]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/dev.c
net/core: use netdev name in warning if no parent
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/dst_metadata.h>
103 #include <net/pkt_sched.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/pci.h>
131 #include <linux/inetdevice.h>
132 #include <linux/cpu_rmap.h>
133 #include <linux/static_key.h>
134 #include <linux/hashtable.h>
135 #include <linux/vmalloc.h>
136 #include <linux/if_macvlan.h>
137 #include <linux/errqueue.h>
138 #include <linux/hrtimer.h>
139 #include <linux/netfilter_ingress.h>
140
141 #include "net-sysfs.h"
142
143 /* Instead of increasing this, you should create a hash table. */
144 #define MAX_GRO_SKBS 8
145
146 /* This should be increased if a protocol with a bigger head is added. */
147 #define GRO_MAX_HEAD (MAX_HEADER + 128)
148
149 static DEFINE_SPINLOCK(ptype_lock);
150 static DEFINE_SPINLOCK(offload_lock);
151 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
152 struct list_head ptype_all __read_mostly; /* Taps */
153 static struct list_head offload_base __read_mostly;
154
155 static int netif_rx_internal(struct sk_buff *skb);
156 static int call_netdevice_notifiers_info(unsigned long val,
157 struct net_device *dev,
158 struct netdev_notifier_info *info);
159
160 /*
161 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
162 * semaphore.
163 *
164 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
165 *
166 * Writers must hold the rtnl semaphore while they loop through the
167 * dev_base_head list, and hold dev_base_lock for writing when they do the
168 * actual updates. This allows pure readers to access the list even
169 * while a writer is preparing to update it.
170 *
171 * To put it another way, dev_base_lock is held for writing only to
172 * protect against pure readers; the rtnl semaphore provides the
173 * protection against other writers.
174 *
175 * See, for example usages, register_netdevice() and
176 * unregister_netdevice(), which must be called with the rtnl
177 * semaphore held.
178 */
179 DEFINE_RWLOCK(dev_base_lock);
180 EXPORT_SYMBOL(dev_base_lock);
181
182 /* protects napi_hash addition/deletion and napi_gen_id */
183 static DEFINE_SPINLOCK(napi_hash_lock);
184
185 static unsigned int napi_gen_id;
186 static DEFINE_HASHTABLE(napi_hash, 8);
187
188 static seqcount_t devnet_rename_seq;
189
190 static inline void dev_base_seq_inc(struct net *net)
191 {
192 while (++net->dev_base_seq == 0);
193 }
194
195 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
196 {
197 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
198
199 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
200 }
201
202 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
203 {
204 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205 }
206
207 static inline void rps_lock(struct softnet_data *sd)
208 {
209 #ifdef CONFIG_RPS
210 spin_lock(&sd->input_pkt_queue.lock);
211 #endif
212 }
213
214 static inline void rps_unlock(struct softnet_data *sd)
215 {
216 #ifdef CONFIG_RPS
217 spin_unlock(&sd->input_pkt_queue.lock);
218 #endif
219 }
220
221 /* Device list insertion */
222 static void list_netdevice(struct net_device *dev)
223 {
224 struct net *net = dev_net(dev);
225
226 ASSERT_RTNL();
227
228 write_lock_bh(&dev_base_lock);
229 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
230 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
231 hlist_add_head_rcu(&dev->index_hlist,
232 dev_index_hash(net, dev->ifindex));
233 write_unlock_bh(&dev_base_lock);
234
235 dev_base_seq_inc(net);
236 }
237
238 /* Device list removal
239 * caller must respect a RCU grace period before freeing/reusing dev
240 */
241 static void unlist_netdevice(struct net_device *dev)
242 {
243 ASSERT_RTNL();
244
245 /* Unlink dev from the device chain */
246 write_lock_bh(&dev_base_lock);
247 list_del_rcu(&dev->dev_list);
248 hlist_del_rcu(&dev->name_hlist);
249 hlist_del_rcu(&dev->index_hlist);
250 write_unlock_bh(&dev_base_lock);
251
252 dev_base_seq_inc(dev_net(dev));
253 }
254
255 /*
256 * Our notifier list
257 */
258
259 static RAW_NOTIFIER_HEAD(netdev_chain);
260
261 /*
262 * Device drivers call our routines to queue packets here. We empty the
263 * queue in the local softnet handler.
264 */
265
266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
267 EXPORT_PER_CPU_SYMBOL(softnet_data);
268
269 #ifdef CONFIG_LOCKDEP
270 /*
271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
272 * according to dev->type
273 */
274 static const unsigned short netdev_lock_type[] =
275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
287 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
288 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
289 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
290
291 static const char *const netdev_lock_name[] =
292 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
305 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
306 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
307
308 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
310
311 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
312 {
313 int i;
314
315 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
316 if (netdev_lock_type[i] == dev_type)
317 return i;
318 /* the last key is used by default */
319 return ARRAY_SIZE(netdev_lock_type) - 1;
320 }
321
322 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
323 unsigned short dev_type)
324 {
325 int i;
326
327 i = netdev_lock_pos(dev_type);
328 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
329 netdev_lock_name[i]);
330 }
331
332 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
333 {
334 int i;
335
336 i = netdev_lock_pos(dev->type);
337 lockdep_set_class_and_name(&dev->addr_list_lock,
338 &netdev_addr_lock_key[i],
339 netdev_lock_name[i]);
340 }
341 #else
342 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
343 unsigned short dev_type)
344 {
345 }
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348 }
349 #endif
350
351 /*******************************************************************************
352
353 Protocol management and registration routines
354
355 *******************************************************************************/
356
357 /*
358 * Add a protocol ID to the list. Now that the input handler is
359 * smarter we can dispense with all the messy stuff that used to be
360 * here.
361 *
362 * BEWARE!!! Protocol handlers, mangling input packets,
363 * MUST BE last in hash buckets and checking protocol handlers
364 * MUST start from promiscuous ptype_all chain in net_bh.
365 * It is true now, do not change it.
366 * Explanation follows: if protocol handler, mangling packet, will
367 * be the first on list, it is not able to sense, that packet
368 * is cloned and should be copied-on-write, so that it will
369 * change it and subsequent readers will get broken packet.
370 * --ANK (980803)
371 */
372
373 static inline struct list_head *ptype_head(const struct packet_type *pt)
374 {
375 if (pt->type == htons(ETH_P_ALL))
376 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
377 else
378 return pt->dev ? &pt->dev->ptype_specific :
379 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
380 }
381
382 /**
383 * dev_add_pack - add packet handler
384 * @pt: packet type declaration
385 *
386 * Add a protocol handler to the networking stack. The passed &packet_type
387 * is linked into kernel lists and may not be freed until it has been
388 * removed from the kernel lists.
389 *
390 * This call does not sleep therefore it can not
391 * guarantee all CPU's that are in middle of receiving packets
392 * will see the new packet type (until the next received packet).
393 */
394
395 void dev_add_pack(struct packet_type *pt)
396 {
397 struct list_head *head = ptype_head(pt);
398
399 spin_lock(&ptype_lock);
400 list_add_rcu(&pt->list, head);
401 spin_unlock(&ptype_lock);
402 }
403 EXPORT_SYMBOL(dev_add_pack);
404
405 /**
406 * __dev_remove_pack - remove packet handler
407 * @pt: packet type declaration
408 *
409 * Remove a protocol handler that was previously added to the kernel
410 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
411 * from the kernel lists and can be freed or reused once this function
412 * returns.
413 *
414 * The packet type might still be in use by receivers
415 * and must not be freed until after all the CPU's have gone
416 * through a quiescent state.
417 */
418 void __dev_remove_pack(struct packet_type *pt)
419 {
420 struct list_head *head = ptype_head(pt);
421 struct packet_type *pt1;
422
423 spin_lock(&ptype_lock);
424
425 list_for_each_entry(pt1, head, list) {
426 if (pt == pt1) {
427 list_del_rcu(&pt->list);
428 goto out;
429 }
430 }
431
432 pr_warn("dev_remove_pack: %p not found\n", pt);
433 out:
434 spin_unlock(&ptype_lock);
435 }
436 EXPORT_SYMBOL(__dev_remove_pack);
437
438 /**
439 * dev_remove_pack - remove packet handler
440 * @pt: packet type declaration
441 *
442 * Remove a protocol handler that was previously added to the kernel
443 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
444 * from the kernel lists and can be freed or reused once this function
445 * returns.
446 *
447 * This call sleeps to guarantee that no CPU is looking at the packet
448 * type after return.
449 */
450 void dev_remove_pack(struct packet_type *pt)
451 {
452 __dev_remove_pack(pt);
453
454 synchronize_net();
455 }
456 EXPORT_SYMBOL(dev_remove_pack);
457
458
459 /**
460 * dev_add_offload - register offload handlers
461 * @po: protocol offload declaration
462 *
463 * Add protocol offload handlers to the networking stack. The passed
464 * &proto_offload is linked into kernel lists and may not be freed until
465 * it has been removed from the kernel lists.
466 *
467 * This call does not sleep therefore it can not
468 * guarantee all CPU's that are in middle of receiving packets
469 * will see the new offload handlers (until the next received packet).
470 */
471 void dev_add_offload(struct packet_offload *po)
472 {
473 struct packet_offload *elem;
474
475 spin_lock(&offload_lock);
476 list_for_each_entry(elem, &offload_base, list) {
477 if (po->priority < elem->priority)
478 break;
479 }
480 list_add_rcu(&po->list, elem->list.prev);
481 spin_unlock(&offload_lock);
482 }
483 EXPORT_SYMBOL(dev_add_offload);
484
485 /**
486 * __dev_remove_offload - remove offload handler
487 * @po: packet offload declaration
488 *
489 * Remove a protocol offload handler that was previously added to the
490 * kernel offload handlers by dev_add_offload(). The passed &offload_type
491 * is removed from the kernel lists and can be freed or reused once this
492 * function returns.
493 *
494 * The packet type might still be in use by receivers
495 * and must not be freed until after all the CPU's have gone
496 * through a quiescent state.
497 */
498 static void __dev_remove_offload(struct packet_offload *po)
499 {
500 struct list_head *head = &offload_base;
501 struct packet_offload *po1;
502
503 spin_lock(&offload_lock);
504
505 list_for_each_entry(po1, head, list) {
506 if (po == po1) {
507 list_del_rcu(&po->list);
508 goto out;
509 }
510 }
511
512 pr_warn("dev_remove_offload: %p not found\n", po);
513 out:
514 spin_unlock(&offload_lock);
515 }
516
517 /**
518 * dev_remove_offload - remove packet offload handler
519 * @po: packet offload declaration
520 *
521 * Remove a packet offload handler that was previously added to the kernel
522 * offload handlers by dev_add_offload(). The passed &offload_type is
523 * removed from the kernel lists and can be freed or reused once this
524 * function returns.
525 *
526 * This call sleeps to guarantee that no CPU is looking at the packet
527 * type after return.
528 */
529 void dev_remove_offload(struct packet_offload *po)
530 {
531 __dev_remove_offload(po);
532
533 synchronize_net();
534 }
535 EXPORT_SYMBOL(dev_remove_offload);
536
537 /******************************************************************************
538
539 Device Boot-time Settings Routines
540
541 *******************************************************************************/
542
543 /* Boot time configuration table */
544 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
545
546 /**
547 * netdev_boot_setup_add - add new setup entry
548 * @name: name of the device
549 * @map: configured settings for the device
550 *
551 * Adds new setup entry to the dev_boot_setup list. The function
552 * returns 0 on error and 1 on success. This is a generic routine to
553 * all netdevices.
554 */
555 static int netdev_boot_setup_add(char *name, struct ifmap *map)
556 {
557 struct netdev_boot_setup *s;
558 int i;
559
560 s = dev_boot_setup;
561 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
562 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
563 memset(s[i].name, 0, sizeof(s[i].name));
564 strlcpy(s[i].name, name, IFNAMSIZ);
565 memcpy(&s[i].map, map, sizeof(s[i].map));
566 break;
567 }
568 }
569
570 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
571 }
572
573 /**
574 * netdev_boot_setup_check - check boot time settings
575 * @dev: the netdevice
576 *
577 * Check boot time settings for the device.
578 * The found settings are set for the device to be used
579 * later in the device probing.
580 * Returns 0 if no settings found, 1 if they are.
581 */
582 int netdev_boot_setup_check(struct net_device *dev)
583 {
584 struct netdev_boot_setup *s = dev_boot_setup;
585 int i;
586
587 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
588 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
589 !strcmp(dev->name, s[i].name)) {
590 dev->irq = s[i].map.irq;
591 dev->base_addr = s[i].map.base_addr;
592 dev->mem_start = s[i].map.mem_start;
593 dev->mem_end = s[i].map.mem_end;
594 return 1;
595 }
596 }
597 return 0;
598 }
599 EXPORT_SYMBOL(netdev_boot_setup_check);
600
601
602 /**
603 * netdev_boot_base - get address from boot time settings
604 * @prefix: prefix for network device
605 * @unit: id for network device
606 *
607 * Check boot time settings for the base address of device.
608 * The found settings are set for the device to be used
609 * later in the device probing.
610 * Returns 0 if no settings found.
611 */
612 unsigned long netdev_boot_base(const char *prefix, int unit)
613 {
614 const struct netdev_boot_setup *s = dev_boot_setup;
615 char name[IFNAMSIZ];
616 int i;
617
618 sprintf(name, "%s%d", prefix, unit);
619
620 /*
621 * If device already registered then return base of 1
622 * to indicate not to probe for this interface
623 */
624 if (__dev_get_by_name(&init_net, name))
625 return 1;
626
627 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
628 if (!strcmp(name, s[i].name))
629 return s[i].map.base_addr;
630 return 0;
631 }
632
633 /*
634 * Saves at boot time configured settings for any netdevice.
635 */
636 int __init netdev_boot_setup(char *str)
637 {
638 int ints[5];
639 struct ifmap map;
640
641 str = get_options(str, ARRAY_SIZE(ints), ints);
642 if (!str || !*str)
643 return 0;
644
645 /* Save settings */
646 memset(&map, 0, sizeof(map));
647 if (ints[0] > 0)
648 map.irq = ints[1];
649 if (ints[0] > 1)
650 map.base_addr = ints[2];
651 if (ints[0] > 2)
652 map.mem_start = ints[3];
653 if (ints[0] > 3)
654 map.mem_end = ints[4];
655
656 /* Add new entry to the list */
657 return netdev_boot_setup_add(str, &map);
658 }
659
660 __setup("netdev=", netdev_boot_setup);
661
662 /*******************************************************************************
663
664 Device Interface Subroutines
665
666 *******************************************************************************/
667
668 /**
669 * dev_get_iflink - get 'iflink' value of a interface
670 * @dev: targeted interface
671 *
672 * Indicates the ifindex the interface is linked to.
673 * Physical interfaces have the same 'ifindex' and 'iflink' values.
674 */
675
676 int dev_get_iflink(const struct net_device *dev)
677 {
678 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
679 return dev->netdev_ops->ndo_get_iflink(dev);
680
681 return dev->ifindex;
682 }
683 EXPORT_SYMBOL(dev_get_iflink);
684
685 /**
686 * dev_fill_metadata_dst - Retrieve tunnel egress information.
687 * @dev: targeted interface
688 * @skb: The packet.
689 *
690 * For better visibility of tunnel traffic OVS needs to retrieve
691 * egress tunnel information for a packet. Following API allows
692 * user to get this info.
693 */
694 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
695 {
696 struct ip_tunnel_info *info;
697
698 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
699 return -EINVAL;
700
701 info = skb_tunnel_info_unclone(skb);
702 if (!info)
703 return -ENOMEM;
704 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
705 return -EINVAL;
706
707 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
708 }
709 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
710
711 /**
712 * __dev_get_by_name - find a device by its name
713 * @net: the applicable net namespace
714 * @name: name to find
715 *
716 * Find an interface by name. Must be called under RTNL semaphore
717 * or @dev_base_lock. If the name is found a pointer to the device
718 * is returned. If the name is not found then %NULL is returned. The
719 * reference counters are not incremented so the caller must be
720 * careful with locks.
721 */
722
723 struct net_device *__dev_get_by_name(struct net *net, const char *name)
724 {
725 struct net_device *dev;
726 struct hlist_head *head = dev_name_hash(net, name);
727
728 hlist_for_each_entry(dev, head, name_hlist)
729 if (!strncmp(dev->name, name, IFNAMSIZ))
730 return dev;
731
732 return NULL;
733 }
734 EXPORT_SYMBOL(__dev_get_by_name);
735
736 /**
737 * dev_get_by_name_rcu - find a device by its name
738 * @net: the applicable net namespace
739 * @name: name to find
740 *
741 * Find an interface by name.
742 * If the name is found a pointer to the device is returned.
743 * If the name is not found then %NULL is returned.
744 * The reference counters are not incremented so the caller must be
745 * careful with locks. The caller must hold RCU lock.
746 */
747
748 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
749 {
750 struct net_device *dev;
751 struct hlist_head *head = dev_name_hash(net, name);
752
753 hlist_for_each_entry_rcu(dev, head, name_hlist)
754 if (!strncmp(dev->name, name, IFNAMSIZ))
755 return dev;
756
757 return NULL;
758 }
759 EXPORT_SYMBOL(dev_get_by_name_rcu);
760
761 /**
762 * dev_get_by_name - find a device by its name
763 * @net: the applicable net namespace
764 * @name: name to find
765 *
766 * Find an interface by name. This can be called from any
767 * context and does its own locking. The returned handle has
768 * the usage count incremented and the caller must use dev_put() to
769 * release it when it is no longer needed. %NULL is returned if no
770 * matching device is found.
771 */
772
773 struct net_device *dev_get_by_name(struct net *net, const char *name)
774 {
775 struct net_device *dev;
776
777 rcu_read_lock();
778 dev = dev_get_by_name_rcu(net, name);
779 if (dev)
780 dev_hold(dev);
781 rcu_read_unlock();
782 return dev;
783 }
784 EXPORT_SYMBOL(dev_get_by_name);
785
786 /**
787 * __dev_get_by_index - find a device by its ifindex
788 * @net: the applicable net namespace
789 * @ifindex: index of device
790 *
791 * Search for an interface by index. Returns %NULL if the device
792 * is not found or a pointer to the device. The device has not
793 * had its reference counter increased so the caller must be careful
794 * about locking. The caller must hold either the RTNL semaphore
795 * or @dev_base_lock.
796 */
797
798 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
799 {
800 struct net_device *dev;
801 struct hlist_head *head = dev_index_hash(net, ifindex);
802
803 hlist_for_each_entry(dev, head, index_hlist)
804 if (dev->ifindex == ifindex)
805 return dev;
806
807 return NULL;
808 }
809 EXPORT_SYMBOL(__dev_get_by_index);
810
811 /**
812 * dev_get_by_index_rcu - find a device by its ifindex
813 * @net: the applicable net namespace
814 * @ifindex: index of device
815 *
816 * Search for an interface by index. Returns %NULL if the device
817 * is not found or a pointer to the device. The device has not
818 * had its reference counter increased so the caller must be careful
819 * about locking. The caller must hold RCU lock.
820 */
821
822 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
823 {
824 struct net_device *dev;
825 struct hlist_head *head = dev_index_hash(net, ifindex);
826
827 hlist_for_each_entry_rcu(dev, head, index_hlist)
828 if (dev->ifindex == ifindex)
829 return dev;
830
831 return NULL;
832 }
833 EXPORT_SYMBOL(dev_get_by_index_rcu);
834
835
836 /**
837 * dev_get_by_index - find a device by its ifindex
838 * @net: the applicable net namespace
839 * @ifindex: index of device
840 *
841 * Search for an interface by index. Returns NULL if the device
842 * is not found or a pointer to the device. The device returned has
843 * had a reference added and the pointer is safe until the user calls
844 * dev_put to indicate they have finished with it.
845 */
846
847 struct net_device *dev_get_by_index(struct net *net, int ifindex)
848 {
849 struct net_device *dev;
850
851 rcu_read_lock();
852 dev = dev_get_by_index_rcu(net, ifindex);
853 if (dev)
854 dev_hold(dev);
855 rcu_read_unlock();
856 return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859
860 /**
861 * netdev_get_name - get a netdevice name, knowing its ifindex.
862 * @net: network namespace
863 * @name: a pointer to the buffer where the name will be stored.
864 * @ifindex: the ifindex of the interface to get the name from.
865 *
866 * The use of raw_seqcount_begin() and cond_resched() before
867 * retrying is required as we want to give the writers a chance
868 * to complete when CONFIG_PREEMPT is not set.
869 */
870 int netdev_get_name(struct net *net, char *name, int ifindex)
871 {
872 struct net_device *dev;
873 unsigned int seq;
874
875 retry:
876 seq = raw_seqcount_begin(&devnet_rename_seq);
877 rcu_read_lock();
878 dev = dev_get_by_index_rcu(net, ifindex);
879 if (!dev) {
880 rcu_read_unlock();
881 return -ENODEV;
882 }
883
884 strcpy(name, dev->name);
885 rcu_read_unlock();
886 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
887 cond_resched();
888 goto retry;
889 }
890
891 return 0;
892 }
893
894 /**
895 * dev_getbyhwaddr_rcu - find a device by its hardware address
896 * @net: the applicable net namespace
897 * @type: media type of device
898 * @ha: hardware address
899 *
900 * Search for an interface by MAC address. Returns NULL if the device
901 * is not found or a pointer to the device.
902 * The caller must hold RCU or RTNL.
903 * The returned device has not had its ref count increased
904 * and the caller must therefore be careful about locking
905 *
906 */
907
908 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
909 const char *ha)
910 {
911 struct net_device *dev;
912
913 for_each_netdev_rcu(net, dev)
914 if (dev->type == type &&
915 !memcmp(dev->dev_addr, ha, dev->addr_len))
916 return dev;
917
918 return NULL;
919 }
920 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
921
922 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
923 {
924 struct net_device *dev;
925
926 ASSERT_RTNL();
927 for_each_netdev(net, dev)
928 if (dev->type == type)
929 return dev;
930
931 return NULL;
932 }
933 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
934
935 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
936 {
937 struct net_device *dev, *ret = NULL;
938
939 rcu_read_lock();
940 for_each_netdev_rcu(net, dev)
941 if (dev->type == type) {
942 dev_hold(dev);
943 ret = dev;
944 break;
945 }
946 rcu_read_unlock();
947 return ret;
948 }
949 EXPORT_SYMBOL(dev_getfirstbyhwtype);
950
951 /**
952 * __dev_get_by_flags - find any device with given flags
953 * @net: the applicable net namespace
954 * @if_flags: IFF_* values
955 * @mask: bitmask of bits in if_flags to check
956 *
957 * Search for any interface with the given flags. Returns NULL if a device
958 * is not found or a pointer to the device. Must be called inside
959 * rtnl_lock(), and result refcount is unchanged.
960 */
961
962 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963 unsigned short mask)
964 {
965 struct net_device *dev, *ret;
966
967 ASSERT_RTNL();
968
969 ret = NULL;
970 for_each_netdev(net, dev) {
971 if (((dev->flags ^ if_flags) & mask) == 0) {
972 ret = dev;
973 break;
974 }
975 }
976 return ret;
977 }
978 EXPORT_SYMBOL(__dev_get_by_flags);
979
980 /**
981 * dev_valid_name - check if name is okay for network device
982 * @name: name string
983 *
984 * Network device names need to be valid file names to
985 * to allow sysfs to work. We also disallow any kind of
986 * whitespace.
987 */
988 bool dev_valid_name(const char *name)
989 {
990 if (*name == '\0')
991 return false;
992 if (strlen(name) >= IFNAMSIZ)
993 return false;
994 if (!strcmp(name, ".") || !strcmp(name, ".."))
995 return false;
996
997 while (*name) {
998 if (*name == '/' || *name == ':' || isspace(*name))
999 return false;
1000 name++;
1001 }
1002 return true;
1003 }
1004 EXPORT_SYMBOL(dev_valid_name);
1005
1006 /**
1007 * __dev_alloc_name - allocate a name for a device
1008 * @net: network namespace to allocate the device name in
1009 * @name: name format string
1010 * @buf: scratch buffer and result name string
1011 *
1012 * Passed a format string - eg "lt%d" it will try and find a suitable
1013 * id. It scans list of devices to build up a free map, then chooses
1014 * the first empty slot. The caller must hold the dev_base or rtnl lock
1015 * while allocating the name and adding the device in order to avoid
1016 * duplicates.
1017 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018 * Returns the number of the unit assigned or a negative errno code.
1019 */
1020
1021 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1022 {
1023 int i = 0;
1024 const char *p;
1025 const int max_netdevices = 8*PAGE_SIZE;
1026 unsigned long *inuse;
1027 struct net_device *d;
1028
1029 p = strnchr(name, IFNAMSIZ-1, '%');
1030 if (p) {
1031 /*
1032 * Verify the string as this thing may have come from
1033 * the user. There must be either one "%d" and no other "%"
1034 * characters.
1035 */
1036 if (p[1] != 'd' || strchr(p + 2, '%'))
1037 return -EINVAL;
1038
1039 /* Use one page as a bit array of possible slots */
1040 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1041 if (!inuse)
1042 return -ENOMEM;
1043
1044 for_each_netdev(net, d) {
1045 if (!sscanf(d->name, name, &i))
1046 continue;
1047 if (i < 0 || i >= max_netdevices)
1048 continue;
1049
1050 /* avoid cases where sscanf is not exact inverse of printf */
1051 snprintf(buf, IFNAMSIZ, name, i);
1052 if (!strncmp(buf, d->name, IFNAMSIZ))
1053 set_bit(i, inuse);
1054 }
1055
1056 i = find_first_zero_bit(inuse, max_netdevices);
1057 free_page((unsigned long) inuse);
1058 }
1059
1060 if (buf != name)
1061 snprintf(buf, IFNAMSIZ, name, i);
1062 if (!__dev_get_by_name(net, buf))
1063 return i;
1064
1065 /* It is possible to run out of possible slots
1066 * when the name is long and there isn't enough space left
1067 * for the digits, or if all bits are used.
1068 */
1069 return -ENFILE;
1070 }
1071
1072 /**
1073 * dev_alloc_name - allocate a name for a device
1074 * @dev: device
1075 * @name: name format string
1076 *
1077 * Passed a format string - eg "lt%d" it will try and find a suitable
1078 * id. It scans list of devices to build up a free map, then chooses
1079 * the first empty slot. The caller must hold the dev_base or rtnl lock
1080 * while allocating the name and adding the device in order to avoid
1081 * duplicates.
1082 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1083 * Returns the number of the unit assigned or a negative errno code.
1084 */
1085
1086 int dev_alloc_name(struct net_device *dev, const char *name)
1087 {
1088 char buf[IFNAMSIZ];
1089 struct net *net;
1090 int ret;
1091
1092 BUG_ON(!dev_net(dev));
1093 net = dev_net(dev);
1094 ret = __dev_alloc_name(net, name, buf);
1095 if (ret >= 0)
1096 strlcpy(dev->name, buf, IFNAMSIZ);
1097 return ret;
1098 }
1099 EXPORT_SYMBOL(dev_alloc_name);
1100
1101 static int dev_alloc_name_ns(struct net *net,
1102 struct net_device *dev,
1103 const char *name)
1104 {
1105 char buf[IFNAMSIZ];
1106 int ret;
1107
1108 ret = __dev_alloc_name(net, name, buf);
1109 if (ret >= 0)
1110 strlcpy(dev->name, buf, IFNAMSIZ);
1111 return ret;
1112 }
1113
1114 static int dev_get_valid_name(struct net *net,
1115 struct net_device *dev,
1116 const char *name)
1117 {
1118 BUG_ON(!net);
1119
1120 if (!dev_valid_name(name))
1121 return -EINVAL;
1122
1123 if (strchr(name, '%'))
1124 return dev_alloc_name_ns(net, dev, name);
1125 else if (__dev_get_by_name(net, name))
1126 return -EEXIST;
1127 else if (dev->name != name)
1128 strlcpy(dev->name, name, IFNAMSIZ);
1129
1130 return 0;
1131 }
1132
1133 /**
1134 * dev_change_name - change name of a device
1135 * @dev: device
1136 * @newname: name (or format string) must be at least IFNAMSIZ
1137 *
1138 * Change name of a device, can pass format strings "eth%d".
1139 * for wildcarding.
1140 */
1141 int dev_change_name(struct net_device *dev, const char *newname)
1142 {
1143 unsigned char old_assign_type;
1144 char oldname[IFNAMSIZ];
1145 int err = 0;
1146 int ret;
1147 struct net *net;
1148
1149 ASSERT_RTNL();
1150 BUG_ON(!dev_net(dev));
1151
1152 net = dev_net(dev);
1153 if (dev->flags & IFF_UP)
1154 return -EBUSY;
1155
1156 write_seqcount_begin(&devnet_rename_seq);
1157
1158 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1159 write_seqcount_end(&devnet_rename_seq);
1160 return 0;
1161 }
1162
1163 memcpy(oldname, dev->name, IFNAMSIZ);
1164
1165 err = dev_get_valid_name(net, dev, newname);
1166 if (err < 0) {
1167 write_seqcount_end(&devnet_rename_seq);
1168 return err;
1169 }
1170
1171 if (oldname[0] && !strchr(oldname, '%'))
1172 netdev_info(dev, "renamed from %s\n", oldname);
1173
1174 old_assign_type = dev->name_assign_type;
1175 dev->name_assign_type = NET_NAME_RENAMED;
1176
1177 rollback:
1178 ret = device_rename(&dev->dev, dev->name);
1179 if (ret) {
1180 memcpy(dev->name, oldname, IFNAMSIZ);
1181 dev->name_assign_type = old_assign_type;
1182 write_seqcount_end(&devnet_rename_seq);
1183 return ret;
1184 }
1185
1186 write_seqcount_end(&devnet_rename_seq);
1187
1188 netdev_adjacent_rename_links(dev, oldname);
1189
1190 write_lock_bh(&dev_base_lock);
1191 hlist_del_rcu(&dev->name_hlist);
1192 write_unlock_bh(&dev_base_lock);
1193
1194 synchronize_rcu();
1195
1196 write_lock_bh(&dev_base_lock);
1197 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1198 write_unlock_bh(&dev_base_lock);
1199
1200 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1201 ret = notifier_to_errno(ret);
1202
1203 if (ret) {
1204 /* err >= 0 after dev_alloc_name() or stores the first errno */
1205 if (err >= 0) {
1206 err = ret;
1207 write_seqcount_begin(&devnet_rename_seq);
1208 memcpy(dev->name, oldname, IFNAMSIZ);
1209 memcpy(oldname, newname, IFNAMSIZ);
1210 dev->name_assign_type = old_assign_type;
1211 old_assign_type = NET_NAME_RENAMED;
1212 goto rollback;
1213 } else {
1214 pr_err("%s: name change rollback failed: %d\n",
1215 dev->name, ret);
1216 }
1217 }
1218
1219 return err;
1220 }
1221
1222 /**
1223 * dev_set_alias - change ifalias of a device
1224 * @dev: device
1225 * @alias: name up to IFALIASZ
1226 * @len: limit of bytes to copy from info
1227 *
1228 * Set ifalias for a device,
1229 */
1230 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1231 {
1232 char *new_ifalias;
1233
1234 ASSERT_RTNL();
1235
1236 if (len >= IFALIASZ)
1237 return -EINVAL;
1238
1239 if (!len) {
1240 kfree(dev->ifalias);
1241 dev->ifalias = NULL;
1242 return 0;
1243 }
1244
1245 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1246 if (!new_ifalias)
1247 return -ENOMEM;
1248 dev->ifalias = new_ifalias;
1249
1250 strlcpy(dev->ifalias, alias, len+1);
1251 return len;
1252 }
1253
1254
1255 /**
1256 * netdev_features_change - device changes features
1257 * @dev: device to cause notification
1258 *
1259 * Called to indicate a device has changed features.
1260 */
1261 void netdev_features_change(struct net_device *dev)
1262 {
1263 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1264 }
1265 EXPORT_SYMBOL(netdev_features_change);
1266
1267 /**
1268 * netdev_state_change - device changes state
1269 * @dev: device to cause notification
1270 *
1271 * Called to indicate a device has changed state. This function calls
1272 * the notifier chains for netdev_chain and sends a NEWLINK message
1273 * to the routing socket.
1274 */
1275 void netdev_state_change(struct net_device *dev)
1276 {
1277 if (dev->flags & IFF_UP) {
1278 struct netdev_notifier_change_info change_info;
1279
1280 change_info.flags_changed = 0;
1281 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1282 &change_info.info);
1283 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1284 }
1285 }
1286 EXPORT_SYMBOL(netdev_state_change);
1287
1288 /**
1289 * netdev_notify_peers - notify network peers about existence of @dev
1290 * @dev: network device
1291 *
1292 * Generate traffic such that interested network peers are aware of
1293 * @dev, such as by generating a gratuitous ARP. This may be used when
1294 * a device wants to inform the rest of the network about some sort of
1295 * reconfiguration such as a failover event or virtual machine
1296 * migration.
1297 */
1298 void netdev_notify_peers(struct net_device *dev)
1299 {
1300 rtnl_lock();
1301 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1302 rtnl_unlock();
1303 }
1304 EXPORT_SYMBOL(netdev_notify_peers);
1305
1306 static int __dev_open(struct net_device *dev)
1307 {
1308 const struct net_device_ops *ops = dev->netdev_ops;
1309 int ret;
1310
1311 ASSERT_RTNL();
1312
1313 if (!netif_device_present(dev))
1314 return -ENODEV;
1315
1316 /* Block netpoll from trying to do any rx path servicing.
1317 * If we don't do this there is a chance ndo_poll_controller
1318 * or ndo_poll may be running while we open the device
1319 */
1320 netpoll_poll_disable(dev);
1321
1322 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1323 ret = notifier_to_errno(ret);
1324 if (ret)
1325 return ret;
1326
1327 set_bit(__LINK_STATE_START, &dev->state);
1328
1329 if (ops->ndo_validate_addr)
1330 ret = ops->ndo_validate_addr(dev);
1331
1332 if (!ret && ops->ndo_open)
1333 ret = ops->ndo_open(dev);
1334
1335 netpoll_poll_enable(dev);
1336
1337 if (ret)
1338 clear_bit(__LINK_STATE_START, &dev->state);
1339 else {
1340 dev->flags |= IFF_UP;
1341 dev_set_rx_mode(dev);
1342 dev_activate(dev);
1343 add_device_randomness(dev->dev_addr, dev->addr_len);
1344 }
1345
1346 return ret;
1347 }
1348
1349 /**
1350 * dev_open - prepare an interface for use.
1351 * @dev: device to open
1352 *
1353 * Takes a device from down to up state. The device's private open
1354 * function is invoked and then the multicast lists are loaded. Finally
1355 * the device is moved into the up state and a %NETDEV_UP message is
1356 * sent to the netdev notifier chain.
1357 *
1358 * Calling this function on an active interface is a nop. On a failure
1359 * a negative errno code is returned.
1360 */
1361 int dev_open(struct net_device *dev)
1362 {
1363 int ret;
1364
1365 if (dev->flags & IFF_UP)
1366 return 0;
1367
1368 ret = __dev_open(dev);
1369 if (ret < 0)
1370 return ret;
1371
1372 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1373 call_netdevice_notifiers(NETDEV_UP, dev);
1374
1375 return ret;
1376 }
1377 EXPORT_SYMBOL(dev_open);
1378
1379 static int __dev_close_many(struct list_head *head)
1380 {
1381 struct net_device *dev;
1382
1383 ASSERT_RTNL();
1384 might_sleep();
1385
1386 list_for_each_entry(dev, head, close_list) {
1387 /* Temporarily disable netpoll until the interface is down */
1388 netpoll_poll_disable(dev);
1389
1390 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1391
1392 clear_bit(__LINK_STATE_START, &dev->state);
1393
1394 /* Synchronize to scheduled poll. We cannot touch poll list, it
1395 * can be even on different cpu. So just clear netif_running().
1396 *
1397 * dev->stop() will invoke napi_disable() on all of it's
1398 * napi_struct instances on this device.
1399 */
1400 smp_mb__after_atomic(); /* Commit netif_running(). */
1401 }
1402
1403 dev_deactivate_many(head);
1404
1405 list_for_each_entry(dev, head, close_list) {
1406 const struct net_device_ops *ops = dev->netdev_ops;
1407
1408 /*
1409 * Call the device specific close. This cannot fail.
1410 * Only if device is UP
1411 *
1412 * We allow it to be called even after a DETACH hot-plug
1413 * event.
1414 */
1415 if (ops->ndo_stop)
1416 ops->ndo_stop(dev);
1417
1418 dev->flags &= ~IFF_UP;
1419 netpoll_poll_enable(dev);
1420 }
1421
1422 return 0;
1423 }
1424
1425 static int __dev_close(struct net_device *dev)
1426 {
1427 int retval;
1428 LIST_HEAD(single);
1429
1430 list_add(&dev->close_list, &single);
1431 retval = __dev_close_many(&single);
1432 list_del(&single);
1433
1434 return retval;
1435 }
1436
1437 int dev_close_many(struct list_head *head, bool unlink)
1438 {
1439 struct net_device *dev, *tmp;
1440
1441 /* Remove the devices that don't need to be closed */
1442 list_for_each_entry_safe(dev, tmp, head, close_list)
1443 if (!(dev->flags & IFF_UP))
1444 list_del_init(&dev->close_list);
1445
1446 __dev_close_many(head);
1447
1448 list_for_each_entry_safe(dev, tmp, head, close_list) {
1449 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1450 call_netdevice_notifiers(NETDEV_DOWN, dev);
1451 if (unlink)
1452 list_del_init(&dev->close_list);
1453 }
1454
1455 return 0;
1456 }
1457 EXPORT_SYMBOL(dev_close_many);
1458
1459 /**
1460 * dev_close - shutdown an interface.
1461 * @dev: device to shutdown
1462 *
1463 * This function moves an active device into down state. A
1464 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1465 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1466 * chain.
1467 */
1468 int dev_close(struct net_device *dev)
1469 {
1470 if (dev->flags & IFF_UP) {
1471 LIST_HEAD(single);
1472
1473 list_add(&dev->close_list, &single);
1474 dev_close_many(&single, true);
1475 list_del(&single);
1476 }
1477 return 0;
1478 }
1479 EXPORT_SYMBOL(dev_close);
1480
1481
1482 /**
1483 * dev_disable_lro - disable Large Receive Offload on a device
1484 * @dev: device
1485 *
1486 * Disable Large Receive Offload (LRO) on a net device. Must be
1487 * called under RTNL. This is needed if received packets may be
1488 * forwarded to another interface.
1489 */
1490 void dev_disable_lro(struct net_device *dev)
1491 {
1492 struct net_device *lower_dev;
1493 struct list_head *iter;
1494
1495 dev->wanted_features &= ~NETIF_F_LRO;
1496 netdev_update_features(dev);
1497
1498 if (unlikely(dev->features & NETIF_F_LRO))
1499 netdev_WARN(dev, "failed to disable LRO!\n");
1500
1501 netdev_for_each_lower_dev(dev, lower_dev, iter)
1502 dev_disable_lro(lower_dev);
1503 }
1504 EXPORT_SYMBOL(dev_disable_lro);
1505
1506 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1507 struct net_device *dev)
1508 {
1509 struct netdev_notifier_info info;
1510
1511 netdev_notifier_info_init(&info, dev);
1512 return nb->notifier_call(nb, val, &info);
1513 }
1514
1515 static int dev_boot_phase = 1;
1516
1517 /**
1518 * register_netdevice_notifier - register a network notifier block
1519 * @nb: notifier
1520 *
1521 * Register a notifier to be called when network device events occur.
1522 * The notifier passed is linked into the kernel structures and must
1523 * not be reused until it has been unregistered. A negative errno code
1524 * is returned on a failure.
1525 *
1526 * When registered all registration and up events are replayed
1527 * to the new notifier to allow device to have a race free
1528 * view of the network device list.
1529 */
1530
1531 int register_netdevice_notifier(struct notifier_block *nb)
1532 {
1533 struct net_device *dev;
1534 struct net_device *last;
1535 struct net *net;
1536 int err;
1537
1538 rtnl_lock();
1539 err = raw_notifier_chain_register(&netdev_chain, nb);
1540 if (err)
1541 goto unlock;
1542 if (dev_boot_phase)
1543 goto unlock;
1544 for_each_net(net) {
1545 for_each_netdev(net, dev) {
1546 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1547 err = notifier_to_errno(err);
1548 if (err)
1549 goto rollback;
1550
1551 if (!(dev->flags & IFF_UP))
1552 continue;
1553
1554 call_netdevice_notifier(nb, NETDEV_UP, dev);
1555 }
1556 }
1557
1558 unlock:
1559 rtnl_unlock();
1560 return err;
1561
1562 rollback:
1563 last = dev;
1564 for_each_net(net) {
1565 for_each_netdev(net, dev) {
1566 if (dev == last)
1567 goto outroll;
1568
1569 if (dev->flags & IFF_UP) {
1570 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1571 dev);
1572 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1573 }
1574 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1575 }
1576 }
1577
1578 outroll:
1579 raw_notifier_chain_unregister(&netdev_chain, nb);
1580 goto unlock;
1581 }
1582 EXPORT_SYMBOL(register_netdevice_notifier);
1583
1584 /**
1585 * unregister_netdevice_notifier - unregister a network notifier block
1586 * @nb: notifier
1587 *
1588 * Unregister a notifier previously registered by
1589 * register_netdevice_notifier(). The notifier is unlinked into the
1590 * kernel structures and may then be reused. A negative errno code
1591 * is returned on a failure.
1592 *
1593 * After unregistering unregister and down device events are synthesized
1594 * for all devices on the device list to the removed notifier to remove
1595 * the need for special case cleanup code.
1596 */
1597
1598 int unregister_netdevice_notifier(struct notifier_block *nb)
1599 {
1600 struct net_device *dev;
1601 struct net *net;
1602 int err;
1603
1604 rtnl_lock();
1605 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1606 if (err)
1607 goto unlock;
1608
1609 for_each_net(net) {
1610 for_each_netdev(net, dev) {
1611 if (dev->flags & IFF_UP) {
1612 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1613 dev);
1614 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1615 }
1616 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1617 }
1618 }
1619 unlock:
1620 rtnl_unlock();
1621 return err;
1622 }
1623 EXPORT_SYMBOL(unregister_netdevice_notifier);
1624
1625 /**
1626 * call_netdevice_notifiers_info - call all network notifier blocks
1627 * @val: value passed unmodified to notifier function
1628 * @dev: net_device pointer passed unmodified to notifier function
1629 * @info: notifier information data
1630 *
1631 * Call all network notifier blocks. Parameters and return value
1632 * are as for raw_notifier_call_chain().
1633 */
1634
1635 static int call_netdevice_notifiers_info(unsigned long val,
1636 struct net_device *dev,
1637 struct netdev_notifier_info *info)
1638 {
1639 ASSERT_RTNL();
1640 netdev_notifier_info_init(info, dev);
1641 return raw_notifier_call_chain(&netdev_chain, val, info);
1642 }
1643
1644 /**
1645 * call_netdevice_notifiers - call all network notifier blocks
1646 * @val: value passed unmodified to notifier function
1647 * @dev: net_device pointer passed unmodified to notifier function
1648 *
1649 * Call all network notifier blocks. Parameters and return value
1650 * are as for raw_notifier_call_chain().
1651 */
1652
1653 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1654 {
1655 struct netdev_notifier_info info;
1656
1657 return call_netdevice_notifiers_info(val, dev, &info);
1658 }
1659 EXPORT_SYMBOL(call_netdevice_notifiers);
1660
1661 #ifdef CONFIG_NET_INGRESS
1662 static struct static_key ingress_needed __read_mostly;
1663
1664 void net_inc_ingress_queue(void)
1665 {
1666 static_key_slow_inc(&ingress_needed);
1667 }
1668 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1669
1670 void net_dec_ingress_queue(void)
1671 {
1672 static_key_slow_dec(&ingress_needed);
1673 }
1674 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1675 #endif
1676
1677 static struct static_key netstamp_needed __read_mostly;
1678 #ifdef HAVE_JUMP_LABEL
1679 /* We are not allowed to call static_key_slow_dec() from irq context
1680 * If net_disable_timestamp() is called from irq context, defer the
1681 * static_key_slow_dec() calls.
1682 */
1683 static atomic_t netstamp_needed_deferred;
1684 #endif
1685
1686 void net_enable_timestamp(void)
1687 {
1688 #ifdef HAVE_JUMP_LABEL
1689 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1690
1691 if (deferred) {
1692 while (--deferred)
1693 static_key_slow_dec(&netstamp_needed);
1694 return;
1695 }
1696 #endif
1697 static_key_slow_inc(&netstamp_needed);
1698 }
1699 EXPORT_SYMBOL(net_enable_timestamp);
1700
1701 void net_disable_timestamp(void)
1702 {
1703 #ifdef HAVE_JUMP_LABEL
1704 if (in_interrupt()) {
1705 atomic_inc(&netstamp_needed_deferred);
1706 return;
1707 }
1708 #endif
1709 static_key_slow_dec(&netstamp_needed);
1710 }
1711 EXPORT_SYMBOL(net_disable_timestamp);
1712
1713 static inline void net_timestamp_set(struct sk_buff *skb)
1714 {
1715 skb->tstamp.tv64 = 0;
1716 if (static_key_false(&netstamp_needed))
1717 __net_timestamp(skb);
1718 }
1719
1720 #define net_timestamp_check(COND, SKB) \
1721 if (static_key_false(&netstamp_needed)) { \
1722 if ((COND) && !(SKB)->tstamp.tv64) \
1723 __net_timestamp(SKB); \
1724 } \
1725
1726 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1727 {
1728 unsigned int len;
1729
1730 if (!(dev->flags & IFF_UP))
1731 return false;
1732
1733 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1734 if (skb->len <= len)
1735 return true;
1736
1737 /* if TSO is enabled, we don't care about the length as the packet
1738 * could be forwarded without being segmented before
1739 */
1740 if (skb_is_gso(skb))
1741 return true;
1742
1743 return false;
1744 }
1745 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1746
1747 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1748 {
1749 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1750 unlikely(!is_skb_forwardable(dev, skb))) {
1751 atomic_long_inc(&dev->rx_dropped);
1752 kfree_skb(skb);
1753 return NET_RX_DROP;
1754 }
1755
1756 skb_scrub_packet(skb, true);
1757 skb->priority = 0;
1758 skb->protocol = eth_type_trans(skb, dev);
1759 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1760
1761 return 0;
1762 }
1763 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1764
1765 /**
1766 * dev_forward_skb - loopback an skb to another netif
1767 *
1768 * @dev: destination network device
1769 * @skb: buffer to forward
1770 *
1771 * return values:
1772 * NET_RX_SUCCESS (no congestion)
1773 * NET_RX_DROP (packet was dropped, but freed)
1774 *
1775 * dev_forward_skb can be used for injecting an skb from the
1776 * start_xmit function of one device into the receive queue
1777 * of another device.
1778 *
1779 * The receiving device may be in another namespace, so
1780 * we have to clear all information in the skb that could
1781 * impact namespace isolation.
1782 */
1783 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1784 {
1785 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1786 }
1787 EXPORT_SYMBOL_GPL(dev_forward_skb);
1788
1789 static inline int deliver_skb(struct sk_buff *skb,
1790 struct packet_type *pt_prev,
1791 struct net_device *orig_dev)
1792 {
1793 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1794 return -ENOMEM;
1795 atomic_inc(&skb->users);
1796 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1797 }
1798
1799 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1800 struct packet_type **pt,
1801 struct net_device *orig_dev,
1802 __be16 type,
1803 struct list_head *ptype_list)
1804 {
1805 struct packet_type *ptype, *pt_prev = *pt;
1806
1807 list_for_each_entry_rcu(ptype, ptype_list, list) {
1808 if (ptype->type != type)
1809 continue;
1810 if (pt_prev)
1811 deliver_skb(skb, pt_prev, orig_dev);
1812 pt_prev = ptype;
1813 }
1814 *pt = pt_prev;
1815 }
1816
1817 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1818 {
1819 if (!ptype->af_packet_priv || !skb->sk)
1820 return false;
1821
1822 if (ptype->id_match)
1823 return ptype->id_match(ptype, skb->sk);
1824 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1825 return true;
1826
1827 return false;
1828 }
1829
1830 /*
1831 * Support routine. Sends outgoing frames to any network
1832 * taps currently in use.
1833 */
1834
1835 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1836 {
1837 struct packet_type *ptype;
1838 struct sk_buff *skb2 = NULL;
1839 struct packet_type *pt_prev = NULL;
1840 struct list_head *ptype_list = &ptype_all;
1841
1842 rcu_read_lock();
1843 again:
1844 list_for_each_entry_rcu(ptype, ptype_list, list) {
1845 /* Never send packets back to the socket
1846 * they originated from - MvS (miquels@drinkel.ow.org)
1847 */
1848 if (skb_loop_sk(ptype, skb))
1849 continue;
1850
1851 if (pt_prev) {
1852 deliver_skb(skb2, pt_prev, skb->dev);
1853 pt_prev = ptype;
1854 continue;
1855 }
1856
1857 /* need to clone skb, done only once */
1858 skb2 = skb_clone(skb, GFP_ATOMIC);
1859 if (!skb2)
1860 goto out_unlock;
1861
1862 net_timestamp_set(skb2);
1863
1864 /* skb->nh should be correctly
1865 * set by sender, so that the second statement is
1866 * just protection against buggy protocols.
1867 */
1868 skb_reset_mac_header(skb2);
1869
1870 if (skb_network_header(skb2) < skb2->data ||
1871 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1872 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1873 ntohs(skb2->protocol),
1874 dev->name);
1875 skb_reset_network_header(skb2);
1876 }
1877
1878 skb2->transport_header = skb2->network_header;
1879 skb2->pkt_type = PACKET_OUTGOING;
1880 pt_prev = ptype;
1881 }
1882
1883 if (ptype_list == &ptype_all) {
1884 ptype_list = &dev->ptype_all;
1885 goto again;
1886 }
1887 out_unlock:
1888 if (pt_prev)
1889 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1890 rcu_read_unlock();
1891 }
1892
1893 /**
1894 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1895 * @dev: Network device
1896 * @txq: number of queues available
1897 *
1898 * If real_num_tx_queues is changed the tc mappings may no longer be
1899 * valid. To resolve this verify the tc mapping remains valid and if
1900 * not NULL the mapping. With no priorities mapping to this
1901 * offset/count pair it will no longer be used. In the worst case TC0
1902 * is invalid nothing can be done so disable priority mappings. If is
1903 * expected that drivers will fix this mapping if they can before
1904 * calling netif_set_real_num_tx_queues.
1905 */
1906 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1907 {
1908 int i;
1909 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1910
1911 /* If TC0 is invalidated disable TC mapping */
1912 if (tc->offset + tc->count > txq) {
1913 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1914 dev->num_tc = 0;
1915 return;
1916 }
1917
1918 /* Invalidated prio to tc mappings set to TC0 */
1919 for (i = 1; i < TC_BITMASK + 1; i++) {
1920 int q = netdev_get_prio_tc_map(dev, i);
1921
1922 tc = &dev->tc_to_txq[q];
1923 if (tc->offset + tc->count > txq) {
1924 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1925 i, q);
1926 netdev_set_prio_tc_map(dev, i, 0);
1927 }
1928 }
1929 }
1930
1931 #ifdef CONFIG_XPS
1932 static DEFINE_MUTEX(xps_map_mutex);
1933 #define xmap_dereference(P) \
1934 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1935
1936 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1937 int cpu, u16 index)
1938 {
1939 struct xps_map *map = NULL;
1940 int pos;
1941
1942 if (dev_maps)
1943 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1944
1945 for (pos = 0; map && pos < map->len; pos++) {
1946 if (map->queues[pos] == index) {
1947 if (map->len > 1) {
1948 map->queues[pos] = map->queues[--map->len];
1949 } else {
1950 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1951 kfree_rcu(map, rcu);
1952 map = NULL;
1953 }
1954 break;
1955 }
1956 }
1957
1958 return map;
1959 }
1960
1961 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1962 {
1963 struct xps_dev_maps *dev_maps;
1964 int cpu, i;
1965 bool active = false;
1966
1967 mutex_lock(&xps_map_mutex);
1968 dev_maps = xmap_dereference(dev->xps_maps);
1969
1970 if (!dev_maps)
1971 goto out_no_maps;
1972
1973 for_each_possible_cpu(cpu) {
1974 for (i = index; i < dev->num_tx_queues; i++) {
1975 if (!remove_xps_queue(dev_maps, cpu, i))
1976 break;
1977 }
1978 if (i == dev->num_tx_queues)
1979 active = true;
1980 }
1981
1982 if (!active) {
1983 RCU_INIT_POINTER(dev->xps_maps, NULL);
1984 kfree_rcu(dev_maps, rcu);
1985 }
1986
1987 for (i = index; i < dev->num_tx_queues; i++)
1988 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1989 NUMA_NO_NODE);
1990
1991 out_no_maps:
1992 mutex_unlock(&xps_map_mutex);
1993 }
1994
1995 static struct xps_map *expand_xps_map(struct xps_map *map,
1996 int cpu, u16 index)
1997 {
1998 struct xps_map *new_map;
1999 int alloc_len = XPS_MIN_MAP_ALLOC;
2000 int i, pos;
2001
2002 for (pos = 0; map && pos < map->len; pos++) {
2003 if (map->queues[pos] != index)
2004 continue;
2005 return map;
2006 }
2007
2008 /* Need to add queue to this CPU's existing map */
2009 if (map) {
2010 if (pos < map->alloc_len)
2011 return map;
2012
2013 alloc_len = map->alloc_len * 2;
2014 }
2015
2016 /* Need to allocate new map to store queue on this CPU's map */
2017 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2018 cpu_to_node(cpu));
2019 if (!new_map)
2020 return NULL;
2021
2022 for (i = 0; i < pos; i++)
2023 new_map->queues[i] = map->queues[i];
2024 new_map->alloc_len = alloc_len;
2025 new_map->len = pos;
2026
2027 return new_map;
2028 }
2029
2030 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2031 u16 index)
2032 {
2033 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2034 struct xps_map *map, *new_map;
2035 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2036 int cpu, numa_node_id = -2;
2037 bool active = false;
2038
2039 mutex_lock(&xps_map_mutex);
2040
2041 dev_maps = xmap_dereference(dev->xps_maps);
2042
2043 /* allocate memory for queue storage */
2044 for_each_online_cpu(cpu) {
2045 if (!cpumask_test_cpu(cpu, mask))
2046 continue;
2047
2048 if (!new_dev_maps)
2049 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2050 if (!new_dev_maps) {
2051 mutex_unlock(&xps_map_mutex);
2052 return -ENOMEM;
2053 }
2054
2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 NULL;
2057
2058 map = expand_xps_map(map, cpu, index);
2059 if (!map)
2060 goto error;
2061
2062 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2063 }
2064
2065 if (!new_dev_maps)
2066 goto out_no_new_maps;
2067
2068 for_each_possible_cpu(cpu) {
2069 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2070 /* add queue to CPU maps */
2071 int pos = 0;
2072
2073 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2074 while ((pos < map->len) && (map->queues[pos] != index))
2075 pos++;
2076
2077 if (pos == map->len)
2078 map->queues[map->len++] = index;
2079 #ifdef CONFIG_NUMA
2080 if (numa_node_id == -2)
2081 numa_node_id = cpu_to_node(cpu);
2082 else if (numa_node_id != cpu_to_node(cpu))
2083 numa_node_id = -1;
2084 #endif
2085 } else if (dev_maps) {
2086 /* fill in the new device map from the old device map */
2087 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2088 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2089 }
2090
2091 }
2092
2093 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2094
2095 /* Cleanup old maps */
2096 if (dev_maps) {
2097 for_each_possible_cpu(cpu) {
2098 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2099 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2100 if (map && map != new_map)
2101 kfree_rcu(map, rcu);
2102 }
2103
2104 kfree_rcu(dev_maps, rcu);
2105 }
2106
2107 dev_maps = new_dev_maps;
2108 active = true;
2109
2110 out_no_new_maps:
2111 /* update Tx queue numa node */
2112 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2113 (numa_node_id >= 0) ? numa_node_id :
2114 NUMA_NO_NODE);
2115
2116 if (!dev_maps)
2117 goto out_no_maps;
2118
2119 /* removes queue from unused CPUs */
2120 for_each_possible_cpu(cpu) {
2121 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2122 continue;
2123
2124 if (remove_xps_queue(dev_maps, cpu, index))
2125 active = true;
2126 }
2127
2128 /* free map if not active */
2129 if (!active) {
2130 RCU_INIT_POINTER(dev->xps_maps, NULL);
2131 kfree_rcu(dev_maps, rcu);
2132 }
2133
2134 out_no_maps:
2135 mutex_unlock(&xps_map_mutex);
2136
2137 return 0;
2138 error:
2139 /* remove any maps that we added */
2140 for_each_possible_cpu(cpu) {
2141 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2142 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2143 NULL;
2144 if (new_map && new_map != map)
2145 kfree(new_map);
2146 }
2147
2148 mutex_unlock(&xps_map_mutex);
2149
2150 kfree(new_dev_maps);
2151 return -ENOMEM;
2152 }
2153 EXPORT_SYMBOL(netif_set_xps_queue);
2154
2155 #endif
2156 /*
2157 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2158 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2159 */
2160 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2161 {
2162 int rc;
2163
2164 if (txq < 1 || txq > dev->num_tx_queues)
2165 return -EINVAL;
2166
2167 if (dev->reg_state == NETREG_REGISTERED ||
2168 dev->reg_state == NETREG_UNREGISTERING) {
2169 ASSERT_RTNL();
2170
2171 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2172 txq);
2173 if (rc)
2174 return rc;
2175
2176 if (dev->num_tc)
2177 netif_setup_tc(dev, txq);
2178
2179 if (txq < dev->real_num_tx_queues) {
2180 qdisc_reset_all_tx_gt(dev, txq);
2181 #ifdef CONFIG_XPS
2182 netif_reset_xps_queues_gt(dev, txq);
2183 #endif
2184 }
2185 }
2186
2187 dev->real_num_tx_queues = txq;
2188 return 0;
2189 }
2190 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2191
2192 #ifdef CONFIG_SYSFS
2193 /**
2194 * netif_set_real_num_rx_queues - set actual number of RX queues used
2195 * @dev: Network device
2196 * @rxq: Actual number of RX queues
2197 *
2198 * This must be called either with the rtnl_lock held or before
2199 * registration of the net device. Returns 0 on success, or a
2200 * negative error code. If called before registration, it always
2201 * succeeds.
2202 */
2203 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2204 {
2205 int rc;
2206
2207 if (rxq < 1 || rxq > dev->num_rx_queues)
2208 return -EINVAL;
2209
2210 if (dev->reg_state == NETREG_REGISTERED) {
2211 ASSERT_RTNL();
2212
2213 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2214 rxq);
2215 if (rc)
2216 return rc;
2217 }
2218
2219 dev->real_num_rx_queues = rxq;
2220 return 0;
2221 }
2222 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2223 #endif
2224
2225 /**
2226 * netif_get_num_default_rss_queues - default number of RSS queues
2227 *
2228 * This routine should set an upper limit on the number of RSS queues
2229 * used by default by multiqueue devices.
2230 */
2231 int netif_get_num_default_rss_queues(void)
2232 {
2233 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2234 }
2235 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2236
2237 static inline void __netif_reschedule(struct Qdisc *q)
2238 {
2239 struct softnet_data *sd;
2240 unsigned long flags;
2241
2242 local_irq_save(flags);
2243 sd = this_cpu_ptr(&softnet_data);
2244 q->next_sched = NULL;
2245 *sd->output_queue_tailp = q;
2246 sd->output_queue_tailp = &q->next_sched;
2247 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2248 local_irq_restore(flags);
2249 }
2250
2251 void __netif_schedule(struct Qdisc *q)
2252 {
2253 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2254 __netif_reschedule(q);
2255 }
2256 EXPORT_SYMBOL(__netif_schedule);
2257
2258 struct dev_kfree_skb_cb {
2259 enum skb_free_reason reason;
2260 };
2261
2262 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2263 {
2264 return (struct dev_kfree_skb_cb *)skb->cb;
2265 }
2266
2267 void netif_schedule_queue(struct netdev_queue *txq)
2268 {
2269 rcu_read_lock();
2270 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2271 struct Qdisc *q = rcu_dereference(txq->qdisc);
2272
2273 __netif_schedule(q);
2274 }
2275 rcu_read_unlock();
2276 }
2277 EXPORT_SYMBOL(netif_schedule_queue);
2278
2279 /**
2280 * netif_wake_subqueue - allow sending packets on subqueue
2281 * @dev: network device
2282 * @queue_index: sub queue index
2283 *
2284 * Resume individual transmit queue of a device with multiple transmit queues.
2285 */
2286 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2287 {
2288 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2289
2290 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2291 struct Qdisc *q;
2292
2293 rcu_read_lock();
2294 q = rcu_dereference(txq->qdisc);
2295 __netif_schedule(q);
2296 rcu_read_unlock();
2297 }
2298 }
2299 EXPORT_SYMBOL(netif_wake_subqueue);
2300
2301 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2302 {
2303 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2304 struct Qdisc *q;
2305
2306 rcu_read_lock();
2307 q = rcu_dereference(dev_queue->qdisc);
2308 __netif_schedule(q);
2309 rcu_read_unlock();
2310 }
2311 }
2312 EXPORT_SYMBOL(netif_tx_wake_queue);
2313
2314 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2315 {
2316 unsigned long flags;
2317
2318 if (likely(atomic_read(&skb->users) == 1)) {
2319 smp_rmb();
2320 atomic_set(&skb->users, 0);
2321 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2322 return;
2323 }
2324 get_kfree_skb_cb(skb)->reason = reason;
2325 local_irq_save(flags);
2326 skb->next = __this_cpu_read(softnet_data.completion_queue);
2327 __this_cpu_write(softnet_data.completion_queue, skb);
2328 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2329 local_irq_restore(flags);
2330 }
2331 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2332
2333 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2334 {
2335 if (in_irq() || irqs_disabled())
2336 __dev_kfree_skb_irq(skb, reason);
2337 else
2338 dev_kfree_skb(skb);
2339 }
2340 EXPORT_SYMBOL(__dev_kfree_skb_any);
2341
2342
2343 /**
2344 * netif_device_detach - mark device as removed
2345 * @dev: network device
2346 *
2347 * Mark device as removed from system and therefore no longer available.
2348 */
2349 void netif_device_detach(struct net_device *dev)
2350 {
2351 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2352 netif_running(dev)) {
2353 netif_tx_stop_all_queues(dev);
2354 }
2355 }
2356 EXPORT_SYMBOL(netif_device_detach);
2357
2358 /**
2359 * netif_device_attach - mark device as attached
2360 * @dev: network device
2361 *
2362 * Mark device as attached from system and restart if needed.
2363 */
2364 void netif_device_attach(struct net_device *dev)
2365 {
2366 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2367 netif_running(dev)) {
2368 netif_tx_wake_all_queues(dev);
2369 __netdev_watchdog_up(dev);
2370 }
2371 }
2372 EXPORT_SYMBOL(netif_device_attach);
2373
2374 /*
2375 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2376 * to be used as a distribution range.
2377 */
2378 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2379 unsigned int num_tx_queues)
2380 {
2381 u32 hash;
2382 u16 qoffset = 0;
2383 u16 qcount = num_tx_queues;
2384
2385 if (skb_rx_queue_recorded(skb)) {
2386 hash = skb_get_rx_queue(skb);
2387 while (unlikely(hash >= num_tx_queues))
2388 hash -= num_tx_queues;
2389 return hash;
2390 }
2391
2392 if (dev->num_tc) {
2393 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2394 qoffset = dev->tc_to_txq[tc].offset;
2395 qcount = dev->tc_to_txq[tc].count;
2396 }
2397
2398 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2399 }
2400 EXPORT_SYMBOL(__skb_tx_hash);
2401
2402 static void skb_warn_bad_offload(const struct sk_buff *skb)
2403 {
2404 static const netdev_features_t null_features = 0;
2405 struct net_device *dev = skb->dev;
2406 const char *name = "";
2407
2408 if (!net_ratelimit())
2409 return;
2410
2411 if (dev) {
2412 if (dev->dev.parent)
2413 name = dev_driver_string(dev->dev.parent);
2414 else
2415 name = netdev_name(dev);
2416 }
2417 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2418 "gso_type=%d ip_summed=%d\n",
2419 name, dev ? &dev->features : &null_features,
2420 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2421 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2422 skb_shinfo(skb)->gso_type, skb->ip_summed);
2423 }
2424
2425 /*
2426 * Invalidate hardware checksum when packet is to be mangled, and
2427 * complete checksum manually on outgoing path.
2428 */
2429 int skb_checksum_help(struct sk_buff *skb)
2430 {
2431 __wsum csum;
2432 int ret = 0, offset;
2433
2434 if (skb->ip_summed == CHECKSUM_COMPLETE)
2435 goto out_set_summed;
2436
2437 if (unlikely(skb_shinfo(skb)->gso_size)) {
2438 skb_warn_bad_offload(skb);
2439 return -EINVAL;
2440 }
2441
2442 /* Before computing a checksum, we should make sure no frag could
2443 * be modified by an external entity : checksum could be wrong.
2444 */
2445 if (skb_has_shared_frag(skb)) {
2446 ret = __skb_linearize(skb);
2447 if (ret)
2448 goto out;
2449 }
2450
2451 offset = skb_checksum_start_offset(skb);
2452 BUG_ON(offset >= skb_headlen(skb));
2453 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2454
2455 offset += skb->csum_offset;
2456 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2457
2458 if (skb_cloned(skb) &&
2459 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2460 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2461 if (ret)
2462 goto out;
2463 }
2464
2465 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2466 out_set_summed:
2467 skb->ip_summed = CHECKSUM_NONE;
2468 out:
2469 return ret;
2470 }
2471 EXPORT_SYMBOL(skb_checksum_help);
2472
2473 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2474 {
2475 __be16 type = skb->protocol;
2476
2477 /* Tunnel gso handlers can set protocol to ethernet. */
2478 if (type == htons(ETH_P_TEB)) {
2479 struct ethhdr *eth;
2480
2481 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2482 return 0;
2483
2484 eth = (struct ethhdr *)skb_mac_header(skb);
2485 type = eth->h_proto;
2486 }
2487
2488 return __vlan_get_protocol(skb, type, depth);
2489 }
2490
2491 /**
2492 * skb_mac_gso_segment - mac layer segmentation handler.
2493 * @skb: buffer to segment
2494 * @features: features for the output path (see dev->features)
2495 */
2496 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2497 netdev_features_t features)
2498 {
2499 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2500 struct packet_offload *ptype;
2501 int vlan_depth = skb->mac_len;
2502 __be16 type = skb_network_protocol(skb, &vlan_depth);
2503
2504 if (unlikely(!type))
2505 return ERR_PTR(-EINVAL);
2506
2507 __skb_pull(skb, vlan_depth);
2508
2509 rcu_read_lock();
2510 list_for_each_entry_rcu(ptype, &offload_base, list) {
2511 if (ptype->type == type && ptype->callbacks.gso_segment) {
2512 segs = ptype->callbacks.gso_segment(skb, features);
2513 break;
2514 }
2515 }
2516 rcu_read_unlock();
2517
2518 __skb_push(skb, skb->data - skb_mac_header(skb));
2519
2520 return segs;
2521 }
2522 EXPORT_SYMBOL(skb_mac_gso_segment);
2523
2524
2525 /* openvswitch calls this on rx path, so we need a different check.
2526 */
2527 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2528 {
2529 if (tx_path)
2530 return skb->ip_summed != CHECKSUM_PARTIAL;
2531 else
2532 return skb->ip_summed == CHECKSUM_NONE;
2533 }
2534
2535 /**
2536 * __skb_gso_segment - Perform segmentation on skb.
2537 * @skb: buffer to segment
2538 * @features: features for the output path (see dev->features)
2539 * @tx_path: whether it is called in TX path
2540 *
2541 * This function segments the given skb and returns a list of segments.
2542 *
2543 * It may return NULL if the skb requires no segmentation. This is
2544 * only possible when GSO is used for verifying header integrity.
2545 */
2546 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2547 netdev_features_t features, bool tx_path)
2548 {
2549 if (unlikely(skb_needs_check(skb, tx_path))) {
2550 int err;
2551
2552 skb_warn_bad_offload(skb);
2553
2554 err = skb_cow_head(skb, 0);
2555 if (err < 0)
2556 return ERR_PTR(err);
2557 }
2558
2559 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2560 SKB_GSO_CB(skb)->encap_level = 0;
2561
2562 skb_reset_mac_header(skb);
2563 skb_reset_mac_len(skb);
2564
2565 return skb_mac_gso_segment(skb, features);
2566 }
2567 EXPORT_SYMBOL(__skb_gso_segment);
2568
2569 /* Take action when hardware reception checksum errors are detected. */
2570 #ifdef CONFIG_BUG
2571 void netdev_rx_csum_fault(struct net_device *dev)
2572 {
2573 if (net_ratelimit()) {
2574 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2575 dump_stack();
2576 }
2577 }
2578 EXPORT_SYMBOL(netdev_rx_csum_fault);
2579 #endif
2580
2581 /* Actually, we should eliminate this check as soon as we know, that:
2582 * 1. IOMMU is present and allows to map all the memory.
2583 * 2. No high memory really exists on this machine.
2584 */
2585
2586 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2587 {
2588 #ifdef CONFIG_HIGHMEM
2589 int i;
2590 if (!(dev->features & NETIF_F_HIGHDMA)) {
2591 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2592 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2593 if (PageHighMem(skb_frag_page(frag)))
2594 return 1;
2595 }
2596 }
2597
2598 if (PCI_DMA_BUS_IS_PHYS) {
2599 struct device *pdev = dev->dev.parent;
2600
2601 if (!pdev)
2602 return 0;
2603 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2604 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2605 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2606 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2607 return 1;
2608 }
2609 }
2610 #endif
2611 return 0;
2612 }
2613
2614 /* If MPLS offload request, verify we are testing hardware MPLS features
2615 * instead of standard features for the netdev.
2616 */
2617 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2618 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2619 netdev_features_t features,
2620 __be16 type)
2621 {
2622 if (eth_p_mpls(type))
2623 features &= skb->dev->mpls_features;
2624
2625 return features;
2626 }
2627 #else
2628 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2629 netdev_features_t features,
2630 __be16 type)
2631 {
2632 return features;
2633 }
2634 #endif
2635
2636 static netdev_features_t harmonize_features(struct sk_buff *skb,
2637 netdev_features_t features)
2638 {
2639 int tmp;
2640 __be16 type;
2641
2642 type = skb_network_protocol(skb, &tmp);
2643 features = net_mpls_features(skb, features, type);
2644
2645 if (skb->ip_summed != CHECKSUM_NONE &&
2646 !can_checksum_protocol(features, type)) {
2647 features &= ~NETIF_F_ALL_CSUM;
2648 } else if (illegal_highdma(skb->dev, skb)) {
2649 features &= ~NETIF_F_SG;
2650 }
2651
2652 return features;
2653 }
2654
2655 netdev_features_t passthru_features_check(struct sk_buff *skb,
2656 struct net_device *dev,
2657 netdev_features_t features)
2658 {
2659 return features;
2660 }
2661 EXPORT_SYMBOL(passthru_features_check);
2662
2663 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2664 struct net_device *dev,
2665 netdev_features_t features)
2666 {
2667 return vlan_features_check(skb, features);
2668 }
2669
2670 netdev_features_t netif_skb_features(struct sk_buff *skb)
2671 {
2672 struct net_device *dev = skb->dev;
2673 netdev_features_t features = dev->features;
2674 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2675
2676 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2677 features &= ~NETIF_F_GSO_MASK;
2678
2679 /* If encapsulation offload request, verify we are testing
2680 * hardware encapsulation features instead of standard
2681 * features for the netdev
2682 */
2683 if (skb->encapsulation)
2684 features &= dev->hw_enc_features;
2685
2686 if (skb_vlan_tagged(skb))
2687 features = netdev_intersect_features(features,
2688 dev->vlan_features |
2689 NETIF_F_HW_VLAN_CTAG_TX |
2690 NETIF_F_HW_VLAN_STAG_TX);
2691
2692 if (dev->netdev_ops->ndo_features_check)
2693 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2694 features);
2695 else
2696 features &= dflt_features_check(skb, dev, features);
2697
2698 return harmonize_features(skb, features);
2699 }
2700 EXPORT_SYMBOL(netif_skb_features);
2701
2702 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2703 struct netdev_queue *txq, bool more)
2704 {
2705 unsigned int len;
2706 int rc;
2707
2708 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2709 dev_queue_xmit_nit(skb, dev);
2710
2711 len = skb->len;
2712 trace_net_dev_start_xmit(skb, dev);
2713 rc = netdev_start_xmit(skb, dev, txq, more);
2714 trace_net_dev_xmit(skb, rc, dev, len);
2715
2716 return rc;
2717 }
2718
2719 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2720 struct netdev_queue *txq, int *ret)
2721 {
2722 struct sk_buff *skb = first;
2723 int rc = NETDEV_TX_OK;
2724
2725 while (skb) {
2726 struct sk_buff *next = skb->next;
2727
2728 skb->next = NULL;
2729 rc = xmit_one(skb, dev, txq, next != NULL);
2730 if (unlikely(!dev_xmit_complete(rc))) {
2731 skb->next = next;
2732 goto out;
2733 }
2734
2735 skb = next;
2736 if (netif_xmit_stopped(txq) && skb) {
2737 rc = NETDEV_TX_BUSY;
2738 break;
2739 }
2740 }
2741
2742 out:
2743 *ret = rc;
2744 return skb;
2745 }
2746
2747 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2748 netdev_features_t features)
2749 {
2750 if (skb_vlan_tag_present(skb) &&
2751 !vlan_hw_offload_capable(features, skb->vlan_proto))
2752 skb = __vlan_hwaccel_push_inside(skb);
2753 return skb;
2754 }
2755
2756 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2757 {
2758 netdev_features_t features;
2759
2760 if (skb->next)
2761 return skb;
2762
2763 features = netif_skb_features(skb);
2764 skb = validate_xmit_vlan(skb, features);
2765 if (unlikely(!skb))
2766 goto out_null;
2767
2768 if (netif_needs_gso(skb, features)) {
2769 struct sk_buff *segs;
2770
2771 segs = skb_gso_segment(skb, features);
2772 if (IS_ERR(segs)) {
2773 goto out_kfree_skb;
2774 } else if (segs) {
2775 consume_skb(skb);
2776 skb = segs;
2777 }
2778 } else {
2779 if (skb_needs_linearize(skb, features) &&
2780 __skb_linearize(skb))
2781 goto out_kfree_skb;
2782
2783 /* If packet is not checksummed and device does not
2784 * support checksumming for this protocol, complete
2785 * checksumming here.
2786 */
2787 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2788 if (skb->encapsulation)
2789 skb_set_inner_transport_header(skb,
2790 skb_checksum_start_offset(skb));
2791 else
2792 skb_set_transport_header(skb,
2793 skb_checksum_start_offset(skb));
2794 if (!(features & NETIF_F_ALL_CSUM) &&
2795 skb_checksum_help(skb))
2796 goto out_kfree_skb;
2797 }
2798 }
2799
2800 return skb;
2801
2802 out_kfree_skb:
2803 kfree_skb(skb);
2804 out_null:
2805 return NULL;
2806 }
2807
2808 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2809 {
2810 struct sk_buff *next, *head = NULL, *tail;
2811
2812 for (; skb != NULL; skb = next) {
2813 next = skb->next;
2814 skb->next = NULL;
2815
2816 /* in case skb wont be segmented, point to itself */
2817 skb->prev = skb;
2818
2819 skb = validate_xmit_skb(skb, dev);
2820 if (!skb)
2821 continue;
2822
2823 if (!head)
2824 head = skb;
2825 else
2826 tail->next = skb;
2827 /* If skb was segmented, skb->prev points to
2828 * the last segment. If not, it still contains skb.
2829 */
2830 tail = skb->prev;
2831 }
2832 return head;
2833 }
2834
2835 static void qdisc_pkt_len_init(struct sk_buff *skb)
2836 {
2837 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2838
2839 qdisc_skb_cb(skb)->pkt_len = skb->len;
2840
2841 /* To get more precise estimation of bytes sent on wire,
2842 * we add to pkt_len the headers size of all segments
2843 */
2844 if (shinfo->gso_size) {
2845 unsigned int hdr_len;
2846 u16 gso_segs = shinfo->gso_segs;
2847
2848 /* mac layer + network layer */
2849 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2850
2851 /* + transport layer */
2852 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2853 hdr_len += tcp_hdrlen(skb);
2854 else
2855 hdr_len += sizeof(struct udphdr);
2856
2857 if (shinfo->gso_type & SKB_GSO_DODGY)
2858 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2859 shinfo->gso_size);
2860
2861 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2862 }
2863 }
2864
2865 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2866 struct net_device *dev,
2867 struct netdev_queue *txq)
2868 {
2869 spinlock_t *root_lock = qdisc_lock(q);
2870 bool contended;
2871 int rc;
2872
2873 qdisc_pkt_len_init(skb);
2874 qdisc_calculate_pkt_len(skb, q);
2875 /*
2876 * Heuristic to force contended enqueues to serialize on a
2877 * separate lock before trying to get qdisc main lock.
2878 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2879 * often and dequeue packets faster.
2880 */
2881 contended = qdisc_is_running(q);
2882 if (unlikely(contended))
2883 spin_lock(&q->busylock);
2884
2885 spin_lock(root_lock);
2886 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2887 kfree_skb(skb);
2888 rc = NET_XMIT_DROP;
2889 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2890 qdisc_run_begin(q)) {
2891 /*
2892 * This is a work-conserving queue; there are no old skbs
2893 * waiting to be sent out; and the qdisc is not running -
2894 * xmit the skb directly.
2895 */
2896
2897 qdisc_bstats_update(q, skb);
2898
2899 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2900 if (unlikely(contended)) {
2901 spin_unlock(&q->busylock);
2902 contended = false;
2903 }
2904 __qdisc_run(q);
2905 } else
2906 qdisc_run_end(q);
2907
2908 rc = NET_XMIT_SUCCESS;
2909 } else {
2910 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2911 if (qdisc_run_begin(q)) {
2912 if (unlikely(contended)) {
2913 spin_unlock(&q->busylock);
2914 contended = false;
2915 }
2916 __qdisc_run(q);
2917 }
2918 }
2919 spin_unlock(root_lock);
2920 if (unlikely(contended))
2921 spin_unlock(&q->busylock);
2922 return rc;
2923 }
2924
2925 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2926 static void skb_update_prio(struct sk_buff *skb)
2927 {
2928 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2929
2930 if (!skb->priority && skb->sk && map) {
2931 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2932
2933 if (prioidx < map->priomap_len)
2934 skb->priority = map->priomap[prioidx];
2935 }
2936 }
2937 #else
2938 #define skb_update_prio(skb)
2939 #endif
2940
2941 DEFINE_PER_CPU(int, xmit_recursion);
2942 EXPORT_SYMBOL(xmit_recursion);
2943
2944 #define RECURSION_LIMIT 10
2945
2946 /**
2947 * dev_loopback_xmit - loop back @skb
2948 * @net: network namespace this loopback is happening in
2949 * @sk: sk needed to be a netfilter okfn
2950 * @skb: buffer to transmit
2951 */
2952 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2953 {
2954 skb_reset_mac_header(skb);
2955 __skb_pull(skb, skb_network_offset(skb));
2956 skb->pkt_type = PACKET_LOOPBACK;
2957 skb->ip_summed = CHECKSUM_UNNECESSARY;
2958 WARN_ON(!skb_dst(skb));
2959 skb_dst_force(skb);
2960 netif_rx_ni(skb);
2961 return 0;
2962 }
2963 EXPORT_SYMBOL(dev_loopback_xmit);
2964
2965 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2966 {
2967 #ifdef CONFIG_XPS
2968 struct xps_dev_maps *dev_maps;
2969 struct xps_map *map;
2970 int queue_index = -1;
2971
2972 rcu_read_lock();
2973 dev_maps = rcu_dereference(dev->xps_maps);
2974 if (dev_maps) {
2975 map = rcu_dereference(
2976 dev_maps->cpu_map[skb->sender_cpu - 1]);
2977 if (map) {
2978 if (map->len == 1)
2979 queue_index = map->queues[0];
2980 else
2981 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2982 map->len)];
2983 if (unlikely(queue_index >= dev->real_num_tx_queues))
2984 queue_index = -1;
2985 }
2986 }
2987 rcu_read_unlock();
2988
2989 return queue_index;
2990 #else
2991 return -1;
2992 #endif
2993 }
2994
2995 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2996 {
2997 struct sock *sk = skb->sk;
2998 int queue_index = sk_tx_queue_get(sk);
2999
3000 if (queue_index < 0 || skb->ooo_okay ||
3001 queue_index >= dev->real_num_tx_queues) {
3002 int new_index = get_xps_queue(dev, skb);
3003 if (new_index < 0)
3004 new_index = skb_tx_hash(dev, skb);
3005
3006 if (queue_index != new_index && sk &&
3007 sk_fullsock(sk) &&
3008 rcu_access_pointer(sk->sk_dst_cache))
3009 sk_tx_queue_set(sk, new_index);
3010
3011 queue_index = new_index;
3012 }
3013
3014 return queue_index;
3015 }
3016
3017 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3018 struct sk_buff *skb,
3019 void *accel_priv)
3020 {
3021 int queue_index = 0;
3022
3023 #ifdef CONFIG_XPS
3024 if (skb->sender_cpu == 0)
3025 skb->sender_cpu = raw_smp_processor_id() + 1;
3026 #endif
3027
3028 if (dev->real_num_tx_queues != 1) {
3029 const struct net_device_ops *ops = dev->netdev_ops;
3030 if (ops->ndo_select_queue)
3031 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3032 __netdev_pick_tx);
3033 else
3034 queue_index = __netdev_pick_tx(dev, skb);
3035
3036 if (!accel_priv)
3037 queue_index = netdev_cap_txqueue(dev, queue_index);
3038 }
3039
3040 skb_set_queue_mapping(skb, queue_index);
3041 return netdev_get_tx_queue(dev, queue_index);
3042 }
3043
3044 /**
3045 * __dev_queue_xmit - transmit a buffer
3046 * @skb: buffer to transmit
3047 * @accel_priv: private data used for L2 forwarding offload
3048 *
3049 * Queue a buffer for transmission to a network device. The caller must
3050 * have set the device and priority and built the buffer before calling
3051 * this function. The function can be called from an interrupt.
3052 *
3053 * A negative errno code is returned on a failure. A success does not
3054 * guarantee the frame will be transmitted as it may be dropped due
3055 * to congestion or traffic shaping.
3056 *
3057 * -----------------------------------------------------------------------------------
3058 * I notice this method can also return errors from the queue disciplines,
3059 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3060 * be positive.
3061 *
3062 * Regardless of the return value, the skb is consumed, so it is currently
3063 * difficult to retry a send to this method. (You can bump the ref count
3064 * before sending to hold a reference for retry if you are careful.)
3065 *
3066 * When calling this method, interrupts MUST be enabled. This is because
3067 * the BH enable code must have IRQs enabled so that it will not deadlock.
3068 * --BLG
3069 */
3070 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3071 {
3072 struct net_device *dev = skb->dev;
3073 struct netdev_queue *txq;
3074 struct Qdisc *q;
3075 int rc = -ENOMEM;
3076
3077 skb_reset_mac_header(skb);
3078
3079 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3080 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3081
3082 /* Disable soft irqs for various locks below. Also
3083 * stops preemption for RCU.
3084 */
3085 rcu_read_lock_bh();
3086
3087 skb_update_prio(skb);
3088
3089 /* If device/qdisc don't need skb->dst, release it right now while
3090 * its hot in this cpu cache.
3091 */
3092 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3093 skb_dst_drop(skb);
3094 else
3095 skb_dst_force(skb);
3096
3097 #ifdef CONFIG_NET_SWITCHDEV
3098 /* Don't forward if offload device already forwarded */
3099 if (skb->offload_fwd_mark &&
3100 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3101 consume_skb(skb);
3102 rc = NET_XMIT_SUCCESS;
3103 goto out;
3104 }
3105 #endif
3106
3107 txq = netdev_pick_tx(dev, skb, accel_priv);
3108 q = rcu_dereference_bh(txq->qdisc);
3109
3110 #ifdef CONFIG_NET_CLS_ACT
3111 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3112 #endif
3113 trace_net_dev_queue(skb);
3114 if (q->enqueue) {
3115 rc = __dev_xmit_skb(skb, q, dev, txq);
3116 goto out;
3117 }
3118
3119 /* The device has no queue. Common case for software devices:
3120 loopback, all the sorts of tunnels...
3121
3122 Really, it is unlikely that netif_tx_lock protection is necessary
3123 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3124 counters.)
3125 However, it is possible, that they rely on protection
3126 made by us here.
3127
3128 Check this and shot the lock. It is not prone from deadlocks.
3129 Either shot noqueue qdisc, it is even simpler 8)
3130 */
3131 if (dev->flags & IFF_UP) {
3132 int cpu = smp_processor_id(); /* ok because BHs are off */
3133
3134 if (txq->xmit_lock_owner != cpu) {
3135
3136 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3137 goto recursion_alert;
3138
3139 skb = validate_xmit_skb(skb, dev);
3140 if (!skb)
3141 goto drop;
3142
3143 HARD_TX_LOCK(dev, txq, cpu);
3144
3145 if (!netif_xmit_stopped(txq)) {
3146 __this_cpu_inc(xmit_recursion);
3147 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3148 __this_cpu_dec(xmit_recursion);
3149 if (dev_xmit_complete(rc)) {
3150 HARD_TX_UNLOCK(dev, txq);
3151 goto out;
3152 }
3153 }
3154 HARD_TX_UNLOCK(dev, txq);
3155 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3156 dev->name);
3157 } else {
3158 /* Recursion is detected! It is possible,
3159 * unfortunately
3160 */
3161 recursion_alert:
3162 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3163 dev->name);
3164 }
3165 }
3166
3167 rc = -ENETDOWN;
3168 drop:
3169 rcu_read_unlock_bh();
3170
3171 atomic_long_inc(&dev->tx_dropped);
3172 kfree_skb_list(skb);
3173 return rc;
3174 out:
3175 rcu_read_unlock_bh();
3176 return rc;
3177 }
3178
3179 int dev_queue_xmit(struct sk_buff *skb)
3180 {
3181 return __dev_queue_xmit(skb, NULL);
3182 }
3183 EXPORT_SYMBOL(dev_queue_xmit);
3184
3185 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3186 {
3187 return __dev_queue_xmit(skb, accel_priv);
3188 }
3189 EXPORT_SYMBOL(dev_queue_xmit_accel);
3190
3191
3192 /*=======================================================================
3193 Receiver routines
3194 =======================================================================*/
3195
3196 int netdev_max_backlog __read_mostly = 1000;
3197 EXPORT_SYMBOL(netdev_max_backlog);
3198
3199 int netdev_tstamp_prequeue __read_mostly = 1;
3200 int netdev_budget __read_mostly = 300;
3201 int weight_p __read_mostly = 64; /* old backlog weight */
3202
3203 /* Called with irq disabled */
3204 static inline void ____napi_schedule(struct softnet_data *sd,
3205 struct napi_struct *napi)
3206 {
3207 list_add_tail(&napi->poll_list, &sd->poll_list);
3208 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3209 }
3210
3211 #ifdef CONFIG_RPS
3212
3213 /* One global table that all flow-based protocols share. */
3214 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3215 EXPORT_SYMBOL(rps_sock_flow_table);
3216 u32 rps_cpu_mask __read_mostly;
3217 EXPORT_SYMBOL(rps_cpu_mask);
3218
3219 struct static_key rps_needed __read_mostly;
3220
3221 static struct rps_dev_flow *
3222 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3223 struct rps_dev_flow *rflow, u16 next_cpu)
3224 {
3225 if (next_cpu < nr_cpu_ids) {
3226 #ifdef CONFIG_RFS_ACCEL
3227 struct netdev_rx_queue *rxqueue;
3228 struct rps_dev_flow_table *flow_table;
3229 struct rps_dev_flow *old_rflow;
3230 u32 flow_id;
3231 u16 rxq_index;
3232 int rc;
3233
3234 /* Should we steer this flow to a different hardware queue? */
3235 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3236 !(dev->features & NETIF_F_NTUPLE))
3237 goto out;
3238 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3239 if (rxq_index == skb_get_rx_queue(skb))
3240 goto out;
3241
3242 rxqueue = dev->_rx + rxq_index;
3243 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3244 if (!flow_table)
3245 goto out;
3246 flow_id = skb_get_hash(skb) & flow_table->mask;
3247 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3248 rxq_index, flow_id);
3249 if (rc < 0)
3250 goto out;
3251 old_rflow = rflow;
3252 rflow = &flow_table->flows[flow_id];
3253 rflow->filter = rc;
3254 if (old_rflow->filter == rflow->filter)
3255 old_rflow->filter = RPS_NO_FILTER;
3256 out:
3257 #endif
3258 rflow->last_qtail =
3259 per_cpu(softnet_data, next_cpu).input_queue_head;
3260 }
3261
3262 rflow->cpu = next_cpu;
3263 return rflow;
3264 }
3265
3266 /*
3267 * get_rps_cpu is called from netif_receive_skb and returns the target
3268 * CPU from the RPS map of the receiving queue for a given skb.
3269 * rcu_read_lock must be held on entry.
3270 */
3271 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3272 struct rps_dev_flow **rflowp)
3273 {
3274 const struct rps_sock_flow_table *sock_flow_table;
3275 struct netdev_rx_queue *rxqueue = dev->_rx;
3276 struct rps_dev_flow_table *flow_table;
3277 struct rps_map *map;
3278 int cpu = -1;
3279 u32 tcpu;
3280 u32 hash;
3281
3282 if (skb_rx_queue_recorded(skb)) {
3283 u16 index = skb_get_rx_queue(skb);
3284
3285 if (unlikely(index >= dev->real_num_rx_queues)) {
3286 WARN_ONCE(dev->real_num_rx_queues > 1,
3287 "%s received packet on queue %u, but number "
3288 "of RX queues is %u\n",
3289 dev->name, index, dev->real_num_rx_queues);
3290 goto done;
3291 }
3292 rxqueue += index;
3293 }
3294
3295 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3296
3297 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3298 map = rcu_dereference(rxqueue->rps_map);
3299 if (!flow_table && !map)
3300 goto done;
3301
3302 skb_reset_network_header(skb);
3303 hash = skb_get_hash(skb);
3304 if (!hash)
3305 goto done;
3306
3307 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3308 if (flow_table && sock_flow_table) {
3309 struct rps_dev_flow *rflow;
3310 u32 next_cpu;
3311 u32 ident;
3312
3313 /* First check into global flow table if there is a match */
3314 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3315 if ((ident ^ hash) & ~rps_cpu_mask)
3316 goto try_rps;
3317
3318 next_cpu = ident & rps_cpu_mask;
3319
3320 /* OK, now we know there is a match,
3321 * we can look at the local (per receive queue) flow table
3322 */
3323 rflow = &flow_table->flows[hash & flow_table->mask];
3324 tcpu = rflow->cpu;
3325
3326 /*
3327 * If the desired CPU (where last recvmsg was done) is
3328 * different from current CPU (one in the rx-queue flow
3329 * table entry), switch if one of the following holds:
3330 * - Current CPU is unset (>= nr_cpu_ids).
3331 * - Current CPU is offline.
3332 * - The current CPU's queue tail has advanced beyond the
3333 * last packet that was enqueued using this table entry.
3334 * This guarantees that all previous packets for the flow
3335 * have been dequeued, thus preserving in order delivery.
3336 */
3337 if (unlikely(tcpu != next_cpu) &&
3338 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3339 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3340 rflow->last_qtail)) >= 0)) {
3341 tcpu = next_cpu;
3342 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3343 }
3344
3345 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3346 *rflowp = rflow;
3347 cpu = tcpu;
3348 goto done;
3349 }
3350 }
3351
3352 try_rps:
3353
3354 if (map) {
3355 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3356 if (cpu_online(tcpu)) {
3357 cpu = tcpu;
3358 goto done;
3359 }
3360 }
3361
3362 done:
3363 return cpu;
3364 }
3365
3366 #ifdef CONFIG_RFS_ACCEL
3367
3368 /**
3369 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3370 * @dev: Device on which the filter was set
3371 * @rxq_index: RX queue index
3372 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3373 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3374 *
3375 * Drivers that implement ndo_rx_flow_steer() should periodically call
3376 * this function for each installed filter and remove the filters for
3377 * which it returns %true.
3378 */
3379 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3380 u32 flow_id, u16 filter_id)
3381 {
3382 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3383 struct rps_dev_flow_table *flow_table;
3384 struct rps_dev_flow *rflow;
3385 bool expire = true;
3386 unsigned int cpu;
3387
3388 rcu_read_lock();
3389 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3390 if (flow_table && flow_id <= flow_table->mask) {
3391 rflow = &flow_table->flows[flow_id];
3392 cpu = ACCESS_ONCE(rflow->cpu);
3393 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3394 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3395 rflow->last_qtail) <
3396 (int)(10 * flow_table->mask)))
3397 expire = false;
3398 }
3399 rcu_read_unlock();
3400 return expire;
3401 }
3402 EXPORT_SYMBOL(rps_may_expire_flow);
3403
3404 #endif /* CONFIG_RFS_ACCEL */
3405
3406 /* Called from hardirq (IPI) context */
3407 static void rps_trigger_softirq(void *data)
3408 {
3409 struct softnet_data *sd = data;
3410
3411 ____napi_schedule(sd, &sd->backlog);
3412 sd->received_rps++;
3413 }
3414
3415 #endif /* CONFIG_RPS */
3416
3417 /*
3418 * Check if this softnet_data structure is another cpu one
3419 * If yes, queue it to our IPI list and return 1
3420 * If no, return 0
3421 */
3422 static int rps_ipi_queued(struct softnet_data *sd)
3423 {
3424 #ifdef CONFIG_RPS
3425 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3426
3427 if (sd != mysd) {
3428 sd->rps_ipi_next = mysd->rps_ipi_list;
3429 mysd->rps_ipi_list = sd;
3430
3431 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3432 return 1;
3433 }
3434 #endif /* CONFIG_RPS */
3435 return 0;
3436 }
3437
3438 #ifdef CONFIG_NET_FLOW_LIMIT
3439 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3440 #endif
3441
3442 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3443 {
3444 #ifdef CONFIG_NET_FLOW_LIMIT
3445 struct sd_flow_limit *fl;
3446 struct softnet_data *sd;
3447 unsigned int old_flow, new_flow;
3448
3449 if (qlen < (netdev_max_backlog >> 1))
3450 return false;
3451
3452 sd = this_cpu_ptr(&softnet_data);
3453
3454 rcu_read_lock();
3455 fl = rcu_dereference(sd->flow_limit);
3456 if (fl) {
3457 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3458 old_flow = fl->history[fl->history_head];
3459 fl->history[fl->history_head] = new_flow;
3460
3461 fl->history_head++;
3462 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3463
3464 if (likely(fl->buckets[old_flow]))
3465 fl->buckets[old_flow]--;
3466
3467 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3468 fl->count++;
3469 rcu_read_unlock();
3470 return true;
3471 }
3472 }
3473 rcu_read_unlock();
3474 #endif
3475 return false;
3476 }
3477
3478 /*
3479 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3480 * queue (may be a remote CPU queue).
3481 */
3482 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3483 unsigned int *qtail)
3484 {
3485 struct softnet_data *sd;
3486 unsigned long flags;
3487 unsigned int qlen;
3488
3489 sd = &per_cpu(softnet_data, cpu);
3490
3491 local_irq_save(flags);
3492
3493 rps_lock(sd);
3494 if (!netif_running(skb->dev))
3495 goto drop;
3496 qlen = skb_queue_len(&sd->input_pkt_queue);
3497 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3498 if (qlen) {
3499 enqueue:
3500 __skb_queue_tail(&sd->input_pkt_queue, skb);
3501 input_queue_tail_incr_save(sd, qtail);
3502 rps_unlock(sd);
3503 local_irq_restore(flags);
3504 return NET_RX_SUCCESS;
3505 }
3506
3507 /* Schedule NAPI for backlog device
3508 * We can use non atomic operation since we own the queue lock
3509 */
3510 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3511 if (!rps_ipi_queued(sd))
3512 ____napi_schedule(sd, &sd->backlog);
3513 }
3514 goto enqueue;
3515 }
3516
3517 drop:
3518 sd->dropped++;
3519 rps_unlock(sd);
3520
3521 local_irq_restore(flags);
3522
3523 atomic_long_inc(&skb->dev->rx_dropped);
3524 kfree_skb(skb);
3525 return NET_RX_DROP;
3526 }
3527
3528 static int netif_rx_internal(struct sk_buff *skb)
3529 {
3530 int ret;
3531
3532 net_timestamp_check(netdev_tstamp_prequeue, skb);
3533
3534 trace_netif_rx(skb);
3535 #ifdef CONFIG_RPS
3536 if (static_key_false(&rps_needed)) {
3537 struct rps_dev_flow voidflow, *rflow = &voidflow;
3538 int cpu;
3539
3540 preempt_disable();
3541 rcu_read_lock();
3542
3543 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3544 if (cpu < 0)
3545 cpu = smp_processor_id();
3546
3547 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3548
3549 rcu_read_unlock();
3550 preempt_enable();
3551 } else
3552 #endif
3553 {
3554 unsigned int qtail;
3555 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3556 put_cpu();
3557 }
3558 return ret;
3559 }
3560
3561 /**
3562 * netif_rx - post buffer to the network code
3563 * @skb: buffer to post
3564 *
3565 * This function receives a packet from a device driver and queues it for
3566 * the upper (protocol) levels to process. It always succeeds. The buffer
3567 * may be dropped during processing for congestion control or by the
3568 * protocol layers.
3569 *
3570 * return values:
3571 * NET_RX_SUCCESS (no congestion)
3572 * NET_RX_DROP (packet was dropped)
3573 *
3574 */
3575
3576 int netif_rx(struct sk_buff *skb)
3577 {
3578 trace_netif_rx_entry(skb);
3579
3580 return netif_rx_internal(skb);
3581 }
3582 EXPORT_SYMBOL(netif_rx);
3583
3584 int netif_rx_ni(struct sk_buff *skb)
3585 {
3586 int err;
3587
3588 trace_netif_rx_ni_entry(skb);
3589
3590 preempt_disable();
3591 err = netif_rx_internal(skb);
3592 if (local_softirq_pending())
3593 do_softirq();
3594 preempt_enable();
3595
3596 return err;
3597 }
3598 EXPORT_SYMBOL(netif_rx_ni);
3599
3600 static void net_tx_action(struct softirq_action *h)
3601 {
3602 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3603
3604 if (sd->completion_queue) {
3605 struct sk_buff *clist;
3606
3607 local_irq_disable();
3608 clist = sd->completion_queue;
3609 sd->completion_queue = NULL;
3610 local_irq_enable();
3611
3612 while (clist) {
3613 struct sk_buff *skb = clist;
3614 clist = clist->next;
3615
3616 WARN_ON(atomic_read(&skb->users));
3617 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3618 trace_consume_skb(skb);
3619 else
3620 trace_kfree_skb(skb, net_tx_action);
3621 __kfree_skb(skb);
3622 }
3623 }
3624
3625 if (sd->output_queue) {
3626 struct Qdisc *head;
3627
3628 local_irq_disable();
3629 head = sd->output_queue;
3630 sd->output_queue = NULL;
3631 sd->output_queue_tailp = &sd->output_queue;
3632 local_irq_enable();
3633
3634 while (head) {
3635 struct Qdisc *q = head;
3636 spinlock_t *root_lock;
3637
3638 head = head->next_sched;
3639
3640 root_lock = qdisc_lock(q);
3641 if (spin_trylock(root_lock)) {
3642 smp_mb__before_atomic();
3643 clear_bit(__QDISC_STATE_SCHED,
3644 &q->state);
3645 qdisc_run(q);
3646 spin_unlock(root_lock);
3647 } else {
3648 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3649 &q->state)) {
3650 __netif_reschedule(q);
3651 } else {
3652 smp_mb__before_atomic();
3653 clear_bit(__QDISC_STATE_SCHED,
3654 &q->state);
3655 }
3656 }
3657 }
3658 }
3659 }
3660
3661 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3662 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3663 /* This hook is defined here for ATM LANE */
3664 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3665 unsigned char *addr) __read_mostly;
3666 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3667 #endif
3668
3669 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3670 struct packet_type **pt_prev,
3671 int *ret, struct net_device *orig_dev)
3672 {
3673 #ifdef CONFIG_NET_CLS_ACT
3674 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3675 struct tcf_result cl_res;
3676
3677 /* If there's at least one ingress present somewhere (so
3678 * we get here via enabled static key), remaining devices
3679 * that are not configured with an ingress qdisc will bail
3680 * out here.
3681 */
3682 if (!cl)
3683 return skb;
3684 if (*pt_prev) {
3685 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3686 *pt_prev = NULL;
3687 }
3688
3689 qdisc_skb_cb(skb)->pkt_len = skb->len;
3690 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3691 qdisc_bstats_cpu_update(cl->q, skb);
3692
3693 switch (tc_classify(skb, cl, &cl_res, false)) {
3694 case TC_ACT_OK:
3695 case TC_ACT_RECLASSIFY:
3696 skb->tc_index = TC_H_MIN(cl_res.classid);
3697 break;
3698 case TC_ACT_SHOT:
3699 qdisc_qstats_cpu_drop(cl->q);
3700 case TC_ACT_STOLEN:
3701 case TC_ACT_QUEUED:
3702 kfree_skb(skb);
3703 return NULL;
3704 case TC_ACT_REDIRECT:
3705 /* skb_mac_header check was done by cls/act_bpf, so
3706 * we can safely push the L2 header back before
3707 * redirecting to another netdev
3708 */
3709 __skb_push(skb, skb->mac_len);
3710 skb_do_redirect(skb);
3711 return NULL;
3712 default:
3713 break;
3714 }
3715 #endif /* CONFIG_NET_CLS_ACT */
3716 return skb;
3717 }
3718
3719 /**
3720 * netdev_rx_handler_register - register receive handler
3721 * @dev: device to register a handler for
3722 * @rx_handler: receive handler to register
3723 * @rx_handler_data: data pointer that is used by rx handler
3724 *
3725 * Register a receive handler for a device. This handler will then be
3726 * called from __netif_receive_skb. A negative errno code is returned
3727 * on a failure.
3728 *
3729 * The caller must hold the rtnl_mutex.
3730 *
3731 * For a general description of rx_handler, see enum rx_handler_result.
3732 */
3733 int netdev_rx_handler_register(struct net_device *dev,
3734 rx_handler_func_t *rx_handler,
3735 void *rx_handler_data)
3736 {
3737 ASSERT_RTNL();
3738
3739 if (dev->rx_handler)
3740 return -EBUSY;
3741
3742 /* Note: rx_handler_data must be set before rx_handler */
3743 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3744 rcu_assign_pointer(dev->rx_handler, rx_handler);
3745
3746 return 0;
3747 }
3748 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3749
3750 /**
3751 * netdev_rx_handler_unregister - unregister receive handler
3752 * @dev: device to unregister a handler from
3753 *
3754 * Unregister a receive handler from a device.
3755 *
3756 * The caller must hold the rtnl_mutex.
3757 */
3758 void netdev_rx_handler_unregister(struct net_device *dev)
3759 {
3760
3761 ASSERT_RTNL();
3762 RCU_INIT_POINTER(dev->rx_handler, NULL);
3763 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3764 * section has a guarantee to see a non NULL rx_handler_data
3765 * as well.
3766 */
3767 synchronize_net();
3768 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3769 }
3770 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3771
3772 /*
3773 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3774 * the special handling of PFMEMALLOC skbs.
3775 */
3776 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3777 {
3778 switch (skb->protocol) {
3779 case htons(ETH_P_ARP):
3780 case htons(ETH_P_IP):
3781 case htons(ETH_P_IPV6):
3782 case htons(ETH_P_8021Q):
3783 case htons(ETH_P_8021AD):
3784 return true;
3785 default:
3786 return false;
3787 }
3788 }
3789
3790 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3791 int *ret, struct net_device *orig_dev)
3792 {
3793 #ifdef CONFIG_NETFILTER_INGRESS
3794 if (nf_hook_ingress_active(skb)) {
3795 if (*pt_prev) {
3796 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3797 *pt_prev = NULL;
3798 }
3799
3800 return nf_hook_ingress(skb);
3801 }
3802 #endif /* CONFIG_NETFILTER_INGRESS */
3803 return 0;
3804 }
3805
3806 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3807 {
3808 struct packet_type *ptype, *pt_prev;
3809 rx_handler_func_t *rx_handler;
3810 struct net_device *orig_dev;
3811 bool deliver_exact = false;
3812 int ret = NET_RX_DROP;
3813 __be16 type;
3814
3815 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3816
3817 trace_netif_receive_skb(skb);
3818
3819 orig_dev = skb->dev;
3820
3821 skb_reset_network_header(skb);
3822 if (!skb_transport_header_was_set(skb))
3823 skb_reset_transport_header(skb);
3824 skb_reset_mac_len(skb);
3825
3826 pt_prev = NULL;
3827
3828 another_round:
3829 skb->skb_iif = skb->dev->ifindex;
3830
3831 __this_cpu_inc(softnet_data.processed);
3832
3833 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3834 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3835 skb = skb_vlan_untag(skb);
3836 if (unlikely(!skb))
3837 goto out;
3838 }
3839
3840 #ifdef CONFIG_NET_CLS_ACT
3841 if (skb->tc_verd & TC_NCLS) {
3842 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3843 goto ncls;
3844 }
3845 #endif
3846
3847 if (pfmemalloc)
3848 goto skip_taps;
3849
3850 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3851 if (pt_prev)
3852 ret = deliver_skb(skb, pt_prev, orig_dev);
3853 pt_prev = ptype;
3854 }
3855
3856 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3857 if (pt_prev)
3858 ret = deliver_skb(skb, pt_prev, orig_dev);
3859 pt_prev = ptype;
3860 }
3861
3862 skip_taps:
3863 #ifdef CONFIG_NET_INGRESS
3864 if (static_key_false(&ingress_needed)) {
3865 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3866 if (!skb)
3867 goto out;
3868
3869 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3870 goto out;
3871 }
3872 #endif
3873 #ifdef CONFIG_NET_CLS_ACT
3874 skb->tc_verd = 0;
3875 ncls:
3876 #endif
3877 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3878 goto drop;
3879
3880 if (skb_vlan_tag_present(skb)) {
3881 if (pt_prev) {
3882 ret = deliver_skb(skb, pt_prev, orig_dev);
3883 pt_prev = NULL;
3884 }
3885 if (vlan_do_receive(&skb))
3886 goto another_round;
3887 else if (unlikely(!skb))
3888 goto out;
3889 }
3890
3891 rx_handler = rcu_dereference(skb->dev->rx_handler);
3892 if (rx_handler) {
3893 if (pt_prev) {
3894 ret = deliver_skb(skb, pt_prev, orig_dev);
3895 pt_prev = NULL;
3896 }
3897 switch (rx_handler(&skb)) {
3898 case RX_HANDLER_CONSUMED:
3899 ret = NET_RX_SUCCESS;
3900 goto out;
3901 case RX_HANDLER_ANOTHER:
3902 goto another_round;
3903 case RX_HANDLER_EXACT:
3904 deliver_exact = true;
3905 case RX_HANDLER_PASS:
3906 break;
3907 default:
3908 BUG();
3909 }
3910 }
3911
3912 if (unlikely(skb_vlan_tag_present(skb))) {
3913 if (skb_vlan_tag_get_id(skb))
3914 skb->pkt_type = PACKET_OTHERHOST;
3915 /* Note: we might in the future use prio bits
3916 * and set skb->priority like in vlan_do_receive()
3917 * For the time being, just ignore Priority Code Point
3918 */
3919 skb->vlan_tci = 0;
3920 }
3921
3922 type = skb->protocol;
3923
3924 /* deliver only exact match when indicated */
3925 if (likely(!deliver_exact)) {
3926 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3927 &ptype_base[ntohs(type) &
3928 PTYPE_HASH_MASK]);
3929 }
3930
3931 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3932 &orig_dev->ptype_specific);
3933
3934 if (unlikely(skb->dev != orig_dev)) {
3935 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3936 &skb->dev->ptype_specific);
3937 }
3938
3939 if (pt_prev) {
3940 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3941 goto drop;
3942 else
3943 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3944 } else {
3945 drop:
3946 atomic_long_inc(&skb->dev->rx_dropped);
3947 kfree_skb(skb);
3948 /* Jamal, now you will not able to escape explaining
3949 * me how you were going to use this. :-)
3950 */
3951 ret = NET_RX_DROP;
3952 }
3953
3954 out:
3955 return ret;
3956 }
3957
3958 static int __netif_receive_skb(struct sk_buff *skb)
3959 {
3960 int ret;
3961
3962 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3963 unsigned long pflags = current->flags;
3964
3965 /*
3966 * PFMEMALLOC skbs are special, they should
3967 * - be delivered to SOCK_MEMALLOC sockets only
3968 * - stay away from userspace
3969 * - have bounded memory usage
3970 *
3971 * Use PF_MEMALLOC as this saves us from propagating the allocation
3972 * context down to all allocation sites.
3973 */
3974 current->flags |= PF_MEMALLOC;
3975 ret = __netif_receive_skb_core(skb, true);
3976 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3977 } else
3978 ret = __netif_receive_skb_core(skb, false);
3979
3980 return ret;
3981 }
3982
3983 static int netif_receive_skb_internal(struct sk_buff *skb)
3984 {
3985 int ret;
3986
3987 net_timestamp_check(netdev_tstamp_prequeue, skb);
3988
3989 if (skb_defer_rx_timestamp(skb))
3990 return NET_RX_SUCCESS;
3991
3992 rcu_read_lock();
3993
3994 #ifdef CONFIG_RPS
3995 if (static_key_false(&rps_needed)) {
3996 struct rps_dev_flow voidflow, *rflow = &voidflow;
3997 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3998
3999 if (cpu >= 0) {
4000 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4001 rcu_read_unlock();
4002 return ret;
4003 }
4004 }
4005 #endif
4006 ret = __netif_receive_skb(skb);
4007 rcu_read_unlock();
4008 return ret;
4009 }
4010
4011 /**
4012 * netif_receive_skb - process receive buffer from network
4013 * @skb: buffer to process
4014 *
4015 * netif_receive_skb() is the main receive data processing function.
4016 * It always succeeds. The buffer may be dropped during processing
4017 * for congestion control or by the protocol layers.
4018 *
4019 * This function may only be called from softirq context and interrupts
4020 * should be enabled.
4021 *
4022 * Return values (usually ignored):
4023 * NET_RX_SUCCESS: no congestion
4024 * NET_RX_DROP: packet was dropped
4025 */
4026 int netif_receive_skb(struct sk_buff *skb)
4027 {
4028 trace_netif_receive_skb_entry(skb);
4029
4030 return netif_receive_skb_internal(skb);
4031 }
4032 EXPORT_SYMBOL(netif_receive_skb);
4033
4034 /* Network device is going away, flush any packets still pending
4035 * Called with irqs disabled.
4036 */
4037 static void flush_backlog(void *arg)
4038 {
4039 struct net_device *dev = arg;
4040 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4041 struct sk_buff *skb, *tmp;
4042
4043 rps_lock(sd);
4044 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4045 if (skb->dev == dev) {
4046 __skb_unlink(skb, &sd->input_pkt_queue);
4047 kfree_skb(skb);
4048 input_queue_head_incr(sd);
4049 }
4050 }
4051 rps_unlock(sd);
4052
4053 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4054 if (skb->dev == dev) {
4055 __skb_unlink(skb, &sd->process_queue);
4056 kfree_skb(skb);
4057 input_queue_head_incr(sd);
4058 }
4059 }
4060 }
4061
4062 static int napi_gro_complete(struct sk_buff *skb)
4063 {
4064 struct packet_offload *ptype;
4065 __be16 type = skb->protocol;
4066 struct list_head *head = &offload_base;
4067 int err = -ENOENT;
4068
4069 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4070
4071 if (NAPI_GRO_CB(skb)->count == 1) {
4072 skb_shinfo(skb)->gso_size = 0;
4073 goto out;
4074 }
4075
4076 rcu_read_lock();
4077 list_for_each_entry_rcu(ptype, head, list) {
4078 if (ptype->type != type || !ptype->callbacks.gro_complete)
4079 continue;
4080
4081 err = ptype->callbacks.gro_complete(skb, 0);
4082 break;
4083 }
4084 rcu_read_unlock();
4085
4086 if (err) {
4087 WARN_ON(&ptype->list == head);
4088 kfree_skb(skb);
4089 return NET_RX_SUCCESS;
4090 }
4091
4092 out:
4093 return netif_receive_skb_internal(skb);
4094 }
4095
4096 /* napi->gro_list contains packets ordered by age.
4097 * youngest packets at the head of it.
4098 * Complete skbs in reverse order to reduce latencies.
4099 */
4100 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4101 {
4102 struct sk_buff *skb, *prev = NULL;
4103
4104 /* scan list and build reverse chain */
4105 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4106 skb->prev = prev;
4107 prev = skb;
4108 }
4109
4110 for (skb = prev; skb; skb = prev) {
4111 skb->next = NULL;
4112
4113 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4114 return;
4115
4116 prev = skb->prev;
4117 napi_gro_complete(skb);
4118 napi->gro_count--;
4119 }
4120
4121 napi->gro_list = NULL;
4122 }
4123 EXPORT_SYMBOL(napi_gro_flush);
4124
4125 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4126 {
4127 struct sk_buff *p;
4128 unsigned int maclen = skb->dev->hard_header_len;
4129 u32 hash = skb_get_hash_raw(skb);
4130
4131 for (p = napi->gro_list; p; p = p->next) {
4132 unsigned long diffs;
4133
4134 NAPI_GRO_CB(p)->flush = 0;
4135
4136 if (hash != skb_get_hash_raw(p)) {
4137 NAPI_GRO_CB(p)->same_flow = 0;
4138 continue;
4139 }
4140
4141 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4142 diffs |= p->vlan_tci ^ skb->vlan_tci;
4143 if (maclen == ETH_HLEN)
4144 diffs |= compare_ether_header(skb_mac_header(p),
4145 skb_mac_header(skb));
4146 else if (!diffs)
4147 diffs = memcmp(skb_mac_header(p),
4148 skb_mac_header(skb),
4149 maclen);
4150 NAPI_GRO_CB(p)->same_flow = !diffs;
4151 }
4152 }
4153
4154 static void skb_gro_reset_offset(struct sk_buff *skb)
4155 {
4156 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4157 const skb_frag_t *frag0 = &pinfo->frags[0];
4158
4159 NAPI_GRO_CB(skb)->data_offset = 0;
4160 NAPI_GRO_CB(skb)->frag0 = NULL;
4161 NAPI_GRO_CB(skb)->frag0_len = 0;
4162
4163 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4164 pinfo->nr_frags &&
4165 !PageHighMem(skb_frag_page(frag0))) {
4166 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4167 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4168 }
4169 }
4170
4171 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4172 {
4173 struct skb_shared_info *pinfo = skb_shinfo(skb);
4174
4175 BUG_ON(skb->end - skb->tail < grow);
4176
4177 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4178
4179 skb->data_len -= grow;
4180 skb->tail += grow;
4181
4182 pinfo->frags[0].page_offset += grow;
4183 skb_frag_size_sub(&pinfo->frags[0], grow);
4184
4185 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4186 skb_frag_unref(skb, 0);
4187 memmove(pinfo->frags, pinfo->frags + 1,
4188 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4189 }
4190 }
4191
4192 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4193 {
4194 struct sk_buff **pp = NULL;
4195 struct packet_offload *ptype;
4196 __be16 type = skb->protocol;
4197 struct list_head *head = &offload_base;
4198 int same_flow;
4199 enum gro_result ret;
4200 int grow;
4201
4202 if (!(skb->dev->features & NETIF_F_GRO))
4203 goto normal;
4204
4205 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4206 goto normal;
4207
4208 gro_list_prepare(napi, skb);
4209
4210 rcu_read_lock();
4211 list_for_each_entry_rcu(ptype, head, list) {
4212 if (ptype->type != type || !ptype->callbacks.gro_receive)
4213 continue;
4214
4215 skb_set_network_header(skb, skb_gro_offset(skb));
4216 skb_reset_mac_len(skb);
4217 NAPI_GRO_CB(skb)->same_flow = 0;
4218 NAPI_GRO_CB(skb)->flush = 0;
4219 NAPI_GRO_CB(skb)->free = 0;
4220 NAPI_GRO_CB(skb)->udp_mark = 0;
4221 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4222
4223 /* Setup for GRO checksum validation */
4224 switch (skb->ip_summed) {
4225 case CHECKSUM_COMPLETE:
4226 NAPI_GRO_CB(skb)->csum = skb->csum;
4227 NAPI_GRO_CB(skb)->csum_valid = 1;
4228 NAPI_GRO_CB(skb)->csum_cnt = 0;
4229 break;
4230 case CHECKSUM_UNNECESSARY:
4231 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4232 NAPI_GRO_CB(skb)->csum_valid = 0;
4233 break;
4234 default:
4235 NAPI_GRO_CB(skb)->csum_cnt = 0;
4236 NAPI_GRO_CB(skb)->csum_valid = 0;
4237 }
4238
4239 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4240 break;
4241 }
4242 rcu_read_unlock();
4243
4244 if (&ptype->list == head)
4245 goto normal;
4246
4247 same_flow = NAPI_GRO_CB(skb)->same_flow;
4248 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4249
4250 if (pp) {
4251 struct sk_buff *nskb = *pp;
4252
4253 *pp = nskb->next;
4254 nskb->next = NULL;
4255 napi_gro_complete(nskb);
4256 napi->gro_count--;
4257 }
4258
4259 if (same_flow)
4260 goto ok;
4261
4262 if (NAPI_GRO_CB(skb)->flush)
4263 goto normal;
4264
4265 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4266 struct sk_buff *nskb = napi->gro_list;
4267
4268 /* locate the end of the list to select the 'oldest' flow */
4269 while (nskb->next) {
4270 pp = &nskb->next;
4271 nskb = *pp;
4272 }
4273 *pp = NULL;
4274 nskb->next = NULL;
4275 napi_gro_complete(nskb);
4276 } else {
4277 napi->gro_count++;
4278 }
4279 NAPI_GRO_CB(skb)->count = 1;
4280 NAPI_GRO_CB(skb)->age = jiffies;
4281 NAPI_GRO_CB(skb)->last = skb;
4282 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4283 skb->next = napi->gro_list;
4284 napi->gro_list = skb;
4285 ret = GRO_HELD;
4286
4287 pull:
4288 grow = skb_gro_offset(skb) - skb_headlen(skb);
4289 if (grow > 0)
4290 gro_pull_from_frag0(skb, grow);
4291 ok:
4292 return ret;
4293
4294 normal:
4295 ret = GRO_NORMAL;
4296 goto pull;
4297 }
4298
4299 struct packet_offload *gro_find_receive_by_type(__be16 type)
4300 {
4301 struct list_head *offload_head = &offload_base;
4302 struct packet_offload *ptype;
4303
4304 list_for_each_entry_rcu(ptype, offload_head, list) {
4305 if (ptype->type != type || !ptype->callbacks.gro_receive)
4306 continue;
4307 return ptype;
4308 }
4309 return NULL;
4310 }
4311 EXPORT_SYMBOL(gro_find_receive_by_type);
4312
4313 struct packet_offload *gro_find_complete_by_type(__be16 type)
4314 {
4315 struct list_head *offload_head = &offload_base;
4316 struct packet_offload *ptype;
4317
4318 list_for_each_entry_rcu(ptype, offload_head, list) {
4319 if (ptype->type != type || !ptype->callbacks.gro_complete)
4320 continue;
4321 return ptype;
4322 }
4323 return NULL;
4324 }
4325 EXPORT_SYMBOL(gro_find_complete_by_type);
4326
4327 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4328 {
4329 switch (ret) {
4330 case GRO_NORMAL:
4331 if (netif_receive_skb_internal(skb))
4332 ret = GRO_DROP;
4333 break;
4334
4335 case GRO_DROP:
4336 kfree_skb(skb);
4337 break;
4338
4339 case GRO_MERGED_FREE:
4340 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4341 kmem_cache_free(skbuff_head_cache, skb);
4342 else
4343 __kfree_skb(skb);
4344 break;
4345
4346 case GRO_HELD:
4347 case GRO_MERGED:
4348 break;
4349 }
4350
4351 return ret;
4352 }
4353
4354 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4355 {
4356 trace_napi_gro_receive_entry(skb);
4357
4358 skb_gro_reset_offset(skb);
4359
4360 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4361 }
4362 EXPORT_SYMBOL(napi_gro_receive);
4363
4364 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4365 {
4366 if (unlikely(skb->pfmemalloc)) {
4367 consume_skb(skb);
4368 return;
4369 }
4370 __skb_pull(skb, skb_headlen(skb));
4371 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4372 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4373 skb->vlan_tci = 0;
4374 skb->dev = napi->dev;
4375 skb->skb_iif = 0;
4376 skb->encapsulation = 0;
4377 skb_shinfo(skb)->gso_type = 0;
4378 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4379
4380 napi->skb = skb;
4381 }
4382
4383 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4384 {
4385 struct sk_buff *skb = napi->skb;
4386
4387 if (!skb) {
4388 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4389 napi->skb = skb;
4390 }
4391 return skb;
4392 }
4393 EXPORT_SYMBOL(napi_get_frags);
4394
4395 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4396 struct sk_buff *skb,
4397 gro_result_t ret)
4398 {
4399 switch (ret) {
4400 case GRO_NORMAL:
4401 case GRO_HELD:
4402 __skb_push(skb, ETH_HLEN);
4403 skb->protocol = eth_type_trans(skb, skb->dev);
4404 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4405 ret = GRO_DROP;
4406 break;
4407
4408 case GRO_DROP:
4409 case GRO_MERGED_FREE:
4410 napi_reuse_skb(napi, skb);
4411 break;
4412
4413 case GRO_MERGED:
4414 break;
4415 }
4416
4417 return ret;
4418 }
4419
4420 /* Upper GRO stack assumes network header starts at gro_offset=0
4421 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4422 * We copy ethernet header into skb->data to have a common layout.
4423 */
4424 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4425 {
4426 struct sk_buff *skb = napi->skb;
4427 const struct ethhdr *eth;
4428 unsigned int hlen = sizeof(*eth);
4429
4430 napi->skb = NULL;
4431
4432 skb_reset_mac_header(skb);
4433 skb_gro_reset_offset(skb);
4434
4435 eth = skb_gro_header_fast(skb, 0);
4436 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4437 eth = skb_gro_header_slow(skb, hlen, 0);
4438 if (unlikely(!eth)) {
4439 napi_reuse_skb(napi, skb);
4440 return NULL;
4441 }
4442 } else {
4443 gro_pull_from_frag0(skb, hlen);
4444 NAPI_GRO_CB(skb)->frag0 += hlen;
4445 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4446 }
4447 __skb_pull(skb, hlen);
4448
4449 /*
4450 * This works because the only protocols we care about don't require
4451 * special handling.
4452 * We'll fix it up properly in napi_frags_finish()
4453 */
4454 skb->protocol = eth->h_proto;
4455
4456 return skb;
4457 }
4458
4459 gro_result_t napi_gro_frags(struct napi_struct *napi)
4460 {
4461 struct sk_buff *skb = napi_frags_skb(napi);
4462
4463 if (!skb)
4464 return GRO_DROP;
4465
4466 trace_napi_gro_frags_entry(skb);
4467
4468 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4469 }
4470 EXPORT_SYMBOL(napi_gro_frags);
4471
4472 /* Compute the checksum from gro_offset and return the folded value
4473 * after adding in any pseudo checksum.
4474 */
4475 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4476 {
4477 __wsum wsum;
4478 __sum16 sum;
4479
4480 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4481
4482 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4483 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4484 if (likely(!sum)) {
4485 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4486 !skb->csum_complete_sw)
4487 netdev_rx_csum_fault(skb->dev);
4488 }
4489
4490 NAPI_GRO_CB(skb)->csum = wsum;
4491 NAPI_GRO_CB(skb)->csum_valid = 1;
4492
4493 return sum;
4494 }
4495 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4496
4497 /*
4498 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4499 * Note: called with local irq disabled, but exits with local irq enabled.
4500 */
4501 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4502 {
4503 #ifdef CONFIG_RPS
4504 struct softnet_data *remsd = sd->rps_ipi_list;
4505
4506 if (remsd) {
4507 sd->rps_ipi_list = NULL;
4508
4509 local_irq_enable();
4510
4511 /* Send pending IPI's to kick RPS processing on remote cpus. */
4512 while (remsd) {
4513 struct softnet_data *next = remsd->rps_ipi_next;
4514
4515 if (cpu_online(remsd->cpu))
4516 smp_call_function_single_async(remsd->cpu,
4517 &remsd->csd);
4518 remsd = next;
4519 }
4520 } else
4521 #endif
4522 local_irq_enable();
4523 }
4524
4525 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4526 {
4527 #ifdef CONFIG_RPS
4528 return sd->rps_ipi_list != NULL;
4529 #else
4530 return false;
4531 #endif
4532 }
4533
4534 static int process_backlog(struct napi_struct *napi, int quota)
4535 {
4536 int work = 0;
4537 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4538
4539 /* Check if we have pending ipi, its better to send them now,
4540 * not waiting net_rx_action() end.
4541 */
4542 if (sd_has_rps_ipi_waiting(sd)) {
4543 local_irq_disable();
4544 net_rps_action_and_irq_enable(sd);
4545 }
4546
4547 napi->weight = weight_p;
4548 local_irq_disable();
4549 while (1) {
4550 struct sk_buff *skb;
4551
4552 while ((skb = __skb_dequeue(&sd->process_queue))) {
4553 rcu_read_lock();
4554 local_irq_enable();
4555 __netif_receive_skb(skb);
4556 rcu_read_unlock();
4557 local_irq_disable();
4558 input_queue_head_incr(sd);
4559 if (++work >= quota) {
4560 local_irq_enable();
4561 return work;
4562 }
4563 }
4564
4565 rps_lock(sd);
4566 if (skb_queue_empty(&sd->input_pkt_queue)) {
4567 /*
4568 * Inline a custom version of __napi_complete().
4569 * only current cpu owns and manipulates this napi,
4570 * and NAPI_STATE_SCHED is the only possible flag set
4571 * on backlog.
4572 * We can use a plain write instead of clear_bit(),
4573 * and we dont need an smp_mb() memory barrier.
4574 */
4575 napi->state = 0;
4576 rps_unlock(sd);
4577
4578 break;
4579 }
4580
4581 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4582 &sd->process_queue);
4583 rps_unlock(sd);
4584 }
4585 local_irq_enable();
4586
4587 return work;
4588 }
4589
4590 /**
4591 * __napi_schedule - schedule for receive
4592 * @n: entry to schedule
4593 *
4594 * The entry's receive function will be scheduled to run.
4595 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4596 */
4597 void __napi_schedule(struct napi_struct *n)
4598 {
4599 unsigned long flags;
4600
4601 local_irq_save(flags);
4602 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4603 local_irq_restore(flags);
4604 }
4605 EXPORT_SYMBOL(__napi_schedule);
4606
4607 /**
4608 * __napi_schedule_irqoff - schedule for receive
4609 * @n: entry to schedule
4610 *
4611 * Variant of __napi_schedule() assuming hard irqs are masked
4612 */
4613 void __napi_schedule_irqoff(struct napi_struct *n)
4614 {
4615 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4616 }
4617 EXPORT_SYMBOL(__napi_schedule_irqoff);
4618
4619 void __napi_complete(struct napi_struct *n)
4620 {
4621 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4622
4623 list_del_init(&n->poll_list);
4624 smp_mb__before_atomic();
4625 clear_bit(NAPI_STATE_SCHED, &n->state);
4626 }
4627 EXPORT_SYMBOL(__napi_complete);
4628
4629 void napi_complete_done(struct napi_struct *n, int work_done)
4630 {
4631 unsigned long flags;
4632
4633 /*
4634 * don't let napi dequeue from the cpu poll list
4635 * just in case its running on a different cpu
4636 */
4637 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4638 return;
4639
4640 if (n->gro_list) {
4641 unsigned long timeout = 0;
4642
4643 if (work_done)
4644 timeout = n->dev->gro_flush_timeout;
4645
4646 if (timeout)
4647 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4648 HRTIMER_MODE_REL_PINNED);
4649 else
4650 napi_gro_flush(n, false);
4651 }
4652 if (likely(list_empty(&n->poll_list))) {
4653 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4654 } else {
4655 /* If n->poll_list is not empty, we need to mask irqs */
4656 local_irq_save(flags);
4657 __napi_complete(n);
4658 local_irq_restore(flags);
4659 }
4660 }
4661 EXPORT_SYMBOL(napi_complete_done);
4662
4663 /* must be called under rcu_read_lock(), as we dont take a reference */
4664 struct napi_struct *napi_by_id(unsigned int napi_id)
4665 {
4666 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4667 struct napi_struct *napi;
4668
4669 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4670 if (napi->napi_id == napi_id)
4671 return napi;
4672
4673 return NULL;
4674 }
4675 EXPORT_SYMBOL_GPL(napi_by_id);
4676
4677 void napi_hash_add(struct napi_struct *napi)
4678 {
4679 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4680
4681 spin_lock(&napi_hash_lock);
4682
4683 /* 0 is not a valid id, we also skip an id that is taken
4684 * we expect both events to be extremely rare
4685 */
4686 napi->napi_id = 0;
4687 while (!napi->napi_id) {
4688 napi->napi_id = ++napi_gen_id;
4689 if (napi_by_id(napi->napi_id))
4690 napi->napi_id = 0;
4691 }
4692
4693 hlist_add_head_rcu(&napi->napi_hash_node,
4694 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4695
4696 spin_unlock(&napi_hash_lock);
4697 }
4698 }
4699 EXPORT_SYMBOL_GPL(napi_hash_add);
4700
4701 /* Warning : caller is responsible to make sure rcu grace period
4702 * is respected before freeing memory containing @napi
4703 */
4704 void napi_hash_del(struct napi_struct *napi)
4705 {
4706 spin_lock(&napi_hash_lock);
4707
4708 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4709 hlist_del_rcu(&napi->napi_hash_node);
4710
4711 spin_unlock(&napi_hash_lock);
4712 }
4713 EXPORT_SYMBOL_GPL(napi_hash_del);
4714
4715 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4716 {
4717 struct napi_struct *napi;
4718
4719 napi = container_of(timer, struct napi_struct, timer);
4720 if (napi->gro_list)
4721 napi_schedule(napi);
4722
4723 return HRTIMER_NORESTART;
4724 }
4725
4726 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4727 int (*poll)(struct napi_struct *, int), int weight)
4728 {
4729 INIT_LIST_HEAD(&napi->poll_list);
4730 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4731 napi->timer.function = napi_watchdog;
4732 napi->gro_count = 0;
4733 napi->gro_list = NULL;
4734 napi->skb = NULL;
4735 napi->poll = poll;
4736 if (weight > NAPI_POLL_WEIGHT)
4737 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4738 weight, dev->name);
4739 napi->weight = weight;
4740 list_add(&napi->dev_list, &dev->napi_list);
4741 napi->dev = dev;
4742 #ifdef CONFIG_NETPOLL
4743 spin_lock_init(&napi->poll_lock);
4744 napi->poll_owner = -1;
4745 #endif
4746 set_bit(NAPI_STATE_SCHED, &napi->state);
4747 }
4748 EXPORT_SYMBOL(netif_napi_add);
4749
4750 void napi_disable(struct napi_struct *n)
4751 {
4752 might_sleep();
4753 set_bit(NAPI_STATE_DISABLE, &n->state);
4754
4755 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4756 msleep(1);
4757 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4758 msleep(1);
4759
4760 hrtimer_cancel(&n->timer);
4761
4762 clear_bit(NAPI_STATE_DISABLE, &n->state);
4763 }
4764 EXPORT_SYMBOL(napi_disable);
4765
4766 void netif_napi_del(struct napi_struct *napi)
4767 {
4768 list_del_init(&napi->dev_list);
4769 napi_free_frags(napi);
4770
4771 kfree_skb_list(napi->gro_list);
4772 napi->gro_list = NULL;
4773 napi->gro_count = 0;
4774 }
4775 EXPORT_SYMBOL(netif_napi_del);
4776
4777 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4778 {
4779 void *have;
4780 int work, weight;
4781
4782 list_del_init(&n->poll_list);
4783
4784 have = netpoll_poll_lock(n);
4785
4786 weight = n->weight;
4787
4788 /* This NAPI_STATE_SCHED test is for avoiding a race
4789 * with netpoll's poll_napi(). Only the entity which
4790 * obtains the lock and sees NAPI_STATE_SCHED set will
4791 * actually make the ->poll() call. Therefore we avoid
4792 * accidentally calling ->poll() when NAPI is not scheduled.
4793 */
4794 work = 0;
4795 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4796 work = n->poll(n, weight);
4797 trace_napi_poll(n);
4798 }
4799
4800 WARN_ON_ONCE(work > weight);
4801
4802 if (likely(work < weight))
4803 goto out_unlock;
4804
4805 /* Drivers must not modify the NAPI state if they
4806 * consume the entire weight. In such cases this code
4807 * still "owns" the NAPI instance and therefore can
4808 * move the instance around on the list at-will.
4809 */
4810 if (unlikely(napi_disable_pending(n))) {
4811 napi_complete(n);
4812 goto out_unlock;
4813 }
4814
4815 if (n->gro_list) {
4816 /* flush too old packets
4817 * If HZ < 1000, flush all packets.
4818 */
4819 napi_gro_flush(n, HZ >= 1000);
4820 }
4821
4822 /* Some drivers may have called napi_schedule
4823 * prior to exhausting their budget.
4824 */
4825 if (unlikely(!list_empty(&n->poll_list))) {
4826 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4827 n->dev ? n->dev->name : "backlog");
4828 goto out_unlock;
4829 }
4830
4831 list_add_tail(&n->poll_list, repoll);
4832
4833 out_unlock:
4834 netpoll_poll_unlock(have);
4835
4836 return work;
4837 }
4838
4839 static void net_rx_action(struct softirq_action *h)
4840 {
4841 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4842 unsigned long time_limit = jiffies + 2;
4843 int budget = netdev_budget;
4844 LIST_HEAD(list);
4845 LIST_HEAD(repoll);
4846
4847 local_irq_disable();
4848 list_splice_init(&sd->poll_list, &list);
4849 local_irq_enable();
4850
4851 for (;;) {
4852 struct napi_struct *n;
4853
4854 if (list_empty(&list)) {
4855 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4856 return;
4857 break;
4858 }
4859
4860 n = list_first_entry(&list, struct napi_struct, poll_list);
4861 budget -= napi_poll(n, &repoll);
4862
4863 /* If softirq window is exhausted then punt.
4864 * Allow this to run for 2 jiffies since which will allow
4865 * an average latency of 1.5/HZ.
4866 */
4867 if (unlikely(budget <= 0 ||
4868 time_after_eq(jiffies, time_limit))) {
4869 sd->time_squeeze++;
4870 break;
4871 }
4872 }
4873
4874 local_irq_disable();
4875
4876 list_splice_tail_init(&sd->poll_list, &list);
4877 list_splice_tail(&repoll, &list);
4878 list_splice(&list, &sd->poll_list);
4879 if (!list_empty(&sd->poll_list))
4880 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4881
4882 net_rps_action_and_irq_enable(sd);
4883 }
4884
4885 struct netdev_adjacent {
4886 struct net_device *dev;
4887
4888 /* upper master flag, there can only be one master device per list */
4889 bool master;
4890
4891 /* counter for the number of times this device was added to us */
4892 u16 ref_nr;
4893
4894 /* private field for the users */
4895 void *private;
4896
4897 struct list_head list;
4898 struct rcu_head rcu;
4899 };
4900
4901 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4902 struct list_head *adj_list)
4903 {
4904 struct netdev_adjacent *adj;
4905
4906 list_for_each_entry(adj, adj_list, list) {
4907 if (adj->dev == adj_dev)
4908 return adj;
4909 }
4910 return NULL;
4911 }
4912
4913 /**
4914 * netdev_has_upper_dev - Check if device is linked to an upper device
4915 * @dev: device
4916 * @upper_dev: upper device to check
4917 *
4918 * Find out if a device is linked to specified upper device and return true
4919 * in case it is. Note that this checks only immediate upper device,
4920 * not through a complete stack of devices. The caller must hold the RTNL lock.
4921 */
4922 bool netdev_has_upper_dev(struct net_device *dev,
4923 struct net_device *upper_dev)
4924 {
4925 ASSERT_RTNL();
4926
4927 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4928 }
4929 EXPORT_SYMBOL(netdev_has_upper_dev);
4930
4931 /**
4932 * netdev_has_any_upper_dev - Check if device is linked to some device
4933 * @dev: device
4934 *
4935 * Find out if a device is linked to an upper device and return true in case
4936 * it is. The caller must hold the RTNL lock.
4937 */
4938 static bool netdev_has_any_upper_dev(struct net_device *dev)
4939 {
4940 ASSERT_RTNL();
4941
4942 return !list_empty(&dev->all_adj_list.upper);
4943 }
4944
4945 /**
4946 * netdev_master_upper_dev_get - Get master upper device
4947 * @dev: device
4948 *
4949 * Find a master upper device and return pointer to it or NULL in case
4950 * it's not there. The caller must hold the RTNL lock.
4951 */
4952 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4953 {
4954 struct netdev_adjacent *upper;
4955
4956 ASSERT_RTNL();
4957
4958 if (list_empty(&dev->adj_list.upper))
4959 return NULL;
4960
4961 upper = list_first_entry(&dev->adj_list.upper,
4962 struct netdev_adjacent, list);
4963 if (likely(upper->master))
4964 return upper->dev;
4965 return NULL;
4966 }
4967 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4968
4969 void *netdev_adjacent_get_private(struct list_head *adj_list)
4970 {
4971 struct netdev_adjacent *adj;
4972
4973 adj = list_entry(adj_list, struct netdev_adjacent, list);
4974
4975 return adj->private;
4976 }
4977 EXPORT_SYMBOL(netdev_adjacent_get_private);
4978
4979 /**
4980 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4981 * @dev: device
4982 * @iter: list_head ** of the current position
4983 *
4984 * Gets the next device from the dev's upper list, starting from iter
4985 * position. The caller must hold RCU read lock.
4986 */
4987 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4988 struct list_head **iter)
4989 {
4990 struct netdev_adjacent *upper;
4991
4992 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4993
4994 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4995
4996 if (&upper->list == &dev->adj_list.upper)
4997 return NULL;
4998
4999 *iter = &upper->list;
5000
5001 return upper->dev;
5002 }
5003 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5004
5005 /**
5006 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5007 * @dev: device
5008 * @iter: list_head ** of the current position
5009 *
5010 * Gets the next device from the dev's upper list, starting from iter
5011 * position. The caller must hold RCU read lock.
5012 */
5013 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5014 struct list_head **iter)
5015 {
5016 struct netdev_adjacent *upper;
5017
5018 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5019
5020 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5021
5022 if (&upper->list == &dev->all_adj_list.upper)
5023 return NULL;
5024
5025 *iter = &upper->list;
5026
5027 return upper->dev;
5028 }
5029 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5030
5031 /**
5032 * netdev_lower_get_next_private - Get the next ->private from the
5033 * lower neighbour list
5034 * @dev: device
5035 * @iter: list_head ** of the current position
5036 *
5037 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5038 * list, starting from iter position. The caller must hold either hold the
5039 * RTNL lock or its own locking that guarantees that the neighbour lower
5040 * list will remain unchanged.
5041 */
5042 void *netdev_lower_get_next_private(struct net_device *dev,
5043 struct list_head **iter)
5044 {
5045 struct netdev_adjacent *lower;
5046
5047 lower = list_entry(*iter, struct netdev_adjacent, list);
5048
5049 if (&lower->list == &dev->adj_list.lower)
5050 return NULL;
5051
5052 *iter = lower->list.next;
5053
5054 return lower->private;
5055 }
5056 EXPORT_SYMBOL(netdev_lower_get_next_private);
5057
5058 /**
5059 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5060 * lower neighbour list, RCU
5061 * variant
5062 * @dev: device
5063 * @iter: list_head ** of the current position
5064 *
5065 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5066 * list, starting from iter position. The caller must hold RCU read lock.
5067 */
5068 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5069 struct list_head **iter)
5070 {
5071 struct netdev_adjacent *lower;
5072
5073 WARN_ON_ONCE(!rcu_read_lock_held());
5074
5075 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5076
5077 if (&lower->list == &dev->adj_list.lower)
5078 return NULL;
5079
5080 *iter = &lower->list;
5081
5082 return lower->private;
5083 }
5084 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5085
5086 /**
5087 * netdev_lower_get_next - Get the next device from the lower neighbour
5088 * list
5089 * @dev: device
5090 * @iter: list_head ** of the current position
5091 *
5092 * Gets the next netdev_adjacent from the dev's lower neighbour
5093 * list, starting from iter position. The caller must hold RTNL lock or
5094 * its own locking that guarantees that the neighbour lower
5095 * list will remain unchanged.
5096 */
5097 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5098 {
5099 struct netdev_adjacent *lower;
5100
5101 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5102
5103 if (&lower->list == &dev->adj_list.lower)
5104 return NULL;
5105
5106 *iter = &lower->list;
5107
5108 return lower->dev;
5109 }
5110 EXPORT_SYMBOL(netdev_lower_get_next);
5111
5112 /**
5113 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5114 * lower neighbour list, RCU
5115 * variant
5116 * @dev: device
5117 *
5118 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5119 * list. The caller must hold RCU read lock.
5120 */
5121 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5122 {
5123 struct netdev_adjacent *lower;
5124
5125 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5126 struct netdev_adjacent, list);
5127 if (lower)
5128 return lower->private;
5129 return NULL;
5130 }
5131 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5132
5133 /**
5134 * netdev_master_upper_dev_get_rcu - Get master upper device
5135 * @dev: device
5136 *
5137 * Find a master upper device and return pointer to it or NULL in case
5138 * it's not there. The caller must hold the RCU read lock.
5139 */
5140 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5141 {
5142 struct netdev_adjacent *upper;
5143
5144 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5145 struct netdev_adjacent, list);
5146 if (upper && likely(upper->master))
5147 return upper->dev;
5148 return NULL;
5149 }
5150 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5151
5152 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5153 struct net_device *adj_dev,
5154 struct list_head *dev_list)
5155 {
5156 char linkname[IFNAMSIZ+7];
5157 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5158 "upper_%s" : "lower_%s", adj_dev->name);
5159 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5160 linkname);
5161 }
5162 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5163 char *name,
5164 struct list_head *dev_list)
5165 {
5166 char linkname[IFNAMSIZ+7];
5167 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5168 "upper_%s" : "lower_%s", name);
5169 sysfs_remove_link(&(dev->dev.kobj), linkname);
5170 }
5171
5172 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5173 struct net_device *adj_dev,
5174 struct list_head *dev_list)
5175 {
5176 return (dev_list == &dev->adj_list.upper ||
5177 dev_list == &dev->adj_list.lower) &&
5178 net_eq(dev_net(dev), dev_net(adj_dev));
5179 }
5180
5181 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5182 struct net_device *adj_dev,
5183 struct list_head *dev_list,
5184 void *private, bool master)
5185 {
5186 struct netdev_adjacent *adj;
5187 int ret;
5188
5189 adj = __netdev_find_adj(adj_dev, dev_list);
5190
5191 if (adj) {
5192 adj->ref_nr++;
5193 return 0;
5194 }
5195
5196 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5197 if (!adj)
5198 return -ENOMEM;
5199
5200 adj->dev = adj_dev;
5201 adj->master = master;
5202 adj->ref_nr = 1;
5203 adj->private = private;
5204 dev_hold(adj_dev);
5205
5206 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5207 adj_dev->name, dev->name, adj_dev->name);
5208
5209 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5210 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5211 if (ret)
5212 goto free_adj;
5213 }
5214
5215 /* Ensure that master link is always the first item in list. */
5216 if (master) {
5217 ret = sysfs_create_link(&(dev->dev.kobj),
5218 &(adj_dev->dev.kobj), "master");
5219 if (ret)
5220 goto remove_symlinks;
5221
5222 list_add_rcu(&adj->list, dev_list);
5223 } else {
5224 list_add_tail_rcu(&adj->list, dev_list);
5225 }
5226
5227 return 0;
5228
5229 remove_symlinks:
5230 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5231 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5232 free_adj:
5233 kfree(adj);
5234 dev_put(adj_dev);
5235
5236 return ret;
5237 }
5238
5239 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5240 struct net_device *adj_dev,
5241 struct list_head *dev_list)
5242 {
5243 struct netdev_adjacent *adj;
5244
5245 adj = __netdev_find_adj(adj_dev, dev_list);
5246
5247 if (!adj) {
5248 pr_err("tried to remove device %s from %s\n",
5249 dev->name, adj_dev->name);
5250 BUG();
5251 }
5252
5253 if (adj->ref_nr > 1) {
5254 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5255 adj->ref_nr-1);
5256 adj->ref_nr--;
5257 return;
5258 }
5259
5260 if (adj->master)
5261 sysfs_remove_link(&(dev->dev.kobj), "master");
5262
5263 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5264 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5265
5266 list_del_rcu(&adj->list);
5267 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5268 adj_dev->name, dev->name, adj_dev->name);
5269 dev_put(adj_dev);
5270 kfree_rcu(adj, rcu);
5271 }
5272
5273 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5274 struct net_device *upper_dev,
5275 struct list_head *up_list,
5276 struct list_head *down_list,
5277 void *private, bool master)
5278 {
5279 int ret;
5280
5281 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5282 master);
5283 if (ret)
5284 return ret;
5285
5286 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5287 false);
5288 if (ret) {
5289 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5290 return ret;
5291 }
5292
5293 return 0;
5294 }
5295
5296 static int __netdev_adjacent_dev_link(struct net_device *dev,
5297 struct net_device *upper_dev)
5298 {
5299 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5300 &dev->all_adj_list.upper,
5301 &upper_dev->all_adj_list.lower,
5302 NULL, false);
5303 }
5304
5305 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5306 struct net_device *upper_dev,
5307 struct list_head *up_list,
5308 struct list_head *down_list)
5309 {
5310 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5311 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5312 }
5313
5314 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5315 struct net_device *upper_dev)
5316 {
5317 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5318 &dev->all_adj_list.upper,
5319 &upper_dev->all_adj_list.lower);
5320 }
5321
5322 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5323 struct net_device *upper_dev,
5324 void *private, bool master)
5325 {
5326 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5327
5328 if (ret)
5329 return ret;
5330
5331 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5332 &dev->adj_list.upper,
5333 &upper_dev->adj_list.lower,
5334 private, master);
5335 if (ret) {
5336 __netdev_adjacent_dev_unlink(dev, upper_dev);
5337 return ret;
5338 }
5339
5340 return 0;
5341 }
5342
5343 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5344 struct net_device *upper_dev)
5345 {
5346 __netdev_adjacent_dev_unlink(dev, upper_dev);
5347 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5348 &dev->adj_list.upper,
5349 &upper_dev->adj_list.lower);
5350 }
5351
5352 static int __netdev_upper_dev_link(struct net_device *dev,
5353 struct net_device *upper_dev, bool master,
5354 void *private)
5355 {
5356 struct netdev_notifier_changeupper_info changeupper_info;
5357 struct netdev_adjacent *i, *j, *to_i, *to_j;
5358 int ret = 0;
5359
5360 ASSERT_RTNL();
5361
5362 if (dev == upper_dev)
5363 return -EBUSY;
5364
5365 /* To prevent loops, check if dev is not upper device to upper_dev. */
5366 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5367 return -EBUSY;
5368
5369 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5370 return -EEXIST;
5371
5372 if (master && netdev_master_upper_dev_get(dev))
5373 return -EBUSY;
5374
5375 changeupper_info.upper_dev = upper_dev;
5376 changeupper_info.master = master;
5377 changeupper_info.linking = true;
5378
5379 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5380 &changeupper_info.info);
5381 ret = notifier_to_errno(ret);
5382 if (ret)
5383 return ret;
5384
5385 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5386 master);
5387 if (ret)
5388 return ret;
5389
5390 /* Now that we linked these devs, make all the upper_dev's
5391 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5392 * versa, and don't forget the devices itself. All of these
5393 * links are non-neighbours.
5394 */
5395 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5396 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5397 pr_debug("Interlinking %s with %s, non-neighbour\n",
5398 i->dev->name, j->dev->name);
5399 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5400 if (ret)
5401 goto rollback_mesh;
5402 }
5403 }
5404
5405 /* add dev to every upper_dev's upper device */
5406 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5407 pr_debug("linking %s's upper device %s with %s\n",
5408 upper_dev->name, i->dev->name, dev->name);
5409 ret = __netdev_adjacent_dev_link(dev, i->dev);
5410 if (ret)
5411 goto rollback_upper_mesh;
5412 }
5413
5414 /* add upper_dev to every dev's lower device */
5415 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5416 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5417 i->dev->name, upper_dev->name);
5418 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5419 if (ret)
5420 goto rollback_lower_mesh;
5421 }
5422
5423 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5424 &changeupper_info.info);
5425 return 0;
5426
5427 rollback_lower_mesh:
5428 to_i = i;
5429 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5430 if (i == to_i)
5431 break;
5432 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5433 }
5434
5435 i = NULL;
5436
5437 rollback_upper_mesh:
5438 to_i = i;
5439 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5440 if (i == to_i)
5441 break;
5442 __netdev_adjacent_dev_unlink(dev, i->dev);
5443 }
5444
5445 i = j = NULL;
5446
5447 rollback_mesh:
5448 to_i = i;
5449 to_j = j;
5450 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5451 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5452 if (i == to_i && j == to_j)
5453 break;
5454 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5455 }
5456 if (i == to_i)
5457 break;
5458 }
5459
5460 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5461
5462 return ret;
5463 }
5464
5465 /**
5466 * netdev_upper_dev_link - Add a link to the upper device
5467 * @dev: device
5468 * @upper_dev: new upper device
5469 *
5470 * Adds a link to device which is upper to this one. The caller must hold
5471 * the RTNL lock. On a failure a negative errno code is returned.
5472 * On success the reference counts are adjusted and the function
5473 * returns zero.
5474 */
5475 int netdev_upper_dev_link(struct net_device *dev,
5476 struct net_device *upper_dev)
5477 {
5478 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5479 }
5480 EXPORT_SYMBOL(netdev_upper_dev_link);
5481
5482 /**
5483 * netdev_master_upper_dev_link - Add a master link to the upper device
5484 * @dev: device
5485 * @upper_dev: new upper device
5486 *
5487 * Adds a link to device which is upper to this one. In this case, only
5488 * one master upper device can be linked, although other non-master devices
5489 * might be linked as well. The caller must hold the RTNL lock.
5490 * On a failure a negative errno code is returned. On success the reference
5491 * counts are adjusted and the function returns zero.
5492 */
5493 int netdev_master_upper_dev_link(struct net_device *dev,
5494 struct net_device *upper_dev)
5495 {
5496 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5497 }
5498 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5499
5500 int netdev_master_upper_dev_link_private(struct net_device *dev,
5501 struct net_device *upper_dev,
5502 void *private)
5503 {
5504 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5505 }
5506 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5507
5508 /**
5509 * netdev_upper_dev_unlink - Removes a link to upper device
5510 * @dev: device
5511 * @upper_dev: new upper device
5512 *
5513 * Removes a link to device which is upper to this one. The caller must hold
5514 * the RTNL lock.
5515 */
5516 void netdev_upper_dev_unlink(struct net_device *dev,
5517 struct net_device *upper_dev)
5518 {
5519 struct netdev_notifier_changeupper_info changeupper_info;
5520 struct netdev_adjacent *i, *j;
5521 ASSERT_RTNL();
5522
5523 changeupper_info.upper_dev = upper_dev;
5524 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5525 changeupper_info.linking = false;
5526
5527 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5528 &changeupper_info.info);
5529
5530 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5531
5532 /* Here is the tricky part. We must remove all dev's lower
5533 * devices from all upper_dev's upper devices and vice
5534 * versa, to maintain the graph relationship.
5535 */
5536 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5537 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5538 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5539
5540 /* remove also the devices itself from lower/upper device
5541 * list
5542 */
5543 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5544 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5545
5546 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5547 __netdev_adjacent_dev_unlink(dev, i->dev);
5548
5549 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5550 &changeupper_info.info);
5551 }
5552 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5553
5554 /**
5555 * netdev_bonding_info_change - Dispatch event about slave change
5556 * @dev: device
5557 * @bonding_info: info to dispatch
5558 *
5559 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5560 * The caller must hold the RTNL lock.
5561 */
5562 void netdev_bonding_info_change(struct net_device *dev,
5563 struct netdev_bonding_info *bonding_info)
5564 {
5565 struct netdev_notifier_bonding_info info;
5566
5567 memcpy(&info.bonding_info, bonding_info,
5568 sizeof(struct netdev_bonding_info));
5569 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5570 &info.info);
5571 }
5572 EXPORT_SYMBOL(netdev_bonding_info_change);
5573
5574 static void netdev_adjacent_add_links(struct net_device *dev)
5575 {
5576 struct netdev_adjacent *iter;
5577
5578 struct net *net = dev_net(dev);
5579
5580 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5581 if (!net_eq(net,dev_net(iter->dev)))
5582 continue;
5583 netdev_adjacent_sysfs_add(iter->dev, dev,
5584 &iter->dev->adj_list.lower);
5585 netdev_adjacent_sysfs_add(dev, iter->dev,
5586 &dev->adj_list.upper);
5587 }
5588
5589 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5590 if (!net_eq(net,dev_net(iter->dev)))
5591 continue;
5592 netdev_adjacent_sysfs_add(iter->dev, dev,
5593 &iter->dev->adj_list.upper);
5594 netdev_adjacent_sysfs_add(dev, iter->dev,
5595 &dev->adj_list.lower);
5596 }
5597 }
5598
5599 static void netdev_adjacent_del_links(struct net_device *dev)
5600 {
5601 struct netdev_adjacent *iter;
5602
5603 struct net *net = dev_net(dev);
5604
5605 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5606 if (!net_eq(net,dev_net(iter->dev)))
5607 continue;
5608 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5609 &iter->dev->adj_list.lower);
5610 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5611 &dev->adj_list.upper);
5612 }
5613
5614 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5615 if (!net_eq(net,dev_net(iter->dev)))
5616 continue;
5617 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5618 &iter->dev->adj_list.upper);
5619 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5620 &dev->adj_list.lower);
5621 }
5622 }
5623
5624 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5625 {
5626 struct netdev_adjacent *iter;
5627
5628 struct net *net = dev_net(dev);
5629
5630 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5631 if (!net_eq(net,dev_net(iter->dev)))
5632 continue;
5633 netdev_adjacent_sysfs_del(iter->dev, oldname,
5634 &iter->dev->adj_list.lower);
5635 netdev_adjacent_sysfs_add(iter->dev, dev,
5636 &iter->dev->adj_list.lower);
5637 }
5638
5639 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5640 if (!net_eq(net,dev_net(iter->dev)))
5641 continue;
5642 netdev_adjacent_sysfs_del(iter->dev, oldname,
5643 &iter->dev->adj_list.upper);
5644 netdev_adjacent_sysfs_add(iter->dev, dev,
5645 &iter->dev->adj_list.upper);
5646 }
5647 }
5648
5649 void *netdev_lower_dev_get_private(struct net_device *dev,
5650 struct net_device *lower_dev)
5651 {
5652 struct netdev_adjacent *lower;
5653
5654 if (!lower_dev)
5655 return NULL;
5656 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5657 if (!lower)
5658 return NULL;
5659
5660 return lower->private;
5661 }
5662 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5663
5664
5665 int dev_get_nest_level(struct net_device *dev,
5666 bool (*type_check)(struct net_device *dev))
5667 {
5668 struct net_device *lower = NULL;
5669 struct list_head *iter;
5670 int max_nest = -1;
5671 int nest;
5672
5673 ASSERT_RTNL();
5674
5675 netdev_for_each_lower_dev(dev, lower, iter) {
5676 nest = dev_get_nest_level(lower, type_check);
5677 if (max_nest < nest)
5678 max_nest = nest;
5679 }
5680
5681 if (type_check(dev))
5682 max_nest++;
5683
5684 return max_nest;
5685 }
5686 EXPORT_SYMBOL(dev_get_nest_level);
5687
5688 static void dev_change_rx_flags(struct net_device *dev, int flags)
5689 {
5690 const struct net_device_ops *ops = dev->netdev_ops;
5691
5692 if (ops->ndo_change_rx_flags)
5693 ops->ndo_change_rx_flags(dev, flags);
5694 }
5695
5696 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5697 {
5698 unsigned int old_flags = dev->flags;
5699 kuid_t uid;
5700 kgid_t gid;
5701
5702 ASSERT_RTNL();
5703
5704 dev->flags |= IFF_PROMISC;
5705 dev->promiscuity += inc;
5706 if (dev->promiscuity == 0) {
5707 /*
5708 * Avoid overflow.
5709 * If inc causes overflow, untouch promisc and return error.
5710 */
5711 if (inc < 0)
5712 dev->flags &= ~IFF_PROMISC;
5713 else {
5714 dev->promiscuity -= inc;
5715 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5716 dev->name);
5717 return -EOVERFLOW;
5718 }
5719 }
5720 if (dev->flags != old_flags) {
5721 pr_info("device %s %s promiscuous mode\n",
5722 dev->name,
5723 dev->flags & IFF_PROMISC ? "entered" : "left");
5724 if (audit_enabled) {
5725 current_uid_gid(&uid, &gid);
5726 audit_log(current->audit_context, GFP_ATOMIC,
5727 AUDIT_ANOM_PROMISCUOUS,
5728 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5729 dev->name, (dev->flags & IFF_PROMISC),
5730 (old_flags & IFF_PROMISC),
5731 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5732 from_kuid(&init_user_ns, uid),
5733 from_kgid(&init_user_ns, gid),
5734 audit_get_sessionid(current));
5735 }
5736
5737 dev_change_rx_flags(dev, IFF_PROMISC);
5738 }
5739 if (notify)
5740 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5741 return 0;
5742 }
5743
5744 /**
5745 * dev_set_promiscuity - update promiscuity count on a device
5746 * @dev: device
5747 * @inc: modifier
5748 *
5749 * Add or remove promiscuity from a device. While the count in the device
5750 * remains above zero the interface remains promiscuous. Once it hits zero
5751 * the device reverts back to normal filtering operation. A negative inc
5752 * value is used to drop promiscuity on the device.
5753 * Return 0 if successful or a negative errno code on error.
5754 */
5755 int dev_set_promiscuity(struct net_device *dev, int inc)
5756 {
5757 unsigned int old_flags = dev->flags;
5758 int err;
5759
5760 err = __dev_set_promiscuity(dev, inc, true);
5761 if (err < 0)
5762 return err;
5763 if (dev->flags != old_flags)
5764 dev_set_rx_mode(dev);
5765 return err;
5766 }
5767 EXPORT_SYMBOL(dev_set_promiscuity);
5768
5769 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5770 {
5771 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5772
5773 ASSERT_RTNL();
5774
5775 dev->flags |= IFF_ALLMULTI;
5776 dev->allmulti += inc;
5777 if (dev->allmulti == 0) {
5778 /*
5779 * Avoid overflow.
5780 * If inc causes overflow, untouch allmulti and return error.
5781 */
5782 if (inc < 0)
5783 dev->flags &= ~IFF_ALLMULTI;
5784 else {
5785 dev->allmulti -= inc;
5786 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5787 dev->name);
5788 return -EOVERFLOW;
5789 }
5790 }
5791 if (dev->flags ^ old_flags) {
5792 dev_change_rx_flags(dev, IFF_ALLMULTI);
5793 dev_set_rx_mode(dev);
5794 if (notify)
5795 __dev_notify_flags(dev, old_flags,
5796 dev->gflags ^ old_gflags);
5797 }
5798 return 0;
5799 }
5800
5801 /**
5802 * dev_set_allmulti - update allmulti count on a device
5803 * @dev: device
5804 * @inc: modifier
5805 *
5806 * Add or remove reception of all multicast frames to a device. While the
5807 * count in the device remains above zero the interface remains listening
5808 * to all interfaces. Once it hits zero the device reverts back to normal
5809 * filtering operation. A negative @inc value is used to drop the counter
5810 * when releasing a resource needing all multicasts.
5811 * Return 0 if successful or a negative errno code on error.
5812 */
5813
5814 int dev_set_allmulti(struct net_device *dev, int inc)
5815 {
5816 return __dev_set_allmulti(dev, inc, true);
5817 }
5818 EXPORT_SYMBOL(dev_set_allmulti);
5819
5820 /*
5821 * Upload unicast and multicast address lists to device and
5822 * configure RX filtering. When the device doesn't support unicast
5823 * filtering it is put in promiscuous mode while unicast addresses
5824 * are present.
5825 */
5826 void __dev_set_rx_mode(struct net_device *dev)
5827 {
5828 const struct net_device_ops *ops = dev->netdev_ops;
5829
5830 /* dev_open will call this function so the list will stay sane. */
5831 if (!(dev->flags&IFF_UP))
5832 return;
5833
5834 if (!netif_device_present(dev))
5835 return;
5836
5837 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5838 /* Unicast addresses changes may only happen under the rtnl,
5839 * therefore calling __dev_set_promiscuity here is safe.
5840 */
5841 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5842 __dev_set_promiscuity(dev, 1, false);
5843 dev->uc_promisc = true;
5844 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5845 __dev_set_promiscuity(dev, -1, false);
5846 dev->uc_promisc = false;
5847 }
5848 }
5849
5850 if (ops->ndo_set_rx_mode)
5851 ops->ndo_set_rx_mode(dev);
5852 }
5853
5854 void dev_set_rx_mode(struct net_device *dev)
5855 {
5856 netif_addr_lock_bh(dev);
5857 __dev_set_rx_mode(dev);
5858 netif_addr_unlock_bh(dev);
5859 }
5860
5861 /**
5862 * dev_get_flags - get flags reported to userspace
5863 * @dev: device
5864 *
5865 * Get the combination of flag bits exported through APIs to userspace.
5866 */
5867 unsigned int dev_get_flags(const struct net_device *dev)
5868 {
5869 unsigned int flags;
5870
5871 flags = (dev->flags & ~(IFF_PROMISC |
5872 IFF_ALLMULTI |
5873 IFF_RUNNING |
5874 IFF_LOWER_UP |
5875 IFF_DORMANT)) |
5876 (dev->gflags & (IFF_PROMISC |
5877 IFF_ALLMULTI));
5878
5879 if (netif_running(dev)) {
5880 if (netif_oper_up(dev))
5881 flags |= IFF_RUNNING;
5882 if (netif_carrier_ok(dev))
5883 flags |= IFF_LOWER_UP;
5884 if (netif_dormant(dev))
5885 flags |= IFF_DORMANT;
5886 }
5887
5888 return flags;
5889 }
5890 EXPORT_SYMBOL(dev_get_flags);
5891
5892 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5893 {
5894 unsigned int old_flags = dev->flags;
5895 int ret;
5896
5897 ASSERT_RTNL();
5898
5899 /*
5900 * Set the flags on our device.
5901 */
5902
5903 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5904 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5905 IFF_AUTOMEDIA)) |
5906 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5907 IFF_ALLMULTI));
5908
5909 /*
5910 * Load in the correct multicast list now the flags have changed.
5911 */
5912
5913 if ((old_flags ^ flags) & IFF_MULTICAST)
5914 dev_change_rx_flags(dev, IFF_MULTICAST);
5915
5916 dev_set_rx_mode(dev);
5917
5918 /*
5919 * Have we downed the interface. We handle IFF_UP ourselves
5920 * according to user attempts to set it, rather than blindly
5921 * setting it.
5922 */
5923
5924 ret = 0;
5925 if ((old_flags ^ flags) & IFF_UP)
5926 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5927
5928 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5929 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5930 unsigned int old_flags = dev->flags;
5931
5932 dev->gflags ^= IFF_PROMISC;
5933
5934 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5935 if (dev->flags != old_flags)
5936 dev_set_rx_mode(dev);
5937 }
5938
5939 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5940 is important. Some (broken) drivers set IFF_PROMISC, when
5941 IFF_ALLMULTI is requested not asking us and not reporting.
5942 */
5943 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5944 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5945
5946 dev->gflags ^= IFF_ALLMULTI;
5947 __dev_set_allmulti(dev, inc, false);
5948 }
5949
5950 return ret;
5951 }
5952
5953 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5954 unsigned int gchanges)
5955 {
5956 unsigned int changes = dev->flags ^ old_flags;
5957
5958 if (gchanges)
5959 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5960
5961 if (changes & IFF_UP) {
5962 if (dev->flags & IFF_UP)
5963 call_netdevice_notifiers(NETDEV_UP, dev);
5964 else
5965 call_netdevice_notifiers(NETDEV_DOWN, dev);
5966 }
5967
5968 if (dev->flags & IFF_UP &&
5969 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5970 struct netdev_notifier_change_info change_info;
5971
5972 change_info.flags_changed = changes;
5973 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5974 &change_info.info);
5975 }
5976 }
5977
5978 /**
5979 * dev_change_flags - change device settings
5980 * @dev: device
5981 * @flags: device state flags
5982 *
5983 * Change settings on device based state flags. The flags are
5984 * in the userspace exported format.
5985 */
5986 int dev_change_flags(struct net_device *dev, unsigned int flags)
5987 {
5988 int ret;
5989 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5990
5991 ret = __dev_change_flags(dev, flags);
5992 if (ret < 0)
5993 return ret;
5994
5995 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5996 __dev_notify_flags(dev, old_flags, changes);
5997 return ret;
5998 }
5999 EXPORT_SYMBOL(dev_change_flags);
6000
6001 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6002 {
6003 const struct net_device_ops *ops = dev->netdev_ops;
6004
6005 if (ops->ndo_change_mtu)
6006 return ops->ndo_change_mtu(dev, new_mtu);
6007
6008 dev->mtu = new_mtu;
6009 return 0;
6010 }
6011
6012 /**
6013 * dev_set_mtu - Change maximum transfer unit
6014 * @dev: device
6015 * @new_mtu: new transfer unit
6016 *
6017 * Change the maximum transfer size of the network device.
6018 */
6019 int dev_set_mtu(struct net_device *dev, int new_mtu)
6020 {
6021 int err, orig_mtu;
6022
6023 if (new_mtu == dev->mtu)
6024 return 0;
6025
6026 /* MTU must be positive. */
6027 if (new_mtu < 0)
6028 return -EINVAL;
6029
6030 if (!netif_device_present(dev))
6031 return -ENODEV;
6032
6033 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6034 err = notifier_to_errno(err);
6035 if (err)
6036 return err;
6037
6038 orig_mtu = dev->mtu;
6039 err = __dev_set_mtu(dev, new_mtu);
6040
6041 if (!err) {
6042 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6043 err = notifier_to_errno(err);
6044 if (err) {
6045 /* setting mtu back and notifying everyone again,
6046 * so that they have a chance to revert changes.
6047 */
6048 __dev_set_mtu(dev, orig_mtu);
6049 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6050 }
6051 }
6052 return err;
6053 }
6054 EXPORT_SYMBOL(dev_set_mtu);
6055
6056 /**
6057 * dev_set_group - Change group this device belongs to
6058 * @dev: device
6059 * @new_group: group this device should belong to
6060 */
6061 void dev_set_group(struct net_device *dev, int new_group)
6062 {
6063 dev->group = new_group;
6064 }
6065 EXPORT_SYMBOL(dev_set_group);
6066
6067 /**
6068 * dev_set_mac_address - Change Media Access Control Address
6069 * @dev: device
6070 * @sa: new address
6071 *
6072 * Change the hardware (MAC) address of the device
6073 */
6074 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6075 {
6076 const struct net_device_ops *ops = dev->netdev_ops;
6077 int err;
6078
6079 if (!ops->ndo_set_mac_address)
6080 return -EOPNOTSUPP;
6081 if (sa->sa_family != dev->type)
6082 return -EINVAL;
6083 if (!netif_device_present(dev))
6084 return -ENODEV;
6085 err = ops->ndo_set_mac_address(dev, sa);
6086 if (err)
6087 return err;
6088 dev->addr_assign_type = NET_ADDR_SET;
6089 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6090 add_device_randomness(dev->dev_addr, dev->addr_len);
6091 return 0;
6092 }
6093 EXPORT_SYMBOL(dev_set_mac_address);
6094
6095 /**
6096 * dev_change_carrier - Change device carrier
6097 * @dev: device
6098 * @new_carrier: new value
6099 *
6100 * Change device carrier
6101 */
6102 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6103 {
6104 const struct net_device_ops *ops = dev->netdev_ops;
6105
6106 if (!ops->ndo_change_carrier)
6107 return -EOPNOTSUPP;
6108 if (!netif_device_present(dev))
6109 return -ENODEV;
6110 return ops->ndo_change_carrier(dev, new_carrier);
6111 }
6112 EXPORT_SYMBOL(dev_change_carrier);
6113
6114 /**
6115 * dev_get_phys_port_id - Get device physical port ID
6116 * @dev: device
6117 * @ppid: port ID
6118 *
6119 * Get device physical port ID
6120 */
6121 int dev_get_phys_port_id(struct net_device *dev,
6122 struct netdev_phys_item_id *ppid)
6123 {
6124 const struct net_device_ops *ops = dev->netdev_ops;
6125
6126 if (!ops->ndo_get_phys_port_id)
6127 return -EOPNOTSUPP;
6128 return ops->ndo_get_phys_port_id(dev, ppid);
6129 }
6130 EXPORT_SYMBOL(dev_get_phys_port_id);
6131
6132 /**
6133 * dev_get_phys_port_name - Get device physical port name
6134 * @dev: device
6135 * @name: port name
6136 *
6137 * Get device physical port name
6138 */
6139 int dev_get_phys_port_name(struct net_device *dev,
6140 char *name, size_t len)
6141 {
6142 const struct net_device_ops *ops = dev->netdev_ops;
6143
6144 if (!ops->ndo_get_phys_port_name)
6145 return -EOPNOTSUPP;
6146 return ops->ndo_get_phys_port_name(dev, name, len);
6147 }
6148 EXPORT_SYMBOL(dev_get_phys_port_name);
6149
6150 /**
6151 * dev_change_proto_down - update protocol port state information
6152 * @dev: device
6153 * @proto_down: new value
6154 *
6155 * This info can be used by switch drivers to set the phys state of the
6156 * port.
6157 */
6158 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6159 {
6160 const struct net_device_ops *ops = dev->netdev_ops;
6161
6162 if (!ops->ndo_change_proto_down)
6163 return -EOPNOTSUPP;
6164 if (!netif_device_present(dev))
6165 return -ENODEV;
6166 return ops->ndo_change_proto_down(dev, proto_down);
6167 }
6168 EXPORT_SYMBOL(dev_change_proto_down);
6169
6170 /**
6171 * dev_new_index - allocate an ifindex
6172 * @net: the applicable net namespace
6173 *
6174 * Returns a suitable unique value for a new device interface
6175 * number. The caller must hold the rtnl semaphore or the
6176 * dev_base_lock to be sure it remains unique.
6177 */
6178 static int dev_new_index(struct net *net)
6179 {
6180 int ifindex = net->ifindex;
6181 for (;;) {
6182 if (++ifindex <= 0)
6183 ifindex = 1;
6184 if (!__dev_get_by_index(net, ifindex))
6185 return net->ifindex = ifindex;
6186 }
6187 }
6188
6189 /* Delayed registration/unregisteration */
6190 static LIST_HEAD(net_todo_list);
6191 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6192
6193 static void net_set_todo(struct net_device *dev)
6194 {
6195 list_add_tail(&dev->todo_list, &net_todo_list);
6196 dev_net(dev)->dev_unreg_count++;
6197 }
6198
6199 static void rollback_registered_many(struct list_head *head)
6200 {
6201 struct net_device *dev, *tmp;
6202 LIST_HEAD(close_head);
6203
6204 BUG_ON(dev_boot_phase);
6205 ASSERT_RTNL();
6206
6207 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6208 /* Some devices call without registering
6209 * for initialization unwind. Remove those
6210 * devices and proceed with the remaining.
6211 */
6212 if (dev->reg_state == NETREG_UNINITIALIZED) {
6213 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6214 dev->name, dev);
6215
6216 WARN_ON(1);
6217 list_del(&dev->unreg_list);
6218 continue;
6219 }
6220 dev->dismantle = true;
6221 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6222 }
6223
6224 /* If device is running, close it first. */
6225 list_for_each_entry(dev, head, unreg_list)
6226 list_add_tail(&dev->close_list, &close_head);
6227 dev_close_many(&close_head, true);
6228
6229 list_for_each_entry(dev, head, unreg_list) {
6230 /* And unlink it from device chain. */
6231 unlist_netdevice(dev);
6232
6233 dev->reg_state = NETREG_UNREGISTERING;
6234 on_each_cpu(flush_backlog, dev, 1);
6235 }
6236
6237 synchronize_net();
6238
6239 list_for_each_entry(dev, head, unreg_list) {
6240 struct sk_buff *skb = NULL;
6241
6242 /* Shutdown queueing discipline. */
6243 dev_shutdown(dev);
6244
6245
6246 /* Notify protocols, that we are about to destroy
6247 this device. They should clean all the things.
6248 */
6249 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6250
6251 if (!dev->rtnl_link_ops ||
6252 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6253 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6254 GFP_KERNEL);
6255
6256 /*
6257 * Flush the unicast and multicast chains
6258 */
6259 dev_uc_flush(dev);
6260 dev_mc_flush(dev);
6261
6262 if (dev->netdev_ops->ndo_uninit)
6263 dev->netdev_ops->ndo_uninit(dev);
6264
6265 if (skb)
6266 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6267
6268 /* Notifier chain MUST detach us all upper devices. */
6269 WARN_ON(netdev_has_any_upper_dev(dev));
6270
6271 /* Remove entries from kobject tree */
6272 netdev_unregister_kobject(dev);
6273 #ifdef CONFIG_XPS
6274 /* Remove XPS queueing entries */
6275 netif_reset_xps_queues_gt(dev, 0);
6276 #endif
6277 }
6278
6279 synchronize_net();
6280
6281 list_for_each_entry(dev, head, unreg_list)
6282 dev_put(dev);
6283 }
6284
6285 static void rollback_registered(struct net_device *dev)
6286 {
6287 LIST_HEAD(single);
6288
6289 list_add(&dev->unreg_list, &single);
6290 rollback_registered_many(&single);
6291 list_del(&single);
6292 }
6293
6294 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6295 struct net_device *upper, netdev_features_t features)
6296 {
6297 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6298 netdev_features_t feature;
6299 int feature_bit;
6300
6301 for_each_netdev_feature(&upper_disables, feature_bit) {
6302 feature = __NETIF_F_BIT(feature_bit);
6303 if (!(upper->wanted_features & feature)
6304 && (features & feature)) {
6305 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6306 &feature, upper->name);
6307 features &= ~feature;
6308 }
6309 }
6310
6311 return features;
6312 }
6313
6314 static void netdev_sync_lower_features(struct net_device *upper,
6315 struct net_device *lower, netdev_features_t features)
6316 {
6317 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6318 netdev_features_t feature;
6319 int feature_bit;
6320
6321 for_each_netdev_feature(&upper_disables, feature_bit) {
6322 feature = __NETIF_F_BIT(feature_bit);
6323 if (!(features & feature) && (lower->features & feature)) {
6324 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6325 &feature, lower->name);
6326 lower->wanted_features &= ~feature;
6327 netdev_update_features(lower);
6328
6329 if (unlikely(lower->features & feature))
6330 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6331 &feature, lower->name);
6332 }
6333 }
6334 }
6335
6336 static netdev_features_t netdev_fix_features(struct net_device *dev,
6337 netdev_features_t features)
6338 {
6339 /* Fix illegal checksum combinations */
6340 if ((features & NETIF_F_HW_CSUM) &&
6341 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6342 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6343 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6344 }
6345
6346 /* TSO requires that SG is present as well. */
6347 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6348 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6349 features &= ~NETIF_F_ALL_TSO;
6350 }
6351
6352 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6353 !(features & NETIF_F_IP_CSUM)) {
6354 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6355 features &= ~NETIF_F_TSO;
6356 features &= ~NETIF_F_TSO_ECN;
6357 }
6358
6359 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6360 !(features & NETIF_F_IPV6_CSUM)) {
6361 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6362 features &= ~NETIF_F_TSO6;
6363 }
6364
6365 /* TSO ECN requires that TSO is present as well. */
6366 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6367 features &= ~NETIF_F_TSO_ECN;
6368
6369 /* Software GSO depends on SG. */
6370 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6371 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6372 features &= ~NETIF_F_GSO;
6373 }
6374
6375 /* UFO needs SG and checksumming */
6376 if (features & NETIF_F_UFO) {
6377 /* maybe split UFO into V4 and V6? */
6378 if (!((features & NETIF_F_GEN_CSUM) ||
6379 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6380 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6381 netdev_dbg(dev,
6382 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6383 features &= ~NETIF_F_UFO;
6384 }
6385
6386 if (!(features & NETIF_F_SG)) {
6387 netdev_dbg(dev,
6388 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6389 features &= ~NETIF_F_UFO;
6390 }
6391 }
6392
6393 #ifdef CONFIG_NET_RX_BUSY_POLL
6394 if (dev->netdev_ops->ndo_busy_poll)
6395 features |= NETIF_F_BUSY_POLL;
6396 else
6397 #endif
6398 features &= ~NETIF_F_BUSY_POLL;
6399
6400 return features;
6401 }
6402
6403 int __netdev_update_features(struct net_device *dev)
6404 {
6405 struct net_device *upper, *lower;
6406 netdev_features_t features;
6407 struct list_head *iter;
6408 int err = -1;
6409
6410 ASSERT_RTNL();
6411
6412 features = netdev_get_wanted_features(dev);
6413
6414 if (dev->netdev_ops->ndo_fix_features)
6415 features = dev->netdev_ops->ndo_fix_features(dev, features);
6416
6417 /* driver might be less strict about feature dependencies */
6418 features = netdev_fix_features(dev, features);
6419
6420 /* some features can't be enabled if they're off an an upper device */
6421 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6422 features = netdev_sync_upper_features(dev, upper, features);
6423
6424 if (dev->features == features)
6425 goto sync_lower;
6426
6427 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6428 &dev->features, &features);
6429
6430 if (dev->netdev_ops->ndo_set_features)
6431 err = dev->netdev_ops->ndo_set_features(dev, features);
6432 else
6433 err = 0;
6434
6435 if (unlikely(err < 0)) {
6436 netdev_err(dev,
6437 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6438 err, &features, &dev->features);
6439 return 0;
6440 }
6441
6442 sync_lower:
6443 /* some features must be disabled on lower devices when disabled
6444 * on an upper device (think: bonding master or bridge)
6445 */
6446 netdev_for_each_lower_dev(dev, lower, iter)
6447 netdev_sync_lower_features(dev, lower, features);
6448
6449 if (!err)
6450 dev->features = features;
6451
6452 return err < 0 ? 0 : 1;
6453 }
6454
6455 /**
6456 * netdev_update_features - recalculate device features
6457 * @dev: the device to check
6458 *
6459 * Recalculate dev->features set and send notifications if it
6460 * has changed. Should be called after driver or hardware dependent
6461 * conditions might have changed that influence the features.
6462 */
6463 void netdev_update_features(struct net_device *dev)
6464 {
6465 if (__netdev_update_features(dev))
6466 netdev_features_change(dev);
6467 }
6468 EXPORT_SYMBOL(netdev_update_features);
6469
6470 /**
6471 * netdev_change_features - recalculate device features
6472 * @dev: the device to check
6473 *
6474 * Recalculate dev->features set and send notifications even
6475 * if they have not changed. Should be called instead of
6476 * netdev_update_features() if also dev->vlan_features might
6477 * have changed to allow the changes to be propagated to stacked
6478 * VLAN devices.
6479 */
6480 void netdev_change_features(struct net_device *dev)
6481 {
6482 __netdev_update_features(dev);
6483 netdev_features_change(dev);
6484 }
6485 EXPORT_SYMBOL(netdev_change_features);
6486
6487 /**
6488 * netif_stacked_transfer_operstate - transfer operstate
6489 * @rootdev: the root or lower level device to transfer state from
6490 * @dev: the device to transfer operstate to
6491 *
6492 * Transfer operational state from root to device. This is normally
6493 * called when a stacking relationship exists between the root
6494 * device and the device(a leaf device).
6495 */
6496 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6497 struct net_device *dev)
6498 {
6499 if (rootdev->operstate == IF_OPER_DORMANT)
6500 netif_dormant_on(dev);
6501 else
6502 netif_dormant_off(dev);
6503
6504 if (netif_carrier_ok(rootdev)) {
6505 if (!netif_carrier_ok(dev))
6506 netif_carrier_on(dev);
6507 } else {
6508 if (netif_carrier_ok(dev))
6509 netif_carrier_off(dev);
6510 }
6511 }
6512 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6513
6514 #ifdef CONFIG_SYSFS
6515 static int netif_alloc_rx_queues(struct net_device *dev)
6516 {
6517 unsigned int i, count = dev->num_rx_queues;
6518 struct netdev_rx_queue *rx;
6519 size_t sz = count * sizeof(*rx);
6520
6521 BUG_ON(count < 1);
6522
6523 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6524 if (!rx) {
6525 rx = vzalloc(sz);
6526 if (!rx)
6527 return -ENOMEM;
6528 }
6529 dev->_rx = rx;
6530
6531 for (i = 0; i < count; i++)
6532 rx[i].dev = dev;
6533 return 0;
6534 }
6535 #endif
6536
6537 static void netdev_init_one_queue(struct net_device *dev,
6538 struct netdev_queue *queue, void *_unused)
6539 {
6540 /* Initialize queue lock */
6541 spin_lock_init(&queue->_xmit_lock);
6542 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6543 queue->xmit_lock_owner = -1;
6544 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6545 queue->dev = dev;
6546 #ifdef CONFIG_BQL
6547 dql_init(&queue->dql, HZ);
6548 #endif
6549 }
6550
6551 static void netif_free_tx_queues(struct net_device *dev)
6552 {
6553 kvfree(dev->_tx);
6554 }
6555
6556 static int netif_alloc_netdev_queues(struct net_device *dev)
6557 {
6558 unsigned int count = dev->num_tx_queues;
6559 struct netdev_queue *tx;
6560 size_t sz = count * sizeof(*tx);
6561
6562 if (count < 1 || count > 0xffff)
6563 return -EINVAL;
6564
6565 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6566 if (!tx) {
6567 tx = vzalloc(sz);
6568 if (!tx)
6569 return -ENOMEM;
6570 }
6571 dev->_tx = tx;
6572
6573 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6574 spin_lock_init(&dev->tx_global_lock);
6575
6576 return 0;
6577 }
6578
6579 void netif_tx_stop_all_queues(struct net_device *dev)
6580 {
6581 unsigned int i;
6582
6583 for (i = 0; i < dev->num_tx_queues; i++) {
6584 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6585 netif_tx_stop_queue(txq);
6586 }
6587 }
6588 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6589
6590 /**
6591 * register_netdevice - register a network device
6592 * @dev: device to register
6593 *
6594 * Take a completed network device structure and add it to the kernel
6595 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6596 * chain. 0 is returned on success. A negative errno code is returned
6597 * on a failure to set up the device, or if the name is a duplicate.
6598 *
6599 * Callers must hold the rtnl semaphore. You may want
6600 * register_netdev() instead of this.
6601 *
6602 * BUGS:
6603 * The locking appears insufficient to guarantee two parallel registers
6604 * will not get the same name.
6605 */
6606
6607 int register_netdevice(struct net_device *dev)
6608 {
6609 int ret;
6610 struct net *net = dev_net(dev);
6611
6612 BUG_ON(dev_boot_phase);
6613 ASSERT_RTNL();
6614
6615 might_sleep();
6616
6617 /* When net_device's are persistent, this will be fatal. */
6618 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6619 BUG_ON(!net);
6620
6621 spin_lock_init(&dev->addr_list_lock);
6622 netdev_set_addr_lockdep_class(dev);
6623
6624 ret = dev_get_valid_name(net, dev, dev->name);
6625 if (ret < 0)
6626 goto out;
6627
6628 /* Init, if this function is available */
6629 if (dev->netdev_ops->ndo_init) {
6630 ret = dev->netdev_ops->ndo_init(dev);
6631 if (ret) {
6632 if (ret > 0)
6633 ret = -EIO;
6634 goto out;
6635 }
6636 }
6637
6638 if (((dev->hw_features | dev->features) &
6639 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6640 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6641 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6642 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6643 ret = -EINVAL;
6644 goto err_uninit;
6645 }
6646
6647 ret = -EBUSY;
6648 if (!dev->ifindex)
6649 dev->ifindex = dev_new_index(net);
6650 else if (__dev_get_by_index(net, dev->ifindex))
6651 goto err_uninit;
6652
6653 /* Transfer changeable features to wanted_features and enable
6654 * software offloads (GSO and GRO).
6655 */
6656 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6657 dev->features |= NETIF_F_SOFT_FEATURES;
6658 dev->wanted_features = dev->features & dev->hw_features;
6659
6660 if (!(dev->flags & IFF_LOOPBACK)) {
6661 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6662 }
6663
6664 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6665 */
6666 dev->vlan_features |= NETIF_F_HIGHDMA;
6667
6668 /* Make NETIF_F_SG inheritable to tunnel devices.
6669 */
6670 dev->hw_enc_features |= NETIF_F_SG;
6671
6672 /* Make NETIF_F_SG inheritable to MPLS.
6673 */
6674 dev->mpls_features |= NETIF_F_SG;
6675
6676 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6677 ret = notifier_to_errno(ret);
6678 if (ret)
6679 goto err_uninit;
6680
6681 ret = netdev_register_kobject(dev);
6682 if (ret)
6683 goto err_uninit;
6684 dev->reg_state = NETREG_REGISTERED;
6685
6686 __netdev_update_features(dev);
6687
6688 /*
6689 * Default initial state at registry is that the
6690 * device is present.
6691 */
6692
6693 set_bit(__LINK_STATE_PRESENT, &dev->state);
6694
6695 linkwatch_init_dev(dev);
6696
6697 dev_init_scheduler(dev);
6698 dev_hold(dev);
6699 list_netdevice(dev);
6700 add_device_randomness(dev->dev_addr, dev->addr_len);
6701
6702 /* If the device has permanent device address, driver should
6703 * set dev_addr and also addr_assign_type should be set to
6704 * NET_ADDR_PERM (default value).
6705 */
6706 if (dev->addr_assign_type == NET_ADDR_PERM)
6707 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6708
6709 /* Notify protocols, that a new device appeared. */
6710 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6711 ret = notifier_to_errno(ret);
6712 if (ret) {
6713 rollback_registered(dev);
6714 dev->reg_state = NETREG_UNREGISTERED;
6715 }
6716 /*
6717 * Prevent userspace races by waiting until the network
6718 * device is fully setup before sending notifications.
6719 */
6720 if (!dev->rtnl_link_ops ||
6721 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6722 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6723
6724 out:
6725 return ret;
6726
6727 err_uninit:
6728 if (dev->netdev_ops->ndo_uninit)
6729 dev->netdev_ops->ndo_uninit(dev);
6730 goto out;
6731 }
6732 EXPORT_SYMBOL(register_netdevice);
6733
6734 /**
6735 * init_dummy_netdev - init a dummy network device for NAPI
6736 * @dev: device to init
6737 *
6738 * This takes a network device structure and initialize the minimum
6739 * amount of fields so it can be used to schedule NAPI polls without
6740 * registering a full blown interface. This is to be used by drivers
6741 * that need to tie several hardware interfaces to a single NAPI
6742 * poll scheduler due to HW limitations.
6743 */
6744 int init_dummy_netdev(struct net_device *dev)
6745 {
6746 /* Clear everything. Note we don't initialize spinlocks
6747 * are they aren't supposed to be taken by any of the
6748 * NAPI code and this dummy netdev is supposed to be
6749 * only ever used for NAPI polls
6750 */
6751 memset(dev, 0, sizeof(struct net_device));
6752
6753 /* make sure we BUG if trying to hit standard
6754 * register/unregister code path
6755 */
6756 dev->reg_state = NETREG_DUMMY;
6757
6758 /* NAPI wants this */
6759 INIT_LIST_HEAD(&dev->napi_list);
6760
6761 /* a dummy interface is started by default */
6762 set_bit(__LINK_STATE_PRESENT, &dev->state);
6763 set_bit(__LINK_STATE_START, &dev->state);
6764
6765 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6766 * because users of this 'device' dont need to change
6767 * its refcount.
6768 */
6769
6770 return 0;
6771 }
6772 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6773
6774
6775 /**
6776 * register_netdev - register a network device
6777 * @dev: device to register
6778 *
6779 * Take a completed network device structure and add it to the kernel
6780 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6781 * chain. 0 is returned on success. A negative errno code is returned
6782 * on a failure to set up the device, or if the name is a duplicate.
6783 *
6784 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6785 * and expands the device name if you passed a format string to
6786 * alloc_netdev.
6787 */
6788 int register_netdev(struct net_device *dev)
6789 {
6790 int err;
6791
6792 rtnl_lock();
6793 err = register_netdevice(dev);
6794 rtnl_unlock();
6795 return err;
6796 }
6797 EXPORT_SYMBOL(register_netdev);
6798
6799 int netdev_refcnt_read(const struct net_device *dev)
6800 {
6801 int i, refcnt = 0;
6802
6803 for_each_possible_cpu(i)
6804 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6805 return refcnt;
6806 }
6807 EXPORT_SYMBOL(netdev_refcnt_read);
6808
6809 /**
6810 * netdev_wait_allrefs - wait until all references are gone.
6811 * @dev: target net_device
6812 *
6813 * This is called when unregistering network devices.
6814 *
6815 * Any protocol or device that holds a reference should register
6816 * for netdevice notification, and cleanup and put back the
6817 * reference if they receive an UNREGISTER event.
6818 * We can get stuck here if buggy protocols don't correctly
6819 * call dev_put.
6820 */
6821 static void netdev_wait_allrefs(struct net_device *dev)
6822 {
6823 unsigned long rebroadcast_time, warning_time;
6824 int refcnt;
6825
6826 linkwatch_forget_dev(dev);
6827
6828 rebroadcast_time = warning_time = jiffies;
6829 refcnt = netdev_refcnt_read(dev);
6830
6831 while (refcnt != 0) {
6832 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6833 rtnl_lock();
6834
6835 /* Rebroadcast unregister notification */
6836 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6837
6838 __rtnl_unlock();
6839 rcu_barrier();
6840 rtnl_lock();
6841
6842 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6843 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6844 &dev->state)) {
6845 /* We must not have linkwatch events
6846 * pending on unregister. If this
6847 * happens, we simply run the queue
6848 * unscheduled, resulting in a noop
6849 * for this device.
6850 */
6851 linkwatch_run_queue();
6852 }
6853
6854 __rtnl_unlock();
6855
6856 rebroadcast_time = jiffies;
6857 }
6858
6859 msleep(250);
6860
6861 refcnt = netdev_refcnt_read(dev);
6862
6863 if (time_after(jiffies, warning_time + 10 * HZ)) {
6864 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6865 dev->name, refcnt);
6866 warning_time = jiffies;
6867 }
6868 }
6869 }
6870
6871 /* The sequence is:
6872 *
6873 * rtnl_lock();
6874 * ...
6875 * register_netdevice(x1);
6876 * register_netdevice(x2);
6877 * ...
6878 * unregister_netdevice(y1);
6879 * unregister_netdevice(y2);
6880 * ...
6881 * rtnl_unlock();
6882 * free_netdev(y1);
6883 * free_netdev(y2);
6884 *
6885 * We are invoked by rtnl_unlock().
6886 * This allows us to deal with problems:
6887 * 1) We can delete sysfs objects which invoke hotplug
6888 * without deadlocking with linkwatch via keventd.
6889 * 2) Since we run with the RTNL semaphore not held, we can sleep
6890 * safely in order to wait for the netdev refcnt to drop to zero.
6891 *
6892 * We must not return until all unregister events added during
6893 * the interval the lock was held have been completed.
6894 */
6895 void netdev_run_todo(void)
6896 {
6897 struct list_head list;
6898
6899 /* Snapshot list, allow later requests */
6900 list_replace_init(&net_todo_list, &list);
6901
6902 __rtnl_unlock();
6903
6904
6905 /* Wait for rcu callbacks to finish before next phase */
6906 if (!list_empty(&list))
6907 rcu_barrier();
6908
6909 while (!list_empty(&list)) {
6910 struct net_device *dev
6911 = list_first_entry(&list, struct net_device, todo_list);
6912 list_del(&dev->todo_list);
6913
6914 rtnl_lock();
6915 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6916 __rtnl_unlock();
6917
6918 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6919 pr_err("network todo '%s' but state %d\n",
6920 dev->name, dev->reg_state);
6921 dump_stack();
6922 continue;
6923 }
6924
6925 dev->reg_state = NETREG_UNREGISTERED;
6926
6927 netdev_wait_allrefs(dev);
6928
6929 /* paranoia */
6930 BUG_ON(netdev_refcnt_read(dev));
6931 BUG_ON(!list_empty(&dev->ptype_all));
6932 BUG_ON(!list_empty(&dev->ptype_specific));
6933 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6934 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6935 WARN_ON(dev->dn_ptr);
6936
6937 if (dev->destructor)
6938 dev->destructor(dev);
6939
6940 /* Report a network device has been unregistered */
6941 rtnl_lock();
6942 dev_net(dev)->dev_unreg_count--;
6943 __rtnl_unlock();
6944 wake_up(&netdev_unregistering_wq);
6945
6946 /* Free network device */
6947 kobject_put(&dev->dev.kobj);
6948 }
6949 }
6950
6951 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6952 * fields in the same order, with only the type differing.
6953 */
6954 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6955 const struct net_device_stats *netdev_stats)
6956 {
6957 #if BITS_PER_LONG == 64
6958 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6959 memcpy(stats64, netdev_stats, sizeof(*stats64));
6960 #else
6961 size_t i, n = sizeof(*stats64) / sizeof(u64);
6962 const unsigned long *src = (const unsigned long *)netdev_stats;
6963 u64 *dst = (u64 *)stats64;
6964
6965 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6966 sizeof(*stats64) / sizeof(u64));
6967 for (i = 0; i < n; i++)
6968 dst[i] = src[i];
6969 #endif
6970 }
6971 EXPORT_SYMBOL(netdev_stats_to_stats64);
6972
6973 /**
6974 * dev_get_stats - get network device statistics
6975 * @dev: device to get statistics from
6976 * @storage: place to store stats
6977 *
6978 * Get network statistics from device. Return @storage.
6979 * The device driver may provide its own method by setting
6980 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6981 * otherwise the internal statistics structure is used.
6982 */
6983 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6984 struct rtnl_link_stats64 *storage)
6985 {
6986 const struct net_device_ops *ops = dev->netdev_ops;
6987
6988 if (ops->ndo_get_stats64) {
6989 memset(storage, 0, sizeof(*storage));
6990 ops->ndo_get_stats64(dev, storage);
6991 } else if (ops->ndo_get_stats) {
6992 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6993 } else {
6994 netdev_stats_to_stats64(storage, &dev->stats);
6995 }
6996 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6997 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6998 return storage;
6999 }
7000 EXPORT_SYMBOL(dev_get_stats);
7001
7002 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7003 {
7004 struct netdev_queue *queue = dev_ingress_queue(dev);
7005
7006 #ifdef CONFIG_NET_CLS_ACT
7007 if (queue)
7008 return queue;
7009 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7010 if (!queue)
7011 return NULL;
7012 netdev_init_one_queue(dev, queue, NULL);
7013 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7014 queue->qdisc_sleeping = &noop_qdisc;
7015 rcu_assign_pointer(dev->ingress_queue, queue);
7016 #endif
7017 return queue;
7018 }
7019
7020 static const struct ethtool_ops default_ethtool_ops;
7021
7022 void netdev_set_default_ethtool_ops(struct net_device *dev,
7023 const struct ethtool_ops *ops)
7024 {
7025 if (dev->ethtool_ops == &default_ethtool_ops)
7026 dev->ethtool_ops = ops;
7027 }
7028 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7029
7030 void netdev_freemem(struct net_device *dev)
7031 {
7032 char *addr = (char *)dev - dev->padded;
7033
7034 kvfree(addr);
7035 }
7036
7037 /**
7038 * alloc_netdev_mqs - allocate network device
7039 * @sizeof_priv: size of private data to allocate space for
7040 * @name: device name format string
7041 * @name_assign_type: origin of device name
7042 * @setup: callback to initialize device
7043 * @txqs: the number of TX subqueues to allocate
7044 * @rxqs: the number of RX subqueues to allocate
7045 *
7046 * Allocates a struct net_device with private data area for driver use
7047 * and performs basic initialization. Also allocates subqueue structs
7048 * for each queue on the device.
7049 */
7050 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7051 unsigned char name_assign_type,
7052 void (*setup)(struct net_device *),
7053 unsigned int txqs, unsigned int rxqs)
7054 {
7055 struct net_device *dev;
7056 size_t alloc_size;
7057 struct net_device *p;
7058
7059 BUG_ON(strlen(name) >= sizeof(dev->name));
7060
7061 if (txqs < 1) {
7062 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7063 return NULL;
7064 }
7065
7066 #ifdef CONFIG_SYSFS
7067 if (rxqs < 1) {
7068 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7069 return NULL;
7070 }
7071 #endif
7072
7073 alloc_size = sizeof(struct net_device);
7074 if (sizeof_priv) {
7075 /* ensure 32-byte alignment of private area */
7076 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7077 alloc_size += sizeof_priv;
7078 }
7079 /* ensure 32-byte alignment of whole construct */
7080 alloc_size += NETDEV_ALIGN - 1;
7081
7082 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7083 if (!p)
7084 p = vzalloc(alloc_size);
7085 if (!p)
7086 return NULL;
7087
7088 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7089 dev->padded = (char *)dev - (char *)p;
7090
7091 dev->pcpu_refcnt = alloc_percpu(int);
7092 if (!dev->pcpu_refcnt)
7093 goto free_dev;
7094
7095 if (dev_addr_init(dev))
7096 goto free_pcpu;
7097
7098 dev_mc_init(dev);
7099 dev_uc_init(dev);
7100
7101 dev_net_set(dev, &init_net);
7102
7103 dev->gso_max_size = GSO_MAX_SIZE;
7104 dev->gso_max_segs = GSO_MAX_SEGS;
7105 dev->gso_min_segs = 0;
7106
7107 INIT_LIST_HEAD(&dev->napi_list);
7108 INIT_LIST_HEAD(&dev->unreg_list);
7109 INIT_LIST_HEAD(&dev->close_list);
7110 INIT_LIST_HEAD(&dev->link_watch_list);
7111 INIT_LIST_HEAD(&dev->adj_list.upper);
7112 INIT_LIST_HEAD(&dev->adj_list.lower);
7113 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7114 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7115 INIT_LIST_HEAD(&dev->ptype_all);
7116 INIT_LIST_HEAD(&dev->ptype_specific);
7117 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7118 setup(dev);
7119
7120 if (!dev->tx_queue_len)
7121 dev->priv_flags |= IFF_NO_QUEUE;
7122
7123 dev->num_tx_queues = txqs;
7124 dev->real_num_tx_queues = txqs;
7125 if (netif_alloc_netdev_queues(dev))
7126 goto free_all;
7127
7128 #ifdef CONFIG_SYSFS
7129 dev->num_rx_queues = rxqs;
7130 dev->real_num_rx_queues = rxqs;
7131 if (netif_alloc_rx_queues(dev))
7132 goto free_all;
7133 #endif
7134
7135 strcpy(dev->name, name);
7136 dev->name_assign_type = name_assign_type;
7137 dev->group = INIT_NETDEV_GROUP;
7138 if (!dev->ethtool_ops)
7139 dev->ethtool_ops = &default_ethtool_ops;
7140
7141 nf_hook_ingress_init(dev);
7142
7143 return dev;
7144
7145 free_all:
7146 free_netdev(dev);
7147 return NULL;
7148
7149 free_pcpu:
7150 free_percpu(dev->pcpu_refcnt);
7151 free_dev:
7152 netdev_freemem(dev);
7153 return NULL;
7154 }
7155 EXPORT_SYMBOL(alloc_netdev_mqs);
7156
7157 /**
7158 * free_netdev - free network device
7159 * @dev: device
7160 *
7161 * This function does the last stage of destroying an allocated device
7162 * interface. The reference to the device object is released.
7163 * If this is the last reference then it will be freed.
7164 */
7165 void free_netdev(struct net_device *dev)
7166 {
7167 struct napi_struct *p, *n;
7168
7169 netif_free_tx_queues(dev);
7170 #ifdef CONFIG_SYSFS
7171 kvfree(dev->_rx);
7172 #endif
7173
7174 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7175
7176 /* Flush device addresses */
7177 dev_addr_flush(dev);
7178
7179 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7180 netif_napi_del(p);
7181
7182 free_percpu(dev->pcpu_refcnt);
7183 dev->pcpu_refcnt = NULL;
7184
7185 /* Compatibility with error handling in drivers */
7186 if (dev->reg_state == NETREG_UNINITIALIZED) {
7187 netdev_freemem(dev);
7188 return;
7189 }
7190
7191 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7192 dev->reg_state = NETREG_RELEASED;
7193
7194 /* will free via device release */
7195 put_device(&dev->dev);
7196 }
7197 EXPORT_SYMBOL(free_netdev);
7198
7199 /**
7200 * synchronize_net - Synchronize with packet receive processing
7201 *
7202 * Wait for packets currently being received to be done.
7203 * Does not block later packets from starting.
7204 */
7205 void synchronize_net(void)
7206 {
7207 might_sleep();
7208 if (rtnl_is_locked())
7209 synchronize_rcu_expedited();
7210 else
7211 synchronize_rcu();
7212 }
7213 EXPORT_SYMBOL(synchronize_net);
7214
7215 /**
7216 * unregister_netdevice_queue - remove device from the kernel
7217 * @dev: device
7218 * @head: list
7219 *
7220 * This function shuts down a device interface and removes it
7221 * from the kernel tables.
7222 * If head not NULL, device is queued to be unregistered later.
7223 *
7224 * Callers must hold the rtnl semaphore. You may want
7225 * unregister_netdev() instead of this.
7226 */
7227
7228 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7229 {
7230 ASSERT_RTNL();
7231
7232 if (head) {
7233 list_move_tail(&dev->unreg_list, head);
7234 } else {
7235 rollback_registered(dev);
7236 /* Finish processing unregister after unlock */
7237 net_set_todo(dev);
7238 }
7239 }
7240 EXPORT_SYMBOL(unregister_netdevice_queue);
7241
7242 /**
7243 * unregister_netdevice_many - unregister many devices
7244 * @head: list of devices
7245 *
7246 * Note: As most callers use a stack allocated list_head,
7247 * we force a list_del() to make sure stack wont be corrupted later.
7248 */
7249 void unregister_netdevice_many(struct list_head *head)
7250 {
7251 struct net_device *dev;
7252
7253 if (!list_empty(head)) {
7254 rollback_registered_many(head);
7255 list_for_each_entry(dev, head, unreg_list)
7256 net_set_todo(dev);
7257 list_del(head);
7258 }
7259 }
7260 EXPORT_SYMBOL(unregister_netdevice_many);
7261
7262 /**
7263 * unregister_netdev - remove device from the kernel
7264 * @dev: device
7265 *
7266 * This function shuts down a device interface and removes it
7267 * from the kernel tables.
7268 *
7269 * This is just a wrapper for unregister_netdevice that takes
7270 * the rtnl semaphore. In general you want to use this and not
7271 * unregister_netdevice.
7272 */
7273 void unregister_netdev(struct net_device *dev)
7274 {
7275 rtnl_lock();
7276 unregister_netdevice(dev);
7277 rtnl_unlock();
7278 }
7279 EXPORT_SYMBOL(unregister_netdev);
7280
7281 /**
7282 * dev_change_net_namespace - move device to different nethost namespace
7283 * @dev: device
7284 * @net: network namespace
7285 * @pat: If not NULL name pattern to try if the current device name
7286 * is already taken in the destination network namespace.
7287 *
7288 * This function shuts down a device interface and moves it
7289 * to a new network namespace. On success 0 is returned, on
7290 * a failure a netagive errno code is returned.
7291 *
7292 * Callers must hold the rtnl semaphore.
7293 */
7294
7295 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7296 {
7297 int err;
7298
7299 ASSERT_RTNL();
7300
7301 /* Don't allow namespace local devices to be moved. */
7302 err = -EINVAL;
7303 if (dev->features & NETIF_F_NETNS_LOCAL)
7304 goto out;
7305
7306 /* Ensure the device has been registrered */
7307 if (dev->reg_state != NETREG_REGISTERED)
7308 goto out;
7309
7310 /* Get out if there is nothing todo */
7311 err = 0;
7312 if (net_eq(dev_net(dev), net))
7313 goto out;
7314
7315 /* Pick the destination device name, and ensure
7316 * we can use it in the destination network namespace.
7317 */
7318 err = -EEXIST;
7319 if (__dev_get_by_name(net, dev->name)) {
7320 /* We get here if we can't use the current device name */
7321 if (!pat)
7322 goto out;
7323 if (dev_get_valid_name(net, dev, pat) < 0)
7324 goto out;
7325 }
7326
7327 /*
7328 * And now a mini version of register_netdevice unregister_netdevice.
7329 */
7330
7331 /* If device is running close it first. */
7332 dev_close(dev);
7333
7334 /* And unlink it from device chain */
7335 err = -ENODEV;
7336 unlist_netdevice(dev);
7337
7338 synchronize_net();
7339
7340 /* Shutdown queueing discipline. */
7341 dev_shutdown(dev);
7342
7343 /* Notify protocols, that we are about to destroy
7344 this device. They should clean all the things.
7345
7346 Note that dev->reg_state stays at NETREG_REGISTERED.
7347 This is wanted because this way 8021q and macvlan know
7348 the device is just moving and can keep their slaves up.
7349 */
7350 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7351 rcu_barrier();
7352 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7353 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7354
7355 /*
7356 * Flush the unicast and multicast chains
7357 */
7358 dev_uc_flush(dev);
7359 dev_mc_flush(dev);
7360
7361 /* Send a netdev-removed uevent to the old namespace */
7362 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7363 netdev_adjacent_del_links(dev);
7364
7365 /* Actually switch the network namespace */
7366 dev_net_set(dev, net);
7367
7368 /* If there is an ifindex conflict assign a new one */
7369 if (__dev_get_by_index(net, dev->ifindex))
7370 dev->ifindex = dev_new_index(net);
7371
7372 /* Send a netdev-add uevent to the new namespace */
7373 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7374 netdev_adjacent_add_links(dev);
7375
7376 /* Fixup kobjects */
7377 err = device_rename(&dev->dev, dev->name);
7378 WARN_ON(err);
7379
7380 /* Add the device back in the hashes */
7381 list_netdevice(dev);
7382
7383 /* Notify protocols, that a new device appeared. */
7384 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7385
7386 /*
7387 * Prevent userspace races by waiting until the network
7388 * device is fully setup before sending notifications.
7389 */
7390 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7391
7392 synchronize_net();
7393 err = 0;
7394 out:
7395 return err;
7396 }
7397 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7398
7399 static int dev_cpu_callback(struct notifier_block *nfb,
7400 unsigned long action,
7401 void *ocpu)
7402 {
7403 struct sk_buff **list_skb;
7404 struct sk_buff *skb;
7405 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7406 struct softnet_data *sd, *oldsd;
7407
7408 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7409 return NOTIFY_OK;
7410
7411 local_irq_disable();
7412 cpu = smp_processor_id();
7413 sd = &per_cpu(softnet_data, cpu);
7414 oldsd = &per_cpu(softnet_data, oldcpu);
7415
7416 /* Find end of our completion_queue. */
7417 list_skb = &sd->completion_queue;
7418 while (*list_skb)
7419 list_skb = &(*list_skb)->next;
7420 /* Append completion queue from offline CPU. */
7421 *list_skb = oldsd->completion_queue;
7422 oldsd->completion_queue = NULL;
7423
7424 /* Append output queue from offline CPU. */
7425 if (oldsd->output_queue) {
7426 *sd->output_queue_tailp = oldsd->output_queue;
7427 sd->output_queue_tailp = oldsd->output_queue_tailp;
7428 oldsd->output_queue = NULL;
7429 oldsd->output_queue_tailp = &oldsd->output_queue;
7430 }
7431 /* Append NAPI poll list from offline CPU, with one exception :
7432 * process_backlog() must be called by cpu owning percpu backlog.
7433 * We properly handle process_queue & input_pkt_queue later.
7434 */
7435 while (!list_empty(&oldsd->poll_list)) {
7436 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7437 struct napi_struct,
7438 poll_list);
7439
7440 list_del_init(&napi->poll_list);
7441 if (napi->poll == process_backlog)
7442 napi->state = 0;
7443 else
7444 ____napi_schedule(sd, napi);
7445 }
7446
7447 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7448 local_irq_enable();
7449
7450 /* Process offline CPU's input_pkt_queue */
7451 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7452 netif_rx_ni(skb);
7453 input_queue_head_incr(oldsd);
7454 }
7455 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7456 netif_rx_ni(skb);
7457 input_queue_head_incr(oldsd);
7458 }
7459
7460 return NOTIFY_OK;
7461 }
7462
7463
7464 /**
7465 * netdev_increment_features - increment feature set by one
7466 * @all: current feature set
7467 * @one: new feature set
7468 * @mask: mask feature set
7469 *
7470 * Computes a new feature set after adding a device with feature set
7471 * @one to the master device with current feature set @all. Will not
7472 * enable anything that is off in @mask. Returns the new feature set.
7473 */
7474 netdev_features_t netdev_increment_features(netdev_features_t all,
7475 netdev_features_t one, netdev_features_t mask)
7476 {
7477 if (mask & NETIF_F_GEN_CSUM)
7478 mask |= NETIF_F_ALL_CSUM;
7479 mask |= NETIF_F_VLAN_CHALLENGED;
7480
7481 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7482 all &= one | ~NETIF_F_ALL_FOR_ALL;
7483
7484 /* If one device supports hw checksumming, set for all. */
7485 if (all & NETIF_F_GEN_CSUM)
7486 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7487
7488 return all;
7489 }
7490 EXPORT_SYMBOL(netdev_increment_features);
7491
7492 static struct hlist_head * __net_init netdev_create_hash(void)
7493 {
7494 int i;
7495 struct hlist_head *hash;
7496
7497 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7498 if (hash != NULL)
7499 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7500 INIT_HLIST_HEAD(&hash[i]);
7501
7502 return hash;
7503 }
7504
7505 /* Initialize per network namespace state */
7506 static int __net_init netdev_init(struct net *net)
7507 {
7508 if (net != &init_net)
7509 INIT_LIST_HEAD(&net->dev_base_head);
7510
7511 net->dev_name_head = netdev_create_hash();
7512 if (net->dev_name_head == NULL)
7513 goto err_name;
7514
7515 net->dev_index_head = netdev_create_hash();
7516 if (net->dev_index_head == NULL)
7517 goto err_idx;
7518
7519 return 0;
7520
7521 err_idx:
7522 kfree(net->dev_name_head);
7523 err_name:
7524 return -ENOMEM;
7525 }
7526
7527 /**
7528 * netdev_drivername - network driver for the device
7529 * @dev: network device
7530 *
7531 * Determine network driver for device.
7532 */
7533 const char *netdev_drivername(const struct net_device *dev)
7534 {
7535 const struct device_driver *driver;
7536 const struct device *parent;
7537 const char *empty = "";
7538
7539 parent = dev->dev.parent;
7540 if (!parent)
7541 return empty;
7542
7543 driver = parent->driver;
7544 if (driver && driver->name)
7545 return driver->name;
7546 return empty;
7547 }
7548
7549 static void __netdev_printk(const char *level, const struct net_device *dev,
7550 struct va_format *vaf)
7551 {
7552 if (dev && dev->dev.parent) {
7553 dev_printk_emit(level[1] - '0',
7554 dev->dev.parent,
7555 "%s %s %s%s: %pV",
7556 dev_driver_string(dev->dev.parent),
7557 dev_name(dev->dev.parent),
7558 netdev_name(dev), netdev_reg_state(dev),
7559 vaf);
7560 } else if (dev) {
7561 printk("%s%s%s: %pV",
7562 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7563 } else {
7564 printk("%s(NULL net_device): %pV", level, vaf);
7565 }
7566 }
7567
7568 void netdev_printk(const char *level, const struct net_device *dev,
7569 const char *format, ...)
7570 {
7571 struct va_format vaf;
7572 va_list args;
7573
7574 va_start(args, format);
7575
7576 vaf.fmt = format;
7577 vaf.va = &args;
7578
7579 __netdev_printk(level, dev, &vaf);
7580
7581 va_end(args);
7582 }
7583 EXPORT_SYMBOL(netdev_printk);
7584
7585 #define define_netdev_printk_level(func, level) \
7586 void func(const struct net_device *dev, const char *fmt, ...) \
7587 { \
7588 struct va_format vaf; \
7589 va_list args; \
7590 \
7591 va_start(args, fmt); \
7592 \
7593 vaf.fmt = fmt; \
7594 vaf.va = &args; \
7595 \
7596 __netdev_printk(level, dev, &vaf); \
7597 \
7598 va_end(args); \
7599 } \
7600 EXPORT_SYMBOL(func);
7601
7602 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7603 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7604 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7605 define_netdev_printk_level(netdev_err, KERN_ERR);
7606 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7607 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7608 define_netdev_printk_level(netdev_info, KERN_INFO);
7609
7610 static void __net_exit netdev_exit(struct net *net)
7611 {
7612 kfree(net->dev_name_head);
7613 kfree(net->dev_index_head);
7614 }
7615
7616 static struct pernet_operations __net_initdata netdev_net_ops = {
7617 .init = netdev_init,
7618 .exit = netdev_exit,
7619 };
7620
7621 static void __net_exit default_device_exit(struct net *net)
7622 {
7623 struct net_device *dev, *aux;
7624 /*
7625 * Push all migratable network devices back to the
7626 * initial network namespace
7627 */
7628 rtnl_lock();
7629 for_each_netdev_safe(net, dev, aux) {
7630 int err;
7631 char fb_name[IFNAMSIZ];
7632
7633 /* Ignore unmoveable devices (i.e. loopback) */
7634 if (dev->features & NETIF_F_NETNS_LOCAL)
7635 continue;
7636
7637 /* Leave virtual devices for the generic cleanup */
7638 if (dev->rtnl_link_ops)
7639 continue;
7640
7641 /* Push remaining network devices to init_net */
7642 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7643 err = dev_change_net_namespace(dev, &init_net, fb_name);
7644 if (err) {
7645 pr_emerg("%s: failed to move %s to init_net: %d\n",
7646 __func__, dev->name, err);
7647 BUG();
7648 }
7649 }
7650 rtnl_unlock();
7651 }
7652
7653 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7654 {
7655 /* Return with the rtnl_lock held when there are no network
7656 * devices unregistering in any network namespace in net_list.
7657 */
7658 struct net *net;
7659 bool unregistering;
7660 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7661
7662 add_wait_queue(&netdev_unregistering_wq, &wait);
7663 for (;;) {
7664 unregistering = false;
7665 rtnl_lock();
7666 list_for_each_entry(net, net_list, exit_list) {
7667 if (net->dev_unreg_count > 0) {
7668 unregistering = true;
7669 break;
7670 }
7671 }
7672 if (!unregistering)
7673 break;
7674 __rtnl_unlock();
7675
7676 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7677 }
7678 remove_wait_queue(&netdev_unregistering_wq, &wait);
7679 }
7680
7681 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7682 {
7683 /* At exit all network devices most be removed from a network
7684 * namespace. Do this in the reverse order of registration.
7685 * Do this across as many network namespaces as possible to
7686 * improve batching efficiency.
7687 */
7688 struct net_device *dev;
7689 struct net *net;
7690 LIST_HEAD(dev_kill_list);
7691
7692 /* To prevent network device cleanup code from dereferencing
7693 * loopback devices or network devices that have been freed
7694 * wait here for all pending unregistrations to complete,
7695 * before unregistring the loopback device and allowing the
7696 * network namespace be freed.
7697 *
7698 * The netdev todo list containing all network devices
7699 * unregistrations that happen in default_device_exit_batch
7700 * will run in the rtnl_unlock() at the end of
7701 * default_device_exit_batch.
7702 */
7703 rtnl_lock_unregistering(net_list);
7704 list_for_each_entry(net, net_list, exit_list) {
7705 for_each_netdev_reverse(net, dev) {
7706 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7707 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7708 else
7709 unregister_netdevice_queue(dev, &dev_kill_list);
7710 }
7711 }
7712 unregister_netdevice_many(&dev_kill_list);
7713 rtnl_unlock();
7714 }
7715
7716 static struct pernet_operations __net_initdata default_device_ops = {
7717 .exit = default_device_exit,
7718 .exit_batch = default_device_exit_batch,
7719 };
7720
7721 /*
7722 * Initialize the DEV module. At boot time this walks the device list and
7723 * unhooks any devices that fail to initialise (normally hardware not
7724 * present) and leaves us with a valid list of present and active devices.
7725 *
7726 */
7727
7728 /*
7729 * This is called single threaded during boot, so no need
7730 * to take the rtnl semaphore.
7731 */
7732 static int __init net_dev_init(void)
7733 {
7734 int i, rc = -ENOMEM;
7735
7736 BUG_ON(!dev_boot_phase);
7737
7738 if (dev_proc_init())
7739 goto out;
7740
7741 if (netdev_kobject_init())
7742 goto out;
7743
7744 INIT_LIST_HEAD(&ptype_all);
7745 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7746 INIT_LIST_HEAD(&ptype_base[i]);
7747
7748 INIT_LIST_HEAD(&offload_base);
7749
7750 if (register_pernet_subsys(&netdev_net_ops))
7751 goto out;
7752
7753 /*
7754 * Initialise the packet receive queues.
7755 */
7756
7757 for_each_possible_cpu(i) {
7758 struct softnet_data *sd = &per_cpu(softnet_data, i);
7759
7760 skb_queue_head_init(&sd->input_pkt_queue);
7761 skb_queue_head_init(&sd->process_queue);
7762 INIT_LIST_HEAD(&sd->poll_list);
7763 sd->output_queue_tailp = &sd->output_queue;
7764 #ifdef CONFIG_RPS
7765 sd->csd.func = rps_trigger_softirq;
7766 sd->csd.info = sd;
7767 sd->cpu = i;
7768 #endif
7769
7770 sd->backlog.poll = process_backlog;
7771 sd->backlog.weight = weight_p;
7772 }
7773
7774 dev_boot_phase = 0;
7775
7776 /* The loopback device is special if any other network devices
7777 * is present in a network namespace the loopback device must
7778 * be present. Since we now dynamically allocate and free the
7779 * loopback device ensure this invariant is maintained by
7780 * keeping the loopback device as the first device on the
7781 * list of network devices. Ensuring the loopback devices
7782 * is the first device that appears and the last network device
7783 * that disappears.
7784 */
7785 if (register_pernet_device(&loopback_net_ops))
7786 goto out;
7787
7788 if (register_pernet_device(&default_device_ops))
7789 goto out;
7790
7791 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7792 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7793
7794 hotcpu_notifier(dev_cpu_callback, 0);
7795 dst_subsys_init();
7796 rc = 0;
7797 out:
7798 return rc;
7799 }
7800
7801 subsys_initcall(net_dev_init);