);
2255 queue_index = map->queues[
2256 ((u64)hash * map->len) >> 32];
2257 }
2258 if (unlikely(queue_index >= dev->real_num_tx_queues))
2259 queue_index = -1;
2260 }
2261 }
2262 rcu_read_unlock();
2263
2264 return queue_index;
2265 #else
2266 return -1;
2267 #endif
2268 }
2269
2270 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2271 struct sk_buff *skb)
2272 {
2273 int queue_index;
2274 const struct net_device_ops *ops = dev->netdev_ops;
2275
2276 if (dev->real_num_tx_queues == 1)
2277 queue_index = 0;
2278 else if (ops->ndo_select_queue) {
2279 queue_index = ops->ndo_select_queue(dev, skb);
2280 queue_index = dev_cap_txqueue(dev, queue_index);
2281 } else {
2282 struct sock *sk = skb->sk;
2283 queue_index = sk_tx_queue_get(sk);
2284
2285 if (queue_index < 0 || skb->ooo_okay ||
2286 queue_index >= dev->real_num_tx_queues) {
2287 int old_index = queue_index;
2288
2289 queue_index = get_xps_queue(dev, skb);
2290 if (queue_index < 0)
2291 queue_index = skb_tx_hash(dev, skb);
2292
2293 if (queue_index != old_index && sk) {
2294 struct dst_entry *dst =
2295 rcu_dereference_check(sk->sk_dst_cache, 1);
2296
2297 if (dst && skb_dst(skb) == dst)
2298 sk_tx_queue_set(sk, queue_index);
2299 }
2300 }
2301 }
2302
2303 skb_set_queue_mapping(skb, queue_index);
2304 return netdev_get_tx_queue(dev, queue_index);
2305 }
2306
2307 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2308 struct net_device *dev,
2309 struct netdev_queue *txq)
2310 {
2311 spinlock_t *root_lock = qdisc_lock(q);
2312 bool contended;
2313 int rc;
2314
2315 qdisc_skb_cb(skb)->pkt_len = skb->len;
2316 qdisc_calculate_pkt_len(skb, q);
2317 /*
2318 * Heuristic to force contended enqueues to serialize on a
2319 * separate lock before trying to get qdisc main lock.
2320 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2321 * and dequeue packets faster.
2322 */
2323 contended = qdisc_is_running(q);
2324 if (unlikely(contended))
2325 spin_lock(&q->busylock);
2326
2327 spin_lock(root_lock);
2328 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2329 kfree_skb(skb);
2330 rc = NET_XMIT_DROP;
2331 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2332 qdisc_run_begin(q)) {
2333 /*
2334 * This is a work-conserving queue; there are no old skbs
2335 * waiting to be sent out; and the qdisc is not running -
2336 * xmit the skb directly.
2337 */
2338 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2339 skb_dst_force(skb);
2340
2341 qdisc_bstats_update(q, skb);
2342
2343 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2344 if (unlikely(contended)) {
2345 spin_unlock(&q->busylock);
2346 contended = false;
2347 }
2348 __qdisc_run(q);
2349 } else
2350 qdisc_run_end(q);
2351
2352 rc = NET_XMIT_SUCCESS;
2353 } else {
2354 skb_dst_force(skb);
2355 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2356 if (qdisc_run_begin(q)) {
2357 if (unlikely(contended)) {
2358 spin_unlock(&q->busylock);
2359 contended = false;
2360 }
2361 __qdisc_run(q);
2362 }
2363 }
2364 spin_unlock(root_lock);
2365 if (unlikely(contended))
2366 spin_unlock(&q->busylock);
2367 return rc;
2368 }
2369
2370 static DEFINE_PER_CPU(int, xmit_recursion);
2371 #define RECURSION_LIMIT 10
2372
2373 /**
2374 * dev_queue_xmit - transmit a buffer
2375 * @skb: buffer to transmit
2376 *
2377 * Queue a buffer for transmission to a network device. The caller must
2378 * have set the device and priority and built the buffer before calling
2379 * this function. The function can be called from an interrupt.
2380 *
2381 * A negative errno code is returned on a failure. A success does not
2382 * guarantee the frame will be transmitted as it may be dropped due
2383 * to congestion or traffic shaping.
2384 *
2385 * -----------------------------------------------------------------------------------
2386 * I notice this method can also return errors from the queue disciplines,
2387 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2388 * be positive.
2389 *
2390 * Regardless of the return value, the skb is consumed, so it is currently
2391 * difficult to retry a send to this method. (You can bump the ref count
2392 * before sending to hold a reference for retry if you are careful.)
2393 *
2394 * When calling this method, interrupts MUST be enabled. This is because
2395 * the BH enable code must have IRQs enabled so that it will not deadlock.
2396 * --BLG
2397 */
2398 int dev_queue_xmit(struct sk_buff *skb)
2399 {
2400 struct net_device *dev = skb->dev;
2401 struct netdev_queue *txq;
2402 struct Qdisc *q;
2403 int rc = -ENOMEM;
2404
2405 /* Disable soft irqs for various locks below. Also
2406 * stops preemption for RCU.
2407 */
2408 rcu_read_lock_bh();
2409
2410 txq = dev_pick_tx(dev, skb);
2411 q = rcu_dereference_bh(txq->qdisc);
2412
2413 #ifdef CONFIG_NET_CLS_ACT
2414 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2415 #endif
2416 trace_net_dev_queue(skb);
2417 if (q->enqueue) {
2418 rc = __dev_xmit_skb(skb, q, dev, txq);
2419 goto out;
2420 }
2421
2422 /* The device has no queue. Common case for software devices:
2423 loopback, all the sorts of tunnels...
2424
2425 Really, it is unlikely that netif_tx_lock protection is necessary
2426 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2427 counters.)
2428 However, it is possible, that they rely on protection
2429 made by us here.
2430
2431 Check this and shot the lock. It is not prone from deadlocks.
2432 Either shot noqueue qdisc, it is even simpler 8)
2433 */
2434 if (dev->flags & IFF_UP) {
2435 int cpu = smp_processor_id(); /* ok because BHs are off */
2436
2437 if (txq->xmit_lock_owner != cpu) {
2438
2439 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2440 goto recursion_alert;
2441
2442 HARD_TX_LOCK(dev, txq, cpu);
2443
2444 if (!netif_tx_queue_stopped(txq)) {
2445 __this_cpu_inc(xmit_recursion);
2446 rc = dev_hard_start_xmit(skb, dev, txq);
2447 __this_cpu_dec(xmit_recursion);
2448 if (dev_xmit_complete(rc)) {
2449 HARD_TX_UNLOCK(dev, txq);
2450 goto out;
2451 }
2452 }
2453 HARD_TX_UNLOCK(dev, txq);
2454 if (net_ratelimit())
2455 printk(KERN_CRIT "Virtual device %s asks to "
2456 "queue packet!\n", dev->name);
2457 } else {
2458 /* Recursion is detected! It is possible,
2459 * unfortunately
2460 */
2461 recursion_alert:
2462 if (net_ratelimit())
2463 printk(KERN_CRIT "Dead loop on virtual device "
2464 "%s, fix it urgently!\n", dev->name);
2465 }
2466 }
2467
2468 rc = -ENETDOWN;
2469 rcu_read_unlock_bh();
2470
2471 kfree_skb(skb);
2472 return rc;
2473 out:
2474 rcu_read_unlock_bh();
2475 return rc;
2476 }
2477 EXPORT_SYMBOL(dev_queue_xmit);
2478
2479
2480 /*=======================================================================
2481 Receiver routines
2482 =======================================================================*/
2483
2484 int netdev_max_backlog __read_mostly = 1000;
2485 int netdev_tstamp_prequeue __read_mostly = 1;
2486 int netdev_budget __read_mostly = 300;
2487 int weight_p __read_mostly = 64; /* old backlog weight */
2488
2489 /* Called with irq disabled */
2490 static inline void ____napi_schedule(struct softnet_data *sd,
2491 struct napi_struct *napi)
2492 {
2493 list_add_tail(&napi->poll_list, &sd->poll_list);
2494 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2495 }
2496
2497 /*
2498 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2499 * and src/dst port numbers. Returns a non-zero hash number on success
2500 * and 0 on failure.
2501 */
2502 __u32 __skb_get_rxhash(struct sk_buff *skb)
2503 {
2504 int nhoff, hash = 0, poff;
2505 const struct ipv6hdr *ip6;
2506 const struct iphdr *ip;
2507 u8 ip_proto;
2508 u32 addr1, addr2, ihl;
2509 union {
2510 u32 v32;
2511 u16 v16[2];
2512 } ports;
2513
2514 nhoff = skb_network_offset(skb);
2515
2516 switch (skb->protocol) {
2517 case __constant_htons(ETH_P_IP):
2518 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2519 goto done;
2520
2521 ip = (const struct iphdr *) (skb->data + nhoff);
2522 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2523 ip_proto = 0;
2524 else
2525 ip_proto = ip->protocol;
2526 addr1 = (__force u32) ip->saddr;
2527 addr2 = (__force u32) ip->daddr;
2528 ihl = ip->ihl;
2529 break;
2530 case __constant_htons(ETH_P_IPV6):
2531 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2532 goto done;
2533
2534 ip6 = (const struct ipv6hdr *) (skb->data + nhoff);
2535 ip_proto = ip6->nexthdr;
2536 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2537 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2538 ihl = (40 >> 2);
2539 break;
2540 default:
2541 goto done;
2542 }
2543
2544 ports.v32 = 0;
2545 poff = proto_ports_offset(ip_proto);
2546 if (poff >= 0) {
2547 nhoff += ihl * 4 + poff;
2548 if (pskb_may_pull(skb, nhoff + 4)) {
2549 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2550 if (ports.v16[1] < ports.v16[0])
2551 swap(ports.v16[0], ports.v16[1]);
2552 }
2553 }
2554
2555 /* get a consistent hash (same value on both flow directions) */
2556 if (addr2 < addr1)
2557 swap(addr1, addr2);
2558
2559 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2560 if (!hash)
2561 hash = 1;
2562
2563 done:
2564 return hash;
2565 }
2566 EXPORT_SYMBOL(__skb_get_rxhash);
2567
2568 #ifdef CONFIG_RPS
2569
2570 /* One global table that all flow-based protocols share. */
2571 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2572 EXPORT_SYMBOL(rps_sock_flow_table);
2573
2574 static struct rps_dev_flow *
2575 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2576 struct rps_dev_flow *rflow, u16 next_cpu)
2577 {
2578 u16 tcpu;
2579
2580 tcpu = rflow->cpu = next_cpu;
2581 if (tcpu != RPS_NO_CPU) {
2582 #ifdef CONFIG_RFS_ACCEL
2583 struct netdev_rx_queue *rxqueue;
2584 struct rps_dev_flow_table *flow_table;
2585 struct rps_dev_flow *old_rflow;
2586 u32 flow_id;
2587 u16 rxq_index;
2588 int rc;
2589
2590 /* Should we steer this flow to a different hardware queue? */
2591 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2592 !(dev->features & NETIF_F_NTUPLE))
2593 goto out;
2594 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2595 if (rxq_index == skb_get_rx_queue(skb))
2596 goto out;
2597
2598 rxqueue = dev->_rx + rxq_index;
2599 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2600 if (!flow_table)
2601 goto out;
2602 flow_id = skb->rxhash & flow_table->mask;
2603 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2604 rxq_index, flow_id);
2605 if (rc < 0)
2606 goto out;
2607 old_rflow = rflow;
2608 rflow = &flow_table->flows[flow_id];
2609 rflow->cpu = next_cpu;
2610 rflow->filter = rc;
2611 if (old_rflow->filter == rflow->filter)
2612 old_rflow->filter = RPS_NO_FILTER;
2613 out:
2614 #endif
2615 rflow->last_qtail =
2616 per_cpu(softnet_data, tcpu).input_queue_head;
2617 }
2618
2619 return rflow;
2620 }
2621
2622 /*
2623 * get_rps_cpu is called from netif_receive_skb and returns the target
2624 * CPU from the RPS map of the receiving queue for a given skb.
2625 * rcu_read_lock must be held on entry.
2626 */
2627 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2628 struct rps_dev_flow **rflowp)
2629 {
2630 struct netdev_rx_queue *rxqueue;
2631 struct rps_map *map;
2632 struct rps_dev_flow_table *flow_table;
2633 struct rps_sock_flow_table *sock_flow_table;
2634 int cpu = -1;
2635 u16 tcpu;
2636
2637 if (skb_rx_queue_recorded(skb)) {
2638 u16 index = skb_get_rx_queue(skb);
2639 if (unlikely(index >= dev->real_num_rx_queues)) {
2640 WARN_ONCE(dev->real_num_rx_queues > 1,
2641 "%s received packet on queue %u, but number "
2642 "of RX queues is %u\n",
2643 dev->name, index, dev->real_num_rx_queues);
2644 goto done;
2645 }
2646 rxqueue = dev->_rx + index;
2647 } else
2648 rxqueue = dev->_rx;
2649
2650 map = rcu_dereference(rxqueue->rps_map);
2651 if (map) {
2652 if (map->len == 1 &&
2653 !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2654 tcpu = map->cpus[0];
2655 if (cpu_online(tcpu))
2656 cpu = tcpu;
2657 goto done;
2658 }
2659 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2660 goto done;
2661 }
2662
2663 skb_reset_network_header(skb);
2664 if (!skb_get_rxhash(skb))
2665 goto done;
2666
2667 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2668 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2669 if (flow_table && sock_flow_table) {
2670 u16 next_cpu;
2671 struct rps_dev_flow *rflow;
2672
2673 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2674 tcpu = rflow->cpu;
2675
2676 next_cpu = sock_flow_table->ents[skb->rxhash &
2677 sock_flow_table->mask];
2678
2679 /*
2680 * If the desired CPU (where last recvmsg was done) is
2681 * different from current CPU (one in the rx-queue flow
2682 * table entry), switch if one of the following holds:
2683 * - Current CPU is unset (equal to RPS_NO_CPU).
2684 * - Current CPU is offline.
2685 * - The current CPU's queue tail has advanced beyond the
2686 * last packet that was enqueued using this table entry.
2687 * This guarantees that all previous packets for the flow
2688 * have been dequeued, thus preserving in order delivery.
2689 */
2690 if (unlikely(tcpu != next_cpu) &&
2691 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2692 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2693 rflow->last_qtail)) >= 0))
2694 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2695
2696 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2697 *rflowp = rflow;
2698 cpu = tcpu;
2699 goto done;
2700 }
2701 }
2702
2703 if (map) {
2704 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2705
2706 if (cpu_online(tcpu)) {
2707 cpu = tcpu;
2708 goto done;
2709 }
2710 }
2711
2712 done:
2713 return cpu;
2714 }
2715
2716 #ifdef CONFIG_RFS_ACCEL
2717
2718 /**
2719 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2720 * @dev: Device on which the filter was set
2721 * @rxq_index: RX queue index
2722 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2723 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2724 *
2725 * Drivers that implement ndo_rx_flow_steer() should periodically call
2726 * this function for each installed filter and remove the filters for
2727 * which it returns %true.
2728 */
2729 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2730 u32 flow_id, u16 filter_id)
2731 {
2732 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2733 struct rps_dev_flow_table *flow_table;
2734 struct rps_dev_flow *rflow;
2735 bool expire = true;
2736 int cpu;
2737
2738 rcu_read_lock();
2739 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2740 if (flow_table && flow_id <= flow_table->mask) {
2741 rflow = &flow_table->flows[flow_id];
2742 cpu = ACCESS_ONCE(rflow->cpu);
2743 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2744 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2745 rflow->last_qtail) <
2746 (int)(10 * flow_table->mask)))
2747 expire = false;
2748 }
2749 rcu_read_unlock();
2750 return expire;
2751 }
2752 EXPORT_SYMBOL(rps_may_expire_flow);
2753
2754 #endif /* CONFIG_RFS_ACCEL */
2755
2756 /* Called from hardirq (IPI) context */
2757 static void rps_trigger_softirq(void *data)
2758 {
2759 struct softnet_data *sd = data;
2760
2761 ____napi_schedule(sd, &sd->backlog);
2762 sd->received_rps++;
2763 }
2764
2765 #endif /* CONFIG_RPS */
2766
2767 /*
2768 * Check if this softnet_data structure is another cpu one
2769 * If yes, queue it to our IPI list and return 1
2770 * If no, return 0
2771 */
2772 static int rps_ipi_queued(struct softnet_data *sd)
2773 {
2774 #ifdef CONFIG_RPS
2775 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2776
2777 if (sd != mysd) {
2778 sd->rps_ipi_next = mysd->rps_ipi_list;
2779 mysd->rps_ipi_list = sd;
2780
2781 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2782 return 1;
2783 }
2784 #endif /* CONFIG_RPS */
2785 return 0;
2786 }
2787
2788 /*
2789 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2790 * queue (may be a remote CPU queue).
2791 */
2792 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2793 unsigned int *qtail)
2794 {
2795 struct softnet_data *sd;
2796 unsigned long flags;
2797
2798 sd = &per_cpu(softnet_data, cpu);
2799
2800 local_irq_save(flags);
2801
2802 rps_lock(sd);
2803 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2804 if (skb_queue_len(&sd->input_pkt_queue)) {
2805 enqueue:
2806 __skb_queue_tail(&sd->input_pkt_queue, skb);
2807 input_queue_tail_incr_save(sd, qtail);
2808 rps_unlock(sd);
2809 local_irq_restore(flags);
2810 return NET_RX_SUCCESS;
2811 }
2812
2813 /* Schedule NAPI for backlog device
2814 * We can use non atomic operation since we own the queue lock
2815 */
2816 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2817 if (!rps_ipi_queued(sd))
2818 ____napi_schedule(sd, &sd->backlog);
2819 }
2820 goto enqueue;
2821 }
2822
2823 sd->dropped++;
2824 rps_unlock(sd);
2825
2826 local_irq_restore(flags);
2827
2828 atomic_long_inc(&skb->dev->rx_dropped);
2829 kfree_skb(skb);
2830 return NET_RX_DROP;
2831 }
2832
2833 /**
2834 * netif_rx - post buffer to the network code
2835 * @skb: buffer to post
2836 *
2837 * This function receives a packet from a device driver and queues it for
2838 * the upper (protocol) levels to process. It always succeeds. The buffer
2839 * may be dropped during processing for congestion control or by the
2840 * protocol layers.
2841 *
2842 * return values:
2843 * NET_RX_SUCCESS (no congestion)
2844 * NET_RX_DROP (packet was dropped)
2845 *
2846 */
2847
2848 int netif_rx(struct sk_buff *skb)
2849 {
2850 int ret;
2851
2852 /* if netpoll wants it, pretend we never saw it */
2853 if (netpoll_rx(skb))
2854 return NET_RX_DROP;
2855
2856 if (netdev_tstamp_prequeue)
2857 net_timestamp_check(skb);
2858
2859 trace_netif_rx(skb);
2860 #ifdef CONFIG_RPS
2861 {
2862 struct rps_dev_flow voidflow, *rflow = &voidflow;
2863 int cpu;
2864
2865 preempt_disable();
2866 rcu_read_lock();
2867
2868 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2869 if (cpu < 0)
2870 cpu = smp_processor_id();
2871
2872 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2873
2874 rcu_read_unlock();
2875 preempt_enable();
2876 }
2877 #else
2878 {
2879 unsigned int qtail;
2880 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2881 put_cpu();
2882 }
2883 #endif
2884 return ret;
2885 }
2886 EXPORT_SYMBOL(netif_rx);
2887
2888 int netif_rx_ni(struct sk_buff *skb)
2889 {
2890 int err;
2891
2892 preempt_disable();
2893 err = netif_rx(skb);
2894 if (local_softirq_pending())
2895 do_softirq();
2896 preempt_enable();
2897
2898 return err;
2899 }
2900 EXPORT_SYMBOL(netif_rx_ni);
2901
2902 static void net_tx_action(struct softirq_action *h)
2903 {
2904 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2905
2906 if (sd->completion_queue) {
2907 struct sk_buff *clist;
2908
2909 local_irq_disable();
2910 clist = sd->completion_queue;
2911 sd->completion_queue = NULL;
2912 local_irq_enable();
2913
2914 while (clist) {
2915 struct sk_buff *skb = clist;
2916 clist = clist->next;
2917
2918 WARN_ON(atomic_read(&skb->users));
2919 trace_kfree_skb(skb, net_tx_action);
2920 __kfree_skb(skb);
2921 }
2922 }
2923
2924 if (sd->output_queue) {
2925 struct Qdisc *head;
2926
2927 local_irq_disable();
2928 head = sd->output_queue;
2929 sd->output_queue = NULL;
2930 sd->output_queue_tailp = &sd->output_queue;
2931 local_irq_enable();
2932
2933 while (head) {
2934 struct Qdisc *q = head;
2935 spinlock_t *root_lock;
2936
2937 head = head->next_sched;
2938
2939 root_lock = qdisc_lock(q);
2940 if (spin_trylock(root_lock)) {
2941 smp_mb__before_clear_bit();
2942 clear_bit(__QDISC_STATE_SCHED,
2943 &q->state);
2944 qdisc_run(q);
2945 spin_unlock(root_lock);
2946 } else {
2947 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2948 &q->state)) {
2949 __netif_reschedule(q);
2950 } else {
2951 smp_mb__before_clear_bit();
2952 clear_bit(__QDISC_STATE_SCHED,
2953 &q->state);
2954 }
2955 }
2956 }
2957 }
2958 }
2959
2960 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2961 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2962 /* This hook is defined here for ATM LANE */
2963 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2964 unsigned char *addr) __read_mostly;
2965 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2966 #endif
2967
2968 #ifdef CONFIG_NET_CLS_ACT
2969 /* TODO: Maybe we should just force sch_ingress to be compiled in
2970 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2971 * a compare and 2 stores extra right now if we dont have it on
2972 * but have CONFIG_NET_CLS_ACT
2973 * NOTE: This doesn't stop any functionality; if you dont have
2974 * the ingress scheduler, you just can't add policies on ingress.
2975 *
2976 */
2977 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2978 {
2979 struct net_device *dev = skb->dev;
2980 u32 ttl = G_TC_RTTL(skb->tc_verd);
2981 int result = TC_ACT_OK;
2982 struct Qdisc *q;
2983
2984 if (unlikely(MAX_RED_LOOP < ttl++)) {
2985 if (net_ratelimit())
2986 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2987 skb->skb_iif, dev->ifindex);
2988 return TC_ACT_SHOT;
2989 }
2990
2991 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2992 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2993
2994 q = rxq->qdisc;
2995 if (q != &noop_qdisc) {
2996 spin_lock(qdisc_lock(q));
2997 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2998 result = qdisc_enqueue_root(skb, q);
2999 spin_unlock(qdisc_lock(q));
3000 }
3001
3002 return result;
3003 }
3004
3005 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3006 struct packet_type **pt_prev,
3007 int *ret, struct net_device *orig_dev)
3008 {
3009 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3010
3011 if (!rxq || rxq->qdisc == &noop_qdisc)
3012 goto out;
3013
3014 if (*pt_prev) {
3015 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3016 *pt_prev = NULL;
3017 }
3018
3019 switch (ing_filter(skb, rxq)) {
3020 case TC_ACT_SHOT:
3021 case TC_ACT_STOLEN:
3022 kfree_skb(skb);
3023 return NULL;
3024 }
3025
3026 out:
3027 skb->tc_verd = 0;
3028 return skb;
3029 }
3030 #endif
3031
3032 /**
3033 * netdev_rx_handler_register - register receive handler
3034 * @dev: device to register a handler for
3035 * @rx_handler: receive handler to register
3036 * @rx_handler_data: data pointer that is used by rx handler
3037 *
3038 * Register a receive hander for a device. This handler will then be
3039 * called from __netif_receive_skb. A negative errno code is returned
3040 * on a failure.
3041 *
3042 * The caller must hold the rtnl_mutex.
3043 *
3044 * For a general description of rx_handler, see enum rx_handler_result.
3045 */
3046 int netdev_rx_handler_register(struct net_device *dev,
3047 rx_handler_func_t *rx_handler,
3048 void *rx_handler_data)
3049 {
3050 ASSERT_RTNL();
3051
3052 if (dev->rx_handler)
3053 return -EBUSY;
3054
3055 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3056 rcu_assign_pointer(dev->rx_handler, rx_handler);
3057
3058 return 0;
3059 }
3060 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3061
3062 /**
3063 * netdev_rx_handler_unregister - unregister receive handler
3064 * @dev: device to unregister a handler from
3065 *
3066 * Unregister a receive hander from a device.
3067 *
3068 * The caller must hold the rtnl_mutex.
3069 */
3070 void netdev_rx_handler_unregister(struct net_device *dev)
3071 {
3072
3073 ASSERT_RTNL();
3074 rcu_assign_pointer(dev->rx_handler, NULL);
3075 rcu_assign_pointer(dev->rx_handler_data, NULL);
3076 }
3077 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3078
3079 static void vlan_on_bond_hook(struct sk_buff *skb)
3080 {
3081 /*
3082 * Make sure ARP frames received on VLAN interfaces stacked on
3083 * bonding interfaces still make their way to any base bonding
3084 * device that may have registered for a specific ptype.
3085 */
3086 if (skb->dev->priv_flags & IFF_802_1Q_VLAN &&
3087 vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING &&
3088 skb->protocol == htons(ETH_P_ARP)) {
3089 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
3090
3091 if (!skb2)
3092 return;
3093 skb2->dev = vlan_dev_real_dev(skb->dev);
3094 netif_rx(skb2);
3095 }
3096 }
3097
3098 static int __netif_receive_skb(struct sk_buff *skb)
3099 {
3100 struct packet_type *ptype, *pt_prev;
3101 rx_handler_func_t *rx_handler;
3102 struct net_device *orig_dev;
3103 struct net_device *null_or_dev;
3104 bool deliver_exact = false;
3105 int ret = NET_RX_DROP;
3106 __be16 type;
3107
3108 if (!netdev_tstamp_prequeue)
3109 net_timestamp_check(skb);
3110
3111 trace_netif_receive_skb(skb);
3112
3113 /* if we've gotten here through NAPI, check netpoll */
3114 if (netpoll_receive_skb(skb))
3115 return NET_RX_DROP;
3116
3117 if (!skb->skb_iif)
3118 skb->skb_iif = skb->dev->ifindex;
3119 orig_dev = skb->dev;
3120
3121 skb_reset_network_header(skb);
3122 skb_reset_transport_header(skb);
3123 skb->mac_len = skb->network_header - skb->mac_header;
3124
3125 pt_prev = NULL;
3126
3127 rcu_read_lock();
3128
3129 another_round:
3130
3131 __this_cpu_inc(softnet_data.processed);
3132
3133 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3134 skb = vlan_untag(skb);
3135 if (unlikely(!skb))
3136 goto out;
3137 }
3138
3139 #ifdef CONFIG_NET_CLS_ACT
3140 if (skb->tc_verd & TC_NCLS) {
3141 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3142 goto ncls;
3143 }
3144 #endif
3145
3146 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3147 if (!ptype->dev || ptype->dev == skb->dev) {
3148 if (pt_prev)
3149 ret = deliver_skb(skb, pt_prev, orig_dev);
3150 pt_prev = ptype;
3151 }
3152 }
3153
3154 #ifdef CONFIG_NET_CLS_ACT
3155 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3156 if (!skb)
3157 goto out;
3158 ncls:
3159 #endif
3160
3161 rx_handler = rcu_dereference(skb->dev->rx_handler);
3162 if (rx_handler) {
3163 if (pt_prev) {
3164 ret = deliver_skb(skb, pt_prev, orig_dev);
3165 pt_prev = NULL;
3166 }
3167 switch (rx_handler(&skb)) {
3168 case RX_HANDLER_CONSUMED:
3169 goto out;
3170 case RX_HANDLER_ANOTHER:
3171 goto another_round;
3172 case RX_HANDLER_EXACT:
3173 deliver_exact = true;
3174 case RX_HANDLER_PASS:
3175 break;
3176 default:
3177 BUG();
3178 }
3179 }
3180
3181 if (vlan_tx_tag_present(skb)) {
3182 if (pt_prev) {
3183 ret = deliver_skb(skb, pt_prev, orig_dev);
3184 pt_prev = NULL;
3185 }
3186 if (vlan_do_receive(&skb)) {
3187 ret = __netif_receive_skb(skb);
3188 goto out;
3189 } else if (unlikely(!skb))
3190 goto out;
3191 }
3192
3193 vlan_on_bond_hook(skb);
3194
3195 /* deliver only exact match when indicated */
3196 null_or_dev = deliver_exact ? skb->dev : NULL;
3197
3198 type = skb->protocol;
3199 list_for_each_entry_rcu(ptype,
3200 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3201 if (ptype->type == type &&
3202 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3203 ptype->dev == orig_dev)) {
3204 if (pt_prev)
3205 ret = deliver_skb(skb, pt_prev, orig_dev);
3206 pt_prev = ptype;
3207 }
3208 }
3209
3210 if (pt_prev) {
3211 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3212 } else {
3213 atomic_long_inc(&skb->dev->rx_dropped);
3214 kfree_skb(skb);
3215 /* Jamal, now you will not able to escape explaining
3216 * me how you were going to use this. :-)
3217 */
3218 ret = NET_RX_DROP;
3219 }
3220
3221 out:
3222 rcu_read_unlock();
3223 return ret;
3224 }
3225
3226 /**
3227 * netif_receive_skb - process receive buffer from network
3228 * @skb: buffer to process
3229 *
3230 * netif_receive_skb() is the main receive data processing function.
3231 * It always succeeds. The buffer may be dropped during processing
3232 * for congestion control or by the protocol layers.
3233 *
3234 * This function may only be called from softirq context and interrupts
3235 * should be enabled.
3236 *
3237 * Return values (usually ignored):
3238 * NET_RX_SUCCESS: no congestion
3239 * NET_RX_DROP: packet was dropped
3240 */
3241 int netif_receive_skb(struct sk_buff *skb)
3242 {
3243 if (netdev_tstamp_prequeue)
3244 net_timestamp_check(skb);
3245
3246 if (skb_defer_rx_timestamp(skb))
3247 return NET_RX_SUCCESS;
3248
3249 #ifdef CONFIG_RPS
3250 {
3251 struct rps_dev_flow voidflow, *rflow = &voidflow;
3252 int cpu, ret;
3253
3254 rcu_read_lock();
3255
3256 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3257
3258 if (cpu >= 0) {
3259 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3260 rcu_read_unlock();
3261 } else {
3262 rcu_read_unlock();
3263 ret = __netif_receive_skb(skb);
3264 }
3265
3266 return ret;
3267 }
3268 #else
3269 return __netif_receive_skb(skb);
3270 #endif
3271 }
3272 EXPORT_SYMBOL(netif_receive_skb);
3273
3274 /* Network device is going away, flush any packets still pending
3275 * Called with irqs disabled.
3276 */
3277 static void flush_backlog(void *arg)
3278 {
3279 struct net_device *dev = arg;
3280 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3281 struct sk_buff *skb, *tmp;
3282
3283 rps_lock(sd);
3284 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3285 if (skb->dev == dev) {
3286 __skb_unlink(skb, &sd->input_pkt_queue);
3287 kfree_skb(skb);
3288 input_queue_head_incr(sd);
3289 }
3290 }
3291 rps_unlock(sd);
3292
3293 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3294 if (skb->dev == dev) {
3295 __skb_unlink(skb, &sd->process_queue);
3296 kfree_skb(skb);
3297 input_queue_head_incr(sd);
3298 }
3299 }
3300 }
3301
3302 static int napi_gro_complete(struct sk_buff *skb)
3303 {
3304 struct packet_type *ptype;
3305 __be16 type = skb->protocol;
3306 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3307 int err = -ENOENT;
3308
3309 if (NAPI_GRO_CB(skb)->count == 1) {
3310 skb_shinfo(skb)->gso_size = 0;
3311 goto out;
3312 }
3313
3314 rcu_read_lock();
3315 list_for_each_entry_rcu(ptype, head, list) {
3316 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3317 continue;
3318
3319 err = ptype->gro_complete(skb);
3320 break;
3321 }
3322 rcu_read_unlock();
3323
3324 if (err) {
3325 WARN_ON(&ptype->list == head);
3326 kfree_skb(skb);
3327 return NET_RX_SUCCESS;
3328 }
3329
3330 out:
3331 return netif_receive_skb(skb);
3332 }
3333
3334 inline void napi_gro_flush(struct napi_struct *napi)
3335 {
3336 struct sk_buff *skb, *next;
3337
3338 for (skb = napi->gro_list; skb; skb = next) {
3339 next = skb->next;
3340 skb->next = NULL;
3341 napi_gro_complete(skb);
3342 }
3343
3344 napi->gro_count = 0;
3345 napi->gro_list = NULL;
3346 }
3347 EXPORT_SYMBOL(napi_gro_flush);
3348
3349 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3350 {
3351 struct sk_buff **pp = NULL;
3352 struct packet_type *ptype;
3353 __be16 type = skb->protocol;
3354 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3355 int same_flow;
3356 int mac_len;
3357 enum gro_result ret;
3358
3359 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3360 goto normal;
3361
3362 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3363 goto normal;
3364
3365 rcu_read_lock();
3366 list_for_each_entry_rcu(ptype, head, list) {
3367 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3368 continue;
3369
3370 skb_set_network_header(skb, skb_gro_offset(skb));
3371 mac_len = skb->network_header - skb->mac_header;
3372 skb->mac_len = mac_len;
3373 NAPI_GRO_CB(skb)->same_flow = 0;
3374 NAPI_GRO_CB(skb)->flush = 0;
3375 NAPI_GRO_CB(skb)->free = 0;
3376
3377 pp = ptype->gro_receive(&napi->gro_list, skb);
3378 break;
3379 }
3380 rcu_read_unlock();
3381
3382 if (&ptype->list == head)
3383 goto normal;
3384
3385 same_flow = NAPI_GRO_CB(skb)->same_flow;
3386 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3387
3388 if (pp) {
3389 struct sk_buff *nskb = *pp;
3390
3391 *pp = nskb->next;
3392 nskb->next = NULL;
3393 napi_gro_complete(nskb);
3394 napi->gro_count--;
3395 }
3396
3397 if (same_flow)
3398 goto ok;
3399
3400 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3401 goto normal;
3402
3403 napi->gro_count++;
3404 NAPI_GRO_CB(skb)->count = 1;
3405 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3406 skb->next = napi->gro_list;
3407 napi->gro_list = skb;
3408 ret = GRO_HELD;
3409
3410 pull:
3411 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3412 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3413
3414 BUG_ON(skb->end - skb->tail < grow);
3415
3416 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3417
3418 skb->tail += grow;
3419 skb->data_len -= grow;
3420
3421 skb_shinfo(skb)->frags[0].page_offset += grow;
3422 skb_shinfo(skb)->frags[0].size -= grow;
3423
3424 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3425 put_page(skb_shinfo(skb)->frags[0].page);
3426 memmove(skb_shinfo(skb)->frags,
3427 skb_shinfo(skb)->frags + 1,
3428 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3429 }
3430 }
3431
3432 ok:
3433 return ret;
3434
3435 normal:
3436 ret = GRO_NORMAL;
3437 goto pull;
3438 }
3439 EXPORT_SYMBOL(dev_gro_receive);
3440
3441 static inline gro_result_t
3442 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3443 {
3444 struct sk_buff *p;
3445
3446 for (p = napi->gro_list; p; p = p->next) {
3447 unsigned long diffs;
3448
3449 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3450 diffs |= p->vlan_tci ^ skb->vlan_tci;
3451 diffs |= compare_ether_header(skb_mac_header(p),
3452 skb_gro_mac_header(skb));
3453 NAPI_GRO_CB(p)->same_flow = !diffs;
3454 NAPI_GRO_CB(p)->flush = 0;
3455 }
3456
3457 return dev_gro_receive(napi, skb);
3458 }
3459
3460 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3461 {
3462 switch (ret) {
3463 case GRO_NORMAL:
3464 if (netif_receive_skb(skb))
3465 ret = GRO_DROP;
3466 break;
3467
3468 case GRO_DROP:
3469 case GRO_MERGED_FREE:
3470 kfree_skb(skb);
3471 break;
3472
3473 case GRO_HELD:
3474 case GRO_MERGED:
3475 break;
3476 }
3477
3478 return ret;
3479 }
3480 EXPORT_SYMBOL(napi_skb_finish);
3481
3482 void skb_gro_reset_offset(struct sk_buff *skb)
3483 {
3484 NAPI_GRO_CB(skb)->data_offset = 0;
3485 NAPI_GRO_CB(skb)->frag0 = NULL;
3486 NAPI_GRO_CB(skb)->frag0_len = 0;
3487
3488 if (skb->mac_header == skb->tail &&
3489 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3490 NAPI_GRO_CB(skb)->frag0 =
3491 page_address(skb_shinfo(skb)->frags[0].page) +
3492 skb_shinfo(skb)->frags[0].page_offset;
3493 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3494 }
3495 }
3496 EXPORT_SYMBOL(skb_gro_reset_offset);
3497
3498 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3499 {
3500 skb_gro_reset_offset(skb);
3501
3502 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3503 }
3504 EXPORT_SYMBOL(napi_gro_receive);
3505
3506 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3507 {
3508 __skb_pull(skb, skb_headlen(skb));
3509 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3510 skb->vlan_tci = 0;
3511 skb->dev = napi->dev;
3512 skb->skb_iif = 0;
3513
3514 napi->skb = skb;
3515 }
3516
3517 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3518 {
3519 struct sk_buff *skb = napi->skb;
3520
3521 if (!skb) {
3522 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3523 if (skb)
3524 napi->skb = skb;
3525 }
3526 return skb;
3527 }
3528 EXPORT_SYMBOL(napi_get_frags);
3529
3530 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3531 gro_result_t ret)
3532 {
3533 switch (ret) {
3534 case GRO_NORMAL:
3535 case GRO_HELD:
3536 skb->protocol = eth_type_trans(skb, skb->dev);
3537
3538 if (ret == GRO_HELD)
3539 skb_gro_pull(skb, -ETH_HLEN);
3540 else if (netif_receive_skb(skb))
3541 ret = GRO_DROP;
3542 break;
3543
3544 case GRO_DROP:
3545 case GRO_MERGED_FREE:
3546 napi_reuse_skb(napi, skb);
3547 break;
3548
3549 case GRO_MERGED:
3550 break;
3551 }
3552
3553 return ret;
3554 }
3555 EXPORT_SYMBOL(napi_frags_finish);
3556
3557 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3558 {
3559 struct sk_buff *skb = napi->skb;
3560 struct ethhdr *eth;
3561 unsigned int hlen;
3562 unsigned int off;
3563
3564 napi->skb = NULL;
3565
3566 skb_reset_mac_header(skb);
3567 skb_gro_reset_offset(skb);
3568
3569 off = skb_gro_offset(skb);
3570 hlen = off + sizeof(*eth);
3571 eth = skb_gro_header_fast(skb, off);
3572 if (skb_gro_header_hard(skb, hlen)) {
3573 eth = skb_gro_header_slow(skb, hlen, off);
3574 if (unlikely(!eth)) {
3575 napi_reuse_skb(napi, skb);
3576 skb = NULL;
3577 goto out;
3578 }
3579 }
3580
3581 skb_gro_pull(skb, sizeof(*eth));
3582
3583 /*
3584 * This works because the only protocols we care about don't require
3585 * special handling. We'll fix it up properly at the end.
3586 */
3587 skb->protocol = eth->h_proto;
3588
3589 out:
3590 return skb;
3591 }
3592 EXPORT_SYMBOL(napi_frags_skb);
3593
3594 gro_result_t napi_gro_frags(struct napi_struct *napi)
3595 {
3596 struct sk_buff *skb = napi_frags_skb(napi);
3597
3598 if (!skb)
3599 return GRO_DROP;
3600
3601 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3602 }
3603 EXPORT_SYMBOL(napi_gro_frags);
3604
3605 /*
3606 * net_rps_action sends any pending IPI's for rps.
3607 * Note: called with local irq disabled, but exits with local irq enabled.
3608 */
3609 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3610 {
3611 #ifdef CONFIG_RPS
3612 struct softnet_data *remsd = sd->rps_ipi_list;
3613
3614 if (remsd) {
3615 sd->rps_ipi_list = NULL;
3616
3617 local_irq_enable();
3618
3619 /* Send pending IPI's to kick RPS processing on remote cpus. */
3620 while (remsd) {
3621 struct softnet_data *next = remsd->rps_ipi_next;
3622
3623 if (cpu_online(remsd->cpu))
3624 __smp_call_function_single(remsd->cpu,
3625 &remsd->csd, 0);
3626 remsd = next;
3627 }
3628 } else
3629 #endif
3630 local_irq_enable();
3631 }
3632
3633 static int process_backlog(struct napi_struct *napi, int quota)
3634 {
3635 int work = 0;
3636 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3637
3638 #ifdef CONFIG_RPS
3639 /* Check if we have pending ipi, its better to send them now,
3640 * not waiting net_rx_action() end.
3641 */
3642 if (sd->rps_ipi_list) {
3643 local_irq_disable();
3644 net_rps_action_and_irq_enable(sd);
3645 }
3646 #endif
3647 napi->weight = weight_p;
3648 local_irq_disable();
3649 while (work < quota) {
3650 struct sk_buff *skb;
3651 unsigned int qlen;
3652
3653 while ((skb = __skb_dequeue(&sd->process_queue))) {
3654 local_irq_enable();
3655 __netif_receive_skb(skb);
3656 local_irq_disable();
3657 input_queue_head_incr(sd);
3658 if (++work >= quota) {
3659 local_irq_enable();
3660 return work;
3661 }
3662 }
3663
3664 rps_lock(sd);
3665 qlen = skb_queue_len(&sd->input_pkt_queue);
3666 if (qlen)
3667 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3668 &sd->process_queue);
3669
3670 if (qlen < quota - work) {
3671 /*
3672 * Inline a custom version of __napi_complete().
3673 * only current cpu owns and manipulates this napi,
3674 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3675 * we can use a plain write instead of clear_bit(),
3676 * and we dont need an smp_mb() memory barrier.
3677 */
3678 list_del(&napi->poll_list);
3679 napi->state = 0;
3680
3681 quota = work + qlen;
3682 }
3683 rps_unlock(sd);
3684 }
3685 local_irq_enable();
3686
3687 return work;
3688 }
3689
3690 /**
3691 * __napi_schedule - schedule for receive
3692 * @n: entry to schedule
3693 *
3694 * The entry's receive function will be scheduled to run
3695 */
3696 void __napi_schedule(struct napi_struct *n)
3697 {
3698 unsigned long flags;
3699
3700 local_irq_save(flags);
3701 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3702 local_irq_restore(flags);
3703 }
3704 EXPORT_SYMBOL(__napi_schedule);
3705
3706 void __napi_complete(struct napi_struct *n)
3707 {
3708 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3709 BUG_ON(n->gro_list);
3710
3711 list_del(&n->poll_list);
3712 smp_mb__before_clear_bit();
3713 clear_bit(NAPI_STATE_SCHED, &n->state);
3714 }
3715 EXPORT_SYMBOL(__napi_complete);
3716
3717 void napi_complete(struct napi_struct *n)
3718 {
3719 unsigned long flags;
3720
3721 /*
3722 * don't let napi dequeue from the cpu poll list
3723 * just in case its running on a different cpu
3724 */
3725 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3726 return;
3727
3728 napi_gro_flush(n);
3729 local_irq_save(flags);
3730 __napi_complete(n);
3731 local_irq_restore(flags);
3732 }
3733 EXPORT_SYMBOL(napi_complete);
3734
3735 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3736 int (*poll)(struct napi_struct *, int), int weight)
3737 {
3738 INIT_LIST_HEAD(&napi->poll_list);
3739 napi->gro_count = 0;
3740 napi->gro_list = NULL;
3741 napi->skb = NULL;
3742 napi->poll = poll;
3743 napi->weight = weight;
3744 list_add(&napi->dev_list, &dev->napi_list);
3745 napi->dev = dev;
3746 #ifdef CONFIG_NETPOLL
3747 spin_lock_init(&napi->poll_lock);
3748 napi->poll_owner = -1;
3749 #endif
3750 set_bit(NAPI_STATE_SCHED, &napi->state);
3751 }
3752 EXPORT_SYMBOL(netif_napi_add);
3753
3754 void netif_napi_del(struct napi_struct *napi)
3755 {
3756 struct sk_buff *skb, *next;
3757
3758 list_del_init(&napi->dev_list);
3759 napi_free_frags(napi);
3760
3761 for (skb = napi->gro_list; skb; skb = next) {
3762 next = skb->next;
3763 skb->next = NULL;
3764 kfree_skb(skb);
3765 }
3766
3767 napi->gro_list = NULL;
3768 napi->gro_count = 0;
3769 }
3770 EXPORT_SYMBOL(netif_napi_del);
3771
3772 static void net_rx_action(struct softirq_action *h)
3773 {
3774 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3775 unsigned long time_limit = jiffies + 2;
3776 int budget = netdev_budget;
3777 void *have;
3778
3779 local_irq_disable();
3780
3781 while (!list_empty(&sd->poll_list)) {
3782 struct napi_struct *n;
3783 int work, weight;
3784
3785 /* If softirq window is exhuasted then punt.
3786 * Allow this to run for 2 jiffies since which will allow
3787 * an average latency of 1.5/HZ.
3788 */
3789 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3790 goto softnet_break;
3791
3792 local_irq_enable();
3793
3794 /* Even though interrupts have been re-enabled, this
3795 * access is safe because interrupts can only add new
3796 * entries to the tail of this list, and only ->poll()
3797 * calls can remove this head entry from the list.
3798 */
3799 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3800
3801 have = netpoll_poll_lock(n);
3802
3803 weight = n->weight;
3804
3805 /* This NAPI_STATE_SCHED test is for avoiding a race
3806 * with netpoll's poll_napi(). Only the entity which
3807 * obtains the lock and sees NAPI_STATE_SCHED set will
3808 * actually make the ->poll() call. Therefore we avoid
3809 * accidentally calling ->poll() when NAPI is not scheduled.
3810 */
3811 work = 0;
3812 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3813 work = n->poll(n, weight);
3814 trace_napi_poll(n);
3815 }
3816
3817 WARN_ON_ONCE(work > weight);
3818
3819 budget -= work;
3820
3821 local_irq_disable();
3822
3823 /* Drivers must not modify the NAPI state if they
3824 * consume the entire weight. In such cases this code
3825 * still "owns" the NAPI instance and therefore can
3826 * move the instance around on the list at-will.
3827 */
3828 if (unlikely(work == weight)) {
3829 if (unlikely(napi_disable_pending(n))) {
3830 local_irq_enable();
3831 napi_complete(n);
3832 local_irq_disable();
3833 } else
3834 list_move_tail(&n->poll_list, &sd->poll_list);
3835 }
3836
3837 netpoll_poll_unlock(have);
3838 }
3839 out:
3840 net_rps_action_and_irq_enable(sd);
3841
3842 #ifdef CONFIG_NET_DMA
3843 /*
3844 * There may not be any more sk_buffs coming right now, so push
3845 * any pending DMA copies to hardware
3846 */
3847 dma_issue_pending_all();
3848 #endif
3849
3850 return;
3851
3852 softnet_break:
3853 sd->time_squeeze++;
3854 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3855 goto out;
3856 }
3857
3858 static gifconf_func_t *gifconf_list[NPROTO];
3859
3860 /**
3861 * register_gifconf - register a SIOCGIF handler
3862 * @family: Address family
3863 * @gifconf: Function handler
3864 *
3865 * Register protocol dependent address dumping routines. The handler
3866 * that is passed must not be freed or reused until it has been replaced
3867 * by another handler.
3868 */
3869 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3870 {
3871 if (family >= NPROTO)
3872 return -EINVAL;
3873 gifconf_list[family] = gifconf;
3874 return 0;
3875 }
3876 EXPORT_SYMBOL(register_gifconf);
3877
3878
3879 /*
3880 * Map an interface index to its name (SIOCGIFNAME)
3881 */
3882
3883 /*
3884 * We need this ioctl for efficient implementation of the
3885 * if_indextoname() function required by the IPv6 API. Without
3886 * it, we would have to search all the interfaces to find a
3887 * match. --pb
3888 */
3889
3890 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3891 {
3892 struct net_device *dev;
3893 struct ifreq ifr;
3894
3895 /*
3896 * Fetch the caller's info block.
3897 */
3898
3899 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3900 return -EFAULT;
3901
3902 rcu_read_lock();
3903 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3904 if (!dev) {
3905 rcu_read_unlock();
3906 return -ENODEV;
3907 }
3908
3909 strcpy(ifr.ifr_name, dev->name);
3910 rcu_read_unlock();
3911
3912 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3913 return -EFAULT;
3914 return 0;
3915 }
3916
3917 /*
3918 * Perform a SIOCGIFCONF call. This structure will change
3919 * size eventually, and there is nothing I can do about it.
3920 * Thus we will need a 'compatibility mode'.
3921 */
3922
3923 static int dev_ifconf(struct net *net, char __user *arg)
3924 {
3925 struct ifconf ifc;
3926 struct net_device *dev;
3927 char __user *pos;
3928 int len;
3929 int total;
3930 int i;
3931
3932 /*
3933 * Fetch the caller's info block.
3934 */
3935
3936 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3937 return -EFAULT;
3938
3939 pos = ifc.ifc_buf;
3940 len = ifc.ifc_len;
3941
3942 /*
3943 * Loop over the interfaces, and write an info block for each.
3944 */
3945
3946 total = 0;
3947 for_each_netdev(net, dev) {
3948 for (i = 0; i < NPROTO; i++) {
3949 if (gifconf_list[i]) {
3950 int done;
3951 if (!pos)
3952 done = gifconf_list[i](dev, NULL, 0);
3953 else
3954 done = gifconf_list[i](dev, pos + total,
3955 len - total);
3956 if (done < 0)
3957 return -EFAULT;
3958 total += done;
3959 }
3960 }
3961 }
3962
3963 /*
3964 * All done. Write the updated control block back to the caller.
3965 */
3966 ifc.ifc_len = total;
3967
3968 /*
3969 * Both BSD and Solaris return 0 here, so we do too.
3970 */
3971 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3972 }
3973
3974 #ifdef CONFIG_PROC_FS
3975 /*
3976 * This is invoked by the /proc filesystem handler to display a device
3977 * in detail.
3978 */
3979 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3980 __acquires(RCU)
3981 {
3982 struct net *net = seq_file_net(seq);
3983 loff_t off;
3984 struct net_device *dev;
3985
3986 rcu_read_lock();
3987 if (!*pos)
3988 return SEQ_START_TOKEN;
3989
3990 off = 1;
3991 for_each_netdev_rcu(net, dev)
3992 if (off++ == *pos)
3993 return dev;
3994
3995 return NULL;
3996 }
3997
3998 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3999 {
4000 struct net_device *dev = v;
4001
4002 if (v == SEQ_START_TOKEN)
4003 dev = first_net_device_rcu(seq_file_net(seq));
4004 else
4005 dev = next_net_device_rcu(dev);
4006
4007 ++*pos;
4008 return dev;
4009 }
4010
4011 void dev_seq_stop(struct seq_file *seq, void *v)
4012 __releases(RCU)
4013 {
4014 rcu_read_unlock();
4015 }
4016
4017 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4018 {
4019 struct rtnl_link_stats64 temp;
4020 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4021
4022 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4023 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4024 dev->name, stats->rx_bytes, stats->rx_packets,
4025 stats->rx_errors,
4026 stats->rx_dropped + stats->rx_missed_errors,
4027 stats->rx_fifo_errors,
4028 stats->rx_length_errors + stats->rx_over_errors +
4029 stats->rx_crc_errors + stats->rx_frame_errors,
4030 stats->rx_compressed, stats->multicast,
4031 stats->tx_bytes, stats->tx_packets,
4032 stats->tx_errors, stats->tx_dropped,
4033 stats->tx_fifo_errors, stats->collisions,
4034 stats->tx_carrier_errors +
4035 stats->tx_aborted_errors +
4036 stats->tx_window_errors +
4037 stats->tx_heartbeat_errors,
4038 stats->tx_compressed);
4039 }
4040
4041 /*
4042 * Called from the PROCfs module. This now uses the new arbitrary sized
4043 * /proc/net interface to create /proc/net/dev
4044 */
4045 static int dev_seq_show(struct seq_file *seq, void *v)
4046 {
4047 if (v == SEQ_START_TOKEN)
4048 seq_puts(seq, "Inter-| Receive "
4049 " | Transmit\n"
4050 " face |bytes packets errs drop fifo frame "
4051 "compressed multicast|bytes packets errs "
4052 "drop fifo colls carrier compressed\n");
4053 else
4054 dev_seq_printf_stats(seq, v);
4055 return 0;
4056 }
4057
4058 static struct softnet_data *softnet_get_online(loff_t *pos)
4059 {
4060 struct softnet_data *sd = NULL;
4061
4062 while (*pos < nr_cpu_ids)
4063 if (cpu_online(*pos)) {
4064 sd = &per_cpu(softnet_data, *pos);
4065 break;
4066 } else
4067 ++*pos;
4068 return sd;
4069 }
4070
4071 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4072 {
4073 return softnet_get_online(pos);
4074 }
4075
4076 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4077 {
4078 ++*pos;
4079 return softnet_get_online(pos);
4080 }
4081
4082 static void softnet_seq_stop(struct seq_file *seq, void *v)
4083 {
4084 }
4085
4086 static int softnet_seq_show(struct seq_file *seq, void *v)
4087 {
4088 struct softnet_data *sd = v;
4089
4090 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4091 sd->processed, sd->dropped, sd->time_squeeze, 0,
4092 0, 0, 0, 0, /* was fastroute */
4093 sd->cpu_collision, sd->received_rps);
4094 return 0;
4095 }
4096
4097 static const struct seq_operations dev_seq_ops = {
4098 .start = dev_seq_start,
4099 .next = dev_seq_next,
4100 .stop = dev_seq_stop,
4101 .show = dev_seq_show,
4102 };
4103
4104 static int dev_seq_open(struct inode *inode, struct file *file)
4105 {
4106 return seq_open_net(inode, file, &dev_seq_ops,
4107 sizeof(struct seq_net_private));
4108 }
4109
4110 static const struct file_operations dev_seq_fops = {
4111 .owner = THIS_MODULE,
4112 .open = dev_seq_open,
4113 .read = seq_read,
4114 .llseek = seq_lseek,
4115 .release = seq_release_net,
4116 };
4117
4118 static const struct seq_operations softnet_seq_ops = {
4119 .start = softnet_seq_start,
4120 .next = softnet_seq_next,
4121 .stop = softnet_seq_stop,
4122 .show = softnet_seq_show,
4123 };
4124
4125 static int softnet_seq_open(struct inode *inode, struct file *file)
4126 {
4127 return seq_open(file, &softnet_seq_ops);
4128 }
4129
4130 static const struct file_operations softnet_seq_fops = {
4131 .owner = THIS_MODULE,
4132 .open = softnet_seq_open,
4133 .read = seq_read,
4134 .llseek = seq_lseek,
4135 .release = seq_release,
4136 };
4137
4138 static void *ptype_get_idx(loff_t pos)
4139 {
4140 struct packet_type *pt = NULL;
4141 loff_t i = 0;
4142 int t;
4143
4144 list_for_each_entry_rcu(pt, &ptype_all, list) {
4145 if (i == pos)
4146 return pt;
4147 ++i;
4148 }
4149
4150 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4151 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4152 if (i == pos)
4153 return pt;
4154 ++i;
4155 }
4156 }
4157 return NULL;
4158 }
4159
4160 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4161 __acquires(RCU)
4162 {
4163 rcu_read_lock();
4164 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4165 }
4166
4167 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4168 {
4169 struct packet_type *pt;
4170 struct list_head *nxt;
4171 int hash;
4172
4173 ++*pos;
4174 if (v == SEQ_START_TOKEN)
4175 return ptype_get_idx(0);
4176
4177 pt = v;
4178 nxt = pt->list.next;
4179 if (pt->type == htons(ETH_P_ALL)) {
4180 if (nxt != &ptype_all)
4181 goto found;
4182 hash = 0;
4183 nxt = ptype_base[0].next;
4184 } else
4185 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4186
4187 while (nxt == &ptype_base[hash]) {
4188 if (++hash >= PTYPE_HASH_SIZE)
4189 return NULL;
4190 nxt = ptype_base[hash].next;
4191 }
4192 found:
4193 return list_entry(nxt, struct packet_type, list);
4194 }
4195
4196 static void ptype_seq_stop(struct seq_file *seq, void *v)
4197 __releases(RCU)
4198 {
4199 rcu_read_unlock();
4200 }
4201
4202 static int ptype_seq_show(struct seq_file *seq, void *v)
4203 {
4204 struct packet_type *pt = v;
4205
4206 if (v == SEQ_START_TOKEN)
4207 seq_puts(seq, "Type Device Function\n");
4208 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4209 if (pt->type == htons(ETH_P_ALL))
4210 seq_puts(seq, "ALL ");
4211 else
4212 seq_printf(seq, "%04x", ntohs(pt->type));
4213
4214 seq_printf(seq, " %-8s %pF\n",
4215 pt->dev ? pt->dev->name : "", pt->func);
4216 }
4217
4218 return 0;
4219 }
4220
4221 static const struct seq_operations ptype_seq_ops = {
4222 .start = ptype_seq_start,
4223 .next = ptype_seq_next,
4224 .stop = ptype_seq_stop,
4225 .show = ptype_seq_show,
4226 };
4227
4228 static int ptype_seq_open(struct inode *inode, struct file *file)
4229 {
4230 return seq_open_net(inode, file, &ptype_seq_ops,
4231 sizeof(struct seq_net_private));
4232 }
4233
4234 static const struct file_operations ptype_seq_fops = {
4235 .owner = THIS_MODULE,
4236 .open = ptype_seq_open,
4237 .read = seq_read,
4238 .llseek = seq_lseek,
4239 .release = seq_release_net,
4240 };
4241
4242
4243 static int __net_init dev_proc_net_init(struct net *net)
4244 {
4245 int rc = -ENOMEM;
4246
4247 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4248 goto out;
4249 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4250 goto out_dev;
4251 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4252 goto out_softnet;
4253
4254 if (wext_proc_init(net))
4255 goto out_ptype;
4256 rc = 0;
4257 out:
4258 return rc;
4259 out_ptype:
4260 proc_net_remove(net, "ptype");
4261 out_softnet:
4262 proc_net_remove(net, "softnet_stat");
4263 out_dev:
4264 proc_net_remove(net, "dev");
4265 goto out;
4266 }
4267
4268 static void __net_exit dev_proc_net_exit(struct net *net)
4269 {
4270 wext_proc_exit(net);
4271
4272 proc_net_remove(net, "ptype");
4273 proc_net_remove(net, "softnet_stat");
4274 proc_net_remove(net, "dev");
4275 }
4276
4277 static struct pernet_operations __net_initdata dev_proc_ops = {
4278 .init = dev_proc_net_init,
4279 .exit = dev_proc_net_exit,
4280 };
4281
4282 static int __init dev_proc_init(void)
4283 {
4284 return register_pernet_subsys(&dev_proc_ops);
4285 }
4286 #else
4287 #define dev_proc_init() 0
4288 #endif /* CONFIG_PROC_FS */
4289
4290
4291 /**
4292 * netdev_set_master - set up master pointer
4293 * @slave: slave device
4294 * @master: new master device
4295 *
4296 * Changes the master device of the slave. Pass %NULL to break the
4297 * bonding. The caller must hold the RTNL semaphore. On a failure
4298 * a negative errno code is returned. On success the reference counts
4299 * are adjusted and the function returns zero.
4300 */
4301 int netdev_set_master(struct net_device *slave, struct net_device *master)
4302 {
4303 struct net_device *old = slave->master;
4304
4305 ASSERT_RTNL();
4306
4307 if (master) {
4308 if (old)
4309 return -EBUSY;
4310 dev_hold(master);
4311 }
4312
4313 slave->master = master;
4314
4315 if (old) {
4316 synchronize_net();
4317 dev_put(old);
4318 }
4319 return 0;
4320 }
4321 EXPORT_SYMBOL(netdev_set_master);
4322
4323 /**
4324 * netdev_set_bond_master - set up bonding master/slave pair
4325 * @slave: slave device
4326 * @master: new master device
4327 *
4328 * Changes the master device of the slave. Pass %NULL to break the
4329 * bonding. The caller must hold the RTNL semaphore. On a failure
4330 * a negative errno code is returned. On success %RTM_NEWLINK is sent
4331 * to the routing socket and the function returns zero.
4332 */
4333 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4334 {
4335 int err;
4336
4337 ASSERT_RTNL();
4338
4339 err = netdev_set_master(slave, master);
4340 if (err)
4341 return err;
4342 if (master)
4343 slave->flags |= IFF_SLAVE;
4344 else
4345 slave->flags &= ~IFF_SLAVE;
4346
4347 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4348 return 0;
4349 }
4350 EXPORT_SYMBOL(netdev_set_bond_master);
4351
4352 static void dev_change_rx_flags(struct net_device *dev, int flags)
4353 {
4354 const struct net_device_ops *ops = dev->netdev_ops;
4355
4356 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4357 ops->ndo_change_rx_flags(dev, flags);
4358 }
4359
4360 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4361 {
4362 unsigned short old_flags = dev->flags;
4363 uid_t uid;
4364 gid_t gid;
4365
4366 ASSERT_RTNL();
4367
4368 dev->flags |= IFF_PROMISC;
4369 dev->promiscuity += inc;
4370 if (dev->promiscuity == 0) {
4371 /*
4372 * Avoid overflow.
4373 * If inc causes overflow, untouch promisc and return error.
4374 */
4375 if (inc < 0)
4376 dev->flags &= ~IFF_PROMISC;
4377 else {
4378 dev->promiscuity -= inc;
4379 printk(KERN_WARNING "%s: promiscuity touches roof, "
4380 "set promiscuity failed, promiscuity feature "
4381 "of device might be broken.\n", dev->name);
4382 return -EOVERFLOW;
4383 }
4384 }
4385 if (dev->flags != old_flags) {
4386 printk(KERN_INFO "device %s %s promiscuous mode\n",
4387 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4388 "left");
4389 if (audit_enabled) {
4390 current_uid_gid(&uid, &gid);
4391 audit_log(current->audit_context, GFP_ATOMIC,
4392 AUDIT_ANOM_PROMISCUOUS,
4393 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4394 dev->name, (dev->flags & IFF_PROMISC),
4395 (old_flags & IFF_PROMISC),
4396 audit_get_loginuid(current),
4397 uid, gid,
4398 audit_get_sessionid(current));
4399 }
4400
4401 dev_change_rx_flags(dev, IFF_PROMISC);
4402 }
4403 return 0;
4404 }
4405
4406 /**
4407 * dev_set_promiscuity - update promiscuity count on a device
4408 * @dev: device
4409 * @inc: modifier
4410 *
4411 * Add or remove promiscuity from a device. While the count in the device
4412 * remains above zero the interface remains promiscuous. Once it hits zero
4413 * the device reverts back to normal filtering operation. A negative inc
4414 * value is used to drop promiscuity on the device.
4415 * Return 0 if successful or a negative errno code on error.
4416 */
4417 int dev_set_promiscuity(struct net_device *dev, int inc)
4418 {
4419 unsigned short old_flags = dev->flags;
4420 int err;
4421
4422 err = __dev_set_promiscuity(dev, inc);
4423 if (err < 0)
4424 return err;
4425 if (dev->flags != old_flags)
4426 dev_set_rx_mode(dev);
4427 return err;
4428 }
4429 EXPORT_SYMBOL(dev_set_promiscuity);
4430
4431 /**
4432 * dev_set_allmulti - update allmulti count on a device
4433 * @dev: device
4434 * @inc: modifier
4435 *
4436 * Add or remove reception of all multicast frames to a device. While the
4437 * count in the device remains above zero the interface remains listening
4438 * to all interfaces. Once it hits zero the device reverts back to normal
4439 * filtering operation. A negative @inc value is used to drop the counter
4440 * when releasing a resource needing all multicasts.
4441 * Return 0 if successful or a negative errno code on error.
4442 */
4443
4444 int dev_set_allmulti(struct net_device *dev, int inc)
4445 {
4446 unsigned short old_flags = dev->flags;
4447
4448 ASSERT_RTNL();
4449
4450 dev->flags |= IFF_ALLMULTI;
4451 dev->allmulti += inc;
4452 if (dev->allmulti == 0) {
4453 /*
4454 * Avoid overflow.
4455 * If inc causes overflow, untouch allmulti and return error.
4456 */
4457 if (inc < 0)
4458 dev->flags &= ~IFF_ALLMULTI;
4459 else {
4460 dev->allmulti -= inc;
4461 printk(KERN_WARNING "%s: allmulti touches roof, "
4462 "set allmulti failed, allmulti feature of "
4463 "device might be broken.\n", dev->name);
4464 return -EOVERFLOW;
4465 }
4466 }
4467 if (dev->flags ^ old_flags) {
4468 dev_change_rx_flags(dev, IFF_ALLMULTI);
4469 dev_set_rx_mode(dev);
4470 }
4471 return 0;
4472 }
4473 EXPORT_SYMBOL(dev_set_allmulti);
4474
4475 /*
4476 * Upload unicast and multicast address lists to device and
4477 * configure RX filtering. When the device doesn't support unicast
4478 * filtering it is put in promiscuous mode while unicast addresses
4479 * are present.
4480 */
4481 void __dev_set_rx_mode(struct net_device *dev)
4482 {
4483 const struct net_device_ops *ops = dev->netdev_ops;
4484
4485 /* dev_open will call this function so the list will stay sane. */
4486 if (!(dev->flags&IFF_UP))
4487 return;
4488
4489 if (!netif_device_present(dev))
4490 return;
4491
4492 if (ops->ndo_set_rx_mode)
4493 ops->ndo_set_rx_mode(dev);
4494 else {
4495 /* Unicast addresses changes may only happen under the rtnl,
4496 * therefore calling __dev_set_promiscuity here is safe.
4497 */
4498 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4499 __dev_set_promiscuity(dev, 1);
4500 dev->uc_promisc = 1;
4501 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4502 __dev_set_promiscuity(dev, -1);
4503 dev->uc_promisc = 0;
4504 }
4505
4506 if (ops->ndo_set_multicast_list)
4507 ops->ndo_set_multicast_list(dev);
4508 }
4509 }
4510
4511 void dev_set_rx_mode(struct net_device *dev)
4512 {
4513 netif_addr_lock_bh(dev);
4514 __dev_set_rx_mode(dev);
4515 netif_addr_unlock_bh(dev);
4516 }
4517
4518 /**
4519 * dev_get_flags - get flags reported to userspace
4520 * @dev: device
4521 *
4522 * Get the combination of flag bits exported through APIs to userspace.
4523 */
4524 unsigned dev_get_flags(const struct net_device *dev)
4525 {
4526 unsigned flags;
4527
4528 flags = (dev->flags & ~(IFF_PROMISC |
4529 IFF_ALLMULTI |
4530 IFF_RUNNING |
4531 IFF_LOWER_UP |
4532 IFF_DORMANT)) |
4533 (dev->gflags & (IFF_PROMISC |
4534 IFF_ALLMULTI));
4535
4536 if (netif_running(dev)) {
4537 if (netif_oper_up(dev))
4538 flags |= IFF_RUNNING;
4539 if (netif_carrier_ok(dev))
4540 flags |= IFF_LOWER_UP;
4541 if (netif_dormant(dev))
4542 flags |= IFF_DORMANT;
4543 }
4544
4545 return flags;
4546 }
4547 EXPORT_SYMBOL(dev_get_flags);
4548
4549 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4550 {
4551 int old_flags = dev->flags;
4552 int ret;
4553
4554 ASSERT_RTNL();
4555
4556 /*
4557 * Set the flags on our device.
4558 */
4559
4560 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4561 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4562 IFF_AUTOMEDIA)) |
4563 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4564 IFF_ALLMULTI));
4565
4566 /*
4567 * Load in the correct multicast list now the flags have changed.
4568 */
4569
4570 if ((old_flags ^ flags) & IFF_MULTICAST)
4571 dev_change_rx_flags(dev, IFF_MULTICAST);
4572
4573 dev_set_rx_mode(dev);
4574
4575 /*
4576 * Have we downed the interface. We handle IFF_UP ourselves
4577 * according to user attempts to set it, rather than blindly
4578 * setting it.
4579 */
4580
4581 ret = 0;
4582 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4583 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4584
4585 if (!ret)
4586 dev_set_rx_mode(dev);
4587 }
4588
4589 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4590 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4591
4592 dev->gflags ^= IFF_PROMISC;
4593 dev_set_promiscuity(dev, inc);
4594 }
4595
4596 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4597 is important. Some (broken) drivers set IFF_PROMISC, when
4598 IFF_ALLMULTI is requested not asking us and not reporting.
4599 */
4600 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4601 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4602
4603 dev->gflags ^= IFF_ALLMULTI;
4604 dev_set_allmulti(dev, inc);
4605 }
4606
4607 return ret;
4608 }
4609
4610 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4611 {
4612 unsigned int changes = dev->flags ^ old_flags;
4613
4614 if (changes & IFF_UP) {
4615 if (dev->flags & IFF_UP)
4616 call_netdevice_notifiers(NETDEV_UP, dev);
4617 else
4618 call_netdevice_notifiers(NETDEV_DOWN, dev);
4619 }
4620
4621 if (dev->flags & IFF_UP &&
4622 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4623 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4624 }
4625
4626 /**
4627 * dev_change_flags - change device settings
4628 * @dev: device
4629 * @flags: device state flags
4630 *
4631 * Change settings on device based state flags. The flags are
4632 * in the userspace exported format.
4633 */
4634 int dev_change_flags(struct net_device *dev, unsigned flags)
4635 {
4636 int ret, changes;
4637 int old_flags = dev->flags;
4638
4639 ret = __dev_change_flags(dev, flags);
4640 if (ret < 0)
4641 return ret;
4642
4643 changes = old_flags ^ dev->flags;
4644 if (changes)
4645 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4646
4647 __dev_notify_flags(dev, old_flags);
4648 return ret;
4649 }
4650 EXPORT_SYMBOL(dev_change_flags);
4651
4652 /**
4653 * dev_set_mtu - Change maximum transfer unit
4654 * @dev: device
4655 * @new_mtu: new transfer unit
4656 *
4657 * Change the maximum transfer size of the network device.
4658 */
4659 int dev_set_mtu(struct net_device *dev, int new_mtu)
4660 {
4661 const struct net_device_ops *ops = dev->netdev_ops;
4662 int err;
4663
4664 if (new_mtu == dev->mtu)
4665 return 0;
4666
4667 /* MTU must be positive. */
4668 if (new_mtu < 0)
4669 return -EINVAL;
4670
4671 if (!netif_device_present(dev))
4672 return -ENODEV;
4673
4674 err = 0;
4675 if (ops->ndo_change_mtu)
4676 err = ops->ndo_change_mtu(dev, new_mtu);
4677 else
4678 dev->mtu = new_mtu;
4679
4680 if (!err && dev->flags & IFF_UP)
4681 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4682 return err;
4683 }
4684 EXPORT_SYMBOL(dev_set_mtu);
4685
4686 /**
4687 * dev_set_group - Change group this device belongs to
4688 * @dev: device
4689 * @new_group: group this device should belong to
4690 */
4691 void dev_set_group(struct net_device *dev, int new_group)
4692 {
4693 dev->group = new_group;
4694 }
4695 EXPORT_SYMBOL(dev_set_group);
4696
4697 /**
4698 * dev_set_mac_address - Change Media Access Control Address
4699 * @dev: device
4700 * @sa: new address
4701 *
4702 * Change the hardware (MAC) address of the device
4703 */
4704 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4705 {
4706 const struct net_device_ops *ops = dev->netdev_ops;
4707 int err;
4708
4709 if (!ops->ndo_set_mac_address)
4710 return -EOPNOTSUPP;
4711 if (sa->sa_family != dev->type)
4712 return -EINVAL;
4713 if (!netif_device_present(dev))
4714 return -ENODEV;
4715 err = ops->ndo_set_mac_address(dev, sa);
4716 if (!err)
4717 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4718 return err;
4719 }
4720 EXPORT_SYMBOL(dev_set_mac_address);
4721
4722 /*
4723 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4724 */
4725 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4726 {
4727 int err;
4728 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4729
4730 if (!dev)
4731 return -ENODEV;
4732
4733 switch (cmd) {
4734 case SIOCGIFFLAGS: /* Get interface flags */
4735 ifr->ifr_flags = (short) dev_get_flags(dev);
4736 return 0;
4737
4738 case SIOCGIFMETRIC: /* Get the metric on the interface
4739 (currently unused) */
4740 ifr->ifr_metric = 0;
4741 return 0;
4742
4743 case SIOCGIFMTU: /* Get the MTU of a device */
4744 ifr->ifr_mtu = dev->mtu;
4745 return 0;
4746
4747 case SIOCGIFHWADDR:
4748 if (!dev->addr_len)
4749 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4750 else
4751 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4752 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4753 ifr->ifr_hwaddr.sa_family = dev->type;
4754 return 0;
4755
4756 case SIOCGIFSLAVE:
4757 err = -EINVAL;
4758 break;
4759
4760 case SIOCGIFMAP:
4761 ifr->ifr_map.mem_start = dev->mem_start;
4762 ifr->ifr_map.mem_end = dev->mem_end;
4763 ifr->ifr_map.base_addr = dev->base_addr;
4764 ifr->ifr_map.irq = dev->irq;
4765 ifr->ifr_map.dma = dev->dma;
4766 ifr->ifr_map.port = dev->if_port;
4767 return 0;
4768
4769 case SIOCGIFINDEX:
4770 ifr->ifr_ifindex = dev->ifindex;
4771 return 0;
4772
4773 case SIOCGIFTXQLEN:
4774 ifr->ifr_qlen = dev->tx_queue_len;
4775 return 0;
4776
4777 default:
4778 /* dev_ioctl() should ensure this case
4779 * is never reached
4780 */
4781 WARN_ON(1);
4782 err = -EINVAL;
4783 break;
4784
4785 }
4786 return err;
4787 }
4788
4789 /*
4790 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4791 */
4792 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4793 {
4794 int err;
4795 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4796 const struct net_device_ops *ops;
4797
4798 if (!dev)
4799 return -ENODEV;
4800
4801 ops = dev->netdev_ops;
4802
4803 switch (cmd) {
4804 case SIOCSIFFLAGS: /* Set interface flags */
4805 return dev_change_flags(dev, ifr->ifr_flags);
4806
4807 case SIOCSIFMETRIC: /* Set the metric on the interface
4808 (currently unused) */
4809 return -EOPNOTSUPP;
4810
4811 case SIOCSIFMTU: /* Set the MTU of a device */
4812 return dev_set_mtu(dev, ifr->ifr_mtu);
4813
4814 case SIOCSIFHWADDR:
4815 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4816
4817 case SIOCSIFHWBROADCAST:
4818 if (ifr->ifr_hwaddr.sa_family != dev->type)
4819 return -EINVAL;
4820 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4821 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4822 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4823 return 0;
4824
4825 case SIOCSIFMAP:
4826 if (ops->ndo_set_config) {
4827 if (!netif_device_present(dev))
4828 return -ENODEV;
4829 return ops->ndo_set_config(dev, &ifr->ifr_map);
4830 }
4831 return -EOPNOTSUPP;
4832
4833 case SIOCADDMULTI:
4834 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4835 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4836 return -EINVAL;
4837 if (!netif_device_present(dev))
4838 return -ENODEV;
4839 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4840
4841 case SIOCDELMULTI:
4842 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4843 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4844 return -EINVAL;
4845 if (!netif_device_present(dev))
4846 return -ENODEV;
4847 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4848
4849 case SIOCSIFTXQLEN:
4850 if (ifr->ifr_qlen < 0)
4851 return -EINVAL;
4852 dev->tx_queue_len = ifr->ifr_qlen;
4853 return 0;
4854
4855 case SIOCSIFNAME:
4856 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4857 return dev_change_name(dev, ifr->ifr_newname);
4858
4859 /*
4860 * Unknown or private ioctl
4861 */
4862 default:
4863 if ((cmd >= SIOCDEVPRIVATE &&
4864 cmd <= SIOCDEVPRIVATE + 15) ||
4865 cmd == SIOCBONDENSLAVE ||
4866 cmd == SIOCBONDRELEASE ||
4867 cmd == SIOCBONDSETHWADDR ||
4868 cmd == SIOCBONDSLAVEINFOQUERY ||
4869 cmd == SIOCBONDINFOQUERY ||
4870 cmd == SIOCBONDCHANGEACTIVE ||
4871 cmd == SIOCGMIIPHY ||
4872 cmd == SIOCGMIIREG ||
4873 cmd == SIOCSMIIREG ||
4874 cmd == SIOCBRADDIF ||
4875 cmd == SIOCBRDELIF ||
4876 cmd == SIOCSHWTSTAMP ||
4877 cmd == SIOCWANDEV) {
4878 err = -EOPNOTSUPP;
4879 if (ops->ndo_do_ioctl) {
4880 if (netif_device_present(dev))
4881 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4882 else
4883 err = -ENODEV;
4884 }
4885 } else
4886 err = -EINVAL;
4887
4888 }
4889 return err;
4890 }
4891
4892 /*
4893 * This function handles all "interface"-type I/O control requests. The actual
4894 * 'doing' part of this is dev_ifsioc above.
4895 */
4896
4897 /**
4898 * dev_ioctl - network device ioctl
4899 * @net: the applicable net namespace
4900 * @cmd: command to issue
4901 * @arg: pointer to a struct ifreq in user space
4902 *
4903 * Issue ioctl functions to devices. This is normally called by the
4904 * user space syscall interfaces but can sometimes be useful for
4905 * other purposes. The return value is the return from the syscall if
4906 * positive or a negative errno code on error.
4907 */
4908
4909 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4910 {
4911 struct ifreq ifr;
4912 int ret;
4913 char *colon;
4914
4915 /* One special case: SIOCGIFCONF takes ifconf argument
4916 and requires shared lock, because it sleeps writing
4917 to user space.
4918 */
4919
4920 if (cmd == SIOCGIFCONF) {
4921 rtnl_lock();
4922 ret = dev_ifconf(net, (char __user *) arg);
4923 rtnl_unlock();
4924 return ret;
4925 }
4926 if (cmd == SIOCGIFNAME)
4927 return dev_ifname(net, (struct ifreq __user *)arg);
4928
4929 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4930 return -EFAULT;
4931
4932 ifr.ifr_name[IFNAMSIZ-1] = 0;
4933
4934 colon = strchr(ifr.ifr_name, ':');
4935 if (colon)
4936 *colon = 0;
4937
4938 /*
4939 * See which interface the caller is talking about.
4940 */
4941
4942 switch (cmd) {
4943 /*
4944 * These ioctl calls:
4945 * - can be done by all.
4946 * - atomic and do not require locking.
4947 * - return a value
4948 */
4949 case SIOCGIFFLAGS:
4950 case SIOCGIFMETRIC:
4951 case SIOCGIFMTU:
4952 case SIOCGIFHWADDR:
4953 case SIOCGIFSLAVE:
4954 case SIOCGIFMAP:
4955 case SIOCGIFINDEX:
4956 case SIOCGIFTXQLEN:
4957 dev_load(net, ifr.ifr_name);
4958 rcu_read_lock();
4959 ret = dev_ifsioc_locked(net, &ifr, cmd);
4960 rcu_read_unlock();
4961 if (!ret) {
4962 if (colon)
4963 *colon = ':';
4964 if (copy_to_user(arg, &ifr,
4965 sizeof(struct ifreq)))
4966 ret = -EFAULT;
4967 }
4968 return ret;
4969
4970 case SIOCETHTOOL:
4971 dev_load(net, ifr.ifr_name);
4972 rtnl_lock();
4973 ret = dev_ethtool(net, &ifr);
4974 rtnl_unlock();
4975 if (!ret) {
4976 if (colon)
4977 *colon = ':';
4978 if (copy_to_user(arg, &ifr,
4979 sizeof(struct ifreq)))
4980 ret = -EFAULT;
4981 }
4982 return ret;
4983
4984 /*
4985 * These ioctl calls:
4986 * - require superuser power.
4987 * - require strict serialization.
4988 * - return a value
4989 */
4990 case SIOCGMIIPHY:
4991 case SIOCGMIIREG:
4992 case SIOCSIFNAME:
4993 if (!capable(CAP_NET_ADMIN))
4994 return -EPERM;
4995 dev_load(net, ifr.ifr_name);
4996 rtnl_lock();
4997 ret = dev_ifsioc(net, &ifr, cmd);
4998 rtnl_unlock();
4999 if (!ret) {
5000 if (colon)
5001 *colon = ':';
5002 if (copy_to_user(arg, &ifr,
5003 sizeof(struct ifreq)))
5004 ret = -EFAULT;
5005 }
5006 return ret;
5007
5008 /*
5009 * These ioctl calls:
5010 * - require superuser power.
5011 * - require strict serialization.
5012 * - do not return a value
5013 */
5014 case SIOCSIFFLAGS:
5015 case SIOCSIFMETRIC:
5016 case SIOCSIFMTU:
5017 case SIOCSIFMAP:
5018 case SIOCSIFHWADDR:
5019 case SIOCSIFSLAVE:
5020 case SIOCADDMULTI:
5021 case SIOCDELMULTI:
5022 case SIOCSIFHWBROADCAST:
5023 case SIOCSIFTXQLEN:
5024 case SIOCSMIIREG:
5025 case SIOCBONDENSLAVE:
5026 case SIOCBONDRELEASE:
5027 case SIOCBONDSETHWADDR:
5028 case SIOCBONDCHANGEACTIVE:
5029 case SIOCBRADDIF:
5030 case SIOCBRDELIF:
5031 case SIOCSHWTSTAMP:
5032 if (!capable(CAP_NET_ADMIN))
5033 return -EPERM;
5034 /* fall through */
5035 case SIOCBONDSLAVEINFOQUERY:
5036 case SIOCBONDINFOQUERY:
5037 dev_load(net, ifr.ifr_name);
5038 rtnl_lock();
5039 ret = dev_ifsioc(net, &ifr, cmd);
5040 rtnl_unlock();
5041 return ret;
5042
5043 case SIOCGIFMEM:
5044 /* Get the per device memory space. We can add this but
5045 * currently do not support it */
5046 case SIOCSIFMEM:
5047 /* Set the per device memory buffer space.
5048 * Not applicable in our case */
5049 case SIOCSIFLINK:
5050 return -EINVAL;
5051
5052 /*
5053 * Unknown or private ioctl.
5054 */
5055 default:
5056 if (cmd == SIOCWANDEV ||
5057 (cmd >= SIOCDEVPRIVATE &&
5058 cmd <= SIOCDEVPRIVATE + 15)) {
5059 dev_load(net, ifr.ifr_name);
5060 rtnl_lock();
5061 ret = dev_ifsioc(net, &ifr, cmd);
5062 rtnl_unlock();
5063 if (!ret && copy_to_user(arg, &ifr,
5064 sizeof(struct ifreq)))
5065 ret = -EFAULT;
5066 return ret;
5067 }
5068 /* Take care of Wireless Extensions */
5069 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5070 return wext_handle_ioctl(net, &ifr, cmd, arg);
5071 return -EINVAL;
5072 }
5073 }
5074
5075
5076 /**
5077 * dev_new_index - allocate an ifindex
5078 * @net: the applicable net namespace
5079 *
5080 * Returns a suitable unique value for a new device interface
5081 * number. The caller must hold the rtnl semaphore or the
5082 * dev_base_lock to be sure it remains unique.
5083 */
5084 static int dev_new_index(struct net *net)
5085 {
5086 static int ifindex;
5087 for (;;) {
5088 if (++ifindex <= 0)
5089 ifindex = 1;
5090 if (!__dev_get_by_index(net, ifindex))
5091 return ifindex;
5092 }
5093 }
5094
5095 /* Delayed registration/unregisteration */
5096 static LIST_HEAD(net_todo_list);
5097
5098 static void net_set_todo(struct net_device *dev)
5099 {
5100 list_add_tail(&dev->todo_list, &net_todo_list);
5101 }
5102
5103 static void rollback_registered_many(struct list_head *head)
5104 {
5105 struct net_device *dev, *tmp;
5106
5107 BUG_ON(dev_boot_phase);
5108 ASSERT_RTNL();
5109
5110 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5111 /* Some devices call without registering
5112 * for initialization unwind. Remove those
5113 * devices and proceed with the remaining.
5114 */
5115 if (dev->reg_state == NETREG_UNINITIALIZED) {
5116 pr_debug("unregister_netdevice: device %s/%p never "
5117 "was registered\n", dev->name, dev);
5118
5119 WARN_ON(1);
5120 list_del(&dev->unreg_list);
5121 continue;
5122 }
5123
5124 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5125 }
5126
5127 /* If device is running, close it first. */
5128 dev_close_many(head);
5129
5130 list_for_each_entry(dev, head, unreg_list) {
5131 /* And unlink it from device chain. */
5132 unlist_netdevice(dev);
5133
5134 dev->reg_state = NETREG_UNREGISTERING;
5135 }
5136
5137 synchronize_net();
5138
5139 list_for_each_entry(dev, head, unreg_list) {
5140 /* Shutdown queueing discipline. */
5141 dev_shutdown(dev);
5142
5143
5144 /* Notify protocols, that we are about to destroy
5145 this device. They should clean all the things.
5146 */
5147 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5148
5149 if (!dev->rtnl_link_ops ||
5150 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5151 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5152
5153 /*
5154 * Flush the unicast and multicast chains
5155 */
5156 dev_uc_flush(dev);
5157 dev_mc_flush(dev);
5158
5159 if (dev->netdev_ops->ndo_uninit)
5160 dev->netdev_ops->ndo_uninit(dev);
5161
5162 /* Notifier chain MUST detach us from master device. */
5163 WARN_ON(dev->master);
5164
5165 /* Remove entries from kobject tree */
5166 netdev_unregister_kobject(dev);
5167 }
5168
5169 /* Process any work delayed until the end of the batch */
5170 dev = list_first_entry(head, struct net_device, unreg_list);
5171 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5172
5173 rcu_barrier();
5174
5175 list_for_each_entry(dev, head, unreg_list)
5176 dev_put(dev);
5177 }
5178
5179 static void rollback_registered(struct net_device *dev)
5180 {
5181 LIST_HEAD(single);
5182
5183 list_add(&dev->unreg_list, &single);
5184 rollback_registered_many(&single);
5185 list_del(&single);
5186 }
5187
5188 u32 netdev_fix_features(struct net_device *dev, u32 features)
5189 {
5190 /* Fix illegal checksum combinations */
5191 if ((features & NETIF_F_HW_CSUM) &&
5192 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5193 netdev_info(dev, "mixed HW and IP checksum settings.\n");
5194 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5195 }
5196
5197 if ((features & NETIF_F_NO_CSUM) &&
5198 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5199 netdev_info(dev, "mixed no checksumming and other settings.\n");
5200 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5201 }
5202
5203 /* Fix illegal SG+CSUM combinations. */
5204 if ((features & NETIF_F_SG) &&
5205 !(features & NETIF_F_ALL_CSUM)) {
5206 netdev_info(dev,
5207 "Dropping NETIF_F_SG since no checksum feature.\n");
5208 features &= ~NETIF_F_SG;
5209 }
5210
5211 /* TSO requires that SG is present as well. */
5212 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5213 netdev_info(dev, "Dropping TSO features since no SG feature.\n");
5214 features &= ~NETIF_F_ALL_TSO;
5215 }
5216
5217 /* TSO ECN requires that TSO is present as well. */
5218 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5219 features &= ~NETIF_F_TSO_ECN;
5220
5221 /* Software GSO depends on SG. */
5222 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5223 netdev_info(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5224 features &= ~NETIF_F_GSO;
5225 }
5226
5227 /* UFO needs SG and checksumming */
5228 if (features & NETIF_F_UFO) {
5229 /* maybe split UFO into V4 and V6? */
5230 if (!((features & NETIF_F_GEN_CSUM) ||
5231 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5232 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5233 netdev_info(dev,
5234 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5235 features &= ~NETIF_F_UFO;
5236 }
5237
5238 if (!(features & NETIF_F_SG)) {
5239 netdev_info(dev,
5240 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5241 features &= ~NETIF_F_UFO;
5242 }
5243 }
5244
5245 return features;
5246 }
5247 EXPORT_SYMBOL(netdev_fix_features);
5248
5249 int __netdev_update_features(struct net_device *dev)
5250 {
5251 u32 features;
5252 int err = 0;
5253
5254 ASSERT_RTNL();
5255
5256 features = netdev_get_wanted_features(dev);
5257
5258 if (dev->netdev_ops->ndo_fix_features)
5259 features = dev->netdev_ops->ndo_fix_features(dev, features);
5260
5261 /* driver might be less strict about feature dependencies */
5262 features = netdev_fix_features(dev, features);
5263
5264 if (dev->features == features)
5265 return 0;
5266
5267 netdev_info(dev, "Features changed: 0x%08x -> 0x%08x\n",
5268 dev->features, features);
5269
5270 if (dev->netdev_ops->ndo_set_features)
5271 err = dev->netdev_ops->ndo_set_features(dev, features);
5272
5273 if (unlikely(err < 0)) {
5274 netdev_err(dev,
5275 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5276 err, features, dev->features);
5277 return -1;
5278 }
5279
5280 if (!err)
5281 dev->features = features;
5282
5283 return 1;
5284 }
5285
5286 void netdev_update_features(struct net_device *dev)
5287 {
5288 if (__netdev_update_features(dev))
5289 netdev_features_change(dev);
5290 }
5291 EXPORT_SYMBOL(netdev_update_features);
5292
5293 /**
5294 * netif_stacked_transfer_operstate - transfer operstate
5295 * @rootdev: the root or lower level device to transfer state from
5296 * @dev: the device to transfer operstate to
5297 *
5298 * Transfer operational state from root to device. This is normally
5299 * called when a stacking relationship exists between the root
5300 * device and the device(a leaf device).
5301 */
5302 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5303 struct net_device *dev)
5304 {
5305 if (rootdev->operstate == IF_OPER_DORMANT)
5306 netif_dormant_on(dev);
5307 else
5308 netif_dormant_off(dev);
5309
5310 if (netif_carrier_ok(rootdev)) {
5311 if (!netif_carrier_ok(dev))
5312 netif_carrier_on(dev);
5313 } else {
5314 if (netif_carrier_ok(dev))
5315 netif_carrier_off(dev);
5316 }
5317 }
5318 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5319
5320 #ifdef CONFIG_RPS
5321 static int netif_alloc_rx_queues(struct net_device *dev)
5322 {
5323 unsigned int i, count = dev->num_rx_queues;
5324 struct netdev_rx_queue *rx;
5325
5326 BUG_ON(count < 1);
5327
5328 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5329 if (!rx) {
5330 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5331 return -ENOMEM;
5332 }
5333 dev->_rx = rx;
5334
5335 for (i = 0; i < count; i++)
5336 rx[i].dev = dev;
5337 return 0;
5338 }
5339 #endif
5340
5341 static void netdev_init_one_queue(struct net_device *dev,
5342 struct netdev_queue *queue, void *_unused)
5343 {
5344 /* Initialize queue lock */
5345 spin_lock_init(&queue->_xmit_lock);
5346 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5347 queue->xmit_lock_owner = -1;
5348 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5349 queue->dev = dev;
5350 }
5351
5352 static int netif_alloc_netdev_queues(struct net_device *dev)
5353 {
5354 unsigned int count = dev->num_tx_queues;
5355 struct netdev_queue *tx;
5356
5357 BUG_ON(count < 1);
5358
5359 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5360 if (!tx) {
5361 pr_err("netdev: Unable to allocate %u tx queues.\n",
5362 count);
5363 return -ENOMEM;
5364 }
5365 dev->_tx = tx;
5366
5367 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5368 spin_lock_init(&dev->tx_global_lock);
5369
5370 return 0;
5371 }
5372
5373 /**
5374 * register_netdevice - register a network device
5375 * @dev: device to register
5376 *
5377 * Take a completed network device structure and add it to the kernel
5378 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5379 * chain. 0 is returned on success. A negative errno code is returned
5380 * on a failure to set up the device, or if the name is a duplicate.
5381 *
5382 * Callers must hold the rtnl semaphore. You may want
5383 * register_netdev() instead of this.
5384 *
5385 * BUGS:
5386 * The locking appears insufficient to guarantee two parallel registers
5387 * will not get the same name.
5388 */
5389
5390 int register_netdevice(struct net_device *dev)
5391 {
5392 int ret;
5393 struct net *net = dev_net(dev);
5394
5395 BUG_ON(dev_boot_phase);
5396 ASSERT_RTNL();
5397
5398 might_sleep();
5399
5400 /* When net_device's are persistent, this will be fatal. */
5401 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5402 BUG_ON(!net);
5403
5404 spin_lock_init(&dev->addr_list_lock);
5405 netdev_set_addr_lockdep_class(dev);
5406
5407 dev->iflink = -1;
5408
5409 /* Init, if this function is available */
5410 if (dev->netdev_ops->ndo_init) {
5411 ret = dev->netdev_ops->ndo_init(dev);
5412 if (ret) {
5413 if (ret > 0)
5414 ret = -EIO;
5415 goto out;
5416 }
5417 }
5418
5419 ret = dev_get_valid_name(dev, dev->name, 0);
5420 if (ret)
5421 goto err_uninit;
5422
5423 dev->ifindex = dev_new_index(net);
5424 if (dev->iflink == -1)
5425 dev->iflink = dev->ifindex;
5426
5427 /* Transfer changeable features to wanted_features and enable
5428 * software offloads (GSO and GRO).
5429 */
5430 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5431 dev->features |= NETIF_F_SOFT_FEATURES;
5432 dev->wanted_features = dev->features & dev->hw_features;
5433
5434 /* Avoid warning from netdev_fix_features() for GSO without SG */
5435 if (!(dev->wanted_features & NETIF_F_SG)) {
5436 dev->wanted_features &= ~NETIF_F_GSO;
5437 dev->features &= ~NETIF_F_GSO;
5438 }
5439
5440 /* Turn on no cache copy if HW is doing checksum */
5441 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5442 if ((dev->features & NETIF_F_ALL_CSUM) &&
5443 !(dev->features & NETIF_F_NO_CSUM)) {
5444 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5445 dev->features |= NETIF_F_NOCACHE_COPY;
5446 }
5447
5448 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5449 * vlan_dev_init() will do the dev->features check, so these features
5450 * are enabled only if supported by underlying device.
5451 */
5452 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5453
5454 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5455 ret = notifier_to_errno(ret);
5456 if (ret)
5457 goto err_uninit;
5458
5459 ret = netdev_register_kobject(dev);
5460 if (ret)
5461 goto err_uninit;
5462 dev->reg_state = NETREG_REGISTERED;
5463
5464 __netdev_update_features(dev);
5465
5466 /*
5467 * Default initial state at registry is that the
5468 * device is present.
5469 */
5470
5471 set_bit(__LINK_STATE_PRESENT, &dev->state);
5472
5473 dev_init_scheduler(dev);
5474 dev_hold(dev);
5475 list_netdevice(dev);
5476
5477 /* Notify protocols, that a new device appeared. */
5478 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5479 ret = notifier_to_errno(ret);
5480 if (ret) {
5481 rollback_registered(dev);
5482 dev->reg_state = NETREG_UNREGISTERED;
5483 }
5484 /*
5485 * Prevent userspace races by waiting until the network
5486 * device is fully setup before sending notifications.
5487 */
5488 if (!dev->rtnl_link_ops ||
5489 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5490 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5491
5492 out:
5493 return ret;
5494
5495 err_uninit:
5496 if (dev->netdev_ops->ndo_uninit)
5497 dev->netdev_ops->ndo_uninit(dev);
5498 goto out;
5499 }
5500 EXPORT_SYMBOL(register_netdevice);
5501
5502 /**
5503 * init_dummy_netdev - init a dummy network device for NAPI
5504 * @dev: device to init
5505 *
5506 * This takes a network device structure and initialize the minimum
5507 * amount of fields so it can be used to schedule NAPI polls without
5508 * registering a full blown interface. This is to be used by drivers
5509 * that need to tie several hardware interfaces to a single NAPI
5510 * poll scheduler due to HW limitations.
5511 */
5512 int init_dummy_netdev(struct net_device *dev)
5513 {
5514 /* Clear everything. Note we don't initialize spinlocks
5515 * are they aren't supposed to be taken by any of the
5516 * NAPI code and this dummy netdev is supposed to be
5517 * only ever used for NAPI polls
5518 */
5519 memset(dev, 0, sizeof(struct net_device));
5520
5521 /* make sure we BUG if trying to hit standard
5522 * register/unregister code path
5523 */
5524 dev->reg_state = NETREG_DUMMY;
5525
5526 /* NAPI wants this */
5527 INIT_LIST_HEAD(&dev->napi_list);
5528
5529 /* a dummy interface is started by default */
5530 set_bit(__LINK_STATE_PRESENT, &dev->state);
5531 set_bit(__LINK_STATE_START, &dev->state);
5532
5533 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5534 * because users of this 'device' dont need to change
5535 * its refcount.
5536 */
5537
5538 return 0;
5539 }
5540 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5541
5542
5543 /**
5544 * register_netdev - register a network device
5545 * @dev: device to register
5546 *
5547 * Take a completed network device structure and add it to the kernel
5548 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5549 * chain. 0 is returned on success. A negative errno code is returned
5550 * on a failure to set up the device, or if the name is a duplicate.
5551 *
5552 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5553 * and expands the device name if you passed a format string to
5554 * alloc_netdev.
5555 */
5556 int register_netdev(struct net_device *dev)
5557 {
5558 int err;
5559
5560 rtnl_lock();
5561
5562 /*
5563 * If the name is a format string the caller wants us to do a
5564 * name allocation.
5565 */
5566 if (strchr(dev->name, '%')) {
5567 err = dev_alloc_name(dev, dev->name);
5568 if (err < 0)
5569 goto out;
5570 }
5571
5572 err = register_netdevice(dev);
5573 out:
5574 rtnl_unlock();
5575 return err;
5576 }
5577 EXPORT_SYMBOL(register_netdev);
5578
5579 int netdev_refcnt_read(const struct net_device *dev)
5580 {
5581 int i, refcnt = 0;
5582
5583 for_each_possible_cpu(i)
5584 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5585 return refcnt;
5586 }
5587 EXPORT_SYMBOL(netdev_refcnt_read);
5588
5589 /*
5590 * netdev_wait_allrefs - wait until all references are gone.
5591 *
5592 * This is called when unregistering network devices.
5593 *
5594 * Any protocol or device that holds a reference should register
5595 * for netdevice notification, and cleanup and put back the
5596 * reference if they receive an UNREGISTER event.
5597 * We can get stuck here if buggy protocols don't correctly
5598 * call dev_put.
5599 */
5600 static void netdev_wait_allrefs(struct net_device *dev)
5601 {
5602 unsigned long rebroadcast_time, warning_time;
5603 int refcnt;
5604
5605 linkwatch_forget_dev(dev);
5606
5607 rebroadcast_time = warning_time = jiffies;
5608 refcnt = netdev_refcnt_read(dev);
5609
5610 while (refcnt != 0) {
5611 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5612 rtnl_lock();
5613
5614 /* Rebroadcast unregister notification */
5615 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5616 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5617 * should have already handle it the first time */
5618
5619 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5620 &dev->state)) {
5621 /* We must not have linkwatch events
5622 * pending on unregister. If this
5623 * happens, we simply run the queue
5624 * unscheduled, resulting in a noop
5625 * for this device.
5626 */
5627 linkwatch_run_queue();
5628 }
5629
5630 __rtnl_unlock();
5631
5632 rebroadcast_time = jiffies;
5633 }
5634
5635 msleep(250);
5636
5637 refcnt = netdev_refcnt_read(dev);
5638
5639 if (time_after(jiffies, warning_time + 10 * HZ)) {
5640 printk(KERN_EMERG "unregister_netdevice: "
5641 "waiting for %s to become free. Usage "
5642 "count = %d\n",
5643 dev->name, refcnt);
5644 warning_time = jiffies;
5645 }
5646 }
5647 }
5648
5649 /* The sequence is:
5650 *
5651 * rtnl_lock();
5652 * ...
5653 * register_netdevice(x1);
5654 * register_netdevice(x2);
5655 * ...
5656 * unregister_netdevice(y1);
5657 * unregister_netdevice(y2);
5658 * ...
5659 * rtnl_unlock();
5660 * free_netdev(y1);
5661 * free_netdev(y2);
5662 *
5663 * We are invoked by rtnl_unlock().
5664 * This allows us to deal with problems:
5665 * 1) We can delete sysfs objects which invoke hotplug
5666 * without deadlocking with linkwatch via keventd.
5667 * 2) Since we run with the RTNL semaphore not held, we can sleep
5668 * safely in order to wait for the netdev refcnt to drop to zero.
5669 *
5670 * We must not return until all unregister events added during
5671 * the interval the lock was held have been completed.
5672 */
5673 void netdev_run_todo(void)
5674 {
5675 struct list_head list;
5676
5677 /* Snapshot list, allow later requests */
5678 list_replace_init(&net_todo_list, &list);
5679
5680 __rtnl_unlock();
5681
5682 while (!list_empty(&list)) {
5683 struct net_device *dev
5684 = list_first_entry(&list, struct net_device, todo_list);
5685 list_del(&dev->todo_list);
5686
5687 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5688 printk(KERN_ERR "network todo '%s' but state %d\n",
5689 dev->name, dev->reg_state);
5690 dump_stack();
5691 continue;
5692 }
5693
5694 dev->reg_state = NETREG_UNREGISTERED;
5695
5696 on_each_cpu(flush_backlog, dev, 1);
5697
5698 netdev_wait_allrefs(dev);
5699
5700 /* paranoia */
5701 BUG_ON(netdev_refcnt_read(dev));
5702 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5703 WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5704 WARN_ON(dev->dn_ptr);
5705
5706 if (dev->destructor)
5707 dev->destructor(dev);
5708
5709 /* Free network device */
5710 kobject_put(&dev->dev.kobj);
5711 }
5712 }
5713
5714 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5715 * fields in the same order, with only the type differing.
5716 */
5717 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5718 const struct net_device_stats *netdev_stats)
5719 {
5720 #if BITS_PER_LONG == 64
5721 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5722 memcpy(stats64, netdev_stats, sizeof(*stats64));
5723 #else
5724 size_t i, n = sizeof(*stats64) / sizeof(u64);
5725 const unsigned long *src = (const unsigned long *)netdev_stats;
5726 u64 *dst = (u64 *)stats64;
5727
5728 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5729 sizeof(*stats64) / sizeof(u64));
5730 for (i = 0; i < n; i++)
5731 dst[i] = src[i];
5732 #endif
5733 }
5734
5735 /**
5736 * dev_get_stats - get network device statistics
5737 * @dev: device to get statistics from
5738 * @storage: place to store stats
5739 *
5740 * Get network statistics from device. Return @storage.
5741 * The device driver may provide its own method by setting
5742 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5743 * otherwise the internal statistics structure is used.
5744 */
5745 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5746 struct rtnl_link_stats64 *storage)
5747 {
5748 const struct net_device_ops *ops = dev->netdev_ops;
5749
5750 if (ops->ndo_get_stats64) {
5751 memset(storage, 0, sizeof(*storage));
5752 ops->ndo_get_stats64(dev, storage);
5753 } else if (ops->ndo_get_stats) {
5754 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5755 } else {
5756 netdev_stats_to_stats64(storage, &dev->stats);
5757 }
5758 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5759 return storage;
5760 }
5761 EXPORT_SYMBOL(dev_get_stats);
5762
5763 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5764 {
5765 struct netdev_queue *queue = dev_ingress_queue(dev);
5766
5767 #ifdef CONFIG_NET_CLS_ACT
5768 if (queue)
5769 return queue;
5770 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5771 if (!queue)
5772 return NULL;
5773 netdev_init_one_queue(dev, queue, NULL);
5774 queue->qdisc = &noop_qdisc;
5775 queue->qdisc_sleeping = &noop_qdisc;
5776 rcu_assign_pointer(dev->ingress_queue, queue);
5777 #endif
5778 return queue;
5779 }
5780
5781 /**
5782 * alloc_netdev_mqs - allocate network device
5783 * @sizeof_priv: size of private data to allocate space for
5784 * @name: device name format string
5785 * @setup: callback to initialize device
5786 * @txqs: the number of TX subqueues to allocate
5787 * @rxqs: the number of RX subqueues to allocate
5788 *
5789 * Allocates a struct net_device with private data area for driver use
5790 * and performs basic initialization. Also allocates subquue structs
5791 * for each queue on the device.
5792 */
5793 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5794 void (*setup)(struct net_device *),
5795 unsigned int txqs, unsigned int rxqs)
5796 {
5797 struct net_device *dev;
5798 size_t alloc_size;
5799 struct net_device *p;
5800
5801 BUG_ON(strlen(name) >= sizeof(dev->name));
5802
5803 if (txqs < 1) {
5804 pr_err("alloc_netdev: Unable to allocate device "
5805 "with zero queues.\n");
5806 return NULL;
5807 }
5808
5809 #ifdef CONFIG_RPS
5810 if (rxqs < 1) {
5811 pr_err("alloc_netdev: Unable to allocate device "
5812 "with zero RX queues.\n");
5813 return NULL;
5814 }
5815 #endif
5816
5817 alloc_size = sizeof(struct net_device);
5818 if (sizeof_priv) {
5819 /* ensure 32-byte alignment of private area */
5820 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5821 alloc_size += sizeof_priv;
5822 }
5823 /* ensure 32-byte alignment of whole construct */
5824 alloc_size += NETDEV_ALIGN - 1;
5825
5826 p = kzalloc(alloc_size, GFP_KERNEL);
5827 if (!p) {
5828 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5829 return NULL;
5830 }
5831
5832 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5833 dev->padded = (char *)dev - (char *)p;
5834
5835 dev->pcpu_refcnt = alloc_percpu(int);
5836 if (!dev->pcpu_refcnt)
5837 goto free_p;
5838
5839 if (dev_addr_init(dev))
5840 goto free_pcpu;
5841
5842 dev_mc_init(dev);
5843 dev_uc_init(dev);
5844
5845 dev_net_set(dev, &init_net);
5846
5847 dev->gso_max_size = GSO_MAX_SIZE;
5848
5849 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5850 dev->ethtool_ntuple_list.count = 0;
5851 INIT_LIST_HEAD(&dev->napi_list);
5852 INIT_LIST_HEAD(&dev->unreg_list);
5853 INIT_LIST_HEAD(&dev->link_watch_list);
5854 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5855 setup(dev);
5856
5857 dev->num_tx_queues = txqs;
5858 dev->real_num_tx_queues = txqs;
5859 if (netif_alloc_netdev_queues(dev))
5860 goto free_all;
5861
5862 #ifdef CONFIG_RPS
5863 dev->num_rx_queues = rxqs;
5864 dev->real_num_rx_queues = rxqs;
5865 if (netif_alloc_rx_queues(dev))
5866 goto free_all;
5867 #endif
5868
5869 strcpy(dev->name, name);
5870 dev->group = INIT_NETDEV_GROUP;
5871 return dev;
5872
5873 free_all:
5874 free_netdev(dev);
5875 return NULL;
5876
5877 free_pcpu:
5878 free_percpu(dev->pcpu_refcnt);
5879 kfree(dev->_tx);
5880 #ifdef CONFIG_RPS
5881 kfree(dev->_rx);
5882 #endif
5883
5884 free_p:
5885 kfree(p);
5886 return NULL;
5887 }
5888 EXPORT_SYMBOL(alloc_netdev_mqs);
5889
5890 /**
5891 * free_netdev - free network device
5892 * @dev: device
5893 *
5894 * This function does the last stage of destroying an allocated device
5895 * interface. The reference to the device object is released.
5896 * If this is the last reference then it will be freed.
5897 */
5898 void free_netdev(struct net_device *dev)
5899 {
5900 struct napi_struct *p, *n;
5901
5902 release_net(dev_net(dev));
5903
5904 kfree(dev->_tx);
5905 #ifdef CONFIG_RPS
5906 kfree(dev->_rx);
5907 #endif
5908
5909 kfree(rcu_dereference_raw(dev->ingress_queue));
5910
5911 /* Flush device addresses */
5912 dev_addr_flush(dev);
5913
5914 /* Clear ethtool n-tuple list */
5915 ethtool_ntuple_flush(dev);
5916
5917 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5918 netif_napi_del(p);
5919
5920 free_percpu(dev->pcpu_refcnt);
5921 dev->pcpu_refcnt = NULL;
5922
5923 /* Compatibility with error handling in drivers */
5924 if (dev->reg_state == NETREG_UNINITIALIZED) {
5925 kfree((char *)dev - dev->padded);
5926 return;
5927 }
5928
5929 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5930 dev->reg_state = NETREG_RELEASED;
5931
5932 /* will free via device release */
5933 put_device(&dev->dev);
5934 }
5935 EXPORT_SYMBOL(free_netdev);
5936
5937 /**
5938 * synchronize_net - Synchronize with packet receive processing
5939 *
5940 * Wait for packets currently being received to be done.
5941 * Does not block later packets from starting.
5942 */
5943 void synchronize_net(void)
5944 {
5945 might_sleep();
5946 synchronize_rcu();
5947 }
5948 EXPORT_SYMBOL(synchronize_net);
5949
5950 /**
5951 * unregister_netdevice_queue - remove device from the kernel
5952 * @dev: device
5953 * @head: list
5954 *
5955 * This function shuts down a device interface and removes it
5956 * from the kernel tables.
5957 * If head not NULL, device is queued to be unregistered later.
5958 *
5959 * Callers must hold the rtnl semaphore. You may want
5960 * unregister_netdev() instead of this.
5961 */
5962
5963 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5964 {
5965 ASSERT_RTNL();
5966
5967 if (head) {
5968 list_move_tail(&dev->unreg_list, head);
5969 } else {
5970 rollback_registered(dev);
5971 /* Finish processing unregister after unlock */
5972 net_set_todo(dev);
5973 }
5974 }
5975 EXPORT_SYMBOL(unregister_netdevice_queue);
5976
5977 /**
5978 * unregister_netdevice_many - unregister many devices
5979 * @head: list of devices
5980 */
5981 void unregister_netdevice_many(struct list_head *head)
5982 {
5983 struct net_device *dev;
5984
5985 if (!list_empty(head)) {
5986 rollback_registered_many(head);
5987 list_for_each_entry(dev, head, unreg_list)
5988 net_set_todo(dev);
5989 }
5990 }
5991 EXPORT_SYMBOL(unregister_netdevice_many);
5992
5993 /**
5994 * unregister_netdev - remove device from the kernel
5995 * @dev: device
5996 *
5997 * This function shuts down a device interface and removes it
5998 * from the kernel tables.
5999 *
6000 * This is just a wrapper for unregister_netdevice that takes
6001 * the rtnl semaphore. In general you want to use this and not
6002 * unregister_netdevice.
6003 */
6004 void unregister_netdev(struct net_device *dev)
6005 {
6006 rtnl_lock();
6007 unregister_netdevice(dev);
6008 rtnl_unlock();
6009 }
6010 EXPORT_SYMBOL(unregister_netdev);
6011
6012 /**
6013 * dev_change_net_namespace - move device to different nethost namespace
6014 * @dev: device
6015 * @net: network namespace
6016 * @pat: If not NULL name pattern to try if the current device name
6017 * is already taken in the destination network namespace.
6018 *
6019 * This function shuts down a device interface and moves it
6020 * to a new network namespace. On success 0 is returned, on
6021 * a failure a netagive errno code is returned.
6022 *
6023 * Callers must hold the rtnl semaphore.
6024 */
6025
6026 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6027 {
6028 int err;
6029
6030 ASSERT_RTNL();
6031
6032 /* Don't allow namespace local devices to be moved. */
6033 err = -EINVAL;
6034 if (dev->features & NETIF_F_NETNS_LOCAL)
6035 goto out;
6036
6037 /* Ensure the device has been registrered */
6038 err = -EINVAL;
6039 if (dev->reg_state != NETREG_REGISTERED)
6040 goto out;
6041
6042 /* Get out if there is nothing todo */
6043 err = 0;
6044 if (net_eq(dev_net(dev), net))
6045 goto out;
6046
6047 /* Pick the destination device name, and ensure
6048 * we can use it in the destination network namespace.
6049 */
6050 err = -EEXIST;
6051 if (__dev_get_by_name(net, dev->name)) {
6052 /* We get here if we can't use the current device name */
6053 if (!pat)
6054 goto out;
6055 if (dev_get_valid_name(dev, pat, 1))
6056 goto out;
6057 }
6058
6059 /*
6060 * And now a mini version of register_netdevice unregister_netdevice.
6061 */
6062
6063 /* If device is running close it first. */
6064 dev_close(dev);
6065
6066 /* And unlink it from device chain */
6067 err = -ENODEV;
6068 unlist_netdevice(dev);
6069
6070 synchronize_net();
6071
6072 /* Shutdown queueing discipline. */
6073 dev_shutdown(dev);
6074
6075 /* Notify protocols, that we are about to destroy
6076 this device. They should clean all the things.
6077
6078 Note that dev->reg_state stays at NETREG_REGISTERED.
6079 This is wanted because this way 8021q and macvlan know
6080 the device is just moving and can keep their slaves up.
6081 */
6082 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6083 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6084
6085 /*
6086 * Flush the unicast and multicast chains
6087 */
6088 dev_uc_flush(dev);
6089 dev_mc_flush(dev);
6090
6091 /* Actually switch the network namespace */
6092 dev_net_set(dev, net);
6093
6094 /* If there is an ifindex conflict assign a new one */
6095 if (__dev_get_by_index(net, dev->ifindex)) {
6096 int iflink = (dev->iflink == dev->ifindex);
6097 dev->ifindex = dev_new_index(net);
6098 if (iflink)
6099 dev->iflink = dev->ifindex;
6100 }
6101
6102 /* Fixup kobjects */
6103 err = device_rename(&dev->dev, dev->name);
6104 WARN_ON(err);
6105
6106 /* Add the device back in the hashes */
6107 list_netdevice(dev);
6108
6109 /* Notify protocols, that a new device appeared. */
6110 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6111
6112 /*
6113 * Prevent userspace races by waiting until the network
6114 * device is fully setup before sending notifications.
6115 */
6116 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6117
6118 synchronize_net();
6119 err = 0;
6120 out:
6121 return err;
6122 }
6123 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6124
6125 static int dev_cpu_callback(struct notifier_block *nfb,
6126 unsigned long action,
6127 void *ocpu)
6128 {
6129 struct sk_buff **list_skb;
6130 struct sk_buff *skb;
6131 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6132 struct softnet_data *sd, *oldsd;
6133
6134 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6135 return NOTIFY_OK;
6136
6137 local_irq_disable();
6138 cpu = smp_processor_id();
6139 sd = &per_cpu(softnet_data, cpu);
6140 oldsd = &per_cpu(softnet_data, oldcpu);
6141
6142 /* Find end of our completion_queue. */
6143 list_skb = &sd->completion_queue;
6144 while (*list_skb)
6145 list_skb = &(*list_skb)->next;
6146 /* Append completion queue from offline CPU. */
6147 *list_skb = oldsd->completion_queue;
6148 oldsd->completion_queue = NULL;
6149
6150 /* Append output queue from offline CPU. */
6151 if (oldsd->output_queue) {
6152 *sd->output_queue_tailp = oldsd->output_queue;
6153 sd->output_queue_tailp = oldsd->output_queue_tailp;
6154 oldsd->output_queue = NULL;
6155 oldsd->output_queue_tailp = &oldsd->output_queue;
6156 }
6157
6158 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6159 local_irq_enable();
6160
6161 /* Process offline CPU's input_pkt_queue */
6162 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6163 netif_rx(skb);
6164 input_queue_head_incr(oldsd);
6165 }
6166 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6167 netif_rx(skb);
6168 input_queue_head_incr(oldsd);
6169 }
6170
6171 return NOTIFY_OK;
6172 }
6173
6174
6175 /**
6176 * netdev_increment_features - increment feature set by one
6177 * @all: current feature set
6178 * @one: new feature set
6179 * @mask: mask feature set
6180 *
6181 * Computes a new feature set after adding a device with feature set
6182 * @one to the master device with current feature set @all. Will not
6183 * enable anything that is off in @mask. Returns the new feature set.
6184 */
6185 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6186 {
6187 /* If device needs checksumming, downgrade to it. */
6188 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6189 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6190 else if (mask & NETIF_F_ALL_CSUM) {
6191 /* If one device supports v4/v6 checksumming, set for all. */
6192 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6193 !(all & NETIF_F_GEN_CSUM)) {
6194 all &= ~NETIF_F_ALL_CSUM;
6195 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6196 }
6197
6198 /* If one device supports hw checksumming, set for all. */
6199 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6200 all &= ~NETIF_F_ALL_CSUM;
6201 all |= NETIF_F_HW_CSUM;
6202 }
6203 }
6204
6205 /* If device can't no cache copy, don't do for all */
6206 if (!(one & NETIF_F_NOCACHE_COPY))
6207 all &= ~NETIF_F_NOCACHE_COPY;
6208
6209 one |= NETIF_F_ALL_CSUM;
6210
6211 one |= all & NETIF_F_ONE_FOR_ALL;
6212 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6213 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6214
6215 return all;
6216 }
6217 EXPORT_SYMBOL(netdev_increment_features);
6218
6219 static struct hlist_head *netdev_create_hash(void)
6220 {
6221 int i;
6222 struct hlist_head *hash;
6223
6224 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6225 if (hash != NULL)
6226 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6227 INIT_HLIST_HEAD(&hash[i]);
6228
6229 return hash;
6230 }
6231
6232 /* Initialize per network namespace state */
6233 static int __net_init netdev_init(struct net *net)
6234 {
6235 INIT_LIST_HEAD(&net->dev_base_head);
6236
6237 net->dev_name_head = netdev_create_hash();
6238 if (net->dev_name_head == NULL)
6239 goto err_name;
6240
6241 net->dev_index_head = netdev_create_hash();
6242 if (net->dev_index_head == NULL)
6243 goto err_idx;
6244
6245 return 0;
6246
6247 err_idx:
6248 kfree(net->dev_name_head);
6249 err_name:
6250 return -ENOMEM;
6251 }
6252
6253 /**
6254 * netdev_drivername - network driver for the device
6255 * @dev: network device
6256 * @buffer: buffer for resulting name
6257 * @len: size of buffer
6258 *
6259 * Determine network driver for device.
6260 */
6261 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6262 {
6263 const struct device_driver *driver;
6264 const struct device *parent;
6265
6266 if (len <= 0 || !buffer)
6267 return buffer;
6268 buffer[0] = 0;
6269
6270 parent = dev->dev.parent;
6271
6272 if (!parent)
6273 return buffer;
6274
6275 driver = parent->driver;
6276 if (driver && driver->name)
6277 strlcpy(buffer, driver->name, len);
6278 return buffer;
6279 }
6280
6281 static int __netdev_printk(const char *level, const struct net_device *dev,
6282 struct va_format *vaf)
6283 {
6284 int r;
6285
6286 if (dev && dev->dev.parent)
6287 r = dev_printk(level, dev->dev.parent, "%s: %pV",
6288 netdev_name(dev), vaf);
6289 else if (dev)
6290 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6291 else
6292 r = printk("%s(NULL net_device): %pV", level, vaf);
6293
6294 return r;
6295 }
6296
6297 int netdev_printk(const char *level, const struct net_device *dev,
6298 const char *format, ...)
6299 {
6300 struct va_format vaf;
6301 va_list args;
6302 int r;
6303
6304 va_start(args, format);
6305
6306 vaf.fmt = format;
6307 vaf.va = &args;
6308
6309 r = __netdev_printk(level, dev, &vaf);
6310 va_end(args);
6311
6312 return r;
6313 }
6314 EXPORT_SYMBOL(netdev_printk);
6315
6316 #define define_netdev_printk_level(func, level) \
6317 int func(const struct net_device *dev, const char *fmt, ...) \
6318 { \
6319 int r; \
6320 struct va_format vaf; \
6321 va_list args; \
6322 \
6323 va_start(args, fmt); \
6324 \
6325 vaf.fmt = fmt; \
6326 vaf.va = &args; \
6327 \
6328 r = __netdev_printk(level, dev, &vaf); \
6329 va_end(args); \
6330 \
6331 return r; \
6332 } \
6333 EXPORT_SYMBOL(func);
6334
6335 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6336 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6337 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6338 define_netdev_printk_level(netdev_err, KERN_ERR);
6339 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6340 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6341 define_netdev_printk_level(netdev_info, KERN_INFO);
6342
6343 static void __net_exit netdev_exit(struct net *net)
6344 {
6345 kfree(net->dev_name_head);
6346 kfree(net->dev_index_head);
6347 }
6348
6349 static struct pernet_operations __net_initdata netdev_net_ops = {
6350 .init = netdev_init,
6351 .exit = netdev_exit,
6352 };
6353
6354 static void __net_exit default_device_exit(struct net *net)
6355 {
6356 struct net_device *dev, *aux;
6357 /*
6358 * Push all migratable network devices back to the
6359 * initial network namespace
6360 */
6361 rtnl_lock();
6362 for_each_netdev_safe(net, dev, aux) {
6363 int err;
6364 char fb_name[IFNAMSIZ];
6365
6366 /* Ignore unmoveable devices (i.e. loopback) */
6367 if (dev->features & NETIF_F_NETNS_LOCAL)
6368 continue;
6369
6370 /* Leave virtual devices for the generic cleanup */
6371 if (dev->rtnl_link_ops)
6372 continue;
6373
6374 /* Push remaining network devices to init_net */
6375 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6376 err = dev_change_net_namespace(dev, &init_net, fb_name);
6377 if (err) {
6378 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6379 __func__, dev->name, err);
6380 BUG();
6381 }
6382 }
6383 rtnl_unlock();
6384 }
6385
6386 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6387 {
6388 /* At exit all network devices most be removed from a network
6389 * namespace. Do this in the reverse order of registration.
6390 * Do this across as many network namespaces as possible to
6391 * improve batching efficiency.
6392 */
6393 struct net_device *dev;
6394 struct net *net;
6395 LIST_HEAD(dev_kill_list);
6396
6397 rtnl_lock();
6398 list_for_each_entry(net, net_list, exit_list) {
6399 for_each_netdev_reverse(net, dev) {
6400 if (dev->rtnl_link_ops)
6401 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6402 else
6403 unregister_netdevice_queue(dev, &dev_kill_list);
6404 }
6405 }
6406 unregister_netdevice_many(&dev_kill_list);
6407 list_del(&dev_kill_list);
6408 rtnl_unlock();
6409 }
6410
6411 static struct pernet_operations __net_initdata default_device_ops = {
6412 .exit = default_device_exit,
6413 .exit_batch = default_device_exit_batch,
6414 };
6415
6416 /*
6417 * Initialize the DEV module. At boot time this walks the device list and
6418 * unhooks any devices that fail to initialise (normally hardware not
6419 * present) and leaves us with a valid list of present and active devices.
6420 *
6421 */
6422
6423 /*
6424 * This is called single threaded during boot, so no need
6425 * to take the rtnl semaphore.
6426 */
6427 static int __init net_dev_init(void)
6428 {
6429 int i, rc = -ENOMEM;
6430
6431 BUG_ON(!dev_boot_phase);
6432
6433 if (dev_proc_init())
6434 goto out;
6435
6436 if (netdev_kobject_init())
6437 goto out;
6438
6439 INIT_LIST_HEAD(&ptype_all);
6440 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6441 INIT_LIST_HEAD(&ptype_base[i]);
6442
6443 if (register_pernet_subsys(&netdev_net_ops))
6444 goto out;
6445
6446 /*
6447 * Initialise the packet receive queues.
6448 */
6449
6450 for_each_possible_cpu(i) {
6451 struct softnet_data *sd = &per_cpu(softnet_data, i);
6452
6453 memset(sd, 0, sizeof(*sd));
6454 skb_queue_head_init(&sd->input_pkt_queue);
6455 skb_queue_head_init(&sd->process_queue);
6456 sd->completion_queue = NULL;
6457 INIT_LIST_HEAD(&sd->poll_list);
6458 sd->output_queue = NULL;
6459 sd->output_queue_tailp = &sd->output_queue;
6460 #ifdef CONFIG_RPS
6461 sd->csd.func = rps_trigger_softirq;
6462 sd->csd.info = sd;
6463 sd->csd.flags = 0;
6464 sd->cpu = i;
6465 #endif
6466
6467 sd->backlog.poll = process_backlog;
6468 sd->backlog.weight = weight_p;
6469 sd->backlog.gro_list = NULL;
6470 sd->backlog.gro_count = 0;
6471 }
6472
6473 dev_boot_phase = 0;
6474
6475 /* The loopback device is special if any other network devices
6476 * is present in a network namespace the loopback device must
6477 * be present. Since we now dynamically allocate and free the
6478 * loopback device ensure this invariant is maintained by
6479 * keeping the loopback device as the first device on the
6480 * list of network devices. Ensuring the loopback devices
6481 * is the first device that appears and the last network device
6482 * that disappears.
6483 */
6484 if (register_pernet_device(&loopback_net_ops))
6485 goto out;
6486
6487 if (register_pernet_device(&default_device_ops))
6488 goto out;
6489
6490 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6491 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6492
6493 hotcpu_notifier(dev_cpu_callback, 0);
6494 dst_init();
6495 dev_mcast_init();
6496 rc = 0;
6497 out:
6498 return rc;
6499 }
6500
6501 subsys_initcall(net_dev_init);
6502
6503 static int __init initialize_hashrnd(void)
6504 {
6505 get_random_bytes(&hashrnd, sizeof(hashrnd));
6506 return 0;
6507 }
6508
6509 late_initcall_sync(initialize_hashrnd);
6510