]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
4ce07dc25573ed3d20f181f5b36327cb0f407fe3
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/sctp.h>
143 #include <linux/crash_dump.h>
144
145 #include "net-sysfs.h"
146
147 /* Instead of increasing this, you should create a hash table. */
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly; /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 struct net_device *dev,
162 struct netdev_notifier_info *info);
163
164 /*
165 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
166 * semaphore.
167 *
168 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
169 *
170 * Writers must hold the rtnl semaphore while they loop through the
171 * dev_base_head list, and hold dev_base_lock for writing when they do the
172 * actual updates. This allows pure readers to access the list even
173 * while a writer is preparing to update it.
174 *
175 * To put it another way, dev_base_lock is held for writing only to
176 * protect against pure readers; the rtnl semaphore provides the
177 * protection against other writers.
178 *
179 * See, for example usages, register_netdevice() and
180 * unregister_netdevice(), which must be called with the rtnl
181 * semaphore held.
182 */
183 DEFINE_RWLOCK(dev_base_lock);
184 EXPORT_SYMBOL(dev_base_lock);
185
186 /* protects napi_hash addition/deletion and napi_gen_id */
187 static DEFINE_SPINLOCK(napi_hash_lock);
188
189 static unsigned int napi_gen_id = NR_CPUS;
190 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
191
192 static seqcount_t devnet_rename_seq;
193
194 static inline void dev_base_seq_inc(struct net *net)
195 {
196 while (++net->dev_base_seq == 0);
197 }
198
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238
239 dev_base_seq_inc(net);
240 }
241
242 /* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255
256 dev_base_seq_inc(dev_net(dev));
257 }
258
259 /*
260 * Our notifier list
261 */
262
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264
265 /*
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
268 */
269
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273 #ifdef CONFIG_LOCKDEP
274 /*
275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276 * according to dev->type
277 */
278 static const unsigned short netdev_lock_type[] =
279 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295 static const char *const netdev_lock_name[] =
296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328 {
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334 }
335
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354
355 /*******************************************************************************
356
357 Protocol management and registration routines
358
359 *******************************************************************************/
360
361 /*
362 * Add a protocol ID to the list. Now that the input handler is
363 * smarter we can dispense with all the messy stuff that used to be
364 * here.
365 *
366 * BEWARE!!! Protocol handlers, mangling input packets,
367 * MUST BE last in hash buckets and checking protocol handlers
368 * MUST start from promiscuous ptype_all chain in net_bh.
369 * It is true now, do not change it.
370 * Explanation follows: if protocol handler, mangling packet, will
371 * be the first on list, it is not able to sense, that packet
372 * is cloned and should be copied-on-write, so that it will
373 * change it and subsequent readers will get broken packet.
374 * --ANK (980803)
375 */
376
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 if (pt->type == htons(ETH_P_ALL))
380 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
381 else
382 return pt->dev ? &pt->dev->ptype_specific :
383 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385
386 /**
387 * dev_add_pack - add packet handler
388 * @pt: packet type declaration
389 *
390 * Add a protocol handler to the networking stack. The passed &packet_type
391 * is linked into kernel lists and may not be freed until it has been
392 * removed from the kernel lists.
393 *
394 * This call does not sleep therefore it can not
395 * guarantee all CPU's that are in middle of receiving packets
396 * will see the new packet type (until the next received packet).
397 */
398
399 void dev_add_pack(struct packet_type *pt)
400 {
401 struct list_head *head = ptype_head(pt);
402
403 spin_lock(&ptype_lock);
404 list_add_rcu(&pt->list, head);
405 spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408
409 /**
410 * __dev_remove_pack - remove packet handler
411 * @pt: packet type declaration
412 *
413 * Remove a protocol handler that was previously added to the kernel
414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
415 * from the kernel lists and can be freed or reused once this function
416 * returns.
417 *
418 * The packet type might still be in use by receivers
419 * and must not be freed until after all the CPU's have gone
420 * through a quiescent state.
421 */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 struct list_head *head = ptype_head(pt);
425 struct packet_type *pt1;
426
427 spin_lock(&ptype_lock);
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 pr_warn("dev_remove_pack: %p not found\n", pt);
437 out:
438 spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462
463 /**
464 * dev_add_offload - register offload handlers
465 * @po: protocol offload declaration
466 *
467 * Add protocol offload handlers to the networking stack. The passed
468 * &proto_offload is linked into kernel lists and may not be freed until
469 * it has been removed from the kernel lists.
470 *
471 * This call does not sleep therefore it can not
472 * guarantee all CPU's that are in middle of receiving packets
473 * will see the new offload handlers (until the next received packet).
474 */
475 void dev_add_offload(struct packet_offload *po)
476 {
477 struct packet_offload *elem;
478
479 spin_lock(&offload_lock);
480 list_for_each_entry(elem, &offload_base, list) {
481 if (po->priority < elem->priority)
482 break;
483 }
484 list_add_rcu(&po->list, elem->list.prev);
485 spin_unlock(&offload_lock);
486 }
487 EXPORT_SYMBOL(dev_add_offload);
488
489 /**
490 * __dev_remove_offload - remove offload handler
491 * @po: packet offload declaration
492 *
493 * Remove a protocol offload handler that was previously added to the
494 * kernel offload handlers by dev_add_offload(). The passed &offload_type
495 * is removed from the kernel lists and can be freed or reused once this
496 * function returns.
497 *
498 * The packet type might still be in use by receivers
499 * and must not be freed until after all the CPU's have gone
500 * through a quiescent state.
501 */
502 static void __dev_remove_offload(struct packet_offload *po)
503 {
504 struct list_head *head = &offload_base;
505 struct packet_offload *po1;
506
507 spin_lock(&offload_lock);
508
509 list_for_each_entry(po1, head, list) {
510 if (po == po1) {
511 list_del_rcu(&po->list);
512 goto out;
513 }
514 }
515
516 pr_warn("dev_remove_offload: %p not found\n", po);
517 out:
518 spin_unlock(&offload_lock);
519 }
520
521 /**
522 * dev_remove_offload - remove packet offload handler
523 * @po: packet offload declaration
524 *
525 * Remove a packet offload handler that was previously added to the kernel
526 * offload handlers by dev_add_offload(). The passed &offload_type is
527 * removed from the kernel lists and can be freed or reused once this
528 * function returns.
529 *
530 * This call sleeps to guarantee that no CPU is looking at the packet
531 * type after return.
532 */
533 void dev_remove_offload(struct packet_offload *po)
534 {
535 __dev_remove_offload(po);
536
537 synchronize_net();
538 }
539 EXPORT_SYMBOL(dev_remove_offload);
540
541 /******************************************************************************
542
543 Device Boot-time Settings Routines
544
545 *******************************************************************************/
546
547 /* Boot time configuration table */
548 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
549
550 /**
551 * netdev_boot_setup_add - add new setup entry
552 * @name: name of the device
553 * @map: configured settings for the device
554 *
555 * Adds new setup entry to the dev_boot_setup list. The function
556 * returns 0 on error and 1 on success. This is a generic routine to
557 * all netdevices.
558 */
559 static int netdev_boot_setup_add(char *name, struct ifmap *map)
560 {
561 struct netdev_boot_setup *s;
562 int i;
563
564 s = dev_boot_setup;
565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
566 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
567 memset(s[i].name, 0, sizeof(s[i].name));
568 strlcpy(s[i].name, name, IFNAMSIZ);
569 memcpy(&s[i].map, map, sizeof(s[i].map));
570 break;
571 }
572 }
573
574 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
575 }
576
577 /**
578 * netdev_boot_setup_check - check boot time settings
579 * @dev: the netdevice
580 *
581 * Check boot time settings for the device.
582 * The found settings are set for the device to be used
583 * later in the device probing.
584 * Returns 0 if no settings found, 1 if they are.
585 */
586 int netdev_boot_setup_check(struct net_device *dev)
587 {
588 struct netdev_boot_setup *s = dev_boot_setup;
589 int i;
590
591 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
592 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
593 !strcmp(dev->name, s[i].name)) {
594 dev->irq = s[i].map.irq;
595 dev->base_addr = s[i].map.base_addr;
596 dev->mem_start = s[i].map.mem_start;
597 dev->mem_end = s[i].map.mem_end;
598 return 1;
599 }
600 }
601 return 0;
602 }
603 EXPORT_SYMBOL(netdev_boot_setup_check);
604
605
606 /**
607 * netdev_boot_base - get address from boot time settings
608 * @prefix: prefix for network device
609 * @unit: id for network device
610 *
611 * Check boot time settings for the base address of device.
612 * The found settings are set for the device to be used
613 * later in the device probing.
614 * Returns 0 if no settings found.
615 */
616 unsigned long netdev_boot_base(const char *prefix, int unit)
617 {
618 const struct netdev_boot_setup *s = dev_boot_setup;
619 char name[IFNAMSIZ];
620 int i;
621
622 sprintf(name, "%s%d", prefix, unit);
623
624 /*
625 * If device already registered then return base of 1
626 * to indicate not to probe for this interface
627 */
628 if (__dev_get_by_name(&init_net, name))
629 return 1;
630
631 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
632 if (!strcmp(name, s[i].name))
633 return s[i].map.base_addr;
634 return 0;
635 }
636
637 /*
638 * Saves at boot time configured settings for any netdevice.
639 */
640 int __init netdev_boot_setup(char *str)
641 {
642 int ints[5];
643 struct ifmap map;
644
645 str = get_options(str, ARRAY_SIZE(ints), ints);
646 if (!str || !*str)
647 return 0;
648
649 /* Save settings */
650 memset(&map, 0, sizeof(map));
651 if (ints[0] > 0)
652 map.irq = ints[1];
653 if (ints[0] > 1)
654 map.base_addr = ints[2];
655 if (ints[0] > 2)
656 map.mem_start = ints[3];
657 if (ints[0] > 3)
658 map.mem_end = ints[4];
659
660 /* Add new entry to the list */
661 return netdev_boot_setup_add(str, &map);
662 }
663
664 __setup("netdev=", netdev_boot_setup);
665
666 /*******************************************************************************
667
668 Device Interface Subroutines
669
670 *******************************************************************************/
671
672 /**
673 * dev_get_iflink - get 'iflink' value of a interface
674 * @dev: targeted interface
675 *
676 * Indicates the ifindex the interface is linked to.
677 * Physical interfaces have the same 'ifindex' and 'iflink' values.
678 */
679
680 int dev_get_iflink(const struct net_device *dev)
681 {
682 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
683 return dev->netdev_ops->ndo_get_iflink(dev);
684
685 return dev->ifindex;
686 }
687 EXPORT_SYMBOL(dev_get_iflink);
688
689 /**
690 * dev_fill_metadata_dst - Retrieve tunnel egress information.
691 * @dev: targeted interface
692 * @skb: The packet.
693 *
694 * For better visibility of tunnel traffic OVS needs to retrieve
695 * egress tunnel information for a packet. Following API allows
696 * user to get this info.
697 */
698 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
699 {
700 struct ip_tunnel_info *info;
701
702 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
703 return -EINVAL;
704
705 info = skb_tunnel_info_unclone(skb);
706 if (!info)
707 return -ENOMEM;
708 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
709 return -EINVAL;
710
711 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
712 }
713 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
714
715 /**
716 * __dev_get_by_name - find a device by its name
717 * @net: the applicable net namespace
718 * @name: name to find
719 *
720 * Find an interface by name. Must be called under RTNL semaphore
721 * or @dev_base_lock. If the name is found a pointer to the device
722 * is returned. If the name is not found then %NULL is returned. The
723 * reference counters are not incremented so the caller must be
724 * careful with locks.
725 */
726
727 struct net_device *__dev_get_by_name(struct net *net, const char *name)
728 {
729 struct net_device *dev;
730 struct hlist_head *head = dev_name_hash(net, name);
731
732 hlist_for_each_entry(dev, head, name_hlist)
733 if (!strncmp(dev->name, name, IFNAMSIZ))
734 return dev;
735
736 return NULL;
737 }
738 EXPORT_SYMBOL(__dev_get_by_name);
739
740 /**
741 * dev_get_by_name_rcu - find a device by its name
742 * @net: the applicable net namespace
743 * @name: name to find
744 *
745 * Find an interface by name.
746 * If the name is found a pointer to the device is returned.
747 * If the name is not found then %NULL is returned.
748 * The reference counters are not incremented so the caller must be
749 * careful with locks. The caller must hold RCU lock.
750 */
751
752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753 {
754 struct net_device *dev;
755 struct hlist_head *head = dev_name_hash(net, name);
756
757 hlist_for_each_entry_rcu(dev, head, name_hlist)
758 if (!strncmp(dev->name, name, IFNAMSIZ))
759 return dev;
760
761 return NULL;
762 }
763 EXPORT_SYMBOL(dev_get_by_name_rcu);
764
765 /**
766 * dev_get_by_name - find a device by its name
767 * @net: the applicable net namespace
768 * @name: name to find
769 *
770 * Find an interface by name. This can be called from any
771 * context and does its own locking. The returned handle has
772 * the usage count incremented and the caller must use dev_put() to
773 * release it when it is no longer needed. %NULL is returned if no
774 * matching device is found.
775 */
776
777 struct net_device *dev_get_by_name(struct net *net, const char *name)
778 {
779 struct net_device *dev;
780
781 rcu_read_lock();
782 dev = dev_get_by_name_rcu(net, name);
783 if (dev)
784 dev_hold(dev);
785 rcu_read_unlock();
786 return dev;
787 }
788 EXPORT_SYMBOL(dev_get_by_name);
789
790 /**
791 * __dev_get_by_index - find a device by its ifindex
792 * @net: the applicable net namespace
793 * @ifindex: index of device
794 *
795 * Search for an interface by index. Returns %NULL if the device
796 * is not found or a pointer to the device. The device has not
797 * had its reference counter increased so the caller must be careful
798 * about locking. The caller must hold either the RTNL semaphore
799 * or @dev_base_lock.
800 */
801
802 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
803 {
804 struct net_device *dev;
805 struct hlist_head *head = dev_index_hash(net, ifindex);
806
807 hlist_for_each_entry(dev, head, index_hlist)
808 if (dev->ifindex == ifindex)
809 return dev;
810
811 return NULL;
812 }
813 EXPORT_SYMBOL(__dev_get_by_index);
814
815 /**
816 * dev_get_by_index_rcu - find a device by its ifindex
817 * @net: the applicable net namespace
818 * @ifindex: index of device
819 *
820 * Search for an interface by index. Returns %NULL if the device
821 * is not found or a pointer to the device. The device has not
822 * had its reference counter increased so the caller must be careful
823 * about locking. The caller must hold RCU lock.
824 */
825
826 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
827 {
828 struct net_device *dev;
829 struct hlist_head *head = dev_index_hash(net, ifindex);
830
831 hlist_for_each_entry_rcu(dev, head, index_hlist)
832 if (dev->ifindex == ifindex)
833 return dev;
834
835 return NULL;
836 }
837 EXPORT_SYMBOL(dev_get_by_index_rcu);
838
839
840 /**
841 * dev_get_by_index - find a device by its ifindex
842 * @net: the applicable net namespace
843 * @ifindex: index of device
844 *
845 * Search for an interface by index. Returns NULL if the device
846 * is not found or a pointer to the device. The device returned has
847 * had a reference added and the pointer is safe until the user calls
848 * dev_put to indicate they have finished with it.
849 */
850
851 struct net_device *dev_get_by_index(struct net *net, int ifindex)
852 {
853 struct net_device *dev;
854
855 rcu_read_lock();
856 dev = dev_get_by_index_rcu(net, ifindex);
857 if (dev)
858 dev_hold(dev);
859 rcu_read_unlock();
860 return dev;
861 }
862 EXPORT_SYMBOL(dev_get_by_index);
863
864 /**
865 * netdev_get_name - get a netdevice name, knowing its ifindex.
866 * @net: network namespace
867 * @name: a pointer to the buffer where the name will be stored.
868 * @ifindex: the ifindex of the interface to get the name from.
869 *
870 * The use of raw_seqcount_begin() and cond_resched() before
871 * retrying is required as we want to give the writers a chance
872 * to complete when CONFIG_PREEMPT is not set.
873 */
874 int netdev_get_name(struct net *net, char *name, int ifindex)
875 {
876 struct net_device *dev;
877 unsigned int seq;
878
879 retry:
880 seq = raw_seqcount_begin(&devnet_rename_seq);
881 rcu_read_lock();
882 dev = dev_get_by_index_rcu(net, ifindex);
883 if (!dev) {
884 rcu_read_unlock();
885 return -ENODEV;
886 }
887
888 strcpy(name, dev->name);
889 rcu_read_unlock();
890 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
891 cond_resched();
892 goto retry;
893 }
894
895 return 0;
896 }
897
898 /**
899 * dev_getbyhwaddr_rcu - find a device by its hardware address
900 * @net: the applicable net namespace
901 * @type: media type of device
902 * @ha: hardware address
903 *
904 * Search for an interface by MAC address. Returns NULL if the device
905 * is not found or a pointer to the device.
906 * The caller must hold RCU or RTNL.
907 * The returned device has not had its ref count increased
908 * and the caller must therefore be careful about locking
909 *
910 */
911
912 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
913 const char *ha)
914 {
915 struct net_device *dev;
916
917 for_each_netdev_rcu(net, dev)
918 if (dev->type == type &&
919 !memcmp(dev->dev_addr, ha, dev->addr_len))
920 return dev;
921
922 return NULL;
923 }
924 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
925
926 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
927 {
928 struct net_device *dev;
929
930 ASSERT_RTNL();
931 for_each_netdev(net, dev)
932 if (dev->type == type)
933 return dev;
934
935 return NULL;
936 }
937 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
938
939 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
940 {
941 struct net_device *dev, *ret = NULL;
942
943 rcu_read_lock();
944 for_each_netdev_rcu(net, dev)
945 if (dev->type == type) {
946 dev_hold(dev);
947 ret = dev;
948 break;
949 }
950 rcu_read_unlock();
951 return ret;
952 }
953 EXPORT_SYMBOL(dev_getfirstbyhwtype);
954
955 /**
956 * __dev_get_by_flags - find any device with given flags
957 * @net: the applicable net namespace
958 * @if_flags: IFF_* values
959 * @mask: bitmask of bits in if_flags to check
960 *
961 * Search for any interface with the given flags. Returns NULL if a device
962 * is not found or a pointer to the device. Must be called inside
963 * rtnl_lock(), and result refcount is unchanged.
964 */
965
966 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
967 unsigned short mask)
968 {
969 struct net_device *dev, *ret;
970
971 ASSERT_RTNL();
972
973 ret = NULL;
974 for_each_netdev(net, dev) {
975 if (((dev->flags ^ if_flags) & mask) == 0) {
976 ret = dev;
977 break;
978 }
979 }
980 return ret;
981 }
982 EXPORT_SYMBOL(__dev_get_by_flags);
983
984 /**
985 * dev_valid_name - check if name is okay for network device
986 * @name: name string
987 *
988 * Network device names need to be valid file names to
989 * to allow sysfs to work. We also disallow any kind of
990 * whitespace.
991 */
992 bool dev_valid_name(const char *name)
993 {
994 if (*name == '\0')
995 return false;
996 if (strlen(name) >= IFNAMSIZ)
997 return false;
998 if (!strcmp(name, ".") || !strcmp(name, ".."))
999 return false;
1000
1001 while (*name) {
1002 if (*name == '/' || *name == ':' || isspace(*name))
1003 return false;
1004 name++;
1005 }
1006 return true;
1007 }
1008 EXPORT_SYMBOL(dev_valid_name);
1009
1010 /**
1011 * __dev_alloc_name - allocate a name for a device
1012 * @net: network namespace to allocate the device name in
1013 * @name: name format string
1014 * @buf: scratch buffer and result name string
1015 *
1016 * Passed a format string - eg "lt%d" it will try and find a suitable
1017 * id. It scans list of devices to build up a free map, then chooses
1018 * the first empty slot. The caller must hold the dev_base or rtnl lock
1019 * while allocating the name and adding the device in order to avoid
1020 * duplicates.
1021 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1022 * Returns the number of the unit assigned or a negative errno code.
1023 */
1024
1025 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1026 {
1027 int i = 0;
1028 const char *p;
1029 const int max_netdevices = 8*PAGE_SIZE;
1030 unsigned long *inuse;
1031 struct net_device *d;
1032
1033 p = strnchr(name, IFNAMSIZ-1, '%');
1034 if (p) {
1035 /*
1036 * Verify the string as this thing may have come from
1037 * the user. There must be either one "%d" and no other "%"
1038 * characters.
1039 */
1040 if (p[1] != 'd' || strchr(p + 2, '%'))
1041 return -EINVAL;
1042
1043 /* Use one page as a bit array of possible slots */
1044 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1045 if (!inuse)
1046 return -ENOMEM;
1047
1048 for_each_netdev(net, d) {
1049 if (!sscanf(d->name, name, &i))
1050 continue;
1051 if (i < 0 || i >= max_netdevices)
1052 continue;
1053
1054 /* avoid cases where sscanf is not exact inverse of printf */
1055 snprintf(buf, IFNAMSIZ, name, i);
1056 if (!strncmp(buf, d->name, IFNAMSIZ))
1057 set_bit(i, inuse);
1058 }
1059
1060 i = find_first_zero_bit(inuse, max_netdevices);
1061 free_page((unsigned long) inuse);
1062 }
1063
1064 if (buf != name)
1065 snprintf(buf, IFNAMSIZ, name, i);
1066 if (!__dev_get_by_name(net, buf))
1067 return i;
1068
1069 /* It is possible to run out of possible slots
1070 * when the name is long and there isn't enough space left
1071 * for the digits, or if all bits are used.
1072 */
1073 return -ENFILE;
1074 }
1075
1076 /**
1077 * dev_alloc_name - allocate a name for a device
1078 * @dev: device
1079 * @name: name format string
1080 *
1081 * Passed a format string - eg "lt%d" it will try and find a suitable
1082 * id. It scans list of devices to build up a free map, then chooses
1083 * the first empty slot. The caller must hold the dev_base or rtnl lock
1084 * while allocating the name and adding the device in order to avoid
1085 * duplicates.
1086 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1087 * Returns the number of the unit assigned or a negative errno code.
1088 */
1089
1090 int dev_alloc_name(struct net_device *dev, const char *name)
1091 {
1092 char buf[IFNAMSIZ];
1093 struct net *net;
1094 int ret;
1095
1096 BUG_ON(!dev_net(dev));
1097 net = dev_net(dev);
1098 ret = __dev_alloc_name(net, name, buf);
1099 if (ret >= 0)
1100 strlcpy(dev->name, buf, IFNAMSIZ);
1101 return ret;
1102 }
1103 EXPORT_SYMBOL(dev_alloc_name);
1104
1105 static int dev_alloc_name_ns(struct net *net,
1106 struct net_device *dev,
1107 const char *name)
1108 {
1109 char buf[IFNAMSIZ];
1110 int ret;
1111
1112 ret = __dev_alloc_name(net, name, buf);
1113 if (ret >= 0)
1114 strlcpy(dev->name, buf, IFNAMSIZ);
1115 return ret;
1116 }
1117
1118 static int dev_get_valid_name(struct net *net,
1119 struct net_device *dev,
1120 const char *name)
1121 {
1122 BUG_ON(!net);
1123
1124 if (!dev_valid_name(name))
1125 return -EINVAL;
1126
1127 if (strchr(name, '%'))
1128 return dev_alloc_name_ns(net, dev, name);
1129 else if (__dev_get_by_name(net, name))
1130 return -EEXIST;
1131 else if (dev->name != name)
1132 strlcpy(dev->name, name, IFNAMSIZ);
1133
1134 return 0;
1135 }
1136
1137 /**
1138 * dev_change_name - change name of a device
1139 * @dev: device
1140 * @newname: name (or format string) must be at least IFNAMSIZ
1141 *
1142 * Change name of a device, can pass format strings "eth%d".
1143 * for wildcarding.
1144 */
1145 int dev_change_name(struct net_device *dev, const char *newname)
1146 {
1147 unsigned char old_assign_type;
1148 char oldname[IFNAMSIZ];
1149 int err = 0;
1150 int ret;
1151 struct net *net;
1152
1153 ASSERT_RTNL();
1154 BUG_ON(!dev_net(dev));
1155
1156 net = dev_net(dev);
1157 if (dev->flags & IFF_UP)
1158 return -EBUSY;
1159
1160 write_seqcount_begin(&devnet_rename_seq);
1161
1162 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1163 write_seqcount_end(&devnet_rename_seq);
1164 return 0;
1165 }
1166
1167 memcpy(oldname, dev->name, IFNAMSIZ);
1168
1169 err = dev_get_valid_name(net, dev, newname);
1170 if (err < 0) {
1171 write_seqcount_end(&devnet_rename_seq);
1172 return err;
1173 }
1174
1175 if (oldname[0] && !strchr(oldname, '%'))
1176 netdev_info(dev, "renamed from %s\n", oldname);
1177
1178 old_assign_type = dev->name_assign_type;
1179 dev->name_assign_type = NET_NAME_RENAMED;
1180
1181 rollback:
1182 ret = device_rename(&dev->dev, dev->name);
1183 if (ret) {
1184 memcpy(dev->name, oldname, IFNAMSIZ);
1185 dev->name_assign_type = old_assign_type;
1186 write_seqcount_end(&devnet_rename_seq);
1187 return ret;
1188 }
1189
1190 write_seqcount_end(&devnet_rename_seq);
1191
1192 netdev_adjacent_rename_links(dev, oldname);
1193
1194 write_lock_bh(&dev_base_lock);
1195 hlist_del_rcu(&dev->name_hlist);
1196 write_unlock_bh(&dev_base_lock);
1197
1198 synchronize_rcu();
1199
1200 write_lock_bh(&dev_base_lock);
1201 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1202 write_unlock_bh(&dev_base_lock);
1203
1204 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1205 ret = notifier_to_errno(ret);
1206
1207 if (ret) {
1208 /* err >= 0 after dev_alloc_name() or stores the first errno */
1209 if (err >= 0) {
1210 err = ret;
1211 write_seqcount_begin(&devnet_rename_seq);
1212 memcpy(dev->name, oldname, IFNAMSIZ);
1213 memcpy(oldname, newname, IFNAMSIZ);
1214 dev->name_assign_type = old_assign_type;
1215 old_assign_type = NET_NAME_RENAMED;
1216 goto rollback;
1217 } else {
1218 pr_err("%s: name change rollback failed: %d\n",
1219 dev->name, ret);
1220 }
1221 }
1222
1223 return err;
1224 }
1225
1226 /**
1227 * dev_set_alias - change ifalias of a device
1228 * @dev: device
1229 * @alias: name up to IFALIASZ
1230 * @len: limit of bytes to copy from info
1231 *
1232 * Set ifalias for a device,
1233 */
1234 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1235 {
1236 char *new_ifalias;
1237
1238 ASSERT_RTNL();
1239
1240 if (len >= IFALIASZ)
1241 return -EINVAL;
1242
1243 if (!len) {
1244 kfree(dev->ifalias);
1245 dev->ifalias = NULL;
1246 return 0;
1247 }
1248
1249 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1250 if (!new_ifalias)
1251 return -ENOMEM;
1252 dev->ifalias = new_ifalias;
1253
1254 strlcpy(dev->ifalias, alias, len+1);
1255 return len;
1256 }
1257
1258
1259 /**
1260 * netdev_features_change - device changes features
1261 * @dev: device to cause notification
1262 *
1263 * Called to indicate a device has changed features.
1264 */
1265 void netdev_features_change(struct net_device *dev)
1266 {
1267 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1268 }
1269 EXPORT_SYMBOL(netdev_features_change);
1270
1271 /**
1272 * netdev_state_change - device changes state
1273 * @dev: device to cause notification
1274 *
1275 * Called to indicate a device has changed state. This function calls
1276 * the notifier chains for netdev_chain and sends a NEWLINK message
1277 * to the routing socket.
1278 */
1279 void netdev_state_change(struct net_device *dev)
1280 {
1281 if (dev->flags & IFF_UP) {
1282 struct netdev_notifier_change_info change_info;
1283
1284 change_info.flags_changed = 0;
1285 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1286 &change_info.info);
1287 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1288 }
1289 }
1290 EXPORT_SYMBOL(netdev_state_change);
1291
1292 /**
1293 * netdev_notify_peers - notify network peers about existence of @dev
1294 * @dev: network device
1295 *
1296 * Generate traffic such that interested network peers are aware of
1297 * @dev, such as by generating a gratuitous ARP. This may be used when
1298 * a device wants to inform the rest of the network about some sort of
1299 * reconfiguration such as a failover event or virtual machine
1300 * migration.
1301 */
1302 void netdev_notify_peers(struct net_device *dev)
1303 {
1304 rtnl_lock();
1305 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1306 rtnl_unlock();
1307 }
1308 EXPORT_SYMBOL(netdev_notify_peers);
1309
1310 static int __dev_open(struct net_device *dev)
1311 {
1312 const struct net_device_ops *ops = dev->netdev_ops;
1313 int ret;
1314
1315 ASSERT_RTNL();
1316
1317 if (!netif_device_present(dev))
1318 return -ENODEV;
1319
1320 /* Block netpoll from trying to do any rx path servicing.
1321 * If we don't do this there is a chance ndo_poll_controller
1322 * or ndo_poll may be running while we open the device
1323 */
1324 netpoll_poll_disable(dev);
1325
1326 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1327 ret = notifier_to_errno(ret);
1328 if (ret)
1329 return ret;
1330
1331 set_bit(__LINK_STATE_START, &dev->state);
1332
1333 if (ops->ndo_validate_addr)
1334 ret = ops->ndo_validate_addr(dev);
1335
1336 if (!ret && ops->ndo_open)
1337 ret = ops->ndo_open(dev);
1338
1339 netpoll_poll_enable(dev);
1340
1341 if (ret)
1342 clear_bit(__LINK_STATE_START, &dev->state);
1343 else {
1344 dev->flags |= IFF_UP;
1345 dev_set_rx_mode(dev);
1346 dev_activate(dev);
1347 add_device_randomness(dev->dev_addr, dev->addr_len);
1348 }
1349
1350 return ret;
1351 }
1352
1353 /**
1354 * dev_open - prepare an interface for use.
1355 * @dev: device to open
1356 *
1357 * Takes a device from down to up state. The device's private open
1358 * function is invoked and then the multicast lists are loaded. Finally
1359 * the device is moved into the up state and a %NETDEV_UP message is
1360 * sent to the netdev notifier chain.
1361 *
1362 * Calling this function on an active interface is a nop. On a failure
1363 * a negative errno code is returned.
1364 */
1365 int dev_open(struct net_device *dev)
1366 {
1367 int ret;
1368
1369 if (dev->flags & IFF_UP)
1370 return 0;
1371
1372 ret = __dev_open(dev);
1373 if (ret < 0)
1374 return ret;
1375
1376 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1377 call_netdevice_notifiers(NETDEV_UP, dev);
1378
1379 return ret;
1380 }
1381 EXPORT_SYMBOL(dev_open);
1382
1383 static int __dev_close_many(struct list_head *head)
1384 {
1385 struct net_device *dev;
1386
1387 ASSERT_RTNL();
1388 might_sleep();
1389
1390 list_for_each_entry(dev, head, close_list) {
1391 /* Temporarily disable netpoll until the interface is down */
1392 netpoll_poll_disable(dev);
1393
1394 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1395
1396 clear_bit(__LINK_STATE_START, &dev->state);
1397
1398 /* Synchronize to scheduled poll. We cannot touch poll list, it
1399 * can be even on different cpu. So just clear netif_running().
1400 *
1401 * dev->stop() will invoke napi_disable() on all of it's
1402 * napi_struct instances on this device.
1403 */
1404 smp_mb__after_atomic(); /* Commit netif_running(). */
1405 }
1406
1407 dev_deactivate_many(head);
1408
1409 list_for_each_entry(dev, head, close_list) {
1410 const struct net_device_ops *ops = dev->netdev_ops;
1411
1412 /*
1413 * Call the device specific close. This cannot fail.
1414 * Only if device is UP
1415 *
1416 * We allow it to be called even after a DETACH hot-plug
1417 * event.
1418 */
1419 if (ops->ndo_stop)
1420 ops->ndo_stop(dev);
1421
1422 dev->flags &= ~IFF_UP;
1423 netpoll_poll_enable(dev);
1424 }
1425
1426 return 0;
1427 }
1428
1429 static int __dev_close(struct net_device *dev)
1430 {
1431 int retval;
1432 LIST_HEAD(single);
1433
1434 list_add(&dev->close_list, &single);
1435 retval = __dev_close_many(&single);
1436 list_del(&single);
1437
1438 return retval;
1439 }
1440
1441 int dev_close_many(struct list_head *head, bool unlink)
1442 {
1443 struct net_device *dev, *tmp;
1444
1445 /* Remove the devices that don't need to be closed */
1446 list_for_each_entry_safe(dev, tmp, head, close_list)
1447 if (!(dev->flags & IFF_UP))
1448 list_del_init(&dev->close_list);
1449
1450 __dev_close_many(head);
1451
1452 list_for_each_entry_safe(dev, tmp, head, close_list) {
1453 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1454 call_netdevice_notifiers(NETDEV_DOWN, dev);
1455 if (unlink)
1456 list_del_init(&dev->close_list);
1457 }
1458
1459 return 0;
1460 }
1461 EXPORT_SYMBOL(dev_close_many);
1462
1463 /**
1464 * dev_close - shutdown an interface.
1465 * @dev: device to shutdown
1466 *
1467 * This function moves an active device into down state. A
1468 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1469 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1470 * chain.
1471 */
1472 int dev_close(struct net_device *dev)
1473 {
1474 if (dev->flags & IFF_UP) {
1475 LIST_HEAD(single);
1476
1477 list_add(&dev->close_list, &single);
1478 dev_close_many(&single, true);
1479 list_del(&single);
1480 }
1481 return 0;
1482 }
1483 EXPORT_SYMBOL(dev_close);
1484
1485
1486 /**
1487 * dev_disable_lro - disable Large Receive Offload on a device
1488 * @dev: device
1489 *
1490 * Disable Large Receive Offload (LRO) on a net device. Must be
1491 * called under RTNL. This is needed if received packets may be
1492 * forwarded to another interface.
1493 */
1494 void dev_disable_lro(struct net_device *dev)
1495 {
1496 struct net_device *lower_dev;
1497 struct list_head *iter;
1498
1499 dev->wanted_features &= ~NETIF_F_LRO;
1500 netdev_update_features(dev);
1501
1502 if (unlikely(dev->features & NETIF_F_LRO))
1503 netdev_WARN(dev, "failed to disable LRO!\n");
1504
1505 netdev_for_each_lower_dev(dev, lower_dev, iter)
1506 dev_disable_lro(lower_dev);
1507 }
1508 EXPORT_SYMBOL(dev_disable_lro);
1509
1510 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1511 struct net_device *dev)
1512 {
1513 struct netdev_notifier_info info;
1514
1515 netdev_notifier_info_init(&info, dev);
1516 return nb->notifier_call(nb, val, &info);
1517 }
1518
1519 static int dev_boot_phase = 1;
1520
1521 /**
1522 * register_netdevice_notifier - register a network notifier block
1523 * @nb: notifier
1524 *
1525 * Register a notifier to be called when network device events occur.
1526 * The notifier passed is linked into the kernel structures and must
1527 * not be reused until it has been unregistered. A negative errno code
1528 * is returned on a failure.
1529 *
1530 * When registered all registration and up events are replayed
1531 * to the new notifier to allow device to have a race free
1532 * view of the network device list.
1533 */
1534
1535 int register_netdevice_notifier(struct notifier_block *nb)
1536 {
1537 struct net_device *dev;
1538 struct net_device *last;
1539 struct net *net;
1540 int err;
1541
1542 rtnl_lock();
1543 err = raw_notifier_chain_register(&netdev_chain, nb);
1544 if (err)
1545 goto unlock;
1546 if (dev_boot_phase)
1547 goto unlock;
1548 for_each_net(net) {
1549 for_each_netdev(net, dev) {
1550 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1551 err = notifier_to_errno(err);
1552 if (err)
1553 goto rollback;
1554
1555 if (!(dev->flags & IFF_UP))
1556 continue;
1557
1558 call_netdevice_notifier(nb, NETDEV_UP, dev);
1559 }
1560 }
1561
1562 unlock:
1563 rtnl_unlock();
1564 return err;
1565
1566 rollback:
1567 last = dev;
1568 for_each_net(net) {
1569 for_each_netdev(net, dev) {
1570 if (dev == last)
1571 goto outroll;
1572
1573 if (dev->flags & IFF_UP) {
1574 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1575 dev);
1576 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1577 }
1578 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1579 }
1580 }
1581
1582 outroll:
1583 raw_notifier_chain_unregister(&netdev_chain, nb);
1584 goto unlock;
1585 }
1586 EXPORT_SYMBOL(register_netdevice_notifier);
1587
1588 /**
1589 * unregister_netdevice_notifier - unregister a network notifier block
1590 * @nb: notifier
1591 *
1592 * Unregister a notifier previously registered by
1593 * register_netdevice_notifier(). The notifier is unlinked into the
1594 * kernel structures and may then be reused. A negative errno code
1595 * is returned on a failure.
1596 *
1597 * After unregistering unregister and down device events are synthesized
1598 * for all devices on the device list to the removed notifier to remove
1599 * the need for special case cleanup code.
1600 */
1601
1602 int unregister_netdevice_notifier(struct notifier_block *nb)
1603 {
1604 struct net_device *dev;
1605 struct net *net;
1606 int err;
1607
1608 rtnl_lock();
1609 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1610 if (err)
1611 goto unlock;
1612
1613 for_each_net(net) {
1614 for_each_netdev(net, dev) {
1615 if (dev->flags & IFF_UP) {
1616 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1617 dev);
1618 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1619 }
1620 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1621 }
1622 }
1623 unlock:
1624 rtnl_unlock();
1625 return err;
1626 }
1627 EXPORT_SYMBOL(unregister_netdevice_notifier);
1628
1629 /**
1630 * call_netdevice_notifiers_info - call all network notifier blocks
1631 * @val: value passed unmodified to notifier function
1632 * @dev: net_device pointer passed unmodified to notifier function
1633 * @info: notifier information data
1634 *
1635 * Call all network notifier blocks. Parameters and return value
1636 * are as for raw_notifier_call_chain().
1637 */
1638
1639 static int call_netdevice_notifiers_info(unsigned long val,
1640 struct net_device *dev,
1641 struct netdev_notifier_info *info)
1642 {
1643 ASSERT_RTNL();
1644 netdev_notifier_info_init(info, dev);
1645 return raw_notifier_call_chain(&netdev_chain, val, info);
1646 }
1647
1648 /**
1649 * call_netdevice_notifiers - call all network notifier blocks
1650 * @val: value passed unmodified to notifier function
1651 * @dev: net_device pointer passed unmodified to notifier function
1652 *
1653 * Call all network notifier blocks. Parameters and return value
1654 * are as for raw_notifier_call_chain().
1655 */
1656
1657 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1658 {
1659 struct netdev_notifier_info info;
1660
1661 return call_netdevice_notifiers_info(val, dev, &info);
1662 }
1663 EXPORT_SYMBOL(call_netdevice_notifiers);
1664
1665 #ifdef CONFIG_NET_INGRESS
1666 static struct static_key ingress_needed __read_mostly;
1667
1668 void net_inc_ingress_queue(void)
1669 {
1670 static_key_slow_inc(&ingress_needed);
1671 }
1672 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1673
1674 void net_dec_ingress_queue(void)
1675 {
1676 static_key_slow_dec(&ingress_needed);
1677 }
1678 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1679 #endif
1680
1681 #ifdef CONFIG_NET_EGRESS
1682 static struct static_key egress_needed __read_mostly;
1683
1684 void net_inc_egress_queue(void)
1685 {
1686 static_key_slow_inc(&egress_needed);
1687 }
1688 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1689
1690 void net_dec_egress_queue(void)
1691 {
1692 static_key_slow_dec(&egress_needed);
1693 }
1694 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1695 #endif
1696
1697 static struct static_key netstamp_needed __read_mostly;
1698 #ifdef HAVE_JUMP_LABEL
1699 /* We are not allowed to call static_key_slow_dec() from irq context
1700 * If net_disable_timestamp() is called from irq context, defer the
1701 * static_key_slow_dec() calls.
1702 */
1703 static atomic_t netstamp_needed_deferred;
1704 #endif
1705
1706 void net_enable_timestamp(void)
1707 {
1708 #ifdef HAVE_JUMP_LABEL
1709 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1710
1711 if (deferred) {
1712 while (--deferred)
1713 static_key_slow_dec(&netstamp_needed);
1714 return;
1715 }
1716 #endif
1717 static_key_slow_inc(&netstamp_needed);
1718 }
1719 EXPORT_SYMBOL(net_enable_timestamp);
1720
1721 void net_disable_timestamp(void)
1722 {
1723 #ifdef HAVE_JUMP_LABEL
1724 if (in_interrupt()) {
1725 atomic_inc(&netstamp_needed_deferred);
1726 return;
1727 }
1728 #endif
1729 static_key_slow_dec(&netstamp_needed);
1730 }
1731 EXPORT_SYMBOL(net_disable_timestamp);
1732
1733 static inline void net_timestamp_set(struct sk_buff *skb)
1734 {
1735 skb->tstamp.tv64 = 0;
1736 if (static_key_false(&netstamp_needed))
1737 __net_timestamp(skb);
1738 }
1739
1740 #define net_timestamp_check(COND, SKB) \
1741 if (static_key_false(&netstamp_needed)) { \
1742 if ((COND) && !(SKB)->tstamp.tv64) \
1743 __net_timestamp(SKB); \
1744 } \
1745
1746 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1747 {
1748 unsigned int len;
1749
1750 if (!(dev->flags & IFF_UP))
1751 return false;
1752
1753 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1754 if (skb->len <= len)
1755 return true;
1756
1757 /* if TSO is enabled, we don't care about the length as the packet
1758 * could be forwarded without being segmented before
1759 */
1760 if (skb_is_gso(skb))
1761 return true;
1762
1763 return false;
1764 }
1765 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1766
1767 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1768 {
1769 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1770 unlikely(!is_skb_forwardable(dev, skb))) {
1771 atomic_long_inc(&dev->rx_dropped);
1772 kfree_skb(skb);
1773 return NET_RX_DROP;
1774 }
1775
1776 skb_scrub_packet(skb, true);
1777 skb->priority = 0;
1778 skb->protocol = eth_type_trans(skb, dev);
1779 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1780
1781 return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1784
1785 /**
1786 * dev_forward_skb - loopback an skb to another netif
1787 *
1788 * @dev: destination network device
1789 * @skb: buffer to forward
1790 *
1791 * return values:
1792 * NET_RX_SUCCESS (no congestion)
1793 * NET_RX_DROP (packet was dropped, but freed)
1794 *
1795 * dev_forward_skb can be used for injecting an skb from the
1796 * start_xmit function of one device into the receive queue
1797 * of another device.
1798 *
1799 * The receiving device may be in another namespace, so
1800 * we have to clear all information in the skb that could
1801 * impact namespace isolation.
1802 */
1803 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1804 {
1805 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1806 }
1807 EXPORT_SYMBOL_GPL(dev_forward_skb);
1808
1809 static inline int deliver_skb(struct sk_buff *skb,
1810 struct packet_type *pt_prev,
1811 struct net_device *orig_dev)
1812 {
1813 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1814 return -ENOMEM;
1815 atomic_inc(&skb->users);
1816 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1817 }
1818
1819 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1820 struct packet_type **pt,
1821 struct net_device *orig_dev,
1822 __be16 type,
1823 struct list_head *ptype_list)
1824 {
1825 struct packet_type *ptype, *pt_prev = *pt;
1826
1827 list_for_each_entry_rcu(ptype, ptype_list, list) {
1828 if (ptype->type != type)
1829 continue;
1830 if (pt_prev)
1831 deliver_skb(skb, pt_prev, orig_dev);
1832 pt_prev = ptype;
1833 }
1834 *pt = pt_prev;
1835 }
1836
1837 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1838 {
1839 if (!ptype->af_packet_priv || !skb->sk)
1840 return false;
1841
1842 if (ptype->id_match)
1843 return ptype->id_match(ptype, skb->sk);
1844 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1845 return true;
1846
1847 return false;
1848 }
1849
1850 /*
1851 * Support routine. Sends outgoing frames to any network
1852 * taps currently in use.
1853 */
1854
1855 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1856 {
1857 struct packet_type *ptype;
1858 struct sk_buff *skb2 = NULL;
1859 struct packet_type *pt_prev = NULL;
1860 struct list_head *ptype_list = &ptype_all;
1861
1862 rcu_read_lock();
1863 again:
1864 list_for_each_entry_rcu(ptype, ptype_list, list) {
1865 /* Never send packets back to the socket
1866 * they originated from - MvS (miquels@drinkel.ow.org)
1867 */
1868 if (skb_loop_sk(ptype, skb))
1869 continue;
1870
1871 if (pt_prev) {
1872 deliver_skb(skb2, pt_prev, skb->dev);
1873 pt_prev = ptype;
1874 continue;
1875 }
1876
1877 /* need to clone skb, done only once */
1878 skb2 = skb_clone(skb, GFP_ATOMIC);
1879 if (!skb2)
1880 goto out_unlock;
1881
1882 net_timestamp_set(skb2);
1883
1884 /* skb->nh should be correctly
1885 * set by sender, so that the second statement is
1886 * just protection against buggy protocols.
1887 */
1888 skb_reset_mac_header(skb2);
1889
1890 if (skb_network_header(skb2) < skb2->data ||
1891 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1892 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1893 ntohs(skb2->protocol),
1894 dev->name);
1895 skb_reset_network_header(skb2);
1896 }
1897
1898 skb2->transport_header = skb2->network_header;
1899 skb2->pkt_type = PACKET_OUTGOING;
1900 pt_prev = ptype;
1901 }
1902
1903 if (ptype_list == &ptype_all) {
1904 ptype_list = &dev->ptype_all;
1905 goto again;
1906 }
1907 out_unlock:
1908 if (pt_prev)
1909 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1910 rcu_read_unlock();
1911 }
1912 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1913
1914 /**
1915 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1916 * @dev: Network device
1917 * @txq: number of queues available
1918 *
1919 * If real_num_tx_queues is changed the tc mappings may no longer be
1920 * valid. To resolve this verify the tc mapping remains valid and if
1921 * not NULL the mapping. With no priorities mapping to this
1922 * offset/count pair it will no longer be used. In the worst case TC0
1923 * is invalid nothing can be done so disable priority mappings. If is
1924 * expected that drivers will fix this mapping if they can before
1925 * calling netif_set_real_num_tx_queues.
1926 */
1927 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1928 {
1929 int i;
1930 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1931
1932 /* If TC0 is invalidated disable TC mapping */
1933 if (tc->offset + tc->count > txq) {
1934 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1935 dev->num_tc = 0;
1936 return;
1937 }
1938
1939 /* Invalidated prio to tc mappings set to TC0 */
1940 for (i = 1; i < TC_BITMASK + 1; i++) {
1941 int q = netdev_get_prio_tc_map(dev, i);
1942
1943 tc = &dev->tc_to_txq[q];
1944 if (tc->offset + tc->count > txq) {
1945 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1946 i, q);
1947 netdev_set_prio_tc_map(dev, i, 0);
1948 }
1949 }
1950 }
1951
1952 #ifdef CONFIG_XPS
1953 static DEFINE_MUTEX(xps_map_mutex);
1954 #define xmap_dereference(P) \
1955 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1956
1957 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1958 int cpu, u16 index)
1959 {
1960 struct xps_map *map = NULL;
1961 int pos;
1962
1963 if (dev_maps)
1964 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1965
1966 for (pos = 0; map && pos < map->len; pos++) {
1967 if (map->queues[pos] == index) {
1968 if (map->len > 1) {
1969 map->queues[pos] = map->queues[--map->len];
1970 } else {
1971 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1972 kfree_rcu(map, rcu);
1973 map = NULL;
1974 }
1975 break;
1976 }
1977 }
1978
1979 return map;
1980 }
1981
1982 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1983 {
1984 struct xps_dev_maps *dev_maps;
1985 int cpu, i;
1986 bool active = false;
1987
1988 mutex_lock(&xps_map_mutex);
1989 dev_maps = xmap_dereference(dev->xps_maps);
1990
1991 if (!dev_maps)
1992 goto out_no_maps;
1993
1994 for_each_possible_cpu(cpu) {
1995 for (i = index; i < dev->num_tx_queues; i++) {
1996 if (!remove_xps_queue(dev_maps, cpu, i))
1997 break;
1998 }
1999 if (i == dev->num_tx_queues)
2000 active = true;
2001 }
2002
2003 if (!active) {
2004 RCU_INIT_POINTER(dev->xps_maps, NULL);
2005 kfree_rcu(dev_maps, rcu);
2006 }
2007
2008 for (i = index; i < dev->num_tx_queues; i++)
2009 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2010 NUMA_NO_NODE);
2011
2012 out_no_maps:
2013 mutex_unlock(&xps_map_mutex);
2014 }
2015
2016 static struct xps_map *expand_xps_map(struct xps_map *map,
2017 int cpu, u16 index)
2018 {
2019 struct xps_map *new_map;
2020 int alloc_len = XPS_MIN_MAP_ALLOC;
2021 int i, pos;
2022
2023 for (pos = 0; map && pos < map->len; pos++) {
2024 if (map->queues[pos] != index)
2025 continue;
2026 return map;
2027 }
2028
2029 /* Need to add queue to this CPU's existing map */
2030 if (map) {
2031 if (pos < map->alloc_len)
2032 return map;
2033
2034 alloc_len = map->alloc_len * 2;
2035 }
2036
2037 /* Need to allocate new map to store queue on this CPU's map */
2038 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2039 cpu_to_node(cpu));
2040 if (!new_map)
2041 return NULL;
2042
2043 for (i = 0; i < pos; i++)
2044 new_map->queues[i] = map->queues[i];
2045 new_map->alloc_len = alloc_len;
2046 new_map->len = pos;
2047
2048 return new_map;
2049 }
2050
2051 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2052 u16 index)
2053 {
2054 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2055 struct xps_map *map, *new_map;
2056 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2057 int cpu, numa_node_id = -2;
2058 bool active = false;
2059
2060 mutex_lock(&xps_map_mutex);
2061
2062 dev_maps = xmap_dereference(dev->xps_maps);
2063
2064 /* allocate memory for queue storage */
2065 for_each_online_cpu(cpu) {
2066 if (!cpumask_test_cpu(cpu, mask))
2067 continue;
2068
2069 if (!new_dev_maps)
2070 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2071 if (!new_dev_maps) {
2072 mutex_unlock(&xps_map_mutex);
2073 return -ENOMEM;
2074 }
2075
2076 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2077 NULL;
2078
2079 map = expand_xps_map(map, cpu, index);
2080 if (!map)
2081 goto error;
2082
2083 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2084 }
2085
2086 if (!new_dev_maps)
2087 goto out_no_new_maps;
2088
2089 for_each_possible_cpu(cpu) {
2090 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2091 /* add queue to CPU maps */
2092 int pos = 0;
2093
2094 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2095 while ((pos < map->len) && (map->queues[pos] != index))
2096 pos++;
2097
2098 if (pos == map->len)
2099 map->queues[map->len++] = index;
2100 #ifdef CONFIG_NUMA
2101 if (numa_node_id == -2)
2102 numa_node_id = cpu_to_node(cpu);
2103 else if (numa_node_id != cpu_to_node(cpu))
2104 numa_node_id = -1;
2105 #endif
2106 } else if (dev_maps) {
2107 /* fill in the new device map from the old device map */
2108 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2109 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2110 }
2111
2112 }
2113
2114 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2115
2116 /* Cleanup old maps */
2117 if (dev_maps) {
2118 for_each_possible_cpu(cpu) {
2119 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2120 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2121 if (map && map != new_map)
2122 kfree_rcu(map, rcu);
2123 }
2124
2125 kfree_rcu(dev_maps, rcu);
2126 }
2127
2128 dev_maps = new_dev_maps;
2129 active = true;
2130
2131 out_no_new_maps:
2132 /* update Tx queue numa node */
2133 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2134 (numa_node_id >= 0) ? numa_node_id :
2135 NUMA_NO_NODE);
2136
2137 if (!dev_maps)
2138 goto out_no_maps;
2139
2140 /* removes queue from unused CPUs */
2141 for_each_possible_cpu(cpu) {
2142 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2143 continue;
2144
2145 if (remove_xps_queue(dev_maps, cpu, index))
2146 active = true;
2147 }
2148
2149 /* free map if not active */
2150 if (!active) {
2151 RCU_INIT_POINTER(dev->xps_maps, NULL);
2152 kfree_rcu(dev_maps, rcu);
2153 }
2154
2155 out_no_maps:
2156 mutex_unlock(&xps_map_mutex);
2157
2158 return 0;
2159 error:
2160 /* remove any maps that we added */
2161 for_each_possible_cpu(cpu) {
2162 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2163 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2164 NULL;
2165 if (new_map && new_map != map)
2166 kfree(new_map);
2167 }
2168
2169 mutex_unlock(&xps_map_mutex);
2170
2171 kfree(new_dev_maps);
2172 return -ENOMEM;
2173 }
2174 EXPORT_SYMBOL(netif_set_xps_queue);
2175
2176 #endif
2177 /*
2178 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2179 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2180 */
2181 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2182 {
2183 int rc;
2184
2185 if (txq < 1 || txq > dev->num_tx_queues)
2186 return -EINVAL;
2187
2188 if (dev->reg_state == NETREG_REGISTERED ||
2189 dev->reg_state == NETREG_UNREGISTERING) {
2190 ASSERT_RTNL();
2191
2192 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2193 txq);
2194 if (rc)
2195 return rc;
2196
2197 if (dev->num_tc)
2198 netif_setup_tc(dev, txq);
2199
2200 if (txq < dev->real_num_tx_queues) {
2201 qdisc_reset_all_tx_gt(dev, txq);
2202 #ifdef CONFIG_XPS
2203 netif_reset_xps_queues_gt(dev, txq);
2204 #endif
2205 }
2206 }
2207
2208 dev->real_num_tx_queues = txq;
2209 return 0;
2210 }
2211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2212
2213 #ifdef CONFIG_SYSFS
2214 /**
2215 * netif_set_real_num_rx_queues - set actual number of RX queues used
2216 * @dev: Network device
2217 * @rxq: Actual number of RX queues
2218 *
2219 * This must be called either with the rtnl_lock held or before
2220 * registration of the net device. Returns 0 on success, or a
2221 * negative error code. If called before registration, it always
2222 * succeeds.
2223 */
2224 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2225 {
2226 int rc;
2227
2228 if (rxq < 1 || rxq > dev->num_rx_queues)
2229 return -EINVAL;
2230
2231 if (dev->reg_state == NETREG_REGISTERED) {
2232 ASSERT_RTNL();
2233
2234 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2235 rxq);
2236 if (rc)
2237 return rc;
2238 }
2239
2240 dev->real_num_rx_queues = rxq;
2241 return 0;
2242 }
2243 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2244 #endif
2245
2246 /**
2247 * netif_get_num_default_rss_queues - default number of RSS queues
2248 *
2249 * This routine should set an upper limit on the number of RSS queues
2250 * used by default by multiqueue devices.
2251 */
2252 int netif_get_num_default_rss_queues(void)
2253 {
2254 return is_kdump_kernel() ?
2255 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2256 }
2257 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2258
2259 static void __netif_reschedule(struct Qdisc *q)
2260 {
2261 struct softnet_data *sd;
2262 unsigned long flags;
2263
2264 local_irq_save(flags);
2265 sd = this_cpu_ptr(&softnet_data);
2266 q->next_sched = NULL;
2267 *sd->output_queue_tailp = q;
2268 sd->output_queue_tailp = &q->next_sched;
2269 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2270 local_irq_restore(flags);
2271 }
2272
2273 void __netif_schedule(struct Qdisc *q)
2274 {
2275 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2276 __netif_reschedule(q);
2277 }
2278 EXPORT_SYMBOL(__netif_schedule);
2279
2280 struct dev_kfree_skb_cb {
2281 enum skb_free_reason reason;
2282 };
2283
2284 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2285 {
2286 return (struct dev_kfree_skb_cb *)skb->cb;
2287 }
2288
2289 void netif_schedule_queue(struct netdev_queue *txq)
2290 {
2291 rcu_read_lock();
2292 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2293 struct Qdisc *q = rcu_dereference(txq->qdisc);
2294
2295 __netif_schedule(q);
2296 }
2297 rcu_read_unlock();
2298 }
2299 EXPORT_SYMBOL(netif_schedule_queue);
2300
2301 /**
2302 * netif_wake_subqueue - allow sending packets on subqueue
2303 * @dev: network device
2304 * @queue_index: sub queue index
2305 *
2306 * Resume individual transmit queue of a device with multiple transmit queues.
2307 */
2308 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2309 {
2310 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2311
2312 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2313 struct Qdisc *q;
2314
2315 rcu_read_lock();
2316 q = rcu_dereference(txq->qdisc);
2317 __netif_schedule(q);
2318 rcu_read_unlock();
2319 }
2320 }
2321 EXPORT_SYMBOL(netif_wake_subqueue);
2322
2323 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2324 {
2325 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2326 struct Qdisc *q;
2327
2328 rcu_read_lock();
2329 q = rcu_dereference(dev_queue->qdisc);
2330 __netif_schedule(q);
2331 rcu_read_unlock();
2332 }
2333 }
2334 EXPORT_SYMBOL(netif_tx_wake_queue);
2335
2336 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2337 {
2338 unsigned long flags;
2339
2340 if (likely(atomic_read(&skb->users) == 1)) {
2341 smp_rmb();
2342 atomic_set(&skb->users, 0);
2343 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2344 return;
2345 }
2346 get_kfree_skb_cb(skb)->reason = reason;
2347 local_irq_save(flags);
2348 skb->next = __this_cpu_read(softnet_data.completion_queue);
2349 __this_cpu_write(softnet_data.completion_queue, skb);
2350 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2351 local_irq_restore(flags);
2352 }
2353 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2354
2355 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2356 {
2357 if (in_irq() || irqs_disabled())
2358 __dev_kfree_skb_irq(skb, reason);
2359 else
2360 dev_kfree_skb(skb);
2361 }
2362 EXPORT_SYMBOL(__dev_kfree_skb_any);
2363
2364
2365 /**
2366 * netif_device_detach - mark device as removed
2367 * @dev: network device
2368 *
2369 * Mark device as removed from system and therefore no longer available.
2370 */
2371 void netif_device_detach(struct net_device *dev)
2372 {
2373 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2374 netif_running(dev)) {
2375 netif_tx_stop_all_queues(dev);
2376 }
2377 }
2378 EXPORT_SYMBOL(netif_device_detach);
2379
2380 /**
2381 * netif_device_attach - mark device as attached
2382 * @dev: network device
2383 *
2384 * Mark device as attached from system and restart if needed.
2385 */
2386 void netif_device_attach(struct net_device *dev)
2387 {
2388 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2389 netif_running(dev)) {
2390 netif_tx_wake_all_queues(dev);
2391 __netdev_watchdog_up(dev);
2392 }
2393 }
2394 EXPORT_SYMBOL(netif_device_attach);
2395
2396 /*
2397 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2398 * to be used as a distribution range.
2399 */
2400 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2401 unsigned int num_tx_queues)
2402 {
2403 u32 hash;
2404 u16 qoffset = 0;
2405 u16 qcount = num_tx_queues;
2406
2407 if (skb_rx_queue_recorded(skb)) {
2408 hash = skb_get_rx_queue(skb);
2409 while (unlikely(hash >= num_tx_queues))
2410 hash -= num_tx_queues;
2411 return hash;
2412 }
2413
2414 if (dev->num_tc) {
2415 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2416 qoffset = dev->tc_to_txq[tc].offset;
2417 qcount = dev->tc_to_txq[tc].count;
2418 }
2419
2420 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2421 }
2422 EXPORT_SYMBOL(__skb_tx_hash);
2423
2424 static void skb_warn_bad_offload(const struct sk_buff *skb)
2425 {
2426 static const netdev_features_t null_features;
2427 struct net_device *dev = skb->dev;
2428 const char *name = "";
2429
2430 if (!net_ratelimit())
2431 return;
2432
2433 if (dev) {
2434 if (dev->dev.parent)
2435 name = dev_driver_string(dev->dev.parent);
2436 else
2437 name = netdev_name(dev);
2438 }
2439 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2440 "gso_type=%d ip_summed=%d\n",
2441 name, dev ? &dev->features : &null_features,
2442 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2443 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2444 skb_shinfo(skb)->gso_type, skb->ip_summed);
2445 }
2446
2447 /*
2448 * Invalidate hardware checksum when packet is to be mangled, and
2449 * complete checksum manually on outgoing path.
2450 */
2451 int skb_checksum_help(struct sk_buff *skb)
2452 {
2453 __wsum csum;
2454 int ret = 0, offset;
2455
2456 if (skb->ip_summed == CHECKSUM_COMPLETE)
2457 goto out_set_summed;
2458
2459 if (unlikely(skb_shinfo(skb)->gso_size)) {
2460 skb_warn_bad_offload(skb);
2461 return -EINVAL;
2462 }
2463
2464 /* Before computing a checksum, we should make sure no frag could
2465 * be modified by an external entity : checksum could be wrong.
2466 */
2467 if (skb_has_shared_frag(skb)) {
2468 ret = __skb_linearize(skb);
2469 if (ret)
2470 goto out;
2471 }
2472
2473 offset = skb_checksum_start_offset(skb);
2474 BUG_ON(offset >= skb_headlen(skb));
2475 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2476
2477 offset += skb->csum_offset;
2478 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2479
2480 if (skb_cloned(skb) &&
2481 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2482 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2483 if (ret)
2484 goto out;
2485 }
2486
2487 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2488 out_set_summed:
2489 skb->ip_summed = CHECKSUM_NONE;
2490 out:
2491 return ret;
2492 }
2493 EXPORT_SYMBOL(skb_checksum_help);
2494
2495 /* skb_csum_offload_check - Driver helper function to determine if a device
2496 * with limited checksum offload capabilities is able to offload the checksum
2497 * for a given packet.
2498 *
2499 * Arguments:
2500 * skb - sk_buff for the packet in question
2501 * spec - contains the description of what device can offload
2502 * csum_encapped - returns true if the checksum being offloaded is
2503 * encpasulated. That is it is checksum for the transport header
2504 * in the inner headers.
2505 * checksum_help - when set indicates that helper function should
2506 * call skb_checksum_help if offload checks fail
2507 *
2508 * Returns:
2509 * true: Packet has passed the checksum checks and should be offloadable to
2510 * the device (a driver may still need to check for additional
2511 * restrictions of its device)
2512 * false: Checksum is not offloadable. If checksum_help was set then
2513 * skb_checksum_help was called to resolve checksum for non-GSO
2514 * packets and when IP protocol is not SCTP
2515 */
2516 bool __skb_csum_offload_chk(struct sk_buff *skb,
2517 const struct skb_csum_offl_spec *spec,
2518 bool *csum_encapped,
2519 bool csum_help)
2520 {
2521 struct iphdr *iph;
2522 struct ipv6hdr *ipv6;
2523 void *nhdr;
2524 int protocol;
2525 u8 ip_proto;
2526
2527 if (skb->protocol == htons(ETH_P_8021Q) ||
2528 skb->protocol == htons(ETH_P_8021AD)) {
2529 if (!spec->vlan_okay)
2530 goto need_help;
2531 }
2532
2533 /* We check whether the checksum refers to a transport layer checksum in
2534 * the outermost header or an encapsulated transport layer checksum that
2535 * corresponds to the inner headers of the skb. If the checksum is for
2536 * something else in the packet we need help.
2537 */
2538 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2539 /* Non-encapsulated checksum */
2540 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2541 nhdr = skb_network_header(skb);
2542 *csum_encapped = false;
2543 if (spec->no_not_encapped)
2544 goto need_help;
2545 } else if (skb->encapsulation && spec->encap_okay &&
2546 skb_checksum_start_offset(skb) ==
2547 skb_inner_transport_offset(skb)) {
2548 /* Encapsulated checksum */
2549 *csum_encapped = true;
2550 switch (skb->inner_protocol_type) {
2551 case ENCAP_TYPE_ETHER:
2552 protocol = eproto_to_ipproto(skb->inner_protocol);
2553 break;
2554 case ENCAP_TYPE_IPPROTO:
2555 protocol = skb->inner_protocol;
2556 break;
2557 }
2558 nhdr = skb_inner_network_header(skb);
2559 } else {
2560 goto need_help;
2561 }
2562
2563 switch (protocol) {
2564 case IPPROTO_IP:
2565 if (!spec->ipv4_okay)
2566 goto need_help;
2567 iph = nhdr;
2568 ip_proto = iph->protocol;
2569 if (iph->ihl != 5 && !spec->ip_options_okay)
2570 goto need_help;
2571 break;
2572 case IPPROTO_IPV6:
2573 if (!spec->ipv6_okay)
2574 goto need_help;
2575 if (spec->no_encapped_ipv6 && *csum_encapped)
2576 goto need_help;
2577 ipv6 = nhdr;
2578 nhdr += sizeof(*ipv6);
2579 ip_proto = ipv6->nexthdr;
2580 break;
2581 default:
2582 goto need_help;
2583 }
2584
2585 ip_proto_again:
2586 switch (ip_proto) {
2587 case IPPROTO_TCP:
2588 if (!spec->tcp_okay ||
2589 skb->csum_offset != offsetof(struct tcphdr, check))
2590 goto need_help;
2591 break;
2592 case IPPROTO_UDP:
2593 if (!spec->udp_okay ||
2594 skb->csum_offset != offsetof(struct udphdr, check))
2595 goto need_help;
2596 break;
2597 case IPPROTO_SCTP:
2598 if (!spec->sctp_okay ||
2599 skb->csum_offset != offsetof(struct sctphdr, checksum))
2600 goto cant_help;
2601 break;
2602 case NEXTHDR_HOP:
2603 case NEXTHDR_ROUTING:
2604 case NEXTHDR_DEST: {
2605 u8 *opthdr = nhdr;
2606
2607 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2608 goto need_help;
2609
2610 ip_proto = opthdr[0];
2611 nhdr += (opthdr[1] + 1) << 3;
2612
2613 goto ip_proto_again;
2614 }
2615 default:
2616 goto need_help;
2617 }
2618
2619 /* Passed the tests for offloading checksum */
2620 return true;
2621
2622 need_help:
2623 if (csum_help && !skb_shinfo(skb)->gso_size)
2624 skb_checksum_help(skb);
2625 cant_help:
2626 return false;
2627 }
2628 EXPORT_SYMBOL(__skb_csum_offload_chk);
2629
2630 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2631 {
2632 __be16 type = skb->protocol;
2633
2634 /* Tunnel gso handlers can set protocol to ethernet. */
2635 if (type == htons(ETH_P_TEB)) {
2636 struct ethhdr *eth;
2637
2638 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2639 return 0;
2640
2641 eth = (struct ethhdr *)skb_mac_header(skb);
2642 type = eth->h_proto;
2643 }
2644
2645 return __vlan_get_protocol(skb, type, depth);
2646 }
2647
2648 /**
2649 * skb_mac_gso_segment - mac layer segmentation handler.
2650 * @skb: buffer to segment
2651 * @features: features for the output path (see dev->features)
2652 */
2653 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2654 netdev_features_t features)
2655 {
2656 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2657 struct packet_offload *ptype;
2658 int vlan_depth = skb->mac_len;
2659 __be16 type = skb_network_protocol(skb, &vlan_depth);
2660
2661 if (unlikely(!type))
2662 return ERR_PTR(-EINVAL);
2663
2664 __skb_pull(skb, vlan_depth);
2665
2666 rcu_read_lock();
2667 list_for_each_entry_rcu(ptype, &offload_base, list) {
2668 if (ptype->type == type && ptype->callbacks.gso_segment) {
2669 segs = ptype->callbacks.gso_segment(skb, features);
2670 break;
2671 }
2672 }
2673 rcu_read_unlock();
2674
2675 __skb_push(skb, skb->data - skb_mac_header(skb));
2676
2677 return segs;
2678 }
2679 EXPORT_SYMBOL(skb_mac_gso_segment);
2680
2681
2682 /* openvswitch calls this on rx path, so we need a different check.
2683 */
2684 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2685 {
2686 if (tx_path)
2687 return skb->ip_summed != CHECKSUM_PARTIAL;
2688 else
2689 return skb->ip_summed == CHECKSUM_NONE;
2690 }
2691
2692 /**
2693 * __skb_gso_segment - Perform segmentation on skb.
2694 * @skb: buffer to segment
2695 * @features: features for the output path (see dev->features)
2696 * @tx_path: whether it is called in TX path
2697 *
2698 * This function segments the given skb and returns a list of segments.
2699 *
2700 * It may return NULL if the skb requires no segmentation. This is
2701 * only possible when GSO is used for verifying header integrity.
2702 *
2703 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2704 */
2705 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2706 netdev_features_t features, bool tx_path)
2707 {
2708 if (unlikely(skb_needs_check(skb, tx_path))) {
2709 int err;
2710
2711 skb_warn_bad_offload(skb);
2712
2713 err = skb_cow_head(skb, 0);
2714 if (err < 0)
2715 return ERR_PTR(err);
2716 }
2717
2718 /* Only report GSO partial support if it will enable us to
2719 * support segmentation on this frame without needing additional
2720 * work.
2721 */
2722 if (features & NETIF_F_GSO_PARTIAL) {
2723 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2724 struct net_device *dev = skb->dev;
2725
2726 partial_features |= dev->features & dev->gso_partial_features;
2727 if (!skb_gso_ok(skb, features | partial_features))
2728 features &= ~NETIF_F_GSO_PARTIAL;
2729 }
2730
2731 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2732 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2733
2734 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2735 SKB_GSO_CB(skb)->encap_level = 0;
2736
2737 skb_reset_mac_header(skb);
2738 skb_reset_mac_len(skb);
2739
2740 return skb_mac_gso_segment(skb, features);
2741 }
2742 EXPORT_SYMBOL(__skb_gso_segment);
2743
2744 /* Take action when hardware reception checksum errors are detected. */
2745 #ifdef CONFIG_BUG
2746 void netdev_rx_csum_fault(struct net_device *dev)
2747 {
2748 if (net_ratelimit()) {
2749 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2750 dump_stack();
2751 }
2752 }
2753 EXPORT_SYMBOL(netdev_rx_csum_fault);
2754 #endif
2755
2756 /* Actually, we should eliminate this check as soon as we know, that:
2757 * 1. IOMMU is present and allows to map all the memory.
2758 * 2. No high memory really exists on this machine.
2759 */
2760
2761 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2762 {
2763 #ifdef CONFIG_HIGHMEM
2764 int i;
2765 if (!(dev->features & NETIF_F_HIGHDMA)) {
2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 if (PageHighMem(skb_frag_page(frag)))
2769 return 1;
2770 }
2771 }
2772
2773 if (PCI_DMA_BUS_IS_PHYS) {
2774 struct device *pdev = dev->dev.parent;
2775
2776 if (!pdev)
2777 return 0;
2778 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2780 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2781 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2782 return 1;
2783 }
2784 }
2785 #endif
2786 return 0;
2787 }
2788
2789 /* If MPLS offload request, verify we are testing hardware MPLS features
2790 * instead of standard features for the netdev.
2791 */
2792 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2793 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2794 netdev_features_t features,
2795 __be16 type)
2796 {
2797 if (eth_p_mpls(type))
2798 features &= skb->dev->mpls_features;
2799
2800 return features;
2801 }
2802 #else
2803 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2804 netdev_features_t features,
2805 __be16 type)
2806 {
2807 return features;
2808 }
2809 #endif
2810
2811 static netdev_features_t harmonize_features(struct sk_buff *skb,
2812 netdev_features_t features)
2813 {
2814 int tmp;
2815 __be16 type;
2816
2817 type = skb_network_protocol(skb, &tmp);
2818 features = net_mpls_features(skb, features, type);
2819
2820 if (skb->ip_summed != CHECKSUM_NONE &&
2821 !can_checksum_protocol(features, type)) {
2822 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2823 } else if (illegal_highdma(skb->dev, skb)) {
2824 features &= ~NETIF_F_SG;
2825 }
2826
2827 return features;
2828 }
2829
2830 netdev_features_t passthru_features_check(struct sk_buff *skb,
2831 struct net_device *dev,
2832 netdev_features_t features)
2833 {
2834 return features;
2835 }
2836 EXPORT_SYMBOL(passthru_features_check);
2837
2838 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2839 struct net_device *dev,
2840 netdev_features_t features)
2841 {
2842 return vlan_features_check(skb, features);
2843 }
2844
2845 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2846 struct net_device *dev,
2847 netdev_features_t features)
2848 {
2849 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2850
2851 if (gso_segs > dev->gso_max_segs)
2852 return features & ~NETIF_F_GSO_MASK;
2853
2854 /* Support for GSO partial features requires software
2855 * intervention before we can actually process the packets
2856 * so we need to strip support for any partial features now
2857 * and we can pull them back in after we have partially
2858 * segmented the frame.
2859 */
2860 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2861 features &= ~dev->gso_partial_features;
2862
2863 /* Make sure to clear the IPv4 ID mangling feature if the
2864 * IPv4 header has the potential to be fragmented.
2865 */
2866 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2867 struct iphdr *iph = skb->encapsulation ?
2868 inner_ip_hdr(skb) : ip_hdr(skb);
2869
2870 if (!(iph->frag_off & htons(IP_DF)))
2871 features &= ~NETIF_F_TSO_MANGLEID;
2872 }
2873
2874 return features;
2875 }
2876
2877 netdev_features_t netif_skb_features(struct sk_buff *skb)
2878 {
2879 struct net_device *dev = skb->dev;
2880 netdev_features_t features = dev->features;
2881
2882 if (skb_is_gso(skb))
2883 features = gso_features_check(skb, dev, features);
2884
2885 /* If encapsulation offload request, verify we are testing
2886 * hardware encapsulation features instead of standard
2887 * features for the netdev
2888 */
2889 if (skb->encapsulation)
2890 features &= dev->hw_enc_features;
2891
2892 if (skb_vlan_tagged(skb))
2893 features = netdev_intersect_features(features,
2894 dev->vlan_features |
2895 NETIF_F_HW_VLAN_CTAG_TX |
2896 NETIF_F_HW_VLAN_STAG_TX);
2897
2898 if (dev->netdev_ops->ndo_features_check)
2899 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2900 features);
2901 else
2902 features &= dflt_features_check(skb, dev, features);
2903
2904 return harmonize_features(skb, features);
2905 }
2906 EXPORT_SYMBOL(netif_skb_features);
2907
2908 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2909 struct netdev_queue *txq, bool more)
2910 {
2911 unsigned int len;
2912 int rc;
2913
2914 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2915 dev_queue_xmit_nit(skb, dev);
2916
2917 len = skb->len;
2918 trace_net_dev_start_xmit(skb, dev);
2919 rc = netdev_start_xmit(skb, dev, txq, more);
2920 trace_net_dev_xmit(skb, rc, dev, len);
2921
2922 return rc;
2923 }
2924
2925 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2926 struct netdev_queue *txq, int *ret)
2927 {
2928 struct sk_buff *skb = first;
2929 int rc = NETDEV_TX_OK;
2930
2931 while (skb) {
2932 struct sk_buff *next = skb->next;
2933
2934 skb->next = NULL;
2935 rc = xmit_one(skb, dev, txq, next != NULL);
2936 if (unlikely(!dev_xmit_complete(rc))) {
2937 skb->next = next;
2938 goto out;
2939 }
2940
2941 skb = next;
2942 if (netif_xmit_stopped(txq) && skb) {
2943 rc = NETDEV_TX_BUSY;
2944 break;
2945 }
2946 }
2947
2948 out:
2949 *ret = rc;
2950 return skb;
2951 }
2952
2953 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2954 netdev_features_t features)
2955 {
2956 if (skb_vlan_tag_present(skb) &&
2957 !vlan_hw_offload_capable(features, skb->vlan_proto))
2958 skb = __vlan_hwaccel_push_inside(skb);
2959 return skb;
2960 }
2961
2962 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2963 {
2964 netdev_features_t features;
2965
2966 features = netif_skb_features(skb);
2967 skb = validate_xmit_vlan(skb, features);
2968 if (unlikely(!skb))
2969 goto out_null;
2970
2971 if (netif_needs_gso(skb, features)) {
2972 struct sk_buff *segs;
2973
2974 segs = skb_gso_segment(skb, features);
2975 if (IS_ERR(segs)) {
2976 goto out_kfree_skb;
2977 } else if (segs) {
2978 consume_skb(skb);
2979 skb = segs;
2980 }
2981 } else {
2982 if (skb_needs_linearize(skb, features) &&
2983 __skb_linearize(skb))
2984 goto out_kfree_skb;
2985
2986 /* If packet is not checksummed and device does not
2987 * support checksumming for this protocol, complete
2988 * checksumming here.
2989 */
2990 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2991 if (skb->encapsulation)
2992 skb_set_inner_transport_header(skb,
2993 skb_checksum_start_offset(skb));
2994 else
2995 skb_set_transport_header(skb,
2996 skb_checksum_start_offset(skb));
2997 if (!(features & NETIF_F_CSUM_MASK) &&
2998 skb_checksum_help(skb))
2999 goto out_kfree_skb;
3000 }
3001 }
3002
3003 return skb;
3004
3005 out_kfree_skb:
3006 kfree_skb(skb);
3007 out_null:
3008 atomic_long_inc(&dev->tx_dropped);
3009 return NULL;
3010 }
3011
3012 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3013 {
3014 struct sk_buff *next, *head = NULL, *tail;
3015
3016 for (; skb != NULL; skb = next) {
3017 next = skb->next;
3018 skb->next = NULL;
3019
3020 /* in case skb wont be segmented, point to itself */
3021 skb->prev = skb;
3022
3023 skb = validate_xmit_skb(skb, dev);
3024 if (!skb)
3025 continue;
3026
3027 if (!head)
3028 head = skb;
3029 else
3030 tail->next = skb;
3031 /* If skb was segmented, skb->prev points to
3032 * the last segment. If not, it still contains skb.
3033 */
3034 tail = skb->prev;
3035 }
3036 return head;
3037 }
3038
3039 static void qdisc_pkt_len_init(struct sk_buff *skb)
3040 {
3041 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3042
3043 qdisc_skb_cb(skb)->pkt_len = skb->len;
3044
3045 /* To get more precise estimation of bytes sent on wire,
3046 * we add to pkt_len the headers size of all segments
3047 */
3048 if (shinfo->gso_size) {
3049 unsigned int hdr_len;
3050 u16 gso_segs = shinfo->gso_segs;
3051
3052 /* mac layer + network layer */
3053 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3054
3055 /* + transport layer */
3056 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3057 hdr_len += tcp_hdrlen(skb);
3058 else
3059 hdr_len += sizeof(struct udphdr);
3060
3061 if (shinfo->gso_type & SKB_GSO_DODGY)
3062 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3063 shinfo->gso_size);
3064
3065 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3066 }
3067 }
3068
3069 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3070 struct net_device *dev,
3071 struct netdev_queue *txq)
3072 {
3073 spinlock_t *root_lock = qdisc_lock(q);
3074 struct sk_buff *to_free = NULL;
3075 bool contended;
3076 int rc;
3077
3078 qdisc_calculate_pkt_len(skb, q);
3079 /*
3080 * Heuristic to force contended enqueues to serialize on a
3081 * separate lock before trying to get qdisc main lock.
3082 * This permits qdisc->running owner to get the lock more
3083 * often and dequeue packets faster.
3084 */
3085 contended = qdisc_is_running(q);
3086 if (unlikely(contended))
3087 spin_lock(&q->busylock);
3088
3089 spin_lock(root_lock);
3090 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3091 __qdisc_drop(skb, &to_free);
3092 rc = NET_XMIT_DROP;
3093 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3094 qdisc_run_begin(q)) {
3095 /*
3096 * This is a work-conserving queue; there are no old skbs
3097 * waiting to be sent out; and the qdisc is not running -
3098 * xmit the skb directly.
3099 */
3100
3101 qdisc_bstats_update(q, skb);
3102
3103 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3104 if (unlikely(contended)) {
3105 spin_unlock(&q->busylock);
3106 contended = false;
3107 }
3108 __qdisc_run(q);
3109 } else
3110 qdisc_run_end(q);
3111
3112 rc = NET_XMIT_SUCCESS;
3113 } else {
3114 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3115 if (qdisc_run_begin(q)) {
3116 if (unlikely(contended)) {
3117 spin_unlock(&q->busylock);
3118 contended = false;
3119 }
3120 __qdisc_run(q);
3121 }
3122 }
3123 spin_unlock(root_lock);
3124 if (unlikely(to_free))
3125 kfree_skb_list(to_free);
3126 if (unlikely(contended))
3127 spin_unlock(&q->busylock);
3128 return rc;
3129 }
3130
3131 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3132 static void skb_update_prio(struct sk_buff *skb)
3133 {
3134 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3135
3136 if (!skb->priority && skb->sk && map) {
3137 unsigned int prioidx =
3138 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3139
3140 if (prioidx < map->priomap_len)
3141 skb->priority = map->priomap[prioidx];
3142 }
3143 }
3144 #else
3145 #define skb_update_prio(skb)
3146 #endif
3147
3148 DEFINE_PER_CPU(int, xmit_recursion);
3149 EXPORT_SYMBOL(xmit_recursion);
3150
3151 /**
3152 * dev_loopback_xmit - loop back @skb
3153 * @net: network namespace this loopback is happening in
3154 * @sk: sk needed to be a netfilter okfn
3155 * @skb: buffer to transmit
3156 */
3157 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3158 {
3159 skb_reset_mac_header(skb);
3160 __skb_pull(skb, skb_network_offset(skb));
3161 skb->pkt_type = PACKET_LOOPBACK;
3162 skb->ip_summed = CHECKSUM_UNNECESSARY;
3163 WARN_ON(!skb_dst(skb));
3164 skb_dst_force(skb);
3165 netif_rx_ni(skb);
3166 return 0;
3167 }
3168 EXPORT_SYMBOL(dev_loopback_xmit);
3169
3170 #ifdef CONFIG_NET_EGRESS
3171 static struct sk_buff *
3172 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3173 {
3174 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3175 struct tcf_result cl_res;
3176
3177 if (!cl)
3178 return skb;
3179
3180 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3181 * earlier by the caller.
3182 */
3183 qdisc_bstats_cpu_update(cl->q, skb);
3184
3185 switch (tc_classify(skb, cl, &cl_res, false)) {
3186 case TC_ACT_OK:
3187 case TC_ACT_RECLASSIFY:
3188 skb->tc_index = TC_H_MIN(cl_res.classid);
3189 break;
3190 case TC_ACT_SHOT:
3191 qdisc_qstats_cpu_drop(cl->q);
3192 *ret = NET_XMIT_DROP;
3193 kfree_skb(skb);
3194 return NULL;
3195 case TC_ACT_STOLEN:
3196 case TC_ACT_QUEUED:
3197 *ret = NET_XMIT_SUCCESS;
3198 consume_skb(skb);
3199 return NULL;
3200 case TC_ACT_REDIRECT:
3201 /* No need to push/pop skb's mac_header here on egress! */
3202 skb_do_redirect(skb);
3203 *ret = NET_XMIT_SUCCESS;
3204 return NULL;
3205 default:
3206 break;
3207 }
3208
3209 return skb;
3210 }
3211 #endif /* CONFIG_NET_EGRESS */
3212
3213 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3214 {
3215 #ifdef CONFIG_XPS
3216 struct xps_dev_maps *dev_maps;
3217 struct xps_map *map;
3218 int queue_index = -1;
3219
3220 rcu_read_lock();
3221 dev_maps = rcu_dereference(dev->xps_maps);
3222 if (dev_maps) {
3223 map = rcu_dereference(
3224 dev_maps->cpu_map[skb->sender_cpu - 1]);
3225 if (map) {
3226 if (map->len == 1)
3227 queue_index = map->queues[0];
3228 else
3229 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3230 map->len)];
3231 if (unlikely(queue_index >= dev->real_num_tx_queues))
3232 queue_index = -1;
3233 }
3234 }
3235 rcu_read_unlock();
3236
3237 return queue_index;
3238 #else
3239 return -1;
3240 #endif
3241 }
3242
3243 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3244 {
3245 struct sock *sk = skb->sk;
3246 int queue_index = sk_tx_queue_get(sk);
3247
3248 if (queue_index < 0 || skb->ooo_okay ||
3249 queue_index >= dev->real_num_tx_queues) {
3250 int new_index = get_xps_queue(dev, skb);
3251 if (new_index < 0)
3252 new_index = skb_tx_hash(dev, skb);
3253
3254 if (queue_index != new_index && sk &&
3255 sk_fullsock(sk) &&
3256 rcu_access_pointer(sk->sk_dst_cache))
3257 sk_tx_queue_set(sk, new_index);
3258
3259 queue_index = new_index;
3260 }
3261
3262 return queue_index;
3263 }
3264
3265 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3266 struct sk_buff *skb,
3267 void *accel_priv)
3268 {
3269 int queue_index = 0;
3270
3271 #ifdef CONFIG_XPS
3272 u32 sender_cpu = skb->sender_cpu - 1;
3273
3274 if (sender_cpu >= (u32)NR_CPUS)
3275 skb->sender_cpu = raw_smp_processor_id() + 1;
3276 #endif
3277
3278 if (dev->real_num_tx_queues != 1) {
3279 const struct net_device_ops *ops = dev->netdev_ops;
3280 if (ops->ndo_select_queue)
3281 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3282 __netdev_pick_tx);
3283 else
3284 queue_index = __netdev_pick_tx(dev, skb);
3285
3286 if (!accel_priv)
3287 queue_index = netdev_cap_txqueue(dev, queue_index);
3288 }
3289
3290 skb_set_queue_mapping(skb, queue_index);
3291 return netdev_get_tx_queue(dev, queue_index);
3292 }
3293
3294 /**
3295 * __dev_queue_xmit - transmit a buffer
3296 * @skb: buffer to transmit
3297 * @accel_priv: private data used for L2 forwarding offload
3298 *
3299 * Queue a buffer for transmission to a network device. The caller must
3300 * have set the device and priority and built the buffer before calling
3301 * this function. The function can be called from an interrupt.
3302 *
3303 * A negative errno code is returned on a failure. A success does not
3304 * guarantee the frame will be transmitted as it may be dropped due
3305 * to congestion or traffic shaping.
3306 *
3307 * -----------------------------------------------------------------------------------
3308 * I notice this method can also return errors from the queue disciplines,
3309 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3310 * be positive.
3311 *
3312 * Regardless of the return value, the skb is consumed, so it is currently
3313 * difficult to retry a send to this method. (You can bump the ref count
3314 * before sending to hold a reference for retry if you are careful.)
3315 *
3316 * When calling this method, interrupts MUST be enabled. This is because
3317 * the BH enable code must have IRQs enabled so that it will not deadlock.
3318 * --BLG
3319 */
3320 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3321 {
3322 struct net_device *dev = skb->dev;
3323 struct netdev_queue *txq;
3324 struct Qdisc *q;
3325 int rc = -ENOMEM;
3326
3327 skb_reset_mac_header(skb);
3328
3329 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3330 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3331
3332 /* Disable soft irqs for various locks below. Also
3333 * stops preemption for RCU.
3334 */
3335 rcu_read_lock_bh();
3336
3337 skb_update_prio(skb);
3338
3339 qdisc_pkt_len_init(skb);
3340 #ifdef CONFIG_NET_CLS_ACT
3341 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3342 # ifdef CONFIG_NET_EGRESS
3343 if (static_key_false(&egress_needed)) {
3344 skb = sch_handle_egress(skb, &rc, dev);
3345 if (!skb)
3346 goto out;
3347 }
3348 # endif
3349 #endif
3350 /* If device/qdisc don't need skb->dst, release it right now while
3351 * its hot in this cpu cache.
3352 */
3353 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3354 skb_dst_drop(skb);
3355 else
3356 skb_dst_force(skb);
3357
3358 #ifdef CONFIG_NET_SWITCHDEV
3359 /* Don't forward if offload device already forwarded */
3360 if (skb->offload_fwd_mark &&
3361 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3362 consume_skb(skb);
3363 rc = NET_XMIT_SUCCESS;
3364 goto out;
3365 }
3366 #endif
3367
3368 txq = netdev_pick_tx(dev, skb, accel_priv);
3369 q = rcu_dereference_bh(txq->qdisc);
3370
3371 trace_net_dev_queue(skb);
3372 if (q->enqueue) {
3373 rc = __dev_xmit_skb(skb, q, dev, txq);
3374 goto out;
3375 }
3376
3377 /* The device has no queue. Common case for software devices:
3378 loopback, all the sorts of tunnels...
3379
3380 Really, it is unlikely that netif_tx_lock protection is necessary
3381 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3382 counters.)
3383 However, it is possible, that they rely on protection
3384 made by us here.
3385
3386 Check this and shot the lock. It is not prone from deadlocks.
3387 Either shot noqueue qdisc, it is even simpler 8)
3388 */
3389 if (dev->flags & IFF_UP) {
3390 int cpu = smp_processor_id(); /* ok because BHs are off */
3391
3392 if (txq->xmit_lock_owner != cpu) {
3393 if (unlikely(__this_cpu_read(xmit_recursion) >
3394 XMIT_RECURSION_LIMIT))
3395 goto recursion_alert;
3396
3397 skb = validate_xmit_skb(skb, dev);
3398 if (!skb)
3399 goto out;
3400
3401 HARD_TX_LOCK(dev, txq, cpu);
3402
3403 if (!netif_xmit_stopped(txq)) {
3404 __this_cpu_inc(xmit_recursion);
3405 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3406 __this_cpu_dec(xmit_recursion);
3407 if (dev_xmit_complete(rc)) {
3408 HARD_TX_UNLOCK(dev, txq);
3409 goto out;
3410 }
3411 }
3412 HARD_TX_UNLOCK(dev, txq);
3413 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3414 dev->name);
3415 } else {
3416 /* Recursion is detected! It is possible,
3417 * unfortunately
3418 */
3419 recursion_alert:
3420 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3421 dev->name);
3422 }
3423 }
3424
3425 rc = -ENETDOWN;
3426 rcu_read_unlock_bh();
3427
3428 atomic_long_inc(&dev->tx_dropped);
3429 kfree_skb_list(skb);
3430 return rc;
3431 out:
3432 rcu_read_unlock_bh();
3433 return rc;
3434 }
3435
3436 int dev_queue_xmit(struct sk_buff *skb)
3437 {
3438 return __dev_queue_xmit(skb, NULL);
3439 }
3440 EXPORT_SYMBOL(dev_queue_xmit);
3441
3442 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3443 {
3444 return __dev_queue_xmit(skb, accel_priv);
3445 }
3446 EXPORT_SYMBOL(dev_queue_xmit_accel);
3447
3448
3449 /*=======================================================================
3450 Receiver routines
3451 =======================================================================*/
3452
3453 int netdev_max_backlog __read_mostly = 1000;
3454 EXPORT_SYMBOL(netdev_max_backlog);
3455
3456 int netdev_tstamp_prequeue __read_mostly = 1;
3457 int netdev_budget __read_mostly = 300;
3458 int weight_p __read_mostly = 64; /* old backlog weight */
3459
3460 /* Called with irq disabled */
3461 static inline void ____napi_schedule(struct softnet_data *sd,
3462 struct napi_struct *napi)
3463 {
3464 list_add_tail(&napi->poll_list, &sd->poll_list);
3465 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3466 }
3467
3468 #ifdef CONFIG_RPS
3469
3470 /* One global table that all flow-based protocols share. */
3471 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3472 EXPORT_SYMBOL(rps_sock_flow_table);
3473 u32 rps_cpu_mask __read_mostly;
3474 EXPORT_SYMBOL(rps_cpu_mask);
3475
3476 struct static_key rps_needed __read_mostly;
3477 EXPORT_SYMBOL(rps_needed);
3478
3479 static struct rps_dev_flow *
3480 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3481 struct rps_dev_flow *rflow, u16 next_cpu)
3482 {
3483 if (next_cpu < nr_cpu_ids) {
3484 #ifdef CONFIG_RFS_ACCEL
3485 struct netdev_rx_queue *rxqueue;
3486 struct rps_dev_flow_table *flow_table;
3487 struct rps_dev_flow *old_rflow;
3488 u32 flow_id;
3489 u16 rxq_index;
3490 int rc;
3491
3492 /* Should we steer this flow to a different hardware queue? */
3493 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3494 !(dev->features & NETIF_F_NTUPLE))
3495 goto out;
3496 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3497 if (rxq_index == skb_get_rx_queue(skb))
3498 goto out;
3499
3500 rxqueue = dev->_rx + rxq_index;
3501 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3502 if (!flow_table)
3503 goto out;
3504 flow_id = skb_get_hash(skb) & flow_table->mask;
3505 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3506 rxq_index, flow_id);
3507 if (rc < 0)
3508 goto out;
3509 old_rflow = rflow;
3510 rflow = &flow_table->flows[flow_id];
3511 rflow->filter = rc;
3512 if (old_rflow->filter == rflow->filter)
3513 old_rflow->filter = RPS_NO_FILTER;
3514 out:
3515 #endif
3516 rflow->last_qtail =
3517 per_cpu(softnet_data, next_cpu).input_queue_head;
3518 }
3519
3520 rflow->cpu = next_cpu;
3521 return rflow;
3522 }
3523
3524 /*
3525 * get_rps_cpu is called from netif_receive_skb and returns the target
3526 * CPU from the RPS map of the receiving queue for a given skb.
3527 * rcu_read_lock must be held on entry.
3528 */
3529 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3530 struct rps_dev_flow **rflowp)
3531 {
3532 const struct rps_sock_flow_table *sock_flow_table;
3533 struct netdev_rx_queue *rxqueue = dev->_rx;
3534 struct rps_dev_flow_table *flow_table;
3535 struct rps_map *map;
3536 int cpu = -1;
3537 u32 tcpu;
3538 u32 hash;
3539
3540 if (skb_rx_queue_recorded(skb)) {
3541 u16 index = skb_get_rx_queue(skb);
3542
3543 if (unlikely(index >= dev->real_num_rx_queues)) {
3544 WARN_ONCE(dev->real_num_rx_queues > 1,
3545 "%s received packet on queue %u, but number "
3546 "of RX queues is %u\n",
3547 dev->name, index, dev->real_num_rx_queues);
3548 goto done;
3549 }
3550 rxqueue += index;
3551 }
3552
3553 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3554
3555 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3556 map = rcu_dereference(rxqueue->rps_map);
3557 if (!flow_table && !map)
3558 goto done;
3559
3560 skb_reset_network_header(skb);
3561 hash = skb_get_hash(skb);
3562 if (!hash)
3563 goto done;
3564
3565 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3566 if (flow_table && sock_flow_table) {
3567 struct rps_dev_flow *rflow;
3568 u32 next_cpu;
3569 u32 ident;
3570
3571 /* First check into global flow table if there is a match */
3572 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3573 if ((ident ^ hash) & ~rps_cpu_mask)
3574 goto try_rps;
3575
3576 next_cpu = ident & rps_cpu_mask;
3577
3578 /* OK, now we know there is a match,
3579 * we can look at the local (per receive queue) flow table
3580 */
3581 rflow = &flow_table->flows[hash & flow_table->mask];
3582 tcpu = rflow->cpu;
3583
3584 /*
3585 * If the desired CPU (where last recvmsg was done) is
3586 * different from current CPU (one in the rx-queue flow
3587 * table entry), switch if one of the following holds:
3588 * - Current CPU is unset (>= nr_cpu_ids).
3589 * - Current CPU is offline.
3590 * - The current CPU's queue tail has advanced beyond the
3591 * last packet that was enqueued using this table entry.
3592 * This guarantees that all previous packets for the flow
3593 * have been dequeued, thus preserving in order delivery.
3594 */
3595 if (unlikely(tcpu != next_cpu) &&
3596 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3597 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3598 rflow->last_qtail)) >= 0)) {
3599 tcpu = next_cpu;
3600 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3601 }
3602
3603 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3604 *rflowp = rflow;
3605 cpu = tcpu;
3606 goto done;
3607 }
3608 }
3609
3610 try_rps:
3611
3612 if (map) {
3613 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3614 if (cpu_online(tcpu)) {
3615 cpu = tcpu;
3616 goto done;
3617 }
3618 }
3619
3620 done:
3621 return cpu;
3622 }
3623
3624 #ifdef CONFIG_RFS_ACCEL
3625
3626 /**
3627 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3628 * @dev: Device on which the filter was set
3629 * @rxq_index: RX queue index
3630 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3631 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3632 *
3633 * Drivers that implement ndo_rx_flow_steer() should periodically call
3634 * this function for each installed filter and remove the filters for
3635 * which it returns %true.
3636 */
3637 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3638 u32 flow_id, u16 filter_id)
3639 {
3640 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3641 struct rps_dev_flow_table *flow_table;
3642 struct rps_dev_flow *rflow;
3643 bool expire = true;
3644 unsigned int cpu;
3645
3646 rcu_read_lock();
3647 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3648 if (flow_table && flow_id <= flow_table->mask) {
3649 rflow = &flow_table->flows[flow_id];
3650 cpu = ACCESS_ONCE(rflow->cpu);
3651 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3652 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3653 rflow->last_qtail) <
3654 (int)(10 * flow_table->mask)))
3655 expire = false;
3656 }
3657 rcu_read_unlock();
3658 return expire;
3659 }
3660 EXPORT_SYMBOL(rps_may_expire_flow);
3661
3662 #endif /* CONFIG_RFS_ACCEL */
3663
3664 /* Called from hardirq (IPI) context */
3665 static void rps_trigger_softirq(void *data)
3666 {
3667 struct softnet_data *sd = data;
3668
3669 ____napi_schedule(sd, &sd->backlog);
3670 sd->received_rps++;
3671 }
3672
3673 #endif /* CONFIG_RPS */
3674
3675 /*
3676 * Check if this softnet_data structure is another cpu one
3677 * If yes, queue it to our IPI list and return 1
3678 * If no, return 0
3679 */
3680 static int rps_ipi_queued(struct softnet_data *sd)
3681 {
3682 #ifdef CONFIG_RPS
3683 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3684
3685 if (sd != mysd) {
3686 sd->rps_ipi_next = mysd->rps_ipi_list;
3687 mysd->rps_ipi_list = sd;
3688
3689 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3690 return 1;
3691 }
3692 #endif /* CONFIG_RPS */
3693 return 0;
3694 }
3695
3696 #ifdef CONFIG_NET_FLOW_LIMIT
3697 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3698 #endif
3699
3700 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3701 {
3702 #ifdef CONFIG_NET_FLOW_LIMIT
3703 struct sd_flow_limit *fl;
3704 struct softnet_data *sd;
3705 unsigned int old_flow, new_flow;
3706
3707 if (qlen < (netdev_max_backlog >> 1))
3708 return false;
3709
3710 sd = this_cpu_ptr(&softnet_data);
3711
3712 rcu_read_lock();
3713 fl = rcu_dereference(sd->flow_limit);
3714 if (fl) {
3715 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3716 old_flow = fl->history[fl->history_head];
3717 fl->history[fl->history_head] = new_flow;
3718
3719 fl->history_head++;
3720 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3721
3722 if (likely(fl->buckets[old_flow]))
3723 fl->buckets[old_flow]--;
3724
3725 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3726 fl->count++;
3727 rcu_read_unlock();
3728 return true;
3729 }
3730 }
3731 rcu_read_unlock();
3732 #endif
3733 return false;
3734 }
3735
3736 /*
3737 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3738 * queue (may be a remote CPU queue).
3739 */
3740 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3741 unsigned int *qtail)
3742 {
3743 struct softnet_data *sd;
3744 unsigned long flags;
3745 unsigned int qlen;
3746
3747 sd = &per_cpu(softnet_data, cpu);
3748
3749 local_irq_save(flags);
3750
3751 rps_lock(sd);
3752 if (!netif_running(skb->dev))
3753 goto drop;
3754 qlen = skb_queue_len(&sd->input_pkt_queue);
3755 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3756 if (qlen) {
3757 enqueue:
3758 __skb_queue_tail(&sd->input_pkt_queue, skb);
3759 input_queue_tail_incr_save(sd, qtail);
3760 rps_unlock(sd);
3761 local_irq_restore(flags);
3762 return NET_RX_SUCCESS;
3763 }
3764
3765 /* Schedule NAPI for backlog device
3766 * We can use non atomic operation since we own the queue lock
3767 */
3768 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3769 if (!rps_ipi_queued(sd))
3770 ____napi_schedule(sd, &sd->backlog);
3771 }
3772 goto enqueue;
3773 }
3774
3775 drop:
3776 sd->dropped++;
3777 rps_unlock(sd);
3778
3779 local_irq_restore(flags);
3780
3781 atomic_long_inc(&skb->dev->rx_dropped);
3782 kfree_skb(skb);
3783 return NET_RX_DROP;
3784 }
3785
3786 static int netif_rx_internal(struct sk_buff *skb)
3787 {
3788 int ret;
3789
3790 net_timestamp_check(netdev_tstamp_prequeue, skb);
3791
3792 trace_netif_rx(skb);
3793 #ifdef CONFIG_RPS
3794 if (static_key_false(&rps_needed)) {
3795 struct rps_dev_flow voidflow, *rflow = &voidflow;
3796 int cpu;
3797
3798 preempt_disable();
3799 rcu_read_lock();
3800
3801 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3802 if (cpu < 0)
3803 cpu = smp_processor_id();
3804
3805 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3806
3807 rcu_read_unlock();
3808 preempt_enable();
3809 } else
3810 #endif
3811 {
3812 unsigned int qtail;
3813 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3814 put_cpu();
3815 }
3816 return ret;
3817 }
3818
3819 /**
3820 * netif_rx - post buffer to the network code
3821 * @skb: buffer to post
3822 *
3823 * This function receives a packet from a device driver and queues it for
3824 * the upper (protocol) levels to process. It always succeeds. The buffer
3825 * may be dropped during processing for congestion control or by the
3826 * protocol layers.
3827 *
3828 * return values:
3829 * NET_RX_SUCCESS (no congestion)
3830 * NET_RX_DROP (packet was dropped)
3831 *
3832 */
3833
3834 int netif_rx(struct sk_buff *skb)
3835 {
3836 trace_netif_rx_entry(skb);
3837
3838 return netif_rx_internal(skb);
3839 }
3840 EXPORT_SYMBOL(netif_rx);
3841
3842 int netif_rx_ni(struct sk_buff *skb)
3843 {
3844 int err;
3845
3846 trace_netif_rx_ni_entry(skb);
3847
3848 preempt_disable();
3849 err = netif_rx_internal(skb);
3850 if (local_softirq_pending())
3851 do_softirq();
3852 preempt_enable();
3853
3854 return err;
3855 }
3856 EXPORT_SYMBOL(netif_rx_ni);
3857
3858 static void net_tx_action(struct softirq_action *h)
3859 {
3860 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3861
3862 if (sd->completion_queue) {
3863 struct sk_buff *clist;
3864
3865 local_irq_disable();
3866 clist = sd->completion_queue;
3867 sd->completion_queue = NULL;
3868 local_irq_enable();
3869
3870 while (clist) {
3871 struct sk_buff *skb = clist;
3872 clist = clist->next;
3873
3874 WARN_ON(atomic_read(&skb->users));
3875 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3876 trace_consume_skb(skb);
3877 else
3878 trace_kfree_skb(skb, net_tx_action);
3879
3880 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3881 __kfree_skb(skb);
3882 else
3883 __kfree_skb_defer(skb);
3884 }
3885
3886 __kfree_skb_flush();
3887 }
3888
3889 if (sd->output_queue) {
3890 struct Qdisc *head;
3891
3892 local_irq_disable();
3893 head = sd->output_queue;
3894 sd->output_queue = NULL;
3895 sd->output_queue_tailp = &sd->output_queue;
3896 local_irq_enable();
3897
3898 while (head) {
3899 struct Qdisc *q = head;
3900 spinlock_t *root_lock;
3901
3902 head = head->next_sched;
3903
3904 root_lock = qdisc_lock(q);
3905 spin_lock(root_lock);
3906 /* We need to make sure head->next_sched is read
3907 * before clearing __QDISC_STATE_SCHED
3908 */
3909 smp_mb__before_atomic();
3910 clear_bit(__QDISC_STATE_SCHED, &q->state);
3911 qdisc_run(q);
3912 spin_unlock(root_lock);
3913 }
3914 }
3915 }
3916
3917 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3918 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3919 /* This hook is defined here for ATM LANE */
3920 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3921 unsigned char *addr) __read_mostly;
3922 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3923 #endif
3924
3925 static inline struct sk_buff *
3926 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3927 struct net_device *orig_dev)
3928 {
3929 #ifdef CONFIG_NET_CLS_ACT
3930 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3931 struct tcf_result cl_res;
3932
3933 /* If there's at least one ingress present somewhere (so
3934 * we get here via enabled static key), remaining devices
3935 * that are not configured with an ingress qdisc will bail
3936 * out here.
3937 */
3938 if (!cl)
3939 return skb;
3940 if (*pt_prev) {
3941 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3942 *pt_prev = NULL;
3943 }
3944
3945 qdisc_skb_cb(skb)->pkt_len = skb->len;
3946 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3947 qdisc_bstats_cpu_update(cl->q, skb);
3948
3949 switch (tc_classify(skb, cl, &cl_res, false)) {
3950 case TC_ACT_OK:
3951 case TC_ACT_RECLASSIFY:
3952 skb->tc_index = TC_H_MIN(cl_res.classid);
3953 break;
3954 case TC_ACT_SHOT:
3955 qdisc_qstats_cpu_drop(cl->q);
3956 kfree_skb(skb);
3957 return NULL;
3958 case TC_ACT_STOLEN:
3959 case TC_ACT_QUEUED:
3960 consume_skb(skb);
3961 return NULL;
3962 case TC_ACT_REDIRECT:
3963 /* skb_mac_header check was done by cls/act_bpf, so
3964 * we can safely push the L2 header back before
3965 * redirecting to another netdev
3966 */
3967 __skb_push(skb, skb->mac_len);
3968 skb_do_redirect(skb);
3969 return NULL;
3970 default:
3971 break;
3972 }
3973 #endif /* CONFIG_NET_CLS_ACT */
3974 return skb;
3975 }
3976
3977 /**
3978 * netdev_rx_handler_register - register receive handler
3979 * @dev: device to register a handler for
3980 * @rx_handler: receive handler to register
3981 * @rx_handler_data: data pointer that is used by rx handler
3982 *
3983 * Register a receive handler for a device. This handler will then be
3984 * called from __netif_receive_skb. A negative errno code is returned
3985 * on a failure.
3986 *
3987 * The caller must hold the rtnl_mutex.
3988 *
3989 * For a general description of rx_handler, see enum rx_handler_result.
3990 */
3991 int netdev_rx_handler_register(struct net_device *dev,
3992 rx_handler_func_t *rx_handler,
3993 void *rx_handler_data)
3994 {
3995 ASSERT_RTNL();
3996
3997 if (dev->rx_handler)
3998 return -EBUSY;
3999
4000 /* Note: rx_handler_data must be set before rx_handler */
4001 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4002 rcu_assign_pointer(dev->rx_handler, rx_handler);
4003
4004 return 0;
4005 }
4006 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4007
4008 /**
4009 * netdev_rx_handler_unregister - unregister receive handler
4010 * @dev: device to unregister a handler from
4011 *
4012 * Unregister a receive handler from a device.
4013 *
4014 * The caller must hold the rtnl_mutex.
4015 */
4016 void netdev_rx_handler_unregister(struct net_device *dev)
4017 {
4018
4019 ASSERT_RTNL();
4020 RCU_INIT_POINTER(dev->rx_handler, NULL);
4021 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4022 * section has a guarantee to see a non NULL rx_handler_data
4023 * as well.
4024 */
4025 synchronize_net();
4026 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4027 }
4028 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4029
4030 /*
4031 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4032 * the special handling of PFMEMALLOC skbs.
4033 */
4034 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4035 {
4036 switch (skb->protocol) {
4037 case htons(ETH_P_ARP):
4038 case htons(ETH_P_IP):
4039 case htons(ETH_P_IPV6):
4040 case htons(ETH_P_8021Q):
4041 case htons(ETH_P_8021AD):
4042 return true;
4043 default:
4044 return false;
4045 }
4046 }
4047
4048 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4049 int *ret, struct net_device *orig_dev)
4050 {
4051 #ifdef CONFIG_NETFILTER_INGRESS
4052 if (nf_hook_ingress_active(skb)) {
4053 if (*pt_prev) {
4054 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4055 *pt_prev = NULL;
4056 }
4057
4058 return nf_hook_ingress(skb);
4059 }
4060 #endif /* CONFIG_NETFILTER_INGRESS */
4061 return 0;
4062 }
4063
4064 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4065 {
4066 struct packet_type *ptype, *pt_prev;
4067 rx_handler_func_t *rx_handler;
4068 struct net_device *orig_dev;
4069 bool deliver_exact = false;
4070 int ret = NET_RX_DROP;
4071 __be16 type;
4072
4073 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4074
4075 trace_netif_receive_skb(skb);
4076
4077 orig_dev = skb->dev;
4078
4079 skb_reset_network_header(skb);
4080 if (!skb_transport_header_was_set(skb))
4081 skb_reset_transport_header(skb);
4082 skb_reset_mac_len(skb);
4083
4084 pt_prev = NULL;
4085
4086 another_round:
4087 skb->skb_iif = skb->dev->ifindex;
4088
4089 __this_cpu_inc(softnet_data.processed);
4090
4091 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4092 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4093 skb = skb_vlan_untag(skb);
4094 if (unlikely(!skb))
4095 goto out;
4096 }
4097
4098 #ifdef CONFIG_NET_CLS_ACT
4099 if (skb->tc_verd & TC_NCLS) {
4100 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4101 goto ncls;
4102 }
4103 #endif
4104
4105 if (pfmemalloc)
4106 goto skip_taps;
4107
4108 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4109 if (pt_prev)
4110 ret = deliver_skb(skb, pt_prev, orig_dev);
4111 pt_prev = ptype;
4112 }
4113
4114 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4115 if (pt_prev)
4116 ret = deliver_skb(skb, pt_prev, orig_dev);
4117 pt_prev = ptype;
4118 }
4119
4120 skip_taps:
4121 #ifdef CONFIG_NET_INGRESS
4122 if (static_key_false(&ingress_needed)) {
4123 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4124 if (!skb)
4125 goto out;
4126
4127 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4128 goto out;
4129 }
4130 #endif
4131 #ifdef CONFIG_NET_CLS_ACT
4132 skb->tc_verd = 0;
4133 ncls:
4134 #endif
4135 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4136 goto drop;
4137
4138 if (skb_vlan_tag_present(skb)) {
4139 if (pt_prev) {
4140 ret = deliver_skb(skb, pt_prev, orig_dev);
4141 pt_prev = NULL;
4142 }
4143 if (vlan_do_receive(&skb))
4144 goto another_round;
4145 else if (unlikely(!skb))
4146 goto out;
4147 }
4148
4149 rx_handler = rcu_dereference(skb->dev->rx_handler);
4150 if (rx_handler) {
4151 if (pt_prev) {
4152 ret = deliver_skb(skb, pt_prev, orig_dev);
4153 pt_prev = NULL;
4154 }
4155 switch (rx_handler(&skb)) {
4156 case RX_HANDLER_CONSUMED:
4157 ret = NET_RX_SUCCESS;
4158 goto out;
4159 case RX_HANDLER_ANOTHER:
4160 goto another_round;
4161 case RX_HANDLER_EXACT:
4162 deliver_exact = true;
4163 case RX_HANDLER_PASS:
4164 break;
4165 default:
4166 BUG();
4167 }
4168 }
4169
4170 if (unlikely(skb_vlan_tag_present(skb))) {
4171 if (skb_vlan_tag_get_id(skb))
4172 skb->pkt_type = PACKET_OTHERHOST;
4173 /* Note: we might in the future use prio bits
4174 * and set skb->priority like in vlan_do_receive()
4175 * For the time being, just ignore Priority Code Point
4176 */
4177 skb->vlan_tci = 0;
4178 }
4179
4180 type = skb->protocol;
4181
4182 /* deliver only exact match when indicated */
4183 if (likely(!deliver_exact)) {
4184 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4185 &ptype_base[ntohs(type) &
4186 PTYPE_HASH_MASK]);
4187 }
4188
4189 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4190 &orig_dev->ptype_specific);
4191
4192 if (unlikely(skb->dev != orig_dev)) {
4193 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4194 &skb->dev->ptype_specific);
4195 }
4196
4197 if (pt_prev) {
4198 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4199 goto drop;
4200 else
4201 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4202 } else {
4203 drop:
4204 if (!deliver_exact)
4205 atomic_long_inc(&skb->dev->rx_dropped);
4206 else
4207 atomic_long_inc(&skb->dev->rx_nohandler);
4208 kfree_skb(skb);
4209 /* Jamal, now you will not able to escape explaining
4210 * me how you were going to use this. :-)
4211 */
4212 ret = NET_RX_DROP;
4213 }
4214
4215 out:
4216 return ret;
4217 }
4218
4219 static int __netif_receive_skb(struct sk_buff *skb)
4220 {
4221 int ret;
4222
4223 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4224 unsigned long pflags = current->flags;
4225
4226 /*
4227 * PFMEMALLOC skbs are special, they should
4228 * - be delivered to SOCK_MEMALLOC sockets only
4229 * - stay away from userspace
4230 * - have bounded memory usage
4231 *
4232 * Use PF_MEMALLOC as this saves us from propagating the allocation
4233 * context down to all allocation sites.
4234 */
4235 current->flags |= PF_MEMALLOC;
4236 ret = __netif_receive_skb_core(skb, true);
4237 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4238 } else
4239 ret = __netif_receive_skb_core(skb, false);
4240
4241 return ret;
4242 }
4243
4244 static int netif_receive_skb_internal(struct sk_buff *skb)
4245 {
4246 int ret;
4247
4248 net_timestamp_check(netdev_tstamp_prequeue, skb);
4249
4250 if (skb_defer_rx_timestamp(skb))
4251 return NET_RX_SUCCESS;
4252
4253 rcu_read_lock();
4254
4255 #ifdef CONFIG_RPS
4256 if (static_key_false(&rps_needed)) {
4257 struct rps_dev_flow voidflow, *rflow = &voidflow;
4258 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4259
4260 if (cpu >= 0) {
4261 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4262 rcu_read_unlock();
4263 return ret;
4264 }
4265 }
4266 #endif
4267 ret = __netif_receive_skb(skb);
4268 rcu_read_unlock();
4269 return ret;
4270 }
4271
4272 /**
4273 * netif_receive_skb - process receive buffer from network
4274 * @skb: buffer to process
4275 *
4276 * netif_receive_skb() is the main receive data processing function.
4277 * It always succeeds. The buffer may be dropped during processing
4278 * for congestion control or by the protocol layers.
4279 *
4280 * This function may only be called from softirq context and interrupts
4281 * should be enabled.
4282 *
4283 * Return values (usually ignored):
4284 * NET_RX_SUCCESS: no congestion
4285 * NET_RX_DROP: packet was dropped
4286 */
4287 int netif_receive_skb(struct sk_buff *skb)
4288 {
4289 trace_netif_receive_skb_entry(skb);
4290
4291 return netif_receive_skb_internal(skb);
4292 }
4293 EXPORT_SYMBOL(netif_receive_skb);
4294
4295 /* Network device is going away, flush any packets still pending
4296 * Called with irqs disabled.
4297 */
4298 static void flush_backlog(void *arg)
4299 {
4300 struct net_device *dev = arg;
4301 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4302 struct sk_buff *skb, *tmp;
4303
4304 rps_lock(sd);
4305 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4306 if (skb->dev == dev) {
4307 __skb_unlink(skb, &sd->input_pkt_queue);
4308 kfree_skb(skb);
4309 input_queue_head_incr(sd);
4310 }
4311 }
4312 rps_unlock(sd);
4313
4314 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4315 if (skb->dev == dev) {
4316 __skb_unlink(skb, &sd->process_queue);
4317 kfree_skb(skb);
4318 input_queue_head_incr(sd);
4319 }
4320 }
4321 }
4322
4323 static int napi_gro_complete(struct sk_buff *skb)
4324 {
4325 struct packet_offload *ptype;
4326 __be16 type = skb->protocol;
4327 struct list_head *head = &offload_base;
4328 int err = -ENOENT;
4329
4330 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4331
4332 if (NAPI_GRO_CB(skb)->count == 1) {
4333 skb_shinfo(skb)->gso_size = 0;
4334 goto out;
4335 }
4336
4337 rcu_read_lock();
4338 list_for_each_entry_rcu(ptype, head, list) {
4339 if (ptype->type != type || !ptype->callbacks.gro_complete)
4340 continue;
4341
4342 err = ptype->callbacks.gro_complete(skb, 0);
4343 break;
4344 }
4345 rcu_read_unlock();
4346
4347 if (err) {
4348 WARN_ON(&ptype->list == head);
4349 kfree_skb(skb);
4350 return NET_RX_SUCCESS;
4351 }
4352
4353 out:
4354 return netif_receive_skb_internal(skb);
4355 }
4356
4357 /* napi->gro_list contains packets ordered by age.
4358 * youngest packets at the head of it.
4359 * Complete skbs in reverse order to reduce latencies.
4360 */
4361 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4362 {
4363 struct sk_buff *skb, *prev = NULL;
4364
4365 /* scan list and build reverse chain */
4366 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4367 skb->prev = prev;
4368 prev = skb;
4369 }
4370
4371 for (skb = prev; skb; skb = prev) {
4372 skb->next = NULL;
4373
4374 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4375 return;
4376
4377 prev = skb->prev;
4378 napi_gro_complete(skb);
4379 napi->gro_count--;
4380 }
4381
4382 napi->gro_list = NULL;
4383 }
4384 EXPORT_SYMBOL(napi_gro_flush);
4385
4386 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4387 {
4388 struct sk_buff *p;
4389 unsigned int maclen = skb->dev->hard_header_len;
4390 u32 hash = skb_get_hash_raw(skb);
4391
4392 for (p = napi->gro_list; p; p = p->next) {
4393 unsigned long diffs;
4394
4395 NAPI_GRO_CB(p)->flush = 0;
4396
4397 if (hash != skb_get_hash_raw(p)) {
4398 NAPI_GRO_CB(p)->same_flow = 0;
4399 continue;
4400 }
4401
4402 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4403 diffs |= p->vlan_tci ^ skb->vlan_tci;
4404 diffs |= skb_metadata_dst_cmp(p, skb);
4405 if (maclen == ETH_HLEN)
4406 diffs |= compare_ether_header(skb_mac_header(p),
4407 skb_mac_header(skb));
4408 else if (!diffs)
4409 diffs = memcmp(skb_mac_header(p),
4410 skb_mac_header(skb),
4411 maclen);
4412 NAPI_GRO_CB(p)->same_flow = !diffs;
4413 }
4414 }
4415
4416 static void skb_gro_reset_offset(struct sk_buff *skb)
4417 {
4418 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4419 const skb_frag_t *frag0 = &pinfo->frags[0];
4420
4421 NAPI_GRO_CB(skb)->data_offset = 0;
4422 NAPI_GRO_CB(skb)->frag0 = NULL;
4423 NAPI_GRO_CB(skb)->frag0_len = 0;
4424
4425 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4426 pinfo->nr_frags &&
4427 !PageHighMem(skb_frag_page(frag0))) {
4428 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4429 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4430 }
4431 }
4432
4433 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4434 {
4435 struct skb_shared_info *pinfo = skb_shinfo(skb);
4436
4437 BUG_ON(skb->end - skb->tail < grow);
4438
4439 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4440
4441 skb->data_len -= grow;
4442 skb->tail += grow;
4443
4444 pinfo->frags[0].page_offset += grow;
4445 skb_frag_size_sub(&pinfo->frags[0], grow);
4446
4447 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4448 skb_frag_unref(skb, 0);
4449 memmove(pinfo->frags, pinfo->frags + 1,
4450 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4451 }
4452 }
4453
4454 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4455 {
4456 struct sk_buff **pp = NULL;
4457 struct packet_offload *ptype;
4458 __be16 type = skb->protocol;
4459 struct list_head *head = &offload_base;
4460 int same_flow;
4461 enum gro_result ret;
4462 int grow;
4463
4464 if (!(skb->dev->features & NETIF_F_GRO))
4465 goto normal;
4466
4467 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4468 goto normal;
4469
4470 gro_list_prepare(napi, skb);
4471
4472 rcu_read_lock();
4473 list_for_each_entry_rcu(ptype, head, list) {
4474 if (ptype->type != type || !ptype->callbacks.gro_receive)
4475 continue;
4476
4477 skb_set_network_header(skb, skb_gro_offset(skb));
4478 skb_reset_mac_len(skb);
4479 NAPI_GRO_CB(skb)->same_flow = 0;
4480 NAPI_GRO_CB(skb)->flush = 0;
4481 NAPI_GRO_CB(skb)->free = 0;
4482 NAPI_GRO_CB(skb)->encap_mark = 0;
4483 NAPI_GRO_CB(skb)->is_fou = 0;
4484 NAPI_GRO_CB(skb)->is_atomic = 1;
4485 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4486
4487 /* Setup for GRO checksum validation */
4488 switch (skb->ip_summed) {
4489 case CHECKSUM_COMPLETE:
4490 NAPI_GRO_CB(skb)->csum = skb->csum;
4491 NAPI_GRO_CB(skb)->csum_valid = 1;
4492 NAPI_GRO_CB(skb)->csum_cnt = 0;
4493 break;
4494 case CHECKSUM_UNNECESSARY:
4495 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4496 NAPI_GRO_CB(skb)->csum_valid = 0;
4497 break;
4498 default:
4499 NAPI_GRO_CB(skb)->csum_cnt = 0;
4500 NAPI_GRO_CB(skb)->csum_valid = 0;
4501 }
4502
4503 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4504 break;
4505 }
4506 rcu_read_unlock();
4507
4508 if (&ptype->list == head)
4509 goto normal;
4510
4511 same_flow = NAPI_GRO_CB(skb)->same_flow;
4512 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4513
4514 if (pp) {
4515 struct sk_buff *nskb = *pp;
4516
4517 *pp = nskb->next;
4518 nskb->next = NULL;
4519 napi_gro_complete(nskb);
4520 napi->gro_count--;
4521 }
4522
4523 if (same_flow)
4524 goto ok;
4525
4526 if (NAPI_GRO_CB(skb)->flush)
4527 goto normal;
4528
4529 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4530 struct sk_buff *nskb = napi->gro_list;
4531
4532 /* locate the end of the list to select the 'oldest' flow */
4533 while (nskb->next) {
4534 pp = &nskb->next;
4535 nskb = *pp;
4536 }
4537 *pp = NULL;
4538 nskb->next = NULL;
4539 napi_gro_complete(nskb);
4540 } else {
4541 napi->gro_count++;
4542 }
4543 NAPI_GRO_CB(skb)->count = 1;
4544 NAPI_GRO_CB(skb)->age = jiffies;
4545 NAPI_GRO_CB(skb)->last = skb;
4546 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4547 skb->next = napi->gro_list;
4548 napi->gro_list = skb;
4549 ret = GRO_HELD;
4550
4551 pull:
4552 grow = skb_gro_offset(skb) - skb_headlen(skb);
4553 if (grow > 0)
4554 gro_pull_from_frag0(skb, grow);
4555 ok:
4556 return ret;
4557
4558 normal:
4559 ret = GRO_NORMAL;
4560 goto pull;
4561 }
4562
4563 struct packet_offload *gro_find_receive_by_type(__be16 type)
4564 {
4565 struct list_head *offload_head = &offload_base;
4566 struct packet_offload *ptype;
4567
4568 list_for_each_entry_rcu(ptype, offload_head, list) {
4569 if (ptype->type != type || !ptype->callbacks.gro_receive)
4570 continue;
4571 return ptype;
4572 }
4573 return NULL;
4574 }
4575 EXPORT_SYMBOL(gro_find_receive_by_type);
4576
4577 struct packet_offload *gro_find_complete_by_type(__be16 type)
4578 {
4579 struct list_head *offload_head = &offload_base;
4580 struct packet_offload *ptype;
4581
4582 list_for_each_entry_rcu(ptype, offload_head, list) {
4583 if (ptype->type != type || !ptype->callbacks.gro_complete)
4584 continue;
4585 return ptype;
4586 }
4587 return NULL;
4588 }
4589 EXPORT_SYMBOL(gro_find_complete_by_type);
4590
4591 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4592 {
4593 switch (ret) {
4594 case GRO_NORMAL:
4595 if (netif_receive_skb_internal(skb))
4596 ret = GRO_DROP;
4597 break;
4598
4599 case GRO_DROP:
4600 kfree_skb(skb);
4601 break;
4602
4603 case GRO_MERGED_FREE:
4604 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4605 skb_dst_drop(skb);
4606 kmem_cache_free(skbuff_head_cache, skb);
4607 } else {
4608 __kfree_skb(skb);
4609 }
4610 break;
4611
4612 case GRO_HELD:
4613 case GRO_MERGED:
4614 break;
4615 }
4616
4617 return ret;
4618 }
4619
4620 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4621 {
4622 skb_mark_napi_id(skb, napi);
4623 trace_napi_gro_receive_entry(skb);
4624
4625 skb_gro_reset_offset(skb);
4626
4627 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4628 }
4629 EXPORT_SYMBOL(napi_gro_receive);
4630
4631 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4632 {
4633 if (unlikely(skb->pfmemalloc)) {
4634 consume_skb(skb);
4635 return;
4636 }
4637 __skb_pull(skb, skb_headlen(skb));
4638 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4639 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4640 skb->vlan_tci = 0;
4641 skb->dev = napi->dev;
4642 skb->skb_iif = 0;
4643 skb->encapsulation = 0;
4644 skb_shinfo(skb)->gso_type = 0;
4645 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4646
4647 napi->skb = skb;
4648 }
4649
4650 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4651 {
4652 struct sk_buff *skb = napi->skb;
4653
4654 if (!skb) {
4655 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4656 if (skb) {
4657 napi->skb = skb;
4658 skb_mark_napi_id(skb, napi);
4659 }
4660 }
4661 return skb;
4662 }
4663 EXPORT_SYMBOL(napi_get_frags);
4664
4665 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4666 struct sk_buff *skb,
4667 gro_result_t ret)
4668 {
4669 switch (ret) {
4670 case GRO_NORMAL:
4671 case GRO_HELD:
4672 __skb_push(skb, ETH_HLEN);
4673 skb->protocol = eth_type_trans(skb, skb->dev);
4674 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4675 ret = GRO_DROP;
4676 break;
4677
4678 case GRO_DROP:
4679 case GRO_MERGED_FREE:
4680 napi_reuse_skb(napi, skb);
4681 break;
4682
4683 case GRO_MERGED:
4684 break;
4685 }
4686
4687 return ret;
4688 }
4689
4690 /* Upper GRO stack assumes network header starts at gro_offset=0
4691 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4692 * We copy ethernet header into skb->data to have a common layout.
4693 */
4694 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4695 {
4696 struct sk_buff *skb = napi->skb;
4697 const struct ethhdr *eth;
4698 unsigned int hlen = sizeof(*eth);
4699
4700 napi->skb = NULL;
4701
4702 skb_reset_mac_header(skb);
4703 skb_gro_reset_offset(skb);
4704
4705 eth = skb_gro_header_fast(skb, 0);
4706 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4707 eth = skb_gro_header_slow(skb, hlen, 0);
4708 if (unlikely(!eth)) {
4709 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4710 __func__, napi->dev->name);
4711 napi_reuse_skb(napi, skb);
4712 return NULL;
4713 }
4714 } else {
4715 gro_pull_from_frag0(skb, hlen);
4716 NAPI_GRO_CB(skb)->frag0 += hlen;
4717 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4718 }
4719 __skb_pull(skb, hlen);
4720
4721 /*
4722 * This works because the only protocols we care about don't require
4723 * special handling.
4724 * We'll fix it up properly in napi_frags_finish()
4725 */
4726 skb->protocol = eth->h_proto;
4727
4728 return skb;
4729 }
4730
4731 gro_result_t napi_gro_frags(struct napi_struct *napi)
4732 {
4733 struct sk_buff *skb = napi_frags_skb(napi);
4734
4735 if (!skb)
4736 return GRO_DROP;
4737
4738 trace_napi_gro_frags_entry(skb);
4739
4740 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4741 }
4742 EXPORT_SYMBOL(napi_gro_frags);
4743
4744 /* Compute the checksum from gro_offset and return the folded value
4745 * after adding in any pseudo checksum.
4746 */
4747 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4748 {
4749 __wsum wsum;
4750 __sum16 sum;
4751
4752 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4753
4754 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4755 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4756 if (likely(!sum)) {
4757 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4758 !skb->csum_complete_sw)
4759 netdev_rx_csum_fault(skb->dev);
4760 }
4761
4762 NAPI_GRO_CB(skb)->csum = wsum;
4763 NAPI_GRO_CB(skb)->csum_valid = 1;
4764
4765 return sum;
4766 }
4767 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4768
4769 /*
4770 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4771 * Note: called with local irq disabled, but exits with local irq enabled.
4772 */
4773 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4774 {
4775 #ifdef CONFIG_RPS
4776 struct softnet_data *remsd = sd->rps_ipi_list;
4777
4778 if (remsd) {
4779 sd->rps_ipi_list = NULL;
4780
4781 local_irq_enable();
4782
4783 /* Send pending IPI's to kick RPS processing on remote cpus. */
4784 while (remsd) {
4785 struct softnet_data *next = remsd->rps_ipi_next;
4786
4787 if (cpu_online(remsd->cpu))
4788 smp_call_function_single_async(remsd->cpu,
4789 &remsd->csd);
4790 remsd = next;
4791 }
4792 } else
4793 #endif
4794 local_irq_enable();
4795 }
4796
4797 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4798 {
4799 #ifdef CONFIG_RPS
4800 return sd->rps_ipi_list != NULL;
4801 #else
4802 return false;
4803 #endif
4804 }
4805
4806 static int process_backlog(struct napi_struct *napi, int quota)
4807 {
4808 int work = 0;
4809 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4810
4811 /* Check if we have pending ipi, its better to send them now,
4812 * not waiting net_rx_action() end.
4813 */
4814 if (sd_has_rps_ipi_waiting(sd)) {
4815 local_irq_disable();
4816 net_rps_action_and_irq_enable(sd);
4817 }
4818
4819 napi->weight = weight_p;
4820 local_irq_disable();
4821 while (1) {
4822 struct sk_buff *skb;
4823
4824 while ((skb = __skb_dequeue(&sd->process_queue))) {
4825 rcu_read_lock();
4826 local_irq_enable();
4827 __netif_receive_skb(skb);
4828 rcu_read_unlock();
4829 local_irq_disable();
4830 input_queue_head_incr(sd);
4831 if (++work >= quota) {
4832 local_irq_enable();
4833 return work;
4834 }
4835 }
4836
4837 rps_lock(sd);
4838 if (skb_queue_empty(&sd->input_pkt_queue)) {
4839 /*
4840 * Inline a custom version of __napi_complete().
4841 * only current cpu owns and manipulates this napi,
4842 * and NAPI_STATE_SCHED is the only possible flag set
4843 * on backlog.
4844 * We can use a plain write instead of clear_bit(),
4845 * and we dont need an smp_mb() memory barrier.
4846 */
4847 napi->state = 0;
4848 rps_unlock(sd);
4849
4850 break;
4851 }
4852
4853 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4854 &sd->process_queue);
4855 rps_unlock(sd);
4856 }
4857 local_irq_enable();
4858
4859 return work;
4860 }
4861
4862 /**
4863 * __napi_schedule - schedule for receive
4864 * @n: entry to schedule
4865 *
4866 * The entry's receive function will be scheduled to run.
4867 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4868 */
4869 void __napi_schedule(struct napi_struct *n)
4870 {
4871 unsigned long flags;
4872
4873 local_irq_save(flags);
4874 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4875 local_irq_restore(flags);
4876 }
4877 EXPORT_SYMBOL(__napi_schedule);
4878
4879 /**
4880 * __napi_schedule_irqoff - schedule for receive
4881 * @n: entry to schedule
4882 *
4883 * Variant of __napi_schedule() assuming hard irqs are masked
4884 */
4885 void __napi_schedule_irqoff(struct napi_struct *n)
4886 {
4887 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4888 }
4889 EXPORT_SYMBOL(__napi_schedule_irqoff);
4890
4891 void __napi_complete(struct napi_struct *n)
4892 {
4893 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4894
4895 list_del_init(&n->poll_list);
4896 smp_mb__before_atomic();
4897 clear_bit(NAPI_STATE_SCHED, &n->state);
4898 }
4899 EXPORT_SYMBOL(__napi_complete);
4900
4901 void napi_complete_done(struct napi_struct *n, int work_done)
4902 {
4903 unsigned long flags;
4904
4905 /*
4906 * don't let napi dequeue from the cpu poll list
4907 * just in case its running on a different cpu
4908 */
4909 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4910 return;
4911
4912 if (n->gro_list) {
4913 unsigned long timeout = 0;
4914
4915 if (work_done)
4916 timeout = n->dev->gro_flush_timeout;
4917
4918 if (timeout)
4919 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4920 HRTIMER_MODE_REL_PINNED);
4921 else
4922 napi_gro_flush(n, false);
4923 }
4924 if (likely(list_empty(&n->poll_list))) {
4925 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4926 } else {
4927 /* If n->poll_list is not empty, we need to mask irqs */
4928 local_irq_save(flags);
4929 __napi_complete(n);
4930 local_irq_restore(flags);
4931 }
4932 }
4933 EXPORT_SYMBOL(napi_complete_done);
4934
4935 /* must be called under rcu_read_lock(), as we dont take a reference */
4936 static struct napi_struct *napi_by_id(unsigned int napi_id)
4937 {
4938 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4939 struct napi_struct *napi;
4940
4941 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4942 if (napi->napi_id == napi_id)
4943 return napi;
4944
4945 return NULL;
4946 }
4947
4948 #if defined(CONFIG_NET_RX_BUSY_POLL)
4949 #define BUSY_POLL_BUDGET 8
4950 bool sk_busy_loop(struct sock *sk, int nonblock)
4951 {
4952 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4953 int (*busy_poll)(struct napi_struct *dev);
4954 struct napi_struct *napi;
4955 int rc = false;
4956
4957 rcu_read_lock();
4958
4959 napi = napi_by_id(sk->sk_napi_id);
4960 if (!napi)
4961 goto out;
4962
4963 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4964 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4965
4966 do {
4967 rc = 0;
4968 local_bh_disable();
4969 if (busy_poll) {
4970 rc = busy_poll(napi);
4971 } else if (napi_schedule_prep(napi)) {
4972 void *have = netpoll_poll_lock(napi);
4973
4974 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4975 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4976 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
4977 if (rc == BUSY_POLL_BUDGET) {
4978 napi_complete_done(napi, rc);
4979 napi_schedule(napi);
4980 }
4981 }
4982 netpoll_poll_unlock(have);
4983 }
4984 if (rc > 0)
4985 __NET_ADD_STATS(sock_net(sk),
4986 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4987 local_bh_enable();
4988
4989 if (rc == LL_FLUSH_FAILED)
4990 break; /* permanent failure */
4991
4992 cpu_relax();
4993 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4994 !need_resched() && !busy_loop_timeout(end_time));
4995
4996 rc = !skb_queue_empty(&sk->sk_receive_queue);
4997 out:
4998 rcu_read_unlock();
4999 return rc;
5000 }
5001 EXPORT_SYMBOL(sk_busy_loop);
5002
5003 #endif /* CONFIG_NET_RX_BUSY_POLL */
5004
5005 void napi_hash_add(struct napi_struct *napi)
5006 {
5007 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5008 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5009 return;
5010
5011 spin_lock(&napi_hash_lock);
5012
5013 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5014 do {
5015 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5016 napi_gen_id = NR_CPUS + 1;
5017 } while (napi_by_id(napi_gen_id));
5018 napi->napi_id = napi_gen_id;
5019
5020 hlist_add_head_rcu(&napi->napi_hash_node,
5021 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5022
5023 spin_unlock(&napi_hash_lock);
5024 }
5025 EXPORT_SYMBOL_GPL(napi_hash_add);
5026
5027 /* Warning : caller is responsible to make sure rcu grace period
5028 * is respected before freeing memory containing @napi
5029 */
5030 bool napi_hash_del(struct napi_struct *napi)
5031 {
5032 bool rcu_sync_needed = false;
5033
5034 spin_lock(&napi_hash_lock);
5035
5036 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5037 rcu_sync_needed = true;
5038 hlist_del_rcu(&napi->napi_hash_node);
5039 }
5040 spin_unlock(&napi_hash_lock);
5041 return rcu_sync_needed;
5042 }
5043 EXPORT_SYMBOL_GPL(napi_hash_del);
5044
5045 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5046 {
5047 struct napi_struct *napi;
5048
5049 napi = container_of(timer, struct napi_struct, timer);
5050 if (napi->gro_list)
5051 napi_schedule(napi);
5052
5053 return HRTIMER_NORESTART;
5054 }
5055
5056 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5057 int (*poll)(struct napi_struct *, int), int weight)
5058 {
5059 INIT_LIST_HEAD(&napi->poll_list);
5060 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5061 napi->timer.function = napi_watchdog;
5062 napi->gro_count = 0;
5063 napi->gro_list = NULL;
5064 napi->skb = NULL;
5065 napi->poll = poll;
5066 if (weight > NAPI_POLL_WEIGHT)
5067 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5068 weight, dev->name);
5069 napi->weight = weight;
5070 list_add(&napi->dev_list, &dev->napi_list);
5071 napi->dev = dev;
5072 #ifdef CONFIG_NETPOLL
5073 spin_lock_init(&napi->poll_lock);
5074 napi->poll_owner = -1;
5075 #endif
5076 set_bit(NAPI_STATE_SCHED, &napi->state);
5077 napi_hash_add(napi);
5078 }
5079 EXPORT_SYMBOL(netif_napi_add);
5080
5081 void napi_disable(struct napi_struct *n)
5082 {
5083 might_sleep();
5084 set_bit(NAPI_STATE_DISABLE, &n->state);
5085
5086 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5087 msleep(1);
5088 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5089 msleep(1);
5090
5091 hrtimer_cancel(&n->timer);
5092
5093 clear_bit(NAPI_STATE_DISABLE, &n->state);
5094 }
5095 EXPORT_SYMBOL(napi_disable);
5096
5097 /* Must be called in process context */
5098 void netif_napi_del(struct napi_struct *napi)
5099 {
5100 might_sleep();
5101 if (napi_hash_del(napi))
5102 synchronize_net();
5103 list_del_init(&napi->dev_list);
5104 napi_free_frags(napi);
5105
5106 kfree_skb_list(napi->gro_list);
5107 napi->gro_list = NULL;
5108 napi->gro_count = 0;
5109 }
5110 EXPORT_SYMBOL(netif_napi_del);
5111
5112 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5113 {
5114 void *have;
5115 int work, weight;
5116
5117 list_del_init(&n->poll_list);
5118
5119 have = netpoll_poll_lock(n);
5120
5121 weight = n->weight;
5122
5123 /* This NAPI_STATE_SCHED test is for avoiding a race
5124 * with netpoll's poll_napi(). Only the entity which
5125 * obtains the lock and sees NAPI_STATE_SCHED set will
5126 * actually make the ->poll() call. Therefore we avoid
5127 * accidentally calling ->poll() when NAPI is not scheduled.
5128 */
5129 work = 0;
5130 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5131 work = n->poll(n, weight);
5132 trace_napi_poll(n, work, weight);
5133 }
5134
5135 WARN_ON_ONCE(work > weight);
5136
5137 if (likely(work < weight))
5138 goto out_unlock;
5139
5140 /* Drivers must not modify the NAPI state if they
5141 * consume the entire weight. In such cases this code
5142 * still "owns" the NAPI instance and therefore can
5143 * move the instance around on the list at-will.
5144 */
5145 if (unlikely(napi_disable_pending(n))) {
5146 napi_complete(n);
5147 goto out_unlock;
5148 }
5149
5150 if (n->gro_list) {
5151 /* flush too old packets
5152 * If HZ < 1000, flush all packets.
5153 */
5154 napi_gro_flush(n, HZ >= 1000);
5155 }
5156
5157 /* Some drivers may have called napi_schedule
5158 * prior to exhausting their budget.
5159 */
5160 if (unlikely(!list_empty(&n->poll_list))) {
5161 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5162 n->dev ? n->dev->name : "backlog");
5163 goto out_unlock;
5164 }
5165
5166 list_add_tail(&n->poll_list, repoll);
5167
5168 out_unlock:
5169 netpoll_poll_unlock(have);
5170
5171 return work;
5172 }
5173
5174 static void net_rx_action(struct softirq_action *h)
5175 {
5176 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5177 unsigned long time_limit = jiffies + 2;
5178 int budget = netdev_budget;
5179 LIST_HEAD(list);
5180 LIST_HEAD(repoll);
5181
5182 local_irq_disable();
5183 list_splice_init(&sd->poll_list, &list);
5184 local_irq_enable();
5185
5186 for (;;) {
5187 struct napi_struct *n;
5188
5189 if (list_empty(&list)) {
5190 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5191 return;
5192 break;
5193 }
5194
5195 n = list_first_entry(&list, struct napi_struct, poll_list);
5196 budget -= napi_poll(n, &repoll);
5197
5198 /* If softirq window is exhausted then punt.
5199 * Allow this to run for 2 jiffies since which will allow
5200 * an average latency of 1.5/HZ.
5201 */
5202 if (unlikely(budget <= 0 ||
5203 time_after_eq(jiffies, time_limit))) {
5204 sd->time_squeeze++;
5205 break;
5206 }
5207 }
5208
5209 __kfree_skb_flush();
5210 local_irq_disable();
5211
5212 list_splice_tail_init(&sd->poll_list, &list);
5213 list_splice_tail(&repoll, &list);
5214 list_splice(&list, &sd->poll_list);
5215 if (!list_empty(&sd->poll_list))
5216 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5217
5218 net_rps_action_and_irq_enable(sd);
5219 }
5220
5221 struct netdev_adjacent {
5222 struct net_device *dev;
5223
5224 /* upper master flag, there can only be one master device per list */
5225 bool master;
5226
5227 /* counter for the number of times this device was added to us */
5228 u16 ref_nr;
5229
5230 /* private field for the users */
5231 void *private;
5232
5233 struct list_head list;
5234 struct rcu_head rcu;
5235 };
5236
5237 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5238 struct list_head *adj_list)
5239 {
5240 struct netdev_adjacent *adj;
5241
5242 list_for_each_entry(adj, adj_list, list) {
5243 if (adj->dev == adj_dev)
5244 return adj;
5245 }
5246 return NULL;
5247 }
5248
5249 /**
5250 * netdev_has_upper_dev - Check if device is linked to an upper device
5251 * @dev: device
5252 * @upper_dev: upper device to check
5253 *
5254 * Find out if a device is linked to specified upper device and return true
5255 * in case it is. Note that this checks only immediate upper device,
5256 * not through a complete stack of devices. The caller must hold the RTNL lock.
5257 */
5258 bool netdev_has_upper_dev(struct net_device *dev,
5259 struct net_device *upper_dev)
5260 {
5261 ASSERT_RTNL();
5262
5263 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5264 }
5265 EXPORT_SYMBOL(netdev_has_upper_dev);
5266
5267 /**
5268 * netdev_has_any_upper_dev - Check if device is linked to some device
5269 * @dev: device
5270 *
5271 * Find out if a device is linked to an upper device and return true in case
5272 * it is. The caller must hold the RTNL lock.
5273 */
5274 static bool netdev_has_any_upper_dev(struct net_device *dev)
5275 {
5276 ASSERT_RTNL();
5277
5278 return !list_empty(&dev->all_adj_list.upper);
5279 }
5280
5281 /**
5282 * netdev_master_upper_dev_get - Get master upper device
5283 * @dev: device
5284 *
5285 * Find a master upper device and return pointer to it or NULL in case
5286 * it's not there. The caller must hold the RTNL lock.
5287 */
5288 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5289 {
5290 struct netdev_adjacent *upper;
5291
5292 ASSERT_RTNL();
5293
5294 if (list_empty(&dev->adj_list.upper))
5295 return NULL;
5296
5297 upper = list_first_entry(&dev->adj_list.upper,
5298 struct netdev_adjacent, list);
5299 if (likely(upper->master))
5300 return upper->dev;
5301 return NULL;
5302 }
5303 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5304
5305 void *netdev_adjacent_get_private(struct list_head *adj_list)
5306 {
5307 struct netdev_adjacent *adj;
5308
5309 adj = list_entry(adj_list, struct netdev_adjacent, list);
5310
5311 return adj->private;
5312 }
5313 EXPORT_SYMBOL(netdev_adjacent_get_private);
5314
5315 /**
5316 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5317 * @dev: device
5318 * @iter: list_head ** of the current position
5319 *
5320 * Gets the next device from the dev's upper list, starting from iter
5321 * position. The caller must hold RCU read lock.
5322 */
5323 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5324 struct list_head **iter)
5325 {
5326 struct netdev_adjacent *upper;
5327
5328 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5329
5330 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5331
5332 if (&upper->list == &dev->adj_list.upper)
5333 return NULL;
5334
5335 *iter = &upper->list;
5336
5337 return upper->dev;
5338 }
5339 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5340
5341 /**
5342 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5343 * @dev: device
5344 * @iter: list_head ** of the current position
5345 *
5346 * Gets the next device from the dev's upper list, starting from iter
5347 * position. The caller must hold RCU read lock.
5348 */
5349 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5350 struct list_head **iter)
5351 {
5352 struct netdev_adjacent *upper;
5353
5354 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5355
5356 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5357
5358 if (&upper->list == &dev->all_adj_list.upper)
5359 return NULL;
5360
5361 *iter = &upper->list;
5362
5363 return upper->dev;
5364 }
5365 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5366
5367 /**
5368 * netdev_lower_get_next_private - Get the next ->private from the
5369 * lower neighbour list
5370 * @dev: device
5371 * @iter: list_head ** of the current position
5372 *
5373 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5374 * list, starting from iter position. The caller must hold either hold the
5375 * RTNL lock or its own locking that guarantees that the neighbour lower
5376 * list will remain unchanged.
5377 */
5378 void *netdev_lower_get_next_private(struct net_device *dev,
5379 struct list_head **iter)
5380 {
5381 struct netdev_adjacent *lower;
5382
5383 lower = list_entry(*iter, struct netdev_adjacent, list);
5384
5385 if (&lower->list == &dev->adj_list.lower)
5386 return NULL;
5387
5388 *iter = lower->list.next;
5389
5390 return lower->private;
5391 }
5392 EXPORT_SYMBOL(netdev_lower_get_next_private);
5393
5394 /**
5395 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5396 * lower neighbour list, RCU
5397 * variant
5398 * @dev: device
5399 * @iter: list_head ** of the current position
5400 *
5401 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5402 * list, starting from iter position. The caller must hold RCU read lock.
5403 */
5404 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5405 struct list_head **iter)
5406 {
5407 struct netdev_adjacent *lower;
5408
5409 WARN_ON_ONCE(!rcu_read_lock_held());
5410
5411 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5412
5413 if (&lower->list == &dev->adj_list.lower)
5414 return NULL;
5415
5416 *iter = &lower->list;
5417
5418 return lower->private;
5419 }
5420 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5421
5422 /**
5423 * netdev_lower_get_next - Get the next device from the lower neighbour
5424 * list
5425 * @dev: device
5426 * @iter: list_head ** of the current position
5427 *
5428 * Gets the next netdev_adjacent from the dev's lower neighbour
5429 * list, starting from iter position. The caller must hold RTNL lock or
5430 * its own locking that guarantees that the neighbour lower
5431 * list will remain unchanged.
5432 */
5433 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5434 {
5435 struct netdev_adjacent *lower;
5436
5437 lower = list_entry(*iter, struct netdev_adjacent, list);
5438
5439 if (&lower->list == &dev->adj_list.lower)
5440 return NULL;
5441
5442 *iter = lower->list.next;
5443
5444 return lower->dev;
5445 }
5446 EXPORT_SYMBOL(netdev_lower_get_next);
5447
5448 /**
5449 * netdev_all_lower_get_next - Get the next device from all lower neighbour list
5450 * @dev: device
5451 * @iter: list_head ** of the current position
5452 *
5453 * Gets the next netdev_adjacent from the dev's all lower neighbour
5454 * list, starting from iter position. The caller must hold RTNL lock or
5455 * its own locking that guarantees that the neighbour all lower
5456 * list will remain unchanged.
5457 */
5458 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter)
5459 {
5460 struct netdev_adjacent *lower;
5461
5462 lower = list_entry(*iter, struct netdev_adjacent, list);
5463
5464 if (&lower->list == &dev->all_adj_list.lower)
5465 return NULL;
5466
5467 *iter = lower->list.next;
5468
5469 return lower->dev;
5470 }
5471 EXPORT_SYMBOL(netdev_all_lower_get_next);
5472
5473 /**
5474 * netdev_all_lower_get_next_rcu - Get the next device from all
5475 * lower neighbour list, RCU variant
5476 * @dev: device
5477 * @iter: list_head ** of the current position
5478 *
5479 * Gets the next netdev_adjacent from the dev's all lower neighbour
5480 * list, starting from iter position. The caller must hold RCU read lock.
5481 */
5482 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
5483 struct list_head **iter)
5484 {
5485 struct netdev_adjacent *lower;
5486
5487 lower = list_first_or_null_rcu(&dev->all_adj_list.lower,
5488 struct netdev_adjacent, list);
5489
5490 return lower ? lower->dev : NULL;
5491 }
5492 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu);
5493
5494 /**
5495 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5496 * lower neighbour list, RCU
5497 * variant
5498 * @dev: device
5499 *
5500 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5501 * list. The caller must hold RCU read lock.
5502 */
5503 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5504 {
5505 struct netdev_adjacent *lower;
5506
5507 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5508 struct netdev_adjacent, list);
5509 if (lower)
5510 return lower->private;
5511 return NULL;
5512 }
5513 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5514
5515 /**
5516 * netdev_master_upper_dev_get_rcu - Get master upper device
5517 * @dev: device
5518 *
5519 * Find a master upper device and return pointer to it or NULL in case
5520 * it's not there. The caller must hold the RCU read lock.
5521 */
5522 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5523 {
5524 struct netdev_adjacent *upper;
5525
5526 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5527 struct netdev_adjacent, list);
5528 if (upper && likely(upper->master))
5529 return upper->dev;
5530 return NULL;
5531 }
5532 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5533
5534 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5535 struct net_device *adj_dev,
5536 struct list_head *dev_list)
5537 {
5538 char linkname[IFNAMSIZ+7];
5539 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5540 "upper_%s" : "lower_%s", adj_dev->name);
5541 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5542 linkname);
5543 }
5544 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5545 char *name,
5546 struct list_head *dev_list)
5547 {
5548 char linkname[IFNAMSIZ+7];
5549 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5550 "upper_%s" : "lower_%s", name);
5551 sysfs_remove_link(&(dev->dev.kobj), linkname);
5552 }
5553
5554 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5555 struct net_device *adj_dev,
5556 struct list_head *dev_list)
5557 {
5558 return (dev_list == &dev->adj_list.upper ||
5559 dev_list == &dev->adj_list.lower) &&
5560 net_eq(dev_net(dev), dev_net(adj_dev));
5561 }
5562
5563 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5564 struct net_device *adj_dev,
5565 struct list_head *dev_list,
5566 void *private, bool master)
5567 {
5568 struct netdev_adjacent *adj;
5569 int ret;
5570
5571 adj = __netdev_find_adj(adj_dev, dev_list);
5572
5573 if (adj) {
5574 adj->ref_nr++;
5575 return 0;
5576 }
5577
5578 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5579 if (!adj)
5580 return -ENOMEM;
5581
5582 adj->dev = adj_dev;
5583 adj->master = master;
5584 adj->ref_nr = 1;
5585 adj->private = private;
5586 dev_hold(adj_dev);
5587
5588 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5589 adj_dev->name, dev->name, adj_dev->name);
5590
5591 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5592 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5593 if (ret)
5594 goto free_adj;
5595 }
5596
5597 /* Ensure that master link is always the first item in list. */
5598 if (master) {
5599 ret = sysfs_create_link(&(dev->dev.kobj),
5600 &(adj_dev->dev.kobj), "master");
5601 if (ret)
5602 goto remove_symlinks;
5603
5604 list_add_rcu(&adj->list, dev_list);
5605 } else {
5606 list_add_tail_rcu(&adj->list, dev_list);
5607 }
5608
5609 return 0;
5610
5611 remove_symlinks:
5612 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5613 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5614 free_adj:
5615 kfree(adj);
5616 dev_put(adj_dev);
5617
5618 return ret;
5619 }
5620
5621 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5622 struct net_device *adj_dev,
5623 struct list_head *dev_list)
5624 {
5625 struct netdev_adjacent *adj;
5626
5627 adj = __netdev_find_adj(adj_dev, dev_list);
5628
5629 if (!adj) {
5630 pr_err("tried to remove device %s from %s\n",
5631 dev->name, adj_dev->name);
5632 BUG();
5633 }
5634
5635 if (adj->ref_nr > 1) {
5636 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5637 adj->ref_nr-1);
5638 adj->ref_nr--;
5639 return;
5640 }
5641
5642 if (adj->master)
5643 sysfs_remove_link(&(dev->dev.kobj), "master");
5644
5645 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5646 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5647
5648 list_del_rcu(&adj->list);
5649 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5650 adj_dev->name, dev->name, adj_dev->name);
5651 dev_put(adj_dev);
5652 kfree_rcu(adj, rcu);
5653 }
5654
5655 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5656 struct net_device *upper_dev,
5657 struct list_head *up_list,
5658 struct list_head *down_list,
5659 void *private, bool master)
5660 {
5661 int ret;
5662
5663 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5664 master);
5665 if (ret)
5666 return ret;
5667
5668 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5669 false);
5670 if (ret) {
5671 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5672 return ret;
5673 }
5674
5675 return 0;
5676 }
5677
5678 static int __netdev_adjacent_dev_link(struct net_device *dev,
5679 struct net_device *upper_dev)
5680 {
5681 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5682 &dev->all_adj_list.upper,
5683 &upper_dev->all_adj_list.lower,
5684 NULL, false);
5685 }
5686
5687 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5688 struct net_device *upper_dev,
5689 struct list_head *up_list,
5690 struct list_head *down_list)
5691 {
5692 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5693 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5694 }
5695
5696 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5697 struct net_device *upper_dev)
5698 {
5699 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5700 &dev->all_adj_list.upper,
5701 &upper_dev->all_adj_list.lower);
5702 }
5703
5704 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5705 struct net_device *upper_dev,
5706 void *private, bool master)
5707 {
5708 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5709
5710 if (ret)
5711 return ret;
5712
5713 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5714 &dev->adj_list.upper,
5715 &upper_dev->adj_list.lower,
5716 private, master);
5717 if (ret) {
5718 __netdev_adjacent_dev_unlink(dev, upper_dev);
5719 return ret;
5720 }
5721
5722 return 0;
5723 }
5724
5725 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5726 struct net_device *upper_dev)
5727 {
5728 __netdev_adjacent_dev_unlink(dev, upper_dev);
5729 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5730 &dev->adj_list.upper,
5731 &upper_dev->adj_list.lower);
5732 }
5733
5734 static int __netdev_upper_dev_link(struct net_device *dev,
5735 struct net_device *upper_dev, bool master,
5736 void *upper_priv, void *upper_info)
5737 {
5738 struct netdev_notifier_changeupper_info changeupper_info;
5739 struct netdev_adjacent *i, *j, *to_i, *to_j;
5740 int ret = 0;
5741
5742 ASSERT_RTNL();
5743
5744 if (dev == upper_dev)
5745 return -EBUSY;
5746
5747 /* To prevent loops, check if dev is not upper device to upper_dev. */
5748 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5749 return -EBUSY;
5750
5751 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5752 return -EEXIST;
5753
5754 if (master && netdev_master_upper_dev_get(dev))
5755 return -EBUSY;
5756
5757 changeupper_info.upper_dev = upper_dev;
5758 changeupper_info.master = master;
5759 changeupper_info.linking = true;
5760 changeupper_info.upper_info = upper_info;
5761
5762 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5763 &changeupper_info.info);
5764 ret = notifier_to_errno(ret);
5765 if (ret)
5766 return ret;
5767
5768 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5769 master);
5770 if (ret)
5771 return ret;
5772
5773 /* Now that we linked these devs, make all the upper_dev's
5774 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5775 * versa, and don't forget the devices itself. All of these
5776 * links are non-neighbours.
5777 */
5778 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5779 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5780 pr_debug("Interlinking %s with %s, non-neighbour\n",
5781 i->dev->name, j->dev->name);
5782 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5783 if (ret)
5784 goto rollback_mesh;
5785 }
5786 }
5787
5788 /* add dev to every upper_dev's upper device */
5789 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5790 pr_debug("linking %s's upper device %s with %s\n",
5791 upper_dev->name, i->dev->name, dev->name);
5792 ret = __netdev_adjacent_dev_link(dev, i->dev);
5793 if (ret)
5794 goto rollback_upper_mesh;
5795 }
5796
5797 /* add upper_dev to every dev's lower device */
5798 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5799 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5800 i->dev->name, upper_dev->name);
5801 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5802 if (ret)
5803 goto rollback_lower_mesh;
5804 }
5805
5806 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5807 &changeupper_info.info);
5808 ret = notifier_to_errno(ret);
5809 if (ret)
5810 goto rollback_lower_mesh;
5811
5812 return 0;
5813
5814 rollback_lower_mesh:
5815 to_i = i;
5816 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5817 if (i == to_i)
5818 break;
5819 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5820 }
5821
5822 i = NULL;
5823
5824 rollback_upper_mesh:
5825 to_i = i;
5826 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5827 if (i == to_i)
5828 break;
5829 __netdev_adjacent_dev_unlink(dev, i->dev);
5830 }
5831
5832 i = j = NULL;
5833
5834 rollback_mesh:
5835 to_i = i;
5836 to_j = j;
5837 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5838 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5839 if (i == to_i && j == to_j)
5840 break;
5841 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5842 }
5843 if (i == to_i)
5844 break;
5845 }
5846
5847 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5848
5849 return ret;
5850 }
5851
5852 /**
5853 * netdev_upper_dev_link - Add a link to the upper device
5854 * @dev: device
5855 * @upper_dev: new upper device
5856 *
5857 * Adds a link to device which is upper to this one. The caller must hold
5858 * the RTNL lock. On a failure a negative errno code is returned.
5859 * On success the reference counts are adjusted and the function
5860 * returns zero.
5861 */
5862 int netdev_upper_dev_link(struct net_device *dev,
5863 struct net_device *upper_dev)
5864 {
5865 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5866 }
5867 EXPORT_SYMBOL(netdev_upper_dev_link);
5868
5869 /**
5870 * netdev_master_upper_dev_link - Add a master link to the upper device
5871 * @dev: device
5872 * @upper_dev: new upper device
5873 * @upper_priv: upper device private
5874 * @upper_info: upper info to be passed down via notifier
5875 *
5876 * Adds a link to device which is upper to this one. In this case, only
5877 * one master upper device can be linked, although other non-master devices
5878 * might be linked as well. The caller must hold the RTNL lock.
5879 * On a failure a negative errno code is returned. On success the reference
5880 * counts are adjusted and the function returns zero.
5881 */
5882 int netdev_master_upper_dev_link(struct net_device *dev,
5883 struct net_device *upper_dev,
5884 void *upper_priv, void *upper_info)
5885 {
5886 return __netdev_upper_dev_link(dev, upper_dev, true,
5887 upper_priv, upper_info);
5888 }
5889 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5890
5891 /**
5892 * netdev_upper_dev_unlink - Removes a link to upper device
5893 * @dev: device
5894 * @upper_dev: new upper device
5895 *
5896 * Removes a link to device which is upper to this one. The caller must hold
5897 * the RTNL lock.
5898 */
5899 void netdev_upper_dev_unlink(struct net_device *dev,
5900 struct net_device *upper_dev)
5901 {
5902 struct netdev_notifier_changeupper_info changeupper_info;
5903 struct netdev_adjacent *i, *j;
5904 ASSERT_RTNL();
5905
5906 changeupper_info.upper_dev = upper_dev;
5907 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5908 changeupper_info.linking = false;
5909
5910 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5911 &changeupper_info.info);
5912
5913 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5914
5915 /* Here is the tricky part. We must remove all dev's lower
5916 * devices from all upper_dev's upper devices and vice
5917 * versa, to maintain the graph relationship.
5918 */
5919 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5920 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5921 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5922
5923 /* remove also the devices itself from lower/upper device
5924 * list
5925 */
5926 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5927 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5928
5929 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5930 __netdev_adjacent_dev_unlink(dev, i->dev);
5931
5932 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5933 &changeupper_info.info);
5934 }
5935 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5936
5937 /**
5938 * netdev_bonding_info_change - Dispatch event about slave change
5939 * @dev: device
5940 * @bonding_info: info to dispatch
5941 *
5942 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5943 * The caller must hold the RTNL lock.
5944 */
5945 void netdev_bonding_info_change(struct net_device *dev,
5946 struct netdev_bonding_info *bonding_info)
5947 {
5948 struct netdev_notifier_bonding_info info;
5949
5950 memcpy(&info.bonding_info, bonding_info,
5951 sizeof(struct netdev_bonding_info));
5952 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5953 &info.info);
5954 }
5955 EXPORT_SYMBOL(netdev_bonding_info_change);
5956
5957 static void netdev_adjacent_add_links(struct net_device *dev)
5958 {
5959 struct netdev_adjacent *iter;
5960
5961 struct net *net = dev_net(dev);
5962
5963 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5964 if (!net_eq(net, dev_net(iter->dev)))
5965 continue;
5966 netdev_adjacent_sysfs_add(iter->dev, dev,
5967 &iter->dev->adj_list.lower);
5968 netdev_adjacent_sysfs_add(dev, iter->dev,
5969 &dev->adj_list.upper);
5970 }
5971
5972 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5973 if (!net_eq(net, dev_net(iter->dev)))
5974 continue;
5975 netdev_adjacent_sysfs_add(iter->dev, dev,
5976 &iter->dev->adj_list.upper);
5977 netdev_adjacent_sysfs_add(dev, iter->dev,
5978 &dev->adj_list.lower);
5979 }
5980 }
5981
5982 static void netdev_adjacent_del_links(struct net_device *dev)
5983 {
5984 struct netdev_adjacent *iter;
5985
5986 struct net *net = dev_net(dev);
5987
5988 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5989 if (!net_eq(net, dev_net(iter->dev)))
5990 continue;
5991 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5992 &iter->dev->adj_list.lower);
5993 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5994 &dev->adj_list.upper);
5995 }
5996
5997 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5998 if (!net_eq(net, dev_net(iter->dev)))
5999 continue;
6000 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6001 &iter->dev->adj_list.upper);
6002 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6003 &dev->adj_list.lower);
6004 }
6005 }
6006
6007 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6008 {
6009 struct netdev_adjacent *iter;
6010
6011 struct net *net = dev_net(dev);
6012
6013 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6014 if (!net_eq(net, dev_net(iter->dev)))
6015 continue;
6016 netdev_adjacent_sysfs_del(iter->dev, oldname,
6017 &iter->dev->adj_list.lower);
6018 netdev_adjacent_sysfs_add(iter->dev, dev,
6019 &iter->dev->adj_list.lower);
6020 }
6021
6022 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6023 if (!net_eq(net, dev_net(iter->dev)))
6024 continue;
6025 netdev_adjacent_sysfs_del(iter->dev, oldname,
6026 &iter->dev->adj_list.upper);
6027 netdev_adjacent_sysfs_add(iter->dev, dev,
6028 &iter->dev->adj_list.upper);
6029 }
6030 }
6031
6032 void *netdev_lower_dev_get_private(struct net_device *dev,
6033 struct net_device *lower_dev)
6034 {
6035 struct netdev_adjacent *lower;
6036
6037 if (!lower_dev)
6038 return NULL;
6039 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6040 if (!lower)
6041 return NULL;
6042
6043 return lower->private;
6044 }
6045 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6046
6047
6048 int dev_get_nest_level(struct net_device *dev,
6049 bool (*type_check)(const struct net_device *dev))
6050 {
6051 struct net_device *lower = NULL;
6052 struct list_head *iter;
6053 int max_nest = -1;
6054 int nest;
6055
6056 ASSERT_RTNL();
6057
6058 netdev_for_each_lower_dev(dev, lower, iter) {
6059 nest = dev_get_nest_level(lower, type_check);
6060 if (max_nest < nest)
6061 max_nest = nest;
6062 }
6063
6064 if (type_check(dev))
6065 max_nest++;
6066
6067 return max_nest;
6068 }
6069 EXPORT_SYMBOL(dev_get_nest_level);
6070
6071 /**
6072 * netdev_lower_change - Dispatch event about lower device state change
6073 * @lower_dev: device
6074 * @lower_state_info: state to dispatch
6075 *
6076 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6077 * The caller must hold the RTNL lock.
6078 */
6079 void netdev_lower_state_changed(struct net_device *lower_dev,
6080 void *lower_state_info)
6081 {
6082 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6083
6084 ASSERT_RTNL();
6085 changelowerstate_info.lower_state_info = lower_state_info;
6086 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6087 &changelowerstate_info.info);
6088 }
6089 EXPORT_SYMBOL(netdev_lower_state_changed);
6090
6091 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6092 struct neighbour *n)
6093 {
6094 struct net_device *lower_dev, *stop_dev;
6095 struct list_head *iter;
6096 int err;
6097
6098 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6099 if (!lower_dev->netdev_ops->ndo_neigh_construct)
6100 continue;
6101 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6102 if (err) {
6103 stop_dev = lower_dev;
6104 goto rollback;
6105 }
6106 }
6107 return 0;
6108
6109 rollback:
6110 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6111 if (lower_dev == stop_dev)
6112 break;
6113 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6114 continue;
6115 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6116 }
6117 return err;
6118 }
6119 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6120
6121 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6122 struct neighbour *n)
6123 {
6124 struct net_device *lower_dev;
6125 struct list_head *iter;
6126
6127 netdev_for_each_lower_dev(dev, lower_dev, iter) {
6128 if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6129 continue;
6130 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6131 }
6132 }
6133 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6134
6135 static void dev_change_rx_flags(struct net_device *dev, int flags)
6136 {
6137 const struct net_device_ops *ops = dev->netdev_ops;
6138
6139 if (ops->ndo_change_rx_flags)
6140 ops->ndo_change_rx_flags(dev, flags);
6141 }
6142
6143 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6144 {
6145 unsigned int old_flags = dev->flags;
6146 kuid_t uid;
6147 kgid_t gid;
6148
6149 ASSERT_RTNL();
6150
6151 dev->flags |= IFF_PROMISC;
6152 dev->promiscuity += inc;
6153 if (dev->promiscuity == 0) {
6154 /*
6155 * Avoid overflow.
6156 * If inc causes overflow, untouch promisc and return error.
6157 */
6158 if (inc < 0)
6159 dev->flags &= ~IFF_PROMISC;
6160 else {
6161 dev->promiscuity -= inc;
6162 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6163 dev->name);
6164 return -EOVERFLOW;
6165 }
6166 }
6167 if (dev->flags != old_flags) {
6168 pr_info("device %s %s promiscuous mode\n",
6169 dev->name,
6170 dev->flags & IFF_PROMISC ? "entered" : "left");
6171 if (audit_enabled) {
6172 current_uid_gid(&uid, &gid);
6173 audit_log(current->audit_context, GFP_ATOMIC,
6174 AUDIT_ANOM_PROMISCUOUS,
6175 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6176 dev->name, (dev->flags & IFF_PROMISC),
6177 (old_flags & IFF_PROMISC),
6178 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6179 from_kuid(&init_user_ns, uid),
6180 from_kgid(&init_user_ns, gid),
6181 audit_get_sessionid(current));
6182 }
6183
6184 dev_change_rx_flags(dev, IFF_PROMISC);
6185 }
6186 if (notify)
6187 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6188 return 0;
6189 }
6190
6191 /**
6192 * dev_set_promiscuity - update promiscuity count on a device
6193 * @dev: device
6194 * @inc: modifier
6195 *
6196 * Add or remove promiscuity from a device. While the count in the device
6197 * remains above zero the interface remains promiscuous. Once it hits zero
6198 * the device reverts back to normal filtering operation. A negative inc
6199 * value is used to drop promiscuity on the device.
6200 * Return 0 if successful or a negative errno code on error.
6201 */
6202 int dev_set_promiscuity(struct net_device *dev, int inc)
6203 {
6204 unsigned int old_flags = dev->flags;
6205 int err;
6206
6207 err = __dev_set_promiscuity(dev, inc, true);
6208 if (err < 0)
6209 return err;
6210 if (dev->flags != old_flags)
6211 dev_set_rx_mode(dev);
6212 return err;
6213 }
6214 EXPORT_SYMBOL(dev_set_promiscuity);
6215
6216 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6217 {
6218 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6219
6220 ASSERT_RTNL();
6221
6222 dev->flags |= IFF_ALLMULTI;
6223 dev->allmulti += inc;
6224 if (dev->allmulti == 0) {
6225 /*
6226 * Avoid overflow.
6227 * If inc causes overflow, untouch allmulti and return error.
6228 */
6229 if (inc < 0)
6230 dev->flags &= ~IFF_ALLMULTI;
6231 else {
6232 dev->allmulti -= inc;
6233 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6234 dev->name);
6235 return -EOVERFLOW;
6236 }
6237 }
6238 if (dev->flags ^ old_flags) {
6239 dev_change_rx_flags(dev, IFF_ALLMULTI);
6240 dev_set_rx_mode(dev);
6241 if (notify)
6242 __dev_notify_flags(dev, old_flags,
6243 dev->gflags ^ old_gflags);
6244 }
6245 return 0;
6246 }
6247
6248 /**
6249 * dev_set_allmulti - update allmulti count on a device
6250 * @dev: device
6251 * @inc: modifier
6252 *
6253 * Add or remove reception of all multicast frames to a device. While the
6254 * count in the device remains above zero the interface remains listening
6255 * to all interfaces. Once it hits zero the device reverts back to normal
6256 * filtering operation. A negative @inc value is used to drop the counter
6257 * when releasing a resource needing all multicasts.
6258 * Return 0 if successful or a negative errno code on error.
6259 */
6260
6261 int dev_set_allmulti(struct net_device *dev, int inc)
6262 {
6263 return __dev_set_allmulti(dev, inc, true);
6264 }
6265 EXPORT_SYMBOL(dev_set_allmulti);
6266
6267 /*
6268 * Upload unicast and multicast address lists to device and
6269 * configure RX filtering. When the device doesn't support unicast
6270 * filtering it is put in promiscuous mode while unicast addresses
6271 * are present.
6272 */
6273 void __dev_set_rx_mode(struct net_device *dev)
6274 {
6275 const struct net_device_ops *ops = dev->netdev_ops;
6276
6277 /* dev_open will call this function so the list will stay sane. */
6278 if (!(dev->flags&IFF_UP))
6279 return;
6280
6281 if (!netif_device_present(dev))
6282 return;
6283
6284 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6285 /* Unicast addresses changes may only happen under the rtnl,
6286 * therefore calling __dev_set_promiscuity here is safe.
6287 */
6288 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6289 __dev_set_promiscuity(dev, 1, false);
6290 dev->uc_promisc = true;
6291 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6292 __dev_set_promiscuity(dev, -1, false);
6293 dev->uc_promisc = false;
6294 }
6295 }
6296
6297 if (ops->ndo_set_rx_mode)
6298 ops->ndo_set_rx_mode(dev);
6299 }
6300
6301 void dev_set_rx_mode(struct net_device *dev)
6302 {
6303 netif_addr_lock_bh(dev);
6304 __dev_set_rx_mode(dev);
6305 netif_addr_unlock_bh(dev);
6306 }
6307
6308 /**
6309 * dev_get_flags - get flags reported to userspace
6310 * @dev: device
6311 *
6312 * Get the combination of flag bits exported through APIs to userspace.
6313 */
6314 unsigned int dev_get_flags(const struct net_device *dev)
6315 {
6316 unsigned int flags;
6317
6318 flags = (dev->flags & ~(IFF_PROMISC |
6319 IFF_ALLMULTI |
6320 IFF_RUNNING |
6321 IFF_LOWER_UP |
6322 IFF_DORMANT)) |
6323 (dev->gflags & (IFF_PROMISC |
6324 IFF_ALLMULTI));
6325
6326 if (netif_running(dev)) {
6327 if (netif_oper_up(dev))
6328 flags |= IFF_RUNNING;
6329 if (netif_carrier_ok(dev))
6330 flags |= IFF_LOWER_UP;
6331 if (netif_dormant(dev))
6332 flags |= IFF_DORMANT;
6333 }
6334
6335 return flags;
6336 }
6337 EXPORT_SYMBOL(dev_get_flags);
6338
6339 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6340 {
6341 unsigned int old_flags = dev->flags;
6342 int ret;
6343
6344 ASSERT_RTNL();
6345
6346 /*
6347 * Set the flags on our device.
6348 */
6349
6350 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6351 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6352 IFF_AUTOMEDIA)) |
6353 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6354 IFF_ALLMULTI));
6355
6356 /*
6357 * Load in the correct multicast list now the flags have changed.
6358 */
6359
6360 if ((old_flags ^ flags) & IFF_MULTICAST)
6361 dev_change_rx_flags(dev, IFF_MULTICAST);
6362
6363 dev_set_rx_mode(dev);
6364
6365 /*
6366 * Have we downed the interface. We handle IFF_UP ourselves
6367 * according to user attempts to set it, rather than blindly
6368 * setting it.
6369 */
6370
6371 ret = 0;
6372 if ((old_flags ^ flags) & IFF_UP)
6373 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6374
6375 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6376 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6377 unsigned int old_flags = dev->flags;
6378
6379 dev->gflags ^= IFF_PROMISC;
6380
6381 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6382 if (dev->flags != old_flags)
6383 dev_set_rx_mode(dev);
6384 }
6385
6386 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6387 is important. Some (broken) drivers set IFF_PROMISC, when
6388 IFF_ALLMULTI is requested not asking us and not reporting.
6389 */
6390 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6391 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6392
6393 dev->gflags ^= IFF_ALLMULTI;
6394 __dev_set_allmulti(dev, inc, false);
6395 }
6396
6397 return ret;
6398 }
6399
6400 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6401 unsigned int gchanges)
6402 {
6403 unsigned int changes = dev->flags ^ old_flags;
6404
6405 if (gchanges)
6406 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6407
6408 if (changes & IFF_UP) {
6409 if (dev->flags & IFF_UP)
6410 call_netdevice_notifiers(NETDEV_UP, dev);
6411 else
6412 call_netdevice_notifiers(NETDEV_DOWN, dev);
6413 }
6414
6415 if (dev->flags & IFF_UP &&
6416 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6417 struct netdev_notifier_change_info change_info;
6418
6419 change_info.flags_changed = changes;
6420 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6421 &change_info.info);
6422 }
6423 }
6424
6425 /**
6426 * dev_change_flags - change device settings
6427 * @dev: device
6428 * @flags: device state flags
6429 *
6430 * Change settings on device based state flags. The flags are
6431 * in the userspace exported format.
6432 */
6433 int dev_change_flags(struct net_device *dev, unsigned int flags)
6434 {
6435 int ret;
6436 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6437
6438 ret = __dev_change_flags(dev, flags);
6439 if (ret < 0)
6440 return ret;
6441
6442 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6443 __dev_notify_flags(dev, old_flags, changes);
6444 return ret;
6445 }
6446 EXPORT_SYMBOL(dev_change_flags);
6447
6448 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6449 {
6450 const struct net_device_ops *ops = dev->netdev_ops;
6451
6452 if (ops->ndo_change_mtu)
6453 return ops->ndo_change_mtu(dev, new_mtu);
6454
6455 dev->mtu = new_mtu;
6456 return 0;
6457 }
6458
6459 /**
6460 * dev_set_mtu - Change maximum transfer unit
6461 * @dev: device
6462 * @new_mtu: new transfer unit
6463 *
6464 * Change the maximum transfer size of the network device.
6465 */
6466 int dev_set_mtu(struct net_device *dev, int new_mtu)
6467 {
6468 int err, orig_mtu;
6469
6470 if (new_mtu == dev->mtu)
6471 return 0;
6472
6473 /* MTU must be positive. */
6474 if (new_mtu < 0)
6475 return -EINVAL;
6476
6477 if (!netif_device_present(dev))
6478 return -ENODEV;
6479
6480 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6481 err = notifier_to_errno(err);
6482 if (err)
6483 return err;
6484
6485 orig_mtu = dev->mtu;
6486 err = __dev_set_mtu(dev, new_mtu);
6487
6488 if (!err) {
6489 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6490 err = notifier_to_errno(err);
6491 if (err) {
6492 /* setting mtu back and notifying everyone again,
6493 * so that they have a chance to revert changes.
6494 */
6495 __dev_set_mtu(dev, orig_mtu);
6496 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6497 }
6498 }
6499 return err;
6500 }
6501 EXPORT_SYMBOL(dev_set_mtu);
6502
6503 /**
6504 * dev_set_group - Change group this device belongs to
6505 * @dev: device
6506 * @new_group: group this device should belong to
6507 */
6508 void dev_set_group(struct net_device *dev, int new_group)
6509 {
6510 dev->group = new_group;
6511 }
6512 EXPORT_SYMBOL(dev_set_group);
6513
6514 /**
6515 * dev_set_mac_address - Change Media Access Control Address
6516 * @dev: device
6517 * @sa: new address
6518 *
6519 * Change the hardware (MAC) address of the device
6520 */
6521 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6522 {
6523 const struct net_device_ops *ops = dev->netdev_ops;
6524 int err;
6525
6526 if (!ops->ndo_set_mac_address)
6527 return -EOPNOTSUPP;
6528 if (sa->sa_family != dev->type)
6529 return -EINVAL;
6530 if (!netif_device_present(dev))
6531 return -ENODEV;
6532 err = ops->ndo_set_mac_address(dev, sa);
6533 if (err)
6534 return err;
6535 dev->addr_assign_type = NET_ADDR_SET;
6536 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6537 add_device_randomness(dev->dev_addr, dev->addr_len);
6538 return 0;
6539 }
6540 EXPORT_SYMBOL(dev_set_mac_address);
6541
6542 /**
6543 * dev_change_carrier - Change device carrier
6544 * @dev: device
6545 * @new_carrier: new value
6546 *
6547 * Change device carrier
6548 */
6549 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6550 {
6551 const struct net_device_ops *ops = dev->netdev_ops;
6552
6553 if (!ops->ndo_change_carrier)
6554 return -EOPNOTSUPP;
6555 if (!netif_device_present(dev))
6556 return -ENODEV;
6557 return ops->ndo_change_carrier(dev, new_carrier);
6558 }
6559 EXPORT_SYMBOL(dev_change_carrier);
6560
6561 /**
6562 * dev_get_phys_port_id - Get device physical port ID
6563 * @dev: device
6564 * @ppid: port ID
6565 *
6566 * Get device physical port ID
6567 */
6568 int dev_get_phys_port_id(struct net_device *dev,
6569 struct netdev_phys_item_id *ppid)
6570 {
6571 const struct net_device_ops *ops = dev->netdev_ops;
6572
6573 if (!ops->ndo_get_phys_port_id)
6574 return -EOPNOTSUPP;
6575 return ops->ndo_get_phys_port_id(dev, ppid);
6576 }
6577 EXPORT_SYMBOL(dev_get_phys_port_id);
6578
6579 /**
6580 * dev_get_phys_port_name - Get device physical port name
6581 * @dev: device
6582 * @name: port name
6583 * @len: limit of bytes to copy to name
6584 *
6585 * Get device physical port name
6586 */
6587 int dev_get_phys_port_name(struct net_device *dev,
6588 char *name, size_t len)
6589 {
6590 const struct net_device_ops *ops = dev->netdev_ops;
6591
6592 if (!ops->ndo_get_phys_port_name)
6593 return -EOPNOTSUPP;
6594 return ops->ndo_get_phys_port_name(dev, name, len);
6595 }
6596 EXPORT_SYMBOL(dev_get_phys_port_name);
6597
6598 /**
6599 * dev_change_proto_down - update protocol port state information
6600 * @dev: device
6601 * @proto_down: new value
6602 *
6603 * This info can be used by switch drivers to set the phys state of the
6604 * port.
6605 */
6606 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6607 {
6608 const struct net_device_ops *ops = dev->netdev_ops;
6609
6610 if (!ops->ndo_change_proto_down)
6611 return -EOPNOTSUPP;
6612 if (!netif_device_present(dev))
6613 return -ENODEV;
6614 return ops->ndo_change_proto_down(dev, proto_down);
6615 }
6616 EXPORT_SYMBOL(dev_change_proto_down);
6617
6618 /**
6619 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6620 * @dev: device
6621 * @fd: new program fd or negative value to clear
6622 *
6623 * Set or clear a bpf program for a device
6624 */
6625 int dev_change_xdp_fd(struct net_device *dev, int fd)
6626 {
6627 const struct net_device_ops *ops = dev->netdev_ops;
6628 struct bpf_prog *prog = NULL;
6629 struct netdev_xdp xdp = {};
6630 int err;
6631
6632 if (!ops->ndo_xdp)
6633 return -EOPNOTSUPP;
6634 if (fd >= 0) {
6635 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6636 if (IS_ERR(prog))
6637 return PTR_ERR(prog);
6638 }
6639
6640 xdp.command = XDP_SETUP_PROG;
6641 xdp.prog = prog;
6642 err = ops->ndo_xdp(dev, &xdp);
6643 if (err < 0 && prog)
6644 bpf_prog_put(prog);
6645
6646 return err;
6647 }
6648 EXPORT_SYMBOL(dev_change_xdp_fd);
6649
6650 /**
6651 * dev_new_index - allocate an ifindex
6652 * @net: the applicable net namespace
6653 *
6654 * Returns a suitable unique value for a new device interface
6655 * number. The caller must hold the rtnl semaphore or the
6656 * dev_base_lock to be sure it remains unique.
6657 */
6658 static int dev_new_index(struct net *net)
6659 {
6660 int ifindex = net->ifindex;
6661 for (;;) {
6662 if (++ifindex <= 0)
6663 ifindex = 1;
6664 if (!__dev_get_by_index(net, ifindex))
6665 return net->ifindex = ifindex;
6666 }
6667 }
6668
6669 /* Delayed registration/unregisteration */
6670 static LIST_HEAD(net_todo_list);
6671 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6672
6673 static void net_set_todo(struct net_device *dev)
6674 {
6675 list_add_tail(&dev->todo_list, &net_todo_list);
6676 dev_net(dev)->dev_unreg_count++;
6677 }
6678
6679 static void rollback_registered_many(struct list_head *head)
6680 {
6681 struct net_device *dev, *tmp;
6682 LIST_HEAD(close_head);
6683
6684 BUG_ON(dev_boot_phase);
6685 ASSERT_RTNL();
6686
6687 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6688 /* Some devices call without registering
6689 * for initialization unwind. Remove those
6690 * devices and proceed with the remaining.
6691 */
6692 if (dev->reg_state == NETREG_UNINITIALIZED) {
6693 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6694 dev->name, dev);
6695
6696 WARN_ON(1);
6697 list_del(&dev->unreg_list);
6698 continue;
6699 }
6700 dev->dismantle = true;
6701 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6702 }
6703
6704 /* If device is running, close it first. */
6705 list_for_each_entry(dev, head, unreg_list)
6706 list_add_tail(&dev->close_list, &close_head);
6707 dev_close_many(&close_head, true);
6708
6709 list_for_each_entry(dev, head, unreg_list) {
6710 /* And unlink it from device chain. */
6711 unlist_netdevice(dev);
6712
6713 dev->reg_state = NETREG_UNREGISTERING;
6714 on_each_cpu(flush_backlog, dev, 1);
6715 }
6716
6717 synchronize_net();
6718
6719 list_for_each_entry(dev, head, unreg_list) {
6720 struct sk_buff *skb = NULL;
6721
6722 /* Shutdown queueing discipline. */
6723 dev_shutdown(dev);
6724
6725
6726 /* Notify protocols, that we are about to destroy
6727 this device. They should clean all the things.
6728 */
6729 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6730
6731 if (!dev->rtnl_link_ops ||
6732 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6733 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6734 GFP_KERNEL);
6735
6736 /*
6737 * Flush the unicast and multicast chains
6738 */
6739 dev_uc_flush(dev);
6740 dev_mc_flush(dev);
6741
6742 if (dev->netdev_ops->ndo_uninit)
6743 dev->netdev_ops->ndo_uninit(dev);
6744
6745 if (skb)
6746 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6747
6748 /* Notifier chain MUST detach us all upper devices. */
6749 WARN_ON(netdev_has_any_upper_dev(dev));
6750
6751 /* Remove entries from kobject tree */
6752 netdev_unregister_kobject(dev);
6753 #ifdef CONFIG_XPS
6754 /* Remove XPS queueing entries */
6755 netif_reset_xps_queues_gt(dev, 0);
6756 #endif
6757 }
6758
6759 synchronize_net();
6760
6761 list_for_each_entry(dev, head, unreg_list)
6762 dev_put(dev);
6763 }
6764
6765 static void rollback_registered(struct net_device *dev)
6766 {
6767 LIST_HEAD(single);
6768
6769 list_add(&dev->unreg_list, &single);
6770 rollback_registered_many(&single);
6771 list_del(&single);
6772 }
6773
6774 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6775 struct net_device *upper, netdev_features_t features)
6776 {
6777 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6778 netdev_features_t feature;
6779 int feature_bit;
6780
6781 for_each_netdev_feature(&upper_disables, feature_bit) {
6782 feature = __NETIF_F_BIT(feature_bit);
6783 if (!(upper->wanted_features & feature)
6784 && (features & feature)) {
6785 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6786 &feature, upper->name);
6787 features &= ~feature;
6788 }
6789 }
6790
6791 return features;
6792 }
6793
6794 static void netdev_sync_lower_features(struct net_device *upper,
6795 struct net_device *lower, netdev_features_t features)
6796 {
6797 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6798 netdev_features_t feature;
6799 int feature_bit;
6800
6801 for_each_netdev_feature(&upper_disables, feature_bit) {
6802 feature = __NETIF_F_BIT(feature_bit);
6803 if (!(features & feature) && (lower->features & feature)) {
6804 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6805 &feature, lower->name);
6806 lower->wanted_features &= ~feature;
6807 netdev_update_features(lower);
6808
6809 if (unlikely(lower->features & feature))
6810 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6811 &feature, lower->name);
6812 }
6813 }
6814 }
6815
6816 static netdev_features_t netdev_fix_features(struct net_device *dev,
6817 netdev_features_t features)
6818 {
6819 /* Fix illegal checksum combinations */
6820 if ((features & NETIF_F_HW_CSUM) &&
6821 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6822 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6823 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6824 }
6825
6826 /* TSO requires that SG is present as well. */
6827 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6828 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6829 features &= ~NETIF_F_ALL_TSO;
6830 }
6831
6832 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6833 !(features & NETIF_F_IP_CSUM)) {
6834 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6835 features &= ~NETIF_F_TSO;
6836 features &= ~NETIF_F_TSO_ECN;
6837 }
6838
6839 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6840 !(features & NETIF_F_IPV6_CSUM)) {
6841 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6842 features &= ~NETIF_F_TSO6;
6843 }
6844
6845 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6846 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6847 features &= ~NETIF_F_TSO_MANGLEID;
6848
6849 /* TSO ECN requires that TSO is present as well. */
6850 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6851 features &= ~NETIF_F_TSO_ECN;
6852
6853 /* Software GSO depends on SG. */
6854 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6855 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6856 features &= ~NETIF_F_GSO;
6857 }
6858
6859 /* UFO needs SG and checksumming */
6860 if (features & NETIF_F_UFO) {
6861 /* maybe split UFO into V4 and V6? */
6862 if (!(features & NETIF_F_HW_CSUM) &&
6863 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6864 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6865 netdev_dbg(dev,
6866 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6867 features &= ~NETIF_F_UFO;
6868 }
6869
6870 if (!(features & NETIF_F_SG)) {
6871 netdev_dbg(dev,
6872 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6873 features &= ~NETIF_F_UFO;
6874 }
6875 }
6876
6877 /* GSO partial features require GSO partial be set */
6878 if ((features & dev->gso_partial_features) &&
6879 !(features & NETIF_F_GSO_PARTIAL)) {
6880 netdev_dbg(dev,
6881 "Dropping partially supported GSO features since no GSO partial.\n");
6882 features &= ~dev->gso_partial_features;
6883 }
6884
6885 #ifdef CONFIG_NET_RX_BUSY_POLL
6886 if (dev->netdev_ops->ndo_busy_poll)
6887 features |= NETIF_F_BUSY_POLL;
6888 else
6889 #endif
6890 features &= ~NETIF_F_BUSY_POLL;
6891
6892 return features;
6893 }
6894
6895 int __netdev_update_features(struct net_device *dev)
6896 {
6897 struct net_device *upper, *lower;
6898 netdev_features_t features;
6899 struct list_head *iter;
6900 int err = -1;
6901
6902 ASSERT_RTNL();
6903
6904 features = netdev_get_wanted_features(dev);
6905
6906 if (dev->netdev_ops->ndo_fix_features)
6907 features = dev->netdev_ops->ndo_fix_features(dev, features);
6908
6909 /* driver might be less strict about feature dependencies */
6910 features = netdev_fix_features(dev, features);
6911
6912 /* some features can't be enabled if they're off an an upper device */
6913 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6914 features = netdev_sync_upper_features(dev, upper, features);
6915
6916 if (dev->features == features)
6917 goto sync_lower;
6918
6919 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6920 &dev->features, &features);
6921
6922 if (dev->netdev_ops->ndo_set_features)
6923 err = dev->netdev_ops->ndo_set_features(dev, features);
6924 else
6925 err = 0;
6926
6927 if (unlikely(err < 0)) {
6928 netdev_err(dev,
6929 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6930 err, &features, &dev->features);
6931 /* return non-0 since some features might have changed and
6932 * it's better to fire a spurious notification than miss it
6933 */
6934 return -1;
6935 }
6936
6937 sync_lower:
6938 /* some features must be disabled on lower devices when disabled
6939 * on an upper device (think: bonding master or bridge)
6940 */
6941 netdev_for_each_lower_dev(dev, lower, iter)
6942 netdev_sync_lower_features(dev, lower, features);
6943
6944 if (!err)
6945 dev->features = features;
6946
6947 return err < 0 ? 0 : 1;
6948 }
6949
6950 /**
6951 * netdev_update_features - recalculate device features
6952 * @dev: the device to check
6953 *
6954 * Recalculate dev->features set and send notifications if it
6955 * has changed. Should be called after driver or hardware dependent
6956 * conditions might have changed that influence the features.
6957 */
6958 void netdev_update_features(struct net_device *dev)
6959 {
6960 if (__netdev_update_features(dev))
6961 netdev_features_change(dev);
6962 }
6963 EXPORT_SYMBOL(netdev_update_features);
6964
6965 /**
6966 * netdev_change_features - recalculate device features
6967 * @dev: the device to check
6968 *
6969 * Recalculate dev->features set and send notifications even
6970 * if they have not changed. Should be called instead of
6971 * netdev_update_features() if also dev->vlan_features might
6972 * have changed to allow the changes to be propagated to stacked
6973 * VLAN devices.
6974 */
6975 void netdev_change_features(struct net_device *dev)
6976 {
6977 __netdev_update_features(dev);
6978 netdev_features_change(dev);
6979 }
6980 EXPORT_SYMBOL(netdev_change_features);
6981
6982 /**
6983 * netif_stacked_transfer_operstate - transfer operstate
6984 * @rootdev: the root or lower level device to transfer state from
6985 * @dev: the device to transfer operstate to
6986 *
6987 * Transfer operational state from root to device. This is normally
6988 * called when a stacking relationship exists between the root
6989 * device and the device(a leaf device).
6990 */
6991 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6992 struct net_device *dev)
6993 {
6994 if (rootdev->operstate == IF_OPER_DORMANT)
6995 netif_dormant_on(dev);
6996 else
6997 netif_dormant_off(dev);
6998
6999 if (netif_carrier_ok(rootdev)) {
7000 if (!netif_carrier_ok(dev))
7001 netif_carrier_on(dev);
7002 } else {
7003 if (netif_carrier_ok(dev))
7004 netif_carrier_off(dev);
7005 }
7006 }
7007 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7008
7009 #ifdef CONFIG_SYSFS
7010 static int netif_alloc_rx_queues(struct net_device *dev)
7011 {
7012 unsigned int i, count = dev->num_rx_queues;
7013 struct netdev_rx_queue *rx;
7014 size_t sz = count * sizeof(*rx);
7015
7016 BUG_ON(count < 1);
7017
7018 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7019 if (!rx) {
7020 rx = vzalloc(sz);
7021 if (!rx)
7022 return -ENOMEM;
7023 }
7024 dev->_rx = rx;
7025
7026 for (i = 0; i < count; i++)
7027 rx[i].dev = dev;
7028 return 0;
7029 }
7030 #endif
7031
7032 static void netdev_init_one_queue(struct net_device *dev,
7033 struct netdev_queue *queue, void *_unused)
7034 {
7035 /* Initialize queue lock */
7036 spin_lock_init(&queue->_xmit_lock);
7037 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7038 queue->xmit_lock_owner = -1;
7039 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7040 queue->dev = dev;
7041 #ifdef CONFIG_BQL
7042 dql_init(&queue->dql, HZ);
7043 #endif
7044 }
7045
7046 static void netif_free_tx_queues(struct net_device *dev)
7047 {
7048 kvfree(dev->_tx);
7049 }
7050
7051 static int netif_alloc_netdev_queues(struct net_device *dev)
7052 {
7053 unsigned int count = dev->num_tx_queues;
7054 struct netdev_queue *tx;
7055 size_t sz = count * sizeof(*tx);
7056
7057 if (count < 1 || count > 0xffff)
7058 return -EINVAL;
7059
7060 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7061 if (!tx) {
7062 tx = vzalloc(sz);
7063 if (!tx)
7064 return -ENOMEM;
7065 }
7066 dev->_tx = tx;
7067
7068 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7069 spin_lock_init(&dev->tx_global_lock);
7070
7071 return 0;
7072 }
7073
7074 void netif_tx_stop_all_queues(struct net_device *dev)
7075 {
7076 unsigned int i;
7077
7078 for (i = 0; i < dev->num_tx_queues; i++) {
7079 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7080 netif_tx_stop_queue(txq);
7081 }
7082 }
7083 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7084
7085 /**
7086 * register_netdevice - register a network device
7087 * @dev: device to register
7088 *
7089 * Take a completed network device structure and add it to the kernel
7090 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7091 * chain. 0 is returned on success. A negative errno code is returned
7092 * on a failure to set up the device, or if the name is a duplicate.
7093 *
7094 * Callers must hold the rtnl semaphore. You may want
7095 * register_netdev() instead of this.
7096 *
7097 * BUGS:
7098 * The locking appears insufficient to guarantee two parallel registers
7099 * will not get the same name.
7100 */
7101
7102 int register_netdevice(struct net_device *dev)
7103 {
7104 int ret;
7105 struct net *net = dev_net(dev);
7106
7107 BUG_ON(dev_boot_phase);
7108 ASSERT_RTNL();
7109
7110 might_sleep();
7111
7112 /* When net_device's are persistent, this will be fatal. */
7113 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7114 BUG_ON(!net);
7115
7116 spin_lock_init(&dev->addr_list_lock);
7117 netdev_set_addr_lockdep_class(dev);
7118
7119 ret = dev_get_valid_name(net, dev, dev->name);
7120 if (ret < 0)
7121 goto out;
7122
7123 /* Init, if this function is available */
7124 if (dev->netdev_ops->ndo_init) {
7125 ret = dev->netdev_ops->ndo_init(dev);
7126 if (ret) {
7127 if (ret > 0)
7128 ret = -EIO;
7129 goto out;
7130 }
7131 }
7132
7133 if (((dev->hw_features | dev->features) &
7134 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7135 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7136 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7137 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7138 ret = -EINVAL;
7139 goto err_uninit;
7140 }
7141
7142 ret = -EBUSY;
7143 if (!dev->ifindex)
7144 dev->ifindex = dev_new_index(net);
7145 else if (__dev_get_by_index(net, dev->ifindex))
7146 goto err_uninit;
7147
7148 /* Transfer changeable features to wanted_features and enable
7149 * software offloads (GSO and GRO).
7150 */
7151 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7152 dev->features |= NETIF_F_SOFT_FEATURES;
7153 dev->wanted_features = dev->features & dev->hw_features;
7154
7155 if (!(dev->flags & IFF_LOOPBACK))
7156 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7157
7158 /* If IPv4 TCP segmentation offload is supported we should also
7159 * allow the device to enable segmenting the frame with the option
7160 * of ignoring a static IP ID value. This doesn't enable the
7161 * feature itself but allows the user to enable it later.
7162 */
7163 if (dev->hw_features & NETIF_F_TSO)
7164 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7165 if (dev->vlan_features & NETIF_F_TSO)
7166 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7167 if (dev->mpls_features & NETIF_F_TSO)
7168 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7169 if (dev->hw_enc_features & NETIF_F_TSO)
7170 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7171
7172 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7173 */
7174 dev->vlan_features |= NETIF_F_HIGHDMA;
7175
7176 /* Make NETIF_F_SG inheritable to tunnel devices.
7177 */
7178 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7179
7180 /* Make NETIF_F_SG inheritable to MPLS.
7181 */
7182 dev->mpls_features |= NETIF_F_SG;
7183
7184 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7185 ret = notifier_to_errno(ret);
7186 if (ret)
7187 goto err_uninit;
7188
7189 ret = netdev_register_kobject(dev);
7190 if (ret)
7191 goto err_uninit;
7192 dev->reg_state = NETREG_REGISTERED;
7193
7194 __netdev_update_features(dev);
7195
7196 /*
7197 * Default initial state at registry is that the
7198 * device is present.
7199 */
7200
7201 set_bit(__LINK_STATE_PRESENT, &dev->state);
7202
7203 linkwatch_init_dev(dev);
7204
7205 dev_init_scheduler(dev);
7206 dev_hold(dev);
7207 list_netdevice(dev);
7208 add_device_randomness(dev->dev_addr, dev->addr_len);
7209
7210 /* If the device has permanent device address, driver should
7211 * set dev_addr and also addr_assign_type should be set to
7212 * NET_ADDR_PERM (default value).
7213 */
7214 if (dev->addr_assign_type == NET_ADDR_PERM)
7215 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7216
7217 /* Notify protocols, that a new device appeared. */
7218 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7219 ret = notifier_to_errno(ret);
7220 if (ret) {
7221 rollback_registered(dev);
7222 dev->reg_state = NETREG_UNREGISTERED;
7223 }
7224 /*
7225 * Prevent userspace races by waiting until the network
7226 * device is fully setup before sending notifications.
7227 */
7228 if (!dev->rtnl_link_ops ||
7229 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7230 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7231
7232 out:
7233 return ret;
7234
7235 err_uninit:
7236 if (dev->netdev_ops->ndo_uninit)
7237 dev->netdev_ops->ndo_uninit(dev);
7238 goto out;
7239 }
7240 EXPORT_SYMBOL(register_netdevice);
7241
7242 /**
7243 * init_dummy_netdev - init a dummy network device for NAPI
7244 * @dev: device to init
7245 *
7246 * This takes a network device structure and initialize the minimum
7247 * amount of fields so it can be used to schedule NAPI polls without
7248 * registering a full blown interface. This is to be used by drivers
7249 * that need to tie several hardware interfaces to a single NAPI
7250 * poll scheduler due to HW limitations.
7251 */
7252 int init_dummy_netdev(struct net_device *dev)
7253 {
7254 /* Clear everything. Note we don't initialize spinlocks
7255 * are they aren't supposed to be taken by any of the
7256 * NAPI code and this dummy netdev is supposed to be
7257 * only ever used for NAPI polls
7258 */
7259 memset(dev, 0, sizeof(struct net_device));
7260
7261 /* make sure we BUG if trying to hit standard
7262 * register/unregister code path
7263 */
7264 dev->reg_state = NETREG_DUMMY;
7265
7266 /* NAPI wants this */
7267 INIT_LIST_HEAD(&dev->napi_list);
7268
7269 /* a dummy interface is started by default */
7270 set_bit(__LINK_STATE_PRESENT, &dev->state);
7271 set_bit(__LINK_STATE_START, &dev->state);
7272
7273 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7274 * because users of this 'device' dont need to change
7275 * its refcount.
7276 */
7277
7278 return 0;
7279 }
7280 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7281
7282
7283 /**
7284 * register_netdev - register a network device
7285 * @dev: device to register
7286 *
7287 * Take a completed network device structure and add it to the kernel
7288 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7289 * chain. 0 is returned on success. A negative errno code is returned
7290 * on a failure to set up the device, or if the name is a duplicate.
7291 *
7292 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7293 * and expands the device name if you passed a format string to
7294 * alloc_netdev.
7295 */
7296 int register_netdev(struct net_device *dev)
7297 {
7298 int err;
7299
7300 rtnl_lock();
7301 err = register_netdevice(dev);
7302 rtnl_unlock();
7303 return err;
7304 }
7305 EXPORT_SYMBOL(register_netdev);
7306
7307 int netdev_refcnt_read(const struct net_device *dev)
7308 {
7309 int i, refcnt = 0;
7310
7311 for_each_possible_cpu(i)
7312 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7313 return refcnt;
7314 }
7315 EXPORT_SYMBOL(netdev_refcnt_read);
7316
7317 /**
7318 * netdev_wait_allrefs - wait until all references are gone.
7319 * @dev: target net_device
7320 *
7321 * This is called when unregistering network devices.
7322 *
7323 * Any protocol or device that holds a reference should register
7324 * for netdevice notification, and cleanup and put back the
7325 * reference if they receive an UNREGISTER event.
7326 * We can get stuck here if buggy protocols don't correctly
7327 * call dev_put.
7328 */
7329 static void netdev_wait_allrefs(struct net_device *dev)
7330 {
7331 unsigned long rebroadcast_time, warning_time;
7332 int refcnt;
7333
7334 linkwatch_forget_dev(dev);
7335
7336 rebroadcast_time = warning_time = jiffies;
7337 refcnt = netdev_refcnt_read(dev);
7338
7339 while (refcnt != 0) {
7340 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7341 rtnl_lock();
7342
7343 /* Rebroadcast unregister notification */
7344 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7345
7346 __rtnl_unlock();
7347 rcu_barrier();
7348 rtnl_lock();
7349
7350 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7351 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7352 &dev->state)) {
7353 /* We must not have linkwatch events
7354 * pending on unregister. If this
7355 * happens, we simply run the queue
7356 * unscheduled, resulting in a noop
7357 * for this device.
7358 */
7359 linkwatch_run_queue();
7360 }
7361
7362 __rtnl_unlock();
7363
7364 rebroadcast_time = jiffies;
7365 }
7366
7367 msleep(250);
7368
7369 refcnt = netdev_refcnt_read(dev);
7370
7371 if (time_after(jiffies, warning_time + 10 * HZ)) {
7372 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7373 dev->name, refcnt);
7374 warning_time = jiffies;
7375 }
7376 }
7377 }
7378
7379 /* The sequence is:
7380 *
7381 * rtnl_lock();
7382 * ...
7383 * register_netdevice(x1);
7384 * register_netdevice(x2);
7385 * ...
7386 * unregister_netdevice(y1);
7387 * unregister_netdevice(y2);
7388 * ...
7389 * rtnl_unlock();
7390 * free_netdev(y1);
7391 * free_netdev(y2);
7392 *
7393 * We are invoked by rtnl_unlock().
7394 * This allows us to deal with problems:
7395 * 1) We can delete sysfs objects which invoke hotplug
7396 * without deadlocking with linkwatch via keventd.
7397 * 2) Since we run with the RTNL semaphore not held, we can sleep
7398 * safely in order to wait for the netdev refcnt to drop to zero.
7399 *
7400 * We must not return until all unregister events added during
7401 * the interval the lock was held have been completed.
7402 */
7403 void netdev_run_todo(void)
7404 {
7405 struct list_head list;
7406
7407 /* Snapshot list, allow later requests */
7408 list_replace_init(&net_todo_list, &list);
7409
7410 __rtnl_unlock();
7411
7412
7413 /* Wait for rcu callbacks to finish before next phase */
7414 if (!list_empty(&list))
7415 rcu_barrier();
7416
7417 while (!list_empty(&list)) {
7418 struct net_device *dev
7419 = list_first_entry(&list, struct net_device, todo_list);
7420 list_del(&dev->todo_list);
7421
7422 rtnl_lock();
7423 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7424 __rtnl_unlock();
7425
7426 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7427 pr_err("network todo '%s' but state %d\n",
7428 dev->name, dev->reg_state);
7429 dump_stack();
7430 continue;
7431 }
7432
7433 dev->reg_state = NETREG_UNREGISTERED;
7434
7435 netdev_wait_allrefs(dev);
7436
7437 /* paranoia */
7438 BUG_ON(netdev_refcnt_read(dev));
7439 BUG_ON(!list_empty(&dev->ptype_all));
7440 BUG_ON(!list_empty(&dev->ptype_specific));
7441 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7442 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7443 WARN_ON(dev->dn_ptr);
7444
7445 if (dev->destructor)
7446 dev->destructor(dev);
7447
7448 /* Report a network device has been unregistered */
7449 rtnl_lock();
7450 dev_net(dev)->dev_unreg_count--;
7451 __rtnl_unlock();
7452 wake_up(&netdev_unregistering_wq);
7453
7454 /* Free network device */
7455 kobject_put(&dev->dev.kobj);
7456 }
7457 }
7458
7459 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7460 * all the same fields in the same order as net_device_stats, with only
7461 * the type differing, but rtnl_link_stats64 may have additional fields
7462 * at the end for newer counters.
7463 */
7464 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7465 const struct net_device_stats *netdev_stats)
7466 {
7467 #if BITS_PER_LONG == 64
7468 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7469 memcpy(stats64, netdev_stats, sizeof(*stats64));
7470 /* zero out counters that only exist in rtnl_link_stats64 */
7471 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7472 sizeof(*stats64) - sizeof(*netdev_stats));
7473 #else
7474 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7475 const unsigned long *src = (const unsigned long *)netdev_stats;
7476 u64 *dst = (u64 *)stats64;
7477
7478 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7479 for (i = 0; i < n; i++)
7480 dst[i] = src[i];
7481 /* zero out counters that only exist in rtnl_link_stats64 */
7482 memset((char *)stats64 + n * sizeof(u64), 0,
7483 sizeof(*stats64) - n * sizeof(u64));
7484 #endif
7485 }
7486 EXPORT_SYMBOL(netdev_stats_to_stats64);
7487
7488 /**
7489 * dev_get_stats - get network device statistics
7490 * @dev: device to get statistics from
7491 * @storage: place to store stats
7492 *
7493 * Get network statistics from device. Return @storage.
7494 * The device driver may provide its own method by setting
7495 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7496 * otherwise the internal statistics structure is used.
7497 */
7498 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7499 struct rtnl_link_stats64 *storage)
7500 {
7501 const struct net_device_ops *ops = dev->netdev_ops;
7502
7503 if (ops->ndo_get_stats64) {
7504 memset(storage, 0, sizeof(*storage));
7505 ops->ndo_get_stats64(dev, storage);
7506 } else if (ops->ndo_get_stats) {
7507 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7508 } else {
7509 netdev_stats_to_stats64(storage, &dev->stats);
7510 }
7511 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7512 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7513 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7514 return storage;
7515 }
7516 EXPORT_SYMBOL(dev_get_stats);
7517
7518 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7519 {
7520 struct netdev_queue *queue = dev_ingress_queue(dev);
7521
7522 #ifdef CONFIG_NET_CLS_ACT
7523 if (queue)
7524 return queue;
7525 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7526 if (!queue)
7527 return NULL;
7528 netdev_init_one_queue(dev, queue, NULL);
7529 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7530 queue->qdisc_sleeping = &noop_qdisc;
7531 rcu_assign_pointer(dev->ingress_queue, queue);
7532 #endif
7533 return queue;
7534 }
7535
7536 static const struct ethtool_ops default_ethtool_ops;
7537
7538 void netdev_set_default_ethtool_ops(struct net_device *dev,
7539 const struct ethtool_ops *ops)
7540 {
7541 if (dev->ethtool_ops == &default_ethtool_ops)
7542 dev->ethtool_ops = ops;
7543 }
7544 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7545
7546 void netdev_freemem(struct net_device *dev)
7547 {
7548 char *addr = (char *)dev - dev->padded;
7549
7550 kvfree(addr);
7551 }
7552
7553 /**
7554 * alloc_netdev_mqs - allocate network device
7555 * @sizeof_priv: size of private data to allocate space for
7556 * @name: device name format string
7557 * @name_assign_type: origin of device name
7558 * @setup: callback to initialize device
7559 * @txqs: the number of TX subqueues to allocate
7560 * @rxqs: the number of RX subqueues to allocate
7561 *
7562 * Allocates a struct net_device with private data area for driver use
7563 * and performs basic initialization. Also allocates subqueue structs
7564 * for each queue on the device.
7565 */
7566 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7567 unsigned char name_assign_type,
7568 void (*setup)(struct net_device *),
7569 unsigned int txqs, unsigned int rxqs)
7570 {
7571 struct net_device *dev;
7572 size_t alloc_size;
7573 struct net_device *p;
7574
7575 BUG_ON(strlen(name) >= sizeof(dev->name));
7576
7577 if (txqs < 1) {
7578 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7579 return NULL;
7580 }
7581
7582 #ifdef CONFIG_SYSFS
7583 if (rxqs < 1) {
7584 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7585 return NULL;
7586 }
7587 #endif
7588
7589 alloc_size = sizeof(struct net_device);
7590 if (sizeof_priv) {
7591 /* ensure 32-byte alignment of private area */
7592 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7593 alloc_size += sizeof_priv;
7594 }
7595 /* ensure 32-byte alignment of whole construct */
7596 alloc_size += NETDEV_ALIGN - 1;
7597
7598 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7599 if (!p)
7600 p = vzalloc(alloc_size);
7601 if (!p)
7602 return NULL;
7603
7604 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7605 dev->padded = (char *)dev - (char *)p;
7606
7607 dev->pcpu_refcnt = alloc_percpu(int);
7608 if (!dev->pcpu_refcnt)
7609 goto free_dev;
7610
7611 if (dev_addr_init(dev))
7612 goto free_pcpu;
7613
7614 dev_mc_init(dev);
7615 dev_uc_init(dev);
7616
7617 dev_net_set(dev, &init_net);
7618
7619 dev->gso_max_size = GSO_MAX_SIZE;
7620 dev->gso_max_segs = GSO_MAX_SEGS;
7621
7622 INIT_LIST_HEAD(&dev->napi_list);
7623 INIT_LIST_HEAD(&dev->unreg_list);
7624 INIT_LIST_HEAD(&dev->close_list);
7625 INIT_LIST_HEAD(&dev->link_watch_list);
7626 INIT_LIST_HEAD(&dev->adj_list.upper);
7627 INIT_LIST_HEAD(&dev->adj_list.lower);
7628 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7629 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7630 INIT_LIST_HEAD(&dev->ptype_all);
7631 INIT_LIST_HEAD(&dev->ptype_specific);
7632 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7633 setup(dev);
7634
7635 if (!dev->tx_queue_len) {
7636 dev->priv_flags |= IFF_NO_QUEUE;
7637 dev->tx_queue_len = 1;
7638 }
7639
7640 dev->num_tx_queues = txqs;
7641 dev->real_num_tx_queues = txqs;
7642 if (netif_alloc_netdev_queues(dev))
7643 goto free_all;
7644
7645 #ifdef CONFIG_SYSFS
7646 dev->num_rx_queues = rxqs;
7647 dev->real_num_rx_queues = rxqs;
7648 if (netif_alloc_rx_queues(dev))
7649 goto free_all;
7650 #endif
7651
7652 strcpy(dev->name, name);
7653 dev->name_assign_type = name_assign_type;
7654 dev->group = INIT_NETDEV_GROUP;
7655 if (!dev->ethtool_ops)
7656 dev->ethtool_ops = &default_ethtool_ops;
7657
7658 nf_hook_ingress_init(dev);
7659
7660 return dev;
7661
7662 free_all:
7663 free_netdev(dev);
7664 return NULL;
7665
7666 free_pcpu:
7667 free_percpu(dev->pcpu_refcnt);
7668 free_dev:
7669 netdev_freemem(dev);
7670 return NULL;
7671 }
7672 EXPORT_SYMBOL(alloc_netdev_mqs);
7673
7674 /**
7675 * free_netdev - free network device
7676 * @dev: device
7677 *
7678 * This function does the last stage of destroying an allocated device
7679 * interface. The reference to the device object is released.
7680 * If this is the last reference then it will be freed.
7681 * Must be called in process context.
7682 */
7683 void free_netdev(struct net_device *dev)
7684 {
7685 struct napi_struct *p, *n;
7686
7687 might_sleep();
7688 netif_free_tx_queues(dev);
7689 #ifdef CONFIG_SYSFS
7690 kvfree(dev->_rx);
7691 #endif
7692
7693 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7694
7695 /* Flush device addresses */
7696 dev_addr_flush(dev);
7697
7698 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7699 netif_napi_del(p);
7700
7701 free_percpu(dev->pcpu_refcnt);
7702 dev->pcpu_refcnt = NULL;
7703
7704 /* Compatibility with error handling in drivers */
7705 if (dev->reg_state == NETREG_UNINITIALIZED) {
7706 netdev_freemem(dev);
7707 return;
7708 }
7709
7710 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7711 dev->reg_state = NETREG_RELEASED;
7712
7713 /* will free via device release */
7714 put_device(&dev->dev);
7715 }
7716 EXPORT_SYMBOL(free_netdev);
7717
7718 /**
7719 * synchronize_net - Synchronize with packet receive processing
7720 *
7721 * Wait for packets currently being received to be done.
7722 * Does not block later packets from starting.
7723 */
7724 void synchronize_net(void)
7725 {
7726 might_sleep();
7727 if (rtnl_is_locked())
7728 synchronize_rcu_expedited();
7729 else
7730 synchronize_rcu();
7731 }
7732 EXPORT_SYMBOL(synchronize_net);
7733
7734 /**
7735 * unregister_netdevice_queue - remove device from the kernel
7736 * @dev: device
7737 * @head: list
7738 *
7739 * This function shuts down a device interface and removes it
7740 * from the kernel tables.
7741 * If head not NULL, device is queued to be unregistered later.
7742 *
7743 * Callers must hold the rtnl semaphore. You may want
7744 * unregister_netdev() instead of this.
7745 */
7746
7747 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7748 {
7749 ASSERT_RTNL();
7750
7751 if (head) {
7752 list_move_tail(&dev->unreg_list, head);
7753 } else {
7754 rollback_registered(dev);
7755 /* Finish processing unregister after unlock */
7756 net_set_todo(dev);
7757 }
7758 }
7759 EXPORT_SYMBOL(unregister_netdevice_queue);
7760
7761 /**
7762 * unregister_netdevice_many - unregister many devices
7763 * @head: list of devices
7764 *
7765 * Note: As most callers use a stack allocated list_head,
7766 * we force a list_del() to make sure stack wont be corrupted later.
7767 */
7768 void unregister_netdevice_many(struct list_head *head)
7769 {
7770 struct net_device *dev;
7771
7772 if (!list_empty(head)) {
7773 rollback_registered_many(head);
7774 list_for_each_entry(dev, head, unreg_list)
7775 net_set_todo(dev);
7776 list_del(head);
7777 }
7778 }
7779 EXPORT_SYMBOL(unregister_netdevice_many);
7780
7781 /**
7782 * unregister_netdev - remove device from the kernel
7783 * @dev: device
7784 *
7785 * This function shuts down a device interface and removes it
7786 * from the kernel tables.
7787 *
7788 * This is just a wrapper for unregister_netdevice that takes
7789 * the rtnl semaphore. In general you want to use this and not
7790 * unregister_netdevice.
7791 */
7792 void unregister_netdev(struct net_device *dev)
7793 {
7794 rtnl_lock();
7795 unregister_netdevice(dev);
7796 rtnl_unlock();
7797 }
7798 EXPORT_SYMBOL(unregister_netdev);
7799
7800 /**
7801 * dev_change_net_namespace - move device to different nethost namespace
7802 * @dev: device
7803 * @net: network namespace
7804 * @pat: If not NULL name pattern to try if the current device name
7805 * is already taken in the destination network namespace.
7806 *
7807 * This function shuts down a device interface and moves it
7808 * to a new network namespace. On success 0 is returned, on
7809 * a failure a netagive errno code is returned.
7810 *
7811 * Callers must hold the rtnl semaphore.
7812 */
7813
7814 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7815 {
7816 int err;
7817
7818 ASSERT_RTNL();
7819
7820 /* Don't allow namespace local devices to be moved. */
7821 err = -EINVAL;
7822 if (dev->features & NETIF_F_NETNS_LOCAL)
7823 goto out;
7824
7825 /* Ensure the device has been registrered */
7826 if (dev->reg_state != NETREG_REGISTERED)
7827 goto out;
7828
7829 /* Get out if there is nothing todo */
7830 err = 0;
7831 if (net_eq(dev_net(dev), net))
7832 goto out;
7833
7834 /* Pick the destination device name, and ensure
7835 * we can use it in the destination network namespace.
7836 */
7837 err = -EEXIST;
7838 if (__dev_get_by_name(net, dev->name)) {
7839 /* We get here if we can't use the current device name */
7840 if (!pat)
7841 goto out;
7842 if (dev_get_valid_name(net, dev, pat) < 0)
7843 goto out;
7844 }
7845
7846 /*
7847 * And now a mini version of register_netdevice unregister_netdevice.
7848 */
7849
7850 /* If device is running close it first. */
7851 dev_close(dev);
7852
7853 /* And unlink it from device chain */
7854 err = -ENODEV;
7855 unlist_netdevice(dev);
7856
7857 synchronize_net();
7858
7859 /* Shutdown queueing discipline. */
7860 dev_shutdown(dev);
7861
7862 /* Notify protocols, that we are about to destroy
7863 this device. They should clean all the things.
7864
7865 Note that dev->reg_state stays at NETREG_REGISTERED.
7866 This is wanted because this way 8021q and macvlan know
7867 the device is just moving and can keep their slaves up.
7868 */
7869 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7870 rcu_barrier();
7871 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7872 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7873
7874 /*
7875 * Flush the unicast and multicast chains
7876 */
7877 dev_uc_flush(dev);
7878 dev_mc_flush(dev);
7879
7880 /* Send a netdev-removed uevent to the old namespace */
7881 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7882 netdev_adjacent_del_links(dev);
7883
7884 /* Actually switch the network namespace */
7885 dev_net_set(dev, net);
7886
7887 /* If there is an ifindex conflict assign a new one */
7888 if (__dev_get_by_index(net, dev->ifindex))
7889 dev->ifindex = dev_new_index(net);
7890
7891 /* Send a netdev-add uevent to the new namespace */
7892 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7893 netdev_adjacent_add_links(dev);
7894
7895 /* Fixup kobjects */
7896 err = device_rename(&dev->dev, dev->name);
7897 WARN_ON(err);
7898
7899 /* Add the device back in the hashes */
7900 list_netdevice(dev);
7901
7902 /* Notify protocols, that a new device appeared. */
7903 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7904
7905 /*
7906 * Prevent userspace races by waiting until the network
7907 * device is fully setup before sending notifications.
7908 */
7909 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7910
7911 synchronize_net();
7912 err = 0;
7913 out:
7914 return err;
7915 }
7916 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7917
7918 static int dev_cpu_callback(struct notifier_block *nfb,
7919 unsigned long action,
7920 void *ocpu)
7921 {
7922 struct sk_buff **list_skb;
7923 struct sk_buff *skb;
7924 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7925 struct softnet_data *sd, *oldsd;
7926
7927 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7928 return NOTIFY_OK;
7929
7930 local_irq_disable();
7931 cpu = smp_processor_id();
7932 sd = &per_cpu(softnet_data, cpu);
7933 oldsd = &per_cpu(softnet_data, oldcpu);
7934
7935 /* Find end of our completion_queue. */
7936 list_skb = &sd->completion_queue;
7937 while (*list_skb)
7938 list_skb = &(*list_skb)->next;
7939 /* Append completion queue from offline CPU. */
7940 *list_skb = oldsd->completion_queue;
7941 oldsd->completion_queue = NULL;
7942
7943 /* Append output queue from offline CPU. */
7944 if (oldsd->output_queue) {
7945 *sd->output_queue_tailp = oldsd->output_queue;
7946 sd->output_queue_tailp = oldsd->output_queue_tailp;
7947 oldsd->output_queue = NULL;
7948 oldsd->output_queue_tailp = &oldsd->output_queue;
7949 }
7950 /* Append NAPI poll list from offline CPU, with one exception :
7951 * process_backlog() must be called by cpu owning percpu backlog.
7952 * We properly handle process_queue & input_pkt_queue later.
7953 */
7954 while (!list_empty(&oldsd->poll_list)) {
7955 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7956 struct napi_struct,
7957 poll_list);
7958
7959 list_del_init(&napi->poll_list);
7960 if (napi->poll == process_backlog)
7961 napi->state = 0;
7962 else
7963 ____napi_schedule(sd, napi);
7964 }
7965
7966 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7967 local_irq_enable();
7968
7969 /* Process offline CPU's input_pkt_queue */
7970 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7971 netif_rx_ni(skb);
7972 input_queue_head_incr(oldsd);
7973 }
7974 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7975 netif_rx_ni(skb);
7976 input_queue_head_incr(oldsd);
7977 }
7978
7979 return NOTIFY_OK;
7980 }
7981
7982
7983 /**
7984 * netdev_increment_features - increment feature set by one
7985 * @all: current feature set
7986 * @one: new feature set
7987 * @mask: mask feature set
7988 *
7989 * Computes a new feature set after adding a device with feature set
7990 * @one to the master device with current feature set @all. Will not
7991 * enable anything that is off in @mask. Returns the new feature set.
7992 */
7993 netdev_features_t netdev_increment_features(netdev_features_t all,
7994 netdev_features_t one, netdev_features_t mask)
7995 {
7996 if (mask & NETIF_F_HW_CSUM)
7997 mask |= NETIF_F_CSUM_MASK;
7998 mask |= NETIF_F_VLAN_CHALLENGED;
7999
8000 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8001 all &= one | ~NETIF_F_ALL_FOR_ALL;
8002
8003 /* If one device supports hw checksumming, set for all. */
8004 if (all & NETIF_F_HW_CSUM)
8005 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8006
8007 return all;
8008 }
8009 EXPORT_SYMBOL(netdev_increment_features);
8010
8011 static struct hlist_head * __net_init netdev_create_hash(void)
8012 {
8013 int i;
8014 struct hlist_head *hash;
8015
8016 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8017 if (hash != NULL)
8018 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8019 INIT_HLIST_HEAD(&hash[i]);
8020
8021 return hash;
8022 }
8023
8024 /* Initialize per network namespace state */
8025 static int __net_init netdev_init(struct net *net)
8026 {
8027 if (net != &init_net)
8028 INIT_LIST_HEAD(&net->dev_base_head);
8029
8030 net->dev_name_head = netdev_create_hash();
8031 if (net->dev_name_head == NULL)
8032 goto err_name;
8033
8034 net->dev_index_head = netdev_create_hash();
8035 if (net->dev_index_head == NULL)
8036 goto err_idx;
8037
8038 return 0;
8039
8040 err_idx:
8041 kfree(net->dev_name_head);
8042 err_name:
8043 return -ENOMEM;
8044 }
8045
8046 /**
8047 * netdev_drivername - network driver for the device
8048 * @dev: network device
8049 *
8050 * Determine network driver for device.
8051 */
8052 const char *netdev_drivername(const struct net_device *dev)
8053 {
8054 const struct device_driver *driver;
8055 const struct device *parent;
8056 const char *empty = "";
8057
8058 parent = dev->dev.parent;
8059 if (!parent)
8060 return empty;
8061
8062 driver = parent->driver;
8063 if (driver && driver->name)
8064 return driver->name;
8065 return empty;
8066 }
8067
8068 static void __netdev_printk(const char *level, const struct net_device *dev,
8069 struct va_format *vaf)
8070 {
8071 if (dev && dev->dev.parent) {
8072 dev_printk_emit(level[1] - '0',
8073 dev->dev.parent,
8074 "%s %s %s%s: %pV",
8075 dev_driver_string(dev->dev.parent),
8076 dev_name(dev->dev.parent),
8077 netdev_name(dev), netdev_reg_state(dev),
8078 vaf);
8079 } else if (dev) {
8080 printk("%s%s%s: %pV",
8081 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8082 } else {
8083 printk("%s(NULL net_device): %pV", level, vaf);
8084 }
8085 }
8086
8087 void netdev_printk(const char *level, const struct net_device *dev,
8088 const char *format, ...)
8089 {
8090 struct va_format vaf;
8091 va_list args;
8092
8093 va_start(args, format);
8094
8095 vaf.fmt = format;
8096 vaf.va = &args;
8097
8098 __netdev_printk(level, dev, &vaf);
8099
8100 va_end(args);
8101 }
8102 EXPORT_SYMBOL(netdev_printk);
8103
8104 #define define_netdev_printk_level(func, level) \
8105 void func(const struct net_device *dev, const char *fmt, ...) \
8106 { \
8107 struct va_format vaf; \
8108 va_list args; \
8109 \
8110 va_start(args, fmt); \
8111 \
8112 vaf.fmt = fmt; \
8113 vaf.va = &args; \
8114 \
8115 __netdev_printk(level, dev, &vaf); \
8116 \
8117 va_end(args); \
8118 } \
8119 EXPORT_SYMBOL(func);
8120
8121 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8122 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8123 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8124 define_netdev_printk_level(netdev_err, KERN_ERR);
8125 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8126 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8127 define_netdev_printk_level(netdev_info, KERN_INFO);
8128
8129 static void __net_exit netdev_exit(struct net *net)
8130 {
8131 kfree(net->dev_name_head);
8132 kfree(net->dev_index_head);
8133 }
8134
8135 static struct pernet_operations __net_initdata netdev_net_ops = {
8136 .init = netdev_init,
8137 .exit = netdev_exit,
8138 };
8139
8140 static void __net_exit default_device_exit(struct net *net)
8141 {
8142 struct net_device *dev, *aux;
8143 /*
8144 * Push all migratable network devices back to the
8145 * initial network namespace
8146 */
8147 rtnl_lock();
8148 for_each_netdev_safe(net, dev, aux) {
8149 int err;
8150 char fb_name[IFNAMSIZ];
8151
8152 /* Ignore unmoveable devices (i.e. loopback) */
8153 if (dev->features & NETIF_F_NETNS_LOCAL)
8154 continue;
8155
8156 /* Leave virtual devices for the generic cleanup */
8157 if (dev->rtnl_link_ops)
8158 continue;
8159
8160 /* Push remaining network devices to init_net */
8161 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8162 err = dev_change_net_namespace(dev, &init_net, fb_name);
8163 if (err) {
8164 pr_emerg("%s: failed to move %s to init_net: %d\n",
8165 __func__, dev->name, err);
8166 BUG();
8167 }
8168 }
8169 rtnl_unlock();
8170 }
8171
8172 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8173 {
8174 /* Return with the rtnl_lock held when there are no network
8175 * devices unregistering in any network namespace in net_list.
8176 */
8177 struct net *net;
8178 bool unregistering;
8179 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8180
8181 add_wait_queue(&netdev_unregistering_wq, &wait);
8182 for (;;) {
8183 unregistering = false;
8184 rtnl_lock();
8185 list_for_each_entry(net, net_list, exit_list) {
8186 if (net->dev_unreg_count > 0) {
8187 unregistering = true;
8188 break;
8189 }
8190 }
8191 if (!unregistering)
8192 break;
8193 __rtnl_unlock();
8194
8195 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8196 }
8197 remove_wait_queue(&netdev_unregistering_wq, &wait);
8198 }
8199
8200 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8201 {
8202 /* At exit all network devices most be removed from a network
8203 * namespace. Do this in the reverse order of registration.
8204 * Do this across as many network namespaces as possible to
8205 * improve batching efficiency.
8206 */
8207 struct net_device *dev;
8208 struct net *net;
8209 LIST_HEAD(dev_kill_list);
8210
8211 /* To prevent network device cleanup code from dereferencing
8212 * loopback devices or network devices that have been freed
8213 * wait here for all pending unregistrations to complete,
8214 * before unregistring the loopback device and allowing the
8215 * network namespace be freed.
8216 *
8217 * The netdev todo list containing all network devices
8218 * unregistrations that happen in default_device_exit_batch
8219 * will run in the rtnl_unlock() at the end of
8220 * default_device_exit_batch.
8221 */
8222 rtnl_lock_unregistering(net_list);
8223 list_for_each_entry(net, net_list, exit_list) {
8224 for_each_netdev_reverse(net, dev) {
8225 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8226 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8227 else
8228 unregister_netdevice_queue(dev, &dev_kill_list);
8229 }
8230 }
8231 unregister_netdevice_many(&dev_kill_list);
8232 rtnl_unlock();
8233 }
8234
8235 static struct pernet_operations __net_initdata default_device_ops = {
8236 .exit = default_device_exit,
8237 .exit_batch = default_device_exit_batch,
8238 };
8239
8240 /*
8241 * Initialize the DEV module. At boot time this walks the device list and
8242 * unhooks any devices that fail to initialise (normally hardware not
8243 * present) and leaves us with a valid list of present and active devices.
8244 *
8245 */
8246
8247 /*
8248 * This is called single threaded during boot, so no need
8249 * to take the rtnl semaphore.
8250 */
8251 static int __init net_dev_init(void)
8252 {
8253 int i, rc = -ENOMEM;
8254
8255 BUG_ON(!dev_boot_phase);
8256
8257 if (dev_proc_init())
8258 goto out;
8259
8260 if (netdev_kobject_init())
8261 goto out;
8262
8263 INIT_LIST_HEAD(&ptype_all);
8264 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8265 INIT_LIST_HEAD(&ptype_base[i]);
8266
8267 INIT_LIST_HEAD(&offload_base);
8268
8269 if (register_pernet_subsys(&netdev_net_ops))
8270 goto out;
8271
8272 /*
8273 * Initialise the packet receive queues.
8274 */
8275
8276 for_each_possible_cpu(i) {
8277 struct softnet_data *sd = &per_cpu(softnet_data, i);
8278
8279 skb_queue_head_init(&sd->input_pkt_queue);
8280 skb_queue_head_init(&sd->process_queue);
8281 INIT_LIST_HEAD(&sd->poll_list);
8282 sd->output_queue_tailp = &sd->output_queue;
8283 #ifdef CONFIG_RPS
8284 sd->csd.func = rps_trigger_softirq;
8285 sd->csd.info = sd;
8286 sd->cpu = i;
8287 #endif
8288
8289 sd->backlog.poll = process_backlog;
8290 sd->backlog.weight = weight_p;
8291 }
8292
8293 dev_boot_phase = 0;
8294
8295 /* The loopback device is special if any other network devices
8296 * is present in a network namespace the loopback device must
8297 * be present. Since we now dynamically allocate and free the
8298 * loopback device ensure this invariant is maintained by
8299 * keeping the loopback device as the first device on the
8300 * list of network devices. Ensuring the loopback devices
8301 * is the first device that appears and the last network device
8302 * that disappears.
8303 */
8304 if (register_pernet_device(&loopback_net_ops))
8305 goto out;
8306
8307 if (register_pernet_device(&default_device_ops))
8308 goto out;
8309
8310 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8311 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8312
8313 hotcpu_notifier(dev_cpu_callback, 0);
8314 dst_subsys_init();
8315 rc = 0;
8316 out:
8317 return rc;
8318 }
8319
8320 subsys_initcall(net_dev_init);