]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/core/dev.c
4c3ac53e4b16bdf65377db987951d41ee20e1ef2
[mirror_ubuntu-zesty-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133
134 #include "net-sysfs.h"
135
136 /* Instead of increasing this, you should create a hash table. */
137 #define MAX_GRO_SKBS 8
138
139 /* This should be increased if a protocol with a bigger head is added. */
140 #define GRO_MAX_HEAD (MAX_HEADER + 128)
141
142 /*
143 * The list of packet types we will receive (as opposed to discard)
144 * and the routines to invoke.
145 *
146 * Why 16. Because with 16 the only overlap we get on a hash of the
147 * low nibble of the protocol value is RARP/SNAP/X.25.
148 *
149 * NOTE: That is no longer true with the addition of VLAN tags. Not
150 * sure which should go first, but I bet it won't make much
151 * difference if we are running VLANs. The good news is that
152 * this protocol won't be in the list unless compiled in, so
153 * the average user (w/out VLANs) will not be adversely affected.
154 * --BLG
155 *
156 * 0800 IP
157 * 8100 802.1Q VLAN
158 * 0001 802.3
159 * 0002 AX.25
160 * 0004 802.2
161 * 8035 RARP
162 * 0005 SNAP
163 * 0805 X.25
164 * 0806 ARP
165 * 8137 IPX
166 * 0009 Localtalk
167 * 86DD IPv6
168 */
169
170 #define PTYPE_HASH_SIZE (16)
171 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
172
173 static DEFINE_SPINLOCK(ptype_lock);
174 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
175 static struct list_head ptype_all __read_mostly; /* Taps */
176
177 /*
178 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
179 * semaphore.
180 *
181 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
182 *
183 * Writers must hold the rtnl semaphore while they loop through the
184 * dev_base_head list, and hold dev_base_lock for writing when they do the
185 * actual updates. This allows pure readers to access the list even
186 * while a writer is preparing to update it.
187 *
188 * To put it another way, dev_base_lock is held for writing only to
189 * protect against pure readers; the rtnl semaphore provides the
190 * protection against other writers.
191 *
192 * See, for example usages, register_netdevice() and
193 * unregister_netdevice(), which must be called with the rtnl
194 * semaphore held.
195 */
196 DEFINE_RWLOCK(dev_base_lock);
197 EXPORT_SYMBOL(dev_base_lock);
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 /* Device list insertion */
225 static int list_netdevice(struct net_device *dev)
226 {
227 struct net *net = dev_net(dev);
228
229 ASSERT_RTNL();
230
231 write_lock_bh(&dev_base_lock);
232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 hlist_add_head_rcu(&dev->index_hlist,
235 dev_index_hash(net, dev->ifindex));
236 write_unlock_bh(&dev_base_lock);
237 return 0;
238 }
239
240 /* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
242 */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245 ASSERT_RTNL();
246
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
249 list_del_rcu(&dev->dev_list);
250 hlist_del_rcu(&dev->name_hlist);
251 hlist_del_rcu(&dev->index_hlist);
252 write_unlock_bh(&dev_base_lock);
253 }
254
255 /*
256 * Our notifier list
257 */
258
259 static RAW_NOTIFIER_HEAD(netdev_chain);
260
261 /*
262 * Device drivers call our routines to queue packets here. We empty the
263 * queue in the local softnet handler.
264 */
265
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268
269 #ifdef CONFIG_LOCKDEP
270 /*
271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272 * according to dev->type
273 */
274 static const unsigned short netdev_lock_type[] =
275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
288 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
289 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
290 ARPHRD_VOID, ARPHRD_NONE};
291
292 static const char *const netdev_lock_name[] =
293 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
294 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
295 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
296 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
297 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
298 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
299 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
300 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
301 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
302 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
303 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
304 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
305 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
306 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
307 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
308 "_xmit_VOID", "_xmit_NONE"};
309
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 int i;
328
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
332 }
333
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 int i;
337
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352
353 /*******************************************************************************
354
355 Protocol management and registration routines
356
357 *******************************************************************************/
358
359 /*
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
363 *
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
373 */
374
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377 if (pt->type == htons(ETH_P_ALL))
378 return &ptype_all;
379 else
380 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
381 }
382
383 /**
384 * dev_add_pack - add packet handler
385 * @pt: packet type declaration
386 *
387 * Add a protocol handler to the networking stack. The passed &packet_type
388 * is linked into kernel lists and may not be freed until it has been
389 * removed from the kernel lists.
390 *
391 * This call does not sleep therefore it can not
392 * guarantee all CPU's that are in middle of receiving packets
393 * will see the new packet type (until the next received packet).
394 */
395
396 void dev_add_pack(struct packet_type *pt)
397 {
398 struct list_head *head = ptype_head(pt);
399
400 spin_lock(&ptype_lock);
401 list_add_rcu(&pt->list, head);
402 spin_unlock(&ptype_lock);
403 }
404 EXPORT_SYMBOL(dev_add_pack);
405
406 /**
407 * __dev_remove_pack - remove packet handler
408 * @pt: packet type declaration
409 *
410 * Remove a protocol handler that was previously added to the kernel
411 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
412 * from the kernel lists and can be freed or reused once this function
413 * returns.
414 *
415 * The packet type might still be in use by receivers
416 * and must not be freed until after all the CPU's have gone
417 * through a quiescent state.
418 */
419 void __dev_remove_pack(struct packet_type *pt)
420 {
421 struct list_head *head = ptype_head(pt);
422 struct packet_type *pt1;
423
424 spin_lock(&ptype_lock);
425
426 list_for_each_entry(pt1, head, list) {
427 if (pt == pt1) {
428 list_del_rcu(&pt->list);
429 goto out;
430 }
431 }
432
433 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
434 out:
435 spin_unlock(&ptype_lock);
436 }
437 EXPORT_SYMBOL(__dev_remove_pack);
438
439 /**
440 * dev_remove_pack - remove packet handler
441 * @pt: packet type declaration
442 *
443 * Remove a protocol handler that was previously added to the kernel
444 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
445 * from the kernel lists and can be freed or reused once this function
446 * returns.
447 *
448 * This call sleeps to guarantee that no CPU is looking at the packet
449 * type after return.
450 */
451 void dev_remove_pack(struct packet_type *pt)
452 {
453 __dev_remove_pack(pt);
454
455 synchronize_net();
456 }
457 EXPORT_SYMBOL(dev_remove_pack);
458
459 /******************************************************************************
460
461 Device Boot-time Settings Routines
462
463 *******************************************************************************/
464
465 /* Boot time configuration table */
466 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
467
468 /**
469 * netdev_boot_setup_add - add new setup entry
470 * @name: name of the device
471 * @map: configured settings for the device
472 *
473 * Adds new setup entry to the dev_boot_setup list. The function
474 * returns 0 on error and 1 on success. This is a generic routine to
475 * all netdevices.
476 */
477 static int netdev_boot_setup_add(char *name, struct ifmap *map)
478 {
479 struct netdev_boot_setup *s;
480 int i;
481
482 s = dev_boot_setup;
483 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
484 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
485 memset(s[i].name, 0, sizeof(s[i].name));
486 strlcpy(s[i].name, name, IFNAMSIZ);
487 memcpy(&s[i].map, map, sizeof(s[i].map));
488 break;
489 }
490 }
491
492 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
493 }
494
495 /**
496 * netdev_boot_setup_check - check boot time settings
497 * @dev: the netdevice
498 *
499 * Check boot time settings for the device.
500 * The found settings are set for the device to be used
501 * later in the device probing.
502 * Returns 0 if no settings found, 1 if they are.
503 */
504 int netdev_boot_setup_check(struct net_device *dev)
505 {
506 struct netdev_boot_setup *s = dev_boot_setup;
507 int i;
508
509 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
510 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
511 !strcmp(dev->name, s[i].name)) {
512 dev->irq = s[i].map.irq;
513 dev->base_addr = s[i].map.base_addr;
514 dev->mem_start = s[i].map.mem_start;
515 dev->mem_end = s[i].map.mem_end;
516 return 1;
517 }
518 }
519 return 0;
520 }
521 EXPORT_SYMBOL(netdev_boot_setup_check);
522
523
524 /**
525 * netdev_boot_base - get address from boot time settings
526 * @prefix: prefix for network device
527 * @unit: id for network device
528 *
529 * Check boot time settings for the base address of device.
530 * The found settings are set for the device to be used
531 * later in the device probing.
532 * Returns 0 if no settings found.
533 */
534 unsigned long netdev_boot_base(const char *prefix, int unit)
535 {
536 const struct netdev_boot_setup *s = dev_boot_setup;
537 char name[IFNAMSIZ];
538 int i;
539
540 sprintf(name, "%s%d", prefix, unit);
541
542 /*
543 * If device already registered then return base of 1
544 * to indicate not to probe for this interface
545 */
546 if (__dev_get_by_name(&init_net, name))
547 return 1;
548
549 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
550 if (!strcmp(name, s[i].name))
551 return s[i].map.base_addr;
552 return 0;
553 }
554
555 /*
556 * Saves at boot time configured settings for any netdevice.
557 */
558 int __init netdev_boot_setup(char *str)
559 {
560 int ints[5];
561 struct ifmap map;
562
563 str = get_options(str, ARRAY_SIZE(ints), ints);
564 if (!str || !*str)
565 return 0;
566
567 /* Save settings */
568 memset(&map, 0, sizeof(map));
569 if (ints[0] > 0)
570 map.irq = ints[1];
571 if (ints[0] > 1)
572 map.base_addr = ints[2];
573 if (ints[0] > 2)
574 map.mem_start = ints[3];
575 if (ints[0] > 3)
576 map.mem_end = ints[4];
577
578 /* Add new entry to the list */
579 return netdev_boot_setup_add(str, &map);
580 }
581
582 __setup("netdev=", netdev_boot_setup);
583
584 /*******************************************************************************
585
586 Device Interface Subroutines
587
588 *******************************************************************************/
589
590 /**
591 * __dev_get_by_name - find a device by its name
592 * @net: the applicable net namespace
593 * @name: name to find
594 *
595 * Find an interface by name. Must be called under RTNL semaphore
596 * or @dev_base_lock. If the name is found a pointer to the device
597 * is returned. If the name is not found then %NULL is returned. The
598 * reference counters are not incremented so the caller must be
599 * careful with locks.
600 */
601
602 struct net_device *__dev_get_by_name(struct net *net, const char *name)
603 {
604 struct hlist_node *p;
605 struct net_device *dev;
606 struct hlist_head *head = dev_name_hash(net, name);
607
608 hlist_for_each_entry(dev, p, head, name_hlist)
609 if (!strncmp(dev->name, name, IFNAMSIZ))
610 return dev;
611
612 return NULL;
613 }
614 EXPORT_SYMBOL(__dev_get_by_name);
615
616 /**
617 * dev_get_by_name_rcu - find a device by its name
618 * @net: the applicable net namespace
619 * @name: name to find
620 *
621 * Find an interface by name.
622 * If the name is found a pointer to the device is returned.
623 * If the name is not found then %NULL is returned.
624 * The reference counters are not incremented so the caller must be
625 * careful with locks. The caller must hold RCU lock.
626 */
627
628 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
629 {
630 struct hlist_node *p;
631 struct net_device *dev;
632 struct hlist_head *head = dev_name_hash(net, name);
633
634 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
635 if (!strncmp(dev->name, name, IFNAMSIZ))
636 return dev;
637
638 return NULL;
639 }
640 EXPORT_SYMBOL(dev_get_by_name_rcu);
641
642 /**
643 * dev_get_by_name - find a device by its name
644 * @net: the applicable net namespace
645 * @name: name to find
646 *
647 * Find an interface by name. This can be called from any
648 * context and does its own locking. The returned handle has
649 * the usage count incremented and the caller must use dev_put() to
650 * release it when it is no longer needed. %NULL is returned if no
651 * matching device is found.
652 */
653
654 struct net_device *dev_get_by_name(struct net *net, const char *name)
655 {
656 struct net_device *dev;
657
658 rcu_read_lock();
659 dev = dev_get_by_name_rcu(net, name);
660 if (dev)
661 dev_hold(dev);
662 rcu_read_unlock();
663 return dev;
664 }
665 EXPORT_SYMBOL(dev_get_by_name);
666
667 /**
668 * __dev_get_by_index - find a device by its ifindex
669 * @net: the applicable net namespace
670 * @ifindex: index of device
671 *
672 * Search for an interface by index. Returns %NULL if the device
673 * is not found or a pointer to the device. The device has not
674 * had its reference counter increased so the caller must be careful
675 * about locking. The caller must hold either the RTNL semaphore
676 * or @dev_base_lock.
677 */
678
679 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
680 {
681 struct hlist_node *p;
682 struct net_device *dev;
683 struct hlist_head *head = dev_index_hash(net, ifindex);
684
685 hlist_for_each_entry(dev, p, head, index_hlist)
686 if (dev->ifindex == ifindex)
687 return dev;
688
689 return NULL;
690 }
691 EXPORT_SYMBOL(__dev_get_by_index);
692
693 /**
694 * dev_get_by_index_rcu - find a device by its ifindex
695 * @net: the applicable net namespace
696 * @ifindex: index of device
697 *
698 * Search for an interface by index. Returns %NULL if the device
699 * is not found or a pointer to the device. The device has not
700 * had its reference counter increased so the caller must be careful
701 * about locking. The caller must hold RCU lock.
702 */
703
704 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
705 {
706 struct hlist_node *p;
707 struct net_device *dev;
708 struct hlist_head *head = dev_index_hash(net, ifindex);
709
710 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
711 if (dev->ifindex == ifindex)
712 return dev;
713
714 return NULL;
715 }
716 EXPORT_SYMBOL(dev_get_by_index_rcu);
717
718
719 /**
720 * dev_get_by_index - find a device by its ifindex
721 * @net: the applicable net namespace
722 * @ifindex: index of device
723 *
724 * Search for an interface by index. Returns NULL if the device
725 * is not found or a pointer to the device. The device returned has
726 * had a reference added and the pointer is safe until the user calls
727 * dev_put to indicate they have finished with it.
728 */
729
730 struct net_device *dev_get_by_index(struct net *net, int ifindex)
731 {
732 struct net_device *dev;
733
734 rcu_read_lock();
735 dev = dev_get_by_index_rcu(net, ifindex);
736 if (dev)
737 dev_hold(dev);
738 rcu_read_unlock();
739 return dev;
740 }
741 EXPORT_SYMBOL(dev_get_by_index);
742
743 /**
744 * dev_getbyhwaddr - find a device by its hardware address
745 * @net: the applicable net namespace
746 * @type: media type of device
747 * @ha: hardware address
748 *
749 * Search for an interface by MAC address. Returns NULL if the device
750 * is not found or a pointer to the device. The caller must hold the
751 * rtnl semaphore. The returned device has not had its ref count increased
752 * and the caller must therefore be careful about locking
753 *
754 * BUGS:
755 * If the API was consistent this would be __dev_get_by_hwaddr
756 */
757
758 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
759 {
760 struct net_device *dev;
761
762 ASSERT_RTNL();
763
764 for_each_netdev(net, dev)
765 if (dev->type == type &&
766 !memcmp(dev->dev_addr, ha, dev->addr_len))
767 return dev;
768
769 return NULL;
770 }
771 EXPORT_SYMBOL(dev_getbyhwaddr);
772
773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 {
775 struct net_device *dev;
776
777 ASSERT_RTNL();
778 for_each_netdev(net, dev)
779 if (dev->type == type)
780 return dev;
781
782 return NULL;
783 }
784 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
785
786 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 struct net_device *dev, *ret = NULL;
789
790 rcu_read_lock();
791 for_each_netdev_rcu(net, dev)
792 if (dev->type == type) {
793 dev_hold(dev);
794 ret = dev;
795 break;
796 }
797 rcu_read_unlock();
798 return ret;
799 }
800 EXPORT_SYMBOL(dev_getfirstbyhwtype);
801
802 /**
803 * dev_get_by_flags_rcu - find any device with given flags
804 * @net: the applicable net namespace
805 * @if_flags: IFF_* values
806 * @mask: bitmask of bits in if_flags to check
807 *
808 * Search for any interface with the given flags. Returns NULL if a device
809 * is not found or a pointer to the device. Must be called inside
810 * rcu_read_lock(), and result refcount is unchanged.
811 */
812
813 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
814 unsigned short mask)
815 {
816 struct net_device *dev, *ret;
817
818 ret = NULL;
819 for_each_netdev_rcu(net, dev) {
820 if (((dev->flags ^ if_flags) & mask) == 0) {
821 ret = dev;
822 break;
823 }
824 }
825 return ret;
826 }
827 EXPORT_SYMBOL(dev_get_by_flags_rcu);
828
829 /**
830 * dev_valid_name - check if name is okay for network device
831 * @name: name string
832 *
833 * Network device names need to be valid file names to
834 * to allow sysfs to work. We also disallow any kind of
835 * whitespace.
836 */
837 int dev_valid_name(const char *name)
838 {
839 if (*name == '\0')
840 return 0;
841 if (strlen(name) >= IFNAMSIZ)
842 return 0;
843 if (!strcmp(name, ".") || !strcmp(name, ".."))
844 return 0;
845
846 while (*name) {
847 if (*name == '/' || isspace(*name))
848 return 0;
849 name++;
850 }
851 return 1;
852 }
853 EXPORT_SYMBOL(dev_valid_name);
854
855 /**
856 * __dev_alloc_name - allocate a name for a device
857 * @net: network namespace to allocate the device name in
858 * @name: name format string
859 * @buf: scratch buffer and result name string
860 *
861 * Passed a format string - eg "lt%d" it will try and find a suitable
862 * id. It scans list of devices to build up a free map, then chooses
863 * the first empty slot. The caller must hold the dev_base or rtnl lock
864 * while allocating the name and adding the device in order to avoid
865 * duplicates.
866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867 * Returns the number of the unit assigned or a negative errno code.
868 */
869
870 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
871 {
872 int i = 0;
873 const char *p;
874 const int max_netdevices = 8*PAGE_SIZE;
875 unsigned long *inuse;
876 struct net_device *d;
877
878 p = strnchr(name, IFNAMSIZ-1, '%');
879 if (p) {
880 /*
881 * Verify the string as this thing may have come from
882 * the user. There must be either one "%d" and no other "%"
883 * characters.
884 */
885 if (p[1] != 'd' || strchr(p + 2, '%'))
886 return -EINVAL;
887
888 /* Use one page as a bit array of possible slots */
889 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
890 if (!inuse)
891 return -ENOMEM;
892
893 for_each_netdev(net, d) {
894 if (!sscanf(d->name, name, &i))
895 continue;
896 if (i < 0 || i >= max_netdevices)
897 continue;
898
899 /* avoid cases where sscanf is not exact inverse of printf */
900 snprintf(buf, IFNAMSIZ, name, i);
901 if (!strncmp(buf, d->name, IFNAMSIZ))
902 set_bit(i, inuse);
903 }
904
905 i = find_first_zero_bit(inuse, max_netdevices);
906 free_page((unsigned long) inuse);
907 }
908
909 if (buf != name)
910 snprintf(buf, IFNAMSIZ, name, i);
911 if (!__dev_get_by_name(net, buf))
912 return i;
913
914 /* It is possible to run out of possible slots
915 * when the name is long and there isn't enough space left
916 * for the digits, or if all bits are used.
917 */
918 return -ENFILE;
919 }
920
921 /**
922 * dev_alloc_name - allocate a name for a device
923 * @dev: device
924 * @name: name format string
925 *
926 * Passed a format string - eg "lt%d" it will try and find a suitable
927 * id. It scans list of devices to build up a free map, then chooses
928 * the first empty slot. The caller must hold the dev_base or rtnl lock
929 * while allocating the name and adding the device in order to avoid
930 * duplicates.
931 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
932 * Returns the number of the unit assigned or a negative errno code.
933 */
934
935 int dev_alloc_name(struct net_device *dev, const char *name)
936 {
937 char buf[IFNAMSIZ];
938 struct net *net;
939 int ret;
940
941 BUG_ON(!dev_net(dev));
942 net = dev_net(dev);
943 ret = __dev_alloc_name(net, name, buf);
944 if (ret >= 0)
945 strlcpy(dev->name, buf, IFNAMSIZ);
946 return ret;
947 }
948 EXPORT_SYMBOL(dev_alloc_name);
949
950 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
951 {
952 struct net *net;
953
954 BUG_ON(!dev_net(dev));
955 net = dev_net(dev);
956
957 if (!dev_valid_name(name))
958 return -EINVAL;
959
960 if (fmt && strchr(name, '%'))
961 return dev_alloc_name(dev, name);
962 else if (__dev_get_by_name(net, name))
963 return -EEXIST;
964 else if (dev->name != name)
965 strlcpy(dev->name, name, IFNAMSIZ);
966
967 return 0;
968 }
969
970 /**
971 * dev_change_name - change name of a device
972 * @dev: device
973 * @newname: name (or format string) must be at least IFNAMSIZ
974 *
975 * Change name of a device, can pass format strings "eth%d".
976 * for wildcarding.
977 */
978 int dev_change_name(struct net_device *dev, const char *newname)
979 {
980 char oldname[IFNAMSIZ];
981 int err = 0;
982 int ret;
983 struct net *net;
984
985 ASSERT_RTNL();
986 BUG_ON(!dev_net(dev));
987
988 net = dev_net(dev);
989 if (dev->flags & IFF_UP)
990 return -EBUSY;
991
992 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
993 return 0;
994
995 memcpy(oldname, dev->name, IFNAMSIZ);
996
997 err = dev_get_valid_name(dev, newname, 1);
998 if (err < 0)
999 return err;
1000
1001 rollback:
1002 ret = device_rename(&dev->dev, dev->name);
1003 if (ret) {
1004 memcpy(dev->name, oldname, IFNAMSIZ);
1005 return ret;
1006 }
1007
1008 write_lock_bh(&dev_base_lock);
1009 hlist_del(&dev->name_hlist);
1010 write_unlock_bh(&dev_base_lock);
1011
1012 synchronize_rcu();
1013
1014 write_lock_bh(&dev_base_lock);
1015 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1016 write_unlock_bh(&dev_base_lock);
1017
1018 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1019 ret = notifier_to_errno(ret);
1020
1021 if (ret) {
1022 /* err >= 0 after dev_alloc_name() or stores the first errno */
1023 if (err >= 0) {
1024 err = ret;
1025 memcpy(dev->name, oldname, IFNAMSIZ);
1026 goto rollback;
1027 } else {
1028 printk(KERN_ERR
1029 "%s: name change rollback failed: %d.\n",
1030 dev->name, ret);
1031 }
1032 }
1033
1034 return err;
1035 }
1036
1037 /**
1038 * dev_set_alias - change ifalias of a device
1039 * @dev: device
1040 * @alias: name up to IFALIASZ
1041 * @len: limit of bytes to copy from info
1042 *
1043 * Set ifalias for a device,
1044 */
1045 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1046 {
1047 ASSERT_RTNL();
1048
1049 if (len >= IFALIASZ)
1050 return -EINVAL;
1051
1052 if (!len) {
1053 if (dev->ifalias) {
1054 kfree(dev->ifalias);
1055 dev->ifalias = NULL;
1056 }
1057 return 0;
1058 }
1059
1060 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1061 if (!dev->ifalias)
1062 return -ENOMEM;
1063
1064 strlcpy(dev->ifalias, alias, len+1);
1065 return len;
1066 }
1067
1068
1069 /**
1070 * netdev_features_change - device changes features
1071 * @dev: device to cause notification
1072 *
1073 * Called to indicate a device has changed features.
1074 */
1075 void netdev_features_change(struct net_device *dev)
1076 {
1077 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1078 }
1079 EXPORT_SYMBOL(netdev_features_change);
1080
1081 /**
1082 * netdev_state_change - device changes state
1083 * @dev: device to cause notification
1084 *
1085 * Called to indicate a device has changed state. This function calls
1086 * the notifier chains for netdev_chain and sends a NEWLINK message
1087 * to the routing socket.
1088 */
1089 void netdev_state_change(struct net_device *dev)
1090 {
1091 if (dev->flags & IFF_UP) {
1092 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1093 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1094 }
1095 }
1096 EXPORT_SYMBOL(netdev_state_change);
1097
1098 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1099 {
1100 return call_netdevice_notifiers(event, dev);
1101 }
1102 EXPORT_SYMBOL(netdev_bonding_change);
1103
1104 /**
1105 * dev_load - load a network module
1106 * @net: the applicable net namespace
1107 * @name: name of interface
1108 *
1109 * If a network interface is not present and the process has suitable
1110 * privileges this function loads the module. If module loading is not
1111 * available in this kernel then it becomes a nop.
1112 */
1113
1114 void dev_load(struct net *net, const char *name)
1115 {
1116 struct net_device *dev;
1117
1118 rcu_read_lock();
1119 dev = dev_get_by_name_rcu(net, name);
1120 rcu_read_unlock();
1121
1122 if (!dev && capable(CAP_NET_ADMIN))
1123 request_module("%s", name);
1124 }
1125 EXPORT_SYMBOL(dev_load);
1126
1127 static int __dev_open(struct net_device *dev)
1128 {
1129 const struct net_device_ops *ops = dev->netdev_ops;
1130 int ret;
1131
1132 ASSERT_RTNL();
1133
1134 /*
1135 * Is it even present?
1136 */
1137 if (!netif_device_present(dev))
1138 return -ENODEV;
1139
1140 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1141 ret = notifier_to_errno(ret);
1142 if (ret)
1143 return ret;
1144
1145 /*
1146 * Call device private open method
1147 */
1148 set_bit(__LINK_STATE_START, &dev->state);
1149
1150 if (ops->ndo_validate_addr)
1151 ret = ops->ndo_validate_addr(dev);
1152
1153 if (!ret && ops->ndo_open)
1154 ret = ops->ndo_open(dev);
1155
1156 /*
1157 * If it went open OK then:
1158 */
1159
1160 if (ret)
1161 clear_bit(__LINK_STATE_START, &dev->state);
1162 else {
1163 /*
1164 * Set the flags.
1165 */
1166 dev->flags |= IFF_UP;
1167
1168 /*
1169 * Enable NET_DMA
1170 */
1171 net_dmaengine_get();
1172
1173 /*
1174 * Initialize multicasting status
1175 */
1176 dev_set_rx_mode(dev);
1177
1178 /*
1179 * Wakeup transmit queue engine
1180 */
1181 dev_activate(dev);
1182 }
1183
1184 return ret;
1185 }
1186
1187 /**
1188 * dev_open - prepare an interface for use.
1189 * @dev: device to open
1190 *
1191 * Takes a device from down to up state. The device's private open
1192 * function is invoked and then the multicast lists are loaded. Finally
1193 * the device is moved into the up state and a %NETDEV_UP message is
1194 * sent to the netdev notifier chain.
1195 *
1196 * Calling this function on an active interface is a nop. On a failure
1197 * a negative errno code is returned.
1198 */
1199 int dev_open(struct net_device *dev)
1200 {
1201 int ret;
1202
1203 /*
1204 * Is it already up?
1205 */
1206 if (dev->flags & IFF_UP)
1207 return 0;
1208
1209 /*
1210 * Open device
1211 */
1212 ret = __dev_open(dev);
1213 if (ret < 0)
1214 return ret;
1215
1216 /*
1217 * ... and announce new interface.
1218 */
1219 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1220 call_netdevice_notifiers(NETDEV_UP, dev);
1221
1222 return ret;
1223 }
1224 EXPORT_SYMBOL(dev_open);
1225
1226 static int __dev_close(struct net_device *dev)
1227 {
1228 const struct net_device_ops *ops = dev->netdev_ops;
1229
1230 ASSERT_RTNL();
1231 might_sleep();
1232
1233 /*
1234 * Tell people we are going down, so that they can
1235 * prepare to death, when device is still operating.
1236 */
1237 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1238
1239 clear_bit(__LINK_STATE_START, &dev->state);
1240
1241 /* Synchronize to scheduled poll. We cannot touch poll list,
1242 * it can be even on different cpu. So just clear netif_running().
1243 *
1244 * dev->stop() will invoke napi_disable() on all of it's
1245 * napi_struct instances on this device.
1246 */
1247 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1248
1249 dev_deactivate(dev);
1250
1251 /*
1252 * Call the device specific close. This cannot fail.
1253 * Only if device is UP
1254 *
1255 * We allow it to be called even after a DETACH hot-plug
1256 * event.
1257 */
1258 if (ops->ndo_stop)
1259 ops->ndo_stop(dev);
1260
1261 /*
1262 * Device is now down.
1263 */
1264
1265 dev->flags &= ~IFF_UP;
1266
1267 /*
1268 * Shutdown NET_DMA
1269 */
1270 net_dmaengine_put();
1271
1272 return 0;
1273 }
1274
1275 /**
1276 * dev_close - shutdown an interface.
1277 * @dev: device to shutdown
1278 *
1279 * This function moves an active device into down state. A
1280 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1281 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1282 * chain.
1283 */
1284 int dev_close(struct net_device *dev)
1285 {
1286 if (!(dev->flags & IFF_UP))
1287 return 0;
1288
1289 __dev_close(dev);
1290
1291 /*
1292 * Tell people we are down
1293 */
1294 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1295 call_netdevice_notifiers(NETDEV_DOWN, dev);
1296
1297 return 0;
1298 }
1299 EXPORT_SYMBOL(dev_close);
1300
1301
1302 /**
1303 * dev_disable_lro - disable Large Receive Offload on a device
1304 * @dev: device
1305 *
1306 * Disable Large Receive Offload (LRO) on a net device. Must be
1307 * called under RTNL. This is needed if received packets may be
1308 * forwarded to another interface.
1309 */
1310 void dev_disable_lro(struct net_device *dev)
1311 {
1312 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1313 dev->ethtool_ops->set_flags) {
1314 u32 flags = dev->ethtool_ops->get_flags(dev);
1315 if (flags & ETH_FLAG_LRO) {
1316 flags &= ~ETH_FLAG_LRO;
1317 dev->ethtool_ops->set_flags(dev, flags);
1318 }
1319 }
1320 WARN_ON(dev->features & NETIF_F_LRO);
1321 }
1322 EXPORT_SYMBOL(dev_disable_lro);
1323
1324
1325 static int dev_boot_phase = 1;
1326
1327 /*
1328 * Device change register/unregister. These are not inline or static
1329 * as we export them to the world.
1330 */
1331
1332 /**
1333 * register_netdevice_notifier - register a network notifier block
1334 * @nb: notifier
1335 *
1336 * Register a notifier to be called when network device events occur.
1337 * The notifier passed is linked into the kernel structures and must
1338 * not be reused until it has been unregistered. A negative errno code
1339 * is returned on a failure.
1340 *
1341 * When registered all registration and up events are replayed
1342 * to the new notifier to allow device to have a race free
1343 * view of the network device list.
1344 */
1345
1346 int register_netdevice_notifier(struct notifier_block *nb)
1347 {
1348 struct net_device *dev;
1349 struct net_device *last;
1350 struct net *net;
1351 int err;
1352
1353 rtnl_lock();
1354 err = raw_notifier_chain_register(&netdev_chain, nb);
1355 if (err)
1356 goto unlock;
1357 if (dev_boot_phase)
1358 goto unlock;
1359 for_each_net(net) {
1360 for_each_netdev(net, dev) {
1361 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1362 err = notifier_to_errno(err);
1363 if (err)
1364 goto rollback;
1365
1366 if (!(dev->flags & IFF_UP))
1367 continue;
1368
1369 nb->notifier_call(nb, NETDEV_UP, dev);
1370 }
1371 }
1372
1373 unlock:
1374 rtnl_unlock();
1375 return err;
1376
1377 rollback:
1378 last = dev;
1379 for_each_net(net) {
1380 for_each_netdev(net, dev) {
1381 if (dev == last)
1382 break;
1383
1384 if (dev->flags & IFF_UP) {
1385 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1386 nb->notifier_call(nb, NETDEV_DOWN, dev);
1387 }
1388 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1389 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1390 }
1391 }
1392
1393 raw_notifier_chain_unregister(&netdev_chain, nb);
1394 goto unlock;
1395 }
1396 EXPORT_SYMBOL(register_netdevice_notifier);
1397
1398 /**
1399 * unregister_netdevice_notifier - unregister a network notifier block
1400 * @nb: notifier
1401 *
1402 * Unregister a notifier previously registered by
1403 * register_netdevice_notifier(). The notifier is unlinked into the
1404 * kernel structures and may then be reused. A negative errno code
1405 * is returned on a failure.
1406 */
1407
1408 int unregister_netdevice_notifier(struct notifier_block *nb)
1409 {
1410 int err;
1411
1412 rtnl_lock();
1413 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1414 rtnl_unlock();
1415 return err;
1416 }
1417 EXPORT_SYMBOL(unregister_netdevice_notifier);
1418
1419 /**
1420 * call_netdevice_notifiers - call all network notifier blocks
1421 * @val: value passed unmodified to notifier function
1422 * @dev: net_device pointer passed unmodified to notifier function
1423 *
1424 * Call all network notifier blocks. Parameters and return value
1425 * are as for raw_notifier_call_chain().
1426 */
1427
1428 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1429 {
1430 ASSERT_RTNL();
1431 return raw_notifier_call_chain(&netdev_chain, val, dev);
1432 }
1433
1434 /* When > 0 there are consumers of rx skb time stamps */
1435 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1436
1437 void net_enable_timestamp(void)
1438 {
1439 atomic_inc(&netstamp_needed);
1440 }
1441 EXPORT_SYMBOL(net_enable_timestamp);
1442
1443 void net_disable_timestamp(void)
1444 {
1445 atomic_dec(&netstamp_needed);
1446 }
1447 EXPORT_SYMBOL(net_disable_timestamp);
1448
1449 static inline void net_timestamp_set(struct sk_buff *skb)
1450 {
1451 if (atomic_read(&netstamp_needed))
1452 __net_timestamp(skb);
1453 else
1454 skb->tstamp.tv64 = 0;
1455 }
1456
1457 static inline void net_timestamp_check(struct sk_buff *skb)
1458 {
1459 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1460 __net_timestamp(skb);
1461 }
1462
1463 /**
1464 * dev_forward_skb - loopback an skb to another netif
1465 *
1466 * @dev: destination network device
1467 * @skb: buffer to forward
1468 *
1469 * return values:
1470 * NET_RX_SUCCESS (no congestion)
1471 * NET_RX_DROP (packet was dropped, but freed)
1472 *
1473 * dev_forward_skb can be used for injecting an skb from the
1474 * start_xmit function of one device into the receive queue
1475 * of another device.
1476 *
1477 * The receiving device may be in another namespace, so
1478 * we have to clear all information in the skb that could
1479 * impact namespace isolation.
1480 */
1481 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1482 {
1483 skb_orphan(skb);
1484 nf_reset(skb);
1485
1486 if (unlikely(!(dev->flags & IFF_UP) ||
1487 (skb->len > (dev->mtu + dev->hard_header_len)))) {
1488 atomic_long_inc(&dev->rx_dropped);
1489 kfree_skb(skb);
1490 return NET_RX_DROP;
1491 }
1492 skb_set_dev(skb, dev);
1493 skb->tstamp.tv64 = 0;
1494 skb->pkt_type = PACKET_HOST;
1495 skb->protocol = eth_type_trans(skb, dev);
1496 return netif_rx(skb);
1497 }
1498 EXPORT_SYMBOL_GPL(dev_forward_skb);
1499
1500 /*
1501 * Support routine. Sends outgoing frames to any network
1502 * taps currently in use.
1503 */
1504
1505 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1506 {
1507 struct packet_type *ptype;
1508
1509 #ifdef CONFIG_NET_CLS_ACT
1510 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1511 net_timestamp_set(skb);
1512 #else
1513 net_timestamp_set(skb);
1514 #endif
1515
1516 rcu_read_lock();
1517 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1518 /* Never send packets back to the socket
1519 * they originated from - MvS (miquels@drinkel.ow.org)
1520 */
1521 if ((ptype->dev == dev || !ptype->dev) &&
1522 (ptype->af_packet_priv == NULL ||
1523 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1524 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1525 if (!skb2)
1526 break;
1527
1528 /* skb->nh should be correctly
1529 set by sender, so that the second statement is
1530 just protection against buggy protocols.
1531 */
1532 skb_reset_mac_header(skb2);
1533
1534 if (skb_network_header(skb2) < skb2->data ||
1535 skb2->network_header > skb2->tail) {
1536 if (net_ratelimit())
1537 printk(KERN_CRIT "protocol %04x is "
1538 "buggy, dev %s\n",
1539 ntohs(skb2->protocol),
1540 dev->name);
1541 skb_reset_network_header(skb2);
1542 }
1543
1544 skb2->transport_header = skb2->network_header;
1545 skb2->pkt_type = PACKET_OUTGOING;
1546 ptype->func(skb2, skb->dev, ptype, skb->dev);
1547 }
1548 }
1549 rcu_read_unlock();
1550 }
1551
1552 /*
1553 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1554 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1555 */
1556 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1557 {
1558 if (txq < 1 || txq > dev->num_tx_queues)
1559 return -EINVAL;
1560
1561 if (dev->reg_state == NETREG_REGISTERED) {
1562 ASSERT_RTNL();
1563
1564 if (txq < dev->real_num_tx_queues)
1565 qdisc_reset_all_tx_gt(dev, txq);
1566 }
1567
1568 dev->real_num_tx_queues = txq;
1569 return 0;
1570 }
1571 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1572
1573 #ifdef CONFIG_RPS
1574 /**
1575 * netif_set_real_num_rx_queues - set actual number of RX queues used
1576 * @dev: Network device
1577 * @rxq: Actual number of RX queues
1578 *
1579 * This must be called either with the rtnl_lock held or before
1580 * registration of the net device. Returns 0 on success, or a
1581 * negative error code. If called before registration, it always
1582 * succeeds.
1583 */
1584 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1585 {
1586 int rc;
1587
1588 if (rxq < 1 || rxq > dev->num_rx_queues)
1589 return -EINVAL;
1590
1591 if (dev->reg_state == NETREG_REGISTERED) {
1592 ASSERT_RTNL();
1593
1594 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1595 rxq);
1596 if (rc)
1597 return rc;
1598 }
1599
1600 dev->real_num_rx_queues = rxq;
1601 return 0;
1602 }
1603 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1604 #endif
1605
1606 static inline void __netif_reschedule(struct Qdisc *q)
1607 {
1608 struct softnet_data *sd;
1609 unsigned long flags;
1610
1611 local_irq_save(flags);
1612 sd = &__get_cpu_var(softnet_data);
1613 q->next_sched = NULL;
1614 *sd->output_queue_tailp = q;
1615 sd->output_queue_tailp = &q->next_sched;
1616 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1617 local_irq_restore(flags);
1618 }
1619
1620 void __netif_schedule(struct Qdisc *q)
1621 {
1622 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1623 __netif_reschedule(q);
1624 }
1625 EXPORT_SYMBOL(__netif_schedule);
1626
1627 void dev_kfree_skb_irq(struct sk_buff *skb)
1628 {
1629 if (atomic_dec_and_test(&skb->users)) {
1630 struct softnet_data *sd;
1631 unsigned long flags;
1632
1633 local_irq_save(flags);
1634 sd = &__get_cpu_var(softnet_data);
1635 skb->next = sd->completion_queue;
1636 sd->completion_queue = skb;
1637 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1638 local_irq_restore(flags);
1639 }
1640 }
1641 EXPORT_SYMBOL(dev_kfree_skb_irq);
1642
1643 void dev_kfree_skb_any(struct sk_buff *skb)
1644 {
1645 if (in_irq() || irqs_disabled())
1646 dev_kfree_skb_irq(skb);
1647 else
1648 dev_kfree_skb(skb);
1649 }
1650 EXPORT_SYMBOL(dev_kfree_skb_any);
1651
1652
1653 /**
1654 * netif_device_detach - mark device as removed
1655 * @dev: network device
1656 *
1657 * Mark device as removed from system and therefore no longer available.
1658 */
1659 void netif_device_detach(struct net_device *dev)
1660 {
1661 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1662 netif_running(dev)) {
1663 netif_tx_stop_all_queues(dev);
1664 }
1665 }
1666 EXPORT_SYMBOL(netif_device_detach);
1667
1668 /**
1669 * netif_device_attach - mark device as attached
1670 * @dev: network device
1671 *
1672 * Mark device as attached from system and restart if needed.
1673 */
1674 void netif_device_attach(struct net_device *dev)
1675 {
1676 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1677 netif_running(dev)) {
1678 netif_tx_wake_all_queues(dev);
1679 __netdev_watchdog_up(dev);
1680 }
1681 }
1682 EXPORT_SYMBOL(netif_device_attach);
1683
1684 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1685 {
1686 return ((features & NETIF_F_GEN_CSUM) ||
1687 ((features & NETIF_F_IP_CSUM) &&
1688 protocol == htons(ETH_P_IP)) ||
1689 ((features & NETIF_F_IPV6_CSUM) &&
1690 protocol == htons(ETH_P_IPV6)) ||
1691 ((features & NETIF_F_FCOE_CRC) &&
1692 protocol == htons(ETH_P_FCOE)));
1693 }
1694
1695 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1696 {
1697 if (can_checksum_protocol(dev->features, skb->protocol))
1698 return true;
1699
1700 if (skb->protocol == htons(ETH_P_8021Q)) {
1701 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1702 if (can_checksum_protocol(dev->features & dev->vlan_features,
1703 veh->h_vlan_encapsulated_proto))
1704 return true;
1705 }
1706
1707 return false;
1708 }
1709
1710 /**
1711 * skb_dev_set -- assign a new device to a buffer
1712 * @skb: buffer for the new device
1713 * @dev: network device
1714 *
1715 * If an skb is owned by a device already, we have to reset
1716 * all data private to the namespace a device belongs to
1717 * before assigning it a new device.
1718 */
1719 #ifdef CONFIG_NET_NS
1720 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1721 {
1722 skb_dst_drop(skb);
1723 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1724 secpath_reset(skb);
1725 nf_reset(skb);
1726 skb_init_secmark(skb);
1727 skb->mark = 0;
1728 skb->priority = 0;
1729 skb->nf_trace = 0;
1730 skb->ipvs_property = 0;
1731 #ifdef CONFIG_NET_SCHED
1732 skb->tc_index = 0;
1733 #endif
1734 }
1735 skb->dev = dev;
1736 }
1737 EXPORT_SYMBOL(skb_set_dev);
1738 #endif /* CONFIG_NET_NS */
1739
1740 /*
1741 * Invalidate hardware checksum when packet is to be mangled, and
1742 * complete checksum manually on outgoing path.
1743 */
1744 int skb_checksum_help(struct sk_buff *skb)
1745 {
1746 __wsum csum;
1747 int ret = 0, offset;
1748
1749 if (skb->ip_summed == CHECKSUM_COMPLETE)
1750 goto out_set_summed;
1751
1752 if (unlikely(skb_shinfo(skb)->gso_size)) {
1753 /* Let GSO fix up the checksum. */
1754 goto out_set_summed;
1755 }
1756
1757 offset = skb->csum_start - skb_headroom(skb);
1758 BUG_ON(offset >= skb_headlen(skb));
1759 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1760
1761 offset += skb->csum_offset;
1762 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1763
1764 if (skb_cloned(skb) &&
1765 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1766 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1767 if (ret)
1768 goto out;
1769 }
1770
1771 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1772 out_set_summed:
1773 skb->ip_summed = CHECKSUM_NONE;
1774 out:
1775 return ret;
1776 }
1777 EXPORT_SYMBOL(skb_checksum_help);
1778
1779 /**
1780 * skb_gso_segment - Perform segmentation on skb.
1781 * @skb: buffer to segment
1782 * @features: features for the output path (see dev->features)
1783 *
1784 * This function segments the given skb and returns a list of segments.
1785 *
1786 * It may return NULL if the skb requires no segmentation. This is
1787 * only possible when GSO is used for verifying header integrity.
1788 */
1789 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1790 {
1791 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1792 struct packet_type *ptype;
1793 __be16 type = skb->protocol;
1794 int err;
1795
1796 skb_reset_mac_header(skb);
1797 skb->mac_len = skb->network_header - skb->mac_header;
1798 __skb_pull(skb, skb->mac_len);
1799
1800 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1801 struct net_device *dev = skb->dev;
1802 struct ethtool_drvinfo info = {};
1803
1804 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1805 dev->ethtool_ops->get_drvinfo(dev, &info);
1806
1807 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1808 "ip_summed=%d",
1809 info.driver, dev ? dev->features : 0L,
1810 skb->sk ? skb->sk->sk_route_caps : 0L,
1811 skb->len, skb->data_len, skb->ip_summed);
1812
1813 if (skb_header_cloned(skb) &&
1814 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1815 return ERR_PTR(err);
1816 }
1817
1818 rcu_read_lock();
1819 list_for_each_entry_rcu(ptype,
1820 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1821 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1822 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1823 err = ptype->gso_send_check(skb);
1824 segs = ERR_PTR(err);
1825 if (err || skb_gso_ok(skb, features))
1826 break;
1827 __skb_push(skb, (skb->data -
1828 skb_network_header(skb)));
1829 }
1830 segs = ptype->gso_segment(skb, features);
1831 break;
1832 }
1833 }
1834 rcu_read_unlock();
1835
1836 __skb_push(skb, skb->data - skb_mac_header(skb));
1837
1838 return segs;
1839 }
1840 EXPORT_SYMBOL(skb_gso_segment);
1841
1842 /* Take action when hardware reception checksum errors are detected. */
1843 #ifdef CONFIG_BUG
1844 void netdev_rx_csum_fault(struct net_device *dev)
1845 {
1846 if (net_ratelimit()) {
1847 printk(KERN_ERR "%s: hw csum failure.\n",
1848 dev ? dev->name : "<unknown>");
1849 dump_stack();
1850 }
1851 }
1852 EXPORT_SYMBOL(netdev_rx_csum_fault);
1853 #endif
1854
1855 /* Actually, we should eliminate this check as soon as we know, that:
1856 * 1. IOMMU is present and allows to map all the memory.
1857 * 2. No high memory really exists on this machine.
1858 */
1859
1860 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1861 {
1862 #ifdef CONFIG_HIGHMEM
1863 int i;
1864 if (!(dev->features & NETIF_F_HIGHDMA)) {
1865 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1866 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1867 return 1;
1868 }
1869
1870 if (PCI_DMA_BUS_IS_PHYS) {
1871 struct device *pdev = dev->dev.parent;
1872
1873 if (!pdev)
1874 return 0;
1875 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1876 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1877 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1878 return 1;
1879 }
1880 }
1881 #endif
1882 return 0;
1883 }
1884
1885 struct dev_gso_cb {
1886 void (*destructor)(struct sk_buff *skb);
1887 };
1888
1889 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1890
1891 static void dev_gso_skb_destructor(struct sk_buff *skb)
1892 {
1893 struct dev_gso_cb *cb;
1894
1895 do {
1896 struct sk_buff *nskb = skb->next;
1897
1898 skb->next = nskb->next;
1899 nskb->next = NULL;
1900 kfree_skb(nskb);
1901 } while (skb->next);
1902
1903 cb = DEV_GSO_CB(skb);
1904 if (cb->destructor)
1905 cb->destructor(skb);
1906 }
1907
1908 /**
1909 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1910 * @skb: buffer to segment
1911 *
1912 * This function segments the given skb and stores the list of segments
1913 * in skb->next.
1914 */
1915 static int dev_gso_segment(struct sk_buff *skb)
1916 {
1917 struct net_device *dev = skb->dev;
1918 struct sk_buff *segs;
1919 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1920 NETIF_F_SG : 0);
1921
1922 segs = skb_gso_segment(skb, features);
1923
1924 /* Verifying header integrity only. */
1925 if (!segs)
1926 return 0;
1927
1928 if (IS_ERR(segs))
1929 return PTR_ERR(segs);
1930
1931 skb->next = segs;
1932 DEV_GSO_CB(skb)->destructor = skb->destructor;
1933 skb->destructor = dev_gso_skb_destructor;
1934
1935 return 0;
1936 }
1937
1938 /*
1939 * Try to orphan skb early, right before transmission by the device.
1940 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1941 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1942 */
1943 static inline void skb_orphan_try(struct sk_buff *skb)
1944 {
1945 struct sock *sk = skb->sk;
1946
1947 if (sk && !skb_shinfo(skb)->tx_flags) {
1948 /* skb_tx_hash() wont be able to get sk.
1949 * We copy sk_hash into skb->rxhash
1950 */
1951 if (!skb->rxhash)
1952 skb->rxhash = sk->sk_hash;
1953 skb_orphan(skb);
1954 }
1955 }
1956
1957 /*
1958 * Returns true if either:
1959 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1960 * 2. skb is fragmented and the device does not support SG, or if
1961 * at least one of fragments is in highmem and device does not
1962 * support DMA from it.
1963 */
1964 static inline int skb_needs_linearize(struct sk_buff *skb,
1965 struct net_device *dev)
1966 {
1967 return skb_is_nonlinear(skb) &&
1968 ((skb_has_frag_list(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
1969 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
1970 illegal_highdma(dev, skb))));
1971 }
1972
1973 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1974 struct netdev_queue *txq)
1975 {
1976 const struct net_device_ops *ops = dev->netdev_ops;
1977 int rc = NETDEV_TX_OK;
1978
1979 if (likely(!skb->next)) {
1980 if (!list_empty(&ptype_all))
1981 dev_queue_xmit_nit(skb, dev);
1982
1983 /*
1984 * If device doesnt need skb->dst, release it right now while
1985 * its hot in this cpu cache
1986 */
1987 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1988 skb_dst_drop(skb);
1989
1990 skb_orphan_try(skb);
1991
1992 if (netif_needs_gso(dev, skb)) {
1993 if (unlikely(dev_gso_segment(skb)))
1994 goto out_kfree_skb;
1995 if (skb->next)
1996 goto gso;
1997 } else {
1998 if (skb_needs_linearize(skb, dev) &&
1999 __skb_linearize(skb))
2000 goto out_kfree_skb;
2001
2002 /* If packet is not checksummed and device does not
2003 * support checksumming for this protocol, complete
2004 * checksumming here.
2005 */
2006 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2007 skb_set_transport_header(skb, skb->csum_start -
2008 skb_headroom(skb));
2009 if (!dev_can_checksum(dev, skb) &&
2010 skb_checksum_help(skb))
2011 goto out_kfree_skb;
2012 }
2013 }
2014
2015 rc = ops->ndo_start_xmit(skb, dev);
2016 if (rc == NETDEV_TX_OK)
2017 txq_trans_update(txq);
2018 return rc;
2019 }
2020
2021 gso:
2022 do {
2023 struct sk_buff *nskb = skb->next;
2024
2025 skb->next = nskb->next;
2026 nskb->next = NULL;
2027
2028 /*
2029 * If device doesnt need nskb->dst, release it right now while
2030 * its hot in this cpu cache
2031 */
2032 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2033 skb_dst_drop(nskb);
2034
2035 rc = ops->ndo_start_xmit(nskb, dev);
2036 if (unlikely(rc != NETDEV_TX_OK)) {
2037 if (rc & ~NETDEV_TX_MASK)
2038 goto out_kfree_gso_skb;
2039 nskb->next = skb->next;
2040 skb->next = nskb;
2041 return rc;
2042 }
2043 txq_trans_update(txq);
2044 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2045 return NETDEV_TX_BUSY;
2046 } while (skb->next);
2047
2048 out_kfree_gso_skb:
2049 if (likely(skb->next == NULL))
2050 skb->destructor = DEV_GSO_CB(skb)->destructor;
2051 out_kfree_skb:
2052 kfree_skb(skb);
2053 return rc;
2054 }
2055
2056 static u32 hashrnd __read_mostly;
2057
2058 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2059 {
2060 u32 hash;
2061
2062 if (skb_rx_queue_recorded(skb)) {
2063 hash = skb_get_rx_queue(skb);
2064 while (unlikely(hash >= dev->real_num_tx_queues))
2065 hash -= dev->real_num_tx_queues;
2066 return hash;
2067 }
2068
2069 if (skb->sk && skb->sk->sk_hash)
2070 hash = skb->sk->sk_hash;
2071 else
2072 hash = (__force u16) skb->protocol ^ skb->rxhash;
2073 hash = jhash_1word(hash, hashrnd);
2074
2075 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2076 }
2077 EXPORT_SYMBOL(skb_tx_hash);
2078
2079 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2080 {
2081 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2082 if (net_ratelimit()) {
2083 pr_warning("%s selects TX queue %d, but "
2084 "real number of TX queues is %d\n",
2085 dev->name, queue_index, dev->real_num_tx_queues);
2086 }
2087 return 0;
2088 }
2089 return queue_index;
2090 }
2091
2092 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2093 struct sk_buff *skb)
2094 {
2095 int queue_index;
2096 const struct net_device_ops *ops = dev->netdev_ops;
2097
2098 if (ops->ndo_select_queue) {
2099 queue_index = ops->ndo_select_queue(dev, skb);
2100 queue_index = dev_cap_txqueue(dev, queue_index);
2101 } else {
2102 struct sock *sk = skb->sk;
2103 queue_index = sk_tx_queue_get(sk);
2104 if (queue_index < 0) {
2105
2106 queue_index = 0;
2107 if (dev->real_num_tx_queues > 1)
2108 queue_index = skb_tx_hash(dev, skb);
2109
2110 if (sk) {
2111 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2112
2113 if (dst && skb_dst(skb) == dst)
2114 sk_tx_queue_set(sk, queue_index);
2115 }
2116 }
2117 }
2118
2119 skb_set_queue_mapping(skb, queue_index);
2120 return netdev_get_tx_queue(dev, queue_index);
2121 }
2122
2123 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2124 struct net_device *dev,
2125 struct netdev_queue *txq)
2126 {
2127 spinlock_t *root_lock = qdisc_lock(q);
2128 bool contended = qdisc_is_running(q);
2129 int rc;
2130
2131 /*
2132 * Heuristic to force contended enqueues to serialize on a
2133 * separate lock before trying to get qdisc main lock.
2134 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2135 * and dequeue packets faster.
2136 */
2137 if (unlikely(contended))
2138 spin_lock(&q->busylock);
2139
2140 spin_lock(root_lock);
2141 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2142 kfree_skb(skb);
2143 rc = NET_XMIT_DROP;
2144 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2145 qdisc_run_begin(q)) {
2146 /*
2147 * This is a work-conserving queue; there are no old skbs
2148 * waiting to be sent out; and the qdisc is not running -
2149 * xmit the skb directly.
2150 */
2151 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2152 skb_dst_force(skb);
2153 __qdisc_update_bstats(q, skb->len);
2154 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2155 if (unlikely(contended)) {
2156 spin_unlock(&q->busylock);
2157 contended = false;
2158 }
2159 __qdisc_run(q);
2160 } else
2161 qdisc_run_end(q);
2162
2163 rc = NET_XMIT_SUCCESS;
2164 } else {
2165 skb_dst_force(skb);
2166 rc = qdisc_enqueue_root(skb, q);
2167 if (qdisc_run_begin(q)) {
2168 if (unlikely(contended)) {
2169 spin_unlock(&q->busylock);
2170 contended = false;
2171 }
2172 __qdisc_run(q);
2173 }
2174 }
2175 spin_unlock(root_lock);
2176 if (unlikely(contended))
2177 spin_unlock(&q->busylock);
2178 return rc;
2179 }
2180
2181 static DEFINE_PER_CPU(int, xmit_recursion);
2182 #define RECURSION_LIMIT 3
2183
2184 /**
2185 * dev_queue_xmit - transmit a buffer
2186 * @skb: buffer to transmit
2187 *
2188 * Queue a buffer for transmission to a network device. The caller must
2189 * have set the device and priority and built the buffer before calling
2190 * this function. The function can be called from an interrupt.
2191 *
2192 * A negative errno code is returned on a failure. A success does not
2193 * guarantee the frame will be transmitted as it may be dropped due
2194 * to congestion or traffic shaping.
2195 *
2196 * -----------------------------------------------------------------------------------
2197 * I notice this method can also return errors from the queue disciplines,
2198 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2199 * be positive.
2200 *
2201 * Regardless of the return value, the skb is consumed, so it is currently
2202 * difficult to retry a send to this method. (You can bump the ref count
2203 * before sending to hold a reference for retry if you are careful.)
2204 *
2205 * When calling this method, interrupts MUST be enabled. This is because
2206 * the BH enable code must have IRQs enabled so that it will not deadlock.
2207 * --BLG
2208 */
2209 int dev_queue_xmit(struct sk_buff *skb)
2210 {
2211 struct net_device *dev = skb->dev;
2212 struct netdev_queue *txq;
2213 struct Qdisc *q;
2214 int rc = -ENOMEM;
2215
2216 /* Disable soft irqs for various locks below. Also
2217 * stops preemption for RCU.
2218 */
2219 rcu_read_lock_bh();
2220
2221 txq = dev_pick_tx(dev, skb);
2222 q = rcu_dereference_bh(txq->qdisc);
2223
2224 #ifdef CONFIG_NET_CLS_ACT
2225 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2226 #endif
2227 if (q->enqueue) {
2228 rc = __dev_xmit_skb(skb, q, dev, txq);
2229 goto out;
2230 }
2231
2232 /* The device has no queue. Common case for software devices:
2233 loopback, all the sorts of tunnels...
2234
2235 Really, it is unlikely that netif_tx_lock protection is necessary
2236 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2237 counters.)
2238 However, it is possible, that they rely on protection
2239 made by us here.
2240
2241 Check this and shot the lock. It is not prone from deadlocks.
2242 Either shot noqueue qdisc, it is even simpler 8)
2243 */
2244 if (dev->flags & IFF_UP) {
2245 int cpu = smp_processor_id(); /* ok because BHs are off */
2246
2247 if (txq->xmit_lock_owner != cpu) {
2248
2249 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2250 goto recursion_alert;
2251
2252 HARD_TX_LOCK(dev, txq, cpu);
2253
2254 if (!netif_tx_queue_stopped(txq)) {
2255 __this_cpu_inc(xmit_recursion);
2256 rc = dev_hard_start_xmit(skb, dev, txq);
2257 __this_cpu_dec(xmit_recursion);
2258 if (dev_xmit_complete(rc)) {
2259 HARD_TX_UNLOCK(dev, txq);
2260 goto out;
2261 }
2262 }
2263 HARD_TX_UNLOCK(dev, txq);
2264 if (net_ratelimit())
2265 printk(KERN_CRIT "Virtual device %s asks to "
2266 "queue packet!\n", dev->name);
2267 } else {
2268 /* Recursion is detected! It is possible,
2269 * unfortunately
2270 */
2271 recursion_alert:
2272 if (net_ratelimit())
2273 printk(KERN_CRIT "Dead loop on virtual device "
2274 "%s, fix it urgently!\n", dev->name);
2275 }
2276 }
2277
2278 rc = -ENETDOWN;
2279 rcu_read_unlock_bh();
2280
2281 kfree_skb(skb);
2282 return rc;
2283 out:
2284 rcu_read_unlock_bh();
2285 return rc;
2286 }
2287 EXPORT_SYMBOL(dev_queue_xmit);
2288
2289
2290 /*=======================================================================
2291 Receiver routines
2292 =======================================================================*/
2293
2294 int netdev_max_backlog __read_mostly = 1000;
2295 int netdev_tstamp_prequeue __read_mostly = 1;
2296 int netdev_budget __read_mostly = 300;
2297 int weight_p __read_mostly = 64; /* old backlog weight */
2298
2299 /* Called with irq disabled */
2300 static inline void ____napi_schedule(struct softnet_data *sd,
2301 struct napi_struct *napi)
2302 {
2303 list_add_tail(&napi->poll_list, &sd->poll_list);
2304 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2305 }
2306
2307 /*
2308 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2309 * and src/dst port numbers. Returns a non-zero hash number on success
2310 * and 0 on failure.
2311 */
2312 __u32 __skb_get_rxhash(struct sk_buff *skb)
2313 {
2314 int nhoff, hash = 0, poff;
2315 struct ipv6hdr *ip6;
2316 struct iphdr *ip;
2317 u8 ip_proto;
2318 u32 addr1, addr2, ihl;
2319 union {
2320 u32 v32;
2321 u16 v16[2];
2322 } ports;
2323
2324 nhoff = skb_network_offset(skb);
2325
2326 switch (skb->protocol) {
2327 case __constant_htons(ETH_P_IP):
2328 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2329 goto done;
2330
2331 ip = (struct iphdr *) (skb->data + nhoff);
2332 if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2333 ip_proto = 0;
2334 else
2335 ip_proto = ip->protocol;
2336 addr1 = (__force u32) ip->saddr;
2337 addr2 = (__force u32) ip->daddr;
2338 ihl = ip->ihl;
2339 break;
2340 case __constant_htons(ETH_P_IPV6):
2341 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2342 goto done;
2343
2344 ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2345 ip_proto = ip6->nexthdr;
2346 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2347 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2348 ihl = (40 >> 2);
2349 break;
2350 default:
2351 goto done;
2352 }
2353
2354 ports.v32 = 0;
2355 poff = proto_ports_offset(ip_proto);
2356 if (poff >= 0) {
2357 nhoff += ihl * 4 + poff;
2358 if (pskb_may_pull(skb, nhoff + 4)) {
2359 ports.v32 = * (__force u32 *) (skb->data + nhoff);
2360 if (ports.v16[1] < ports.v16[0])
2361 swap(ports.v16[0], ports.v16[1]);
2362 }
2363 }
2364
2365 /* get a consistent hash (same value on both flow directions) */
2366 if (addr2 < addr1)
2367 swap(addr1, addr2);
2368
2369 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2370 if (!hash)
2371 hash = 1;
2372
2373 done:
2374 return hash;
2375 }
2376 EXPORT_SYMBOL(__skb_get_rxhash);
2377
2378 #ifdef CONFIG_RPS
2379
2380 /* One global table that all flow-based protocols share. */
2381 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2382 EXPORT_SYMBOL(rps_sock_flow_table);
2383
2384 /*
2385 * get_rps_cpu is called from netif_receive_skb and returns the target
2386 * CPU from the RPS map of the receiving queue for a given skb.
2387 * rcu_read_lock must be held on entry.
2388 */
2389 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2390 struct rps_dev_flow **rflowp)
2391 {
2392 struct netdev_rx_queue *rxqueue;
2393 struct rps_map *map = NULL;
2394 struct rps_dev_flow_table *flow_table;
2395 struct rps_sock_flow_table *sock_flow_table;
2396 int cpu = -1;
2397 u16 tcpu;
2398
2399 if (skb_rx_queue_recorded(skb)) {
2400 u16 index = skb_get_rx_queue(skb);
2401 if (unlikely(index >= dev->real_num_rx_queues)) {
2402 WARN_ONCE(dev->real_num_rx_queues > 1,
2403 "%s received packet on queue %u, but number "
2404 "of RX queues is %u\n",
2405 dev->name, index, dev->real_num_rx_queues);
2406 goto done;
2407 }
2408 rxqueue = dev->_rx + index;
2409 } else
2410 rxqueue = dev->_rx;
2411
2412 if (rxqueue->rps_map) {
2413 map = rcu_dereference(rxqueue->rps_map);
2414 if (map && map->len == 1) {
2415 tcpu = map->cpus[0];
2416 if (cpu_online(tcpu))
2417 cpu = tcpu;
2418 goto done;
2419 }
2420 } else if (!rxqueue->rps_flow_table) {
2421 goto done;
2422 }
2423
2424 skb_reset_network_header(skb);
2425 if (!skb_get_rxhash(skb))
2426 goto done;
2427
2428 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2429 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2430 if (flow_table && sock_flow_table) {
2431 u16 next_cpu;
2432 struct rps_dev_flow *rflow;
2433
2434 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2435 tcpu = rflow->cpu;
2436
2437 next_cpu = sock_flow_table->ents[skb->rxhash &
2438 sock_flow_table->mask];
2439
2440 /*
2441 * If the desired CPU (where last recvmsg was done) is
2442 * different from current CPU (one in the rx-queue flow
2443 * table entry), switch if one of the following holds:
2444 * - Current CPU is unset (equal to RPS_NO_CPU).
2445 * - Current CPU is offline.
2446 * - The current CPU's queue tail has advanced beyond the
2447 * last packet that was enqueued using this table entry.
2448 * This guarantees that all previous packets for the flow
2449 * have been dequeued, thus preserving in order delivery.
2450 */
2451 if (unlikely(tcpu != next_cpu) &&
2452 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2453 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2454 rflow->last_qtail)) >= 0)) {
2455 tcpu = rflow->cpu = next_cpu;
2456 if (tcpu != RPS_NO_CPU)
2457 rflow->last_qtail = per_cpu(softnet_data,
2458 tcpu).input_queue_head;
2459 }
2460 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2461 *rflowp = rflow;
2462 cpu = tcpu;
2463 goto done;
2464 }
2465 }
2466
2467 if (map) {
2468 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2469
2470 if (cpu_online(tcpu)) {
2471 cpu = tcpu;
2472 goto done;
2473 }
2474 }
2475
2476 done:
2477 return cpu;
2478 }
2479
2480 /* Called from hardirq (IPI) context */
2481 static void rps_trigger_softirq(void *data)
2482 {
2483 struct softnet_data *sd = data;
2484
2485 ____napi_schedule(sd, &sd->backlog);
2486 sd->received_rps++;
2487 }
2488
2489 #endif /* CONFIG_RPS */
2490
2491 /*
2492 * Check if this softnet_data structure is another cpu one
2493 * If yes, queue it to our IPI list and return 1
2494 * If no, return 0
2495 */
2496 static int rps_ipi_queued(struct softnet_data *sd)
2497 {
2498 #ifdef CONFIG_RPS
2499 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2500
2501 if (sd != mysd) {
2502 sd->rps_ipi_next = mysd->rps_ipi_list;
2503 mysd->rps_ipi_list = sd;
2504
2505 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2506 return 1;
2507 }
2508 #endif /* CONFIG_RPS */
2509 return 0;
2510 }
2511
2512 /*
2513 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2514 * queue (may be a remote CPU queue).
2515 */
2516 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2517 unsigned int *qtail)
2518 {
2519 struct softnet_data *sd;
2520 unsigned long flags;
2521
2522 sd = &per_cpu(softnet_data, cpu);
2523
2524 local_irq_save(flags);
2525
2526 rps_lock(sd);
2527 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2528 if (skb_queue_len(&sd->input_pkt_queue)) {
2529 enqueue:
2530 __skb_queue_tail(&sd->input_pkt_queue, skb);
2531 input_queue_tail_incr_save(sd, qtail);
2532 rps_unlock(sd);
2533 local_irq_restore(flags);
2534 return NET_RX_SUCCESS;
2535 }
2536
2537 /* Schedule NAPI for backlog device
2538 * We can use non atomic operation since we own the queue lock
2539 */
2540 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2541 if (!rps_ipi_queued(sd))
2542 ____napi_schedule(sd, &sd->backlog);
2543 }
2544 goto enqueue;
2545 }
2546
2547 sd->dropped++;
2548 rps_unlock(sd);
2549
2550 local_irq_restore(flags);
2551
2552 atomic_long_inc(&skb->dev->rx_dropped);
2553 kfree_skb(skb);
2554 return NET_RX_DROP;
2555 }
2556
2557 /**
2558 * netif_rx - post buffer to the network code
2559 * @skb: buffer to post
2560 *
2561 * This function receives a packet from a device driver and queues it for
2562 * the upper (protocol) levels to process. It always succeeds. The buffer
2563 * may be dropped during processing for congestion control or by the
2564 * protocol layers.
2565 *
2566 * return values:
2567 * NET_RX_SUCCESS (no congestion)
2568 * NET_RX_DROP (packet was dropped)
2569 *
2570 */
2571
2572 int netif_rx(struct sk_buff *skb)
2573 {
2574 int ret;
2575
2576 /* if netpoll wants it, pretend we never saw it */
2577 if (netpoll_rx(skb))
2578 return NET_RX_DROP;
2579
2580 if (netdev_tstamp_prequeue)
2581 net_timestamp_check(skb);
2582
2583 #ifdef CONFIG_RPS
2584 {
2585 struct rps_dev_flow voidflow, *rflow = &voidflow;
2586 int cpu;
2587
2588 preempt_disable();
2589 rcu_read_lock();
2590
2591 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2592 if (cpu < 0)
2593 cpu = smp_processor_id();
2594
2595 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2596
2597 rcu_read_unlock();
2598 preempt_enable();
2599 }
2600 #else
2601 {
2602 unsigned int qtail;
2603 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2604 put_cpu();
2605 }
2606 #endif
2607 return ret;
2608 }
2609 EXPORT_SYMBOL(netif_rx);
2610
2611 int netif_rx_ni(struct sk_buff *skb)
2612 {
2613 int err;
2614
2615 preempt_disable();
2616 err = netif_rx(skb);
2617 if (local_softirq_pending())
2618 do_softirq();
2619 preempt_enable();
2620
2621 return err;
2622 }
2623 EXPORT_SYMBOL(netif_rx_ni);
2624
2625 static void net_tx_action(struct softirq_action *h)
2626 {
2627 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2628
2629 if (sd->completion_queue) {
2630 struct sk_buff *clist;
2631
2632 local_irq_disable();
2633 clist = sd->completion_queue;
2634 sd->completion_queue = NULL;
2635 local_irq_enable();
2636
2637 while (clist) {
2638 struct sk_buff *skb = clist;
2639 clist = clist->next;
2640
2641 WARN_ON(atomic_read(&skb->users));
2642 __kfree_skb(skb);
2643 }
2644 }
2645
2646 if (sd->output_queue) {
2647 struct Qdisc *head;
2648
2649 local_irq_disable();
2650 head = sd->output_queue;
2651 sd->output_queue = NULL;
2652 sd->output_queue_tailp = &sd->output_queue;
2653 local_irq_enable();
2654
2655 while (head) {
2656 struct Qdisc *q = head;
2657 spinlock_t *root_lock;
2658
2659 head = head->next_sched;
2660
2661 root_lock = qdisc_lock(q);
2662 if (spin_trylock(root_lock)) {
2663 smp_mb__before_clear_bit();
2664 clear_bit(__QDISC_STATE_SCHED,
2665 &q->state);
2666 qdisc_run(q);
2667 spin_unlock(root_lock);
2668 } else {
2669 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2670 &q->state)) {
2671 __netif_reschedule(q);
2672 } else {
2673 smp_mb__before_clear_bit();
2674 clear_bit(__QDISC_STATE_SCHED,
2675 &q->state);
2676 }
2677 }
2678 }
2679 }
2680 }
2681
2682 static inline int deliver_skb(struct sk_buff *skb,
2683 struct packet_type *pt_prev,
2684 struct net_device *orig_dev)
2685 {
2686 atomic_inc(&skb->users);
2687 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2688 }
2689
2690 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2691 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2692 /* This hook is defined here for ATM LANE */
2693 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2694 unsigned char *addr) __read_mostly;
2695 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2696 #endif
2697
2698 #ifdef CONFIG_NET_CLS_ACT
2699 /* TODO: Maybe we should just force sch_ingress to be compiled in
2700 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2701 * a compare and 2 stores extra right now if we dont have it on
2702 * but have CONFIG_NET_CLS_ACT
2703 * NOTE: This doesnt stop any functionality; if you dont have
2704 * the ingress scheduler, you just cant add policies on ingress.
2705 *
2706 */
2707 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2708 {
2709 struct net_device *dev = skb->dev;
2710 u32 ttl = G_TC_RTTL(skb->tc_verd);
2711 int result = TC_ACT_OK;
2712 struct Qdisc *q;
2713
2714 if (unlikely(MAX_RED_LOOP < ttl++)) {
2715 if (net_ratelimit())
2716 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2717 skb->skb_iif, dev->ifindex);
2718 return TC_ACT_SHOT;
2719 }
2720
2721 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2722 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2723
2724 q = rxq->qdisc;
2725 if (q != &noop_qdisc) {
2726 spin_lock(qdisc_lock(q));
2727 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2728 result = qdisc_enqueue_root(skb, q);
2729 spin_unlock(qdisc_lock(q));
2730 }
2731
2732 return result;
2733 }
2734
2735 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2736 struct packet_type **pt_prev,
2737 int *ret, struct net_device *orig_dev)
2738 {
2739 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2740
2741 if (!rxq || rxq->qdisc == &noop_qdisc)
2742 goto out;
2743
2744 if (*pt_prev) {
2745 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2746 *pt_prev = NULL;
2747 }
2748
2749 switch (ing_filter(skb, rxq)) {
2750 case TC_ACT_SHOT:
2751 case TC_ACT_STOLEN:
2752 kfree_skb(skb);
2753 return NULL;
2754 }
2755
2756 out:
2757 skb->tc_verd = 0;
2758 return skb;
2759 }
2760 #endif
2761
2762 /*
2763 * netif_nit_deliver - deliver received packets to network taps
2764 * @skb: buffer
2765 *
2766 * This function is used to deliver incoming packets to network
2767 * taps. It should be used when the normal netif_receive_skb path
2768 * is bypassed, for example because of VLAN acceleration.
2769 */
2770 void netif_nit_deliver(struct sk_buff *skb)
2771 {
2772 struct packet_type *ptype;
2773
2774 if (list_empty(&ptype_all))
2775 return;
2776
2777 skb_reset_network_header(skb);
2778 skb_reset_transport_header(skb);
2779 skb->mac_len = skb->network_header - skb->mac_header;
2780
2781 rcu_read_lock();
2782 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2783 if (!ptype->dev || ptype->dev == skb->dev)
2784 deliver_skb(skb, ptype, skb->dev);
2785 }
2786 rcu_read_unlock();
2787 }
2788
2789 /**
2790 * netdev_rx_handler_register - register receive handler
2791 * @dev: device to register a handler for
2792 * @rx_handler: receive handler to register
2793 * @rx_handler_data: data pointer that is used by rx handler
2794 *
2795 * Register a receive hander for a device. This handler will then be
2796 * called from __netif_receive_skb. A negative errno code is returned
2797 * on a failure.
2798 *
2799 * The caller must hold the rtnl_mutex.
2800 */
2801 int netdev_rx_handler_register(struct net_device *dev,
2802 rx_handler_func_t *rx_handler,
2803 void *rx_handler_data)
2804 {
2805 ASSERT_RTNL();
2806
2807 if (dev->rx_handler)
2808 return -EBUSY;
2809
2810 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2811 rcu_assign_pointer(dev->rx_handler, rx_handler);
2812
2813 return 0;
2814 }
2815 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2816
2817 /**
2818 * netdev_rx_handler_unregister - unregister receive handler
2819 * @dev: device to unregister a handler from
2820 *
2821 * Unregister a receive hander from a device.
2822 *
2823 * The caller must hold the rtnl_mutex.
2824 */
2825 void netdev_rx_handler_unregister(struct net_device *dev)
2826 {
2827
2828 ASSERT_RTNL();
2829 rcu_assign_pointer(dev->rx_handler, NULL);
2830 rcu_assign_pointer(dev->rx_handler_data, NULL);
2831 }
2832 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2833
2834 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2835 struct net_device *master)
2836 {
2837 if (skb->pkt_type == PACKET_HOST) {
2838 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2839
2840 memcpy(dest, master->dev_addr, ETH_ALEN);
2841 }
2842 }
2843
2844 /* On bonding slaves other than the currently active slave, suppress
2845 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2846 * ARP on active-backup slaves with arp_validate enabled.
2847 */
2848 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2849 {
2850 struct net_device *dev = skb->dev;
2851
2852 if (master->priv_flags & IFF_MASTER_ARPMON)
2853 dev->last_rx = jiffies;
2854
2855 if ((master->priv_flags & IFF_MASTER_ALB) &&
2856 (master->priv_flags & IFF_BRIDGE_PORT)) {
2857 /* Do address unmangle. The local destination address
2858 * will be always the one master has. Provides the right
2859 * functionality in a bridge.
2860 */
2861 skb_bond_set_mac_by_master(skb, master);
2862 }
2863
2864 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2865 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2866 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2867 return 0;
2868
2869 if (master->priv_flags & IFF_MASTER_ALB) {
2870 if (skb->pkt_type != PACKET_BROADCAST &&
2871 skb->pkt_type != PACKET_MULTICAST)
2872 return 0;
2873 }
2874 if (master->priv_flags & IFF_MASTER_8023AD &&
2875 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2876 return 0;
2877
2878 return 1;
2879 }
2880 return 0;
2881 }
2882 EXPORT_SYMBOL(__skb_bond_should_drop);
2883
2884 static int __netif_receive_skb(struct sk_buff *skb)
2885 {
2886 struct packet_type *ptype, *pt_prev;
2887 rx_handler_func_t *rx_handler;
2888 struct net_device *orig_dev;
2889 struct net_device *master;
2890 struct net_device *null_or_orig;
2891 struct net_device *orig_or_bond;
2892 int ret = NET_RX_DROP;
2893 __be16 type;
2894
2895 if (!netdev_tstamp_prequeue)
2896 net_timestamp_check(skb);
2897
2898 if (vlan_tx_tag_present(skb))
2899 vlan_hwaccel_do_receive(skb);
2900
2901 /* if we've gotten here through NAPI, check netpoll */
2902 if (netpoll_receive_skb(skb))
2903 return NET_RX_DROP;
2904
2905 if (!skb->skb_iif)
2906 skb->skb_iif = skb->dev->ifindex;
2907
2908 /*
2909 * bonding note: skbs received on inactive slaves should only
2910 * be delivered to pkt handlers that are exact matches. Also
2911 * the deliver_no_wcard flag will be set. If packet handlers
2912 * are sensitive to duplicate packets these skbs will need to
2913 * be dropped at the handler. The vlan accel path may have
2914 * already set the deliver_no_wcard flag.
2915 */
2916 null_or_orig = NULL;
2917 orig_dev = skb->dev;
2918 master = ACCESS_ONCE(orig_dev->master);
2919 if (skb->deliver_no_wcard)
2920 null_or_orig = orig_dev;
2921 else if (master) {
2922 if (skb_bond_should_drop(skb, master)) {
2923 skb->deliver_no_wcard = 1;
2924 null_or_orig = orig_dev; /* deliver only exact match */
2925 } else
2926 skb->dev = master;
2927 }
2928
2929 __this_cpu_inc(softnet_data.processed);
2930 skb_reset_network_header(skb);
2931 skb_reset_transport_header(skb);
2932 skb->mac_len = skb->network_header - skb->mac_header;
2933
2934 pt_prev = NULL;
2935
2936 rcu_read_lock();
2937
2938 #ifdef CONFIG_NET_CLS_ACT
2939 if (skb->tc_verd & TC_NCLS) {
2940 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2941 goto ncls;
2942 }
2943 #endif
2944
2945 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2946 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2947 ptype->dev == orig_dev) {
2948 if (pt_prev)
2949 ret = deliver_skb(skb, pt_prev, orig_dev);
2950 pt_prev = ptype;
2951 }
2952 }
2953
2954 #ifdef CONFIG_NET_CLS_ACT
2955 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2956 if (!skb)
2957 goto out;
2958 ncls:
2959 #endif
2960
2961 /* Handle special case of bridge or macvlan */
2962 rx_handler = rcu_dereference(skb->dev->rx_handler);
2963 if (rx_handler) {
2964 if (pt_prev) {
2965 ret = deliver_skb(skb, pt_prev, orig_dev);
2966 pt_prev = NULL;
2967 }
2968 skb = rx_handler(skb);
2969 if (!skb)
2970 goto out;
2971 }
2972
2973 /*
2974 * Make sure frames received on VLAN interfaces stacked on
2975 * bonding interfaces still make their way to any base bonding
2976 * device that may have registered for a specific ptype. The
2977 * handler may have to adjust skb->dev and orig_dev.
2978 */
2979 orig_or_bond = orig_dev;
2980 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2981 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2982 orig_or_bond = vlan_dev_real_dev(skb->dev);
2983 }
2984
2985 type = skb->protocol;
2986 list_for_each_entry_rcu(ptype,
2987 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2988 if (ptype->type == type && (ptype->dev == null_or_orig ||
2989 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2990 ptype->dev == orig_or_bond)) {
2991 if (pt_prev)
2992 ret = deliver_skb(skb, pt_prev, orig_dev);
2993 pt_prev = ptype;
2994 }
2995 }
2996
2997 if (pt_prev) {
2998 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2999 } else {
3000 atomic_long_inc(&skb->dev->rx_dropped);
3001 kfree_skb(skb);
3002 /* Jamal, now you will not able to escape explaining
3003 * me how you were going to use this. :-)
3004 */
3005 ret = NET_RX_DROP;
3006 }
3007
3008 out:
3009 rcu_read_unlock();
3010 return ret;
3011 }
3012
3013 /**
3014 * netif_receive_skb - process receive buffer from network
3015 * @skb: buffer to process
3016 *
3017 * netif_receive_skb() is the main receive data processing function.
3018 * It always succeeds. The buffer may be dropped during processing
3019 * for congestion control or by the protocol layers.
3020 *
3021 * This function may only be called from softirq context and interrupts
3022 * should be enabled.
3023 *
3024 * Return values (usually ignored):
3025 * NET_RX_SUCCESS: no congestion
3026 * NET_RX_DROP: packet was dropped
3027 */
3028 int netif_receive_skb(struct sk_buff *skb)
3029 {
3030 if (netdev_tstamp_prequeue)
3031 net_timestamp_check(skb);
3032
3033 if (skb_defer_rx_timestamp(skb))
3034 return NET_RX_SUCCESS;
3035
3036 #ifdef CONFIG_RPS
3037 {
3038 struct rps_dev_flow voidflow, *rflow = &voidflow;
3039 int cpu, ret;
3040
3041 rcu_read_lock();
3042
3043 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3044
3045 if (cpu >= 0) {
3046 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3047 rcu_read_unlock();
3048 } else {
3049 rcu_read_unlock();
3050 ret = __netif_receive_skb(skb);
3051 }
3052
3053 return ret;
3054 }
3055 #else
3056 return __netif_receive_skb(skb);
3057 #endif
3058 }
3059 EXPORT_SYMBOL(netif_receive_skb);
3060
3061 /* Network device is going away, flush any packets still pending
3062 * Called with irqs disabled.
3063 */
3064 static void flush_backlog(void *arg)
3065 {
3066 struct net_device *dev = arg;
3067 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3068 struct sk_buff *skb, *tmp;
3069
3070 rps_lock(sd);
3071 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3072 if (skb->dev == dev) {
3073 __skb_unlink(skb, &sd->input_pkt_queue);
3074 kfree_skb(skb);
3075 input_queue_head_incr(sd);
3076 }
3077 }
3078 rps_unlock(sd);
3079
3080 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3081 if (skb->dev == dev) {
3082 __skb_unlink(skb, &sd->process_queue);
3083 kfree_skb(skb);
3084 input_queue_head_incr(sd);
3085 }
3086 }
3087 }
3088
3089 static int napi_gro_complete(struct sk_buff *skb)
3090 {
3091 struct packet_type *ptype;
3092 __be16 type = skb->protocol;
3093 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3094 int err = -ENOENT;
3095
3096 if (NAPI_GRO_CB(skb)->count == 1) {
3097 skb_shinfo(skb)->gso_size = 0;
3098 goto out;
3099 }
3100
3101 rcu_read_lock();
3102 list_for_each_entry_rcu(ptype, head, list) {
3103 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3104 continue;
3105
3106 err = ptype->gro_complete(skb);
3107 break;
3108 }
3109 rcu_read_unlock();
3110
3111 if (err) {
3112 WARN_ON(&ptype->list == head);
3113 kfree_skb(skb);
3114 return NET_RX_SUCCESS;
3115 }
3116
3117 out:
3118 return netif_receive_skb(skb);
3119 }
3120
3121 inline void napi_gro_flush(struct napi_struct *napi)
3122 {
3123 struct sk_buff *skb, *next;
3124
3125 for (skb = napi->gro_list; skb; skb = next) {
3126 next = skb->next;
3127 skb->next = NULL;
3128 napi_gro_complete(skb);
3129 }
3130
3131 napi->gro_count = 0;
3132 napi->gro_list = NULL;
3133 }
3134 EXPORT_SYMBOL(napi_gro_flush);
3135
3136 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3137 {
3138 struct sk_buff **pp = NULL;
3139 struct packet_type *ptype;
3140 __be16 type = skb->protocol;
3141 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3142 int same_flow;
3143 int mac_len;
3144 enum gro_result ret;
3145
3146 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3147 goto normal;
3148
3149 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3150 goto normal;
3151
3152 rcu_read_lock();
3153 list_for_each_entry_rcu(ptype, head, list) {
3154 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3155 continue;
3156
3157 skb_set_network_header(skb, skb_gro_offset(skb));
3158 mac_len = skb->network_header - skb->mac_header;
3159 skb->mac_len = mac_len;
3160 NAPI_GRO_CB(skb)->same_flow = 0;
3161 NAPI_GRO_CB(skb)->flush = 0;
3162 NAPI_GRO_CB(skb)->free = 0;
3163
3164 pp = ptype->gro_receive(&napi->gro_list, skb);
3165 break;
3166 }
3167 rcu_read_unlock();
3168
3169 if (&ptype->list == head)
3170 goto normal;
3171
3172 same_flow = NAPI_GRO_CB(skb)->same_flow;
3173 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3174
3175 if (pp) {
3176 struct sk_buff *nskb = *pp;
3177
3178 *pp = nskb->next;
3179 nskb->next = NULL;
3180 napi_gro_complete(nskb);
3181 napi->gro_count--;
3182 }
3183
3184 if (same_flow)
3185 goto ok;
3186
3187 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3188 goto normal;
3189
3190 napi->gro_count++;
3191 NAPI_GRO_CB(skb)->count = 1;
3192 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3193 skb->next = napi->gro_list;
3194 napi->gro_list = skb;
3195 ret = GRO_HELD;
3196
3197 pull:
3198 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3199 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3200
3201 BUG_ON(skb->end - skb->tail < grow);
3202
3203 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3204
3205 skb->tail += grow;
3206 skb->data_len -= grow;
3207
3208 skb_shinfo(skb)->frags[0].page_offset += grow;
3209 skb_shinfo(skb)->frags[0].size -= grow;
3210
3211 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3212 put_page(skb_shinfo(skb)->frags[0].page);
3213 memmove(skb_shinfo(skb)->frags,
3214 skb_shinfo(skb)->frags + 1,
3215 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3216 }
3217 }
3218
3219 ok:
3220 return ret;
3221
3222 normal:
3223 ret = GRO_NORMAL;
3224 goto pull;
3225 }
3226 EXPORT_SYMBOL(dev_gro_receive);
3227
3228 static inline gro_result_t
3229 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3230 {
3231 struct sk_buff *p;
3232
3233 for (p = napi->gro_list; p; p = p->next) {
3234 unsigned long diffs;
3235
3236 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3237 diffs |= compare_ether_header(skb_mac_header(p),
3238 skb_gro_mac_header(skb));
3239 NAPI_GRO_CB(p)->same_flow = !diffs;
3240 NAPI_GRO_CB(p)->flush = 0;
3241 }
3242
3243 return dev_gro_receive(napi, skb);
3244 }
3245
3246 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3247 {
3248 switch (ret) {
3249 case GRO_NORMAL:
3250 if (netif_receive_skb(skb))
3251 ret = GRO_DROP;
3252 break;
3253
3254 case GRO_DROP:
3255 case GRO_MERGED_FREE:
3256 kfree_skb(skb);
3257 break;
3258
3259 case GRO_HELD:
3260 case GRO_MERGED:
3261 break;
3262 }
3263
3264 return ret;
3265 }
3266 EXPORT_SYMBOL(napi_skb_finish);
3267
3268 void skb_gro_reset_offset(struct sk_buff *skb)
3269 {
3270 NAPI_GRO_CB(skb)->data_offset = 0;
3271 NAPI_GRO_CB(skb)->frag0 = NULL;
3272 NAPI_GRO_CB(skb)->frag0_len = 0;
3273
3274 if (skb->mac_header == skb->tail &&
3275 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3276 NAPI_GRO_CB(skb)->frag0 =
3277 page_address(skb_shinfo(skb)->frags[0].page) +
3278 skb_shinfo(skb)->frags[0].page_offset;
3279 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3280 }
3281 }
3282 EXPORT_SYMBOL(skb_gro_reset_offset);
3283
3284 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3285 {
3286 skb_gro_reset_offset(skb);
3287
3288 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3289 }
3290 EXPORT_SYMBOL(napi_gro_receive);
3291
3292 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3293 {
3294 __skb_pull(skb, skb_headlen(skb));
3295 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3296
3297 napi->skb = skb;
3298 }
3299 EXPORT_SYMBOL(napi_reuse_skb);
3300
3301 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3302 {
3303 struct sk_buff *skb = napi->skb;
3304
3305 if (!skb) {
3306 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3307 if (skb)
3308 napi->skb = skb;
3309 }
3310 return skb;
3311 }
3312 EXPORT_SYMBOL(napi_get_frags);
3313
3314 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3315 gro_result_t ret)
3316 {
3317 switch (ret) {
3318 case GRO_NORMAL:
3319 case GRO_HELD:
3320 skb->protocol = eth_type_trans(skb, skb->dev);
3321
3322 if (ret == GRO_HELD)
3323 skb_gro_pull(skb, -ETH_HLEN);
3324 else if (netif_receive_skb(skb))
3325 ret = GRO_DROP;
3326 break;
3327
3328 case GRO_DROP:
3329 case GRO_MERGED_FREE:
3330 napi_reuse_skb(napi, skb);
3331 break;
3332
3333 case GRO_MERGED:
3334 break;
3335 }
3336
3337 return ret;
3338 }
3339 EXPORT_SYMBOL(napi_frags_finish);
3340
3341 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3342 {
3343 struct sk_buff *skb = napi->skb;
3344 struct ethhdr *eth;
3345 unsigned int hlen;
3346 unsigned int off;
3347
3348 napi->skb = NULL;
3349
3350 skb_reset_mac_header(skb);
3351 skb_gro_reset_offset(skb);
3352
3353 off = skb_gro_offset(skb);
3354 hlen = off + sizeof(*eth);
3355 eth = skb_gro_header_fast(skb, off);
3356 if (skb_gro_header_hard(skb, hlen)) {
3357 eth = skb_gro_header_slow(skb, hlen, off);
3358 if (unlikely(!eth)) {
3359 napi_reuse_skb(napi, skb);
3360 skb = NULL;
3361 goto out;
3362 }
3363 }
3364
3365 skb_gro_pull(skb, sizeof(*eth));
3366
3367 /*
3368 * This works because the only protocols we care about don't require
3369 * special handling. We'll fix it up properly at the end.
3370 */
3371 skb->protocol = eth->h_proto;
3372
3373 out:
3374 return skb;
3375 }
3376 EXPORT_SYMBOL(napi_frags_skb);
3377
3378 gro_result_t napi_gro_frags(struct napi_struct *napi)
3379 {
3380 struct sk_buff *skb = napi_frags_skb(napi);
3381
3382 if (!skb)
3383 return GRO_DROP;
3384
3385 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3386 }
3387 EXPORT_SYMBOL(napi_gro_frags);
3388
3389 /*
3390 * net_rps_action sends any pending IPI's for rps.
3391 * Note: called with local irq disabled, but exits with local irq enabled.
3392 */
3393 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3394 {
3395 #ifdef CONFIG_RPS
3396 struct softnet_data *remsd = sd->rps_ipi_list;
3397
3398 if (remsd) {
3399 sd->rps_ipi_list = NULL;
3400
3401 local_irq_enable();
3402
3403 /* Send pending IPI's to kick RPS processing on remote cpus. */
3404 while (remsd) {
3405 struct softnet_data *next = remsd->rps_ipi_next;
3406
3407 if (cpu_online(remsd->cpu))
3408 __smp_call_function_single(remsd->cpu,
3409 &remsd->csd, 0);
3410 remsd = next;
3411 }
3412 } else
3413 #endif
3414 local_irq_enable();
3415 }
3416
3417 static int process_backlog(struct napi_struct *napi, int quota)
3418 {
3419 int work = 0;
3420 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3421
3422 #ifdef CONFIG_RPS
3423 /* Check if we have pending ipi, its better to send them now,
3424 * not waiting net_rx_action() end.
3425 */
3426 if (sd->rps_ipi_list) {
3427 local_irq_disable();
3428 net_rps_action_and_irq_enable(sd);
3429 }
3430 #endif
3431 napi->weight = weight_p;
3432 local_irq_disable();
3433 while (work < quota) {
3434 struct sk_buff *skb;
3435 unsigned int qlen;
3436
3437 while ((skb = __skb_dequeue(&sd->process_queue))) {
3438 local_irq_enable();
3439 __netif_receive_skb(skb);
3440 local_irq_disable();
3441 input_queue_head_incr(sd);
3442 if (++work >= quota) {
3443 local_irq_enable();
3444 return work;
3445 }
3446 }
3447
3448 rps_lock(sd);
3449 qlen = skb_queue_len(&sd->input_pkt_queue);
3450 if (qlen)
3451 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3452 &sd->process_queue);
3453
3454 if (qlen < quota - work) {
3455 /*
3456 * Inline a custom version of __napi_complete().
3457 * only current cpu owns and manipulates this napi,
3458 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3459 * we can use a plain write instead of clear_bit(),
3460 * and we dont need an smp_mb() memory barrier.
3461 */
3462 list_del(&napi->poll_list);
3463 napi->state = 0;
3464
3465 quota = work + qlen;
3466 }
3467 rps_unlock(sd);
3468 }
3469 local_irq_enable();
3470
3471 return work;
3472 }
3473
3474 /**
3475 * __napi_schedule - schedule for receive
3476 * @n: entry to schedule
3477 *
3478 * The entry's receive function will be scheduled to run
3479 */
3480 void __napi_schedule(struct napi_struct *n)
3481 {
3482 unsigned long flags;
3483
3484 local_irq_save(flags);
3485 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3486 local_irq_restore(flags);
3487 }
3488 EXPORT_SYMBOL(__napi_schedule);
3489
3490 void __napi_complete(struct napi_struct *n)
3491 {
3492 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3493 BUG_ON(n->gro_list);
3494
3495 list_del(&n->poll_list);
3496 smp_mb__before_clear_bit();
3497 clear_bit(NAPI_STATE_SCHED, &n->state);
3498 }
3499 EXPORT_SYMBOL(__napi_complete);
3500
3501 void napi_complete(struct napi_struct *n)
3502 {
3503 unsigned long flags;
3504
3505 /*
3506 * don't let napi dequeue from the cpu poll list
3507 * just in case its running on a different cpu
3508 */
3509 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3510 return;
3511
3512 napi_gro_flush(n);
3513 local_irq_save(flags);
3514 __napi_complete(n);
3515 local_irq_restore(flags);
3516 }
3517 EXPORT_SYMBOL(napi_complete);
3518
3519 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3520 int (*poll)(struct napi_struct *, int), int weight)
3521 {
3522 INIT_LIST_HEAD(&napi->poll_list);
3523 napi->gro_count = 0;
3524 napi->gro_list = NULL;
3525 napi->skb = NULL;
3526 napi->poll = poll;
3527 napi->weight = weight;
3528 list_add(&napi->dev_list, &dev->napi_list);
3529 napi->dev = dev;
3530 #ifdef CONFIG_NETPOLL
3531 spin_lock_init(&napi->poll_lock);
3532 napi->poll_owner = -1;
3533 #endif
3534 set_bit(NAPI_STATE_SCHED, &napi->state);
3535 }
3536 EXPORT_SYMBOL(netif_napi_add);
3537
3538 void netif_napi_del(struct napi_struct *napi)
3539 {
3540 struct sk_buff *skb, *next;
3541
3542 list_del_init(&napi->dev_list);
3543 napi_free_frags(napi);
3544
3545 for (skb = napi->gro_list; skb; skb = next) {
3546 next = skb->next;
3547 skb->next = NULL;
3548 kfree_skb(skb);
3549 }
3550
3551 napi->gro_list = NULL;
3552 napi->gro_count = 0;
3553 }
3554 EXPORT_SYMBOL(netif_napi_del);
3555
3556 static void net_rx_action(struct softirq_action *h)
3557 {
3558 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3559 unsigned long time_limit = jiffies + 2;
3560 int budget = netdev_budget;
3561 void *have;
3562
3563 local_irq_disable();
3564
3565 while (!list_empty(&sd->poll_list)) {
3566 struct napi_struct *n;
3567 int work, weight;
3568
3569 /* If softirq window is exhuasted then punt.
3570 * Allow this to run for 2 jiffies since which will allow
3571 * an average latency of 1.5/HZ.
3572 */
3573 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3574 goto softnet_break;
3575
3576 local_irq_enable();
3577
3578 /* Even though interrupts have been re-enabled, this
3579 * access is safe because interrupts can only add new
3580 * entries to the tail of this list, and only ->poll()
3581 * calls can remove this head entry from the list.
3582 */
3583 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3584
3585 have = netpoll_poll_lock(n);
3586
3587 weight = n->weight;
3588
3589 /* This NAPI_STATE_SCHED test is for avoiding a race
3590 * with netpoll's poll_napi(). Only the entity which
3591 * obtains the lock and sees NAPI_STATE_SCHED set will
3592 * actually make the ->poll() call. Therefore we avoid
3593 * accidently calling ->poll() when NAPI is not scheduled.
3594 */
3595 work = 0;
3596 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3597 work = n->poll(n, weight);
3598 trace_napi_poll(n);
3599 }
3600
3601 WARN_ON_ONCE(work > weight);
3602
3603 budget -= work;
3604
3605 local_irq_disable();
3606
3607 /* Drivers must not modify the NAPI state if they
3608 * consume the entire weight. In such cases this code
3609 * still "owns" the NAPI instance and therefore can
3610 * move the instance around on the list at-will.
3611 */
3612 if (unlikely(work == weight)) {
3613 if (unlikely(napi_disable_pending(n))) {
3614 local_irq_enable();
3615 napi_complete(n);
3616 local_irq_disable();
3617 } else
3618 list_move_tail(&n->poll_list, &sd->poll_list);
3619 }
3620
3621 netpoll_poll_unlock(have);
3622 }
3623 out:
3624 net_rps_action_and_irq_enable(sd);
3625
3626 #ifdef CONFIG_NET_DMA
3627 /*
3628 * There may not be any more sk_buffs coming right now, so push
3629 * any pending DMA copies to hardware
3630 */
3631 dma_issue_pending_all();
3632 #endif
3633
3634 return;
3635
3636 softnet_break:
3637 sd->time_squeeze++;
3638 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3639 goto out;
3640 }
3641
3642 static gifconf_func_t *gifconf_list[NPROTO];
3643
3644 /**
3645 * register_gifconf - register a SIOCGIF handler
3646 * @family: Address family
3647 * @gifconf: Function handler
3648 *
3649 * Register protocol dependent address dumping routines. The handler
3650 * that is passed must not be freed or reused until it has been replaced
3651 * by another handler.
3652 */
3653 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3654 {
3655 if (family >= NPROTO)
3656 return -EINVAL;
3657 gifconf_list[family] = gifconf;
3658 return 0;
3659 }
3660 EXPORT_SYMBOL(register_gifconf);
3661
3662
3663 /*
3664 * Map an interface index to its name (SIOCGIFNAME)
3665 */
3666
3667 /*
3668 * We need this ioctl for efficient implementation of the
3669 * if_indextoname() function required by the IPv6 API. Without
3670 * it, we would have to search all the interfaces to find a
3671 * match. --pb
3672 */
3673
3674 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3675 {
3676 struct net_device *dev;
3677 struct ifreq ifr;
3678
3679 /*
3680 * Fetch the caller's info block.
3681 */
3682
3683 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3684 return -EFAULT;
3685
3686 rcu_read_lock();
3687 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3688 if (!dev) {
3689 rcu_read_unlock();
3690 return -ENODEV;
3691 }
3692
3693 strcpy(ifr.ifr_name, dev->name);
3694 rcu_read_unlock();
3695
3696 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3697 return -EFAULT;
3698 return 0;
3699 }
3700
3701 /*
3702 * Perform a SIOCGIFCONF call. This structure will change
3703 * size eventually, and there is nothing I can do about it.
3704 * Thus we will need a 'compatibility mode'.
3705 */
3706
3707 static int dev_ifconf(struct net *net, char __user *arg)
3708 {
3709 struct ifconf ifc;
3710 struct net_device *dev;
3711 char __user *pos;
3712 int len;
3713 int total;
3714 int i;
3715
3716 /*
3717 * Fetch the caller's info block.
3718 */
3719
3720 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3721 return -EFAULT;
3722
3723 pos = ifc.ifc_buf;
3724 len = ifc.ifc_len;
3725
3726 /*
3727 * Loop over the interfaces, and write an info block for each.
3728 */
3729
3730 total = 0;
3731 for_each_netdev(net, dev) {
3732 for (i = 0; i < NPROTO; i++) {
3733 if (gifconf_list[i]) {
3734 int done;
3735 if (!pos)
3736 done = gifconf_list[i](dev, NULL, 0);
3737 else
3738 done = gifconf_list[i](dev, pos + total,
3739 len - total);
3740 if (done < 0)
3741 return -EFAULT;
3742 total += done;
3743 }
3744 }
3745 }
3746
3747 /*
3748 * All done. Write the updated control block back to the caller.
3749 */
3750 ifc.ifc_len = total;
3751
3752 /*
3753 * Both BSD and Solaris return 0 here, so we do too.
3754 */
3755 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3756 }
3757
3758 #ifdef CONFIG_PROC_FS
3759 /*
3760 * This is invoked by the /proc filesystem handler to display a device
3761 * in detail.
3762 */
3763 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3764 __acquires(RCU)
3765 {
3766 struct net *net = seq_file_net(seq);
3767 loff_t off;
3768 struct net_device *dev;
3769
3770 rcu_read_lock();
3771 if (!*pos)
3772 return SEQ_START_TOKEN;
3773
3774 off = 1;
3775 for_each_netdev_rcu(net, dev)
3776 if (off++ == *pos)
3777 return dev;
3778
3779 return NULL;
3780 }
3781
3782 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3783 {
3784 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3785 first_net_device(seq_file_net(seq)) :
3786 next_net_device((struct net_device *)v);
3787
3788 ++*pos;
3789 return rcu_dereference(dev);
3790 }
3791
3792 void dev_seq_stop(struct seq_file *seq, void *v)
3793 __releases(RCU)
3794 {
3795 rcu_read_unlock();
3796 }
3797
3798 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3799 {
3800 struct rtnl_link_stats64 temp;
3801 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3802
3803 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3804 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3805 dev->name, stats->rx_bytes, stats->rx_packets,
3806 stats->rx_errors,
3807 stats->rx_dropped + stats->rx_missed_errors,
3808 stats->rx_fifo_errors,
3809 stats->rx_length_errors + stats->rx_over_errors +
3810 stats->rx_crc_errors + stats->rx_frame_errors,
3811 stats->rx_compressed, stats->multicast,
3812 stats->tx_bytes, stats->tx_packets,
3813 stats->tx_errors, stats->tx_dropped,
3814 stats->tx_fifo_errors, stats->collisions,
3815 stats->tx_carrier_errors +
3816 stats->tx_aborted_errors +
3817 stats->tx_window_errors +
3818 stats->tx_heartbeat_errors,
3819 stats->tx_compressed);
3820 }
3821
3822 /*
3823 * Called from the PROCfs module. This now uses the new arbitrary sized
3824 * /proc/net interface to create /proc/net/dev
3825 */
3826 static int dev_seq_show(struct seq_file *seq, void *v)
3827 {
3828 if (v == SEQ_START_TOKEN)
3829 seq_puts(seq, "Inter-| Receive "
3830 " | Transmit\n"
3831 " face |bytes packets errs drop fifo frame "
3832 "compressed multicast|bytes packets errs "
3833 "drop fifo colls carrier compressed\n");
3834 else
3835 dev_seq_printf_stats(seq, v);
3836 return 0;
3837 }
3838
3839 static struct softnet_data *softnet_get_online(loff_t *pos)
3840 {
3841 struct softnet_data *sd = NULL;
3842
3843 while (*pos < nr_cpu_ids)
3844 if (cpu_online(*pos)) {
3845 sd = &per_cpu(softnet_data, *pos);
3846 break;
3847 } else
3848 ++*pos;
3849 return sd;
3850 }
3851
3852 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3853 {
3854 return softnet_get_online(pos);
3855 }
3856
3857 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3858 {
3859 ++*pos;
3860 return softnet_get_online(pos);
3861 }
3862
3863 static void softnet_seq_stop(struct seq_file *seq, void *v)
3864 {
3865 }
3866
3867 static int softnet_seq_show(struct seq_file *seq, void *v)
3868 {
3869 struct softnet_data *sd = v;
3870
3871 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3872 sd->processed, sd->dropped, sd->time_squeeze, 0,
3873 0, 0, 0, 0, /* was fastroute */
3874 sd->cpu_collision, sd->received_rps);
3875 return 0;
3876 }
3877
3878 static const struct seq_operations dev_seq_ops = {
3879 .start = dev_seq_start,
3880 .next = dev_seq_next,
3881 .stop = dev_seq_stop,
3882 .show = dev_seq_show,
3883 };
3884
3885 static int dev_seq_open(struct inode *inode, struct file *file)
3886 {
3887 return seq_open_net(inode, file, &dev_seq_ops,
3888 sizeof(struct seq_net_private));
3889 }
3890
3891 static const struct file_operations dev_seq_fops = {
3892 .owner = THIS_MODULE,
3893 .open = dev_seq_open,
3894 .read = seq_read,
3895 .llseek = seq_lseek,
3896 .release = seq_release_net,
3897 };
3898
3899 static const struct seq_operations softnet_seq_ops = {
3900 .start = softnet_seq_start,
3901 .next = softnet_seq_next,
3902 .stop = softnet_seq_stop,
3903 .show = softnet_seq_show,
3904 };
3905
3906 static int softnet_seq_open(struct inode *inode, struct file *file)
3907 {
3908 return seq_open(file, &softnet_seq_ops);
3909 }
3910
3911 static const struct file_operations softnet_seq_fops = {
3912 .owner = THIS_MODULE,
3913 .open = softnet_seq_open,
3914 .read = seq_read,
3915 .llseek = seq_lseek,
3916 .release = seq_release,
3917 };
3918
3919 static void *ptype_get_idx(loff_t pos)
3920 {
3921 struct packet_type *pt = NULL;
3922 loff_t i = 0;
3923 int t;
3924
3925 list_for_each_entry_rcu(pt, &ptype_all, list) {
3926 if (i == pos)
3927 return pt;
3928 ++i;
3929 }
3930
3931 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3932 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3933 if (i == pos)
3934 return pt;
3935 ++i;
3936 }
3937 }
3938 return NULL;
3939 }
3940
3941 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3942 __acquires(RCU)
3943 {
3944 rcu_read_lock();
3945 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3946 }
3947
3948 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3949 {
3950 struct packet_type *pt;
3951 struct list_head *nxt;
3952 int hash;
3953
3954 ++*pos;
3955 if (v == SEQ_START_TOKEN)
3956 return ptype_get_idx(0);
3957
3958 pt = v;
3959 nxt = pt->list.next;
3960 if (pt->type == htons(ETH_P_ALL)) {
3961 if (nxt != &ptype_all)
3962 goto found;
3963 hash = 0;
3964 nxt = ptype_base[0].next;
3965 } else
3966 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3967
3968 while (nxt == &ptype_base[hash]) {
3969 if (++hash >= PTYPE_HASH_SIZE)
3970 return NULL;
3971 nxt = ptype_base[hash].next;
3972 }
3973 found:
3974 return list_entry(nxt, struct packet_type, list);
3975 }
3976
3977 static void ptype_seq_stop(struct seq_file *seq, void *v)
3978 __releases(RCU)
3979 {
3980 rcu_read_unlock();
3981 }
3982
3983 static int ptype_seq_show(struct seq_file *seq, void *v)
3984 {
3985 struct packet_type *pt = v;
3986
3987 if (v == SEQ_START_TOKEN)
3988 seq_puts(seq, "Type Device Function\n");
3989 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3990 if (pt->type == htons(ETH_P_ALL))
3991 seq_puts(seq, "ALL ");
3992 else
3993 seq_printf(seq, "%04x", ntohs(pt->type));
3994
3995 seq_printf(seq, " %-8s %pF\n",
3996 pt->dev ? pt->dev->name : "", pt->func);
3997 }
3998
3999 return 0;
4000 }
4001
4002 static const struct seq_operations ptype_seq_ops = {
4003 .start = ptype_seq_start,
4004 .next = ptype_seq_next,
4005 .stop = ptype_seq_stop,
4006 .show = ptype_seq_show,
4007 };
4008
4009 static int ptype_seq_open(struct inode *inode, struct file *file)
4010 {
4011 return seq_open_net(inode, file, &ptype_seq_ops,
4012 sizeof(struct seq_net_private));
4013 }
4014
4015 static const struct file_operations ptype_seq_fops = {
4016 .owner = THIS_MODULE,
4017 .open = ptype_seq_open,
4018 .read = seq_read,
4019 .llseek = seq_lseek,
4020 .release = seq_release_net,
4021 };
4022
4023
4024 static int __net_init dev_proc_net_init(struct net *net)
4025 {
4026 int rc = -ENOMEM;
4027
4028 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4029 goto out;
4030 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4031 goto out_dev;
4032 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4033 goto out_softnet;
4034
4035 if (wext_proc_init(net))
4036 goto out_ptype;
4037 rc = 0;
4038 out:
4039 return rc;
4040 out_ptype:
4041 proc_net_remove(net, "ptype");
4042 out_softnet:
4043 proc_net_remove(net, "softnet_stat");
4044 out_dev:
4045 proc_net_remove(net, "dev");
4046 goto out;
4047 }
4048
4049 static void __net_exit dev_proc_net_exit(struct net *net)
4050 {
4051 wext_proc_exit(net);
4052
4053 proc_net_remove(net, "ptype");
4054 proc_net_remove(net, "softnet_stat");
4055 proc_net_remove(net, "dev");
4056 }
4057
4058 static struct pernet_operations __net_initdata dev_proc_ops = {
4059 .init = dev_proc_net_init,
4060 .exit = dev_proc_net_exit,
4061 };
4062
4063 static int __init dev_proc_init(void)
4064 {
4065 return register_pernet_subsys(&dev_proc_ops);
4066 }
4067 #else
4068 #define dev_proc_init() 0
4069 #endif /* CONFIG_PROC_FS */
4070
4071
4072 /**
4073 * netdev_set_master - set up master/slave pair
4074 * @slave: slave device
4075 * @master: new master device
4076 *
4077 * Changes the master device of the slave. Pass %NULL to break the
4078 * bonding. The caller must hold the RTNL semaphore. On a failure
4079 * a negative errno code is returned. On success the reference counts
4080 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4081 * function returns zero.
4082 */
4083 int netdev_set_master(struct net_device *slave, struct net_device *master)
4084 {
4085 struct net_device *old = slave->master;
4086
4087 ASSERT_RTNL();
4088
4089 if (master) {
4090 if (old)
4091 return -EBUSY;
4092 dev_hold(master);
4093 }
4094
4095 slave->master = master;
4096
4097 if (old) {
4098 synchronize_net();
4099 dev_put(old);
4100 }
4101 if (master)
4102 slave->flags |= IFF_SLAVE;
4103 else
4104 slave->flags &= ~IFF_SLAVE;
4105
4106 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4107 return 0;
4108 }
4109 EXPORT_SYMBOL(netdev_set_master);
4110
4111 static void dev_change_rx_flags(struct net_device *dev, int flags)
4112 {
4113 const struct net_device_ops *ops = dev->netdev_ops;
4114
4115 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4116 ops->ndo_change_rx_flags(dev, flags);
4117 }
4118
4119 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4120 {
4121 unsigned short old_flags = dev->flags;
4122 uid_t uid;
4123 gid_t gid;
4124
4125 ASSERT_RTNL();
4126
4127 dev->flags |= IFF_PROMISC;
4128 dev->promiscuity += inc;
4129 if (dev->promiscuity == 0) {
4130 /*
4131 * Avoid overflow.
4132 * If inc causes overflow, untouch promisc and return error.
4133 */
4134 if (inc < 0)
4135 dev->flags &= ~IFF_PROMISC;
4136 else {
4137 dev->promiscuity -= inc;
4138 printk(KERN_WARNING "%s: promiscuity touches roof, "
4139 "set promiscuity failed, promiscuity feature "
4140 "of device might be broken.\n", dev->name);
4141 return -EOVERFLOW;
4142 }
4143 }
4144 if (dev->flags != old_flags) {
4145 printk(KERN_INFO "device %s %s promiscuous mode\n",
4146 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4147 "left");
4148 if (audit_enabled) {
4149 current_uid_gid(&uid, &gid);
4150 audit_log(current->audit_context, GFP_ATOMIC,
4151 AUDIT_ANOM_PROMISCUOUS,
4152 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4153 dev->name, (dev->flags & IFF_PROMISC),
4154 (old_flags & IFF_PROMISC),
4155 audit_get_loginuid(current),
4156 uid, gid,
4157 audit_get_sessionid(current));
4158 }
4159
4160 dev_change_rx_flags(dev, IFF_PROMISC);
4161 }
4162 return 0;
4163 }
4164
4165 /**
4166 * dev_set_promiscuity - update promiscuity count on a device
4167 * @dev: device
4168 * @inc: modifier
4169 *
4170 * Add or remove promiscuity from a device. While the count in the device
4171 * remains above zero the interface remains promiscuous. Once it hits zero
4172 * the device reverts back to normal filtering operation. A negative inc
4173 * value is used to drop promiscuity on the device.
4174 * Return 0 if successful or a negative errno code on error.
4175 */
4176 int dev_set_promiscuity(struct net_device *dev, int inc)
4177 {
4178 unsigned short old_flags = dev->flags;
4179 int err;
4180
4181 err = __dev_set_promiscuity(dev, inc);
4182 if (err < 0)
4183 return err;
4184 if (dev->flags != old_flags)
4185 dev_set_rx_mode(dev);
4186 return err;
4187 }
4188 EXPORT_SYMBOL(dev_set_promiscuity);
4189
4190 /**
4191 * dev_set_allmulti - update allmulti count on a device
4192 * @dev: device
4193 * @inc: modifier
4194 *
4195 * Add or remove reception of all multicast frames to a device. While the
4196 * count in the device remains above zero the interface remains listening
4197 * to all interfaces. Once it hits zero the device reverts back to normal
4198 * filtering operation. A negative @inc value is used to drop the counter
4199 * when releasing a resource needing all multicasts.
4200 * Return 0 if successful or a negative errno code on error.
4201 */
4202
4203 int dev_set_allmulti(struct net_device *dev, int inc)
4204 {
4205 unsigned short old_flags = dev->flags;
4206
4207 ASSERT_RTNL();
4208
4209 dev->flags |= IFF_ALLMULTI;
4210 dev->allmulti += inc;
4211 if (dev->allmulti == 0) {
4212 /*
4213 * Avoid overflow.
4214 * If inc causes overflow, untouch allmulti and return error.
4215 */
4216 if (inc < 0)
4217 dev->flags &= ~IFF_ALLMULTI;
4218 else {
4219 dev->allmulti -= inc;
4220 printk(KERN_WARNING "%s: allmulti touches roof, "
4221 "set allmulti failed, allmulti feature of "
4222 "device might be broken.\n", dev->name);
4223 return -EOVERFLOW;
4224 }
4225 }
4226 if (dev->flags ^ old_flags) {
4227 dev_change_rx_flags(dev, IFF_ALLMULTI);
4228 dev_set_rx_mode(dev);
4229 }
4230 return 0;
4231 }
4232 EXPORT_SYMBOL(dev_set_allmulti);
4233
4234 /*
4235 * Upload unicast and multicast address lists to device and
4236 * configure RX filtering. When the device doesn't support unicast
4237 * filtering it is put in promiscuous mode while unicast addresses
4238 * are present.
4239 */
4240 void __dev_set_rx_mode(struct net_device *dev)
4241 {
4242 const struct net_device_ops *ops = dev->netdev_ops;
4243
4244 /* dev_open will call this function so the list will stay sane. */
4245 if (!(dev->flags&IFF_UP))
4246 return;
4247
4248 if (!netif_device_present(dev))
4249 return;
4250
4251 if (ops->ndo_set_rx_mode)
4252 ops->ndo_set_rx_mode(dev);
4253 else {
4254 /* Unicast addresses changes may only happen under the rtnl,
4255 * therefore calling __dev_set_promiscuity here is safe.
4256 */
4257 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4258 __dev_set_promiscuity(dev, 1);
4259 dev->uc_promisc = 1;
4260 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4261 __dev_set_promiscuity(dev, -1);
4262 dev->uc_promisc = 0;
4263 }
4264
4265 if (ops->ndo_set_multicast_list)
4266 ops->ndo_set_multicast_list(dev);
4267 }
4268 }
4269
4270 void dev_set_rx_mode(struct net_device *dev)
4271 {
4272 netif_addr_lock_bh(dev);
4273 __dev_set_rx_mode(dev);
4274 netif_addr_unlock_bh(dev);
4275 }
4276
4277 /**
4278 * dev_get_flags - get flags reported to userspace
4279 * @dev: device
4280 *
4281 * Get the combination of flag bits exported through APIs to userspace.
4282 */
4283 unsigned dev_get_flags(const struct net_device *dev)
4284 {
4285 unsigned flags;
4286
4287 flags = (dev->flags & ~(IFF_PROMISC |
4288 IFF_ALLMULTI |
4289 IFF_RUNNING |
4290 IFF_LOWER_UP |
4291 IFF_DORMANT)) |
4292 (dev->gflags & (IFF_PROMISC |
4293 IFF_ALLMULTI));
4294
4295 if (netif_running(dev)) {
4296 if (netif_oper_up(dev))
4297 flags |= IFF_RUNNING;
4298 if (netif_carrier_ok(dev))
4299 flags |= IFF_LOWER_UP;
4300 if (netif_dormant(dev))
4301 flags |= IFF_DORMANT;
4302 }
4303
4304 return flags;
4305 }
4306 EXPORT_SYMBOL(dev_get_flags);
4307
4308 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4309 {
4310 int old_flags = dev->flags;
4311 int ret;
4312
4313 ASSERT_RTNL();
4314
4315 /*
4316 * Set the flags on our device.
4317 */
4318
4319 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4320 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4321 IFF_AUTOMEDIA)) |
4322 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4323 IFF_ALLMULTI));
4324
4325 /*
4326 * Load in the correct multicast list now the flags have changed.
4327 */
4328
4329 if ((old_flags ^ flags) & IFF_MULTICAST)
4330 dev_change_rx_flags(dev, IFF_MULTICAST);
4331
4332 dev_set_rx_mode(dev);
4333
4334 /*
4335 * Have we downed the interface. We handle IFF_UP ourselves
4336 * according to user attempts to set it, rather than blindly
4337 * setting it.
4338 */
4339
4340 ret = 0;
4341 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4342 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4343
4344 if (!ret)
4345 dev_set_rx_mode(dev);
4346 }
4347
4348 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4349 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4350
4351 dev->gflags ^= IFF_PROMISC;
4352 dev_set_promiscuity(dev, inc);
4353 }
4354
4355 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4356 is important. Some (broken) drivers set IFF_PROMISC, when
4357 IFF_ALLMULTI is requested not asking us and not reporting.
4358 */
4359 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4360 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4361
4362 dev->gflags ^= IFF_ALLMULTI;
4363 dev_set_allmulti(dev, inc);
4364 }
4365
4366 return ret;
4367 }
4368
4369 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4370 {
4371 unsigned int changes = dev->flags ^ old_flags;
4372
4373 if (changes & IFF_UP) {
4374 if (dev->flags & IFF_UP)
4375 call_netdevice_notifiers(NETDEV_UP, dev);
4376 else
4377 call_netdevice_notifiers(NETDEV_DOWN, dev);
4378 }
4379
4380 if (dev->flags & IFF_UP &&
4381 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4382 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4383 }
4384
4385 /**
4386 * dev_change_flags - change device settings
4387 * @dev: device
4388 * @flags: device state flags
4389 *
4390 * Change settings on device based state flags. The flags are
4391 * in the userspace exported format.
4392 */
4393 int dev_change_flags(struct net_device *dev, unsigned flags)
4394 {
4395 int ret, changes;
4396 int old_flags = dev->flags;
4397
4398 ret = __dev_change_flags(dev, flags);
4399 if (ret < 0)
4400 return ret;
4401
4402 changes = old_flags ^ dev->flags;
4403 if (changes)
4404 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4405
4406 __dev_notify_flags(dev, old_flags);
4407 return ret;
4408 }
4409 EXPORT_SYMBOL(dev_change_flags);
4410
4411 /**
4412 * dev_set_mtu - Change maximum transfer unit
4413 * @dev: device
4414 * @new_mtu: new transfer unit
4415 *
4416 * Change the maximum transfer size of the network device.
4417 */
4418 int dev_set_mtu(struct net_device *dev, int new_mtu)
4419 {
4420 const struct net_device_ops *ops = dev->netdev_ops;
4421 int err;
4422
4423 if (new_mtu == dev->mtu)
4424 return 0;
4425
4426 /* MTU must be positive. */
4427 if (new_mtu < 0)
4428 return -EINVAL;
4429
4430 if (!netif_device_present(dev))
4431 return -ENODEV;
4432
4433 err = 0;
4434 if (ops->ndo_change_mtu)
4435 err = ops->ndo_change_mtu(dev, new_mtu);
4436 else
4437 dev->mtu = new_mtu;
4438
4439 if (!err && dev->flags & IFF_UP)
4440 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4441 return err;
4442 }
4443 EXPORT_SYMBOL(dev_set_mtu);
4444
4445 /**
4446 * dev_set_mac_address - Change Media Access Control Address
4447 * @dev: device
4448 * @sa: new address
4449 *
4450 * Change the hardware (MAC) address of the device
4451 */
4452 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4453 {
4454 const struct net_device_ops *ops = dev->netdev_ops;
4455 int err;
4456
4457 if (!ops->ndo_set_mac_address)
4458 return -EOPNOTSUPP;
4459 if (sa->sa_family != dev->type)
4460 return -EINVAL;
4461 if (!netif_device_present(dev))
4462 return -ENODEV;
4463 err = ops->ndo_set_mac_address(dev, sa);
4464 if (!err)
4465 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4466 return err;
4467 }
4468 EXPORT_SYMBOL(dev_set_mac_address);
4469
4470 /*
4471 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4472 */
4473 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4474 {
4475 int err;
4476 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4477
4478 if (!dev)
4479 return -ENODEV;
4480
4481 switch (cmd) {
4482 case SIOCGIFFLAGS: /* Get interface flags */
4483 ifr->ifr_flags = (short) dev_get_flags(dev);
4484 return 0;
4485
4486 case SIOCGIFMETRIC: /* Get the metric on the interface
4487 (currently unused) */
4488 ifr->ifr_metric = 0;
4489 return 0;
4490
4491 case SIOCGIFMTU: /* Get the MTU of a device */
4492 ifr->ifr_mtu = dev->mtu;
4493 return 0;
4494
4495 case SIOCGIFHWADDR:
4496 if (!dev->addr_len)
4497 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4498 else
4499 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4500 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4501 ifr->ifr_hwaddr.sa_family = dev->type;
4502 return 0;
4503
4504 case SIOCGIFSLAVE:
4505 err = -EINVAL;
4506 break;
4507
4508 case SIOCGIFMAP:
4509 ifr->ifr_map.mem_start = dev->mem_start;
4510 ifr->ifr_map.mem_end = dev->mem_end;
4511 ifr->ifr_map.base_addr = dev->base_addr;
4512 ifr->ifr_map.irq = dev->irq;
4513 ifr->ifr_map.dma = dev->dma;
4514 ifr->ifr_map.port = dev->if_port;
4515 return 0;
4516
4517 case SIOCGIFINDEX:
4518 ifr->ifr_ifindex = dev->ifindex;
4519 return 0;
4520
4521 case SIOCGIFTXQLEN:
4522 ifr->ifr_qlen = dev->tx_queue_len;
4523 return 0;
4524
4525 default:
4526 /* dev_ioctl() should ensure this case
4527 * is never reached
4528 */
4529 WARN_ON(1);
4530 err = -EINVAL;
4531 break;
4532
4533 }
4534 return err;
4535 }
4536
4537 /*
4538 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4539 */
4540 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4541 {
4542 int err;
4543 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4544 const struct net_device_ops *ops;
4545
4546 if (!dev)
4547 return -ENODEV;
4548
4549 ops = dev->netdev_ops;
4550
4551 switch (cmd) {
4552 case SIOCSIFFLAGS: /* Set interface flags */
4553 return dev_change_flags(dev, ifr->ifr_flags);
4554
4555 case SIOCSIFMETRIC: /* Set the metric on the interface
4556 (currently unused) */
4557 return -EOPNOTSUPP;
4558
4559 case SIOCSIFMTU: /* Set the MTU of a device */
4560 return dev_set_mtu(dev, ifr->ifr_mtu);
4561
4562 case SIOCSIFHWADDR:
4563 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4564
4565 case SIOCSIFHWBROADCAST:
4566 if (ifr->ifr_hwaddr.sa_family != dev->type)
4567 return -EINVAL;
4568 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4569 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4570 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4571 return 0;
4572
4573 case SIOCSIFMAP:
4574 if (ops->ndo_set_config) {
4575 if (!netif_device_present(dev))
4576 return -ENODEV;
4577 return ops->ndo_set_config(dev, &ifr->ifr_map);
4578 }
4579 return -EOPNOTSUPP;
4580
4581 case SIOCADDMULTI:
4582 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4583 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4584 return -EINVAL;
4585 if (!netif_device_present(dev))
4586 return -ENODEV;
4587 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4588
4589 case SIOCDELMULTI:
4590 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4591 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4592 return -EINVAL;
4593 if (!netif_device_present(dev))
4594 return -ENODEV;
4595 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4596
4597 case SIOCSIFTXQLEN:
4598 if (ifr->ifr_qlen < 0)
4599 return -EINVAL;
4600 dev->tx_queue_len = ifr->ifr_qlen;
4601 return 0;
4602
4603 case SIOCSIFNAME:
4604 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4605 return dev_change_name(dev, ifr->ifr_newname);
4606
4607 /*
4608 * Unknown or private ioctl
4609 */
4610 default:
4611 if ((cmd >= SIOCDEVPRIVATE &&
4612 cmd <= SIOCDEVPRIVATE + 15) ||
4613 cmd == SIOCBONDENSLAVE ||
4614 cmd == SIOCBONDRELEASE ||
4615 cmd == SIOCBONDSETHWADDR ||
4616 cmd == SIOCBONDSLAVEINFOQUERY ||
4617 cmd == SIOCBONDINFOQUERY ||
4618 cmd == SIOCBONDCHANGEACTIVE ||
4619 cmd == SIOCGMIIPHY ||
4620 cmd == SIOCGMIIREG ||
4621 cmd == SIOCSMIIREG ||
4622 cmd == SIOCBRADDIF ||
4623 cmd == SIOCBRDELIF ||
4624 cmd == SIOCSHWTSTAMP ||
4625 cmd == SIOCWANDEV) {
4626 err = -EOPNOTSUPP;
4627 if (ops->ndo_do_ioctl) {
4628 if (netif_device_present(dev))
4629 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4630 else
4631 err = -ENODEV;
4632 }
4633 } else
4634 err = -EINVAL;
4635
4636 }
4637 return err;
4638 }
4639
4640 /*
4641 * This function handles all "interface"-type I/O control requests. The actual
4642 * 'doing' part of this is dev_ifsioc above.
4643 */
4644
4645 /**
4646 * dev_ioctl - network device ioctl
4647 * @net: the applicable net namespace
4648 * @cmd: command to issue
4649 * @arg: pointer to a struct ifreq in user space
4650 *
4651 * Issue ioctl functions to devices. This is normally called by the
4652 * user space syscall interfaces but can sometimes be useful for
4653 * other purposes. The return value is the return from the syscall if
4654 * positive or a negative errno code on error.
4655 */
4656
4657 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4658 {
4659 struct ifreq ifr;
4660 int ret;
4661 char *colon;
4662
4663 /* One special case: SIOCGIFCONF takes ifconf argument
4664 and requires shared lock, because it sleeps writing
4665 to user space.
4666 */
4667
4668 if (cmd == SIOCGIFCONF) {
4669 rtnl_lock();
4670 ret = dev_ifconf(net, (char __user *) arg);
4671 rtnl_unlock();
4672 return ret;
4673 }
4674 if (cmd == SIOCGIFNAME)
4675 return dev_ifname(net, (struct ifreq __user *)arg);
4676
4677 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4678 return -EFAULT;
4679
4680 ifr.ifr_name[IFNAMSIZ-1] = 0;
4681
4682 colon = strchr(ifr.ifr_name, ':');
4683 if (colon)
4684 *colon = 0;
4685
4686 /*
4687 * See which interface the caller is talking about.
4688 */
4689
4690 switch (cmd) {
4691 /*
4692 * These ioctl calls:
4693 * - can be done by all.
4694 * - atomic and do not require locking.
4695 * - return a value
4696 */
4697 case SIOCGIFFLAGS:
4698 case SIOCGIFMETRIC:
4699 case SIOCGIFMTU:
4700 case SIOCGIFHWADDR:
4701 case SIOCGIFSLAVE:
4702 case SIOCGIFMAP:
4703 case SIOCGIFINDEX:
4704 case SIOCGIFTXQLEN:
4705 dev_load(net, ifr.ifr_name);
4706 rcu_read_lock();
4707 ret = dev_ifsioc_locked(net, &ifr, cmd);
4708 rcu_read_unlock();
4709 if (!ret) {
4710 if (colon)
4711 *colon = ':';
4712 if (copy_to_user(arg, &ifr,
4713 sizeof(struct ifreq)))
4714 ret = -EFAULT;
4715 }
4716 return ret;
4717
4718 case SIOCETHTOOL:
4719 dev_load(net, ifr.ifr_name);
4720 rtnl_lock();
4721 ret = dev_ethtool(net, &ifr);
4722 rtnl_unlock();
4723 if (!ret) {
4724 if (colon)
4725 *colon = ':';
4726 if (copy_to_user(arg, &ifr,
4727 sizeof(struct ifreq)))
4728 ret = -EFAULT;
4729 }
4730 return ret;
4731
4732 /*
4733 * These ioctl calls:
4734 * - require superuser power.
4735 * - require strict serialization.
4736 * - return a value
4737 */
4738 case SIOCGMIIPHY:
4739 case SIOCGMIIREG:
4740 case SIOCSIFNAME:
4741 if (!capable(CAP_NET_ADMIN))
4742 return -EPERM;
4743 dev_load(net, ifr.ifr_name);
4744 rtnl_lock();
4745 ret = dev_ifsioc(net, &ifr, cmd);
4746 rtnl_unlock();
4747 if (!ret) {
4748 if (colon)
4749 *colon = ':';
4750 if (copy_to_user(arg, &ifr,
4751 sizeof(struct ifreq)))
4752 ret = -EFAULT;
4753 }
4754 return ret;
4755
4756 /*
4757 * These ioctl calls:
4758 * - require superuser power.
4759 * - require strict serialization.
4760 * - do not return a value
4761 */
4762 case SIOCSIFFLAGS:
4763 case SIOCSIFMETRIC:
4764 case SIOCSIFMTU:
4765 case SIOCSIFMAP:
4766 case SIOCSIFHWADDR:
4767 case SIOCSIFSLAVE:
4768 case SIOCADDMULTI:
4769 case SIOCDELMULTI:
4770 case SIOCSIFHWBROADCAST:
4771 case SIOCSIFTXQLEN:
4772 case SIOCSMIIREG:
4773 case SIOCBONDENSLAVE:
4774 case SIOCBONDRELEASE:
4775 case SIOCBONDSETHWADDR:
4776 case SIOCBONDCHANGEACTIVE:
4777 case SIOCBRADDIF:
4778 case SIOCBRDELIF:
4779 case SIOCSHWTSTAMP:
4780 if (!capable(CAP_NET_ADMIN))
4781 return -EPERM;
4782 /* fall through */
4783 case SIOCBONDSLAVEINFOQUERY:
4784 case SIOCBONDINFOQUERY:
4785 dev_load(net, ifr.ifr_name);
4786 rtnl_lock();
4787 ret = dev_ifsioc(net, &ifr, cmd);
4788 rtnl_unlock();
4789 return ret;
4790
4791 case SIOCGIFMEM:
4792 /* Get the per device memory space. We can add this but
4793 * currently do not support it */
4794 case SIOCSIFMEM:
4795 /* Set the per device memory buffer space.
4796 * Not applicable in our case */
4797 case SIOCSIFLINK:
4798 return -EINVAL;
4799
4800 /*
4801 * Unknown or private ioctl.
4802 */
4803 default:
4804 if (cmd == SIOCWANDEV ||
4805 (cmd >= SIOCDEVPRIVATE &&
4806 cmd <= SIOCDEVPRIVATE + 15)) {
4807 dev_load(net, ifr.ifr_name);
4808 rtnl_lock();
4809 ret = dev_ifsioc(net, &ifr, cmd);
4810 rtnl_unlock();
4811 if (!ret && copy_to_user(arg, &ifr,
4812 sizeof(struct ifreq)))
4813 ret = -EFAULT;
4814 return ret;
4815 }
4816 /* Take care of Wireless Extensions */
4817 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4818 return wext_handle_ioctl(net, &ifr, cmd, arg);
4819 return -EINVAL;
4820 }
4821 }
4822
4823
4824 /**
4825 * dev_new_index - allocate an ifindex
4826 * @net: the applicable net namespace
4827 *
4828 * Returns a suitable unique value for a new device interface
4829 * number. The caller must hold the rtnl semaphore or the
4830 * dev_base_lock to be sure it remains unique.
4831 */
4832 static int dev_new_index(struct net *net)
4833 {
4834 static int ifindex;
4835 for (;;) {
4836 if (++ifindex <= 0)
4837 ifindex = 1;
4838 if (!__dev_get_by_index(net, ifindex))
4839 return ifindex;
4840 }
4841 }
4842
4843 /* Delayed registration/unregisteration */
4844 static LIST_HEAD(net_todo_list);
4845
4846 static void net_set_todo(struct net_device *dev)
4847 {
4848 list_add_tail(&dev->todo_list, &net_todo_list);
4849 }
4850
4851 static void rollback_registered_many(struct list_head *head)
4852 {
4853 struct net_device *dev, *tmp;
4854
4855 BUG_ON(dev_boot_phase);
4856 ASSERT_RTNL();
4857
4858 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4859 /* Some devices call without registering
4860 * for initialization unwind. Remove those
4861 * devices and proceed with the remaining.
4862 */
4863 if (dev->reg_state == NETREG_UNINITIALIZED) {
4864 pr_debug("unregister_netdevice: device %s/%p never "
4865 "was registered\n", dev->name, dev);
4866
4867 WARN_ON(1);
4868 list_del(&dev->unreg_list);
4869 continue;
4870 }
4871
4872 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4873
4874 /* If device is running, close it first. */
4875 dev_close(dev);
4876
4877 /* And unlink it from device chain. */
4878 unlist_netdevice(dev);
4879
4880 dev->reg_state = NETREG_UNREGISTERING;
4881 }
4882
4883 synchronize_net();
4884
4885 list_for_each_entry(dev, head, unreg_list) {
4886 /* Shutdown queueing discipline. */
4887 dev_shutdown(dev);
4888
4889
4890 /* Notify protocols, that we are about to destroy
4891 this device. They should clean all the things.
4892 */
4893 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4894
4895 if (!dev->rtnl_link_ops ||
4896 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4897 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4898
4899 /*
4900 * Flush the unicast and multicast chains
4901 */
4902 dev_uc_flush(dev);
4903 dev_mc_flush(dev);
4904
4905 if (dev->netdev_ops->ndo_uninit)
4906 dev->netdev_ops->ndo_uninit(dev);
4907
4908 /* Notifier chain MUST detach us from master device. */
4909 WARN_ON(dev->master);
4910
4911 /* Remove entries from kobject tree */
4912 netdev_unregister_kobject(dev);
4913 }
4914
4915 /* Process any work delayed until the end of the batch */
4916 dev = list_first_entry(head, struct net_device, unreg_list);
4917 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4918
4919 rcu_barrier();
4920
4921 list_for_each_entry(dev, head, unreg_list)
4922 dev_put(dev);
4923 }
4924
4925 static void rollback_registered(struct net_device *dev)
4926 {
4927 LIST_HEAD(single);
4928
4929 list_add(&dev->unreg_list, &single);
4930 rollback_registered_many(&single);
4931 }
4932
4933 unsigned long netdev_fix_features(unsigned long features, const char *name)
4934 {
4935 /* Fix illegal SG+CSUM combinations. */
4936 if ((features & NETIF_F_SG) &&
4937 !(features & NETIF_F_ALL_CSUM)) {
4938 if (name)
4939 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4940 "checksum feature.\n", name);
4941 features &= ~NETIF_F_SG;
4942 }
4943
4944 /* TSO requires that SG is present as well. */
4945 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4946 if (name)
4947 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4948 "SG feature.\n", name);
4949 features &= ~NETIF_F_TSO;
4950 }
4951
4952 if (features & NETIF_F_UFO) {
4953 if (!(features & NETIF_F_GEN_CSUM)) {
4954 if (name)
4955 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4956 "since no NETIF_F_HW_CSUM feature.\n",
4957 name);
4958 features &= ~NETIF_F_UFO;
4959 }
4960
4961 if (!(features & NETIF_F_SG)) {
4962 if (name)
4963 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4964 "since no NETIF_F_SG feature.\n", name);
4965 features &= ~NETIF_F_UFO;
4966 }
4967 }
4968
4969 return features;
4970 }
4971 EXPORT_SYMBOL(netdev_fix_features);
4972
4973 /**
4974 * netif_stacked_transfer_operstate - transfer operstate
4975 * @rootdev: the root or lower level device to transfer state from
4976 * @dev: the device to transfer operstate to
4977 *
4978 * Transfer operational state from root to device. This is normally
4979 * called when a stacking relationship exists between the root
4980 * device and the device(a leaf device).
4981 */
4982 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4983 struct net_device *dev)
4984 {
4985 if (rootdev->operstate == IF_OPER_DORMANT)
4986 netif_dormant_on(dev);
4987 else
4988 netif_dormant_off(dev);
4989
4990 if (netif_carrier_ok(rootdev)) {
4991 if (!netif_carrier_ok(dev))
4992 netif_carrier_on(dev);
4993 } else {
4994 if (netif_carrier_ok(dev))
4995 netif_carrier_off(dev);
4996 }
4997 }
4998 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4999
5000 static int netif_alloc_rx_queues(struct net_device *dev)
5001 {
5002 #ifdef CONFIG_RPS
5003 unsigned int i, count = dev->num_rx_queues;
5004 struct netdev_rx_queue *rx;
5005
5006 BUG_ON(count < 1);
5007
5008 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5009 if (!rx) {
5010 pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5011 return -ENOMEM;
5012 }
5013 dev->_rx = rx;
5014
5015 /*
5016 * Set a pointer to first element in the array which holds the
5017 * reference count.
5018 */
5019 for (i = 0; i < count; i++)
5020 rx[i].first = rx;
5021 #endif
5022 return 0;
5023 }
5024
5025 static int netif_alloc_netdev_queues(struct net_device *dev)
5026 {
5027 unsigned int count = dev->num_tx_queues;
5028 struct netdev_queue *tx;
5029
5030 BUG_ON(count < 1);
5031
5032 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5033 if (!tx) {
5034 pr_err("netdev: Unable to allocate %u tx queues.\n",
5035 count);
5036 return -ENOMEM;
5037 }
5038 dev->_tx = tx;
5039 return 0;
5040 }
5041
5042 static void netdev_init_one_queue(struct net_device *dev,
5043 struct netdev_queue *queue,
5044 void *_unused)
5045 {
5046 queue->dev = dev;
5047
5048 /* Initialize queue lock */
5049 spin_lock_init(&queue->_xmit_lock);
5050 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5051 queue->xmit_lock_owner = -1;
5052 }
5053
5054 static void netdev_init_queues(struct net_device *dev)
5055 {
5056 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5057 spin_lock_init(&dev->tx_global_lock);
5058 }
5059
5060 /**
5061 * register_netdevice - register a network device
5062 * @dev: device to register
5063 *
5064 * Take a completed network device structure and add it to the kernel
5065 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5066 * chain. 0 is returned on success. A negative errno code is returned
5067 * on a failure to set up the device, or if the name is a duplicate.
5068 *
5069 * Callers must hold the rtnl semaphore. You may want
5070 * register_netdev() instead of this.
5071 *
5072 * BUGS:
5073 * The locking appears insufficient to guarantee two parallel registers
5074 * will not get the same name.
5075 */
5076
5077 int register_netdevice(struct net_device *dev)
5078 {
5079 int ret;
5080 struct net *net = dev_net(dev);
5081
5082 BUG_ON(dev_boot_phase);
5083 ASSERT_RTNL();
5084
5085 might_sleep();
5086
5087 /* When net_device's are persistent, this will be fatal. */
5088 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5089 BUG_ON(!net);
5090
5091 spin_lock_init(&dev->addr_list_lock);
5092 netdev_set_addr_lockdep_class(dev);
5093
5094 dev->iflink = -1;
5095
5096 ret = netif_alloc_rx_queues(dev);
5097 if (ret)
5098 goto out;
5099
5100 ret = netif_alloc_netdev_queues(dev);
5101 if (ret)
5102 goto out;
5103
5104 netdev_init_queues(dev);
5105
5106 /* Init, if this function is available */
5107 if (dev->netdev_ops->ndo_init) {
5108 ret = dev->netdev_ops->ndo_init(dev);
5109 if (ret) {
5110 if (ret > 0)
5111 ret = -EIO;
5112 goto out;
5113 }
5114 }
5115
5116 ret = dev_get_valid_name(dev, dev->name, 0);
5117 if (ret)
5118 goto err_uninit;
5119
5120 dev->ifindex = dev_new_index(net);
5121 if (dev->iflink == -1)
5122 dev->iflink = dev->ifindex;
5123
5124 /* Fix illegal checksum combinations */
5125 if ((dev->features & NETIF_F_HW_CSUM) &&
5126 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5127 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5128 dev->name);
5129 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5130 }
5131
5132 if ((dev->features & NETIF_F_NO_CSUM) &&
5133 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5134 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5135 dev->name);
5136 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5137 }
5138
5139 dev->features = netdev_fix_features(dev->features, dev->name);
5140
5141 /* Enable software GSO if SG is supported. */
5142 if (dev->features & NETIF_F_SG)
5143 dev->features |= NETIF_F_GSO;
5144
5145 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5146 * vlan_dev_init() will do the dev->features check, so these features
5147 * are enabled only if supported by underlying device.
5148 */
5149 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5150
5151 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5152 ret = notifier_to_errno(ret);
5153 if (ret)
5154 goto err_uninit;
5155
5156 ret = netdev_register_kobject(dev);
5157 if (ret)
5158 goto err_uninit;
5159 dev->reg_state = NETREG_REGISTERED;
5160
5161 /*
5162 * Default initial state at registry is that the
5163 * device is present.
5164 */
5165
5166 set_bit(__LINK_STATE_PRESENT, &dev->state);
5167
5168 dev_init_scheduler(dev);
5169 dev_hold(dev);
5170 list_netdevice(dev);
5171
5172 /* Notify protocols, that a new device appeared. */
5173 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5174 ret = notifier_to_errno(ret);
5175 if (ret) {
5176 rollback_registered(dev);
5177 dev->reg_state = NETREG_UNREGISTERED;
5178 }
5179 /*
5180 * Prevent userspace races by waiting until the network
5181 * device is fully setup before sending notifications.
5182 */
5183 if (!dev->rtnl_link_ops ||
5184 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5185 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5186
5187 out:
5188 return ret;
5189
5190 err_uninit:
5191 if (dev->netdev_ops->ndo_uninit)
5192 dev->netdev_ops->ndo_uninit(dev);
5193 goto out;
5194 }
5195 EXPORT_SYMBOL(register_netdevice);
5196
5197 /**
5198 * init_dummy_netdev - init a dummy network device for NAPI
5199 * @dev: device to init
5200 *
5201 * This takes a network device structure and initialize the minimum
5202 * amount of fields so it can be used to schedule NAPI polls without
5203 * registering a full blown interface. This is to be used by drivers
5204 * that need to tie several hardware interfaces to a single NAPI
5205 * poll scheduler due to HW limitations.
5206 */
5207 int init_dummy_netdev(struct net_device *dev)
5208 {
5209 /* Clear everything. Note we don't initialize spinlocks
5210 * are they aren't supposed to be taken by any of the
5211 * NAPI code and this dummy netdev is supposed to be
5212 * only ever used for NAPI polls
5213 */
5214 memset(dev, 0, sizeof(struct net_device));
5215
5216 /* make sure we BUG if trying to hit standard
5217 * register/unregister code path
5218 */
5219 dev->reg_state = NETREG_DUMMY;
5220
5221 /* NAPI wants this */
5222 INIT_LIST_HEAD(&dev->napi_list);
5223
5224 /* a dummy interface is started by default */
5225 set_bit(__LINK_STATE_PRESENT, &dev->state);
5226 set_bit(__LINK_STATE_START, &dev->state);
5227
5228 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5229 * because users of this 'device' dont need to change
5230 * its refcount.
5231 */
5232
5233 return 0;
5234 }
5235 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5236
5237
5238 /**
5239 * register_netdev - register a network device
5240 * @dev: device to register
5241 *
5242 * Take a completed network device structure and add it to the kernel
5243 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5244 * chain. 0 is returned on success. A negative errno code is returned
5245 * on a failure to set up the device, or if the name is a duplicate.
5246 *
5247 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5248 * and expands the device name if you passed a format string to
5249 * alloc_netdev.
5250 */
5251 int register_netdev(struct net_device *dev)
5252 {
5253 int err;
5254
5255 rtnl_lock();
5256
5257 /*
5258 * If the name is a format string the caller wants us to do a
5259 * name allocation.
5260 */
5261 if (strchr(dev->name, '%')) {
5262 err = dev_alloc_name(dev, dev->name);
5263 if (err < 0)
5264 goto out;
5265 }
5266
5267 err = register_netdevice(dev);
5268 out:
5269 rtnl_unlock();
5270 return err;
5271 }
5272 EXPORT_SYMBOL(register_netdev);
5273
5274 int netdev_refcnt_read(const struct net_device *dev)
5275 {
5276 int i, refcnt = 0;
5277
5278 for_each_possible_cpu(i)
5279 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5280 return refcnt;
5281 }
5282 EXPORT_SYMBOL(netdev_refcnt_read);
5283
5284 /*
5285 * netdev_wait_allrefs - wait until all references are gone.
5286 *
5287 * This is called when unregistering network devices.
5288 *
5289 * Any protocol or device that holds a reference should register
5290 * for netdevice notification, and cleanup and put back the
5291 * reference if they receive an UNREGISTER event.
5292 * We can get stuck here if buggy protocols don't correctly
5293 * call dev_put.
5294 */
5295 static void netdev_wait_allrefs(struct net_device *dev)
5296 {
5297 unsigned long rebroadcast_time, warning_time;
5298 int refcnt;
5299
5300 linkwatch_forget_dev(dev);
5301
5302 rebroadcast_time = warning_time = jiffies;
5303 refcnt = netdev_refcnt_read(dev);
5304
5305 while (refcnt != 0) {
5306 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5307 rtnl_lock();
5308
5309 /* Rebroadcast unregister notification */
5310 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5311 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5312 * should have already handle it the first time */
5313
5314 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5315 &dev->state)) {
5316 /* We must not have linkwatch events
5317 * pending on unregister. If this
5318 * happens, we simply run the queue
5319 * unscheduled, resulting in a noop
5320 * for this device.
5321 */
5322 linkwatch_run_queue();
5323 }
5324
5325 __rtnl_unlock();
5326
5327 rebroadcast_time = jiffies;
5328 }
5329
5330 msleep(250);
5331
5332 refcnt = netdev_refcnt_read(dev);
5333
5334 if (time_after(jiffies, warning_time + 10 * HZ)) {
5335 printk(KERN_EMERG "unregister_netdevice: "
5336 "waiting for %s to become free. Usage "
5337 "count = %d\n",
5338 dev->name, refcnt);
5339 warning_time = jiffies;
5340 }
5341 }
5342 }
5343
5344 /* The sequence is:
5345 *
5346 * rtnl_lock();
5347 * ...
5348 * register_netdevice(x1);
5349 * register_netdevice(x2);
5350 * ...
5351 * unregister_netdevice(y1);
5352 * unregister_netdevice(y2);
5353 * ...
5354 * rtnl_unlock();
5355 * free_netdev(y1);
5356 * free_netdev(y2);
5357 *
5358 * We are invoked by rtnl_unlock().
5359 * This allows us to deal with problems:
5360 * 1) We can delete sysfs objects which invoke hotplug
5361 * without deadlocking with linkwatch via keventd.
5362 * 2) Since we run with the RTNL semaphore not held, we can sleep
5363 * safely in order to wait for the netdev refcnt to drop to zero.
5364 *
5365 * We must not return until all unregister events added during
5366 * the interval the lock was held have been completed.
5367 */
5368 void netdev_run_todo(void)
5369 {
5370 struct list_head list;
5371
5372 /* Snapshot list, allow later requests */
5373 list_replace_init(&net_todo_list, &list);
5374
5375 __rtnl_unlock();
5376
5377 while (!list_empty(&list)) {
5378 struct net_device *dev
5379 = list_first_entry(&list, struct net_device, todo_list);
5380 list_del(&dev->todo_list);
5381
5382 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5383 printk(KERN_ERR "network todo '%s' but state %d\n",
5384 dev->name, dev->reg_state);
5385 dump_stack();
5386 continue;
5387 }
5388
5389 dev->reg_state = NETREG_UNREGISTERED;
5390
5391 on_each_cpu(flush_backlog, dev, 1);
5392
5393 netdev_wait_allrefs(dev);
5394
5395 /* paranoia */
5396 BUG_ON(netdev_refcnt_read(dev));
5397 WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5398 WARN_ON(dev->ip6_ptr);
5399 WARN_ON(dev->dn_ptr);
5400
5401 if (dev->destructor)
5402 dev->destructor(dev);
5403
5404 /* Free network device */
5405 kobject_put(&dev->dev.kobj);
5406 }
5407 }
5408
5409 /**
5410 * dev_txq_stats_fold - fold tx_queues stats
5411 * @dev: device to get statistics from
5412 * @stats: struct rtnl_link_stats64 to hold results
5413 */
5414 void dev_txq_stats_fold(const struct net_device *dev,
5415 struct rtnl_link_stats64 *stats)
5416 {
5417 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5418 unsigned int i;
5419 struct netdev_queue *txq;
5420
5421 for (i = 0; i < dev->num_tx_queues; i++) {
5422 txq = netdev_get_tx_queue(dev, i);
5423 spin_lock_bh(&txq->_xmit_lock);
5424 tx_bytes += txq->tx_bytes;
5425 tx_packets += txq->tx_packets;
5426 tx_dropped += txq->tx_dropped;
5427 spin_unlock_bh(&txq->_xmit_lock);
5428 }
5429 if (tx_bytes || tx_packets || tx_dropped) {
5430 stats->tx_bytes = tx_bytes;
5431 stats->tx_packets = tx_packets;
5432 stats->tx_dropped = tx_dropped;
5433 }
5434 }
5435 EXPORT_SYMBOL(dev_txq_stats_fold);
5436
5437 /* Convert net_device_stats to rtnl_link_stats64. They have the same
5438 * fields in the same order, with only the type differing.
5439 */
5440 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5441 const struct net_device_stats *netdev_stats)
5442 {
5443 #if BITS_PER_LONG == 64
5444 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5445 memcpy(stats64, netdev_stats, sizeof(*stats64));
5446 #else
5447 size_t i, n = sizeof(*stats64) / sizeof(u64);
5448 const unsigned long *src = (const unsigned long *)netdev_stats;
5449 u64 *dst = (u64 *)stats64;
5450
5451 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5452 sizeof(*stats64) / sizeof(u64));
5453 for (i = 0; i < n; i++)
5454 dst[i] = src[i];
5455 #endif
5456 }
5457
5458 /**
5459 * dev_get_stats - get network device statistics
5460 * @dev: device to get statistics from
5461 * @storage: place to store stats
5462 *
5463 * Get network statistics from device. Return @storage.
5464 * The device driver may provide its own method by setting
5465 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5466 * otherwise the internal statistics structure is used.
5467 */
5468 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5469 struct rtnl_link_stats64 *storage)
5470 {
5471 const struct net_device_ops *ops = dev->netdev_ops;
5472
5473 if (ops->ndo_get_stats64) {
5474 memset(storage, 0, sizeof(*storage));
5475 ops->ndo_get_stats64(dev, storage);
5476 } else if (ops->ndo_get_stats) {
5477 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5478 } else {
5479 netdev_stats_to_stats64(storage, &dev->stats);
5480 dev_txq_stats_fold(dev, storage);
5481 }
5482 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5483 return storage;
5484 }
5485 EXPORT_SYMBOL(dev_get_stats);
5486
5487 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5488 {
5489 struct netdev_queue *queue = dev_ingress_queue(dev);
5490
5491 #ifdef CONFIG_NET_CLS_ACT
5492 if (queue)
5493 return queue;
5494 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5495 if (!queue)
5496 return NULL;
5497 netdev_init_one_queue(dev, queue, NULL);
5498 queue->qdisc = &noop_qdisc;
5499 queue->qdisc_sleeping = &noop_qdisc;
5500 rcu_assign_pointer(dev->ingress_queue, queue);
5501 #endif
5502 return queue;
5503 }
5504
5505 /**
5506 * alloc_netdev_mq - allocate network device
5507 * @sizeof_priv: size of private data to allocate space for
5508 * @name: device name format string
5509 * @setup: callback to initialize device
5510 * @queue_count: the number of subqueues to allocate
5511 *
5512 * Allocates a struct net_device with private data area for driver use
5513 * and performs basic initialization. Also allocates subquue structs
5514 * for each queue on the device at the end of the netdevice.
5515 */
5516 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5517 void (*setup)(struct net_device *), unsigned int queue_count)
5518 {
5519 struct net_device *dev;
5520 size_t alloc_size;
5521 struct net_device *p;
5522
5523 BUG_ON(strlen(name) >= sizeof(dev->name));
5524
5525 if (queue_count < 1) {
5526 pr_err("alloc_netdev: Unable to allocate device "
5527 "with zero queues.\n");
5528 return NULL;
5529 }
5530
5531 alloc_size = sizeof(struct net_device);
5532 if (sizeof_priv) {
5533 /* ensure 32-byte alignment of private area */
5534 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5535 alloc_size += sizeof_priv;
5536 }
5537 /* ensure 32-byte alignment of whole construct */
5538 alloc_size += NETDEV_ALIGN - 1;
5539
5540 p = kzalloc(alloc_size, GFP_KERNEL);
5541 if (!p) {
5542 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5543 return NULL;
5544 }
5545
5546 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5547 dev->padded = (char *)dev - (char *)p;
5548
5549 dev->pcpu_refcnt = alloc_percpu(int);
5550 if (!dev->pcpu_refcnt)
5551 goto free_p;
5552
5553 if (dev_addr_init(dev))
5554 goto free_pcpu;
5555
5556 dev_mc_init(dev);
5557 dev_uc_init(dev);
5558
5559 dev_net_set(dev, &init_net);
5560
5561 dev->num_tx_queues = queue_count;
5562 dev->real_num_tx_queues = queue_count;
5563
5564 #ifdef CONFIG_RPS
5565 dev->num_rx_queues = queue_count;
5566 dev->real_num_rx_queues = queue_count;
5567 #endif
5568
5569 dev->gso_max_size = GSO_MAX_SIZE;
5570
5571 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5572 dev->ethtool_ntuple_list.count = 0;
5573 INIT_LIST_HEAD(&dev->napi_list);
5574 INIT_LIST_HEAD(&dev->unreg_list);
5575 INIT_LIST_HEAD(&dev->link_watch_list);
5576 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5577 setup(dev);
5578 strcpy(dev->name, name);
5579 return dev;
5580
5581 free_pcpu:
5582 free_percpu(dev->pcpu_refcnt);
5583 free_p:
5584 kfree(p);
5585 return NULL;
5586 }
5587 EXPORT_SYMBOL(alloc_netdev_mq);
5588
5589 /**
5590 * free_netdev - free network device
5591 * @dev: device
5592 *
5593 * This function does the last stage of destroying an allocated device
5594 * interface. The reference to the device object is released.
5595 * If this is the last reference then it will be freed.
5596 */
5597 void free_netdev(struct net_device *dev)
5598 {
5599 struct napi_struct *p, *n;
5600
5601 release_net(dev_net(dev));
5602
5603 kfree(dev->_tx);
5604
5605 kfree(rcu_dereference_raw(dev->ingress_queue));
5606
5607 /* Flush device addresses */
5608 dev_addr_flush(dev);
5609
5610 /* Clear ethtool n-tuple list */
5611 ethtool_ntuple_flush(dev);
5612
5613 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5614 netif_napi_del(p);
5615
5616 free_percpu(dev->pcpu_refcnt);
5617 dev->pcpu_refcnt = NULL;
5618
5619 /* Compatibility with error handling in drivers */
5620 if (dev->reg_state == NETREG_UNINITIALIZED) {
5621 kfree((char *)dev - dev->padded);
5622 return;
5623 }
5624
5625 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5626 dev->reg_state = NETREG_RELEASED;
5627
5628 /* will free via device release */
5629 put_device(&dev->dev);
5630 }
5631 EXPORT_SYMBOL(free_netdev);
5632
5633 /**
5634 * synchronize_net - Synchronize with packet receive processing
5635 *
5636 * Wait for packets currently being received to be done.
5637 * Does not block later packets from starting.
5638 */
5639 void synchronize_net(void)
5640 {
5641 might_sleep();
5642 synchronize_rcu();
5643 }
5644 EXPORT_SYMBOL(synchronize_net);
5645
5646 /**
5647 * unregister_netdevice_queue - remove device from the kernel
5648 * @dev: device
5649 * @head: list
5650 *
5651 * This function shuts down a device interface and removes it
5652 * from the kernel tables.
5653 * If head not NULL, device is queued to be unregistered later.
5654 *
5655 * Callers must hold the rtnl semaphore. You may want
5656 * unregister_netdev() instead of this.
5657 */
5658
5659 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5660 {
5661 ASSERT_RTNL();
5662
5663 if (head) {
5664 list_move_tail(&dev->unreg_list, head);
5665 } else {
5666 rollback_registered(dev);
5667 /* Finish processing unregister after unlock */
5668 net_set_todo(dev);
5669 }
5670 }
5671 EXPORT_SYMBOL(unregister_netdevice_queue);
5672
5673 /**
5674 * unregister_netdevice_many - unregister many devices
5675 * @head: list of devices
5676 */
5677 void unregister_netdevice_many(struct list_head *head)
5678 {
5679 struct net_device *dev;
5680
5681 if (!list_empty(head)) {
5682 rollback_registered_many(head);
5683 list_for_each_entry(dev, head, unreg_list)
5684 net_set_todo(dev);
5685 }
5686 }
5687 EXPORT_SYMBOL(unregister_netdevice_many);
5688
5689 /**
5690 * unregister_netdev - remove device from the kernel
5691 * @dev: device
5692 *
5693 * This function shuts down a device interface and removes it
5694 * from the kernel tables.
5695 *
5696 * This is just a wrapper for unregister_netdevice that takes
5697 * the rtnl semaphore. In general you want to use this and not
5698 * unregister_netdevice.
5699 */
5700 void unregister_netdev(struct net_device *dev)
5701 {
5702 rtnl_lock();
5703 unregister_netdevice(dev);
5704 rtnl_unlock();
5705 }
5706 EXPORT_SYMBOL(unregister_netdev);
5707
5708 /**
5709 * dev_change_net_namespace - move device to different nethost namespace
5710 * @dev: device
5711 * @net: network namespace
5712 * @pat: If not NULL name pattern to try if the current device name
5713 * is already taken in the destination network namespace.
5714 *
5715 * This function shuts down a device interface and moves it
5716 * to a new network namespace. On success 0 is returned, on
5717 * a failure a netagive errno code is returned.
5718 *
5719 * Callers must hold the rtnl semaphore.
5720 */
5721
5722 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5723 {
5724 int err;
5725
5726 ASSERT_RTNL();
5727
5728 /* Don't allow namespace local devices to be moved. */
5729 err = -EINVAL;
5730 if (dev->features & NETIF_F_NETNS_LOCAL)
5731 goto out;
5732
5733 /* Ensure the device has been registrered */
5734 err = -EINVAL;
5735 if (dev->reg_state != NETREG_REGISTERED)
5736 goto out;
5737
5738 /* Get out if there is nothing todo */
5739 err = 0;
5740 if (net_eq(dev_net(dev), net))
5741 goto out;
5742
5743 /* Pick the destination device name, and ensure
5744 * we can use it in the destination network namespace.
5745 */
5746 err = -EEXIST;
5747 if (__dev_get_by_name(net, dev->name)) {
5748 /* We get here if we can't use the current device name */
5749 if (!pat)
5750 goto out;
5751 if (dev_get_valid_name(dev, pat, 1))
5752 goto out;
5753 }
5754
5755 /*
5756 * And now a mini version of register_netdevice unregister_netdevice.
5757 */
5758
5759 /* If device is running close it first. */
5760 dev_close(dev);
5761
5762 /* And unlink it from device chain */
5763 err = -ENODEV;
5764 unlist_netdevice(dev);
5765
5766 synchronize_net();
5767
5768 /* Shutdown queueing discipline. */
5769 dev_shutdown(dev);
5770
5771 /* Notify protocols, that we are about to destroy
5772 this device. They should clean all the things.
5773
5774 Note that dev->reg_state stays at NETREG_REGISTERED.
5775 This is wanted because this way 8021q and macvlan know
5776 the device is just moving and can keep their slaves up.
5777 */
5778 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5779 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5780
5781 /*
5782 * Flush the unicast and multicast chains
5783 */
5784 dev_uc_flush(dev);
5785 dev_mc_flush(dev);
5786
5787 /* Actually switch the network namespace */
5788 dev_net_set(dev, net);
5789
5790 /* If there is an ifindex conflict assign a new one */
5791 if (__dev_get_by_index(net, dev->ifindex)) {
5792 int iflink = (dev->iflink == dev->ifindex);
5793 dev->ifindex = dev_new_index(net);
5794 if (iflink)
5795 dev->iflink = dev->ifindex;
5796 }
5797
5798 /* Fixup kobjects */
5799 err = device_rename(&dev->dev, dev->name);
5800 WARN_ON(err);
5801
5802 /* Add the device back in the hashes */
5803 list_netdevice(dev);
5804
5805 /* Notify protocols, that a new device appeared. */
5806 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5807
5808 /*
5809 * Prevent userspace races by waiting until the network
5810 * device is fully setup before sending notifications.
5811 */
5812 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5813
5814 synchronize_net();
5815 err = 0;
5816 out:
5817 return err;
5818 }
5819 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5820
5821 static int dev_cpu_callback(struct notifier_block *nfb,
5822 unsigned long action,
5823 void *ocpu)
5824 {
5825 struct sk_buff **list_skb;
5826 struct sk_buff *skb;
5827 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5828 struct softnet_data *sd, *oldsd;
5829
5830 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5831 return NOTIFY_OK;
5832
5833 local_irq_disable();
5834 cpu = smp_processor_id();
5835 sd = &per_cpu(softnet_data, cpu);
5836 oldsd = &per_cpu(softnet_data, oldcpu);
5837
5838 /* Find end of our completion_queue. */
5839 list_skb = &sd->completion_queue;
5840 while (*list_skb)
5841 list_skb = &(*list_skb)->next;
5842 /* Append completion queue from offline CPU. */
5843 *list_skb = oldsd->completion_queue;
5844 oldsd->completion_queue = NULL;
5845
5846 /* Append output queue from offline CPU. */
5847 if (oldsd->output_queue) {
5848 *sd->output_queue_tailp = oldsd->output_queue;
5849 sd->output_queue_tailp = oldsd->output_queue_tailp;
5850 oldsd->output_queue = NULL;
5851 oldsd->output_queue_tailp = &oldsd->output_queue;
5852 }
5853
5854 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5855 local_irq_enable();
5856
5857 /* Process offline CPU's input_pkt_queue */
5858 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5859 netif_rx(skb);
5860 input_queue_head_incr(oldsd);
5861 }
5862 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5863 netif_rx(skb);
5864 input_queue_head_incr(oldsd);
5865 }
5866
5867 return NOTIFY_OK;
5868 }
5869
5870
5871 /**
5872 * netdev_increment_features - increment feature set by one
5873 * @all: current feature set
5874 * @one: new feature set
5875 * @mask: mask feature set
5876 *
5877 * Computes a new feature set after adding a device with feature set
5878 * @one to the master device with current feature set @all. Will not
5879 * enable anything that is off in @mask. Returns the new feature set.
5880 */
5881 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5882 unsigned long mask)
5883 {
5884 /* If device needs checksumming, downgrade to it. */
5885 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5886 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5887 else if (mask & NETIF_F_ALL_CSUM) {
5888 /* If one device supports v4/v6 checksumming, set for all. */
5889 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5890 !(all & NETIF_F_GEN_CSUM)) {
5891 all &= ~NETIF_F_ALL_CSUM;
5892 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5893 }
5894
5895 /* If one device supports hw checksumming, set for all. */
5896 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5897 all &= ~NETIF_F_ALL_CSUM;
5898 all |= NETIF_F_HW_CSUM;
5899 }
5900 }
5901
5902 one |= NETIF_F_ALL_CSUM;
5903
5904 one |= all & NETIF_F_ONE_FOR_ALL;
5905 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5906 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5907
5908 return all;
5909 }
5910 EXPORT_SYMBOL(netdev_increment_features);
5911
5912 static struct hlist_head *netdev_create_hash(void)
5913 {
5914 int i;
5915 struct hlist_head *hash;
5916
5917 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5918 if (hash != NULL)
5919 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5920 INIT_HLIST_HEAD(&hash[i]);
5921
5922 return hash;
5923 }
5924
5925 /* Initialize per network namespace state */
5926 static int __net_init netdev_init(struct net *net)
5927 {
5928 INIT_LIST_HEAD(&net->dev_base_head);
5929
5930 net->dev_name_head = netdev_create_hash();
5931 if (net->dev_name_head == NULL)
5932 goto err_name;
5933
5934 net->dev_index_head = netdev_create_hash();
5935 if (net->dev_index_head == NULL)
5936 goto err_idx;
5937
5938 return 0;
5939
5940 err_idx:
5941 kfree(net->dev_name_head);
5942 err_name:
5943 return -ENOMEM;
5944 }
5945
5946 /**
5947 * netdev_drivername - network driver for the device
5948 * @dev: network device
5949 * @buffer: buffer for resulting name
5950 * @len: size of buffer
5951 *
5952 * Determine network driver for device.
5953 */
5954 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5955 {
5956 const struct device_driver *driver;
5957 const struct device *parent;
5958
5959 if (len <= 0 || !buffer)
5960 return buffer;
5961 buffer[0] = 0;
5962
5963 parent = dev->dev.parent;
5964
5965 if (!parent)
5966 return buffer;
5967
5968 driver = parent->driver;
5969 if (driver && driver->name)
5970 strlcpy(buffer, driver->name, len);
5971 return buffer;
5972 }
5973
5974 static int __netdev_printk(const char *level, const struct net_device *dev,
5975 struct va_format *vaf)
5976 {
5977 int r;
5978
5979 if (dev && dev->dev.parent)
5980 r = dev_printk(level, dev->dev.parent, "%s: %pV",
5981 netdev_name(dev), vaf);
5982 else if (dev)
5983 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
5984 else
5985 r = printk("%s(NULL net_device): %pV", level, vaf);
5986
5987 return r;
5988 }
5989
5990 int netdev_printk(const char *level, const struct net_device *dev,
5991 const char *format, ...)
5992 {
5993 struct va_format vaf;
5994 va_list args;
5995 int r;
5996
5997 va_start(args, format);
5998
5999 vaf.fmt = format;
6000 vaf.va = &args;
6001
6002 r = __netdev_printk(level, dev, &vaf);
6003 va_end(args);
6004
6005 return r;
6006 }
6007 EXPORT_SYMBOL(netdev_printk);
6008
6009 #define define_netdev_printk_level(func, level) \
6010 int func(const struct net_device *dev, const char *fmt, ...) \
6011 { \
6012 int r; \
6013 struct va_format vaf; \
6014 va_list args; \
6015 \
6016 va_start(args, fmt); \
6017 \
6018 vaf.fmt = fmt; \
6019 vaf.va = &args; \
6020 \
6021 r = __netdev_printk(level, dev, &vaf); \
6022 va_end(args); \
6023 \
6024 return r; \
6025 } \
6026 EXPORT_SYMBOL(func);
6027
6028 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6029 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6030 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6031 define_netdev_printk_level(netdev_err, KERN_ERR);
6032 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6033 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6034 define_netdev_printk_level(netdev_info, KERN_INFO);
6035
6036 static void __net_exit netdev_exit(struct net *net)
6037 {
6038 kfree(net->dev_name_head);
6039 kfree(net->dev_index_head);
6040 }
6041
6042 static struct pernet_operations __net_initdata netdev_net_ops = {
6043 .init = netdev_init,
6044 .exit = netdev_exit,
6045 };
6046
6047 static void __net_exit default_device_exit(struct net *net)
6048 {
6049 struct net_device *dev, *aux;
6050 /*
6051 * Push all migratable network devices back to the
6052 * initial network namespace
6053 */
6054 rtnl_lock();
6055 for_each_netdev_safe(net, dev, aux) {
6056 int err;
6057 char fb_name[IFNAMSIZ];
6058
6059 /* Ignore unmoveable devices (i.e. loopback) */
6060 if (dev->features & NETIF_F_NETNS_LOCAL)
6061 continue;
6062
6063 /* Leave virtual devices for the generic cleanup */
6064 if (dev->rtnl_link_ops)
6065 continue;
6066
6067 /* Push remaing network devices to init_net */
6068 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6069 err = dev_change_net_namespace(dev, &init_net, fb_name);
6070 if (err) {
6071 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6072 __func__, dev->name, err);
6073 BUG();
6074 }
6075 }
6076 rtnl_unlock();
6077 }
6078
6079 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6080 {
6081 /* At exit all network devices most be removed from a network
6082 * namespace. Do this in the reverse order of registeration.
6083 * Do this across as many network namespaces as possible to
6084 * improve batching efficiency.
6085 */
6086 struct net_device *dev;
6087 struct net *net;
6088 LIST_HEAD(dev_kill_list);
6089
6090 rtnl_lock();
6091 list_for_each_entry(net, net_list, exit_list) {
6092 for_each_netdev_reverse(net, dev) {
6093 if (dev->rtnl_link_ops)
6094 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6095 else
6096 unregister_netdevice_queue(dev, &dev_kill_list);
6097 }
6098 }
6099 unregister_netdevice_many(&dev_kill_list);
6100 rtnl_unlock();
6101 }
6102
6103 static struct pernet_operations __net_initdata default_device_ops = {
6104 .exit = default_device_exit,
6105 .exit_batch = default_device_exit_batch,
6106 };
6107
6108 /*
6109 * Initialize the DEV module. At boot time this walks the device list and
6110 * unhooks any devices that fail to initialise (normally hardware not
6111 * present) and leaves us with a valid list of present and active devices.
6112 *
6113 */
6114
6115 /*
6116 * This is called single threaded during boot, so no need
6117 * to take the rtnl semaphore.
6118 */
6119 static int __init net_dev_init(void)
6120 {
6121 int i, rc = -ENOMEM;
6122
6123 BUG_ON(!dev_boot_phase);
6124
6125 if (dev_proc_init())
6126 goto out;
6127
6128 if (netdev_kobject_init())
6129 goto out;
6130
6131 INIT_LIST_HEAD(&ptype_all);
6132 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6133 INIT_LIST_HEAD(&ptype_base[i]);
6134
6135 if (register_pernet_subsys(&netdev_net_ops))
6136 goto out;
6137
6138 /*
6139 * Initialise the packet receive queues.
6140 */
6141
6142 for_each_possible_cpu(i) {
6143 struct softnet_data *sd = &per_cpu(softnet_data, i);
6144
6145 memset(sd, 0, sizeof(*sd));
6146 skb_queue_head_init(&sd->input_pkt_queue);
6147 skb_queue_head_init(&sd->process_queue);
6148 sd->completion_queue = NULL;
6149 INIT_LIST_HEAD(&sd->poll_list);
6150 sd->output_queue = NULL;
6151 sd->output_queue_tailp = &sd->output_queue;
6152 #ifdef CONFIG_RPS
6153 sd->csd.func = rps_trigger_softirq;
6154 sd->csd.info = sd;
6155 sd->csd.flags = 0;
6156 sd->cpu = i;
6157 #endif
6158
6159 sd->backlog.poll = process_backlog;
6160 sd->backlog.weight = weight_p;
6161 sd->backlog.gro_list = NULL;
6162 sd->backlog.gro_count = 0;
6163 }
6164
6165 dev_boot_phase = 0;
6166
6167 /* The loopback device is special if any other network devices
6168 * is present in a network namespace the loopback device must
6169 * be present. Since we now dynamically allocate and free the
6170 * loopback device ensure this invariant is maintained by
6171 * keeping the loopback device as the first device on the
6172 * list of network devices. Ensuring the loopback devices
6173 * is the first device that appears and the last network device
6174 * that disappears.
6175 */
6176 if (register_pernet_device(&loopback_net_ops))
6177 goto out;
6178
6179 if (register_pernet_device(&default_device_ops))
6180 goto out;
6181
6182 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6183 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6184
6185 hotcpu_notifier(dev_cpu_callback, 0);
6186 dst_init();
6187 dev_mcast_init();
6188 rc = 0;
6189 out:
6190 return rc;
6191 }
6192
6193 subsys_initcall(net_dev_init);
6194
6195 static int __init initialize_hashrnd(void)
6196 {
6197 get_random_bytes(&hashrnd, sizeof(hashrnd));
6198 return 0;
6199 }
6200
6201 late_initcall_sync(initialize_hashrnd);
6202