]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
net: Introduce passthru_features_check
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138
139 #include "net-sysfs.h"
140
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly; /* Taps */
151 static struct list_head offload_base __read_mostly;
152
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
157
158 /*
159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160 * semaphore.
161 *
162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
165 * dev_base_head list, and hold dev_base_lock for writing when they do the
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185
186 static seqcount_t devnet_rename_seq;
187
188 static inline void dev_base_seq_inc(struct net *net)
189 {
190 while (++net->dev_base_seq == 0);
191 }
192
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204
205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208 spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211
212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
221 {
222 struct net *net = dev_net(dev);
223
224 ASSERT_RTNL();
225
226 write_lock_bh(&dev_base_lock);
227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
231 write_unlock_bh(&dev_base_lock);
232
233 dev_base_seq_inc(net);
234 }
235
236 /* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
238 */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 ASSERT_RTNL();
242
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
245 list_del_rcu(&dev->dev_list);
246 hlist_del_rcu(&dev->name_hlist);
247 hlist_del_rcu(&dev->index_hlist);
248 write_unlock_bh(&dev_base_lock);
249
250 dev_base_seq_inc(dev_net(dev));
251 }
252
253 /*
254 * Our notifier list
255 */
256
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258
259 /*
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
262 */
263
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266
267 #ifdef CONFIG_LOCKDEP
268 /*
269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270 * according to dev->type
271 */
272 static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288
289 static const char *const netdev_lock_name[] =
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
322 {
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328 }
329
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348
349 /*******************************************************************************
350
351 Protocol management and registration routines
352
353 *******************************************************************************/
354
355 /*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373 if (pt->type == htons(ETH_P_ALL))
374 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
375 else
376 return pt->dev ? &pt->dev->ptype_specific :
377 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
378 }
379
380 /**
381 * dev_add_pack - add packet handler
382 * @pt: packet type declaration
383 *
384 * Add a protocol handler to the networking stack. The passed &packet_type
385 * is linked into kernel lists and may not be freed until it has been
386 * removed from the kernel lists.
387 *
388 * This call does not sleep therefore it can not
389 * guarantee all CPU's that are in middle of receiving packets
390 * will see the new packet type (until the next received packet).
391 */
392
393 void dev_add_pack(struct packet_type *pt)
394 {
395 struct list_head *head = ptype_head(pt);
396
397 spin_lock(&ptype_lock);
398 list_add_rcu(&pt->list, head);
399 spin_unlock(&ptype_lock);
400 }
401 EXPORT_SYMBOL(dev_add_pack);
402
403 /**
404 * __dev_remove_pack - remove packet handler
405 * @pt: packet type declaration
406 *
407 * Remove a protocol handler that was previously added to the kernel
408 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
409 * from the kernel lists and can be freed or reused once this function
410 * returns.
411 *
412 * The packet type might still be in use by receivers
413 * and must not be freed until after all the CPU's have gone
414 * through a quiescent state.
415 */
416 void __dev_remove_pack(struct packet_type *pt)
417 {
418 struct list_head *head = ptype_head(pt);
419 struct packet_type *pt1;
420
421 spin_lock(&ptype_lock);
422
423 list_for_each_entry(pt1, head, list) {
424 if (pt == pt1) {
425 list_del_rcu(&pt->list);
426 goto out;
427 }
428 }
429
430 pr_warn("dev_remove_pack: %p not found\n", pt);
431 out:
432 spin_unlock(&ptype_lock);
433 }
434 EXPORT_SYMBOL(__dev_remove_pack);
435
436 /**
437 * dev_remove_pack - remove packet handler
438 * @pt: packet type declaration
439 *
440 * Remove a protocol handler that was previously added to the kernel
441 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
442 * from the kernel lists and can be freed or reused once this function
443 * returns.
444 *
445 * This call sleeps to guarantee that no CPU is looking at the packet
446 * type after return.
447 */
448 void dev_remove_pack(struct packet_type *pt)
449 {
450 __dev_remove_pack(pt);
451
452 synchronize_net();
453 }
454 EXPORT_SYMBOL(dev_remove_pack);
455
456
457 /**
458 * dev_add_offload - register offload handlers
459 * @po: protocol offload declaration
460 *
461 * Add protocol offload handlers to the networking stack. The passed
462 * &proto_offload is linked into kernel lists and may not be freed until
463 * it has been removed from the kernel lists.
464 *
465 * This call does not sleep therefore it can not
466 * guarantee all CPU's that are in middle of receiving packets
467 * will see the new offload handlers (until the next received packet).
468 */
469 void dev_add_offload(struct packet_offload *po)
470 {
471 struct list_head *head = &offload_base;
472
473 spin_lock(&offload_lock);
474 list_add_rcu(&po->list, head);
475 spin_unlock(&offload_lock);
476 }
477 EXPORT_SYMBOL(dev_add_offload);
478
479 /**
480 * __dev_remove_offload - remove offload handler
481 * @po: packet offload declaration
482 *
483 * Remove a protocol offload handler that was previously added to the
484 * kernel offload handlers by dev_add_offload(). The passed &offload_type
485 * is removed from the kernel lists and can be freed or reused once this
486 * function returns.
487 *
488 * The packet type might still be in use by receivers
489 * and must not be freed until after all the CPU's have gone
490 * through a quiescent state.
491 */
492 static void __dev_remove_offload(struct packet_offload *po)
493 {
494 struct list_head *head = &offload_base;
495 struct packet_offload *po1;
496
497 spin_lock(&offload_lock);
498
499 list_for_each_entry(po1, head, list) {
500 if (po == po1) {
501 list_del_rcu(&po->list);
502 goto out;
503 }
504 }
505
506 pr_warn("dev_remove_offload: %p not found\n", po);
507 out:
508 spin_unlock(&offload_lock);
509 }
510
511 /**
512 * dev_remove_offload - remove packet offload handler
513 * @po: packet offload declaration
514 *
515 * Remove a packet offload handler that was previously added to the kernel
516 * offload handlers by dev_add_offload(). The passed &offload_type is
517 * removed from the kernel lists and can be freed or reused once this
518 * function returns.
519 *
520 * This call sleeps to guarantee that no CPU is looking at the packet
521 * type after return.
522 */
523 void dev_remove_offload(struct packet_offload *po)
524 {
525 __dev_remove_offload(po);
526
527 synchronize_net();
528 }
529 EXPORT_SYMBOL(dev_remove_offload);
530
531 /******************************************************************************
532
533 Device Boot-time Settings Routines
534
535 *******************************************************************************/
536
537 /* Boot time configuration table */
538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539
540 /**
541 * netdev_boot_setup_add - add new setup entry
542 * @name: name of the device
543 * @map: configured settings for the device
544 *
545 * Adds new setup entry to the dev_boot_setup list. The function
546 * returns 0 on error and 1 on success. This is a generic routine to
547 * all netdevices.
548 */
549 static int netdev_boot_setup_add(char *name, struct ifmap *map)
550 {
551 struct netdev_boot_setup *s;
552 int i;
553
554 s = dev_boot_setup;
555 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 memset(s[i].name, 0, sizeof(s[i].name));
558 strlcpy(s[i].name, name, IFNAMSIZ);
559 memcpy(&s[i].map, map, sizeof(s[i].map));
560 break;
561 }
562 }
563
564 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565 }
566
567 /**
568 * netdev_boot_setup_check - check boot time settings
569 * @dev: the netdevice
570 *
571 * Check boot time settings for the device.
572 * The found settings are set for the device to be used
573 * later in the device probing.
574 * Returns 0 if no settings found, 1 if they are.
575 */
576 int netdev_boot_setup_check(struct net_device *dev)
577 {
578 struct netdev_boot_setup *s = dev_boot_setup;
579 int i;
580
581 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583 !strcmp(dev->name, s[i].name)) {
584 dev->irq = s[i].map.irq;
585 dev->base_addr = s[i].map.base_addr;
586 dev->mem_start = s[i].map.mem_start;
587 dev->mem_end = s[i].map.mem_end;
588 return 1;
589 }
590 }
591 return 0;
592 }
593 EXPORT_SYMBOL(netdev_boot_setup_check);
594
595
596 /**
597 * netdev_boot_base - get address from boot time settings
598 * @prefix: prefix for network device
599 * @unit: id for network device
600 *
601 * Check boot time settings for the base address of device.
602 * The found settings are set for the device to be used
603 * later in the device probing.
604 * Returns 0 if no settings found.
605 */
606 unsigned long netdev_boot_base(const char *prefix, int unit)
607 {
608 const struct netdev_boot_setup *s = dev_boot_setup;
609 char name[IFNAMSIZ];
610 int i;
611
612 sprintf(name, "%s%d", prefix, unit);
613
614 /*
615 * If device already registered then return base of 1
616 * to indicate not to probe for this interface
617 */
618 if (__dev_get_by_name(&init_net, name))
619 return 1;
620
621 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 if (!strcmp(name, s[i].name))
623 return s[i].map.base_addr;
624 return 0;
625 }
626
627 /*
628 * Saves at boot time configured settings for any netdevice.
629 */
630 int __init netdev_boot_setup(char *str)
631 {
632 int ints[5];
633 struct ifmap map;
634
635 str = get_options(str, ARRAY_SIZE(ints), ints);
636 if (!str || !*str)
637 return 0;
638
639 /* Save settings */
640 memset(&map, 0, sizeof(map));
641 if (ints[0] > 0)
642 map.irq = ints[1];
643 if (ints[0] > 1)
644 map.base_addr = ints[2];
645 if (ints[0] > 2)
646 map.mem_start = ints[3];
647 if (ints[0] > 3)
648 map.mem_end = ints[4];
649
650 /* Add new entry to the list */
651 return netdev_boot_setup_add(str, &map);
652 }
653
654 __setup("netdev=", netdev_boot_setup);
655
656 /*******************************************************************************
657
658 Device Interface Subroutines
659
660 *******************************************************************************/
661
662 /**
663 * __dev_get_by_name - find a device by its name
664 * @net: the applicable net namespace
665 * @name: name to find
666 *
667 * Find an interface by name. Must be called under RTNL semaphore
668 * or @dev_base_lock. If the name is found a pointer to the device
669 * is returned. If the name is not found then %NULL is returned. The
670 * reference counters are not incremented so the caller must be
671 * careful with locks.
672 */
673
674 struct net_device *__dev_get_by_name(struct net *net, const char *name)
675 {
676 struct net_device *dev;
677 struct hlist_head *head = dev_name_hash(net, name);
678
679 hlist_for_each_entry(dev, head, name_hlist)
680 if (!strncmp(dev->name, name, IFNAMSIZ))
681 return dev;
682
683 return NULL;
684 }
685 EXPORT_SYMBOL(__dev_get_by_name);
686
687 /**
688 * dev_get_by_name_rcu - find a device by its name
689 * @net: the applicable net namespace
690 * @name: name to find
691 *
692 * Find an interface by name.
693 * If the name is found a pointer to the device is returned.
694 * If the name is not found then %NULL is returned.
695 * The reference counters are not incremented so the caller must be
696 * careful with locks. The caller must hold RCU lock.
697 */
698
699 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
700 {
701 struct net_device *dev;
702 struct hlist_head *head = dev_name_hash(net, name);
703
704 hlist_for_each_entry_rcu(dev, head, name_hlist)
705 if (!strncmp(dev->name, name, IFNAMSIZ))
706 return dev;
707
708 return NULL;
709 }
710 EXPORT_SYMBOL(dev_get_by_name_rcu);
711
712 /**
713 * dev_get_by_name - find a device by its name
714 * @net: the applicable net namespace
715 * @name: name to find
716 *
717 * Find an interface by name. This can be called from any
718 * context and does its own locking. The returned handle has
719 * the usage count incremented and the caller must use dev_put() to
720 * release it when it is no longer needed. %NULL is returned if no
721 * matching device is found.
722 */
723
724 struct net_device *dev_get_by_name(struct net *net, const char *name)
725 {
726 struct net_device *dev;
727
728 rcu_read_lock();
729 dev = dev_get_by_name_rcu(net, name);
730 if (dev)
731 dev_hold(dev);
732 rcu_read_unlock();
733 return dev;
734 }
735 EXPORT_SYMBOL(dev_get_by_name);
736
737 /**
738 * __dev_get_by_index - find a device by its ifindex
739 * @net: the applicable net namespace
740 * @ifindex: index of device
741 *
742 * Search for an interface by index. Returns %NULL if the device
743 * is not found or a pointer to the device. The device has not
744 * had its reference counter increased so the caller must be careful
745 * about locking. The caller must hold either the RTNL semaphore
746 * or @dev_base_lock.
747 */
748
749 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
750 {
751 struct net_device *dev;
752 struct hlist_head *head = dev_index_hash(net, ifindex);
753
754 hlist_for_each_entry(dev, head, index_hlist)
755 if (dev->ifindex == ifindex)
756 return dev;
757
758 return NULL;
759 }
760 EXPORT_SYMBOL(__dev_get_by_index);
761
762 /**
763 * dev_get_by_index_rcu - find a device by its ifindex
764 * @net: the applicable net namespace
765 * @ifindex: index of device
766 *
767 * Search for an interface by index. Returns %NULL if the device
768 * is not found or a pointer to the device. The device has not
769 * had its reference counter increased so the caller must be careful
770 * about locking. The caller must hold RCU lock.
771 */
772
773 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
774 {
775 struct net_device *dev;
776 struct hlist_head *head = dev_index_hash(net, ifindex);
777
778 hlist_for_each_entry_rcu(dev, head, index_hlist)
779 if (dev->ifindex == ifindex)
780 return dev;
781
782 return NULL;
783 }
784 EXPORT_SYMBOL(dev_get_by_index_rcu);
785
786
787 /**
788 * dev_get_by_index - find a device by its ifindex
789 * @net: the applicable net namespace
790 * @ifindex: index of device
791 *
792 * Search for an interface by index. Returns NULL if the device
793 * is not found or a pointer to the device. The device returned has
794 * had a reference added and the pointer is safe until the user calls
795 * dev_put to indicate they have finished with it.
796 */
797
798 struct net_device *dev_get_by_index(struct net *net, int ifindex)
799 {
800 struct net_device *dev;
801
802 rcu_read_lock();
803 dev = dev_get_by_index_rcu(net, ifindex);
804 if (dev)
805 dev_hold(dev);
806 rcu_read_unlock();
807 return dev;
808 }
809 EXPORT_SYMBOL(dev_get_by_index);
810
811 /**
812 * netdev_get_name - get a netdevice name, knowing its ifindex.
813 * @net: network namespace
814 * @name: a pointer to the buffer where the name will be stored.
815 * @ifindex: the ifindex of the interface to get the name from.
816 *
817 * The use of raw_seqcount_begin() and cond_resched() before
818 * retrying is required as we want to give the writers a chance
819 * to complete when CONFIG_PREEMPT is not set.
820 */
821 int netdev_get_name(struct net *net, char *name, int ifindex)
822 {
823 struct net_device *dev;
824 unsigned int seq;
825
826 retry:
827 seq = raw_seqcount_begin(&devnet_rename_seq);
828 rcu_read_lock();
829 dev = dev_get_by_index_rcu(net, ifindex);
830 if (!dev) {
831 rcu_read_unlock();
832 return -ENODEV;
833 }
834
835 strcpy(name, dev->name);
836 rcu_read_unlock();
837 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
838 cond_resched();
839 goto retry;
840 }
841
842 return 0;
843 }
844
845 /**
846 * dev_getbyhwaddr_rcu - find a device by its hardware address
847 * @net: the applicable net namespace
848 * @type: media type of device
849 * @ha: hardware address
850 *
851 * Search for an interface by MAC address. Returns NULL if the device
852 * is not found or a pointer to the device.
853 * The caller must hold RCU or RTNL.
854 * The returned device has not had its ref count increased
855 * and the caller must therefore be careful about locking
856 *
857 */
858
859 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
860 const char *ha)
861 {
862 struct net_device *dev;
863
864 for_each_netdev_rcu(net, dev)
865 if (dev->type == type &&
866 !memcmp(dev->dev_addr, ha, dev->addr_len))
867 return dev;
868
869 return NULL;
870 }
871 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
872
873 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
874 {
875 struct net_device *dev;
876
877 ASSERT_RTNL();
878 for_each_netdev(net, dev)
879 if (dev->type == type)
880 return dev;
881
882 return NULL;
883 }
884 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
885
886 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
887 {
888 struct net_device *dev, *ret = NULL;
889
890 rcu_read_lock();
891 for_each_netdev_rcu(net, dev)
892 if (dev->type == type) {
893 dev_hold(dev);
894 ret = dev;
895 break;
896 }
897 rcu_read_unlock();
898 return ret;
899 }
900 EXPORT_SYMBOL(dev_getfirstbyhwtype);
901
902 /**
903 * __dev_get_by_flags - find any device with given flags
904 * @net: the applicable net namespace
905 * @if_flags: IFF_* values
906 * @mask: bitmask of bits in if_flags to check
907 *
908 * Search for any interface with the given flags. Returns NULL if a device
909 * is not found or a pointer to the device. Must be called inside
910 * rtnl_lock(), and result refcount is unchanged.
911 */
912
913 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
914 unsigned short mask)
915 {
916 struct net_device *dev, *ret;
917
918 ASSERT_RTNL();
919
920 ret = NULL;
921 for_each_netdev(net, dev) {
922 if (((dev->flags ^ if_flags) & mask) == 0) {
923 ret = dev;
924 break;
925 }
926 }
927 return ret;
928 }
929 EXPORT_SYMBOL(__dev_get_by_flags);
930
931 /**
932 * dev_valid_name - check if name is okay for network device
933 * @name: name string
934 *
935 * Network device names need to be valid file names to
936 * to allow sysfs to work. We also disallow any kind of
937 * whitespace.
938 */
939 bool dev_valid_name(const char *name)
940 {
941 if (*name == '\0')
942 return false;
943 if (strlen(name) >= IFNAMSIZ)
944 return false;
945 if (!strcmp(name, ".") || !strcmp(name, ".."))
946 return false;
947
948 while (*name) {
949 if (*name == '/' || *name == ':' || isspace(*name))
950 return false;
951 name++;
952 }
953 return true;
954 }
955 EXPORT_SYMBOL(dev_valid_name);
956
957 /**
958 * __dev_alloc_name - allocate a name for a device
959 * @net: network namespace to allocate the device name in
960 * @name: name format string
961 * @buf: scratch buffer and result name string
962 *
963 * Passed a format string - eg "lt%d" it will try and find a suitable
964 * id. It scans list of devices to build up a free map, then chooses
965 * the first empty slot. The caller must hold the dev_base or rtnl lock
966 * while allocating the name and adding the device in order to avoid
967 * duplicates.
968 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
969 * Returns the number of the unit assigned or a negative errno code.
970 */
971
972 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
973 {
974 int i = 0;
975 const char *p;
976 const int max_netdevices = 8*PAGE_SIZE;
977 unsigned long *inuse;
978 struct net_device *d;
979
980 p = strnchr(name, IFNAMSIZ-1, '%');
981 if (p) {
982 /*
983 * Verify the string as this thing may have come from
984 * the user. There must be either one "%d" and no other "%"
985 * characters.
986 */
987 if (p[1] != 'd' || strchr(p + 2, '%'))
988 return -EINVAL;
989
990 /* Use one page as a bit array of possible slots */
991 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
992 if (!inuse)
993 return -ENOMEM;
994
995 for_each_netdev(net, d) {
996 if (!sscanf(d->name, name, &i))
997 continue;
998 if (i < 0 || i >= max_netdevices)
999 continue;
1000
1001 /* avoid cases where sscanf is not exact inverse of printf */
1002 snprintf(buf, IFNAMSIZ, name, i);
1003 if (!strncmp(buf, d->name, IFNAMSIZ))
1004 set_bit(i, inuse);
1005 }
1006
1007 i = find_first_zero_bit(inuse, max_netdevices);
1008 free_page((unsigned long) inuse);
1009 }
1010
1011 if (buf != name)
1012 snprintf(buf, IFNAMSIZ, name, i);
1013 if (!__dev_get_by_name(net, buf))
1014 return i;
1015
1016 /* It is possible to run out of possible slots
1017 * when the name is long and there isn't enough space left
1018 * for the digits, or if all bits are used.
1019 */
1020 return -ENFILE;
1021 }
1022
1023 /**
1024 * dev_alloc_name - allocate a name for a device
1025 * @dev: device
1026 * @name: name format string
1027 *
1028 * Passed a format string - eg "lt%d" it will try and find a suitable
1029 * id. It scans list of devices to build up a free map, then chooses
1030 * the first empty slot. The caller must hold the dev_base or rtnl lock
1031 * while allocating the name and adding the device in order to avoid
1032 * duplicates.
1033 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1034 * Returns the number of the unit assigned or a negative errno code.
1035 */
1036
1037 int dev_alloc_name(struct net_device *dev, const char *name)
1038 {
1039 char buf[IFNAMSIZ];
1040 struct net *net;
1041 int ret;
1042
1043 BUG_ON(!dev_net(dev));
1044 net = dev_net(dev);
1045 ret = __dev_alloc_name(net, name, buf);
1046 if (ret >= 0)
1047 strlcpy(dev->name, buf, IFNAMSIZ);
1048 return ret;
1049 }
1050 EXPORT_SYMBOL(dev_alloc_name);
1051
1052 static int dev_alloc_name_ns(struct net *net,
1053 struct net_device *dev,
1054 const char *name)
1055 {
1056 char buf[IFNAMSIZ];
1057 int ret;
1058
1059 ret = __dev_alloc_name(net, name, buf);
1060 if (ret >= 0)
1061 strlcpy(dev->name, buf, IFNAMSIZ);
1062 return ret;
1063 }
1064
1065 static int dev_get_valid_name(struct net *net,
1066 struct net_device *dev,
1067 const char *name)
1068 {
1069 BUG_ON(!net);
1070
1071 if (!dev_valid_name(name))
1072 return -EINVAL;
1073
1074 if (strchr(name, '%'))
1075 return dev_alloc_name_ns(net, dev, name);
1076 else if (__dev_get_by_name(net, name))
1077 return -EEXIST;
1078 else if (dev->name != name)
1079 strlcpy(dev->name, name, IFNAMSIZ);
1080
1081 return 0;
1082 }
1083
1084 /**
1085 * dev_change_name - change name of a device
1086 * @dev: device
1087 * @newname: name (or format string) must be at least IFNAMSIZ
1088 *
1089 * Change name of a device, can pass format strings "eth%d".
1090 * for wildcarding.
1091 */
1092 int dev_change_name(struct net_device *dev, const char *newname)
1093 {
1094 unsigned char old_assign_type;
1095 char oldname[IFNAMSIZ];
1096 int err = 0;
1097 int ret;
1098 struct net *net;
1099
1100 ASSERT_RTNL();
1101 BUG_ON(!dev_net(dev));
1102
1103 net = dev_net(dev);
1104 if (dev->flags & IFF_UP)
1105 return -EBUSY;
1106
1107 write_seqcount_begin(&devnet_rename_seq);
1108
1109 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1110 write_seqcount_end(&devnet_rename_seq);
1111 return 0;
1112 }
1113
1114 memcpy(oldname, dev->name, IFNAMSIZ);
1115
1116 err = dev_get_valid_name(net, dev, newname);
1117 if (err < 0) {
1118 write_seqcount_end(&devnet_rename_seq);
1119 return err;
1120 }
1121
1122 if (oldname[0] && !strchr(oldname, '%'))
1123 netdev_info(dev, "renamed from %s\n", oldname);
1124
1125 old_assign_type = dev->name_assign_type;
1126 dev->name_assign_type = NET_NAME_RENAMED;
1127
1128 rollback:
1129 ret = device_rename(&dev->dev, dev->name);
1130 if (ret) {
1131 memcpy(dev->name, oldname, IFNAMSIZ);
1132 dev->name_assign_type = old_assign_type;
1133 write_seqcount_end(&devnet_rename_seq);
1134 return ret;
1135 }
1136
1137 write_seqcount_end(&devnet_rename_seq);
1138
1139 netdev_adjacent_rename_links(dev, oldname);
1140
1141 write_lock_bh(&dev_base_lock);
1142 hlist_del_rcu(&dev->name_hlist);
1143 write_unlock_bh(&dev_base_lock);
1144
1145 synchronize_rcu();
1146
1147 write_lock_bh(&dev_base_lock);
1148 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1149 write_unlock_bh(&dev_base_lock);
1150
1151 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1152 ret = notifier_to_errno(ret);
1153
1154 if (ret) {
1155 /* err >= 0 after dev_alloc_name() or stores the first errno */
1156 if (err >= 0) {
1157 err = ret;
1158 write_seqcount_begin(&devnet_rename_seq);
1159 memcpy(dev->name, oldname, IFNAMSIZ);
1160 memcpy(oldname, newname, IFNAMSIZ);
1161 dev->name_assign_type = old_assign_type;
1162 old_assign_type = NET_NAME_RENAMED;
1163 goto rollback;
1164 } else {
1165 pr_err("%s: name change rollback failed: %d\n",
1166 dev->name, ret);
1167 }
1168 }
1169
1170 return err;
1171 }
1172
1173 /**
1174 * dev_set_alias - change ifalias of a device
1175 * @dev: device
1176 * @alias: name up to IFALIASZ
1177 * @len: limit of bytes to copy from info
1178 *
1179 * Set ifalias for a device,
1180 */
1181 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1182 {
1183 char *new_ifalias;
1184
1185 ASSERT_RTNL();
1186
1187 if (len >= IFALIASZ)
1188 return -EINVAL;
1189
1190 if (!len) {
1191 kfree(dev->ifalias);
1192 dev->ifalias = NULL;
1193 return 0;
1194 }
1195
1196 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1197 if (!new_ifalias)
1198 return -ENOMEM;
1199 dev->ifalias = new_ifalias;
1200
1201 strlcpy(dev->ifalias, alias, len+1);
1202 return len;
1203 }
1204
1205
1206 /**
1207 * netdev_features_change - device changes features
1208 * @dev: device to cause notification
1209 *
1210 * Called to indicate a device has changed features.
1211 */
1212 void netdev_features_change(struct net_device *dev)
1213 {
1214 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1215 }
1216 EXPORT_SYMBOL(netdev_features_change);
1217
1218 /**
1219 * netdev_state_change - device changes state
1220 * @dev: device to cause notification
1221 *
1222 * Called to indicate a device has changed state. This function calls
1223 * the notifier chains for netdev_chain and sends a NEWLINK message
1224 * to the routing socket.
1225 */
1226 void netdev_state_change(struct net_device *dev)
1227 {
1228 if (dev->flags & IFF_UP) {
1229 struct netdev_notifier_change_info change_info;
1230
1231 change_info.flags_changed = 0;
1232 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1233 &change_info.info);
1234 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1235 }
1236 }
1237 EXPORT_SYMBOL(netdev_state_change);
1238
1239 /**
1240 * netdev_notify_peers - notify network peers about existence of @dev
1241 * @dev: network device
1242 *
1243 * Generate traffic such that interested network peers are aware of
1244 * @dev, such as by generating a gratuitous ARP. This may be used when
1245 * a device wants to inform the rest of the network about some sort of
1246 * reconfiguration such as a failover event or virtual machine
1247 * migration.
1248 */
1249 void netdev_notify_peers(struct net_device *dev)
1250 {
1251 rtnl_lock();
1252 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1253 rtnl_unlock();
1254 }
1255 EXPORT_SYMBOL(netdev_notify_peers);
1256
1257 static int __dev_open(struct net_device *dev)
1258 {
1259 const struct net_device_ops *ops = dev->netdev_ops;
1260 int ret;
1261
1262 ASSERT_RTNL();
1263
1264 if (!netif_device_present(dev))
1265 return -ENODEV;
1266
1267 /* Block netpoll from trying to do any rx path servicing.
1268 * If we don't do this there is a chance ndo_poll_controller
1269 * or ndo_poll may be running while we open the device
1270 */
1271 netpoll_poll_disable(dev);
1272
1273 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1274 ret = notifier_to_errno(ret);
1275 if (ret)
1276 return ret;
1277
1278 set_bit(__LINK_STATE_START, &dev->state);
1279
1280 if (ops->ndo_validate_addr)
1281 ret = ops->ndo_validate_addr(dev);
1282
1283 if (!ret && ops->ndo_open)
1284 ret = ops->ndo_open(dev);
1285
1286 netpoll_poll_enable(dev);
1287
1288 if (ret)
1289 clear_bit(__LINK_STATE_START, &dev->state);
1290 else {
1291 dev->flags |= IFF_UP;
1292 dev_set_rx_mode(dev);
1293 dev_activate(dev);
1294 add_device_randomness(dev->dev_addr, dev->addr_len);
1295 }
1296
1297 return ret;
1298 }
1299
1300 /**
1301 * dev_open - prepare an interface for use.
1302 * @dev: device to open
1303 *
1304 * Takes a device from down to up state. The device's private open
1305 * function is invoked and then the multicast lists are loaded. Finally
1306 * the device is moved into the up state and a %NETDEV_UP message is
1307 * sent to the netdev notifier chain.
1308 *
1309 * Calling this function on an active interface is a nop. On a failure
1310 * a negative errno code is returned.
1311 */
1312 int dev_open(struct net_device *dev)
1313 {
1314 int ret;
1315
1316 if (dev->flags & IFF_UP)
1317 return 0;
1318
1319 ret = __dev_open(dev);
1320 if (ret < 0)
1321 return ret;
1322
1323 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1324 call_netdevice_notifiers(NETDEV_UP, dev);
1325
1326 return ret;
1327 }
1328 EXPORT_SYMBOL(dev_open);
1329
1330 static int __dev_close_many(struct list_head *head)
1331 {
1332 struct net_device *dev;
1333
1334 ASSERT_RTNL();
1335 might_sleep();
1336
1337 list_for_each_entry(dev, head, close_list) {
1338 /* Temporarily disable netpoll until the interface is down */
1339 netpoll_poll_disable(dev);
1340
1341 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1342
1343 clear_bit(__LINK_STATE_START, &dev->state);
1344
1345 /* Synchronize to scheduled poll. We cannot touch poll list, it
1346 * can be even on different cpu. So just clear netif_running().
1347 *
1348 * dev->stop() will invoke napi_disable() on all of it's
1349 * napi_struct instances on this device.
1350 */
1351 smp_mb__after_atomic(); /* Commit netif_running(). */
1352 }
1353
1354 dev_deactivate_many(head);
1355
1356 list_for_each_entry(dev, head, close_list) {
1357 const struct net_device_ops *ops = dev->netdev_ops;
1358
1359 /*
1360 * Call the device specific close. This cannot fail.
1361 * Only if device is UP
1362 *
1363 * We allow it to be called even after a DETACH hot-plug
1364 * event.
1365 */
1366 if (ops->ndo_stop)
1367 ops->ndo_stop(dev);
1368
1369 dev->flags &= ~IFF_UP;
1370 netpoll_poll_enable(dev);
1371 }
1372
1373 return 0;
1374 }
1375
1376 static int __dev_close(struct net_device *dev)
1377 {
1378 int retval;
1379 LIST_HEAD(single);
1380
1381 list_add(&dev->close_list, &single);
1382 retval = __dev_close_many(&single);
1383 list_del(&single);
1384
1385 return retval;
1386 }
1387
1388 int dev_close_many(struct list_head *head, bool unlink)
1389 {
1390 struct net_device *dev, *tmp;
1391
1392 /* Remove the devices that don't need to be closed */
1393 list_for_each_entry_safe(dev, tmp, head, close_list)
1394 if (!(dev->flags & IFF_UP))
1395 list_del_init(&dev->close_list);
1396
1397 __dev_close_many(head);
1398
1399 list_for_each_entry_safe(dev, tmp, head, close_list) {
1400 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1401 call_netdevice_notifiers(NETDEV_DOWN, dev);
1402 if (unlink)
1403 list_del_init(&dev->close_list);
1404 }
1405
1406 return 0;
1407 }
1408 EXPORT_SYMBOL(dev_close_many);
1409
1410 /**
1411 * dev_close - shutdown an interface.
1412 * @dev: device to shutdown
1413 *
1414 * This function moves an active device into down state. A
1415 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1416 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1417 * chain.
1418 */
1419 int dev_close(struct net_device *dev)
1420 {
1421 if (dev->flags & IFF_UP) {
1422 LIST_HEAD(single);
1423
1424 list_add(&dev->close_list, &single);
1425 dev_close_many(&single, true);
1426 list_del(&single);
1427 }
1428 return 0;
1429 }
1430 EXPORT_SYMBOL(dev_close);
1431
1432
1433 /**
1434 * dev_disable_lro - disable Large Receive Offload on a device
1435 * @dev: device
1436 *
1437 * Disable Large Receive Offload (LRO) on a net device. Must be
1438 * called under RTNL. This is needed if received packets may be
1439 * forwarded to another interface.
1440 */
1441 void dev_disable_lro(struct net_device *dev)
1442 {
1443 struct net_device *lower_dev;
1444 struct list_head *iter;
1445
1446 dev->wanted_features &= ~NETIF_F_LRO;
1447 netdev_update_features(dev);
1448
1449 if (unlikely(dev->features & NETIF_F_LRO))
1450 netdev_WARN(dev, "failed to disable LRO!\n");
1451
1452 netdev_for_each_lower_dev(dev, lower_dev, iter)
1453 dev_disable_lro(lower_dev);
1454 }
1455 EXPORT_SYMBOL(dev_disable_lro);
1456
1457 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1458 struct net_device *dev)
1459 {
1460 struct netdev_notifier_info info;
1461
1462 netdev_notifier_info_init(&info, dev);
1463 return nb->notifier_call(nb, val, &info);
1464 }
1465
1466 static int dev_boot_phase = 1;
1467
1468 /**
1469 * register_netdevice_notifier - register a network notifier block
1470 * @nb: notifier
1471 *
1472 * Register a notifier to be called when network device events occur.
1473 * The notifier passed is linked into the kernel structures and must
1474 * not be reused until it has been unregistered. A negative errno code
1475 * is returned on a failure.
1476 *
1477 * When registered all registration and up events are replayed
1478 * to the new notifier to allow device to have a race free
1479 * view of the network device list.
1480 */
1481
1482 int register_netdevice_notifier(struct notifier_block *nb)
1483 {
1484 struct net_device *dev;
1485 struct net_device *last;
1486 struct net *net;
1487 int err;
1488
1489 rtnl_lock();
1490 err = raw_notifier_chain_register(&netdev_chain, nb);
1491 if (err)
1492 goto unlock;
1493 if (dev_boot_phase)
1494 goto unlock;
1495 for_each_net(net) {
1496 for_each_netdev(net, dev) {
1497 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1498 err = notifier_to_errno(err);
1499 if (err)
1500 goto rollback;
1501
1502 if (!(dev->flags & IFF_UP))
1503 continue;
1504
1505 call_netdevice_notifier(nb, NETDEV_UP, dev);
1506 }
1507 }
1508
1509 unlock:
1510 rtnl_unlock();
1511 return err;
1512
1513 rollback:
1514 last = dev;
1515 for_each_net(net) {
1516 for_each_netdev(net, dev) {
1517 if (dev == last)
1518 goto outroll;
1519
1520 if (dev->flags & IFF_UP) {
1521 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1522 dev);
1523 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1524 }
1525 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1526 }
1527 }
1528
1529 outroll:
1530 raw_notifier_chain_unregister(&netdev_chain, nb);
1531 goto unlock;
1532 }
1533 EXPORT_SYMBOL(register_netdevice_notifier);
1534
1535 /**
1536 * unregister_netdevice_notifier - unregister a network notifier block
1537 * @nb: notifier
1538 *
1539 * Unregister a notifier previously registered by
1540 * register_netdevice_notifier(). The notifier is unlinked into the
1541 * kernel structures and may then be reused. A negative errno code
1542 * is returned on a failure.
1543 *
1544 * After unregistering unregister and down device events are synthesized
1545 * for all devices on the device list to the removed notifier to remove
1546 * the need for special case cleanup code.
1547 */
1548
1549 int unregister_netdevice_notifier(struct notifier_block *nb)
1550 {
1551 struct net_device *dev;
1552 struct net *net;
1553 int err;
1554
1555 rtnl_lock();
1556 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1557 if (err)
1558 goto unlock;
1559
1560 for_each_net(net) {
1561 for_each_netdev(net, dev) {
1562 if (dev->flags & IFF_UP) {
1563 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1564 dev);
1565 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1566 }
1567 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1568 }
1569 }
1570 unlock:
1571 rtnl_unlock();
1572 return err;
1573 }
1574 EXPORT_SYMBOL(unregister_netdevice_notifier);
1575
1576 /**
1577 * call_netdevice_notifiers_info - call all network notifier blocks
1578 * @val: value passed unmodified to notifier function
1579 * @dev: net_device pointer passed unmodified to notifier function
1580 * @info: notifier information data
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1586 static int call_netdevice_notifiers_info(unsigned long val,
1587 struct net_device *dev,
1588 struct netdev_notifier_info *info)
1589 {
1590 ASSERT_RTNL();
1591 netdev_notifier_info_init(info, dev);
1592 return raw_notifier_call_chain(&netdev_chain, val, info);
1593 }
1594
1595 /**
1596 * call_netdevice_notifiers - call all network notifier blocks
1597 * @val: value passed unmodified to notifier function
1598 * @dev: net_device pointer passed unmodified to notifier function
1599 *
1600 * Call all network notifier blocks. Parameters and return value
1601 * are as for raw_notifier_call_chain().
1602 */
1603
1604 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1605 {
1606 struct netdev_notifier_info info;
1607
1608 return call_netdevice_notifiers_info(val, dev, &info);
1609 }
1610 EXPORT_SYMBOL(call_netdevice_notifiers);
1611
1612 static struct static_key netstamp_needed __read_mostly;
1613 #ifdef HAVE_JUMP_LABEL
1614 /* We are not allowed to call static_key_slow_dec() from irq context
1615 * If net_disable_timestamp() is called from irq context, defer the
1616 * static_key_slow_dec() calls.
1617 */
1618 static atomic_t netstamp_needed_deferred;
1619 #endif
1620
1621 void net_enable_timestamp(void)
1622 {
1623 #ifdef HAVE_JUMP_LABEL
1624 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1625
1626 if (deferred) {
1627 while (--deferred)
1628 static_key_slow_dec(&netstamp_needed);
1629 return;
1630 }
1631 #endif
1632 static_key_slow_inc(&netstamp_needed);
1633 }
1634 EXPORT_SYMBOL(net_enable_timestamp);
1635
1636 void net_disable_timestamp(void)
1637 {
1638 #ifdef HAVE_JUMP_LABEL
1639 if (in_interrupt()) {
1640 atomic_inc(&netstamp_needed_deferred);
1641 return;
1642 }
1643 #endif
1644 static_key_slow_dec(&netstamp_needed);
1645 }
1646 EXPORT_SYMBOL(net_disable_timestamp);
1647
1648 static inline void net_timestamp_set(struct sk_buff *skb)
1649 {
1650 skb->tstamp.tv64 = 0;
1651 if (static_key_false(&netstamp_needed))
1652 __net_timestamp(skb);
1653 }
1654
1655 #define net_timestamp_check(COND, SKB) \
1656 if (static_key_false(&netstamp_needed)) { \
1657 if ((COND) && !(SKB)->tstamp.tv64) \
1658 __net_timestamp(SKB); \
1659 } \
1660
1661 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1662 {
1663 unsigned int len;
1664
1665 if (!(dev->flags & IFF_UP))
1666 return false;
1667
1668 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1669 if (skb->len <= len)
1670 return true;
1671
1672 /* if TSO is enabled, we don't care about the length as the packet
1673 * could be forwarded without being segmented before
1674 */
1675 if (skb_is_gso(skb))
1676 return true;
1677
1678 return false;
1679 }
1680 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1681
1682 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683 {
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1689 }
1690 }
1691
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 skb_scrub_packet(skb, true);
1699 skb->priority = 0;
1700 skb->protocol = eth_type_trans(skb, dev);
1701 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1702
1703 return 0;
1704 }
1705 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1706
1707 /**
1708 * dev_forward_skb - loopback an skb to another netif
1709 *
1710 * @dev: destination network device
1711 * @skb: buffer to forward
1712 *
1713 * return values:
1714 * NET_RX_SUCCESS (no congestion)
1715 * NET_RX_DROP (packet was dropped, but freed)
1716 *
1717 * dev_forward_skb can be used for injecting an skb from the
1718 * start_xmit function of one device into the receive queue
1719 * of another device.
1720 *
1721 * The receiving device may be in another namespace, so
1722 * we have to clear all information in the skb that could
1723 * impact namespace isolation.
1724 */
1725 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1726 {
1727 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1728 }
1729 EXPORT_SYMBOL_GPL(dev_forward_skb);
1730
1731 static inline int deliver_skb(struct sk_buff *skb,
1732 struct packet_type *pt_prev,
1733 struct net_device *orig_dev)
1734 {
1735 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1736 return -ENOMEM;
1737 atomic_inc(&skb->users);
1738 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1739 }
1740
1741 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1742 struct packet_type **pt,
1743 struct net_device *dev, __be16 type,
1744 struct list_head *ptype_list)
1745 {
1746 struct packet_type *ptype, *pt_prev = *pt;
1747
1748 list_for_each_entry_rcu(ptype, ptype_list, list) {
1749 if (ptype->type != type)
1750 continue;
1751 if (pt_prev)
1752 deliver_skb(skb, pt_prev, dev);
1753 pt_prev = ptype;
1754 }
1755 *pt = pt_prev;
1756 }
1757
1758 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1759 {
1760 if (!ptype->af_packet_priv || !skb->sk)
1761 return false;
1762
1763 if (ptype->id_match)
1764 return ptype->id_match(ptype, skb->sk);
1765 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1766 return true;
1767
1768 return false;
1769 }
1770
1771 /*
1772 * Support routine. Sends outgoing frames to any network
1773 * taps currently in use.
1774 */
1775
1776 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1777 {
1778 struct packet_type *ptype;
1779 struct sk_buff *skb2 = NULL;
1780 struct packet_type *pt_prev = NULL;
1781 struct list_head *ptype_list = &ptype_all;
1782
1783 rcu_read_lock();
1784 again:
1785 list_for_each_entry_rcu(ptype, ptype_list, list) {
1786 /* Never send packets back to the socket
1787 * they originated from - MvS (miquels@drinkel.ow.org)
1788 */
1789 if (skb_loop_sk(ptype, skb))
1790 continue;
1791
1792 if (pt_prev) {
1793 deliver_skb(skb2, pt_prev, skb->dev);
1794 pt_prev = ptype;
1795 continue;
1796 }
1797
1798 /* need to clone skb, done only once */
1799 skb2 = skb_clone(skb, GFP_ATOMIC);
1800 if (!skb2)
1801 goto out_unlock;
1802
1803 net_timestamp_set(skb2);
1804
1805 /* skb->nh should be correctly
1806 * set by sender, so that the second statement is
1807 * just protection against buggy protocols.
1808 */
1809 skb_reset_mac_header(skb2);
1810
1811 if (skb_network_header(skb2) < skb2->data ||
1812 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1813 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1814 ntohs(skb2->protocol),
1815 dev->name);
1816 skb_reset_network_header(skb2);
1817 }
1818
1819 skb2->transport_header = skb2->network_header;
1820 skb2->pkt_type = PACKET_OUTGOING;
1821 pt_prev = ptype;
1822 }
1823
1824 if (ptype_list == &ptype_all) {
1825 ptype_list = &dev->ptype_all;
1826 goto again;
1827 }
1828 out_unlock:
1829 if (pt_prev)
1830 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1831 rcu_read_unlock();
1832 }
1833
1834 /**
1835 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1836 * @dev: Network device
1837 * @txq: number of queues available
1838 *
1839 * If real_num_tx_queues is changed the tc mappings may no longer be
1840 * valid. To resolve this verify the tc mapping remains valid and if
1841 * not NULL the mapping. With no priorities mapping to this
1842 * offset/count pair it will no longer be used. In the worst case TC0
1843 * is invalid nothing can be done so disable priority mappings. If is
1844 * expected that drivers will fix this mapping if they can before
1845 * calling netif_set_real_num_tx_queues.
1846 */
1847 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1848 {
1849 int i;
1850 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1851
1852 /* If TC0 is invalidated disable TC mapping */
1853 if (tc->offset + tc->count > txq) {
1854 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1855 dev->num_tc = 0;
1856 return;
1857 }
1858
1859 /* Invalidated prio to tc mappings set to TC0 */
1860 for (i = 1; i < TC_BITMASK + 1; i++) {
1861 int q = netdev_get_prio_tc_map(dev, i);
1862
1863 tc = &dev->tc_to_txq[q];
1864 if (tc->offset + tc->count > txq) {
1865 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1866 i, q);
1867 netdev_set_prio_tc_map(dev, i, 0);
1868 }
1869 }
1870 }
1871
1872 #ifdef CONFIG_XPS
1873 static DEFINE_MUTEX(xps_map_mutex);
1874 #define xmap_dereference(P) \
1875 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1876
1877 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1878 int cpu, u16 index)
1879 {
1880 struct xps_map *map = NULL;
1881 int pos;
1882
1883 if (dev_maps)
1884 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1885
1886 for (pos = 0; map && pos < map->len; pos++) {
1887 if (map->queues[pos] == index) {
1888 if (map->len > 1) {
1889 map->queues[pos] = map->queues[--map->len];
1890 } else {
1891 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1892 kfree_rcu(map, rcu);
1893 map = NULL;
1894 }
1895 break;
1896 }
1897 }
1898
1899 return map;
1900 }
1901
1902 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1903 {
1904 struct xps_dev_maps *dev_maps;
1905 int cpu, i;
1906 bool active = false;
1907
1908 mutex_lock(&xps_map_mutex);
1909 dev_maps = xmap_dereference(dev->xps_maps);
1910
1911 if (!dev_maps)
1912 goto out_no_maps;
1913
1914 for_each_possible_cpu(cpu) {
1915 for (i = index; i < dev->num_tx_queues; i++) {
1916 if (!remove_xps_queue(dev_maps, cpu, i))
1917 break;
1918 }
1919 if (i == dev->num_tx_queues)
1920 active = true;
1921 }
1922
1923 if (!active) {
1924 RCU_INIT_POINTER(dev->xps_maps, NULL);
1925 kfree_rcu(dev_maps, rcu);
1926 }
1927
1928 for (i = index; i < dev->num_tx_queues; i++)
1929 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1930 NUMA_NO_NODE);
1931
1932 out_no_maps:
1933 mutex_unlock(&xps_map_mutex);
1934 }
1935
1936 static struct xps_map *expand_xps_map(struct xps_map *map,
1937 int cpu, u16 index)
1938 {
1939 struct xps_map *new_map;
1940 int alloc_len = XPS_MIN_MAP_ALLOC;
1941 int i, pos;
1942
1943 for (pos = 0; map && pos < map->len; pos++) {
1944 if (map->queues[pos] != index)
1945 continue;
1946 return map;
1947 }
1948
1949 /* Need to add queue to this CPU's existing map */
1950 if (map) {
1951 if (pos < map->alloc_len)
1952 return map;
1953
1954 alloc_len = map->alloc_len * 2;
1955 }
1956
1957 /* Need to allocate new map to store queue on this CPU's map */
1958 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1959 cpu_to_node(cpu));
1960 if (!new_map)
1961 return NULL;
1962
1963 for (i = 0; i < pos; i++)
1964 new_map->queues[i] = map->queues[i];
1965 new_map->alloc_len = alloc_len;
1966 new_map->len = pos;
1967
1968 return new_map;
1969 }
1970
1971 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1972 u16 index)
1973 {
1974 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1975 struct xps_map *map, *new_map;
1976 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1977 int cpu, numa_node_id = -2;
1978 bool active = false;
1979
1980 mutex_lock(&xps_map_mutex);
1981
1982 dev_maps = xmap_dereference(dev->xps_maps);
1983
1984 /* allocate memory for queue storage */
1985 for_each_online_cpu(cpu) {
1986 if (!cpumask_test_cpu(cpu, mask))
1987 continue;
1988
1989 if (!new_dev_maps)
1990 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1991 if (!new_dev_maps) {
1992 mutex_unlock(&xps_map_mutex);
1993 return -ENOMEM;
1994 }
1995
1996 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1997 NULL;
1998
1999 map = expand_xps_map(map, cpu, index);
2000 if (!map)
2001 goto error;
2002
2003 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2004 }
2005
2006 if (!new_dev_maps)
2007 goto out_no_new_maps;
2008
2009 for_each_possible_cpu(cpu) {
2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2011 /* add queue to CPU maps */
2012 int pos = 0;
2013
2014 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2015 while ((pos < map->len) && (map->queues[pos] != index))
2016 pos++;
2017
2018 if (pos == map->len)
2019 map->queues[map->len++] = index;
2020 #ifdef CONFIG_NUMA
2021 if (numa_node_id == -2)
2022 numa_node_id = cpu_to_node(cpu);
2023 else if (numa_node_id != cpu_to_node(cpu))
2024 numa_node_id = -1;
2025 #endif
2026 } else if (dev_maps) {
2027 /* fill in the new device map from the old device map */
2028 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2029 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2030 }
2031
2032 }
2033
2034 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2035
2036 /* Cleanup old maps */
2037 if (dev_maps) {
2038 for_each_possible_cpu(cpu) {
2039 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2040 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2041 if (map && map != new_map)
2042 kfree_rcu(map, rcu);
2043 }
2044
2045 kfree_rcu(dev_maps, rcu);
2046 }
2047
2048 dev_maps = new_dev_maps;
2049 active = true;
2050
2051 out_no_new_maps:
2052 /* update Tx queue numa node */
2053 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2054 (numa_node_id >= 0) ? numa_node_id :
2055 NUMA_NO_NODE);
2056
2057 if (!dev_maps)
2058 goto out_no_maps;
2059
2060 /* removes queue from unused CPUs */
2061 for_each_possible_cpu(cpu) {
2062 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2063 continue;
2064
2065 if (remove_xps_queue(dev_maps, cpu, index))
2066 active = true;
2067 }
2068
2069 /* free map if not active */
2070 if (!active) {
2071 RCU_INIT_POINTER(dev->xps_maps, NULL);
2072 kfree_rcu(dev_maps, rcu);
2073 }
2074
2075 out_no_maps:
2076 mutex_unlock(&xps_map_mutex);
2077
2078 return 0;
2079 error:
2080 /* remove any maps that we added */
2081 for_each_possible_cpu(cpu) {
2082 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2083 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2084 NULL;
2085 if (new_map && new_map != map)
2086 kfree(new_map);
2087 }
2088
2089 mutex_unlock(&xps_map_mutex);
2090
2091 kfree(new_dev_maps);
2092 return -ENOMEM;
2093 }
2094 EXPORT_SYMBOL(netif_set_xps_queue);
2095
2096 #endif
2097 /*
2098 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2099 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2100 */
2101 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2102 {
2103 int rc;
2104
2105 if (txq < 1 || txq > dev->num_tx_queues)
2106 return -EINVAL;
2107
2108 if (dev->reg_state == NETREG_REGISTERED ||
2109 dev->reg_state == NETREG_UNREGISTERING) {
2110 ASSERT_RTNL();
2111
2112 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2113 txq);
2114 if (rc)
2115 return rc;
2116
2117 if (dev->num_tc)
2118 netif_setup_tc(dev, txq);
2119
2120 if (txq < dev->real_num_tx_queues) {
2121 qdisc_reset_all_tx_gt(dev, txq);
2122 #ifdef CONFIG_XPS
2123 netif_reset_xps_queues_gt(dev, txq);
2124 #endif
2125 }
2126 }
2127
2128 dev->real_num_tx_queues = txq;
2129 return 0;
2130 }
2131 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2132
2133 #ifdef CONFIG_SYSFS
2134 /**
2135 * netif_set_real_num_rx_queues - set actual number of RX queues used
2136 * @dev: Network device
2137 * @rxq: Actual number of RX queues
2138 *
2139 * This must be called either with the rtnl_lock held or before
2140 * registration of the net device. Returns 0 on success, or a
2141 * negative error code. If called before registration, it always
2142 * succeeds.
2143 */
2144 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2145 {
2146 int rc;
2147
2148 if (rxq < 1 || rxq > dev->num_rx_queues)
2149 return -EINVAL;
2150
2151 if (dev->reg_state == NETREG_REGISTERED) {
2152 ASSERT_RTNL();
2153
2154 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2155 rxq);
2156 if (rc)
2157 return rc;
2158 }
2159
2160 dev->real_num_rx_queues = rxq;
2161 return 0;
2162 }
2163 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2164 #endif
2165
2166 /**
2167 * netif_get_num_default_rss_queues - default number of RSS queues
2168 *
2169 * This routine should set an upper limit on the number of RSS queues
2170 * used by default by multiqueue devices.
2171 */
2172 int netif_get_num_default_rss_queues(void)
2173 {
2174 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2175 }
2176 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2177
2178 static inline void __netif_reschedule(struct Qdisc *q)
2179 {
2180 struct softnet_data *sd;
2181 unsigned long flags;
2182
2183 local_irq_save(flags);
2184 sd = this_cpu_ptr(&softnet_data);
2185 q->next_sched = NULL;
2186 *sd->output_queue_tailp = q;
2187 sd->output_queue_tailp = &q->next_sched;
2188 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2189 local_irq_restore(flags);
2190 }
2191
2192 void __netif_schedule(struct Qdisc *q)
2193 {
2194 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2195 __netif_reschedule(q);
2196 }
2197 EXPORT_SYMBOL(__netif_schedule);
2198
2199 struct dev_kfree_skb_cb {
2200 enum skb_free_reason reason;
2201 };
2202
2203 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2204 {
2205 return (struct dev_kfree_skb_cb *)skb->cb;
2206 }
2207
2208 void netif_schedule_queue(struct netdev_queue *txq)
2209 {
2210 rcu_read_lock();
2211 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2212 struct Qdisc *q = rcu_dereference(txq->qdisc);
2213
2214 __netif_schedule(q);
2215 }
2216 rcu_read_unlock();
2217 }
2218 EXPORT_SYMBOL(netif_schedule_queue);
2219
2220 /**
2221 * netif_wake_subqueue - allow sending packets on subqueue
2222 * @dev: network device
2223 * @queue_index: sub queue index
2224 *
2225 * Resume individual transmit queue of a device with multiple transmit queues.
2226 */
2227 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2228 {
2229 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2230
2231 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2232 struct Qdisc *q;
2233
2234 rcu_read_lock();
2235 q = rcu_dereference(txq->qdisc);
2236 __netif_schedule(q);
2237 rcu_read_unlock();
2238 }
2239 }
2240 EXPORT_SYMBOL(netif_wake_subqueue);
2241
2242 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2243 {
2244 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2245 struct Qdisc *q;
2246
2247 rcu_read_lock();
2248 q = rcu_dereference(dev_queue->qdisc);
2249 __netif_schedule(q);
2250 rcu_read_unlock();
2251 }
2252 }
2253 EXPORT_SYMBOL(netif_tx_wake_queue);
2254
2255 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2256 {
2257 unsigned long flags;
2258
2259 if (likely(atomic_read(&skb->users) == 1)) {
2260 smp_rmb();
2261 atomic_set(&skb->users, 0);
2262 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2263 return;
2264 }
2265 get_kfree_skb_cb(skb)->reason = reason;
2266 local_irq_save(flags);
2267 skb->next = __this_cpu_read(softnet_data.completion_queue);
2268 __this_cpu_write(softnet_data.completion_queue, skb);
2269 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 local_irq_restore(flags);
2271 }
2272 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2273
2274 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2275 {
2276 if (in_irq() || irqs_disabled())
2277 __dev_kfree_skb_irq(skb, reason);
2278 else
2279 dev_kfree_skb(skb);
2280 }
2281 EXPORT_SYMBOL(__dev_kfree_skb_any);
2282
2283
2284 /**
2285 * netif_device_detach - mark device as removed
2286 * @dev: network device
2287 *
2288 * Mark device as removed from system and therefore no longer available.
2289 */
2290 void netif_device_detach(struct net_device *dev)
2291 {
2292 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2293 netif_running(dev)) {
2294 netif_tx_stop_all_queues(dev);
2295 }
2296 }
2297 EXPORT_SYMBOL(netif_device_detach);
2298
2299 /**
2300 * netif_device_attach - mark device as attached
2301 * @dev: network device
2302 *
2303 * Mark device as attached from system and restart if needed.
2304 */
2305 void netif_device_attach(struct net_device *dev)
2306 {
2307 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2308 netif_running(dev)) {
2309 netif_tx_wake_all_queues(dev);
2310 __netdev_watchdog_up(dev);
2311 }
2312 }
2313 EXPORT_SYMBOL(netif_device_attach);
2314
2315 static void skb_warn_bad_offload(const struct sk_buff *skb)
2316 {
2317 static const netdev_features_t null_features = 0;
2318 struct net_device *dev = skb->dev;
2319 const char *driver = "";
2320
2321 if (!net_ratelimit())
2322 return;
2323
2324 if (dev && dev->dev.parent)
2325 driver = dev_driver_string(dev->dev.parent);
2326
2327 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2328 "gso_type=%d ip_summed=%d\n",
2329 driver, dev ? &dev->features : &null_features,
2330 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2331 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2332 skb_shinfo(skb)->gso_type, skb->ip_summed);
2333 }
2334
2335 /*
2336 * Invalidate hardware checksum when packet is to be mangled, and
2337 * complete checksum manually on outgoing path.
2338 */
2339 int skb_checksum_help(struct sk_buff *skb)
2340 {
2341 __wsum csum;
2342 int ret = 0, offset;
2343
2344 if (skb->ip_summed == CHECKSUM_COMPLETE)
2345 goto out_set_summed;
2346
2347 if (unlikely(skb_shinfo(skb)->gso_size)) {
2348 skb_warn_bad_offload(skb);
2349 return -EINVAL;
2350 }
2351
2352 /* Before computing a checksum, we should make sure no frag could
2353 * be modified by an external entity : checksum could be wrong.
2354 */
2355 if (skb_has_shared_frag(skb)) {
2356 ret = __skb_linearize(skb);
2357 if (ret)
2358 goto out;
2359 }
2360
2361 offset = skb_checksum_start_offset(skb);
2362 BUG_ON(offset >= skb_headlen(skb));
2363 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2364
2365 offset += skb->csum_offset;
2366 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2367
2368 if (skb_cloned(skb) &&
2369 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2370 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2371 if (ret)
2372 goto out;
2373 }
2374
2375 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2376 out_set_summed:
2377 skb->ip_summed = CHECKSUM_NONE;
2378 out:
2379 return ret;
2380 }
2381 EXPORT_SYMBOL(skb_checksum_help);
2382
2383 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2384 {
2385 __be16 type = skb->protocol;
2386
2387 /* Tunnel gso handlers can set protocol to ethernet. */
2388 if (type == htons(ETH_P_TEB)) {
2389 struct ethhdr *eth;
2390
2391 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2392 return 0;
2393
2394 eth = (struct ethhdr *)skb_mac_header(skb);
2395 type = eth->h_proto;
2396 }
2397
2398 return __vlan_get_protocol(skb, type, depth);
2399 }
2400
2401 /**
2402 * skb_mac_gso_segment - mac layer segmentation handler.
2403 * @skb: buffer to segment
2404 * @features: features for the output path (see dev->features)
2405 */
2406 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2407 netdev_features_t features)
2408 {
2409 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2410 struct packet_offload *ptype;
2411 int vlan_depth = skb->mac_len;
2412 __be16 type = skb_network_protocol(skb, &vlan_depth);
2413
2414 if (unlikely(!type))
2415 return ERR_PTR(-EINVAL);
2416
2417 __skb_pull(skb, vlan_depth);
2418
2419 rcu_read_lock();
2420 list_for_each_entry_rcu(ptype, &offload_base, list) {
2421 if (ptype->type == type && ptype->callbacks.gso_segment) {
2422 segs = ptype->callbacks.gso_segment(skb, features);
2423 break;
2424 }
2425 }
2426 rcu_read_unlock();
2427
2428 __skb_push(skb, skb->data - skb_mac_header(skb));
2429
2430 return segs;
2431 }
2432 EXPORT_SYMBOL(skb_mac_gso_segment);
2433
2434
2435 /* openvswitch calls this on rx path, so we need a different check.
2436 */
2437 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2438 {
2439 if (tx_path)
2440 return skb->ip_summed != CHECKSUM_PARTIAL;
2441 else
2442 return skb->ip_summed == CHECKSUM_NONE;
2443 }
2444
2445 /**
2446 * __skb_gso_segment - Perform segmentation on skb.
2447 * @skb: buffer to segment
2448 * @features: features for the output path (see dev->features)
2449 * @tx_path: whether it is called in TX path
2450 *
2451 * This function segments the given skb and returns a list of segments.
2452 *
2453 * It may return NULL if the skb requires no segmentation. This is
2454 * only possible when GSO is used for verifying header integrity.
2455 */
2456 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2457 netdev_features_t features, bool tx_path)
2458 {
2459 if (unlikely(skb_needs_check(skb, tx_path))) {
2460 int err;
2461
2462 skb_warn_bad_offload(skb);
2463
2464 err = skb_cow_head(skb, 0);
2465 if (err < 0)
2466 return ERR_PTR(err);
2467 }
2468
2469 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2470 SKB_GSO_CB(skb)->encap_level = 0;
2471
2472 skb_reset_mac_header(skb);
2473 skb_reset_mac_len(skb);
2474
2475 return skb_mac_gso_segment(skb, features);
2476 }
2477 EXPORT_SYMBOL(__skb_gso_segment);
2478
2479 /* Take action when hardware reception checksum errors are detected. */
2480 #ifdef CONFIG_BUG
2481 void netdev_rx_csum_fault(struct net_device *dev)
2482 {
2483 if (net_ratelimit()) {
2484 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2485 dump_stack();
2486 }
2487 }
2488 EXPORT_SYMBOL(netdev_rx_csum_fault);
2489 #endif
2490
2491 /* Actually, we should eliminate this check as soon as we know, that:
2492 * 1. IOMMU is present and allows to map all the memory.
2493 * 2. No high memory really exists on this machine.
2494 */
2495
2496 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2497 {
2498 #ifdef CONFIG_HIGHMEM
2499 int i;
2500 if (!(dev->features & NETIF_F_HIGHDMA)) {
2501 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2502 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2503 if (PageHighMem(skb_frag_page(frag)))
2504 return 1;
2505 }
2506 }
2507
2508 if (PCI_DMA_BUS_IS_PHYS) {
2509 struct device *pdev = dev->dev.parent;
2510
2511 if (!pdev)
2512 return 0;
2513 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2514 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2515 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2516 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2517 return 1;
2518 }
2519 }
2520 #endif
2521 return 0;
2522 }
2523
2524 /* If MPLS offload request, verify we are testing hardware MPLS features
2525 * instead of standard features for the netdev.
2526 */
2527 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2528 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2529 netdev_features_t features,
2530 __be16 type)
2531 {
2532 if (eth_p_mpls(type))
2533 features &= skb->dev->mpls_features;
2534
2535 return features;
2536 }
2537 #else
2538 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2539 netdev_features_t features,
2540 __be16 type)
2541 {
2542 return features;
2543 }
2544 #endif
2545
2546 static netdev_features_t harmonize_features(struct sk_buff *skb,
2547 netdev_features_t features)
2548 {
2549 int tmp;
2550 __be16 type;
2551
2552 type = skb_network_protocol(skb, &tmp);
2553 features = net_mpls_features(skb, features, type);
2554
2555 if (skb->ip_summed != CHECKSUM_NONE &&
2556 !can_checksum_protocol(features, type)) {
2557 features &= ~NETIF_F_ALL_CSUM;
2558 } else if (illegal_highdma(skb->dev, skb)) {
2559 features &= ~NETIF_F_SG;
2560 }
2561
2562 return features;
2563 }
2564
2565 netdev_features_t passthru_features_check(struct sk_buff *skb,
2566 struct net_device *dev,
2567 netdev_features_t features)
2568 {
2569 return features;
2570 }
2571 EXPORT_SYMBOL(passthru_features_check);
2572
2573 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2574 struct net_device *dev,
2575 netdev_features_t features)
2576 {
2577 return vlan_features_check(skb, features);
2578 }
2579
2580 netdev_features_t netif_skb_features(struct sk_buff *skb)
2581 {
2582 struct net_device *dev = skb->dev;
2583 netdev_features_t features = dev->features;
2584 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2585
2586 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2587 features &= ~NETIF_F_GSO_MASK;
2588
2589 /* If encapsulation offload request, verify we are testing
2590 * hardware encapsulation features instead of standard
2591 * features for the netdev
2592 */
2593 if (skb->encapsulation)
2594 features &= dev->hw_enc_features;
2595
2596 if (skb_vlan_tagged(skb))
2597 features = netdev_intersect_features(features,
2598 dev->vlan_features |
2599 NETIF_F_HW_VLAN_CTAG_TX |
2600 NETIF_F_HW_VLAN_STAG_TX);
2601
2602 if (dev->netdev_ops->ndo_features_check)
2603 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2604 features);
2605 else
2606 features &= dflt_features_check(skb, dev, features);
2607
2608 return harmonize_features(skb, features);
2609 }
2610 EXPORT_SYMBOL(netif_skb_features);
2611
2612 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2613 struct netdev_queue *txq, bool more)
2614 {
2615 unsigned int len;
2616 int rc;
2617
2618 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2619 dev_queue_xmit_nit(skb, dev);
2620
2621 len = skb->len;
2622 trace_net_dev_start_xmit(skb, dev);
2623 rc = netdev_start_xmit(skb, dev, txq, more);
2624 trace_net_dev_xmit(skb, rc, dev, len);
2625
2626 return rc;
2627 }
2628
2629 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2630 struct netdev_queue *txq, int *ret)
2631 {
2632 struct sk_buff *skb = first;
2633 int rc = NETDEV_TX_OK;
2634
2635 while (skb) {
2636 struct sk_buff *next = skb->next;
2637
2638 skb->next = NULL;
2639 rc = xmit_one(skb, dev, txq, next != NULL);
2640 if (unlikely(!dev_xmit_complete(rc))) {
2641 skb->next = next;
2642 goto out;
2643 }
2644
2645 skb = next;
2646 if (netif_xmit_stopped(txq) && skb) {
2647 rc = NETDEV_TX_BUSY;
2648 break;
2649 }
2650 }
2651
2652 out:
2653 *ret = rc;
2654 return skb;
2655 }
2656
2657 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2658 netdev_features_t features)
2659 {
2660 if (skb_vlan_tag_present(skb) &&
2661 !vlan_hw_offload_capable(features, skb->vlan_proto))
2662 skb = __vlan_hwaccel_push_inside(skb);
2663 return skb;
2664 }
2665
2666 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2667 {
2668 netdev_features_t features;
2669
2670 if (skb->next)
2671 return skb;
2672
2673 features = netif_skb_features(skb);
2674 skb = validate_xmit_vlan(skb, features);
2675 if (unlikely(!skb))
2676 goto out_null;
2677
2678 if (netif_needs_gso(dev, skb, features)) {
2679 struct sk_buff *segs;
2680
2681 segs = skb_gso_segment(skb, features);
2682 if (IS_ERR(segs)) {
2683 goto out_kfree_skb;
2684 } else if (segs) {
2685 consume_skb(skb);
2686 skb = segs;
2687 }
2688 } else {
2689 if (skb_needs_linearize(skb, features) &&
2690 __skb_linearize(skb))
2691 goto out_kfree_skb;
2692
2693 /* If packet is not checksummed and device does not
2694 * support checksumming for this protocol, complete
2695 * checksumming here.
2696 */
2697 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2698 if (skb->encapsulation)
2699 skb_set_inner_transport_header(skb,
2700 skb_checksum_start_offset(skb));
2701 else
2702 skb_set_transport_header(skb,
2703 skb_checksum_start_offset(skb));
2704 if (!(features & NETIF_F_ALL_CSUM) &&
2705 skb_checksum_help(skb))
2706 goto out_kfree_skb;
2707 }
2708 }
2709
2710 return skb;
2711
2712 out_kfree_skb:
2713 kfree_skb(skb);
2714 out_null:
2715 return NULL;
2716 }
2717
2718 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2719 {
2720 struct sk_buff *next, *head = NULL, *tail;
2721
2722 for (; skb != NULL; skb = next) {
2723 next = skb->next;
2724 skb->next = NULL;
2725
2726 /* in case skb wont be segmented, point to itself */
2727 skb->prev = skb;
2728
2729 skb = validate_xmit_skb(skb, dev);
2730 if (!skb)
2731 continue;
2732
2733 if (!head)
2734 head = skb;
2735 else
2736 tail->next = skb;
2737 /* If skb was segmented, skb->prev points to
2738 * the last segment. If not, it still contains skb.
2739 */
2740 tail = skb->prev;
2741 }
2742 return head;
2743 }
2744
2745 static void qdisc_pkt_len_init(struct sk_buff *skb)
2746 {
2747 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2748
2749 qdisc_skb_cb(skb)->pkt_len = skb->len;
2750
2751 /* To get more precise estimation of bytes sent on wire,
2752 * we add to pkt_len the headers size of all segments
2753 */
2754 if (shinfo->gso_size) {
2755 unsigned int hdr_len;
2756 u16 gso_segs = shinfo->gso_segs;
2757
2758 /* mac layer + network layer */
2759 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2760
2761 /* + transport layer */
2762 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2763 hdr_len += tcp_hdrlen(skb);
2764 else
2765 hdr_len += sizeof(struct udphdr);
2766
2767 if (shinfo->gso_type & SKB_GSO_DODGY)
2768 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2769 shinfo->gso_size);
2770
2771 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2772 }
2773 }
2774
2775 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2776 struct net_device *dev,
2777 struct netdev_queue *txq)
2778 {
2779 spinlock_t *root_lock = qdisc_lock(q);
2780 bool contended;
2781 int rc;
2782
2783 qdisc_pkt_len_init(skb);
2784 qdisc_calculate_pkt_len(skb, q);
2785 /*
2786 * Heuristic to force contended enqueues to serialize on a
2787 * separate lock before trying to get qdisc main lock.
2788 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2789 * often and dequeue packets faster.
2790 */
2791 contended = qdisc_is_running(q);
2792 if (unlikely(contended))
2793 spin_lock(&q->busylock);
2794
2795 spin_lock(root_lock);
2796 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2797 kfree_skb(skb);
2798 rc = NET_XMIT_DROP;
2799 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2800 qdisc_run_begin(q)) {
2801 /*
2802 * This is a work-conserving queue; there are no old skbs
2803 * waiting to be sent out; and the qdisc is not running -
2804 * xmit the skb directly.
2805 */
2806
2807 qdisc_bstats_update(q, skb);
2808
2809 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2810 if (unlikely(contended)) {
2811 spin_unlock(&q->busylock);
2812 contended = false;
2813 }
2814 __qdisc_run(q);
2815 } else
2816 qdisc_run_end(q);
2817
2818 rc = NET_XMIT_SUCCESS;
2819 } else {
2820 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2821 if (qdisc_run_begin(q)) {
2822 if (unlikely(contended)) {
2823 spin_unlock(&q->busylock);
2824 contended = false;
2825 }
2826 __qdisc_run(q);
2827 }
2828 }
2829 spin_unlock(root_lock);
2830 if (unlikely(contended))
2831 spin_unlock(&q->busylock);
2832 return rc;
2833 }
2834
2835 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2836 static void skb_update_prio(struct sk_buff *skb)
2837 {
2838 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2839
2840 if (!skb->priority && skb->sk && map) {
2841 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2842
2843 if (prioidx < map->priomap_len)
2844 skb->priority = map->priomap[prioidx];
2845 }
2846 }
2847 #else
2848 #define skb_update_prio(skb)
2849 #endif
2850
2851 static DEFINE_PER_CPU(int, xmit_recursion);
2852 #define RECURSION_LIMIT 10
2853
2854 /**
2855 * dev_loopback_xmit - loop back @skb
2856 * @skb: buffer to transmit
2857 */
2858 int dev_loopback_xmit(struct sk_buff *skb)
2859 {
2860 skb_reset_mac_header(skb);
2861 __skb_pull(skb, skb_network_offset(skb));
2862 skb->pkt_type = PACKET_LOOPBACK;
2863 skb->ip_summed = CHECKSUM_UNNECESSARY;
2864 WARN_ON(!skb_dst(skb));
2865 skb_dst_force(skb);
2866 netif_rx_ni(skb);
2867 return 0;
2868 }
2869 EXPORT_SYMBOL(dev_loopback_xmit);
2870
2871 /**
2872 * __dev_queue_xmit - transmit a buffer
2873 * @skb: buffer to transmit
2874 * @accel_priv: private data used for L2 forwarding offload
2875 *
2876 * Queue a buffer for transmission to a network device. The caller must
2877 * have set the device and priority and built the buffer before calling
2878 * this function. The function can be called from an interrupt.
2879 *
2880 * A negative errno code is returned on a failure. A success does not
2881 * guarantee the frame will be transmitted as it may be dropped due
2882 * to congestion or traffic shaping.
2883 *
2884 * -----------------------------------------------------------------------------------
2885 * I notice this method can also return errors from the queue disciplines,
2886 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2887 * be positive.
2888 *
2889 * Regardless of the return value, the skb is consumed, so it is currently
2890 * difficult to retry a send to this method. (You can bump the ref count
2891 * before sending to hold a reference for retry if you are careful.)
2892 *
2893 * When calling this method, interrupts MUST be enabled. This is because
2894 * the BH enable code must have IRQs enabled so that it will not deadlock.
2895 * --BLG
2896 */
2897 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2898 {
2899 struct net_device *dev = skb->dev;
2900 struct netdev_queue *txq;
2901 struct Qdisc *q;
2902 int rc = -ENOMEM;
2903
2904 skb_reset_mac_header(skb);
2905
2906 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2907 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2908
2909 /* Disable soft irqs for various locks below. Also
2910 * stops preemption for RCU.
2911 */
2912 rcu_read_lock_bh();
2913
2914 skb_update_prio(skb);
2915
2916 /* If device/qdisc don't need skb->dst, release it right now while
2917 * its hot in this cpu cache.
2918 */
2919 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2920 skb_dst_drop(skb);
2921 else
2922 skb_dst_force(skb);
2923
2924 txq = netdev_pick_tx(dev, skb, accel_priv);
2925 q = rcu_dereference_bh(txq->qdisc);
2926
2927 #ifdef CONFIG_NET_CLS_ACT
2928 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2929 #endif
2930 trace_net_dev_queue(skb);
2931 if (q->enqueue) {
2932 rc = __dev_xmit_skb(skb, q, dev, txq);
2933 goto out;
2934 }
2935
2936 /* The device has no queue. Common case for software devices:
2937 loopback, all the sorts of tunnels...
2938
2939 Really, it is unlikely that netif_tx_lock protection is necessary
2940 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2941 counters.)
2942 However, it is possible, that they rely on protection
2943 made by us here.
2944
2945 Check this and shot the lock. It is not prone from deadlocks.
2946 Either shot noqueue qdisc, it is even simpler 8)
2947 */
2948 if (dev->flags & IFF_UP) {
2949 int cpu = smp_processor_id(); /* ok because BHs are off */
2950
2951 if (txq->xmit_lock_owner != cpu) {
2952
2953 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2954 goto recursion_alert;
2955
2956 skb = validate_xmit_skb(skb, dev);
2957 if (!skb)
2958 goto drop;
2959
2960 HARD_TX_LOCK(dev, txq, cpu);
2961
2962 if (!netif_xmit_stopped(txq)) {
2963 __this_cpu_inc(xmit_recursion);
2964 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2965 __this_cpu_dec(xmit_recursion);
2966 if (dev_xmit_complete(rc)) {
2967 HARD_TX_UNLOCK(dev, txq);
2968 goto out;
2969 }
2970 }
2971 HARD_TX_UNLOCK(dev, txq);
2972 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2973 dev->name);
2974 } else {
2975 /* Recursion is detected! It is possible,
2976 * unfortunately
2977 */
2978 recursion_alert:
2979 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2980 dev->name);
2981 }
2982 }
2983
2984 rc = -ENETDOWN;
2985 drop:
2986 rcu_read_unlock_bh();
2987
2988 atomic_long_inc(&dev->tx_dropped);
2989 kfree_skb_list(skb);
2990 return rc;
2991 out:
2992 rcu_read_unlock_bh();
2993 return rc;
2994 }
2995
2996 int dev_queue_xmit(struct sk_buff *skb)
2997 {
2998 return __dev_queue_xmit(skb, NULL);
2999 }
3000 EXPORT_SYMBOL(dev_queue_xmit);
3001
3002 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3003 {
3004 return __dev_queue_xmit(skb, accel_priv);
3005 }
3006 EXPORT_SYMBOL(dev_queue_xmit_accel);
3007
3008
3009 /*=======================================================================
3010 Receiver routines
3011 =======================================================================*/
3012
3013 int netdev_max_backlog __read_mostly = 1000;
3014 EXPORT_SYMBOL(netdev_max_backlog);
3015
3016 int netdev_tstamp_prequeue __read_mostly = 1;
3017 int netdev_budget __read_mostly = 300;
3018 int weight_p __read_mostly = 64; /* old backlog weight */
3019
3020 /* Called with irq disabled */
3021 static inline void ____napi_schedule(struct softnet_data *sd,
3022 struct napi_struct *napi)
3023 {
3024 list_add_tail(&napi->poll_list, &sd->poll_list);
3025 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3026 }
3027
3028 #ifdef CONFIG_RPS
3029
3030 /* One global table that all flow-based protocols share. */
3031 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3032 EXPORT_SYMBOL(rps_sock_flow_table);
3033 u32 rps_cpu_mask __read_mostly;
3034 EXPORT_SYMBOL(rps_cpu_mask);
3035
3036 struct static_key rps_needed __read_mostly;
3037
3038 static struct rps_dev_flow *
3039 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3040 struct rps_dev_flow *rflow, u16 next_cpu)
3041 {
3042 if (next_cpu != RPS_NO_CPU) {
3043 #ifdef CONFIG_RFS_ACCEL
3044 struct netdev_rx_queue *rxqueue;
3045 struct rps_dev_flow_table *flow_table;
3046 struct rps_dev_flow *old_rflow;
3047 u32 flow_id;
3048 u16 rxq_index;
3049 int rc;
3050
3051 /* Should we steer this flow to a different hardware queue? */
3052 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3053 !(dev->features & NETIF_F_NTUPLE))
3054 goto out;
3055 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3056 if (rxq_index == skb_get_rx_queue(skb))
3057 goto out;
3058
3059 rxqueue = dev->_rx + rxq_index;
3060 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3061 if (!flow_table)
3062 goto out;
3063 flow_id = skb_get_hash(skb) & flow_table->mask;
3064 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3065 rxq_index, flow_id);
3066 if (rc < 0)
3067 goto out;
3068 old_rflow = rflow;
3069 rflow = &flow_table->flows[flow_id];
3070 rflow->filter = rc;
3071 if (old_rflow->filter == rflow->filter)
3072 old_rflow->filter = RPS_NO_FILTER;
3073 out:
3074 #endif
3075 rflow->last_qtail =
3076 per_cpu(softnet_data, next_cpu).input_queue_head;
3077 }
3078
3079 rflow->cpu = next_cpu;
3080 return rflow;
3081 }
3082
3083 /*
3084 * get_rps_cpu is called from netif_receive_skb and returns the target
3085 * CPU from the RPS map of the receiving queue for a given skb.
3086 * rcu_read_lock must be held on entry.
3087 */
3088 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3089 struct rps_dev_flow **rflowp)
3090 {
3091 const struct rps_sock_flow_table *sock_flow_table;
3092 struct netdev_rx_queue *rxqueue = dev->_rx;
3093 struct rps_dev_flow_table *flow_table;
3094 struct rps_map *map;
3095 int cpu = -1;
3096 u32 tcpu;
3097 u32 hash;
3098
3099 if (skb_rx_queue_recorded(skb)) {
3100 u16 index = skb_get_rx_queue(skb);
3101
3102 if (unlikely(index >= dev->real_num_rx_queues)) {
3103 WARN_ONCE(dev->real_num_rx_queues > 1,
3104 "%s received packet on queue %u, but number "
3105 "of RX queues is %u\n",
3106 dev->name, index, dev->real_num_rx_queues);
3107 goto done;
3108 }
3109 rxqueue += index;
3110 }
3111
3112 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3113
3114 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3115 map = rcu_dereference(rxqueue->rps_map);
3116 if (!flow_table && !map)
3117 goto done;
3118
3119 skb_reset_network_header(skb);
3120 hash = skb_get_hash(skb);
3121 if (!hash)
3122 goto done;
3123
3124 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3125 if (flow_table && sock_flow_table) {
3126 struct rps_dev_flow *rflow;
3127 u32 next_cpu;
3128 u32 ident;
3129
3130 /* First check into global flow table if there is a match */
3131 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3132 if ((ident ^ hash) & ~rps_cpu_mask)
3133 goto try_rps;
3134
3135 next_cpu = ident & rps_cpu_mask;
3136
3137 /* OK, now we know there is a match,
3138 * we can look at the local (per receive queue) flow table
3139 */
3140 rflow = &flow_table->flows[hash & flow_table->mask];
3141 tcpu = rflow->cpu;
3142
3143 /*
3144 * If the desired CPU (where last recvmsg was done) is
3145 * different from current CPU (one in the rx-queue flow
3146 * table entry), switch if one of the following holds:
3147 * - Current CPU is unset (equal to RPS_NO_CPU).
3148 * - Current CPU is offline.
3149 * - The current CPU's queue tail has advanced beyond the
3150 * last packet that was enqueued using this table entry.
3151 * This guarantees that all previous packets for the flow
3152 * have been dequeued, thus preserving in order delivery.
3153 */
3154 if (unlikely(tcpu != next_cpu) &&
3155 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3156 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3157 rflow->last_qtail)) >= 0)) {
3158 tcpu = next_cpu;
3159 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3160 }
3161
3162 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3163 *rflowp = rflow;
3164 cpu = tcpu;
3165 goto done;
3166 }
3167 }
3168
3169 try_rps:
3170
3171 if (map) {
3172 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3173 if (cpu_online(tcpu)) {
3174 cpu = tcpu;
3175 goto done;
3176 }
3177 }
3178
3179 done:
3180 return cpu;
3181 }
3182
3183 #ifdef CONFIG_RFS_ACCEL
3184
3185 /**
3186 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3187 * @dev: Device on which the filter was set
3188 * @rxq_index: RX queue index
3189 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3190 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3191 *
3192 * Drivers that implement ndo_rx_flow_steer() should periodically call
3193 * this function for each installed filter and remove the filters for
3194 * which it returns %true.
3195 */
3196 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3197 u32 flow_id, u16 filter_id)
3198 {
3199 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3200 struct rps_dev_flow_table *flow_table;
3201 struct rps_dev_flow *rflow;
3202 bool expire = true;
3203 int cpu;
3204
3205 rcu_read_lock();
3206 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3207 if (flow_table && flow_id <= flow_table->mask) {
3208 rflow = &flow_table->flows[flow_id];
3209 cpu = ACCESS_ONCE(rflow->cpu);
3210 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3211 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3212 rflow->last_qtail) <
3213 (int)(10 * flow_table->mask)))
3214 expire = false;
3215 }
3216 rcu_read_unlock();
3217 return expire;
3218 }
3219 EXPORT_SYMBOL(rps_may_expire_flow);
3220
3221 #endif /* CONFIG_RFS_ACCEL */
3222
3223 /* Called from hardirq (IPI) context */
3224 static void rps_trigger_softirq(void *data)
3225 {
3226 struct softnet_data *sd = data;
3227
3228 ____napi_schedule(sd, &sd->backlog);
3229 sd->received_rps++;
3230 }
3231
3232 #endif /* CONFIG_RPS */
3233
3234 /*
3235 * Check if this softnet_data structure is another cpu one
3236 * If yes, queue it to our IPI list and return 1
3237 * If no, return 0
3238 */
3239 static int rps_ipi_queued(struct softnet_data *sd)
3240 {
3241 #ifdef CONFIG_RPS
3242 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3243
3244 if (sd != mysd) {
3245 sd->rps_ipi_next = mysd->rps_ipi_list;
3246 mysd->rps_ipi_list = sd;
3247
3248 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3249 return 1;
3250 }
3251 #endif /* CONFIG_RPS */
3252 return 0;
3253 }
3254
3255 #ifdef CONFIG_NET_FLOW_LIMIT
3256 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3257 #endif
3258
3259 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3260 {
3261 #ifdef CONFIG_NET_FLOW_LIMIT
3262 struct sd_flow_limit *fl;
3263 struct softnet_data *sd;
3264 unsigned int old_flow, new_flow;
3265
3266 if (qlen < (netdev_max_backlog >> 1))
3267 return false;
3268
3269 sd = this_cpu_ptr(&softnet_data);
3270
3271 rcu_read_lock();
3272 fl = rcu_dereference(sd->flow_limit);
3273 if (fl) {
3274 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3275 old_flow = fl->history[fl->history_head];
3276 fl->history[fl->history_head] = new_flow;
3277
3278 fl->history_head++;
3279 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3280
3281 if (likely(fl->buckets[old_flow]))
3282 fl->buckets[old_flow]--;
3283
3284 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3285 fl->count++;
3286 rcu_read_unlock();
3287 return true;
3288 }
3289 }
3290 rcu_read_unlock();
3291 #endif
3292 return false;
3293 }
3294
3295 /*
3296 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3297 * queue (may be a remote CPU queue).
3298 */
3299 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3300 unsigned int *qtail)
3301 {
3302 struct softnet_data *sd;
3303 unsigned long flags;
3304 unsigned int qlen;
3305
3306 sd = &per_cpu(softnet_data, cpu);
3307
3308 local_irq_save(flags);
3309
3310 rps_lock(sd);
3311 qlen = skb_queue_len(&sd->input_pkt_queue);
3312 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3313 if (qlen) {
3314 enqueue:
3315 __skb_queue_tail(&sd->input_pkt_queue, skb);
3316 input_queue_tail_incr_save(sd, qtail);
3317 rps_unlock(sd);
3318 local_irq_restore(flags);
3319 return NET_RX_SUCCESS;
3320 }
3321
3322 /* Schedule NAPI for backlog device
3323 * We can use non atomic operation since we own the queue lock
3324 */
3325 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3326 if (!rps_ipi_queued(sd))
3327 ____napi_schedule(sd, &sd->backlog);
3328 }
3329 goto enqueue;
3330 }
3331
3332 sd->dropped++;
3333 rps_unlock(sd);
3334
3335 local_irq_restore(flags);
3336
3337 atomic_long_inc(&skb->dev->rx_dropped);
3338 kfree_skb(skb);
3339 return NET_RX_DROP;
3340 }
3341
3342 static int netif_rx_internal(struct sk_buff *skb)
3343 {
3344 int ret;
3345
3346 net_timestamp_check(netdev_tstamp_prequeue, skb);
3347
3348 trace_netif_rx(skb);
3349 #ifdef CONFIG_RPS
3350 if (static_key_false(&rps_needed)) {
3351 struct rps_dev_flow voidflow, *rflow = &voidflow;
3352 int cpu;
3353
3354 preempt_disable();
3355 rcu_read_lock();
3356
3357 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3358 if (cpu < 0)
3359 cpu = smp_processor_id();
3360
3361 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3362
3363 rcu_read_unlock();
3364 preempt_enable();
3365 } else
3366 #endif
3367 {
3368 unsigned int qtail;
3369 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3370 put_cpu();
3371 }
3372 return ret;
3373 }
3374
3375 /**
3376 * netif_rx - post buffer to the network code
3377 * @skb: buffer to post
3378 *
3379 * This function receives a packet from a device driver and queues it for
3380 * the upper (protocol) levels to process. It always succeeds. The buffer
3381 * may be dropped during processing for congestion control or by the
3382 * protocol layers.
3383 *
3384 * return values:
3385 * NET_RX_SUCCESS (no congestion)
3386 * NET_RX_DROP (packet was dropped)
3387 *
3388 */
3389
3390 int netif_rx(struct sk_buff *skb)
3391 {
3392 trace_netif_rx_entry(skb);
3393
3394 return netif_rx_internal(skb);
3395 }
3396 EXPORT_SYMBOL(netif_rx);
3397
3398 int netif_rx_ni(struct sk_buff *skb)
3399 {
3400 int err;
3401
3402 trace_netif_rx_ni_entry(skb);
3403
3404 preempt_disable();
3405 err = netif_rx_internal(skb);
3406 if (local_softirq_pending())
3407 do_softirq();
3408 preempt_enable();
3409
3410 return err;
3411 }
3412 EXPORT_SYMBOL(netif_rx_ni);
3413
3414 static void net_tx_action(struct softirq_action *h)
3415 {
3416 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3417
3418 if (sd->completion_queue) {
3419 struct sk_buff *clist;
3420
3421 local_irq_disable();
3422 clist = sd->completion_queue;
3423 sd->completion_queue = NULL;
3424 local_irq_enable();
3425
3426 while (clist) {
3427 struct sk_buff *skb = clist;
3428 clist = clist->next;
3429
3430 WARN_ON(atomic_read(&skb->users));
3431 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3432 trace_consume_skb(skb);
3433 else
3434 trace_kfree_skb(skb, net_tx_action);
3435 __kfree_skb(skb);
3436 }
3437 }
3438
3439 if (sd->output_queue) {
3440 struct Qdisc *head;
3441
3442 local_irq_disable();
3443 head = sd->output_queue;
3444 sd->output_queue = NULL;
3445 sd->output_queue_tailp = &sd->output_queue;
3446 local_irq_enable();
3447
3448 while (head) {
3449 struct Qdisc *q = head;
3450 spinlock_t *root_lock;
3451
3452 head = head->next_sched;
3453
3454 root_lock = qdisc_lock(q);
3455 if (spin_trylock(root_lock)) {
3456 smp_mb__before_atomic();
3457 clear_bit(__QDISC_STATE_SCHED,
3458 &q->state);
3459 qdisc_run(q);
3460 spin_unlock(root_lock);
3461 } else {
3462 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3463 &q->state)) {
3464 __netif_reschedule(q);
3465 } else {
3466 smp_mb__before_atomic();
3467 clear_bit(__QDISC_STATE_SCHED,
3468 &q->state);
3469 }
3470 }
3471 }
3472 }
3473 }
3474
3475 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3476 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3477 /* This hook is defined here for ATM LANE */
3478 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3479 unsigned char *addr) __read_mostly;
3480 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3481 #endif
3482
3483 #ifdef CONFIG_NET_CLS_ACT
3484 /* TODO: Maybe we should just force sch_ingress to be compiled in
3485 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3486 * a compare and 2 stores extra right now if we dont have it on
3487 * but have CONFIG_NET_CLS_ACT
3488 * NOTE: This doesn't stop any functionality; if you dont have
3489 * the ingress scheduler, you just can't add policies on ingress.
3490 *
3491 */
3492 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3493 {
3494 struct net_device *dev = skb->dev;
3495 u32 ttl = G_TC_RTTL(skb->tc_verd);
3496 int result = TC_ACT_OK;
3497 struct Qdisc *q;
3498
3499 if (unlikely(MAX_RED_LOOP < ttl++)) {
3500 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3501 skb->skb_iif, dev->ifindex);
3502 return TC_ACT_SHOT;
3503 }
3504
3505 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3506 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3507
3508 q = rcu_dereference(rxq->qdisc);
3509 if (q != &noop_qdisc) {
3510 spin_lock(qdisc_lock(q));
3511 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3512 result = qdisc_enqueue_root(skb, q);
3513 spin_unlock(qdisc_lock(q));
3514 }
3515
3516 return result;
3517 }
3518
3519 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3520 struct packet_type **pt_prev,
3521 int *ret, struct net_device *orig_dev)
3522 {
3523 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3524
3525 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3526 goto out;
3527
3528 if (*pt_prev) {
3529 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3530 *pt_prev = NULL;
3531 }
3532
3533 switch (ing_filter(skb, rxq)) {
3534 case TC_ACT_SHOT:
3535 case TC_ACT_STOLEN:
3536 kfree_skb(skb);
3537 return NULL;
3538 }
3539
3540 out:
3541 skb->tc_verd = 0;
3542 return skb;
3543 }
3544 #endif
3545
3546 /**
3547 * netdev_rx_handler_register - register receive handler
3548 * @dev: device to register a handler for
3549 * @rx_handler: receive handler to register
3550 * @rx_handler_data: data pointer that is used by rx handler
3551 *
3552 * Register a receive handler for a device. This handler will then be
3553 * called from __netif_receive_skb. A negative errno code is returned
3554 * on a failure.
3555 *
3556 * The caller must hold the rtnl_mutex.
3557 *
3558 * For a general description of rx_handler, see enum rx_handler_result.
3559 */
3560 int netdev_rx_handler_register(struct net_device *dev,
3561 rx_handler_func_t *rx_handler,
3562 void *rx_handler_data)
3563 {
3564 ASSERT_RTNL();
3565
3566 if (dev->rx_handler)
3567 return -EBUSY;
3568
3569 /* Note: rx_handler_data must be set before rx_handler */
3570 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3571 rcu_assign_pointer(dev->rx_handler, rx_handler);
3572
3573 return 0;
3574 }
3575 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3576
3577 /**
3578 * netdev_rx_handler_unregister - unregister receive handler
3579 * @dev: device to unregister a handler from
3580 *
3581 * Unregister a receive handler from a device.
3582 *
3583 * The caller must hold the rtnl_mutex.
3584 */
3585 void netdev_rx_handler_unregister(struct net_device *dev)
3586 {
3587
3588 ASSERT_RTNL();
3589 RCU_INIT_POINTER(dev->rx_handler, NULL);
3590 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3591 * section has a guarantee to see a non NULL rx_handler_data
3592 * as well.
3593 */
3594 synchronize_net();
3595 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3596 }
3597 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3598
3599 /*
3600 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3601 * the special handling of PFMEMALLOC skbs.
3602 */
3603 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3604 {
3605 switch (skb->protocol) {
3606 case htons(ETH_P_ARP):
3607 case htons(ETH_P_IP):
3608 case htons(ETH_P_IPV6):
3609 case htons(ETH_P_8021Q):
3610 case htons(ETH_P_8021AD):
3611 return true;
3612 default:
3613 return false;
3614 }
3615 }
3616
3617 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3618 {
3619 struct packet_type *ptype, *pt_prev;
3620 rx_handler_func_t *rx_handler;
3621 struct net_device *orig_dev;
3622 bool deliver_exact = false;
3623 int ret = NET_RX_DROP;
3624 __be16 type;
3625
3626 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3627
3628 trace_netif_receive_skb(skb);
3629
3630 orig_dev = skb->dev;
3631
3632 skb_reset_network_header(skb);
3633 if (!skb_transport_header_was_set(skb))
3634 skb_reset_transport_header(skb);
3635 skb_reset_mac_len(skb);
3636
3637 pt_prev = NULL;
3638
3639 rcu_read_lock();
3640
3641 another_round:
3642 skb->skb_iif = skb->dev->ifindex;
3643
3644 __this_cpu_inc(softnet_data.processed);
3645
3646 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3647 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3648 skb = skb_vlan_untag(skb);
3649 if (unlikely(!skb))
3650 goto unlock;
3651 }
3652
3653 #ifdef CONFIG_NET_CLS_ACT
3654 if (skb->tc_verd & TC_NCLS) {
3655 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3656 goto ncls;
3657 }
3658 #endif
3659
3660 if (pfmemalloc)
3661 goto skip_taps;
3662
3663 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3664 if (pt_prev)
3665 ret = deliver_skb(skb, pt_prev, orig_dev);
3666 pt_prev = ptype;
3667 }
3668
3669 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3670 if (pt_prev)
3671 ret = deliver_skb(skb, pt_prev, orig_dev);
3672 pt_prev = ptype;
3673 }
3674
3675 skip_taps:
3676 #ifdef CONFIG_NET_CLS_ACT
3677 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3678 if (!skb)
3679 goto unlock;
3680 ncls:
3681 #endif
3682
3683 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3684 goto drop;
3685
3686 if (skb_vlan_tag_present(skb)) {
3687 if (pt_prev) {
3688 ret = deliver_skb(skb, pt_prev, orig_dev);
3689 pt_prev = NULL;
3690 }
3691 if (vlan_do_receive(&skb))
3692 goto another_round;
3693 else if (unlikely(!skb))
3694 goto unlock;
3695 }
3696
3697 rx_handler = rcu_dereference(skb->dev->rx_handler);
3698 if (rx_handler) {
3699 if (pt_prev) {
3700 ret = deliver_skb(skb, pt_prev, orig_dev);
3701 pt_prev = NULL;
3702 }
3703 switch (rx_handler(&skb)) {
3704 case RX_HANDLER_CONSUMED:
3705 ret = NET_RX_SUCCESS;
3706 goto unlock;
3707 case RX_HANDLER_ANOTHER:
3708 goto another_round;
3709 case RX_HANDLER_EXACT:
3710 deliver_exact = true;
3711 case RX_HANDLER_PASS:
3712 break;
3713 default:
3714 BUG();
3715 }
3716 }
3717
3718 if (unlikely(skb_vlan_tag_present(skb))) {
3719 if (skb_vlan_tag_get_id(skb))
3720 skb->pkt_type = PACKET_OTHERHOST;
3721 /* Note: we might in the future use prio bits
3722 * and set skb->priority like in vlan_do_receive()
3723 * For the time being, just ignore Priority Code Point
3724 */
3725 skb->vlan_tci = 0;
3726 }
3727
3728 type = skb->protocol;
3729
3730 /* deliver only exact match when indicated */
3731 if (likely(!deliver_exact)) {
3732 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3733 &ptype_base[ntohs(type) &
3734 PTYPE_HASH_MASK]);
3735 }
3736
3737 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3738 &orig_dev->ptype_specific);
3739
3740 if (unlikely(skb->dev != orig_dev)) {
3741 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3742 &skb->dev->ptype_specific);
3743 }
3744
3745 if (pt_prev) {
3746 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3747 goto drop;
3748 else
3749 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3750 } else {
3751 drop:
3752 atomic_long_inc(&skb->dev->rx_dropped);
3753 kfree_skb(skb);
3754 /* Jamal, now you will not able to escape explaining
3755 * me how you were going to use this. :-)
3756 */
3757 ret = NET_RX_DROP;
3758 }
3759
3760 unlock:
3761 rcu_read_unlock();
3762 return ret;
3763 }
3764
3765 static int __netif_receive_skb(struct sk_buff *skb)
3766 {
3767 int ret;
3768
3769 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3770 unsigned long pflags = current->flags;
3771
3772 /*
3773 * PFMEMALLOC skbs are special, they should
3774 * - be delivered to SOCK_MEMALLOC sockets only
3775 * - stay away from userspace
3776 * - have bounded memory usage
3777 *
3778 * Use PF_MEMALLOC as this saves us from propagating the allocation
3779 * context down to all allocation sites.
3780 */
3781 current->flags |= PF_MEMALLOC;
3782 ret = __netif_receive_skb_core(skb, true);
3783 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3784 } else
3785 ret = __netif_receive_skb_core(skb, false);
3786
3787 return ret;
3788 }
3789
3790 static int netif_receive_skb_internal(struct sk_buff *skb)
3791 {
3792 net_timestamp_check(netdev_tstamp_prequeue, skb);
3793
3794 if (skb_defer_rx_timestamp(skb))
3795 return NET_RX_SUCCESS;
3796
3797 #ifdef CONFIG_RPS
3798 if (static_key_false(&rps_needed)) {
3799 struct rps_dev_flow voidflow, *rflow = &voidflow;
3800 int cpu, ret;
3801
3802 rcu_read_lock();
3803
3804 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3805
3806 if (cpu >= 0) {
3807 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3808 rcu_read_unlock();
3809 return ret;
3810 }
3811 rcu_read_unlock();
3812 }
3813 #endif
3814 return __netif_receive_skb(skb);
3815 }
3816
3817 /**
3818 * netif_receive_skb - process receive buffer from network
3819 * @skb: buffer to process
3820 *
3821 * netif_receive_skb() is the main receive data processing function.
3822 * It always succeeds. The buffer may be dropped during processing
3823 * for congestion control or by the protocol layers.
3824 *
3825 * This function may only be called from softirq context and interrupts
3826 * should be enabled.
3827 *
3828 * Return values (usually ignored):
3829 * NET_RX_SUCCESS: no congestion
3830 * NET_RX_DROP: packet was dropped
3831 */
3832 int netif_receive_skb(struct sk_buff *skb)
3833 {
3834 trace_netif_receive_skb_entry(skb);
3835
3836 return netif_receive_skb_internal(skb);
3837 }
3838 EXPORT_SYMBOL(netif_receive_skb);
3839
3840 /* Network device is going away, flush any packets still pending
3841 * Called with irqs disabled.
3842 */
3843 static void flush_backlog(void *arg)
3844 {
3845 struct net_device *dev = arg;
3846 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3847 struct sk_buff *skb, *tmp;
3848
3849 rps_lock(sd);
3850 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3851 if (skb->dev == dev) {
3852 __skb_unlink(skb, &sd->input_pkt_queue);
3853 kfree_skb(skb);
3854 input_queue_head_incr(sd);
3855 }
3856 }
3857 rps_unlock(sd);
3858
3859 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3860 if (skb->dev == dev) {
3861 __skb_unlink(skb, &sd->process_queue);
3862 kfree_skb(skb);
3863 input_queue_head_incr(sd);
3864 }
3865 }
3866 }
3867
3868 static int napi_gro_complete(struct sk_buff *skb)
3869 {
3870 struct packet_offload *ptype;
3871 __be16 type = skb->protocol;
3872 struct list_head *head = &offload_base;
3873 int err = -ENOENT;
3874
3875 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3876
3877 if (NAPI_GRO_CB(skb)->count == 1) {
3878 skb_shinfo(skb)->gso_size = 0;
3879 goto out;
3880 }
3881
3882 rcu_read_lock();
3883 list_for_each_entry_rcu(ptype, head, list) {
3884 if (ptype->type != type || !ptype->callbacks.gro_complete)
3885 continue;
3886
3887 err = ptype->callbacks.gro_complete(skb, 0);
3888 break;
3889 }
3890 rcu_read_unlock();
3891
3892 if (err) {
3893 WARN_ON(&ptype->list == head);
3894 kfree_skb(skb);
3895 return NET_RX_SUCCESS;
3896 }
3897
3898 out:
3899 return netif_receive_skb_internal(skb);
3900 }
3901
3902 /* napi->gro_list contains packets ordered by age.
3903 * youngest packets at the head of it.
3904 * Complete skbs in reverse order to reduce latencies.
3905 */
3906 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3907 {
3908 struct sk_buff *skb, *prev = NULL;
3909
3910 /* scan list and build reverse chain */
3911 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3912 skb->prev = prev;
3913 prev = skb;
3914 }
3915
3916 for (skb = prev; skb; skb = prev) {
3917 skb->next = NULL;
3918
3919 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3920 return;
3921
3922 prev = skb->prev;
3923 napi_gro_complete(skb);
3924 napi->gro_count--;
3925 }
3926
3927 napi->gro_list = NULL;
3928 }
3929 EXPORT_SYMBOL(napi_gro_flush);
3930
3931 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3932 {
3933 struct sk_buff *p;
3934 unsigned int maclen = skb->dev->hard_header_len;
3935 u32 hash = skb_get_hash_raw(skb);
3936
3937 for (p = napi->gro_list; p; p = p->next) {
3938 unsigned long diffs;
3939
3940 NAPI_GRO_CB(p)->flush = 0;
3941
3942 if (hash != skb_get_hash_raw(p)) {
3943 NAPI_GRO_CB(p)->same_flow = 0;
3944 continue;
3945 }
3946
3947 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3948 diffs |= p->vlan_tci ^ skb->vlan_tci;
3949 if (maclen == ETH_HLEN)
3950 diffs |= compare_ether_header(skb_mac_header(p),
3951 skb_mac_header(skb));
3952 else if (!diffs)
3953 diffs = memcmp(skb_mac_header(p),
3954 skb_mac_header(skb),
3955 maclen);
3956 NAPI_GRO_CB(p)->same_flow = !diffs;
3957 }
3958 }
3959
3960 static void skb_gro_reset_offset(struct sk_buff *skb)
3961 {
3962 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3963 const skb_frag_t *frag0 = &pinfo->frags[0];
3964
3965 NAPI_GRO_CB(skb)->data_offset = 0;
3966 NAPI_GRO_CB(skb)->frag0 = NULL;
3967 NAPI_GRO_CB(skb)->frag0_len = 0;
3968
3969 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3970 pinfo->nr_frags &&
3971 !PageHighMem(skb_frag_page(frag0))) {
3972 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3973 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3974 }
3975 }
3976
3977 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3978 {
3979 struct skb_shared_info *pinfo = skb_shinfo(skb);
3980
3981 BUG_ON(skb->end - skb->tail < grow);
3982
3983 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3984
3985 skb->data_len -= grow;
3986 skb->tail += grow;
3987
3988 pinfo->frags[0].page_offset += grow;
3989 skb_frag_size_sub(&pinfo->frags[0], grow);
3990
3991 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3992 skb_frag_unref(skb, 0);
3993 memmove(pinfo->frags, pinfo->frags + 1,
3994 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3995 }
3996 }
3997
3998 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3999 {
4000 struct sk_buff **pp = NULL;
4001 struct packet_offload *ptype;
4002 __be16 type = skb->protocol;
4003 struct list_head *head = &offload_base;
4004 int same_flow;
4005 enum gro_result ret;
4006 int grow;
4007
4008 if (!(skb->dev->features & NETIF_F_GRO))
4009 goto normal;
4010
4011 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4012 goto normal;
4013
4014 gro_list_prepare(napi, skb);
4015
4016 rcu_read_lock();
4017 list_for_each_entry_rcu(ptype, head, list) {
4018 if (ptype->type != type || !ptype->callbacks.gro_receive)
4019 continue;
4020
4021 skb_set_network_header(skb, skb_gro_offset(skb));
4022 skb_reset_mac_len(skb);
4023 NAPI_GRO_CB(skb)->same_flow = 0;
4024 NAPI_GRO_CB(skb)->flush = 0;
4025 NAPI_GRO_CB(skb)->free = 0;
4026 NAPI_GRO_CB(skb)->udp_mark = 0;
4027 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4028
4029 /* Setup for GRO checksum validation */
4030 switch (skb->ip_summed) {
4031 case CHECKSUM_COMPLETE:
4032 NAPI_GRO_CB(skb)->csum = skb->csum;
4033 NAPI_GRO_CB(skb)->csum_valid = 1;
4034 NAPI_GRO_CB(skb)->csum_cnt = 0;
4035 break;
4036 case CHECKSUM_UNNECESSARY:
4037 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4038 NAPI_GRO_CB(skb)->csum_valid = 0;
4039 break;
4040 default:
4041 NAPI_GRO_CB(skb)->csum_cnt = 0;
4042 NAPI_GRO_CB(skb)->csum_valid = 0;
4043 }
4044
4045 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4046 break;
4047 }
4048 rcu_read_unlock();
4049
4050 if (&ptype->list == head)
4051 goto normal;
4052
4053 same_flow = NAPI_GRO_CB(skb)->same_flow;
4054 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4055
4056 if (pp) {
4057 struct sk_buff *nskb = *pp;
4058
4059 *pp = nskb->next;
4060 nskb->next = NULL;
4061 napi_gro_complete(nskb);
4062 napi->gro_count--;
4063 }
4064
4065 if (same_flow)
4066 goto ok;
4067
4068 if (NAPI_GRO_CB(skb)->flush)
4069 goto normal;
4070
4071 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4072 struct sk_buff *nskb = napi->gro_list;
4073
4074 /* locate the end of the list to select the 'oldest' flow */
4075 while (nskb->next) {
4076 pp = &nskb->next;
4077 nskb = *pp;
4078 }
4079 *pp = NULL;
4080 nskb->next = NULL;
4081 napi_gro_complete(nskb);
4082 } else {
4083 napi->gro_count++;
4084 }
4085 NAPI_GRO_CB(skb)->count = 1;
4086 NAPI_GRO_CB(skb)->age = jiffies;
4087 NAPI_GRO_CB(skb)->last = skb;
4088 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4089 skb->next = napi->gro_list;
4090 napi->gro_list = skb;
4091 ret = GRO_HELD;
4092
4093 pull:
4094 grow = skb_gro_offset(skb) - skb_headlen(skb);
4095 if (grow > 0)
4096 gro_pull_from_frag0(skb, grow);
4097 ok:
4098 return ret;
4099
4100 normal:
4101 ret = GRO_NORMAL;
4102 goto pull;
4103 }
4104
4105 struct packet_offload *gro_find_receive_by_type(__be16 type)
4106 {
4107 struct list_head *offload_head = &offload_base;
4108 struct packet_offload *ptype;
4109
4110 list_for_each_entry_rcu(ptype, offload_head, list) {
4111 if (ptype->type != type || !ptype->callbacks.gro_receive)
4112 continue;
4113 return ptype;
4114 }
4115 return NULL;
4116 }
4117 EXPORT_SYMBOL(gro_find_receive_by_type);
4118
4119 struct packet_offload *gro_find_complete_by_type(__be16 type)
4120 {
4121 struct list_head *offload_head = &offload_base;
4122 struct packet_offload *ptype;
4123
4124 list_for_each_entry_rcu(ptype, offload_head, list) {
4125 if (ptype->type != type || !ptype->callbacks.gro_complete)
4126 continue;
4127 return ptype;
4128 }
4129 return NULL;
4130 }
4131 EXPORT_SYMBOL(gro_find_complete_by_type);
4132
4133 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4134 {
4135 switch (ret) {
4136 case GRO_NORMAL:
4137 if (netif_receive_skb_internal(skb))
4138 ret = GRO_DROP;
4139 break;
4140
4141 case GRO_DROP:
4142 kfree_skb(skb);
4143 break;
4144
4145 case GRO_MERGED_FREE:
4146 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4147 kmem_cache_free(skbuff_head_cache, skb);
4148 else
4149 __kfree_skb(skb);
4150 break;
4151
4152 case GRO_HELD:
4153 case GRO_MERGED:
4154 break;
4155 }
4156
4157 return ret;
4158 }
4159
4160 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4161 {
4162 trace_napi_gro_receive_entry(skb);
4163
4164 skb_gro_reset_offset(skb);
4165
4166 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4167 }
4168 EXPORT_SYMBOL(napi_gro_receive);
4169
4170 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4171 {
4172 if (unlikely(skb->pfmemalloc)) {
4173 consume_skb(skb);
4174 return;
4175 }
4176 __skb_pull(skb, skb_headlen(skb));
4177 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4178 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4179 skb->vlan_tci = 0;
4180 skb->dev = napi->dev;
4181 skb->skb_iif = 0;
4182 skb->encapsulation = 0;
4183 skb_shinfo(skb)->gso_type = 0;
4184 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4185
4186 napi->skb = skb;
4187 }
4188
4189 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4190 {
4191 struct sk_buff *skb = napi->skb;
4192
4193 if (!skb) {
4194 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4195 napi->skb = skb;
4196 }
4197 return skb;
4198 }
4199 EXPORT_SYMBOL(napi_get_frags);
4200
4201 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4202 struct sk_buff *skb,
4203 gro_result_t ret)
4204 {
4205 switch (ret) {
4206 case GRO_NORMAL:
4207 case GRO_HELD:
4208 __skb_push(skb, ETH_HLEN);
4209 skb->protocol = eth_type_trans(skb, skb->dev);
4210 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4211 ret = GRO_DROP;
4212 break;
4213
4214 case GRO_DROP:
4215 case GRO_MERGED_FREE:
4216 napi_reuse_skb(napi, skb);
4217 break;
4218
4219 case GRO_MERGED:
4220 break;
4221 }
4222
4223 return ret;
4224 }
4225
4226 /* Upper GRO stack assumes network header starts at gro_offset=0
4227 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4228 * We copy ethernet header into skb->data to have a common layout.
4229 */
4230 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4231 {
4232 struct sk_buff *skb = napi->skb;
4233 const struct ethhdr *eth;
4234 unsigned int hlen = sizeof(*eth);
4235
4236 napi->skb = NULL;
4237
4238 skb_reset_mac_header(skb);
4239 skb_gro_reset_offset(skb);
4240
4241 eth = skb_gro_header_fast(skb, 0);
4242 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4243 eth = skb_gro_header_slow(skb, hlen, 0);
4244 if (unlikely(!eth)) {
4245 napi_reuse_skb(napi, skb);
4246 return NULL;
4247 }
4248 } else {
4249 gro_pull_from_frag0(skb, hlen);
4250 NAPI_GRO_CB(skb)->frag0 += hlen;
4251 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4252 }
4253 __skb_pull(skb, hlen);
4254
4255 /*
4256 * This works because the only protocols we care about don't require
4257 * special handling.
4258 * We'll fix it up properly in napi_frags_finish()
4259 */
4260 skb->protocol = eth->h_proto;
4261
4262 return skb;
4263 }
4264
4265 gro_result_t napi_gro_frags(struct napi_struct *napi)
4266 {
4267 struct sk_buff *skb = napi_frags_skb(napi);
4268
4269 if (!skb)
4270 return GRO_DROP;
4271
4272 trace_napi_gro_frags_entry(skb);
4273
4274 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4275 }
4276 EXPORT_SYMBOL(napi_gro_frags);
4277
4278 /* Compute the checksum from gro_offset and return the folded value
4279 * after adding in any pseudo checksum.
4280 */
4281 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4282 {
4283 __wsum wsum;
4284 __sum16 sum;
4285
4286 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4287
4288 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4289 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4290 if (likely(!sum)) {
4291 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4292 !skb->csum_complete_sw)
4293 netdev_rx_csum_fault(skb->dev);
4294 }
4295
4296 NAPI_GRO_CB(skb)->csum = wsum;
4297 NAPI_GRO_CB(skb)->csum_valid = 1;
4298
4299 return sum;
4300 }
4301 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4302
4303 /*
4304 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4305 * Note: called with local irq disabled, but exits with local irq enabled.
4306 */
4307 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4308 {
4309 #ifdef CONFIG_RPS
4310 struct softnet_data *remsd = sd->rps_ipi_list;
4311
4312 if (remsd) {
4313 sd->rps_ipi_list = NULL;
4314
4315 local_irq_enable();
4316
4317 /* Send pending IPI's to kick RPS processing on remote cpus. */
4318 while (remsd) {
4319 struct softnet_data *next = remsd->rps_ipi_next;
4320
4321 if (cpu_online(remsd->cpu))
4322 smp_call_function_single_async(remsd->cpu,
4323 &remsd->csd);
4324 remsd = next;
4325 }
4326 } else
4327 #endif
4328 local_irq_enable();
4329 }
4330
4331 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4332 {
4333 #ifdef CONFIG_RPS
4334 return sd->rps_ipi_list != NULL;
4335 #else
4336 return false;
4337 #endif
4338 }
4339
4340 static int process_backlog(struct napi_struct *napi, int quota)
4341 {
4342 int work = 0;
4343 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4344
4345 /* Check if we have pending ipi, its better to send them now,
4346 * not waiting net_rx_action() end.
4347 */
4348 if (sd_has_rps_ipi_waiting(sd)) {
4349 local_irq_disable();
4350 net_rps_action_and_irq_enable(sd);
4351 }
4352
4353 napi->weight = weight_p;
4354 local_irq_disable();
4355 while (1) {
4356 struct sk_buff *skb;
4357
4358 while ((skb = __skb_dequeue(&sd->process_queue))) {
4359 local_irq_enable();
4360 __netif_receive_skb(skb);
4361 local_irq_disable();
4362 input_queue_head_incr(sd);
4363 if (++work >= quota) {
4364 local_irq_enable();
4365 return work;
4366 }
4367 }
4368
4369 rps_lock(sd);
4370 if (skb_queue_empty(&sd->input_pkt_queue)) {
4371 /*
4372 * Inline a custom version of __napi_complete().
4373 * only current cpu owns and manipulates this napi,
4374 * and NAPI_STATE_SCHED is the only possible flag set
4375 * on backlog.
4376 * We can use a plain write instead of clear_bit(),
4377 * and we dont need an smp_mb() memory barrier.
4378 */
4379 napi->state = 0;
4380 rps_unlock(sd);
4381
4382 break;
4383 }
4384
4385 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4386 &sd->process_queue);
4387 rps_unlock(sd);
4388 }
4389 local_irq_enable();
4390
4391 return work;
4392 }
4393
4394 /**
4395 * __napi_schedule - schedule for receive
4396 * @n: entry to schedule
4397 *
4398 * The entry's receive function will be scheduled to run.
4399 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4400 */
4401 void __napi_schedule(struct napi_struct *n)
4402 {
4403 unsigned long flags;
4404
4405 local_irq_save(flags);
4406 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4407 local_irq_restore(flags);
4408 }
4409 EXPORT_SYMBOL(__napi_schedule);
4410
4411 /**
4412 * __napi_schedule_irqoff - schedule for receive
4413 * @n: entry to schedule
4414 *
4415 * Variant of __napi_schedule() assuming hard irqs are masked
4416 */
4417 void __napi_schedule_irqoff(struct napi_struct *n)
4418 {
4419 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4420 }
4421 EXPORT_SYMBOL(__napi_schedule_irqoff);
4422
4423 void __napi_complete(struct napi_struct *n)
4424 {
4425 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4426
4427 list_del_init(&n->poll_list);
4428 smp_mb__before_atomic();
4429 clear_bit(NAPI_STATE_SCHED, &n->state);
4430 }
4431 EXPORT_SYMBOL(__napi_complete);
4432
4433 void napi_complete_done(struct napi_struct *n, int work_done)
4434 {
4435 unsigned long flags;
4436
4437 /*
4438 * don't let napi dequeue from the cpu poll list
4439 * just in case its running on a different cpu
4440 */
4441 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4442 return;
4443
4444 if (n->gro_list) {
4445 unsigned long timeout = 0;
4446
4447 if (work_done)
4448 timeout = n->dev->gro_flush_timeout;
4449
4450 if (timeout)
4451 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4452 HRTIMER_MODE_REL_PINNED);
4453 else
4454 napi_gro_flush(n, false);
4455 }
4456 if (likely(list_empty(&n->poll_list))) {
4457 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4458 } else {
4459 /* If n->poll_list is not empty, we need to mask irqs */
4460 local_irq_save(flags);
4461 __napi_complete(n);
4462 local_irq_restore(flags);
4463 }
4464 }
4465 EXPORT_SYMBOL(napi_complete_done);
4466
4467 /* must be called under rcu_read_lock(), as we dont take a reference */
4468 struct napi_struct *napi_by_id(unsigned int napi_id)
4469 {
4470 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4471 struct napi_struct *napi;
4472
4473 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4474 if (napi->napi_id == napi_id)
4475 return napi;
4476
4477 return NULL;
4478 }
4479 EXPORT_SYMBOL_GPL(napi_by_id);
4480
4481 void napi_hash_add(struct napi_struct *napi)
4482 {
4483 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4484
4485 spin_lock(&napi_hash_lock);
4486
4487 /* 0 is not a valid id, we also skip an id that is taken
4488 * we expect both events to be extremely rare
4489 */
4490 napi->napi_id = 0;
4491 while (!napi->napi_id) {
4492 napi->napi_id = ++napi_gen_id;
4493 if (napi_by_id(napi->napi_id))
4494 napi->napi_id = 0;
4495 }
4496
4497 hlist_add_head_rcu(&napi->napi_hash_node,
4498 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4499
4500 spin_unlock(&napi_hash_lock);
4501 }
4502 }
4503 EXPORT_SYMBOL_GPL(napi_hash_add);
4504
4505 /* Warning : caller is responsible to make sure rcu grace period
4506 * is respected before freeing memory containing @napi
4507 */
4508 void napi_hash_del(struct napi_struct *napi)
4509 {
4510 spin_lock(&napi_hash_lock);
4511
4512 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4513 hlist_del_rcu(&napi->napi_hash_node);
4514
4515 spin_unlock(&napi_hash_lock);
4516 }
4517 EXPORT_SYMBOL_GPL(napi_hash_del);
4518
4519 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4520 {
4521 struct napi_struct *napi;
4522
4523 napi = container_of(timer, struct napi_struct, timer);
4524 if (napi->gro_list)
4525 napi_schedule(napi);
4526
4527 return HRTIMER_NORESTART;
4528 }
4529
4530 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4531 int (*poll)(struct napi_struct *, int), int weight)
4532 {
4533 INIT_LIST_HEAD(&napi->poll_list);
4534 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4535 napi->timer.function = napi_watchdog;
4536 napi->gro_count = 0;
4537 napi->gro_list = NULL;
4538 napi->skb = NULL;
4539 napi->poll = poll;
4540 if (weight > NAPI_POLL_WEIGHT)
4541 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4542 weight, dev->name);
4543 napi->weight = weight;
4544 list_add(&napi->dev_list, &dev->napi_list);
4545 napi->dev = dev;
4546 #ifdef CONFIG_NETPOLL
4547 spin_lock_init(&napi->poll_lock);
4548 napi->poll_owner = -1;
4549 #endif
4550 set_bit(NAPI_STATE_SCHED, &napi->state);
4551 }
4552 EXPORT_SYMBOL(netif_napi_add);
4553
4554 void napi_disable(struct napi_struct *n)
4555 {
4556 might_sleep();
4557 set_bit(NAPI_STATE_DISABLE, &n->state);
4558
4559 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4560 msleep(1);
4561
4562 hrtimer_cancel(&n->timer);
4563
4564 clear_bit(NAPI_STATE_DISABLE, &n->state);
4565 }
4566 EXPORT_SYMBOL(napi_disable);
4567
4568 void netif_napi_del(struct napi_struct *napi)
4569 {
4570 list_del_init(&napi->dev_list);
4571 napi_free_frags(napi);
4572
4573 kfree_skb_list(napi->gro_list);
4574 napi->gro_list = NULL;
4575 napi->gro_count = 0;
4576 }
4577 EXPORT_SYMBOL(netif_napi_del);
4578
4579 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4580 {
4581 void *have;
4582 int work, weight;
4583
4584 list_del_init(&n->poll_list);
4585
4586 have = netpoll_poll_lock(n);
4587
4588 weight = n->weight;
4589
4590 /* This NAPI_STATE_SCHED test is for avoiding a race
4591 * with netpoll's poll_napi(). Only the entity which
4592 * obtains the lock and sees NAPI_STATE_SCHED set will
4593 * actually make the ->poll() call. Therefore we avoid
4594 * accidentally calling ->poll() when NAPI is not scheduled.
4595 */
4596 work = 0;
4597 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4598 work = n->poll(n, weight);
4599 trace_napi_poll(n);
4600 }
4601
4602 WARN_ON_ONCE(work > weight);
4603
4604 if (likely(work < weight))
4605 goto out_unlock;
4606
4607 /* Drivers must not modify the NAPI state if they
4608 * consume the entire weight. In such cases this code
4609 * still "owns" the NAPI instance and therefore can
4610 * move the instance around on the list at-will.
4611 */
4612 if (unlikely(napi_disable_pending(n))) {
4613 napi_complete(n);
4614 goto out_unlock;
4615 }
4616
4617 if (n->gro_list) {
4618 /* flush too old packets
4619 * If HZ < 1000, flush all packets.
4620 */
4621 napi_gro_flush(n, HZ >= 1000);
4622 }
4623
4624 /* Some drivers may have called napi_schedule
4625 * prior to exhausting their budget.
4626 */
4627 if (unlikely(!list_empty(&n->poll_list))) {
4628 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4629 n->dev ? n->dev->name : "backlog");
4630 goto out_unlock;
4631 }
4632
4633 list_add_tail(&n->poll_list, repoll);
4634
4635 out_unlock:
4636 netpoll_poll_unlock(have);
4637
4638 return work;
4639 }
4640
4641 static void net_rx_action(struct softirq_action *h)
4642 {
4643 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4644 unsigned long time_limit = jiffies + 2;
4645 int budget = netdev_budget;
4646 LIST_HEAD(list);
4647 LIST_HEAD(repoll);
4648
4649 local_irq_disable();
4650 list_splice_init(&sd->poll_list, &list);
4651 local_irq_enable();
4652
4653 for (;;) {
4654 struct napi_struct *n;
4655
4656 if (list_empty(&list)) {
4657 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4658 return;
4659 break;
4660 }
4661
4662 n = list_first_entry(&list, struct napi_struct, poll_list);
4663 budget -= napi_poll(n, &repoll);
4664
4665 /* If softirq window is exhausted then punt.
4666 * Allow this to run for 2 jiffies since which will allow
4667 * an average latency of 1.5/HZ.
4668 */
4669 if (unlikely(budget <= 0 ||
4670 time_after_eq(jiffies, time_limit))) {
4671 sd->time_squeeze++;
4672 break;
4673 }
4674 }
4675
4676 local_irq_disable();
4677
4678 list_splice_tail_init(&sd->poll_list, &list);
4679 list_splice_tail(&repoll, &list);
4680 list_splice(&list, &sd->poll_list);
4681 if (!list_empty(&sd->poll_list))
4682 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4683
4684 net_rps_action_and_irq_enable(sd);
4685 }
4686
4687 struct netdev_adjacent {
4688 struct net_device *dev;
4689
4690 /* upper master flag, there can only be one master device per list */
4691 bool master;
4692
4693 /* counter for the number of times this device was added to us */
4694 u16 ref_nr;
4695
4696 /* private field for the users */
4697 void *private;
4698
4699 struct list_head list;
4700 struct rcu_head rcu;
4701 };
4702
4703 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4704 struct net_device *adj_dev,
4705 struct list_head *adj_list)
4706 {
4707 struct netdev_adjacent *adj;
4708
4709 list_for_each_entry(adj, adj_list, list) {
4710 if (adj->dev == adj_dev)
4711 return adj;
4712 }
4713 return NULL;
4714 }
4715
4716 /**
4717 * netdev_has_upper_dev - Check if device is linked to an upper device
4718 * @dev: device
4719 * @upper_dev: upper device to check
4720 *
4721 * Find out if a device is linked to specified upper device and return true
4722 * in case it is. Note that this checks only immediate upper device,
4723 * not through a complete stack of devices. The caller must hold the RTNL lock.
4724 */
4725 bool netdev_has_upper_dev(struct net_device *dev,
4726 struct net_device *upper_dev)
4727 {
4728 ASSERT_RTNL();
4729
4730 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4731 }
4732 EXPORT_SYMBOL(netdev_has_upper_dev);
4733
4734 /**
4735 * netdev_has_any_upper_dev - Check if device is linked to some device
4736 * @dev: device
4737 *
4738 * Find out if a device is linked to an upper device and return true in case
4739 * it is. The caller must hold the RTNL lock.
4740 */
4741 static bool netdev_has_any_upper_dev(struct net_device *dev)
4742 {
4743 ASSERT_RTNL();
4744
4745 return !list_empty(&dev->all_adj_list.upper);
4746 }
4747
4748 /**
4749 * netdev_master_upper_dev_get - Get master upper device
4750 * @dev: device
4751 *
4752 * Find a master upper device and return pointer to it or NULL in case
4753 * it's not there. The caller must hold the RTNL lock.
4754 */
4755 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4756 {
4757 struct netdev_adjacent *upper;
4758
4759 ASSERT_RTNL();
4760
4761 if (list_empty(&dev->adj_list.upper))
4762 return NULL;
4763
4764 upper = list_first_entry(&dev->adj_list.upper,
4765 struct netdev_adjacent, list);
4766 if (likely(upper->master))
4767 return upper->dev;
4768 return NULL;
4769 }
4770 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4771
4772 void *netdev_adjacent_get_private(struct list_head *adj_list)
4773 {
4774 struct netdev_adjacent *adj;
4775
4776 adj = list_entry(adj_list, struct netdev_adjacent, list);
4777
4778 return adj->private;
4779 }
4780 EXPORT_SYMBOL(netdev_adjacent_get_private);
4781
4782 /**
4783 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4784 * @dev: device
4785 * @iter: list_head ** of the current position
4786 *
4787 * Gets the next device from the dev's upper list, starting from iter
4788 * position. The caller must hold RCU read lock.
4789 */
4790 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4791 struct list_head **iter)
4792 {
4793 struct netdev_adjacent *upper;
4794
4795 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4796
4797 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4798
4799 if (&upper->list == &dev->adj_list.upper)
4800 return NULL;
4801
4802 *iter = &upper->list;
4803
4804 return upper->dev;
4805 }
4806 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4807
4808 /**
4809 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4810 * @dev: device
4811 * @iter: list_head ** of the current position
4812 *
4813 * Gets the next device from the dev's upper list, starting from iter
4814 * position. The caller must hold RCU read lock.
4815 */
4816 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4817 struct list_head **iter)
4818 {
4819 struct netdev_adjacent *upper;
4820
4821 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4822
4823 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4824
4825 if (&upper->list == &dev->all_adj_list.upper)
4826 return NULL;
4827
4828 *iter = &upper->list;
4829
4830 return upper->dev;
4831 }
4832 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4833
4834 /**
4835 * netdev_lower_get_next_private - Get the next ->private from the
4836 * lower neighbour list
4837 * @dev: device
4838 * @iter: list_head ** of the current position
4839 *
4840 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4841 * list, starting from iter position. The caller must hold either hold the
4842 * RTNL lock or its own locking that guarantees that the neighbour lower
4843 * list will remain unchainged.
4844 */
4845 void *netdev_lower_get_next_private(struct net_device *dev,
4846 struct list_head **iter)
4847 {
4848 struct netdev_adjacent *lower;
4849
4850 lower = list_entry(*iter, struct netdev_adjacent, list);
4851
4852 if (&lower->list == &dev->adj_list.lower)
4853 return NULL;
4854
4855 *iter = lower->list.next;
4856
4857 return lower->private;
4858 }
4859 EXPORT_SYMBOL(netdev_lower_get_next_private);
4860
4861 /**
4862 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4863 * lower neighbour list, RCU
4864 * variant
4865 * @dev: device
4866 * @iter: list_head ** of the current position
4867 *
4868 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4869 * list, starting from iter position. The caller must hold RCU read lock.
4870 */
4871 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4872 struct list_head **iter)
4873 {
4874 struct netdev_adjacent *lower;
4875
4876 WARN_ON_ONCE(!rcu_read_lock_held());
4877
4878 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4879
4880 if (&lower->list == &dev->adj_list.lower)
4881 return NULL;
4882
4883 *iter = &lower->list;
4884
4885 return lower->private;
4886 }
4887 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4888
4889 /**
4890 * netdev_lower_get_next - Get the next device from the lower neighbour
4891 * list
4892 * @dev: device
4893 * @iter: list_head ** of the current position
4894 *
4895 * Gets the next netdev_adjacent from the dev's lower neighbour
4896 * list, starting from iter position. The caller must hold RTNL lock or
4897 * its own locking that guarantees that the neighbour lower
4898 * list will remain unchainged.
4899 */
4900 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4901 {
4902 struct netdev_adjacent *lower;
4903
4904 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4905
4906 if (&lower->list == &dev->adj_list.lower)
4907 return NULL;
4908
4909 *iter = &lower->list;
4910
4911 return lower->dev;
4912 }
4913 EXPORT_SYMBOL(netdev_lower_get_next);
4914
4915 /**
4916 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4917 * lower neighbour list, RCU
4918 * variant
4919 * @dev: device
4920 *
4921 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4922 * list. The caller must hold RCU read lock.
4923 */
4924 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4925 {
4926 struct netdev_adjacent *lower;
4927
4928 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4929 struct netdev_adjacent, list);
4930 if (lower)
4931 return lower->private;
4932 return NULL;
4933 }
4934 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4935
4936 /**
4937 * netdev_master_upper_dev_get_rcu - Get master upper device
4938 * @dev: device
4939 *
4940 * Find a master upper device and return pointer to it or NULL in case
4941 * it's not there. The caller must hold the RCU read lock.
4942 */
4943 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4944 {
4945 struct netdev_adjacent *upper;
4946
4947 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4948 struct netdev_adjacent, list);
4949 if (upper && likely(upper->master))
4950 return upper->dev;
4951 return NULL;
4952 }
4953 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4954
4955 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4956 struct net_device *adj_dev,
4957 struct list_head *dev_list)
4958 {
4959 char linkname[IFNAMSIZ+7];
4960 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4961 "upper_%s" : "lower_%s", adj_dev->name);
4962 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4963 linkname);
4964 }
4965 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4966 char *name,
4967 struct list_head *dev_list)
4968 {
4969 char linkname[IFNAMSIZ+7];
4970 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4971 "upper_%s" : "lower_%s", name);
4972 sysfs_remove_link(&(dev->dev.kobj), linkname);
4973 }
4974
4975 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4976 struct net_device *adj_dev,
4977 struct list_head *dev_list)
4978 {
4979 return (dev_list == &dev->adj_list.upper ||
4980 dev_list == &dev->adj_list.lower) &&
4981 net_eq(dev_net(dev), dev_net(adj_dev));
4982 }
4983
4984 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4985 struct net_device *adj_dev,
4986 struct list_head *dev_list,
4987 void *private, bool master)
4988 {
4989 struct netdev_adjacent *adj;
4990 int ret;
4991
4992 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4993
4994 if (adj) {
4995 adj->ref_nr++;
4996 return 0;
4997 }
4998
4999 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5000 if (!adj)
5001 return -ENOMEM;
5002
5003 adj->dev = adj_dev;
5004 adj->master = master;
5005 adj->ref_nr = 1;
5006 adj->private = private;
5007 dev_hold(adj_dev);
5008
5009 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5010 adj_dev->name, dev->name, adj_dev->name);
5011
5012 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5013 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5014 if (ret)
5015 goto free_adj;
5016 }
5017
5018 /* Ensure that master link is always the first item in list. */
5019 if (master) {
5020 ret = sysfs_create_link(&(dev->dev.kobj),
5021 &(adj_dev->dev.kobj), "master");
5022 if (ret)
5023 goto remove_symlinks;
5024
5025 list_add_rcu(&adj->list, dev_list);
5026 } else {
5027 list_add_tail_rcu(&adj->list, dev_list);
5028 }
5029
5030 return 0;
5031
5032 remove_symlinks:
5033 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5034 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5035 free_adj:
5036 kfree(adj);
5037 dev_put(adj_dev);
5038
5039 return ret;
5040 }
5041
5042 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5043 struct net_device *adj_dev,
5044 struct list_head *dev_list)
5045 {
5046 struct netdev_adjacent *adj;
5047
5048 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5049
5050 if (!adj) {
5051 pr_err("tried to remove device %s from %s\n",
5052 dev->name, adj_dev->name);
5053 BUG();
5054 }
5055
5056 if (adj->ref_nr > 1) {
5057 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5058 adj->ref_nr-1);
5059 adj->ref_nr--;
5060 return;
5061 }
5062
5063 if (adj->master)
5064 sysfs_remove_link(&(dev->dev.kobj), "master");
5065
5066 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5067 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5068
5069 list_del_rcu(&adj->list);
5070 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5071 adj_dev->name, dev->name, adj_dev->name);
5072 dev_put(adj_dev);
5073 kfree_rcu(adj, rcu);
5074 }
5075
5076 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5077 struct net_device *upper_dev,
5078 struct list_head *up_list,
5079 struct list_head *down_list,
5080 void *private, bool master)
5081 {
5082 int ret;
5083
5084 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5085 master);
5086 if (ret)
5087 return ret;
5088
5089 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5090 false);
5091 if (ret) {
5092 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5093 return ret;
5094 }
5095
5096 return 0;
5097 }
5098
5099 static int __netdev_adjacent_dev_link(struct net_device *dev,
5100 struct net_device *upper_dev)
5101 {
5102 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5103 &dev->all_adj_list.upper,
5104 &upper_dev->all_adj_list.lower,
5105 NULL, false);
5106 }
5107
5108 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5109 struct net_device *upper_dev,
5110 struct list_head *up_list,
5111 struct list_head *down_list)
5112 {
5113 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5114 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5115 }
5116
5117 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5118 struct net_device *upper_dev)
5119 {
5120 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5121 &dev->all_adj_list.upper,
5122 &upper_dev->all_adj_list.lower);
5123 }
5124
5125 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5126 struct net_device *upper_dev,
5127 void *private, bool master)
5128 {
5129 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5130
5131 if (ret)
5132 return ret;
5133
5134 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5135 &dev->adj_list.upper,
5136 &upper_dev->adj_list.lower,
5137 private, master);
5138 if (ret) {
5139 __netdev_adjacent_dev_unlink(dev, upper_dev);
5140 return ret;
5141 }
5142
5143 return 0;
5144 }
5145
5146 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5147 struct net_device *upper_dev)
5148 {
5149 __netdev_adjacent_dev_unlink(dev, upper_dev);
5150 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5151 &dev->adj_list.upper,
5152 &upper_dev->adj_list.lower);
5153 }
5154
5155 static int __netdev_upper_dev_link(struct net_device *dev,
5156 struct net_device *upper_dev, bool master,
5157 void *private)
5158 {
5159 struct netdev_adjacent *i, *j, *to_i, *to_j;
5160 int ret = 0;
5161
5162 ASSERT_RTNL();
5163
5164 if (dev == upper_dev)
5165 return -EBUSY;
5166
5167 /* To prevent loops, check if dev is not upper device to upper_dev. */
5168 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5169 return -EBUSY;
5170
5171 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5172 return -EEXIST;
5173
5174 if (master && netdev_master_upper_dev_get(dev))
5175 return -EBUSY;
5176
5177 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5178 master);
5179 if (ret)
5180 return ret;
5181
5182 /* Now that we linked these devs, make all the upper_dev's
5183 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5184 * versa, and don't forget the devices itself. All of these
5185 * links are non-neighbours.
5186 */
5187 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5188 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5189 pr_debug("Interlinking %s with %s, non-neighbour\n",
5190 i->dev->name, j->dev->name);
5191 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5192 if (ret)
5193 goto rollback_mesh;
5194 }
5195 }
5196
5197 /* add dev to every upper_dev's upper device */
5198 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5199 pr_debug("linking %s's upper device %s with %s\n",
5200 upper_dev->name, i->dev->name, dev->name);
5201 ret = __netdev_adjacent_dev_link(dev, i->dev);
5202 if (ret)
5203 goto rollback_upper_mesh;
5204 }
5205
5206 /* add upper_dev to every dev's lower device */
5207 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5208 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5209 i->dev->name, upper_dev->name);
5210 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5211 if (ret)
5212 goto rollback_lower_mesh;
5213 }
5214
5215 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5216 return 0;
5217
5218 rollback_lower_mesh:
5219 to_i = i;
5220 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5221 if (i == to_i)
5222 break;
5223 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5224 }
5225
5226 i = NULL;
5227
5228 rollback_upper_mesh:
5229 to_i = i;
5230 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5231 if (i == to_i)
5232 break;
5233 __netdev_adjacent_dev_unlink(dev, i->dev);
5234 }
5235
5236 i = j = NULL;
5237
5238 rollback_mesh:
5239 to_i = i;
5240 to_j = j;
5241 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5242 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5243 if (i == to_i && j == to_j)
5244 break;
5245 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5246 }
5247 if (i == to_i)
5248 break;
5249 }
5250
5251 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5252
5253 return ret;
5254 }
5255
5256 /**
5257 * netdev_upper_dev_link - Add a link to the upper device
5258 * @dev: device
5259 * @upper_dev: new upper device
5260 *
5261 * Adds a link to device which is upper to this one. The caller must hold
5262 * the RTNL lock. On a failure a negative errno code is returned.
5263 * On success the reference counts are adjusted and the function
5264 * returns zero.
5265 */
5266 int netdev_upper_dev_link(struct net_device *dev,
5267 struct net_device *upper_dev)
5268 {
5269 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5270 }
5271 EXPORT_SYMBOL(netdev_upper_dev_link);
5272
5273 /**
5274 * netdev_master_upper_dev_link - Add a master link to the upper device
5275 * @dev: device
5276 * @upper_dev: new upper device
5277 *
5278 * Adds a link to device which is upper to this one. In this case, only
5279 * one master upper device can be linked, although other non-master devices
5280 * might be linked as well. The caller must hold the RTNL lock.
5281 * On a failure a negative errno code is returned. On success the reference
5282 * counts are adjusted and the function returns zero.
5283 */
5284 int netdev_master_upper_dev_link(struct net_device *dev,
5285 struct net_device *upper_dev)
5286 {
5287 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5288 }
5289 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5290
5291 int netdev_master_upper_dev_link_private(struct net_device *dev,
5292 struct net_device *upper_dev,
5293 void *private)
5294 {
5295 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5296 }
5297 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5298
5299 /**
5300 * netdev_upper_dev_unlink - Removes a link to upper device
5301 * @dev: device
5302 * @upper_dev: new upper device
5303 *
5304 * Removes a link to device which is upper to this one. The caller must hold
5305 * the RTNL lock.
5306 */
5307 void netdev_upper_dev_unlink(struct net_device *dev,
5308 struct net_device *upper_dev)
5309 {
5310 struct netdev_adjacent *i, *j;
5311 ASSERT_RTNL();
5312
5313 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5314
5315 /* Here is the tricky part. We must remove all dev's lower
5316 * devices from all upper_dev's upper devices and vice
5317 * versa, to maintain the graph relationship.
5318 */
5319 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5320 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5321 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5322
5323 /* remove also the devices itself from lower/upper device
5324 * list
5325 */
5326 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5327 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5328
5329 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5330 __netdev_adjacent_dev_unlink(dev, i->dev);
5331
5332 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5333 }
5334 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5335
5336 /**
5337 * netdev_bonding_info_change - Dispatch event about slave change
5338 * @dev: device
5339 * @bonding_info: info to dispatch
5340 *
5341 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5342 * The caller must hold the RTNL lock.
5343 */
5344 void netdev_bonding_info_change(struct net_device *dev,
5345 struct netdev_bonding_info *bonding_info)
5346 {
5347 struct netdev_notifier_bonding_info info;
5348
5349 memcpy(&info.bonding_info, bonding_info,
5350 sizeof(struct netdev_bonding_info));
5351 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5352 &info.info);
5353 }
5354 EXPORT_SYMBOL(netdev_bonding_info_change);
5355
5356 static void netdev_adjacent_add_links(struct net_device *dev)
5357 {
5358 struct netdev_adjacent *iter;
5359
5360 struct net *net = dev_net(dev);
5361
5362 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5363 if (!net_eq(net,dev_net(iter->dev)))
5364 continue;
5365 netdev_adjacent_sysfs_add(iter->dev, dev,
5366 &iter->dev->adj_list.lower);
5367 netdev_adjacent_sysfs_add(dev, iter->dev,
5368 &dev->adj_list.upper);
5369 }
5370
5371 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5372 if (!net_eq(net,dev_net(iter->dev)))
5373 continue;
5374 netdev_adjacent_sysfs_add(iter->dev, dev,
5375 &iter->dev->adj_list.upper);
5376 netdev_adjacent_sysfs_add(dev, iter->dev,
5377 &dev->adj_list.lower);
5378 }
5379 }
5380
5381 static void netdev_adjacent_del_links(struct net_device *dev)
5382 {
5383 struct netdev_adjacent *iter;
5384
5385 struct net *net = dev_net(dev);
5386
5387 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5388 if (!net_eq(net,dev_net(iter->dev)))
5389 continue;
5390 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5391 &iter->dev->adj_list.lower);
5392 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5393 &dev->adj_list.upper);
5394 }
5395
5396 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5397 if (!net_eq(net,dev_net(iter->dev)))
5398 continue;
5399 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5400 &iter->dev->adj_list.upper);
5401 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5402 &dev->adj_list.lower);
5403 }
5404 }
5405
5406 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5407 {
5408 struct netdev_adjacent *iter;
5409
5410 struct net *net = dev_net(dev);
5411
5412 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5413 if (!net_eq(net,dev_net(iter->dev)))
5414 continue;
5415 netdev_adjacent_sysfs_del(iter->dev, oldname,
5416 &iter->dev->adj_list.lower);
5417 netdev_adjacent_sysfs_add(iter->dev, dev,
5418 &iter->dev->adj_list.lower);
5419 }
5420
5421 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5422 if (!net_eq(net,dev_net(iter->dev)))
5423 continue;
5424 netdev_adjacent_sysfs_del(iter->dev, oldname,
5425 &iter->dev->adj_list.upper);
5426 netdev_adjacent_sysfs_add(iter->dev, dev,
5427 &iter->dev->adj_list.upper);
5428 }
5429 }
5430
5431 void *netdev_lower_dev_get_private(struct net_device *dev,
5432 struct net_device *lower_dev)
5433 {
5434 struct netdev_adjacent *lower;
5435
5436 if (!lower_dev)
5437 return NULL;
5438 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5439 if (!lower)
5440 return NULL;
5441
5442 return lower->private;
5443 }
5444 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5445
5446
5447 int dev_get_nest_level(struct net_device *dev,
5448 bool (*type_check)(struct net_device *dev))
5449 {
5450 struct net_device *lower = NULL;
5451 struct list_head *iter;
5452 int max_nest = -1;
5453 int nest;
5454
5455 ASSERT_RTNL();
5456
5457 netdev_for_each_lower_dev(dev, lower, iter) {
5458 nest = dev_get_nest_level(lower, type_check);
5459 if (max_nest < nest)
5460 max_nest = nest;
5461 }
5462
5463 if (type_check(dev))
5464 max_nest++;
5465
5466 return max_nest;
5467 }
5468 EXPORT_SYMBOL(dev_get_nest_level);
5469
5470 static void dev_change_rx_flags(struct net_device *dev, int flags)
5471 {
5472 const struct net_device_ops *ops = dev->netdev_ops;
5473
5474 if (ops->ndo_change_rx_flags)
5475 ops->ndo_change_rx_flags(dev, flags);
5476 }
5477
5478 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5479 {
5480 unsigned int old_flags = dev->flags;
5481 kuid_t uid;
5482 kgid_t gid;
5483
5484 ASSERT_RTNL();
5485
5486 dev->flags |= IFF_PROMISC;
5487 dev->promiscuity += inc;
5488 if (dev->promiscuity == 0) {
5489 /*
5490 * Avoid overflow.
5491 * If inc causes overflow, untouch promisc and return error.
5492 */
5493 if (inc < 0)
5494 dev->flags &= ~IFF_PROMISC;
5495 else {
5496 dev->promiscuity -= inc;
5497 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5498 dev->name);
5499 return -EOVERFLOW;
5500 }
5501 }
5502 if (dev->flags != old_flags) {
5503 pr_info("device %s %s promiscuous mode\n",
5504 dev->name,
5505 dev->flags & IFF_PROMISC ? "entered" : "left");
5506 if (audit_enabled) {
5507 current_uid_gid(&uid, &gid);
5508 audit_log(current->audit_context, GFP_ATOMIC,
5509 AUDIT_ANOM_PROMISCUOUS,
5510 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5511 dev->name, (dev->flags & IFF_PROMISC),
5512 (old_flags & IFF_PROMISC),
5513 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5514 from_kuid(&init_user_ns, uid),
5515 from_kgid(&init_user_ns, gid),
5516 audit_get_sessionid(current));
5517 }
5518
5519 dev_change_rx_flags(dev, IFF_PROMISC);
5520 }
5521 if (notify)
5522 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5523 return 0;
5524 }
5525
5526 /**
5527 * dev_set_promiscuity - update promiscuity count on a device
5528 * @dev: device
5529 * @inc: modifier
5530 *
5531 * Add or remove promiscuity from a device. While the count in the device
5532 * remains above zero the interface remains promiscuous. Once it hits zero
5533 * the device reverts back to normal filtering operation. A negative inc
5534 * value is used to drop promiscuity on the device.
5535 * Return 0 if successful or a negative errno code on error.
5536 */
5537 int dev_set_promiscuity(struct net_device *dev, int inc)
5538 {
5539 unsigned int old_flags = dev->flags;
5540 int err;
5541
5542 err = __dev_set_promiscuity(dev, inc, true);
5543 if (err < 0)
5544 return err;
5545 if (dev->flags != old_flags)
5546 dev_set_rx_mode(dev);
5547 return err;
5548 }
5549 EXPORT_SYMBOL(dev_set_promiscuity);
5550
5551 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5552 {
5553 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5554
5555 ASSERT_RTNL();
5556
5557 dev->flags |= IFF_ALLMULTI;
5558 dev->allmulti += inc;
5559 if (dev->allmulti == 0) {
5560 /*
5561 * Avoid overflow.
5562 * If inc causes overflow, untouch allmulti and return error.
5563 */
5564 if (inc < 0)
5565 dev->flags &= ~IFF_ALLMULTI;
5566 else {
5567 dev->allmulti -= inc;
5568 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5569 dev->name);
5570 return -EOVERFLOW;
5571 }
5572 }
5573 if (dev->flags ^ old_flags) {
5574 dev_change_rx_flags(dev, IFF_ALLMULTI);
5575 dev_set_rx_mode(dev);
5576 if (notify)
5577 __dev_notify_flags(dev, old_flags,
5578 dev->gflags ^ old_gflags);
5579 }
5580 return 0;
5581 }
5582
5583 /**
5584 * dev_set_allmulti - update allmulti count on a device
5585 * @dev: device
5586 * @inc: modifier
5587 *
5588 * Add or remove reception of all multicast frames to a device. While the
5589 * count in the device remains above zero the interface remains listening
5590 * to all interfaces. Once it hits zero the device reverts back to normal
5591 * filtering operation. A negative @inc value is used to drop the counter
5592 * when releasing a resource needing all multicasts.
5593 * Return 0 if successful or a negative errno code on error.
5594 */
5595
5596 int dev_set_allmulti(struct net_device *dev, int inc)
5597 {
5598 return __dev_set_allmulti(dev, inc, true);
5599 }
5600 EXPORT_SYMBOL(dev_set_allmulti);
5601
5602 /*
5603 * Upload unicast and multicast address lists to device and
5604 * configure RX filtering. When the device doesn't support unicast
5605 * filtering it is put in promiscuous mode while unicast addresses
5606 * are present.
5607 */
5608 void __dev_set_rx_mode(struct net_device *dev)
5609 {
5610 const struct net_device_ops *ops = dev->netdev_ops;
5611
5612 /* dev_open will call this function so the list will stay sane. */
5613 if (!(dev->flags&IFF_UP))
5614 return;
5615
5616 if (!netif_device_present(dev))
5617 return;
5618
5619 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5620 /* Unicast addresses changes may only happen under the rtnl,
5621 * therefore calling __dev_set_promiscuity here is safe.
5622 */
5623 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5624 __dev_set_promiscuity(dev, 1, false);
5625 dev->uc_promisc = true;
5626 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5627 __dev_set_promiscuity(dev, -1, false);
5628 dev->uc_promisc = false;
5629 }
5630 }
5631
5632 if (ops->ndo_set_rx_mode)
5633 ops->ndo_set_rx_mode(dev);
5634 }
5635
5636 void dev_set_rx_mode(struct net_device *dev)
5637 {
5638 netif_addr_lock_bh(dev);
5639 __dev_set_rx_mode(dev);
5640 netif_addr_unlock_bh(dev);
5641 }
5642
5643 /**
5644 * dev_get_flags - get flags reported to userspace
5645 * @dev: device
5646 *
5647 * Get the combination of flag bits exported through APIs to userspace.
5648 */
5649 unsigned int dev_get_flags(const struct net_device *dev)
5650 {
5651 unsigned int flags;
5652
5653 flags = (dev->flags & ~(IFF_PROMISC |
5654 IFF_ALLMULTI |
5655 IFF_RUNNING |
5656 IFF_LOWER_UP |
5657 IFF_DORMANT)) |
5658 (dev->gflags & (IFF_PROMISC |
5659 IFF_ALLMULTI));
5660
5661 if (netif_running(dev)) {
5662 if (netif_oper_up(dev))
5663 flags |= IFF_RUNNING;
5664 if (netif_carrier_ok(dev))
5665 flags |= IFF_LOWER_UP;
5666 if (netif_dormant(dev))
5667 flags |= IFF_DORMANT;
5668 }
5669
5670 return flags;
5671 }
5672 EXPORT_SYMBOL(dev_get_flags);
5673
5674 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5675 {
5676 unsigned int old_flags = dev->flags;
5677 int ret;
5678
5679 ASSERT_RTNL();
5680
5681 /*
5682 * Set the flags on our device.
5683 */
5684
5685 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5686 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5687 IFF_AUTOMEDIA)) |
5688 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5689 IFF_ALLMULTI));
5690
5691 /*
5692 * Load in the correct multicast list now the flags have changed.
5693 */
5694
5695 if ((old_flags ^ flags) & IFF_MULTICAST)
5696 dev_change_rx_flags(dev, IFF_MULTICAST);
5697
5698 dev_set_rx_mode(dev);
5699
5700 /*
5701 * Have we downed the interface. We handle IFF_UP ourselves
5702 * according to user attempts to set it, rather than blindly
5703 * setting it.
5704 */
5705
5706 ret = 0;
5707 if ((old_flags ^ flags) & IFF_UP)
5708 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5709
5710 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5711 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5712 unsigned int old_flags = dev->flags;
5713
5714 dev->gflags ^= IFF_PROMISC;
5715
5716 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5717 if (dev->flags != old_flags)
5718 dev_set_rx_mode(dev);
5719 }
5720
5721 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5722 is important. Some (broken) drivers set IFF_PROMISC, when
5723 IFF_ALLMULTI is requested not asking us and not reporting.
5724 */
5725 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5726 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5727
5728 dev->gflags ^= IFF_ALLMULTI;
5729 __dev_set_allmulti(dev, inc, false);
5730 }
5731
5732 return ret;
5733 }
5734
5735 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5736 unsigned int gchanges)
5737 {
5738 unsigned int changes = dev->flags ^ old_flags;
5739
5740 if (gchanges)
5741 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5742
5743 if (changes & IFF_UP) {
5744 if (dev->flags & IFF_UP)
5745 call_netdevice_notifiers(NETDEV_UP, dev);
5746 else
5747 call_netdevice_notifiers(NETDEV_DOWN, dev);
5748 }
5749
5750 if (dev->flags & IFF_UP &&
5751 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5752 struct netdev_notifier_change_info change_info;
5753
5754 change_info.flags_changed = changes;
5755 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5756 &change_info.info);
5757 }
5758 }
5759
5760 /**
5761 * dev_change_flags - change device settings
5762 * @dev: device
5763 * @flags: device state flags
5764 *
5765 * Change settings on device based state flags. The flags are
5766 * in the userspace exported format.
5767 */
5768 int dev_change_flags(struct net_device *dev, unsigned int flags)
5769 {
5770 int ret;
5771 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5772
5773 ret = __dev_change_flags(dev, flags);
5774 if (ret < 0)
5775 return ret;
5776
5777 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5778 __dev_notify_flags(dev, old_flags, changes);
5779 return ret;
5780 }
5781 EXPORT_SYMBOL(dev_change_flags);
5782
5783 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5784 {
5785 const struct net_device_ops *ops = dev->netdev_ops;
5786
5787 if (ops->ndo_change_mtu)
5788 return ops->ndo_change_mtu(dev, new_mtu);
5789
5790 dev->mtu = new_mtu;
5791 return 0;
5792 }
5793
5794 /**
5795 * dev_set_mtu - Change maximum transfer unit
5796 * @dev: device
5797 * @new_mtu: new transfer unit
5798 *
5799 * Change the maximum transfer size of the network device.
5800 */
5801 int dev_set_mtu(struct net_device *dev, int new_mtu)
5802 {
5803 int err, orig_mtu;
5804
5805 if (new_mtu == dev->mtu)
5806 return 0;
5807
5808 /* MTU must be positive. */
5809 if (new_mtu < 0)
5810 return -EINVAL;
5811
5812 if (!netif_device_present(dev))
5813 return -ENODEV;
5814
5815 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5816 err = notifier_to_errno(err);
5817 if (err)
5818 return err;
5819
5820 orig_mtu = dev->mtu;
5821 err = __dev_set_mtu(dev, new_mtu);
5822
5823 if (!err) {
5824 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5825 err = notifier_to_errno(err);
5826 if (err) {
5827 /* setting mtu back and notifying everyone again,
5828 * so that they have a chance to revert changes.
5829 */
5830 __dev_set_mtu(dev, orig_mtu);
5831 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5832 }
5833 }
5834 return err;
5835 }
5836 EXPORT_SYMBOL(dev_set_mtu);
5837
5838 /**
5839 * dev_set_group - Change group this device belongs to
5840 * @dev: device
5841 * @new_group: group this device should belong to
5842 */
5843 void dev_set_group(struct net_device *dev, int new_group)
5844 {
5845 dev->group = new_group;
5846 }
5847 EXPORT_SYMBOL(dev_set_group);
5848
5849 /**
5850 * dev_set_mac_address - Change Media Access Control Address
5851 * @dev: device
5852 * @sa: new address
5853 *
5854 * Change the hardware (MAC) address of the device
5855 */
5856 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5857 {
5858 const struct net_device_ops *ops = dev->netdev_ops;
5859 int err;
5860
5861 if (!ops->ndo_set_mac_address)
5862 return -EOPNOTSUPP;
5863 if (sa->sa_family != dev->type)
5864 return -EINVAL;
5865 if (!netif_device_present(dev))
5866 return -ENODEV;
5867 err = ops->ndo_set_mac_address(dev, sa);
5868 if (err)
5869 return err;
5870 dev->addr_assign_type = NET_ADDR_SET;
5871 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5872 add_device_randomness(dev->dev_addr, dev->addr_len);
5873 return 0;
5874 }
5875 EXPORT_SYMBOL(dev_set_mac_address);
5876
5877 /**
5878 * dev_change_carrier - Change device carrier
5879 * @dev: device
5880 * @new_carrier: new value
5881 *
5882 * Change device carrier
5883 */
5884 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5885 {
5886 const struct net_device_ops *ops = dev->netdev_ops;
5887
5888 if (!ops->ndo_change_carrier)
5889 return -EOPNOTSUPP;
5890 if (!netif_device_present(dev))
5891 return -ENODEV;
5892 return ops->ndo_change_carrier(dev, new_carrier);
5893 }
5894 EXPORT_SYMBOL(dev_change_carrier);
5895
5896 /**
5897 * dev_get_phys_port_id - Get device physical port ID
5898 * @dev: device
5899 * @ppid: port ID
5900 *
5901 * Get device physical port ID
5902 */
5903 int dev_get_phys_port_id(struct net_device *dev,
5904 struct netdev_phys_item_id *ppid)
5905 {
5906 const struct net_device_ops *ops = dev->netdev_ops;
5907
5908 if (!ops->ndo_get_phys_port_id)
5909 return -EOPNOTSUPP;
5910 return ops->ndo_get_phys_port_id(dev, ppid);
5911 }
5912 EXPORT_SYMBOL(dev_get_phys_port_id);
5913
5914 /**
5915 * dev_get_phys_port_name - Get device physical port name
5916 * @dev: device
5917 * @name: port name
5918 *
5919 * Get device physical port name
5920 */
5921 int dev_get_phys_port_name(struct net_device *dev,
5922 char *name, size_t len)
5923 {
5924 const struct net_device_ops *ops = dev->netdev_ops;
5925
5926 if (!ops->ndo_get_phys_port_name)
5927 return -EOPNOTSUPP;
5928 return ops->ndo_get_phys_port_name(dev, name, len);
5929 }
5930 EXPORT_SYMBOL(dev_get_phys_port_name);
5931
5932 /**
5933 * dev_new_index - allocate an ifindex
5934 * @net: the applicable net namespace
5935 *
5936 * Returns a suitable unique value for a new device interface
5937 * number. The caller must hold the rtnl semaphore or the
5938 * dev_base_lock to be sure it remains unique.
5939 */
5940 static int dev_new_index(struct net *net)
5941 {
5942 int ifindex = net->ifindex;
5943 for (;;) {
5944 if (++ifindex <= 0)
5945 ifindex = 1;
5946 if (!__dev_get_by_index(net, ifindex))
5947 return net->ifindex = ifindex;
5948 }
5949 }
5950
5951 /* Delayed registration/unregisteration */
5952 static LIST_HEAD(net_todo_list);
5953 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5954
5955 static void net_set_todo(struct net_device *dev)
5956 {
5957 list_add_tail(&dev->todo_list, &net_todo_list);
5958 dev_net(dev)->dev_unreg_count++;
5959 }
5960
5961 static void rollback_registered_many(struct list_head *head)
5962 {
5963 struct net_device *dev, *tmp;
5964 LIST_HEAD(close_head);
5965
5966 BUG_ON(dev_boot_phase);
5967 ASSERT_RTNL();
5968
5969 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5970 /* Some devices call without registering
5971 * for initialization unwind. Remove those
5972 * devices and proceed with the remaining.
5973 */
5974 if (dev->reg_state == NETREG_UNINITIALIZED) {
5975 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5976 dev->name, dev);
5977
5978 WARN_ON(1);
5979 list_del(&dev->unreg_list);
5980 continue;
5981 }
5982 dev->dismantle = true;
5983 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5984 }
5985
5986 /* If device is running, close it first. */
5987 list_for_each_entry(dev, head, unreg_list)
5988 list_add_tail(&dev->close_list, &close_head);
5989 dev_close_many(&close_head, true);
5990
5991 list_for_each_entry(dev, head, unreg_list) {
5992 /* And unlink it from device chain. */
5993 unlist_netdevice(dev);
5994
5995 dev->reg_state = NETREG_UNREGISTERING;
5996 }
5997
5998 synchronize_net();
5999
6000 list_for_each_entry(dev, head, unreg_list) {
6001 struct sk_buff *skb = NULL;
6002
6003 /* Shutdown queueing discipline. */
6004 dev_shutdown(dev);
6005
6006
6007 /* Notify protocols, that we are about to destroy
6008 this device. They should clean all the things.
6009 */
6010 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6011
6012 if (!dev->rtnl_link_ops ||
6013 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6014 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6015 GFP_KERNEL);
6016
6017 /*
6018 * Flush the unicast and multicast chains
6019 */
6020 dev_uc_flush(dev);
6021 dev_mc_flush(dev);
6022
6023 if (dev->netdev_ops->ndo_uninit)
6024 dev->netdev_ops->ndo_uninit(dev);
6025
6026 if (skb)
6027 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6028
6029 /* Notifier chain MUST detach us all upper devices. */
6030 WARN_ON(netdev_has_any_upper_dev(dev));
6031
6032 /* Remove entries from kobject tree */
6033 netdev_unregister_kobject(dev);
6034 #ifdef CONFIG_XPS
6035 /* Remove XPS queueing entries */
6036 netif_reset_xps_queues_gt(dev, 0);
6037 #endif
6038 }
6039
6040 synchronize_net();
6041
6042 list_for_each_entry(dev, head, unreg_list)
6043 dev_put(dev);
6044 }
6045
6046 static void rollback_registered(struct net_device *dev)
6047 {
6048 LIST_HEAD(single);
6049
6050 list_add(&dev->unreg_list, &single);
6051 rollback_registered_many(&single);
6052 list_del(&single);
6053 }
6054
6055 static netdev_features_t netdev_fix_features(struct net_device *dev,
6056 netdev_features_t features)
6057 {
6058 /* Fix illegal checksum combinations */
6059 if ((features & NETIF_F_HW_CSUM) &&
6060 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6061 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6062 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6063 }
6064
6065 /* TSO requires that SG is present as well. */
6066 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6067 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6068 features &= ~NETIF_F_ALL_TSO;
6069 }
6070
6071 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6072 !(features & NETIF_F_IP_CSUM)) {
6073 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6074 features &= ~NETIF_F_TSO;
6075 features &= ~NETIF_F_TSO_ECN;
6076 }
6077
6078 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6079 !(features & NETIF_F_IPV6_CSUM)) {
6080 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6081 features &= ~NETIF_F_TSO6;
6082 }
6083
6084 /* TSO ECN requires that TSO is present as well. */
6085 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6086 features &= ~NETIF_F_TSO_ECN;
6087
6088 /* Software GSO depends on SG. */
6089 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6090 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6091 features &= ~NETIF_F_GSO;
6092 }
6093
6094 /* UFO needs SG and checksumming */
6095 if (features & NETIF_F_UFO) {
6096 /* maybe split UFO into V4 and V6? */
6097 if (!((features & NETIF_F_GEN_CSUM) ||
6098 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6099 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6100 netdev_dbg(dev,
6101 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6102 features &= ~NETIF_F_UFO;
6103 }
6104
6105 if (!(features & NETIF_F_SG)) {
6106 netdev_dbg(dev,
6107 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6108 features &= ~NETIF_F_UFO;
6109 }
6110 }
6111
6112 #ifdef CONFIG_NET_RX_BUSY_POLL
6113 if (dev->netdev_ops->ndo_busy_poll)
6114 features |= NETIF_F_BUSY_POLL;
6115 else
6116 #endif
6117 features &= ~NETIF_F_BUSY_POLL;
6118
6119 return features;
6120 }
6121
6122 int __netdev_update_features(struct net_device *dev)
6123 {
6124 netdev_features_t features;
6125 int err = 0;
6126
6127 ASSERT_RTNL();
6128
6129 features = netdev_get_wanted_features(dev);
6130
6131 if (dev->netdev_ops->ndo_fix_features)
6132 features = dev->netdev_ops->ndo_fix_features(dev, features);
6133
6134 /* driver might be less strict about feature dependencies */
6135 features = netdev_fix_features(dev, features);
6136
6137 if (dev->features == features)
6138 return 0;
6139
6140 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6141 &dev->features, &features);
6142
6143 if (dev->netdev_ops->ndo_set_features)
6144 err = dev->netdev_ops->ndo_set_features(dev, features);
6145
6146 if (unlikely(err < 0)) {
6147 netdev_err(dev,
6148 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6149 err, &features, &dev->features);
6150 return -1;
6151 }
6152
6153 if (!err)
6154 dev->features = features;
6155
6156 return 1;
6157 }
6158
6159 /**
6160 * netdev_update_features - recalculate device features
6161 * @dev: the device to check
6162 *
6163 * Recalculate dev->features set and send notifications if it
6164 * has changed. Should be called after driver or hardware dependent
6165 * conditions might have changed that influence the features.
6166 */
6167 void netdev_update_features(struct net_device *dev)
6168 {
6169 if (__netdev_update_features(dev))
6170 netdev_features_change(dev);
6171 }
6172 EXPORT_SYMBOL(netdev_update_features);
6173
6174 /**
6175 * netdev_change_features - recalculate device features
6176 * @dev: the device to check
6177 *
6178 * Recalculate dev->features set and send notifications even
6179 * if they have not changed. Should be called instead of
6180 * netdev_update_features() if also dev->vlan_features might
6181 * have changed to allow the changes to be propagated to stacked
6182 * VLAN devices.
6183 */
6184 void netdev_change_features(struct net_device *dev)
6185 {
6186 __netdev_update_features(dev);
6187 netdev_features_change(dev);
6188 }
6189 EXPORT_SYMBOL(netdev_change_features);
6190
6191 /**
6192 * netif_stacked_transfer_operstate - transfer operstate
6193 * @rootdev: the root or lower level device to transfer state from
6194 * @dev: the device to transfer operstate to
6195 *
6196 * Transfer operational state from root to device. This is normally
6197 * called when a stacking relationship exists between the root
6198 * device and the device(a leaf device).
6199 */
6200 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6201 struct net_device *dev)
6202 {
6203 if (rootdev->operstate == IF_OPER_DORMANT)
6204 netif_dormant_on(dev);
6205 else
6206 netif_dormant_off(dev);
6207
6208 if (netif_carrier_ok(rootdev)) {
6209 if (!netif_carrier_ok(dev))
6210 netif_carrier_on(dev);
6211 } else {
6212 if (netif_carrier_ok(dev))
6213 netif_carrier_off(dev);
6214 }
6215 }
6216 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6217
6218 #ifdef CONFIG_SYSFS
6219 static int netif_alloc_rx_queues(struct net_device *dev)
6220 {
6221 unsigned int i, count = dev->num_rx_queues;
6222 struct netdev_rx_queue *rx;
6223 size_t sz = count * sizeof(*rx);
6224
6225 BUG_ON(count < 1);
6226
6227 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6228 if (!rx) {
6229 rx = vzalloc(sz);
6230 if (!rx)
6231 return -ENOMEM;
6232 }
6233 dev->_rx = rx;
6234
6235 for (i = 0; i < count; i++)
6236 rx[i].dev = dev;
6237 return 0;
6238 }
6239 #endif
6240
6241 static void netdev_init_one_queue(struct net_device *dev,
6242 struct netdev_queue *queue, void *_unused)
6243 {
6244 /* Initialize queue lock */
6245 spin_lock_init(&queue->_xmit_lock);
6246 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6247 queue->xmit_lock_owner = -1;
6248 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6249 queue->dev = dev;
6250 #ifdef CONFIG_BQL
6251 dql_init(&queue->dql, HZ);
6252 #endif
6253 }
6254
6255 static void netif_free_tx_queues(struct net_device *dev)
6256 {
6257 kvfree(dev->_tx);
6258 }
6259
6260 static int netif_alloc_netdev_queues(struct net_device *dev)
6261 {
6262 unsigned int count = dev->num_tx_queues;
6263 struct netdev_queue *tx;
6264 size_t sz = count * sizeof(*tx);
6265
6266 BUG_ON(count < 1 || count > 0xffff);
6267
6268 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6269 if (!tx) {
6270 tx = vzalloc(sz);
6271 if (!tx)
6272 return -ENOMEM;
6273 }
6274 dev->_tx = tx;
6275
6276 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6277 spin_lock_init(&dev->tx_global_lock);
6278
6279 return 0;
6280 }
6281
6282 /**
6283 * register_netdevice - register a network device
6284 * @dev: device to register
6285 *
6286 * Take a completed network device structure and add it to the kernel
6287 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6288 * chain. 0 is returned on success. A negative errno code is returned
6289 * on a failure to set up the device, or if the name is a duplicate.
6290 *
6291 * Callers must hold the rtnl semaphore. You may want
6292 * register_netdev() instead of this.
6293 *
6294 * BUGS:
6295 * The locking appears insufficient to guarantee two parallel registers
6296 * will not get the same name.
6297 */
6298
6299 int register_netdevice(struct net_device *dev)
6300 {
6301 int ret;
6302 struct net *net = dev_net(dev);
6303
6304 BUG_ON(dev_boot_phase);
6305 ASSERT_RTNL();
6306
6307 might_sleep();
6308
6309 /* When net_device's are persistent, this will be fatal. */
6310 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6311 BUG_ON(!net);
6312
6313 spin_lock_init(&dev->addr_list_lock);
6314 netdev_set_addr_lockdep_class(dev);
6315
6316 dev->iflink = -1;
6317
6318 ret = dev_get_valid_name(net, dev, dev->name);
6319 if (ret < 0)
6320 goto out;
6321
6322 /* Init, if this function is available */
6323 if (dev->netdev_ops->ndo_init) {
6324 ret = dev->netdev_ops->ndo_init(dev);
6325 if (ret) {
6326 if (ret > 0)
6327 ret = -EIO;
6328 goto out;
6329 }
6330 }
6331
6332 if (((dev->hw_features | dev->features) &
6333 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6334 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6335 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6336 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6337 ret = -EINVAL;
6338 goto err_uninit;
6339 }
6340
6341 ret = -EBUSY;
6342 if (!dev->ifindex)
6343 dev->ifindex = dev_new_index(net);
6344 else if (__dev_get_by_index(net, dev->ifindex))
6345 goto err_uninit;
6346
6347 if (dev->iflink == -1)
6348 dev->iflink = dev->ifindex;
6349
6350 /* Transfer changeable features to wanted_features and enable
6351 * software offloads (GSO and GRO).
6352 */
6353 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6354 dev->features |= NETIF_F_SOFT_FEATURES;
6355 dev->wanted_features = dev->features & dev->hw_features;
6356
6357 if (!(dev->flags & IFF_LOOPBACK)) {
6358 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6359 }
6360
6361 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6362 */
6363 dev->vlan_features |= NETIF_F_HIGHDMA;
6364
6365 /* Make NETIF_F_SG inheritable to tunnel devices.
6366 */
6367 dev->hw_enc_features |= NETIF_F_SG;
6368
6369 /* Make NETIF_F_SG inheritable to MPLS.
6370 */
6371 dev->mpls_features |= NETIF_F_SG;
6372
6373 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6374 ret = notifier_to_errno(ret);
6375 if (ret)
6376 goto err_uninit;
6377
6378 ret = netdev_register_kobject(dev);
6379 if (ret)
6380 goto err_uninit;
6381 dev->reg_state = NETREG_REGISTERED;
6382
6383 __netdev_update_features(dev);
6384
6385 /*
6386 * Default initial state at registry is that the
6387 * device is present.
6388 */
6389
6390 set_bit(__LINK_STATE_PRESENT, &dev->state);
6391
6392 linkwatch_init_dev(dev);
6393
6394 dev_init_scheduler(dev);
6395 dev_hold(dev);
6396 list_netdevice(dev);
6397 add_device_randomness(dev->dev_addr, dev->addr_len);
6398
6399 /* If the device has permanent device address, driver should
6400 * set dev_addr and also addr_assign_type should be set to
6401 * NET_ADDR_PERM (default value).
6402 */
6403 if (dev->addr_assign_type == NET_ADDR_PERM)
6404 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6405
6406 /* Notify protocols, that a new device appeared. */
6407 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6408 ret = notifier_to_errno(ret);
6409 if (ret) {
6410 rollback_registered(dev);
6411 dev->reg_state = NETREG_UNREGISTERED;
6412 }
6413 /*
6414 * Prevent userspace races by waiting until the network
6415 * device is fully setup before sending notifications.
6416 */
6417 if (!dev->rtnl_link_ops ||
6418 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6419 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6420
6421 out:
6422 return ret;
6423
6424 err_uninit:
6425 if (dev->netdev_ops->ndo_uninit)
6426 dev->netdev_ops->ndo_uninit(dev);
6427 goto out;
6428 }
6429 EXPORT_SYMBOL(register_netdevice);
6430
6431 /**
6432 * init_dummy_netdev - init a dummy network device for NAPI
6433 * @dev: device to init
6434 *
6435 * This takes a network device structure and initialize the minimum
6436 * amount of fields so it can be used to schedule NAPI polls without
6437 * registering a full blown interface. This is to be used by drivers
6438 * that need to tie several hardware interfaces to a single NAPI
6439 * poll scheduler due to HW limitations.
6440 */
6441 int init_dummy_netdev(struct net_device *dev)
6442 {
6443 /* Clear everything. Note we don't initialize spinlocks
6444 * are they aren't supposed to be taken by any of the
6445 * NAPI code and this dummy netdev is supposed to be
6446 * only ever used for NAPI polls
6447 */
6448 memset(dev, 0, sizeof(struct net_device));
6449
6450 /* make sure we BUG if trying to hit standard
6451 * register/unregister code path
6452 */
6453 dev->reg_state = NETREG_DUMMY;
6454
6455 /* NAPI wants this */
6456 INIT_LIST_HEAD(&dev->napi_list);
6457
6458 /* a dummy interface is started by default */
6459 set_bit(__LINK_STATE_PRESENT, &dev->state);
6460 set_bit(__LINK_STATE_START, &dev->state);
6461
6462 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6463 * because users of this 'device' dont need to change
6464 * its refcount.
6465 */
6466
6467 return 0;
6468 }
6469 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6470
6471
6472 /**
6473 * register_netdev - register a network device
6474 * @dev: device to register
6475 *
6476 * Take a completed network device structure and add it to the kernel
6477 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6478 * chain. 0 is returned on success. A negative errno code is returned
6479 * on a failure to set up the device, or if the name is a duplicate.
6480 *
6481 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6482 * and expands the device name if you passed a format string to
6483 * alloc_netdev.
6484 */
6485 int register_netdev(struct net_device *dev)
6486 {
6487 int err;
6488
6489 rtnl_lock();
6490 err = register_netdevice(dev);
6491 rtnl_unlock();
6492 return err;
6493 }
6494 EXPORT_SYMBOL(register_netdev);
6495
6496 int netdev_refcnt_read(const struct net_device *dev)
6497 {
6498 int i, refcnt = 0;
6499
6500 for_each_possible_cpu(i)
6501 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6502 return refcnt;
6503 }
6504 EXPORT_SYMBOL(netdev_refcnt_read);
6505
6506 /**
6507 * netdev_wait_allrefs - wait until all references are gone.
6508 * @dev: target net_device
6509 *
6510 * This is called when unregistering network devices.
6511 *
6512 * Any protocol or device that holds a reference should register
6513 * for netdevice notification, and cleanup and put back the
6514 * reference if they receive an UNREGISTER event.
6515 * We can get stuck here if buggy protocols don't correctly
6516 * call dev_put.
6517 */
6518 static void netdev_wait_allrefs(struct net_device *dev)
6519 {
6520 unsigned long rebroadcast_time, warning_time;
6521 int refcnt;
6522
6523 linkwatch_forget_dev(dev);
6524
6525 rebroadcast_time = warning_time = jiffies;
6526 refcnt = netdev_refcnt_read(dev);
6527
6528 while (refcnt != 0) {
6529 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6530 rtnl_lock();
6531
6532 /* Rebroadcast unregister notification */
6533 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6534
6535 __rtnl_unlock();
6536 rcu_barrier();
6537 rtnl_lock();
6538
6539 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6540 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6541 &dev->state)) {
6542 /* We must not have linkwatch events
6543 * pending on unregister. If this
6544 * happens, we simply run the queue
6545 * unscheduled, resulting in a noop
6546 * for this device.
6547 */
6548 linkwatch_run_queue();
6549 }
6550
6551 __rtnl_unlock();
6552
6553 rebroadcast_time = jiffies;
6554 }
6555
6556 msleep(250);
6557
6558 refcnt = netdev_refcnt_read(dev);
6559
6560 if (time_after(jiffies, warning_time + 10 * HZ)) {
6561 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6562 dev->name, refcnt);
6563 warning_time = jiffies;
6564 }
6565 }
6566 }
6567
6568 /* The sequence is:
6569 *
6570 * rtnl_lock();
6571 * ...
6572 * register_netdevice(x1);
6573 * register_netdevice(x2);
6574 * ...
6575 * unregister_netdevice(y1);
6576 * unregister_netdevice(y2);
6577 * ...
6578 * rtnl_unlock();
6579 * free_netdev(y1);
6580 * free_netdev(y2);
6581 *
6582 * We are invoked by rtnl_unlock().
6583 * This allows us to deal with problems:
6584 * 1) We can delete sysfs objects which invoke hotplug
6585 * without deadlocking with linkwatch via keventd.
6586 * 2) Since we run with the RTNL semaphore not held, we can sleep
6587 * safely in order to wait for the netdev refcnt to drop to zero.
6588 *
6589 * We must not return until all unregister events added during
6590 * the interval the lock was held have been completed.
6591 */
6592 void netdev_run_todo(void)
6593 {
6594 struct list_head list;
6595
6596 /* Snapshot list, allow later requests */
6597 list_replace_init(&net_todo_list, &list);
6598
6599 __rtnl_unlock();
6600
6601
6602 /* Wait for rcu callbacks to finish before next phase */
6603 if (!list_empty(&list))
6604 rcu_barrier();
6605
6606 while (!list_empty(&list)) {
6607 struct net_device *dev
6608 = list_first_entry(&list, struct net_device, todo_list);
6609 list_del(&dev->todo_list);
6610
6611 rtnl_lock();
6612 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6613 __rtnl_unlock();
6614
6615 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6616 pr_err("network todo '%s' but state %d\n",
6617 dev->name, dev->reg_state);
6618 dump_stack();
6619 continue;
6620 }
6621
6622 dev->reg_state = NETREG_UNREGISTERED;
6623
6624 on_each_cpu(flush_backlog, dev, 1);
6625
6626 netdev_wait_allrefs(dev);
6627
6628 /* paranoia */
6629 BUG_ON(netdev_refcnt_read(dev));
6630 BUG_ON(!list_empty(&dev->ptype_all));
6631 BUG_ON(!list_empty(&dev->ptype_specific));
6632 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6633 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6634 WARN_ON(dev->dn_ptr);
6635
6636 if (dev->destructor)
6637 dev->destructor(dev);
6638
6639 /* Report a network device has been unregistered */
6640 rtnl_lock();
6641 dev_net(dev)->dev_unreg_count--;
6642 __rtnl_unlock();
6643 wake_up(&netdev_unregistering_wq);
6644
6645 /* Free network device */
6646 kobject_put(&dev->dev.kobj);
6647 }
6648 }
6649
6650 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6651 * fields in the same order, with only the type differing.
6652 */
6653 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6654 const struct net_device_stats *netdev_stats)
6655 {
6656 #if BITS_PER_LONG == 64
6657 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6658 memcpy(stats64, netdev_stats, sizeof(*stats64));
6659 #else
6660 size_t i, n = sizeof(*stats64) / sizeof(u64);
6661 const unsigned long *src = (const unsigned long *)netdev_stats;
6662 u64 *dst = (u64 *)stats64;
6663
6664 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6665 sizeof(*stats64) / sizeof(u64));
6666 for (i = 0; i < n; i++)
6667 dst[i] = src[i];
6668 #endif
6669 }
6670 EXPORT_SYMBOL(netdev_stats_to_stats64);
6671
6672 /**
6673 * dev_get_stats - get network device statistics
6674 * @dev: device to get statistics from
6675 * @storage: place to store stats
6676 *
6677 * Get network statistics from device. Return @storage.
6678 * The device driver may provide its own method by setting
6679 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6680 * otherwise the internal statistics structure is used.
6681 */
6682 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6683 struct rtnl_link_stats64 *storage)
6684 {
6685 const struct net_device_ops *ops = dev->netdev_ops;
6686
6687 if (ops->ndo_get_stats64) {
6688 memset(storage, 0, sizeof(*storage));
6689 ops->ndo_get_stats64(dev, storage);
6690 } else if (ops->ndo_get_stats) {
6691 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6692 } else {
6693 netdev_stats_to_stats64(storage, &dev->stats);
6694 }
6695 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6696 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6697 return storage;
6698 }
6699 EXPORT_SYMBOL(dev_get_stats);
6700
6701 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6702 {
6703 struct netdev_queue *queue = dev_ingress_queue(dev);
6704
6705 #ifdef CONFIG_NET_CLS_ACT
6706 if (queue)
6707 return queue;
6708 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6709 if (!queue)
6710 return NULL;
6711 netdev_init_one_queue(dev, queue, NULL);
6712 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6713 queue->qdisc_sleeping = &noop_qdisc;
6714 rcu_assign_pointer(dev->ingress_queue, queue);
6715 #endif
6716 return queue;
6717 }
6718
6719 static const struct ethtool_ops default_ethtool_ops;
6720
6721 void netdev_set_default_ethtool_ops(struct net_device *dev,
6722 const struct ethtool_ops *ops)
6723 {
6724 if (dev->ethtool_ops == &default_ethtool_ops)
6725 dev->ethtool_ops = ops;
6726 }
6727 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6728
6729 void netdev_freemem(struct net_device *dev)
6730 {
6731 char *addr = (char *)dev - dev->padded;
6732
6733 kvfree(addr);
6734 }
6735
6736 /**
6737 * alloc_netdev_mqs - allocate network device
6738 * @sizeof_priv: size of private data to allocate space for
6739 * @name: device name format string
6740 * @name_assign_type: origin of device name
6741 * @setup: callback to initialize device
6742 * @txqs: the number of TX subqueues to allocate
6743 * @rxqs: the number of RX subqueues to allocate
6744 *
6745 * Allocates a struct net_device with private data area for driver use
6746 * and performs basic initialization. Also allocates subqueue structs
6747 * for each queue on the device.
6748 */
6749 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6750 unsigned char name_assign_type,
6751 void (*setup)(struct net_device *),
6752 unsigned int txqs, unsigned int rxqs)
6753 {
6754 struct net_device *dev;
6755 size_t alloc_size;
6756 struct net_device *p;
6757
6758 BUG_ON(strlen(name) >= sizeof(dev->name));
6759
6760 if (txqs < 1) {
6761 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6762 return NULL;
6763 }
6764
6765 #ifdef CONFIG_SYSFS
6766 if (rxqs < 1) {
6767 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6768 return NULL;
6769 }
6770 #endif
6771
6772 alloc_size = sizeof(struct net_device);
6773 if (sizeof_priv) {
6774 /* ensure 32-byte alignment of private area */
6775 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6776 alloc_size += sizeof_priv;
6777 }
6778 /* ensure 32-byte alignment of whole construct */
6779 alloc_size += NETDEV_ALIGN - 1;
6780
6781 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6782 if (!p)
6783 p = vzalloc(alloc_size);
6784 if (!p)
6785 return NULL;
6786
6787 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6788 dev->padded = (char *)dev - (char *)p;
6789
6790 dev->pcpu_refcnt = alloc_percpu(int);
6791 if (!dev->pcpu_refcnt)
6792 goto free_dev;
6793
6794 if (dev_addr_init(dev))
6795 goto free_pcpu;
6796
6797 dev_mc_init(dev);
6798 dev_uc_init(dev);
6799
6800 dev_net_set(dev, &init_net);
6801
6802 dev->gso_max_size = GSO_MAX_SIZE;
6803 dev->gso_max_segs = GSO_MAX_SEGS;
6804 dev->gso_min_segs = 0;
6805
6806 INIT_LIST_HEAD(&dev->napi_list);
6807 INIT_LIST_HEAD(&dev->unreg_list);
6808 INIT_LIST_HEAD(&dev->close_list);
6809 INIT_LIST_HEAD(&dev->link_watch_list);
6810 INIT_LIST_HEAD(&dev->adj_list.upper);
6811 INIT_LIST_HEAD(&dev->adj_list.lower);
6812 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6813 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6814 INIT_LIST_HEAD(&dev->ptype_all);
6815 INIT_LIST_HEAD(&dev->ptype_specific);
6816 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6817 setup(dev);
6818
6819 dev->num_tx_queues = txqs;
6820 dev->real_num_tx_queues = txqs;
6821 if (netif_alloc_netdev_queues(dev))
6822 goto free_all;
6823
6824 #ifdef CONFIG_SYSFS
6825 dev->num_rx_queues = rxqs;
6826 dev->real_num_rx_queues = rxqs;
6827 if (netif_alloc_rx_queues(dev))
6828 goto free_all;
6829 #endif
6830
6831 strcpy(dev->name, name);
6832 dev->name_assign_type = name_assign_type;
6833 dev->group = INIT_NETDEV_GROUP;
6834 if (!dev->ethtool_ops)
6835 dev->ethtool_ops = &default_ethtool_ops;
6836 return dev;
6837
6838 free_all:
6839 free_netdev(dev);
6840 return NULL;
6841
6842 free_pcpu:
6843 free_percpu(dev->pcpu_refcnt);
6844 free_dev:
6845 netdev_freemem(dev);
6846 return NULL;
6847 }
6848 EXPORT_SYMBOL(alloc_netdev_mqs);
6849
6850 /**
6851 * free_netdev - free network device
6852 * @dev: device
6853 *
6854 * This function does the last stage of destroying an allocated device
6855 * interface. The reference to the device object is released.
6856 * If this is the last reference then it will be freed.
6857 */
6858 void free_netdev(struct net_device *dev)
6859 {
6860 struct napi_struct *p, *n;
6861
6862 netif_free_tx_queues(dev);
6863 #ifdef CONFIG_SYSFS
6864 kvfree(dev->_rx);
6865 #endif
6866
6867 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6868
6869 /* Flush device addresses */
6870 dev_addr_flush(dev);
6871
6872 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6873 netif_napi_del(p);
6874
6875 free_percpu(dev->pcpu_refcnt);
6876 dev->pcpu_refcnt = NULL;
6877
6878 /* Compatibility with error handling in drivers */
6879 if (dev->reg_state == NETREG_UNINITIALIZED) {
6880 netdev_freemem(dev);
6881 return;
6882 }
6883
6884 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6885 dev->reg_state = NETREG_RELEASED;
6886
6887 /* will free via device release */
6888 put_device(&dev->dev);
6889 }
6890 EXPORT_SYMBOL(free_netdev);
6891
6892 /**
6893 * synchronize_net - Synchronize with packet receive processing
6894 *
6895 * Wait for packets currently being received to be done.
6896 * Does not block later packets from starting.
6897 */
6898 void synchronize_net(void)
6899 {
6900 might_sleep();
6901 if (rtnl_is_locked())
6902 synchronize_rcu_expedited();
6903 else
6904 synchronize_rcu();
6905 }
6906 EXPORT_SYMBOL(synchronize_net);
6907
6908 /**
6909 * unregister_netdevice_queue - remove device from the kernel
6910 * @dev: device
6911 * @head: list
6912 *
6913 * This function shuts down a device interface and removes it
6914 * from the kernel tables.
6915 * If head not NULL, device is queued to be unregistered later.
6916 *
6917 * Callers must hold the rtnl semaphore. You may want
6918 * unregister_netdev() instead of this.
6919 */
6920
6921 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6922 {
6923 ASSERT_RTNL();
6924
6925 if (head) {
6926 list_move_tail(&dev->unreg_list, head);
6927 } else {
6928 rollback_registered(dev);
6929 /* Finish processing unregister after unlock */
6930 net_set_todo(dev);
6931 }
6932 }
6933 EXPORT_SYMBOL(unregister_netdevice_queue);
6934
6935 /**
6936 * unregister_netdevice_many - unregister many devices
6937 * @head: list of devices
6938 *
6939 * Note: As most callers use a stack allocated list_head,
6940 * we force a list_del() to make sure stack wont be corrupted later.
6941 */
6942 void unregister_netdevice_many(struct list_head *head)
6943 {
6944 struct net_device *dev;
6945
6946 if (!list_empty(head)) {
6947 rollback_registered_many(head);
6948 list_for_each_entry(dev, head, unreg_list)
6949 net_set_todo(dev);
6950 list_del(head);
6951 }
6952 }
6953 EXPORT_SYMBOL(unregister_netdevice_many);
6954
6955 /**
6956 * unregister_netdev - remove device from the kernel
6957 * @dev: device
6958 *
6959 * This function shuts down a device interface and removes it
6960 * from the kernel tables.
6961 *
6962 * This is just a wrapper for unregister_netdevice that takes
6963 * the rtnl semaphore. In general you want to use this and not
6964 * unregister_netdevice.
6965 */
6966 void unregister_netdev(struct net_device *dev)
6967 {
6968 rtnl_lock();
6969 unregister_netdevice(dev);
6970 rtnl_unlock();
6971 }
6972 EXPORT_SYMBOL(unregister_netdev);
6973
6974 /**
6975 * dev_change_net_namespace - move device to different nethost namespace
6976 * @dev: device
6977 * @net: network namespace
6978 * @pat: If not NULL name pattern to try if the current device name
6979 * is already taken in the destination network namespace.
6980 *
6981 * This function shuts down a device interface and moves it
6982 * to a new network namespace. On success 0 is returned, on
6983 * a failure a netagive errno code is returned.
6984 *
6985 * Callers must hold the rtnl semaphore.
6986 */
6987
6988 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6989 {
6990 int err;
6991
6992 ASSERT_RTNL();
6993
6994 /* Don't allow namespace local devices to be moved. */
6995 err = -EINVAL;
6996 if (dev->features & NETIF_F_NETNS_LOCAL)
6997 goto out;
6998
6999 /* Ensure the device has been registrered */
7000 if (dev->reg_state != NETREG_REGISTERED)
7001 goto out;
7002
7003 /* Get out if there is nothing todo */
7004 err = 0;
7005 if (net_eq(dev_net(dev), net))
7006 goto out;
7007
7008 /* Pick the destination device name, and ensure
7009 * we can use it in the destination network namespace.
7010 */
7011 err = -EEXIST;
7012 if (__dev_get_by_name(net, dev->name)) {
7013 /* We get here if we can't use the current device name */
7014 if (!pat)
7015 goto out;
7016 if (dev_get_valid_name(net, dev, pat) < 0)
7017 goto out;
7018 }
7019
7020 /*
7021 * And now a mini version of register_netdevice unregister_netdevice.
7022 */
7023
7024 /* If device is running close it first. */
7025 dev_close(dev);
7026
7027 /* And unlink it from device chain */
7028 err = -ENODEV;
7029 unlist_netdevice(dev);
7030
7031 synchronize_net();
7032
7033 /* Shutdown queueing discipline. */
7034 dev_shutdown(dev);
7035
7036 /* Notify protocols, that we are about to destroy
7037 this device. They should clean all the things.
7038
7039 Note that dev->reg_state stays at NETREG_REGISTERED.
7040 This is wanted because this way 8021q and macvlan know
7041 the device is just moving and can keep their slaves up.
7042 */
7043 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7044 rcu_barrier();
7045 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7046 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7047
7048 /*
7049 * Flush the unicast and multicast chains
7050 */
7051 dev_uc_flush(dev);
7052 dev_mc_flush(dev);
7053
7054 /* Send a netdev-removed uevent to the old namespace */
7055 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7056 netdev_adjacent_del_links(dev);
7057
7058 /* Actually switch the network namespace */
7059 dev_net_set(dev, net);
7060
7061 /* If there is an ifindex conflict assign a new one */
7062 if (__dev_get_by_index(net, dev->ifindex)) {
7063 int iflink = (dev->iflink == dev->ifindex);
7064 dev->ifindex = dev_new_index(net);
7065 if (iflink)
7066 dev->iflink = dev->ifindex;
7067 }
7068
7069 /* Send a netdev-add uevent to the new namespace */
7070 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7071 netdev_adjacent_add_links(dev);
7072
7073 /* Fixup kobjects */
7074 err = device_rename(&dev->dev, dev->name);
7075 WARN_ON(err);
7076
7077 /* Add the device back in the hashes */
7078 list_netdevice(dev);
7079
7080 /* Notify protocols, that a new device appeared. */
7081 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7082
7083 /*
7084 * Prevent userspace races by waiting until the network
7085 * device is fully setup before sending notifications.
7086 */
7087 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7088
7089 synchronize_net();
7090 err = 0;
7091 out:
7092 return err;
7093 }
7094 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7095
7096 static int dev_cpu_callback(struct notifier_block *nfb,
7097 unsigned long action,
7098 void *ocpu)
7099 {
7100 struct sk_buff **list_skb;
7101 struct sk_buff *skb;
7102 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7103 struct softnet_data *sd, *oldsd;
7104
7105 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7106 return NOTIFY_OK;
7107
7108 local_irq_disable();
7109 cpu = smp_processor_id();
7110 sd = &per_cpu(softnet_data, cpu);
7111 oldsd = &per_cpu(softnet_data, oldcpu);
7112
7113 /* Find end of our completion_queue. */
7114 list_skb = &sd->completion_queue;
7115 while (*list_skb)
7116 list_skb = &(*list_skb)->next;
7117 /* Append completion queue from offline CPU. */
7118 *list_skb = oldsd->completion_queue;
7119 oldsd->completion_queue = NULL;
7120
7121 /* Append output queue from offline CPU. */
7122 if (oldsd->output_queue) {
7123 *sd->output_queue_tailp = oldsd->output_queue;
7124 sd->output_queue_tailp = oldsd->output_queue_tailp;
7125 oldsd->output_queue = NULL;
7126 oldsd->output_queue_tailp = &oldsd->output_queue;
7127 }
7128 /* Append NAPI poll list from offline CPU, with one exception :
7129 * process_backlog() must be called by cpu owning percpu backlog.
7130 * We properly handle process_queue & input_pkt_queue later.
7131 */
7132 while (!list_empty(&oldsd->poll_list)) {
7133 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7134 struct napi_struct,
7135 poll_list);
7136
7137 list_del_init(&napi->poll_list);
7138 if (napi->poll == process_backlog)
7139 napi->state = 0;
7140 else
7141 ____napi_schedule(sd, napi);
7142 }
7143
7144 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7145 local_irq_enable();
7146
7147 /* Process offline CPU's input_pkt_queue */
7148 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7149 netif_rx_ni(skb);
7150 input_queue_head_incr(oldsd);
7151 }
7152 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7153 netif_rx_ni(skb);
7154 input_queue_head_incr(oldsd);
7155 }
7156
7157 return NOTIFY_OK;
7158 }
7159
7160
7161 /**
7162 * netdev_increment_features - increment feature set by one
7163 * @all: current feature set
7164 * @one: new feature set
7165 * @mask: mask feature set
7166 *
7167 * Computes a new feature set after adding a device with feature set
7168 * @one to the master device with current feature set @all. Will not
7169 * enable anything that is off in @mask. Returns the new feature set.
7170 */
7171 netdev_features_t netdev_increment_features(netdev_features_t all,
7172 netdev_features_t one, netdev_features_t mask)
7173 {
7174 if (mask & NETIF_F_GEN_CSUM)
7175 mask |= NETIF_F_ALL_CSUM;
7176 mask |= NETIF_F_VLAN_CHALLENGED;
7177
7178 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7179 all &= one | ~NETIF_F_ALL_FOR_ALL;
7180
7181 /* If one device supports hw checksumming, set for all. */
7182 if (all & NETIF_F_GEN_CSUM)
7183 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7184
7185 return all;
7186 }
7187 EXPORT_SYMBOL(netdev_increment_features);
7188
7189 static struct hlist_head * __net_init netdev_create_hash(void)
7190 {
7191 int i;
7192 struct hlist_head *hash;
7193
7194 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7195 if (hash != NULL)
7196 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7197 INIT_HLIST_HEAD(&hash[i]);
7198
7199 return hash;
7200 }
7201
7202 /* Initialize per network namespace state */
7203 static int __net_init netdev_init(struct net *net)
7204 {
7205 if (net != &init_net)
7206 INIT_LIST_HEAD(&net->dev_base_head);
7207
7208 net->dev_name_head = netdev_create_hash();
7209 if (net->dev_name_head == NULL)
7210 goto err_name;
7211
7212 net->dev_index_head = netdev_create_hash();
7213 if (net->dev_index_head == NULL)
7214 goto err_idx;
7215
7216 return 0;
7217
7218 err_idx:
7219 kfree(net->dev_name_head);
7220 err_name:
7221 return -ENOMEM;
7222 }
7223
7224 /**
7225 * netdev_drivername - network driver for the device
7226 * @dev: network device
7227 *
7228 * Determine network driver for device.
7229 */
7230 const char *netdev_drivername(const struct net_device *dev)
7231 {
7232 const struct device_driver *driver;
7233 const struct device *parent;
7234 const char *empty = "";
7235
7236 parent = dev->dev.parent;
7237 if (!parent)
7238 return empty;
7239
7240 driver = parent->driver;
7241 if (driver && driver->name)
7242 return driver->name;
7243 return empty;
7244 }
7245
7246 static void __netdev_printk(const char *level, const struct net_device *dev,
7247 struct va_format *vaf)
7248 {
7249 if (dev && dev->dev.parent) {
7250 dev_printk_emit(level[1] - '0',
7251 dev->dev.parent,
7252 "%s %s %s%s: %pV",
7253 dev_driver_string(dev->dev.parent),
7254 dev_name(dev->dev.parent),
7255 netdev_name(dev), netdev_reg_state(dev),
7256 vaf);
7257 } else if (dev) {
7258 printk("%s%s%s: %pV",
7259 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7260 } else {
7261 printk("%s(NULL net_device): %pV", level, vaf);
7262 }
7263 }
7264
7265 void netdev_printk(const char *level, const struct net_device *dev,
7266 const char *format, ...)
7267 {
7268 struct va_format vaf;
7269 va_list args;
7270
7271 va_start(args, format);
7272
7273 vaf.fmt = format;
7274 vaf.va = &args;
7275
7276 __netdev_printk(level, dev, &vaf);
7277
7278 va_end(args);
7279 }
7280 EXPORT_SYMBOL(netdev_printk);
7281
7282 #define define_netdev_printk_level(func, level) \
7283 void func(const struct net_device *dev, const char *fmt, ...) \
7284 { \
7285 struct va_format vaf; \
7286 va_list args; \
7287 \
7288 va_start(args, fmt); \
7289 \
7290 vaf.fmt = fmt; \
7291 vaf.va = &args; \
7292 \
7293 __netdev_printk(level, dev, &vaf); \
7294 \
7295 va_end(args); \
7296 } \
7297 EXPORT_SYMBOL(func);
7298
7299 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7300 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7301 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7302 define_netdev_printk_level(netdev_err, KERN_ERR);
7303 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7304 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7305 define_netdev_printk_level(netdev_info, KERN_INFO);
7306
7307 static void __net_exit netdev_exit(struct net *net)
7308 {
7309 kfree(net->dev_name_head);
7310 kfree(net->dev_index_head);
7311 }
7312
7313 static struct pernet_operations __net_initdata netdev_net_ops = {
7314 .init = netdev_init,
7315 .exit = netdev_exit,
7316 };
7317
7318 static void __net_exit default_device_exit(struct net *net)
7319 {
7320 struct net_device *dev, *aux;
7321 /*
7322 * Push all migratable network devices back to the
7323 * initial network namespace
7324 */
7325 rtnl_lock();
7326 for_each_netdev_safe(net, dev, aux) {
7327 int err;
7328 char fb_name[IFNAMSIZ];
7329
7330 /* Ignore unmoveable devices (i.e. loopback) */
7331 if (dev->features & NETIF_F_NETNS_LOCAL)
7332 continue;
7333
7334 /* Leave virtual devices for the generic cleanup */
7335 if (dev->rtnl_link_ops)
7336 continue;
7337
7338 /* Push remaining network devices to init_net */
7339 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7340 err = dev_change_net_namespace(dev, &init_net, fb_name);
7341 if (err) {
7342 pr_emerg("%s: failed to move %s to init_net: %d\n",
7343 __func__, dev->name, err);
7344 BUG();
7345 }
7346 }
7347 rtnl_unlock();
7348 }
7349
7350 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7351 {
7352 /* Return with the rtnl_lock held when there are no network
7353 * devices unregistering in any network namespace in net_list.
7354 */
7355 struct net *net;
7356 bool unregistering;
7357 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7358
7359 add_wait_queue(&netdev_unregistering_wq, &wait);
7360 for (;;) {
7361 unregistering = false;
7362 rtnl_lock();
7363 list_for_each_entry(net, net_list, exit_list) {
7364 if (net->dev_unreg_count > 0) {
7365 unregistering = true;
7366 break;
7367 }
7368 }
7369 if (!unregistering)
7370 break;
7371 __rtnl_unlock();
7372
7373 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7374 }
7375 remove_wait_queue(&netdev_unregistering_wq, &wait);
7376 }
7377
7378 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7379 {
7380 /* At exit all network devices most be removed from a network
7381 * namespace. Do this in the reverse order of registration.
7382 * Do this across as many network namespaces as possible to
7383 * improve batching efficiency.
7384 */
7385 struct net_device *dev;
7386 struct net *net;
7387 LIST_HEAD(dev_kill_list);
7388
7389 /* To prevent network device cleanup code from dereferencing
7390 * loopback devices or network devices that have been freed
7391 * wait here for all pending unregistrations to complete,
7392 * before unregistring the loopback device and allowing the
7393 * network namespace be freed.
7394 *
7395 * The netdev todo list containing all network devices
7396 * unregistrations that happen in default_device_exit_batch
7397 * will run in the rtnl_unlock() at the end of
7398 * default_device_exit_batch.
7399 */
7400 rtnl_lock_unregistering(net_list);
7401 list_for_each_entry(net, net_list, exit_list) {
7402 for_each_netdev_reverse(net, dev) {
7403 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7404 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7405 else
7406 unregister_netdevice_queue(dev, &dev_kill_list);
7407 }
7408 }
7409 unregister_netdevice_many(&dev_kill_list);
7410 rtnl_unlock();
7411 }
7412
7413 static struct pernet_operations __net_initdata default_device_ops = {
7414 .exit = default_device_exit,
7415 .exit_batch = default_device_exit_batch,
7416 };
7417
7418 /*
7419 * Initialize the DEV module. At boot time this walks the device list and
7420 * unhooks any devices that fail to initialise (normally hardware not
7421 * present) and leaves us with a valid list of present and active devices.
7422 *
7423 */
7424
7425 /*
7426 * This is called single threaded during boot, so no need
7427 * to take the rtnl semaphore.
7428 */
7429 static int __init net_dev_init(void)
7430 {
7431 int i, rc = -ENOMEM;
7432
7433 BUG_ON(!dev_boot_phase);
7434
7435 if (dev_proc_init())
7436 goto out;
7437
7438 if (netdev_kobject_init())
7439 goto out;
7440
7441 INIT_LIST_HEAD(&ptype_all);
7442 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7443 INIT_LIST_HEAD(&ptype_base[i]);
7444
7445 INIT_LIST_HEAD(&offload_base);
7446
7447 if (register_pernet_subsys(&netdev_net_ops))
7448 goto out;
7449
7450 /*
7451 * Initialise the packet receive queues.
7452 */
7453
7454 for_each_possible_cpu(i) {
7455 struct softnet_data *sd = &per_cpu(softnet_data, i);
7456
7457 skb_queue_head_init(&sd->input_pkt_queue);
7458 skb_queue_head_init(&sd->process_queue);
7459 INIT_LIST_HEAD(&sd->poll_list);
7460 sd->output_queue_tailp = &sd->output_queue;
7461 #ifdef CONFIG_RPS
7462 sd->csd.func = rps_trigger_softirq;
7463 sd->csd.info = sd;
7464 sd->cpu = i;
7465 #endif
7466
7467 sd->backlog.poll = process_backlog;
7468 sd->backlog.weight = weight_p;
7469 }
7470
7471 dev_boot_phase = 0;
7472
7473 /* The loopback device is special if any other network devices
7474 * is present in a network namespace the loopback device must
7475 * be present. Since we now dynamically allocate and free the
7476 * loopback device ensure this invariant is maintained by
7477 * keeping the loopback device as the first device on the
7478 * list of network devices. Ensuring the loopback devices
7479 * is the first device that appears and the last network device
7480 * that disappears.
7481 */
7482 if (register_pernet_device(&loopback_net_ops))
7483 goto out;
7484
7485 if (register_pernet_device(&default_device_ops))
7486 goto out;
7487
7488 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7489 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7490
7491 hotcpu_notifier(dev_cpu_callback, 0);
7492 dst_init();
7493 rc = 0;
7494 out:
7495 return rc;
7496 }
7497
7498 subsys_initcall(net_dev_init);