]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/dev.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
142
143 #include "net-sysfs.h"
144
145 /* Instead of increasing this, you should create a hash table. */
146 #define MAX_GRO_SKBS 8
147
148 /* This should be increased if a protocol with a bigger head is added. */
149 #define GRO_MAX_HEAD (MAX_HEADER + 128)
150
151 static DEFINE_SPINLOCK(ptype_lock);
152 static DEFINE_SPINLOCK(offload_lock);
153 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154 struct list_head ptype_all __read_mostly; /* Taps */
155 static struct list_head offload_base __read_mostly;
156
157 static int netif_rx_internal(struct sk_buff *skb);
158 static int call_netdevice_notifiers_info(unsigned long val,
159 struct net_device *dev,
160 struct netdev_notifier_info *info);
161
162 /*
163 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
164 * semaphore.
165 *
166 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
167 *
168 * Writers must hold the rtnl semaphore while they loop through the
169 * dev_base_head list, and hold dev_base_lock for writing when they do the
170 * actual updates. This allows pure readers to access the list even
171 * while a writer is preparing to update it.
172 *
173 * To put it another way, dev_base_lock is held for writing only to
174 * protect against pure readers; the rtnl semaphore provides the
175 * protection against other writers.
176 *
177 * See, for example usages, register_netdevice() and
178 * unregister_netdevice(), which must be called with the rtnl
179 * semaphore held.
180 */
181 DEFINE_RWLOCK(dev_base_lock);
182 EXPORT_SYMBOL(dev_base_lock);
183
184 /* protects napi_hash addition/deletion and napi_gen_id */
185 static DEFINE_SPINLOCK(napi_hash_lock);
186
187 static unsigned int napi_gen_id = NR_CPUS;
188 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
189
190 static seqcount_t devnet_rename_seq;
191
192 static inline void dev_base_seq_inc(struct net *net)
193 {
194 while (++net->dev_base_seq == 0);
195 }
196
197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
198 {
199 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208
209 static inline void rps_lock(struct softnet_data *sd)
210 {
211 #ifdef CONFIG_RPS
212 spin_lock(&sd->input_pkt_queue.lock);
213 #endif
214 }
215
216 static inline void rps_unlock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219 spin_unlock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222
223 /* Device list insertion */
224 static void list_netdevice(struct net_device *dev)
225 {
226 struct net *net = dev_net(dev);
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
236
237 dev_base_seq_inc(net);
238 }
239
240 /* Device list removal
241 * caller must respect a RCU grace period before freeing/reusing dev
242 */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245 ASSERT_RTNL();
246
247 /* Unlink dev from the device chain */
248 write_lock_bh(&dev_base_lock);
249 list_del_rcu(&dev->dev_list);
250 hlist_del_rcu(&dev->name_hlist);
251 hlist_del_rcu(&dev->index_hlist);
252 write_unlock_bh(&dev_base_lock);
253
254 dev_base_seq_inc(dev_net(dev));
255 }
256
257 /*
258 * Our notifier list
259 */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264 * Device drivers call our routines to queue packets here. We empty the
265 * queue in the local softnet handler.
266 */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274 * according to dev->type
275 */
276 static const unsigned short netdev_lock_type[] =
277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
309
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315 int i;
316
317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 if (netdev_lock_type[i] == dev_type)
319 return i;
320 /* the last key is used by default */
321 return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326 {
327 int i;
328
329 i = netdev_lock_pos(dev_type);
330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 netdev_lock_name[i]);
332 }
333
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 int i;
337
338 i = netdev_lock_pos(dev->type);
339 lockdep_set_class_and_name(&dev->addr_list_lock,
340 &netdev_addr_lock_key[i],
341 netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352
353 /*******************************************************************************
354
355 Protocol management and registration routines
356
357 *******************************************************************************/
358
359 /*
360 * Add a protocol ID to the list. Now that the input handler is
361 * smarter we can dispense with all the messy stuff that used to be
362 * here.
363 *
364 * BEWARE!!! Protocol handlers, mangling input packets,
365 * MUST BE last in hash buckets and checking protocol handlers
366 * MUST start from promiscuous ptype_all chain in net_bh.
367 * It is true now, do not change it.
368 * Explanation follows: if protocol handler, mangling packet, will
369 * be the first on list, it is not able to sense, that packet
370 * is cloned and should be copied-on-write, so that it will
371 * change it and subsequent readers will get broken packet.
372 * --ANK (980803)
373 */
374
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377 if (pt->type == htons(ETH_P_ALL))
378 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
379 else
380 return pt->dev ? &pt->dev->ptype_specific :
381 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
382 }
383
384 /**
385 * dev_add_pack - add packet handler
386 * @pt: packet type declaration
387 *
388 * Add a protocol handler to the networking stack. The passed &packet_type
389 * is linked into kernel lists and may not be freed until it has been
390 * removed from the kernel lists.
391 *
392 * This call does not sleep therefore it can not
393 * guarantee all CPU's that are in middle of receiving packets
394 * will see the new packet type (until the next received packet).
395 */
396
397 void dev_add_pack(struct packet_type *pt)
398 {
399 struct list_head *head = ptype_head(pt);
400
401 spin_lock(&ptype_lock);
402 list_add_rcu(&pt->list, head);
403 spin_unlock(&ptype_lock);
404 }
405 EXPORT_SYMBOL(dev_add_pack);
406
407 /**
408 * __dev_remove_pack - remove packet handler
409 * @pt: packet type declaration
410 *
411 * Remove a protocol handler that was previously added to the kernel
412 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
413 * from the kernel lists and can be freed or reused once this function
414 * returns.
415 *
416 * The packet type might still be in use by receivers
417 * and must not be freed until after all the CPU's have gone
418 * through a quiescent state.
419 */
420 void __dev_remove_pack(struct packet_type *pt)
421 {
422 struct list_head *head = ptype_head(pt);
423 struct packet_type *pt1;
424
425 spin_lock(&ptype_lock);
426
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
431 }
432 }
433
434 pr_warn("dev_remove_pack: %p not found\n", pt);
435 out:
436 spin_unlock(&ptype_lock);
437 }
438 EXPORT_SYMBOL(__dev_remove_pack);
439
440 /**
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
443 *
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
448 *
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
451 */
452 void dev_remove_pack(struct packet_type *pt)
453 {
454 __dev_remove_pack(pt);
455
456 synchronize_net();
457 }
458 EXPORT_SYMBOL(dev_remove_pack);
459
460
461 /**
462 * dev_add_offload - register offload handlers
463 * @po: protocol offload declaration
464 *
465 * Add protocol offload handlers to the networking stack. The passed
466 * &proto_offload is linked into kernel lists and may not be freed until
467 * it has been removed from the kernel lists.
468 *
469 * This call does not sleep therefore it can not
470 * guarantee all CPU's that are in middle of receiving packets
471 * will see the new offload handlers (until the next received packet).
472 */
473 void dev_add_offload(struct packet_offload *po)
474 {
475 struct packet_offload *elem;
476
477 spin_lock(&offload_lock);
478 list_for_each_entry(elem, &offload_base, list) {
479 if (po->priority < elem->priority)
480 break;
481 }
482 list_add_rcu(&po->list, elem->list.prev);
483 spin_unlock(&offload_lock);
484 }
485 EXPORT_SYMBOL(dev_add_offload);
486
487 /**
488 * __dev_remove_offload - remove offload handler
489 * @po: packet offload declaration
490 *
491 * Remove a protocol offload handler that was previously added to the
492 * kernel offload handlers by dev_add_offload(). The passed &offload_type
493 * is removed from the kernel lists and can be freed or reused once this
494 * function returns.
495 *
496 * The packet type might still be in use by receivers
497 * and must not be freed until after all the CPU's have gone
498 * through a quiescent state.
499 */
500 static void __dev_remove_offload(struct packet_offload *po)
501 {
502 struct list_head *head = &offload_base;
503 struct packet_offload *po1;
504
505 spin_lock(&offload_lock);
506
507 list_for_each_entry(po1, head, list) {
508 if (po == po1) {
509 list_del_rcu(&po->list);
510 goto out;
511 }
512 }
513
514 pr_warn("dev_remove_offload: %p not found\n", po);
515 out:
516 spin_unlock(&offload_lock);
517 }
518
519 /**
520 * dev_remove_offload - remove packet offload handler
521 * @po: packet offload declaration
522 *
523 * Remove a packet offload handler that was previously added to the kernel
524 * offload handlers by dev_add_offload(). The passed &offload_type is
525 * removed from the kernel lists and can be freed or reused once this
526 * function returns.
527 *
528 * This call sleeps to guarantee that no CPU is looking at the packet
529 * type after return.
530 */
531 void dev_remove_offload(struct packet_offload *po)
532 {
533 __dev_remove_offload(po);
534
535 synchronize_net();
536 }
537 EXPORT_SYMBOL(dev_remove_offload);
538
539 /******************************************************************************
540
541 Device Boot-time Settings Routines
542
543 *******************************************************************************/
544
545 /* Boot time configuration table */
546 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547
548 /**
549 * netdev_boot_setup_add - add new setup entry
550 * @name: name of the device
551 * @map: configured settings for the device
552 *
553 * Adds new setup entry to the dev_boot_setup list. The function
554 * returns 0 on error and 1 on success. This is a generic routine to
555 * all netdevices.
556 */
557 static int netdev_boot_setup_add(char *name, struct ifmap *map)
558 {
559 struct netdev_boot_setup *s;
560 int i;
561
562 s = dev_boot_setup;
563 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565 memset(s[i].name, 0, sizeof(s[i].name));
566 strlcpy(s[i].name, name, IFNAMSIZ);
567 memcpy(&s[i].map, map, sizeof(s[i].map));
568 break;
569 }
570 }
571
572 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573 }
574
575 /**
576 * netdev_boot_setup_check - check boot time settings
577 * @dev: the netdevice
578 *
579 * Check boot time settings for the device.
580 * The found settings are set for the device to be used
581 * later in the device probing.
582 * Returns 0 if no settings found, 1 if they are.
583 */
584 int netdev_boot_setup_check(struct net_device *dev)
585 {
586 struct netdev_boot_setup *s = dev_boot_setup;
587 int i;
588
589 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
591 !strcmp(dev->name, s[i].name)) {
592 dev->irq = s[i].map.irq;
593 dev->base_addr = s[i].map.base_addr;
594 dev->mem_start = s[i].map.mem_start;
595 dev->mem_end = s[i].map.mem_end;
596 return 1;
597 }
598 }
599 return 0;
600 }
601 EXPORT_SYMBOL(netdev_boot_setup_check);
602
603
604 /**
605 * netdev_boot_base - get address from boot time settings
606 * @prefix: prefix for network device
607 * @unit: id for network device
608 *
609 * Check boot time settings for the base address of device.
610 * The found settings are set for the device to be used
611 * later in the device probing.
612 * Returns 0 if no settings found.
613 */
614 unsigned long netdev_boot_base(const char *prefix, int unit)
615 {
616 const struct netdev_boot_setup *s = dev_boot_setup;
617 char name[IFNAMSIZ];
618 int i;
619
620 sprintf(name, "%s%d", prefix, unit);
621
622 /*
623 * If device already registered then return base of 1
624 * to indicate not to probe for this interface
625 */
626 if (__dev_get_by_name(&init_net, name))
627 return 1;
628
629 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630 if (!strcmp(name, s[i].name))
631 return s[i].map.base_addr;
632 return 0;
633 }
634
635 /*
636 * Saves at boot time configured settings for any netdevice.
637 */
638 int __init netdev_boot_setup(char *str)
639 {
640 int ints[5];
641 struct ifmap map;
642
643 str = get_options(str, ARRAY_SIZE(ints), ints);
644 if (!str || !*str)
645 return 0;
646
647 /* Save settings */
648 memset(&map, 0, sizeof(map));
649 if (ints[0] > 0)
650 map.irq = ints[1];
651 if (ints[0] > 1)
652 map.base_addr = ints[2];
653 if (ints[0] > 2)
654 map.mem_start = ints[3];
655 if (ints[0] > 3)
656 map.mem_end = ints[4];
657
658 /* Add new entry to the list */
659 return netdev_boot_setup_add(str, &map);
660 }
661
662 __setup("netdev=", netdev_boot_setup);
663
664 /*******************************************************************************
665
666 Device Interface Subroutines
667
668 *******************************************************************************/
669
670 /**
671 * dev_get_iflink - get 'iflink' value of a interface
672 * @dev: targeted interface
673 *
674 * Indicates the ifindex the interface is linked to.
675 * Physical interfaces have the same 'ifindex' and 'iflink' values.
676 */
677
678 int dev_get_iflink(const struct net_device *dev)
679 {
680 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 return dev->netdev_ops->ndo_get_iflink(dev);
682
683 return dev->ifindex;
684 }
685 EXPORT_SYMBOL(dev_get_iflink);
686
687 /**
688 * dev_fill_metadata_dst - Retrieve tunnel egress information.
689 * @dev: targeted interface
690 * @skb: The packet.
691 *
692 * For better visibility of tunnel traffic OVS needs to retrieve
693 * egress tunnel information for a packet. Following API allows
694 * user to get this info.
695 */
696 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697 {
698 struct ip_tunnel_info *info;
699
700 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
701 return -EINVAL;
702
703 info = skb_tunnel_info_unclone(skb);
704 if (!info)
705 return -ENOMEM;
706 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707 return -EINVAL;
708
709 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710 }
711 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712
713 /**
714 * __dev_get_by_name - find a device by its name
715 * @net: the applicable net namespace
716 * @name: name to find
717 *
718 * Find an interface by name. Must be called under RTNL semaphore
719 * or @dev_base_lock. If the name is found a pointer to the device
720 * is returned. If the name is not found then %NULL is returned. The
721 * reference counters are not incremented so the caller must be
722 * careful with locks.
723 */
724
725 struct net_device *__dev_get_by_name(struct net *net, const char *name)
726 {
727 struct net_device *dev;
728 struct hlist_head *head = dev_name_hash(net, name);
729
730 hlist_for_each_entry(dev, head, name_hlist)
731 if (!strncmp(dev->name, name, IFNAMSIZ))
732 return dev;
733
734 return NULL;
735 }
736 EXPORT_SYMBOL(__dev_get_by_name);
737
738 /**
739 * dev_get_by_name_rcu - find a device by its name
740 * @net: the applicable net namespace
741 * @name: name to find
742 *
743 * Find an interface by name.
744 * If the name is found a pointer to the device is returned.
745 * If the name is not found then %NULL is returned.
746 * The reference counters are not incremented so the caller must be
747 * careful with locks. The caller must hold RCU lock.
748 */
749
750 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751 {
752 struct net_device *dev;
753 struct hlist_head *head = dev_name_hash(net, name);
754
755 hlist_for_each_entry_rcu(dev, head, name_hlist)
756 if (!strncmp(dev->name, name, IFNAMSIZ))
757 return dev;
758
759 return NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764 * dev_get_by_name - find a device by its name
765 * @net: the applicable net namespace
766 * @name: name to find
767 *
768 * Find an interface by name. This can be called from any
769 * context and does its own locking. The returned handle has
770 * the usage count incremented and the caller must use dev_put() to
771 * release it when it is no longer needed. %NULL is returned if no
772 * matching device is found.
773 */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777 struct net_device *dev;
778
779 rcu_read_lock();
780 dev = dev_get_by_name_rcu(net, name);
781 if (dev)
782 dev_hold(dev);
783 rcu_read_unlock();
784 return dev;
785 }
786 EXPORT_SYMBOL(dev_get_by_name);
787
788 /**
789 * __dev_get_by_index - find a device by its ifindex
790 * @net: the applicable net namespace
791 * @ifindex: index of device
792 *
793 * Search for an interface by index. Returns %NULL if the device
794 * is not found or a pointer to the device. The device has not
795 * had its reference counter increased so the caller must be careful
796 * about locking. The caller must hold either the RTNL semaphore
797 * or @dev_base_lock.
798 */
799
800 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
801 {
802 struct net_device *dev;
803 struct hlist_head *head = dev_index_hash(net, ifindex);
804
805 hlist_for_each_entry(dev, head, index_hlist)
806 if (dev->ifindex == ifindex)
807 return dev;
808
809 return NULL;
810 }
811 EXPORT_SYMBOL(__dev_get_by_index);
812
813 /**
814 * dev_get_by_index_rcu - find a device by its ifindex
815 * @net: the applicable net namespace
816 * @ifindex: index of device
817 *
818 * Search for an interface by index. Returns %NULL if the device
819 * is not found or a pointer to the device. The device has not
820 * had its reference counter increased so the caller must be careful
821 * about locking. The caller must hold RCU lock.
822 */
823
824 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825 {
826 struct net_device *dev;
827 struct hlist_head *head = dev_index_hash(net, ifindex);
828
829 hlist_for_each_entry_rcu(dev, head, index_hlist)
830 if (dev->ifindex == ifindex)
831 return dev;
832
833 return NULL;
834 }
835 EXPORT_SYMBOL(dev_get_by_index_rcu);
836
837
838 /**
839 * dev_get_by_index - find a device by its ifindex
840 * @net: the applicable net namespace
841 * @ifindex: index of device
842 *
843 * Search for an interface by index. Returns NULL if the device
844 * is not found or a pointer to the device. The device returned has
845 * had a reference added and the pointer is safe until the user calls
846 * dev_put to indicate they have finished with it.
847 */
848
849 struct net_device *dev_get_by_index(struct net *net, int ifindex)
850 {
851 struct net_device *dev;
852
853 rcu_read_lock();
854 dev = dev_get_by_index_rcu(net, ifindex);
855 if (dev)
856 dev_hold(dev);
857 rcu_read_unlock();
858 return dev;
859 }
860 EXPORT_SYMBOL(dev_get_by_index);
861
862 /**
863 * netdev_get_name - get a netdevice name, knowing its ifindex.
864 * @net: network namespace
865 * @name: a pointer to the buffer where the name will be stored.
866 * @ifindex: the ifindex of the interface to get the name from.
867 *
868 * The use of raw_seqcount_begin() and cond_resched() before
869 * retrying is required as we want to give the writers a chance
870 * to complete when CONFIG_PREEMPT is not set.
871 */
872 int netdev_get_name(struct net *net, char *name, int ifindex)
873 {
874 struct net_device *dev;
875 unsigned int seq;
876
877 retry:
878 seq = raw_seqcount_begin(&devnet_rename_seq);
879 rcu_read_lock();
880 dev = dev_get_by_index_rcu(net, ifindex);
881 if (!dev) {
882 rcu_read_unlock();
883 return -ENODEV;
884 }
885
886 strcpy(name, dev->name);
887 rcu_read_unlock();
888 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889 cond_resched();
890 goto retry;
891 }
892
893 return 0;
894 }
895
896 /**
897 * dev_getbyhwaddr_rcu - find a device by its hardware address
898 * @net: the applicable net namespace
899 * @type: media type of device
900 * @ha: hardware address
901 *
902 * Search for an interface by MAC address. Returns NULL if the device
903 * is not found or a pointer to the device.
904 * The caller must hold RCU or RTNL.
905 * The returned device has not had its ref count increased
906 * and the caller must therefore be careful about locking
907 *
908 */
909
910 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911 const char *ha)
912 {
913 struct net_device *dev;
914
915 for_each_netdev_rcu(net, dev)
916 if (dev->type == type &&
917 !memcmp(dev->dev_addr, ha, dev->addr_len))
918 return dev;
919
920 return NULL;
921 }
922 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
923
924 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
925 {
926 struct net_device *dev;
927
928 ASSERT_RTNL();
929 for_each_netdev(net, dev)
930 if (dev->type == type)
931 return dev;
932
933 return NULL;
934 }
935 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
938 {
939 struct net_device *dev, *ret = NULL;
940
941 rcu_read_lock();
942 for_each_netdev_rcu(net, dev)
943 if (dev->type == type) {
944 dev_hold(dev);
945 ret = dev;
946 break;
947 }
948 rcu_read_unlock();
949 return ret;
950 }
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
952
953 /**
954 * __dev_get_by_flags - find any device with given flags
955 * @net: the applicable net namespace
956 * @if_flags: IFF_* values
957 * @mask: bitmask of bits in if_flags to check
958 *
959 * Search for any interface with the given flags. Returns NULL if a device
960 * is not found or a pointer to the device. Must be called inside
961 * rtnl_lock(), and result refcount is unchanged.
962 */
963
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 unsigned short mask)
966 {
967 struct net_device *dev, *ret;
968
969 ASSERT_RTNL();
970
971 ret = NULL;
972 for_each_netdev(net, dev) {
973 if (((dev->flags ^ if_flags) & mask) == 0) {
974 ret = dev;
975 break;
976 }
977 }
978 return ret;
979 }
980 EXPORT_SYMBOL(__dev_get_by_flags);
981
982 /**
983 * dev_valid_name - check if name is okay for network device
984 * @name: name string
985 *
986 * Network device names need to be valid file names to
987 * to allow sysfs to work. We also disallow any kind of
988 * whitespace.
989 */
990 bool dev_valid_name(const char *name)
991 {
992 if (*name == '\0')
993 return false;
994 if (strlen(name) >= IFNAMSIZ)
995 return false;
996 if (!strcmp(name, ".") || !strcmp(name, ".."))
997 return false;
998
999 while (*name) {
1000 if (*name == '/' || *name == ':' || isspace(*name))
1001 return false;
1002 name++;
1003 }
1004 return true;
1005 }
1006 EXPORT_SYMBOL(dev_valid_name);
1007
1008 /**
1009 * __dev_alloc_name - allocate a name for a device
1010 * @net: network namespace to allocate the device name in
1011 * @name: name format string
1012 * @buf: scratch buffer and result name string
1013 *
1014 * Passed a format string - eg "lt%d" it will try and find a suitable
1015 * id. It scans list of devices to build up a free map, then chooses
1016 * the first empty slot. The caller must hold the dev_base or rtnl lock
1017 * while allocating the name and adding the device in order to avoid
1018 * duplicates.
1019 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020 * Returns the number of the unit assigned or a negative errno code.
1021 */
1022
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024 {
1025 int i = 0;
1026 const char *p;
1027 const int max_netdevices = 8*PAGE_SIZE;
1028 unsigned long *inuse;
1029 struct net_device *d;
1030
1031 p = strnchr(name, IFNAMSIZ-1, '%');
1032 if (p) {
1033 /*
1034 * Verify the string as this thing may have come from
1035 * the user. There must be either one "%d" and no other "%"
1036 * characters.
1037 */
1038 if (p[1] != 'd' || strchr(p + 2, '%'))
1039 return -EINVAL;
1040
1041 /* Use one page as a bit array of possible slots */
1042 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1043 if (!inuse)
1044 return -ENOMEM;
1045
1046 for_each_netdev(net, d) {
1047 if (!sscanf(d->name, name, &i))
1048 continue;
1049 if (i < 0 || i >= max_netdevices)
1050 continue;
1051
1052 /* avoid cases where sscanf is not exact inverse of printf */
1053 snprintf(buf, IFNAMSIZ, name, i);
1054 if (!strncmp(buf, d->name, IFNAMSIZ))
1055 set_bit(i, inuse);
1056 }
1057
1058 i = find_first_zero_bit(inuse, max_netdevices);
1059 free_page((unsigned long) inuse);
1060 }
1061
1062 if (buf != name)
1063 snprintf(buf, IFNAMSIZ, name, i);
1064 if (!__dev_get_by_name(net, buf))
1065 return i;
1066
1067 /* It is possible to run out of possible slots
1068 * when the name is long and there isn't enough space left
1069 * for the digits, or if all bits are used.
1070 */
1071 return -ENFILE;
1072 }
1073
1074 /**
1075 * dev_alloc_name - allocate a name for a device
1076 * @dev: device
1077 * @name: name format string
1078 *
1079 * Passed a format string - eg "lt%d" it will try and find a suitable
1080 * id. It scans list of devices to build up a free map, then chooses
1081 * the first empty slot. The caller must hold the dev_base or rtnl lock
1082 * while allocating the name and adding the device in order to avoid
1083 * duplicates.
1084 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085 * Returns the number of the unit assigned or a negative errno code.
1086 */
1087
1088 int dev_alloc_name(struct net_device *dev, const char *name)
1089 {
1090 char buf[IFNAMSIZ];
1091 struct net *net;
1092 int ret;
1093
1094 BUG_ON(!dev_net(dev));
1095 net = dev_net(dev);
1096 ret = __dev_alloc_name(net, name, buf);
1097 if (ret >= 0)
1098 strlcpy(dev->name, buf, IFNAMSIZ);
1099 return ret;
1100 }
1101 EXPORT_SYMBOL(dev_alloc_name);
1102
1103 static int dev_alloc_name_ns(struct net *net,
1104 struct net_device *dev,
1105 const char *name)
1106 {
1107 char buf[IFNAMSIZ];
1108 int ret;
1109
1110 ret = __dev_alloc_name(net, name, buf);
1111 if (ret >= 0)
1112 strlcpy(dev->name, buf, IFNAMSIZ);
1113 return ret;
1114 }
1115
1116 static int dev_get_valid_name(struct net *net,
1117 struct net_device *dev,
1118 const char *name)
1119 {
1120 BUG_ON(!net);
1121
1122 if (!dev_valid_name(name))
1123 return -EINVAL;
1124
1125 if (strchr(name, '%'))
1126 return dev_alloc_name_ns(net, dev, name);
1127 else if (__dev_get_by_name(net, name))
1128 return -EEXIST;
1129 else if (dev->name != name)
1130 strlcpy(dev->name, name, IFNAMSIZ);
1131
1132 return 0;
1133 }
1134
1135 /**
1136 * dev_change_name - change name of a device
1137 * @dev: device
1138 * @newname: name (or format string) must be at least IFNAMSIZ
1139 *
1140 * Change name of a device, can pass format strings "eth%d".
1141 * for wildcarding.
1142 */
1143 int dev_change_name(struct net_device *dev, const char *newname)
1144 {
1145 unsigned char old_assign_type;
1146 char oldname[IFNAMSIZ];
1147 int err = 0;
1148 int ret;
1149 struct net *net;
1150
1151 ASSERT_RTNL();
1152 BUG_ON(!dev_net(dev));
1153
1154 net = dev_net(dev);
1155 if (dev->flags & IFF_UP)
1156 return -EBUSY;
1157
1158 write_seqcount_begin(&devnet_rename_seq);
1159
1160 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1161 write_seqcount_end(&devnet_rename_seq);
1162 return 0;
1163 }
1164
1165 memcpy(oldname, dev->name, IFNAMSIZ);
1166
1167 err = dev_get_valid_name(net, dev, newname);
1168 if (err < 0) {
1169 write_seqcount_end(&devnet_rename_seq);
1170 return err;
1171 }
1172
1173 if (oldname[0] && !strchr(oldname, '%'))
1174 netdev_info(dev, "renamed from %s\n", oldname);
1175
1176 old_assign_type = dev->name_assign_type;
1177 dev->name_assign_type = NET_NAME_RENAMED;
1178
1179 rollback:
1180 ret = device_rename(&dev->dev, dev->name);
1181 if (ret) {
1182 memcpy(dev->name, oldname, IFNAMSIZ);
1183 dev->name_assign_type = old_assign_type;
1184 write_seqcount_end(&devnet_rename_seq);
1185 return ret;
1186 }
1187
1188 write_seqcount_end(&devnet_rename_seq);
1189
1190 netdev_adjacent_rename_links(dev, oldname);
1191
1192 write_lock_bh(&dev_base_lock);
1193 hlist_del_rcu(&dev->name_hlist);
1194 write_unlock_bh(&dev_base_lock);
1195
1196 synchronize_rcu();
1197
1198 write_lock_bh(&dev_base_lock);
1199 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1200 write_unlock_bh(&dev_base_lock);
1201
1202 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1203 ret = notifier_to_errno(ret);
1204
1205 if (ret) {
1206 /* err >= 0 after dev_alloc_name() or stores the first errno */
1207 if (err >= 0) {
1208 err = ret;
1209 write_seqcount_begin(&devnet_rename_seq);
1210 memcpy(dev->name, oldname, IFNAMSIZ);
1211 memcpy(oldname, newname, IFNAMSIZ);
1212 dev->name_assign_type = old_assign_type;
1213 old_assign_type = NET_NAME_RENAMED;
1214 goto rollback;
1215 } else {
1216 pr_err("%s: name change rollback failed: %d\n",
1217 dev->name, ret);
1218 }
1219 }
1220
1221 return err;
1222 }
1223
1224 /**
1225 * dev_set_alias - change ifalias of a device
1226 * @dev: device
1227 * @alias: name up to IFALIASZ
1228 * @len: limit of bytes to copy from info
1229 *
1230 * Set ifalias for a device,
1231 */
1232 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233 {
1234 char *new_ifalias;
1235
1236 ASSERT_RTNL();
1237
1238 if (len >= IFALIASZ)
1239 return -EINVAL;
1240
1241 if (!len) {
1242 kfree(dev->ifalias);
1243 dev->ifalias = NULL;
1244 return 0;
1245 }
1246
1247 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248 if (!new_ifalias)
1249 return -ENOMEM;
1250 dev->ifalias = new_ifalias;
1251
1252 strlcpy(dev->ifalias, alias, len+1);
1253 return len;
1254 }
1255
1256
1257 /**
1258 * netdev_features_change - device changes features
1259 * @dev: device to cause notification
1260 *
1261 * Called to indicate a device has changed features.
1262 */
1263 void netdev_features_change(struct net_device *dev)
1264 {
1265 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1266 }
1267 EXPORT_SYMBOL(netdev_features_change);
1268
1269 /**
1270 * netdev_state_change - device changes state
1271 * @dev: device to cause notification
1272 *
1273 * Called to indicate a device has changed state. This function calls
1274 * the notifier chains for netdev_chain and sends a NEWLINK message
1275 * to the routing socket.
1276 */
1277 void netdev_state_change(struct net_device *dev)
1278 {
1279 if (dev->flags & IFF_UP) {
1280 struct netdev_notifier_change_info change_info;
1281
1282 change_info.flags_changed = 0;
1283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284 &change_info.info);
1285 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1286 }
1287 }
1288 EXPORT_SYMBOL(netdev_state_change);
1289
1290 /**
1291 * netdev_notify_peers - notify network peers about existence of @dev
1292 * @dev: network device
1293 *
1294 * Generate traffic such that interested network peers are aware of
1295 * @dev, such as by generating a gratuitous ARP. This may be used when
1296 * a device wants to inform the rest of the network about some sort of
1297 * reconfiguration such as a failover event or virtual machine
1298 * migration.
1299 */
1300 void netdev_notify_peers(struct net_device *dev)
1301 {
1302 rtnl_lock();
1303 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304 rtnl_unlock();
1305 }
1306 EXPORT_SYMBOL(netdev_notify_peers);
1307
1308 static int __dev_open(struct net_device *dev)
1309 {
1310 const struct net_device_ops *ops = dev->netdev_ops;
1311 int ret;
1312
1313 ASSERT_RTNL();
1314
1315 if (!netif_device_present(dev))
1316 return -ENODEV;
1317
1318 /* Block netpoll from trying to do any rx path servicing.
1319 * If we don't do this there is a chance ndo_poll_controller
1320 * or ndo_poll may be running while we open the device
1321 */
1322 netpoll_poll_disable(dev);
1323
1324 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325 ret = notifier_to_errno(ret);
1326 if (ret)
1327 return ret;
1328
1329 set_bit(__LINK_STATE_START, &dev->state);
1330
1331 if (ops->ndo_validate_addr)
1332 ret = ops->ndo_validate_addr(dev);
1333
1334 if (!ret && ops->ndo_open)
1335 ret = ops->ndo_open(dev);
1336
1337 netpoll_poll_enable(dev);
1338
1339 if (ret)
1340 clear_bit(__LINK_STATE_START, &dev->state);
1341 else {
1342 dev->flags |= IFF_UP;
1343 dev_set_rx_mode(dev);
1344 dev_activate(dev);
1345 add_device_randomness(dev->dev_addr, dev->addr_len);
1346 }
1347
1348 return ret;
1349 }
1350
1351 /**
1352 * dev_open - prepare an interface for use.
1353 * @dev: device to open
1354 *
1355 * Takes a device from down to up state. The device's private open
1356 * function is invoked and then the multicast lists are loaded. Finally
1357 * the device is moved into the up state and a %NETDEV_UP message is
1358 * sent to the netdev notifier chain.
1359 *
1360 * Calling this function on an active interface is a nop. On a failure
1361 * a negative errno code is returned.
1362 */
1363 int dev_open(struct net_device *dev)
1364 {
1365 int ret;
1366
1367 if (dev->flags & IFF_UP)
1368 return 0;
1369
1370 ret = __dev_open(dev);
1371 if (ret < 0)
1372 return ret;
1373
1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 call_netdevice_notifiers(NETDEV_UP, dev);
1376
1377 return ret;
1378 }
1379 EXPORT_SYMBOL(dev_open);
1380
1381 static int __dev_close_many(struct list_head *head)
1382 {
1383 struct net_device *dev;
1384
1385 ASSERT_RTNL();
1386 might_sleep();
1387
1388 list_for_each_entry(dev, head, close_list) {
1389 /* Temporarily disable netpoll until the interface is down */
1390 netpoll_poll_disable(dev);
1391
1392 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1393
1394 clear_bit(__LINK_STATE_START, &dev->state);
1395
1396 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397 * can be even on different cpu. So just clear netif_running().
1398 *
1399 * dev->stop() will invoke napi_disable() on all of it's
1400 * napi_struct instances on this device.
1401 */
1402 smp_mb__after_atomic(); /* Commit netif_running(). */
1403 }
1404
1405 dev_deactivate_many(head);
1406
1407 list_for_each_entry(dev, head, close_list) {
1408 const struct net_device_ops *ops = dev->netdev_ops;
1409
1410 /*
1411 * Call the device specific close. This cannot fail.
1412 * Only if device is UP
1413 *
1414 * We allow it to be called even after a DETACH hot-plug
1415 * event.
1416 */
1417 if (ops->ndo_stop)
1418 ops->ndo_stop(dev);
1419
1420 dev->flags &= ~IFF_UP;
1421 netpoll_poll_enable(dev);
1422 }
1423
1424 return 0;
1425 }
1426
1427 static int __dev_close(struct net_device *dev)
1428 {
1429 int retval;
1430 LIST_HEAD(single);
1431
1432 list_add(&dev->close_list, &single);
1433 retval = __dev_close_many(&single);
1434 list_del(&single);
1435
1436 return retval;
1437 }
1438
1439 int dev_close_many(struct list_head *head, bool unlink)
1440 {
1441 struct net_device *dev, *tmp;
1442
1443 /* Remove the devices that don't need to be closed */
1444 list_for_each_entry_safe(dev, tmp, head, close_list)
1445 if (!(dev->flags & IFF_UP))
1446 list_del_init(&dev->close_list);
1447
1448 __dev_close_many(head);
1449
1450 list_for_each_entry_safe(dev, tmp, head, close_list) {
1451 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1452 call_netdevice_notifiers(NETDEV_DOWN, dev);
1453 if (unlink)
1454 list_del_init(&dev->close_list);
1455 }
1456
1457 return 0;
1458 }
1459 EXPORT_SYMBOL(dev_close_many);
1460
1461 /**
1462 * dev_close - shutdown an interface.
1463 * @dev: device to shutdown
1464 *
1465 * This function moves an active device into down state. A
1466 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468 * chain.
1469 */
1470 int dev_close(struct net_device *dev)
1471 {
1472 if (dev->flags & IFF_UP) {
1473 LIST_HEAD(single);
1474
1475 list_add(&dev->close_list, &single);
1476 dev_close_many(&single, true);
1477 list_del(&single);
1478 }
1479 return 0;
1480 }
1481 EXPORT_SYMBOL(dev_close);
1482
1483
1484 /**
1485 * dev_disable_lro - disable Large Receive Offload on a device
1486 * @dev: device
1487 *
1488 * Disable Large Receive Offload (LRO) on a net device. Must be
1489 * called under RTNL. This is needed if received packets may be
1490 * forwarded to another interface.
1491 */
1492 void dev_disable_lro(struct net_device *dev)
1493 {
1494 struct net_device *lower_dev;
1495 struct list_head *iter;
1496
1497 dev->wanted_features &= ~NETIF_F_LRO;
1498 netdev_update_features(dev);
1499
1500 if (unlikely(dev->features & NETIF_F_LRO))
1501 netdev_WARN(dev, "failed to disable LRO!\n");
1502
1503 netdev_for_each_lower_dev(dev, lower_dev, iter)
1504 dev_disable_lro(lower_dev);
1505 }
1506 EXPORT_SYMBOL(dev_disable_lro);
1507
1508 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509 struct net_device *dev)
1510 {
1511 struct netdev_notifier_info info;
1512
1513 netdev_notifier_info_init(&info, dev);
1514 return nb->notifier_call(nb, val, &info);
1515 }
1516
1517 static int dev_boot_phase = 1;
1518
1519 /**
1520 * register_netdevice_notifier - register a network notifier block
1521 * @nb: notifier
1522 *
1523 * Register a notifier to be called when network device events occur.
1524 * The notifier passed is linked into the kernel structures and must
1525 * not be reused until it has been unregistered. A negative errno code
1526 * is returned on a failure.
1527 *
1528 * When registered all registration and up events are replayed
1529 * to the new notifier to allow device to have a race free
1530 * view of the network device list.
1531 */
1532
1533 int register_netdevice_notifier(struct notifier_block *nb)
1534 {
1535 struct net_device *dev;
1536 struct net_device *last;
1537 struct net *net;
1538 int err;
1539
1540 rtnl_lock();
1541 err = raw_notifier_chain_register(&netdev_chain, nb);
1542 if (err)
1543 goto unlock;
1544 if (dev_boot_phase)
1545 goto unlock;
1546 for_each_net(net) {
1547 for_each_netdev(net, dev) {
1548 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1549 err = notifier_to_errno(err);
1550 if (err)
1551 goto rollback;
1552
1553 if (!(dev->flags & IFF_UP))
1554 continue;
1555
1556 call_netdevice_notifier(nb, NETDEV_UP, dev);
1557 }
1558 }
1559
1560 unlock:
1561 rtnl_unlock();
1562 return err;
1563
1564 rollback:
1565 last = dev;
1566 for_each_net(net) {
1567 for_each_netdev(net, dev) {
1568 if (dev == last)
1569 goto outroll;
1570
1571 if (dev->flags & IFF_UP) {
1572 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573 dev);
1574 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1575 }
1576 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1577 }
1578 }
1579
1580 outroll:
1581 raw_notifier_chain_unregister(&netdev_chain, nb);
1582 goto unlock;
1583 }
1584 EXPORT_SYMBOL(register_netdevice_notifier);
1585
1586 /**
1587 * unregister_netdevice_notifier - unregister a network notifier block
1588 * @nb: notifier
1589 *
1590 * Unregister a notifier previously registered by
1591 * register_netdevice_notifier(). The notifier is unlinked into the
1592 * kernel structures and may then be reused. A negative errno code
1593 * is returned on a failure.
1594 *
1595 * After unregistering unregister and down device events are synthesized
1596 * for all devices on the device list to the removed notifier to remove
1597 * the need for special case cleanup code.
1598 */
1599
1600 int unregister_netdevice_notifier(struct notifier_block *nb)
1601 {
1602 struct net_device *dev;
1603 struct net *net;
1604 int err;
1605
1606 rtnl_lock();
1607 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1608 if (err)
1609 goto unlock;
1610
1611 for_each_net(net) {
1612 for_each_netdev(net, dev) {
1613 if (dev->flags & IFF_UP) {
1614 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615 dev);
1616 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1617 }
1618 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1619 }
1620 }
1621 unlock:
1622 rtnl_unlock();
1623 return err;
1624 }
1625 EXPORT_SYMBOL(unregister_netdevice_notifier);
1626
1627 /**
1628 * call_netdevice_notifiers_info - call all network notifier blocks
1629 * @val: value passed unmodified to notifier function
1630 * @dev: net_device pointer passed unmodified to notifier function
1631 * @info: notifier information data
1632 *
1633 * Call all network notifier blocks. Parameters and return value
1634 * are as for raw_notifier_call_chain().
1635 */
1636
1637 static int call_netdevice_notifiers_info(unsigned long val,
1638 struct net_device *dev,
1639 struct netdev_notifier_info *info)
1640 {
1641 ASSERT_RTNL();
1642 netdev_notifier_info_init(info, dev);
1643 return raw_notifier_call_chain(&netdev_chain, val, info);
1644 }
1645
1646 /**
1647 * call_netdevice_notifiers - call all network notifier blocks
1648 * @val: value passed unmodified to notifier function
1649 * @dev: net_device pointer passed unmodified to notifier function
1650 *
1651 * Call all network notifier blocks. Parameters and return value
1652 * are as for raw_notifier_call_chain().
1653 */
1654
1655 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1656 {
1657 struct netdev_notifier_info info;
1658
1659 return call_netdevice_notifiers_info(val, dev, &info);
1660 }
1661 EXPORT_SYMBOL(call_netdevice_notifiers);
1662
1663 #ifdef CONFIG_NET_INGRESS
1664 static struct static_key ingress_needed __read_mostly;
1665
1666 void net_inc_ingress_queue(void)
1667 {
1668 static_key_slow_inc(&ingress_needed);
1669 }
1670 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671
1672 void net_dec_ingress_queue(void)
1673 {
1674 static_key_slow_dec(&ingress_needed);
1675 }
1676 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677 #endif
1678
1679 #ifdef CONFIG_NET_EGRESS
1680 static struct static_key egress_needed __read_mostly;
1681
1682 void net_inc_egress_queue(void)
1683 {
1684 static_key_slow_inc(&egress_needed);
1685 }
1686 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687
1688 void net_dec_egress_queue(void)
1689 {
1690 static_key_slow_dec(&egress_needed);
1691 }
1692 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693 #endif
1694
1695 static struct static_key netstamp_needed __read_mostly;
1696 #ifdef HAVE_JUMP_LABEL
1697 /* We are not allowed to call static_key_slow_dec() from irq context
1698 * If net_disable_timestamp() is called from irq context, defer the
1699 * static_key_slow_dec() calls.
1700 */
1701 static atomic_t netstamp_needed_deferred;
1702 #endif
1703
1704 void net_enable_timestamp(void)
1705 {
1706 #ifdef HAVE_JUMP_LABEL
1707 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708
1709 if (deferred) {
1710 while (--deferred)
1711 static_key_slow_dec(&netstamp_needed);
1712 return;
1713 }
1714 #endif
1715 static_key_slow_inc(&netstamp_needed);
1716 }
1717 EXPORT_SYMBOL(net_enable_timestamp);
1718
1719 void net_disable_timestamp(void)
1720 {
1721 #ifdef HAVE_JUMP_LABEL
1722 if (in_interrupt()) {
1723 atomic_inc(&netstamp_needed_deferred);
1724 return;
1725 }
1726 #endif
1727 static_key_slow_dec(&netstamp_needed);
1728 }
1729 EXPORT_SYMBOL(net_disable_timestamp);
1730
1731 static inline void net_timestamp_set(struct sk_buff *skb)
1732 {
1733 skb->tstamp.tv64 = 0;
1734 if (static_key_false(&netstamp_needed))
1735 __net_timestamp(skb);
1736 }
1737
1738 #define net_timestamp_check(COND, SKB) \
1739 if (static_key_false(&netstamp_needed)) { \
1740 if ((COND) && !(SKB)->tstamp.tv64) \
1741 __net_timestamp(SKB); \
1742 } \
1743
1744 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1745 {
1746 unsigned int len;
1747
1748 if (!(dev->flags & IFF_UP))
1749 return false;
1750
1751 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752 if (skb->len <= len)
1753 return true;
1754
1755 /* if TSO is enabled, we don't care about the length as the packet
1756 * could be forwarded without being segmented before
1757 */
1758 if (skb_is_gso(skb))
1759 return true;
1760
1761 return false;
1762 }
1763 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1764
1765 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766 {
1767 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768 unlikely(!is_skb_forwardable(dev, skb))) {
1769 atomic_long_inc(&dev->rx_dropped);
1770 kfree_skb(skb);
1771 return NET_RX_DROP;
1772 }
1773
1774 skb_scrub_packet(skb, true);
1775 skb->priority = 0;
1776 skb->protocol = eth_type_trans(skb, dev);
1777 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1778
1779 return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782
1783 /**
1784 * dev_forward_skb - loopback an skb to another netif
1785 *
1786 * @dev: destination network device
1787 * @skb: buffer to forward
1788 *
1789 * return values:
1790 * NET_RX_SUCCESS (no congestion)
1791 * NET_RX_DROP (packet was dropped, but freed)
1792 *
1793 * dev_forward_skb can be used for injecting an skb from the
1794 * start_xmit function of one device into the receive queue
1795 * of another device.
1796 *
1797 * The receiving device may be in another namespace, so
1798 * we have to clear all information in the skb that could
1799 * impact namespace isolation.
1800 */
1801 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802 {
1803 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1804 }
1805 EXPORT_SYMBOL_GPL(dev_forward_skb);
1806
1807 static inline int deliver_skb(struct sk_buff *skb,
1808 struct packet_type *pt_prev,
1809 struct net_device *orig_dev)
1810 {
1811 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812 return -ENOMEM;
1813 atomic_inc(&skb->users);
1814 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815 }
1816
1817 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818 struct packet_type **pt,
1819 struct net_device *orig_dev,
1820 __be16 type,
1821 struct list_head *ptype_list)
1822 {
1823 struct packet_type *ptype, *pt_prev = *pt;
1824
1825 list_for_each_entry_rcu(ptype, ptype_list, list) {
1826 if (ptype->type != type)
1827 continue;
1828 if (pt_prev)
1829 deliver_skb(skb, pt_prev, orig_dev);
1830 pt_prev = ptype;
1831 }
1832 *pt = pt_prev;
1833 }
1834
1835 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836 {
1837 if (!ptype->af_packet_priv || !skb->sk)
1838 return false;
1839
1840 if (ptype->id_match)
1841 return ptype->id_match(ptype, skb->sk);
1842 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843 return true;
1844
1845 return false;
1846 }
1847
1848 /*
1849 * Support routine. Sends outgoing frames to any network
1850 * taps currently in use.
1851 */
1852
1853 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1854 {
1855 struct packet_type *ptype;
1856 struct sk_buff *skb2 = NULL;
1857 struct packet_type *pt_prev = NULL;
1858 struct list_head *ptype_list = &ptype_all;
1859
1860 rcu_read_lock();
1861 again:
1862 list_for_each_entry_rcu(ptype, ptype_list, list) {
1863 /* Never send packets back to the socket
1864 * they originated from - MvS (miquels@drinkel.ow.org)
1865 */
1866 if (skb_loop_sk(ptype, skb))
1867 continue;
1868
1869 if (pt_prev) {
1870 deliver_skb(skb2, pt_prev, skb->dev);
1871 pt_prev = ptype;
1872 continue;
1873 }
1874
1875 /* need to clone skb, done only once */
1876 skb2 = skb_clone(skb, GFP_ATOMIC);
1877 if (!skb2)
1878 goto out_unlock;
1879
1880 net_timestamp_set(skb2);
1881
1882 /* skb->nh should be correctly
1883 * set by sender, so that the second statement is
1884 * just protection against buggy protocols.
1885 */
1886 skb_reset_mac_header(skb2);
1887
1888 if (skb_network_header(skb2) < skb2->data ||
1889 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891 ntohs(skb2->protocol),
1892 dev->name);
1893 skb_reset_network_header(skb2);
1894 }
1895
1896 skb2->transport_header = skb2->network_header;
1897 skb2->pkt_type = PACKET_OUTGOING;
1898 pt_prev = ptype;
1899 }
1900
1901 if (ptype_list == &ptype_all) {
1902 ptype_list = &dev->ptype_all;
1903 goto again;
1904 }
1905 out_unlock:
1906 if (pt_prev)
1907 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1908 rcu_read_unlock();
1909 }
1910
1911 /**
1912 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1913 * @dev: Network device
1914 * @txq: number of queues available
1915 *
1916 * If real_num_tx_queues is changed the tc mappings may no longer be
1917 * valid. To resolve this verify the tc mapping remains valid and if
1918 * not NULL the mapping. With no priorities mapping to this
1919 * offset/count pair it will no longer be used. In the worst case TC0
1920 * is invalid nothing can be done so disable priority mappings. If is
1921 * expected that drivers will fix this mapping if they can before
1922 * calling netif_set_real_num_tx_queues.
1923 */
1924 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1925 {
1926 int i;
1927 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1928
1929 /* If TC0 is invalidated disable TC mapping */
1930 if (tc->offset + tc->count > txq) {
1931 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1932 dev->num_tc = 0;
1933 return;
1934 }
1935
1936 /* Invalidated prio to tc mappings set to TC0 */
1937 for (i = 1; i < TC_BITMASK + 1; i++) {
1938 int q = netdev_get_prio_tc_map(dev, i);
1939
1940 tc = &dev->tc_to_txq[q];
1941 if (tc->offset + tc->count > txq) {
1942 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1943 i, q);
1944 netdev_set_prio_tc_map(dev, i, 0);
1945 }
1946 }
1947 }
1948
1949 #ifdef CONFIG_XPS
1950 static DEFINE_MUTEX(xps_map_mutex);
1951 #define xmap_dereference(P) \
1952 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1953
1954 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1955 int cpu, u16 index)
1956 {
1957 struct xps_map *map = NULL;
1958 int pos;
1959
1960 if (dev_maps)
1961 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1962
1963 for (pos = 0; map && pos < map->len; pos++) {
1964 if (map->queues[pos] == index) {
1965 if (map->len > 1) {
1966 map->queues[pos] = map->queues[--map->len];
1967 } else {
1968 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1969 kfree_rcu(map, rcu);
1970 map = NULL;
1971 }
1972 break;
1973 }
1974 }
1975
1976 return map;
1977 }
1978
1979 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1980 {
1981 struct xps_dev_maps *dev_maps;
1982 int cpu, i;
1983 bool active = false;
1984
1985 mutex_lock(&xps_map_mutex);
1986 dev_maps = xmap_dereference(dev->xps_maps);
1987
1988 if (!dev_maps)
1989 goto out_no_maps;
1990
1991 for_each_possible_cpu(cpu) {
1992 for (i = index; i < dev->num_tx_queues; i++) {
1993 if (!remove_xps_queue(dev_maps, cpu, i))
1994 break;
1995 }
1996 if (i == dev->num_tx_queues)
1997 active = true;
1998 }
1999
2000 if (!active) {
2001 RCU_INIT_POINTER(dev->xps_maps, NULL);
2002 kfree_rcu(dev_maps, rcu);
2003 }
2004
2005 for (i = index; i < dev->num_tx_queues; i++)
2006 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2007 NUMA_NO_NODE);
2008
2009 out_no_maps:
2010 mutex_unlock(&xps_map_mutex);
2011 }
2012
2013 static struct xps_map *expand_xps_map(struct xps_map *map,
2014 int cpu, u16 index)
2015 {
2016 struct xps_map *new_map;
2017 int alloc_len = XPS_MIN_MAP_ALLOC;
2018 int i, pos;
2019
2020 for (pos = 0; map && pos < map->len; pos++) {
2021 if (map->queues[pos] != index)
2022 continue;
2023 return map;
2024 }
2025
2026 /* Need to add queue to this CPU's existing map */
2027 if (map) {
2028 if (pos < map->alloc_len)
2029 return map;
2030
2031 alloc_len = map->alloc_len * 2;
2032 }
2033
2034 /* Need to allocate new map to store queue on this CPU's map */
2035 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2036 cpu_to_node(cpu));
2037 if (!new_map)
2038 return NULL;
2039
2040 for (i = 0; i < pos; i++)
2041 new_map->queues[i] = map->queues[i];
2042 new_map->alloc_len = alloc_len;
2043 new_map->len = pos;
2044
2045 return new_map;
2046 }
2047
2048 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2049 u16 index)
2050 {
2051 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2052 struct xps_map *map, *new_map;
2053 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2054 int cpu, numa_node_id = -2;
2055 bool active = false;
2056
2057 mutex_lock(&xps_map_mutex);
2058
2059 dev_maps = xmap_dereference(dev->xps_maps);
2060
2061 /* allocate memory for queue storage */
2062 for_each_online_cpu(cpu) {
2063 if (!cpumask_test_cpu(cpu, mask))
2064 continue;
2065
2066 if (!new_dev_maps)
2067 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2068 if (!new_dev_maps) {
2069 mutex_unlock(&xps_map_mutex);
2070 return -ENOMEM;
2071 }
2072
2073 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2074 NULL;
2075
2076 map = expand_xps_map(map, cpu, index);
2077 if (!map)
2078 goto error;
2079
2080 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2081 }
2082
2083 if (!new_dev_maps)
2084 goto out_no_new_maps;
2085
2086 for_each_possible_cpu(cpu) {
2087 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2088 /* add queue to CPU maps */
2089 int pos = 0;
2090
2091 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2092 while ((pos < map->len) && (map->queues[pos] != index))
2093 pos++;
2094
2095 if (pos == map->len)
2096 map->queues[map->len++] = index;
2097 #ifdef CONFIG_NUMA
2098 if (numa_node_id == -2)
2099 numa_node_id = cpu_to_node(cpu);
2100 else if (numa_node_id != cpu_to_node(cpu))
2101 numa_node_id = -1;
2102 #endif
2103 } else if (dev_maps) {
2104 /* fill in the new device map from the old device map */
2105 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2106 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2107 }
2108
2109 }
2110
2111 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2112
2113 /* Cleanup old maps */
2114 if (dev_maps) {
2115 for_each_possible_cpu(cpu) {
2116 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2117 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2118 if (map && map != new_map)
2119 kfree_rcu(map, rcu);
2120 }
2121
2122 kfree_rcu(dev_maps, rcu);
2123 }
2124
2125 dev_maps = new_dev_maps;
2126 active = true;
2127
2128 out_no_new_maps:
2129 /* update Tx queue numa node */
2130 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2131 (numa_node_id >= 0) ? numa_node_id :
2132 NUMA_NO_NODE);
2133
2134 if (!dev_maps)
2135 goto out_no_maps;
2136
2137 /* removes queue from unused CPUs */
2138 for_each_possible_cpu(cpu) {
2139 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2140 continue;
2141
2142 if (remove_xps_queue(dev_maps, cpu, index))
2143 active = true;
2144 }
2145
2146 /* free map if not active */
2147 if (!active) {
2148 RCU_INIT_POINTER(dev->xps_maps, NULL);
2149 kfree_rcu(dev_maps, rcu);
2150 }
2151
2152 out_no_maps:
2153 mutex_unlock(&xps_map_mutex);
2154
2155 return 0;
2156 error:
2157 /* remove any maps that we added */
2158 for_each_possible_cpu(cpu) {
2159 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2160 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2161 NULL;
2162 if (new_map && new_map != map)
2163 kfree(new_map);
2164 }
2165
2166 mutex_unlock(&xps_map_mutex);
2167
2168 kfree(new_dev_maps);
2169 return -ENOMEM;
2170 }
2171 EXPORT_SYMBOL(netif_set_xps_queue);
2172
2173 #endif
2174 /*
2175 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2176 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2177 */
2178 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2179 {
2180 int rc;
2181
2182 if (txq < 1 || txq > dev->num_tx_queues)
2183 return -EINVAL;
2184
2185 if (dev->reg_state == NETREG_REGISTERED ||
2186 dev->reg_state == NETREG_UNREGISTERING) {
2187 ASSERT_RTNL();
2188
2189 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2190 txq);
2191 if (rc)
2192 return rc;
2193
2194 if (dev->num_tc)
2195 netif_setup_tc(dev, txq);
2196
2197 if (txq < dev->real_num_tx_queues) {
2198 qdisc_reset_all_tx_gt(dev, txq);
2199 #ifdef CONFIG_XPS
2200 netif_reset_xps_queues_gt(dev, txq);
2201 #endif
2202 }
2203 }
2204
2205 dev->real_num_tx_queues = txq;
2206 return 0;
2207 }
2208 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2209
2210 #ifdef CONFIG_SYSFS
2211 /**
2212 * netif_set_real_num_rx_queues - set actual number of RX queues used
2213 * @dev: Network device
2214 * @rxq: Actual number of RX queues
2215 *
2216 * This must be called either with the rtnl_lock held or before
2217 * registration of the net device. Returns 0 on success, or a
2218 * negative error code. If called before registration, it always
2219 * succeeds.
2220 */
2221 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2222 {
2223 int rc;
2224
2225 if (rxq < 1 || rxq > dev->num_rx_queues)
2226 return -EINVAL;
2227
2228 if (dev->reg_state == NETREG_REGISTERED) {
2229 ASSERT_RTNL();
2230
2231 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2232 rxq);
2233 if (rc)
2234 return rc;
2235 }
2236
2237 dev->real_num_rx_queues = rxq;
2238 return 0;
2239 }
2240 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2241 #endif
2242
2243 /**
2244 * netif_get_num_default_rss_queues - default number of RSS queues
2245 *
2246 * This routine should set an upper limit on the number of RSS queues
2247 * used by default by multiqueue devices.
2248 */
2249 int netif_get_num_default_rss_queues(void)
2250 {
2251 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2252 }
2253 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2254
2255 static inline void __netif_reschedule(struct Qdisc *q)
2256 {
2257 struct softnet_data *sd;
2258 unsigned long flags;
2259
2260 local_irq_save(flags);
2261 sd = this_cpu_ptr(&softnet_data);
2262 q->next_sched = NULL;
2263 *sd->output_queue_tailp = q;
2264 sd->output_queue_tailp = &q->next_sched;
2265 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2266 local_irq_restore(flags);
2267 }
2268
2269 void __netif_schedule(struct Qdisc *q)
2270 {
2271 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2272 __netif_reschedule(q);
2273 }
2274 EXPORT_SYMBOL(__netif_schedule);
2275
2276 struct dev_kfree_skb_cb {
2277 enum skb_free_reason reason;
2278 };
2279
2280 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2281 {
2282 return (struct dev_kfree_skb_cb *)skb->cb;
2283 }
2284
2285 void netif_schedule_queue(struct netdev_queue *txq)
2286 {
2287 rcu_read_lock();
2288 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2289 struct Qdisc *q = rcu_dereference(txq->qdisc);
2290
2291 __netif_schedule(q);
2292 }
2293 rcu_read_unlock();
2294 }
2295 EXPORT_SYMBOL(netif_schedule_queue);
2296
2297 /**
2298 * netif_wake_subqueue - allow sending packets on subqueue
2299 * @dev: network device
2300 * @queue_index: sub queue index
2301 *
2302 * Resume individual transmit queue of a device with multiple transmit queues.
2303 */
2304 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2305 {
2306 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2307
2308 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2309 struct Qdisc *q;
2310
2311 rcu_read_lock();
2312 q = rcu_dereference(txq->qdisc);
2313 __netif_schedule(q);
2314 rcu_read_unlock();
2315 }
2316 }
2317 EXPORT_SYMBOL(netif_wake_subqueue);
2318
2319 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2320 {
2321 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2322 struct Qdisc *q;
2323
2324 rcu_read_lock();
2325 q = rcu_dereference(dev_queue->qdisc);
2326 __netif_schedule(q);
2327 rcu_read_unlock();
2328 }
2329 }
2330 EXPORT_SYMBOL(netif_tx_wake_queue);
2331
2332 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2333 {
2334 unsigned long flags;
2335
2336 if (likely(atomic_read(&skb->users) == 1)) {
2337 smp_rmb();
2338 atomic_set(&skb->users, 0);
2339 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2340 return;
2341 }
2342 get_kfree_skb_cb(skb)->reason = reason;
2343 local_irq_save(flags);
2344 skb->next = __this_cpu_read(softnet_data.completion_queue);
2345 __this_cpu_write(softnet_data.completion_queue, skb);
2346 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2347 local_irq_restore(flags);
2348 }
2349 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2350
2351 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2352 {
2353 if (in_irq() || irqs_disabled())
2354 __dev_kfree_skb_irq(skb, reason);
2355 else
2356 dev_kfree_skb(skb);
2357 }
2358 EXPORT_SYMBOL(__dev_kfree_skb_any);
2359
2360
2361 /**
2362 * netif_device_detach - mark device as removed
2363 * @dev: network device
2364 *
2365 * Mark device as removed from system and therefore no longer available.
2366 */
2367 void netif_device_detach(struct net_device *dev)
2368 {
2369 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2370 netif_running(dev)) {
2371 netif_tx_stop_all_queues(dev);
2372 }
2373 }
2374 EXPORT_SYMBOL(netif_device_detach);
2375
2376 /**
2377 * netif_device_attach - mark device as attached
2378 * @dev: network device
2379 *
2380 * Mark device as attached from system and restart if needed.
2381 */
2382 void netif_device_attach(struct net_device *dev)
2383 {
2384 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2385 netif_running(dev)) {
2386 netif_tx_wake_all_queues(dev);
2387 __netdev_watchdog_up(dev);
2388 }
2389 }
2390 EXPORT_SYMBOL(netif_device_attach);
2391
2392 /*
2393 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394 * to be used as a distribution range.
2395 */
2396 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2397 unsigned int num_tx_queues)
2398 {
2399 u32 hash;
2400 u16 qoffset = 0;
2401 u16 qcount = num_tx_queues;
2402
2403 if (skb_rx_queue_recorded(skb)) {
2404 hash = skb_get_rx_queue(skb);
2405 while (unlikely(hash >= num_tx_queues))
2406 hash -= num_tx_queues;
2407 return hash;
2408 }
2409
2410 if (dev->num_tc) {
2411 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412 qoffset = dev->tc_to_txq[tc].offset;
2413 qcount = dev->tc_to_txq[tc].count;
2414 }
2415
2416 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2417 }
2418 EXPORT_SYMBOL(__skb_tx_hash);
2419
2420 static void skb_warn_bad_offload(const struct sk_buff *skb)
2421 {
2422 static const netdev_features_t null_features = 0;
2423 struct net_device *dev = skb->dev;
2424 const char *name = "";
2425
2426 if (!net_ratelimit())
2427 return;
2428
2429 if (dev) {
2430 if (dev->dev.parent)
2431 name = dev_driver_string(dev->dev.parent);
2432 else
2433 name = netdev_name(dev);
2434 }
2435 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2436 "gso_type=%d ip_summed=%d\n",
2437 name, dev ? &dev->features : &null_features,
2438 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2439 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2440 skb_shinfo(skb)->gso_type, skb->ip_summed);
2441 }
2442
2443 /*
2444 * Invalidate hardware checksum when packet is to be mangled, and
2445 * complete checksum manually on outgoing path.
2446 */
2447 int skb_checksum_help(struct sk_buff *skb)
2448 {
2449 __wsum csum;
2450 int ret = 0, offset;
2451
2452 if (skb->ip_summed == CHECKSUM_COMPLETE)
2453 goto out_set_summed;
2454
2455 if (unlikely(skb_shinfo(skb)->gso_size)) {
2456 skb_warn_bad_offload(skb);
2457 return -EINVAL;
2458 }
2459
2460 /* Before computing a checksum, we should make sure no frag could
2461 * be modified by an external entity : checksum could be wrong.
2462 */
2463 if (skb_has_shared_frag(skb)) {
2464 ret = __skb_linearize(skb);
2465 if (ret)
2466 goto out;
2467 }
2468
2469 offset = skb_checksum_start_offset(skb);
2470 BUG_ON(offset >= skb_headlen(skb));
2471 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2472
2473 offset += skb->csum_offset;
2474 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2475
2476 if (skb_cloned(skb) &&
2477 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2478 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479 if (ret)
2480 goto out;
2481 }
2482
2483 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2484 out_set_summed:
2485 skb->ip_summed = CHECKSUM_NONE;
2486 out:
2487 return ret;
2488 }
2489 EXPORT_SYMBOL(skb_checksum_help);
2490
2491 /* skb_csum_offload_check - Driver helper function to determine if a device
2492 * with limited checksum offload capabilities is able to offload the checksum
2493 * for a given packet.
2494 *
2495 * Arguments:
2496 * skb - sk_buff for the packet in question
2497 * spec - contains the description of what device can offload
2498 * csum_encapped - returns true if the checksum being offloaded is
2499 * encpasulated. That is it is checksum for the transport header
2500 * in the inner headers.
2501 * checksum_help - when set indicates that helper function should
2502 * call skb_checksum_help if offload checks fail
2503 *
2504 * Returns:
2505 * true: Packet has passed the checksum checks and should be offloadable to
2506 * the device (a driver may still need to check for additional
2507 * restrictions of its device)
2508 * false: Checksum is not offloadable. If checksum_help was set then
2509 * skb_checksum_help was called to resolve checksum for non-GSO
2510 * packets and when IP protocol is not SCTP
2511 */
2512 bool __skb_csum_offload_chk(struct sk_buff *skb,
2513 const struct skb_csum_offl_spec *spec,
2514 bool *csum_encapped,
2515 bool csum_help)
2516 {
2517 struct iphdr *iph;
2518 struct ipv6hdr *ipv6;
2519 void *nhdr;
2520 int protocol;
2521 u8 ip_proto;
2522
2523 if (skb->protocol == htons(ETH_P_8021Q) ||
2524 skb->protocol == htons(ETH_P_8021AD)) {
2525 if (!spec->vlan_okay)
2526 goto need_help;
2527 }
2528
2529 /* We check whether the checksum refers to a transport layer checksum in
2530 * the outermost header or an encapsulated transport layer checksum that
2531 * corresponds to the inner headers of the skb. If the checksum is for
2532 * something else in the packet we need help.
2533 */
2534 if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2535 /* Non-encapsulated checksum */
2536 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2537 nhdr = skb_network_header(skb);
2538 *csum_encapped = false;
2539 if (spec->no_not_encapped)
2540 goto need_help;
2541 } else if (skb->encapsulation && spec->encap_okay &&
2542 skb_checksum_start_offset(skb) ==
2543 skb_inner_transport_offset(skb)) {
2544 /* Encapsulated checksum */
2545 *csum_encapped = true;
2546 switch (skb->inner_protocol_type) {
2547 case ENCAP_TYPE_ETHER:
2548 protocol = eproto_to_ipproto(skb->inner_protocol);
2549 break;
2550 case ENCAP_TYPE_IPPROTO:
2551 protocol = skb->inner_protocol;
2552 break;
2553 }
2554 nhdr = skb_inner_network_header(skb);
2555 } else {
2556 goto need_help;
2557 }
2558
2559 switch (protocol) {
2560 case IPPROTO_IP:
2561 if (!spec->ipv4_okay)
2562 goto need_help;
2563 iph = nhdr;
2564 ip_proto = iph->protocol;
2565 if (iph->ihl != 5 && !spec->ip_options_okay)
2566 goto need_help;
2567 break;
2568 case IPPROTO_IPV6:
2569 if (!spec->ipv6_okay)
2570 goto need_help;
2571 if (spec->no_encapped_ipv6 && *csum_encapped)
2572 goto need_help;
2573 ipv6 = nhdr;
2574 nhdr += sizeof(*ipv6);
2575 ip_proto = ipv6->nexthdr;
2576 break;
2577 default:
2578 goto need_help;
2579 }
2580
2581 ip_proto_again:
2582 switch (ip_proto) {
2583 case IPPROTO_TCP:
2584 if (!spec->tcp_okay ||
2585 skb->csum_offset != offsetof(struct tcphdr, check))
2586 goto need_help;
2587 break;
2588 case IPPROTO_UDP:
2589 if (!spec->udp_okay ||
2590 skb->csum_offset != offsetof(struct udphdr, check))
2591 goto need_help;
2592 break;
2593 case IPPROTO_SCTP:
2594 if (!spec->sctp_okay ||
2595 skb->csum_offset != offsetof(struct sctphdr, checksum))
2596 goto cant_help;
2597 break;
2598 case NEXTHDR_HOP:
2599 case NEXTHDR_ROUTING:
2600 case NEXTHDR_DEST: {
2601 u8 *opthdr = nhdr;
2602
2603 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2604 goto need_help;
2605
2606 ip_proto = opthdr[0];
2607 nhdr += (opthdr[1] + 1) << 3;
2608
2609 goto ip_proto_again;
2610 }
2611 default:
2612 goto need_help;
2613 }
2614
2615 /* Passed the tests for offloading checksum */
2616 return true;
2617
2618 need_help:
2619 if (csum_help && !skb_shinfo(skb)->gso_size)
2620 skb_checksum_help(skb);
2621 cant_help:
2622 return false;
2623 }
2624 EXPORT_SYMBOL(__skb_csum_offload_chk);
2625
2626 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2627 {
2628 __be16 type = skb->protocol;
2629
2630 /* Tunnel gso handlers can set protocol to ethernet. */
2631 if (type == htons(ETH_P_TEB)) {
2632 struct ethhdr *eth;
2633
2634 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2635 return 0;
2636
2637 eth = (struct ethhdr *)skb_mac_header(skb);
2638 type = eth->h_proto;
2639 }
2640
2641 return __vlan_get_protocol(skb, type, depth);
2642 }
2643
2644 /**
2645 * skb_mac_gso_segment - mac layer segmentation handler.
2646 * @skb: buffer to segment
2647 * @features: features for the output path (see dev->features)
2648 */
2649 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2650 netdev_features_t features)
2651 {
2652 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2653 struct packet_offload *ptype;
2654 int vlan_depth = skb->mac_len;
2655 __be16 type = skb_network_protocol(skb, &vlan_depth);
2656
2657 if (unlikely(!type))
2658 return ERR_PTR(-EINVAL);
2659
2660 __skb_pull(skb, vlan_depth);
2661
2662 rcu_read_lock();
2663 list_for_each_entry_rcu(ptype, &offload_base, list) {
2664 if (ptype->type == type && ptype->callbacks.gso_segment) {
2665 segs = ptype->callbacks.gso_segment(skb, features);
2666 break;
2667 }
2668 }
2669 rcu_read_unlock();
2670
2671 __skb_push(skb, skb->data - skb_mac_header(skb));
2672
2673 return segs;
2674 }
2675 EXPORT_SYMBOL(skb_mac_gso_segment);
2676
2677
2678 /* openvswitch calls this on rx path, so we need a different check.
2679 */
2680 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2681 {
2682 if (tx_path)
2683 return skb->ip_summed != CHECKSUM_PARTIAL;
2684 else
2685 return skb->ip_summed == CHECKSUM_NONE;
2686 }
2687
2688 /**
2689 * __skb_gso_segment - Perform segmentation on skb.
2690 * @skb: buffer to segment
2691 * @features: features for the output path (see dev->features)
2692 * @tx_path: whether it is called in TX path
2693 *
2694 * This function segments the given skb and returns a list of segments.
2695 *
2696 * It may return NULL if the skb requires no segmentation. This is
2697 * only possible when GSO is used for verifying header integrity.
2698 *
2699 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2700 */
2701 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2702 netdev_features_t features, bool tx_path)
2703 {
2704 if (unlikely(skb_needs_check(skb, tx_path))) {
2705 int err;
2706
2707 skb_warn_bad_offload(skb);
2708
2709 err = skb_cow_head(skb, 0);
2710 if (err < 0)
2711 return ERR_PTR(err);
2712 }
2713
2714 /* Only report GSO partial support if it will enable us to
2715 * support segmentation on this frame without needing additional
2716 * work.
2717 */
2718 if (features & NETIF_F_GSO_PARTIAL) {
2719 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2720 struct net_device *dev = skb->dev;
2721
2722 partial_features |= dev->features & dev->gso_partial_features;
2723 if (!skb_gso_ok(skb, features | partial_features))
2724 features &= ~NETIF_F_GSO_PARTIAL;
2725 }
2726
2727 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2728 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2729
2730 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2731 SKB_GSO_CB(skb)->encap_level = 0;
2732
2733 skb_reset_mac_header(skb);
2734 skb_reset_mac_len(skb);
2735
2736 return skb_mac_gso_segment(skb, features);
2737 }
2738 EXPORT_SYMBOL(__skb_gso_segment);
2739
2740 /* Take action when hardware reception checksum errors are detected. */
2741 #ifdef CONFIG_BUG
2742 void netdev_rx_csum_fault(struct net_device *dev)
2743 {
2744 if (net_ratelimit()) {
2745 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2746 dump_stack();
2747 }
2748 }
2749 EXPORT_SYMBOL(netdev_rx_csum_fault);
2750 #endif
2751
2752 /* Actually, we should eliminate this check as soon as we know, that:
2753 * 1. IOMMU is present and allows to map all the memory.
2754 * 2. No high memory really exists on this machine.
2755 */
2756
2757 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2758 {
2759 #ifdef CONFIG_HIGHMEM
2760 int i;
2761 if (!(dev->features & NETIF_F_HIGHDMA)) {
2762 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2763 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2764 if (PageHighMem(skb_frag_page(frag)))
2765 return 1;
2766 }
2767 }
2768
2769 if (PCI_DMA_BUS_IS_PHYS) {
2770 struct device *pdev = dev->dev.parent;
2771
2772 if (!pdev)
2773 return 0;
2774 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2775 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2776 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2777 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2778 return 1;
2779 }
2780 }
2781 #endif
2782 return 0;
2783 }
2784
2785 /* If MPLS offload request, verify we are testing hardware MPLS features
2786 * instead of standard features for the netdev.
2787 */
2788 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2789 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2790 netdev_features_t features,
2791 __be16 type)
2792 {
2793 if (eth_p_mpls(type))
2794 features &= skb->dev->mpls_features;
2795
2796 return features;
2797 }
2798 #else
2799 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2800 netdev_features_t features,
2801 __be16 type)
2802 {
2803 return features;
2804 }
2805 #endif
2806
2807 static netdev_features_t harmonize_features(struct sk_buff *skb,
2808 netdev_features_t features)
2809 {
2810 int tmp;
2811 __be16 type;
2812
2813 type = skb_network_protocol(skb, &tmp);
2814 features = net_mpls_features(skb, features, type);
2815
2816 if (skb->ip_summed != CHECKSUM_NONE &&
2817 !can_checksum_protocol(features, type)) {
2818 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2819 } else if (illegal_highdma(skb->dev, skb)) {
2820 features &= ~NETIF_F_SG;
2821 }
2822
2823 return features;
2824 }
2825
2826 netdev_features_t passthru_features_check(struct sk_buff *skb,
2827 struct net_device *dev,
2828 netdev_features_t features)
2829 {
2830 return features;
2831 }
2832 EXPORT_SYMBOL(passthru_features_check);
2833
2834 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2835 struct net_device *dev,
2836 netdev_features_t features)
2837 {
2838 return vlan_features_check(skb, features);
2839 }
2840
2841 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2842 struct net_device *dev,
2843 netdev_features_t features)
2844 {
2845 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2846
2847 if (gso_segs > dev->gso_max_segs)
2848 return features & ~NETIF_F_GSO_MASK;
2849
2850 /* Support for GSO partial features requires software
2851 * intervention before we can actually process the packets
2852 * so we need to strip support for any partial features now
2853 * and we can pull them back in after we have partially
2854 * segmented the frame.
2855 */
2856 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2857 features &= ~dev->gso_partial_features;
2858
2859 /* Make sure to clear the IPv4 ID mangling feature if the
2860 * IPv4 header has the potential to be fragmented.
2861 */
2862 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2863 struct iphdr *iph = skb->encapsulation ?
2864 inner_ip_hdr(skb) : ip_hdr(skb);
2865
2866 if (!(iph->frag_off & htons(IP_DF)))
2867 features &= ~NETIF_F_TSO_MANGLEID;
2868 }
2869
2870 return features;
2871 }
2872
2873 netdev_features_t netif_skb_features(struct sk_buff *skb)
2874 {
2875 struct net_device *dev = skb->dev;
2876 netdev_features_t features = dev->features;
2877
2878 if (skb_is_gso(skb))
2879 features = gso_features_check(skb, dev, features);
2880
2881 /* If encapsulation offload request, verify we are testing
2882 * hardware encapsulation features instead of standard
2883 * features for the netdev
2884 */
2885 if (skb->encapsulation)
2886 features &= dev->hw_enc_features;
2887
2888 if (skb_vlan_tagged(skb))
2889 features = netdev_intersect_features(features,
2890 dev->vlan_features |
2891 NETIF_F_HW_VLAN_CTAG_TX |
2892 NETIF_F_HW_VLAN_STAG_TX);
2893
2894 if (dev->netdev_ops->ndo_features_check)
2895 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2896 features);
2897 else
2898 features &= dflt_features_check(skb, dev, features);
2899
2900 return harmonize_features(skb, features);
2901 }
2902 EXPORT_SYMBOL(netif_skb_features);
2903
2904 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2905 struct netdev_queue *txq, bool more)
2906 {
2907 unsigned int len;
2908 int rc;
2909
2910 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2911 dev_queue_xmit_nit(skb, dev);
2912
2913 len = skb->len;
2914 trace_net_dev_start_xmit(skb, dev);
2915 rc = netdev_start_xmit(skb, dev, txq, more);
2916 trace_net_dev_xmit(skb, rc, dev, len);
2917
2918 return rc;
2919 }
2920
2921 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2922 struct netdev_queue *txq, int *ret)
2923 {
2924 struct sk_buff *skb = first;
2925 int rc = NETDEV_TX_OK;
2926
2927 while (skb) {
2928 struct sk_buff *next = skb->next;
2929
2930 skb->next = NULL;
2931 rc = xmit_one(skb, dev, txq, next != NULL);
2932 if (unlikely(!dev_xmit_complete(rc))) {
2933 skb->next = next;
2934 goto out;
2935 }
2936
2937 skb = next;
2938 if (netif_xmit_stopped(txq) && skb) {
2939 rc = NETDEV_TX_BUSY;
2940 break;
2941 }
2942 }
2943
2944 out:
2945 *ret = rc;
2946 return skb;
2947 }
2948
2949 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2950 netdev_features_t features)
2951 {
2952 if (skb_vlan_tag_present(skb) &&
2953 !vlan_hw_offload_capable(features, skb->vlan_proto))
2954 skb = __vlan_hwaccel_push_inside(skb);
2955 return skb;
2956 }
2957
2958 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2959 {
2960 netdev_features_t features;
2961
2962 features = netif_skb_features(skb);
2963 skb = validate_xmit_vlan(skb, features);
2964 if (unlikely(!skb))
2965 goto out_null;
2966
2967 if (netif_needs_gso(skb, features)) {
2968 struct sk_buff *segs;
2969
2970 segs = skb_gso_segment(skb, features);
2971 if (IS_ERR(segs)) {
2972 goto out_kfree_skb;
2973 } else if (segs) {
2974 consume_skb(skb);
2975 skb = segs;
2976 }
2977 } else {
2978 if (skb_needs_linearize(skb, features) &&
2979 __skb_linearize(skb))
2980 goto out_kfree_skb;
2981
2982 /* If packet is not checksummed and device does not
2983 * support checksumming for this protocol, complete
2984 * checksumming here.
2985 */
2986 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2987 if (skb->encapsulation)
2988 skb_set_inner_transport_header(skb,
2989 skb_checksum_start_offset(skb));
2990 else
2991 skb_set_transport_header(skb,
2992 skb_checksum_start_offset(skb));
2993 if (!(features & NETIF_F_CSUM_MASK) &&
2994 skb_checksum_help(skb))
2995 goto out_kfree_skb;
2996 }
2997 }
2998
2999 return skb;
3000
3001 out_kfree_skb:
3002 kfree_skb(skb);
3003 out_null:
3004 atomic_long_inc(&dev->tx_dropped);
3005 return NULL;
3006 }
3007
3008 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3009 {
3010 struct sk_buff *next, *head = NULL, *tail;
3011
3012 for (; skb != NULL; skb = next) {
3013 next = skb->next;
3014 skb->next = NULL;
3015
3016 /* in case skb wont be segmented, point to itself */
3017 skb->prev = skb;
3018
3019 skb = validate_xmit_skb(skb, dev);
3020 if (!skb)
3021 continue;
3022
3023 if (!head)
3024 head = skb;
3025 else
3026 tail->next = skb;
3027 /* If skb was segmented, skb->prev points to
3028 * the last segment. If not, it still contains skb.
3029 */
3030 tail = skb->prev;
3031 }
3032 return head;
3033 }
3034
3035 static void qdisc_pkt_len_init(struct sk_buff *skb)
3036 {
3037 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3038
3039 qdisc_skb_cb(skb)->pkt_len = skb->len;
3040
3041 /* To get more precise estimation of bytes sent on wire,
3042 * we add to pkt_len the headers size of all segments
3043 */
3044 if (shinfo->gso_size) {
3045 unsigned int hdr_len;
3046 u16 gso_segs = shinfo->gso_segs;
3047
3048 /* mac layer + network layer */
3049 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3050
3051 /* + transport layer */
3052 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3053 hdr_len += tcp_hdrlen(skb);
3054 else
3055 hdr_len += sizeof(struct udphdr);
3056
3057 if (shinfo->gso_type & SKB_GSO_DODGY)
3058 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3059 shinfo->gso_size);
3060
3061 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3062 }
3063 }
3064
3065 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3066 struct net_device *dev,
3067 struct netdev_queue *txq)
3068 {
3069 spinlock_t *root_lock = qdisc_lock(q);
3070 bool contended;
3071 int rc;
3072
3073 qdisc_calculate_pkt_len(skb, q);
3074 /*
3075 * Heuristic to force contended enqueues to serialize on a
3076 * separate lock before trying to get qdisc main lock.
3077 * This permits __QDISC___STATE_RUNNING owner to get the lock more
3078 * often and dequeue packets faster.
3079 */
3080 contended = qdisc_is_running(q);
3081 if (unlikely(contended))
3082 spin_lock(&q->busylock);
3083
3084 spin_lock(root_lock);
3085 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3086 kfree_skb(skb);
3087 rc = NET_XMIT_DROP;
3088 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3089 qdisc_run_begin(q)) {
3090 /*
3091 * This is a work-conserving queue; there are no old skbs
3092 * waiting to be sent out; and the qdisc is not running -
3093 * xmit the skb directly.
3094 */
3095
3096 qdisc_bstats_update(q, skb);
3097
3098 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3099 if (unlikely(contended)) {
3100 spin_unlock(&q->busylock);
3101 contended = false;
3102 }
3103 __qdisc_run(q);
3104 } else
3105 qdisc_run_end(q);
3106
3107 rc = NET_XMIT_SUCCESS;
3108 } else {
3109 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
3110 if (qdisc_run_begin(q)) {
3111 if (unlikely(contended)) {
3112 spin_unlock(&q->busylock);
3113 contended = false;
3114 }
3115 __qdisc_run(q);
3116 }
3117 }
3118 spin_unlock(root_lock);
3119 if (unlikely(contended))
3120 spin_unlock(&q->busylock);
3121 return rc;
3122 }
3123
3124 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3125 static void skb_update_prio(struct sk_buff *skb)
3126 {
3127 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3128
3129 if (!skb->priority && skb->sk && map) {
3130 unsigned int prioidx =
3131 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3132
3133 if (prioidx < map->priomap_len)
3134 skb->priority = map->priomap[prioidx];
3135 }
3136 }
3137 #else
3138 #define skb_update_prio(skb)
3139 #endif
3140
3141 DEFINE_PER_CPU(int, xmit_recursion);
3142 EXPORT_SYMBOL(xmit_recursion);
3143
3144 #define RECURSION_LIMIT 10
3145
3146 /**
3147 * dev_loopback_xmit - loop back @skb
3148 * @net: network namespace this loopback is happening in
3149 * @sk: sk needed to be a netfilter okfn
3150 * @skb: buffer to transmit
3151 */
3152 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3153 {
3154 skb_reset_mac_header(skb);
3155 __skb_pull(skb, skb_network_offset(skb));
3156 skb->pkt_type = PACKET_LOOPBACK;
3157 skb->ip_summed = CHECKSUM_UNNECESSARY;
3158 WARN_ON(!skb_dst(skb));
3159 skb_dst_force(skb);
3160 netif_rx_ni(skb);
3161 return 0;
3162 }
3163 EXPORT_SYMBOL(dev_loopback_xmit);
3164
3165 #ifdef CONFIG_NET_EGRESS
3166 static struct sk_buff *
3167 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3168 {
3169 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3170 struct tcf_result cl_res;
3171
3172 if (!cl)
3173 return skb;
3174
3175 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3176 * earlier by the caller.
3177 */
3178 qdisc_bstats_cpu_update(cl->q, skb);
3179
3180 switch (tc_classify(skb, cl, &cl_res, false)) {
3181 case TC_ACT_OK:
3182 case TC_ACT_RECLASSIFY:
3183 skb->tc_index = TC_H_MIN(cl_res.classid);
3184 break;
3185 case TC_ACT_SHOT:
3186 qdisc_qstats_cpu_drop(cl->q);
3187 *ret = NET_XMIT_DROP;
3188 goto drop;
3189 case TC_ACT_STOLEN:
3190 case TC_ACT_QUEUED:
3191 *ret = NET_XMIT_SUCCESS;
3192 drop:
3193 kfree_skb(skb);
3194 return NULL;
3195 case TC_ACT_REDIRECT:
3196 /* No need to push/pop skb's mac_header here on egress! */
3197 skb_do_redirect(skb);
3198 *ret = NET_XMIT_SUCCESS;
3199 return NULL;
3200 default:
3201 break;
3202 }
3203
3204 return skb;
3205 }
3206 #endif /* CONFIG_NET_EGRESS */
3207
3208 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3209 {
3210 #ifdef CONFIG_XPS
3211 struct xps_dev_maps *dev_maps;
3212 struct xps_map *map;
3213 int queue_index = -1;
3214
3215 rcu_read_lock();
3216 dev_maps = rcu_dereference(dev->xps_maps);
3217 if (dev_maps) {
3218 map = rcu_dereference(
3219 dev_maps->cpu_map[skb->sender_cpu - 1]);
3220 if (map) {
3221 if (map->len == 1)
3222 queue_index = map->queues[0];
3223 else
3224 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3225 map->len)];
3226 if (unlikely(queue_index >= dev->real_num_tx_queues))
3227 queue_index = -1;
3228 }
3229 }
3230 rcu_read_unlock();
3231
3232 return queue_index;
3233 #else
3234 return -1;
3235 #endif
3236 }
3237
3238 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3239 {
3240 struct sock *sk = skb->sk;
3241 int queue_index = sk_tx_queue_get(sk);
3242
3243 if (queue_index < 0 || skb->ooo_okay ||
3244 queue_index >= dev->real_num_tx_queues) {
3245 int new_index = get_xps_queue(dev, skb);
3246 if (new_index < 0)
3247 new_index = skb_tx_hash(dev, skb);
3248
3249 if (queue_index != new_index && sk &&
3250 sk_fullsock(sk) &&
3251 rcu_access_pointer(sk->sk_dst_cache))
3252 sk_tx_queue_set(sk, new_index);
3253
3254 queue_index = new_index;
3255 }
3256
3257 return queue_index;
3258 }
3259
3260 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3261 struct sk_buff *skb,
3262 void *accel_priv)
3263 {
3264 int queue_index = 0;
3265
3266 #ifdef CONFIG_XPS
3267 u32 sender_cpu = skb->sender_cpu - 1;
3268
3269 if (sender_cpu >= (u32)NR_CPUS)
3270 skb->sender_cpu = raw_smp_processor_id() + 1;
3271 #endif
3272
3273 if (dev->real_num_tx_queues != 1) {
3274 const struct net_device_ops *ops = dev->netdev_ops;
3275 if (ops->ndo_select_queue)
3276 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3277 __netdev_pick_tx);
3278 else
3279 queue_index = __netdev_pick_tx(dev, skb);
3280
3281 if (!accel_priv)
3282 queue_index = netdev_cap_txqueue(dev, queue_index);
3283 }
3284
3285 skb_set_queue_mapping(skb, queue_index);
3286 return netdev_get_tx_queue(dev, queue_index);
3287 }
3288
3289 /**
3290 * __dev_queue_xmit - transmit a buffer
3291 * @skb: buffer to transmit
3292 * @accel_priv: private data used for L2 forwarding offload
3293 *
3294 * Queue a buffer for transmission to a network device. The caller must
3295 * have set the device and priority and built the buffer before calling
3296 * this function. The function can be called from an interrupt.
3297 *
3298 * A negative errno code is returned on a failure. A success does not
3299 * guarantee the frame will be transmitted as it may be dropped due
3300 * to congestion or traffic shaping.
3301 *
3302 * -----------------------------------------------------------------------------------
3303 * I notice this method can also return errors from the queue disciplines,
3304 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3305 * be positive.
3306 *
3307 * Regardless of the return value, the skb is consumed, so it is currently
3308 * difficult to retry a send to this method. (You can bump the ref count
3309 * before sending to hold a reference for retry if you are careful.)
3310 *
3311 * When calling this method, interrupts MUST be enabled. This is because
3312 * the BH enable code must have IRQs enabled so that it will not deadlock.
3313 * --BLG
3314 */
3315 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3316 {
3317 struct net_device *dev = skb->dev;
3318 struct netdev_queue *txq;
3319 struct Qdisc *q;
3320 int rc = -ENOMEM;
3321
3322 skb_reset_mac_header(skb);
3323
3324 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3325 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3326
3327 /* Disable soft irqs for various locks below. Also
3328 * stops preemption for RCU.
3329 */
3330 rcu_read_lock_bh();
3331
3332 skb_update_prio(skb);
3333
3334 qdisc_pkt_len_init(skb);
3335 #ifdef CONFIG_NET_CLS_ACT
3336 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3337 # ifdef CONFIG_NET_EGRESS
3338 if (static_key_false(&egress_needed)) {
3339 skb = sch_handle_egress(skb, &rc, dev);
3340 if (!skb)
3341 goto out;
3342 }
3343 # endif
3344 #endif
3345 /* If device/qdisc don't need skb->dst, release it right now while
3346 * its hot in this cpu cache.
3347 */
3348 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3349 skb_dst_drop(skb);
3350 else
3351 skb_dst_force(skb);
3352
3353 #ifdef CONFIG_NET_SWITCHDEV
3354 /* Don't forward if offload device already forwarded */
3355 if (skb->offload_fwd_mark &&
3356 skb->offload_fwd_mark == dev->offload_fwd_mark) {
3357 consume_skb(skb);
3358 rc = NET_XMIT_SUCCESS;
3359 goto out;
3360 }
3361 #endif
3362
3363 txq = netdev_pick_tx(dev, skb, accel_priv);
3364 q = rcu_dereference_bh(txq->qdisc);
3365
3366 trace_net_dev_queue(skb);
3367 if (q->enqueue) {
3368 rc = __dev_xmit_skb(skb, q, dev, txq);
3369 goto out;
3370 }
3371
3372 /* The device has no queue. Common case for software devices:
3373 loopback, all the sorts of tunnels...
3374
3375 Really, it is unlikely that netif_tx_lock protection is necessary
3376 here. (f.e. loopback and IP tunnels are clean ignoring statistics
3377 counters.)
3378 However, it is possible, that they rely on protection
3379 made by us here.
3380
3381 Check this and shot the lock. It is not prone from deadlocks.
3382 Either shot noqueue qdisc, it is even simpler 8)
3383 */
3384 if (dev->flags & IFF_UP) {
3385 int cpu = smp_processor_id(); /* ok because BHs are off */
3386
3387 if (txq->xmit_lock_owner != cpu) {
3388
3389 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3390 goto recursion_alert;
3391
3392 skb = validate_xmit_skb(skb, dev);
3393 if (!skb)
3394 goto out;
3395
3396 HARD_TX_LOCK(dev, txq, cpu);
3397
3398 if (!netif_xmit_stopped(txq)) {
3399 __this_cpu_inc(xmit_recursion);
3400 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3401 __this_cpu_dec(xmit_recursion);
3402 if (dev_xmit_complete(rc)) {
3403 HARD_TX_UNLOCK(dev, txq);
3404 goto out;
3405 }
3406 }
3407 HARD_TX_UNLOCK(dev, txq);
3408 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3409 dev->name);
3410 } else {
3411 /* Recursion is detected! It is possible,
3412 * unfortunately
3413 */
3414 recursion_alert:
3415 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3416 dev->name);
3417 }
3418 }
3419
3420 rc = -ENETDOWN;
3421 rcu_read_unlock_bh();
3422
3423 atomic_long_inc(&dev->tx_dropped);
3424 kfree_skb_list(skb);
3425 return rc;
3426 out:
3427 rcu_read_unlock_bh();
3428 return rc;
3429 }
3430
3431 int dev_queue_xmit(struct sk_buff *skb)
3432 {
3433 return __dev_queue_xmit(skb, NULL);
3434 }
3435 EXPORT_SYMBOL(dev_queue_xmit);
3436
3437 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3438 {
3439 return __dev_queue_xmit(skb, accel_priv);
3440 }
3441 EXPORT_SYMBOL(dev_queue_xmit_accel);
3442
3443
3444 /*=======================================================================
3445 Receiver routines
3446 =======================================================================*/
3447
3448 int netdev_max_backlog __read_mostly = 1000;
3449 EXPORT_SYMBOL(netdev_max_backlog);
3450
3451 int netdev_tstamp_prequeue __read_mostly = 1;
3452 int netdev_budget __read_mostly = 300;
3453 int weight_p __read_mostly = 64; /* old backlog weight */
3454
3455 /* Called with irq disabled */
3456 static inline void ____napi_schedule(struct softnet_data *sd,
3457 struct napi_struct *napi)
3458 {
3459 list_add_tail(&napi->poll_list, &sd->poll_list);
3460 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3461 }
3462
3463 #ifdef CONFIG_RPS
3464
3465 /* One global table that all flow-based protocols share. */
3466 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3467 EXPORT_SYMBOL(rps_sock_flow_table);
3468 u32 rps_cpu_mask __read_mostly;
3469 EXPORT_SYMBOL(rps_cpu_mask);
3470
3471 struct static_key rps_needed __read_mostly;
3472 EXPORT_SYMBOL(rps_needed);
3473
3474 static struct rps_dev_flow *
3475 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3476 struct rps_dev_flow *rflow, u16 next_cpu)
3477 {
3478 if (next_cpu < nr_cpu_ids) {
3479 #ifdef CONFIG_RFS_ACCEL
3480 struct netdev_rx_queue *rxqueue;
3481 struct rps_dev_flow_table *flow_table;
3482 struct rps_dev_flow *old_rflow;
3483 u32 flow_id;
3484 u16 rxq_index;
3485 int rc;
3486
3487 /* Should we steer this flow to a different hardware queue? */
3488 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3489 !(dev->features & NETIF_F_NTUPLE))
3490 goto out;
3491 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3492 if (rxq_index == skb_get_rx_queue(skb))
3493 goto out;
3494
3495 rxqueue = dev->_rx + rxq_index;
3496 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3497 if (!flow_table)
3498 goto out;
3499 flow_id = skb_get_hash(skb) & flow_table->mask;
3500 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3501 rxq_index, flow_id);
3502 if (rc < 0)
3503 goto out;
3504 old_rflow = rflow;
3505 rflow = &flow_table->flows[flow_id];
3506 rflow->filter = rc;
3507 if (old_rflow->filter == rflow->filter)
3508 old_rflow->filter = RPS_NO_FILTER;
3509 out:
3510 #endif
3511 rflow->last_qtail =
3512 per_cpu(softnet_data, next_cpu).input_queue_head;
3513 }
3514
3515 rflow->cpu = next_cpu;
3516 return rflow;
3517 }
3518
3519 /*
3520 * get_rps_cpu is called from netif_receive_skb and returns the target
3521 * CPU from the RPS map of the receiving queue for a given skb.
3522 * rcu_read_lock must be held on entry.
3523 */
3524 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3525 struct rps_dev_flow **rflowp)
3526 {
3527 const struct rps_sock_flow_table *sock_flow_table;
3528 struct netdev_rx_queue *rxqueue = dev->_rx;
3529 struct rps_dev_flow_table *flow_table;
3530 struct rps_map *map;
3531 int cpu = -1;
3532 u32 tcpu;
3533 u32 hash;
3534
3535 if (skb_rx_queue_recorded(skb)) {
3536 u16 index = skb_get_rx_queue(skb);
3537
3538 if (unlikely(index >= dev->real_num_rx_queues)) {
3539 WARN_ONCE(dev->real_num_rx_queues > 1,
3540 "%s received packet on queue %u, but number "
3541 "of RX queues is %u\n",
3542 dev->name, index, dev->real_num_rx_queues);
3543 goto done;
3544 }
3545 rxqueue += index;
3546 }
3547
3548 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3549
3550 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3551 map = rcu_dereference(rxqueue->rps_map);
3552 if (!flow_table && !map)
3553 goto done;
3554
3555 skb_reset_network_header(skb);
3556 hash = skb_get_hash(skb);
3557 if (!hash)
3558 goto done;
3559
3560 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3561 if (flow_table && sock_flow_table) {
3562 struct rps_dev_flow *rflow;
3563 u32 next_cpu;
3564 u32 ident;
3565
3566 /* First check into global flow table if there is a match */
3567 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3568 if ((ident ^ hash) & ~rps_cpu_mask)
3569 goto try_rps;
3570
3571 next_cpu = ident & rps_cpu_mask;
3572
3573 /* OK, now we know there is a match,
3574 * we can look at the local (per receive queue) flow table
3575 */
3576 rflow = &flow_table->flows[hash & flow_table->mask];
3577 tcpu = rflow->cpu;
3578
3579 /*
3580 * If the desired CPU (where last recvmsg was done) is
3581 * different from current CPU (one in the rx-queue flow
3582 * table entry), switch if one of the following holds:
3583 * - Current CPU is unset (>= nr_cpu_ids).
3584 * - Current CPU is offline.
3585 * - The current CPU's queue tail has advanced beyond the
3586 * last packet that was enqueued using this table entry.
3587 * This guarantees that all previous packets for the flow
3588 * have been dequeued, thus preserving in order delivery.
3589 */
3590 if (unlikely(tcpu != next_cpu) &&
3591 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3592 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3593 rflow->last_qtail)) >= 0)) {
3594 tcpu = next_cpu;
3595 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3596 }
3597
3598 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3599 *rflowp = rflow;
3600 cpu = tcpu;
3601 goto done;
3602 }
3603 }
3604
3605 try_rps:
3606
3607 if (map) {
3608 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3609 if (cpu_online(tcpu)) {
3610 cpu = tcpu;
3611 goto done;
3612 }
3613 }
3614
3615 done:
3616 return cpu;
3617 }
3618
3619 #ifdef CONFIG_RFS_ACCEL
3620
3621 /**
3622 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3623 * @dev: Device on which the filter was set
3624 * @rxq_index: RX queue index
3625 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3626 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3627 *
3628 * Drivers that implement ndo_rx_flow_steer() should periodically call
3629 * this function for each installed filter and remove the filters for
3630 * which it returns %true.
3631 */
3632 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3633 u32 flow_id, u16 filter_id)
3634 {
3635 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3636 struct rps_dev_flow_table *flow_table;
3637 struct rps_dev_flow *rflow;
3638 bool expire = true;
3639 unsigned int cpu;
3640
3641 rcu_read_lock();
3642 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3643 if (flow_table && flow_id <= flow_table->mask) {
3644 rflow = &flow_table->flows[flow_id];
3645 cpu = ACCESS_ONCE(rflow->cpu);
3646 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3647 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3648 rflow->last_qtail) <
3649 (int)(10 * flow_table->mask)))
3650 expire = false;
3651 }
3652 rcu_read_unlock();
3653 return expire;
3654 }
3655 EXPORT_SYMBOL(rps_may_expire_flow);
3656
3657 #endif /* CONFIG_RFS_ACCEL */
3658
3659 /* Called from hardirq (IPI) context */
3660 static void rps_trigger_softirq(void *data)
3661 {
3662 struct softnet_data *sd = data;
3663
3664 ____napi_schedule(sd, &sd->backlog);
3665 sd->received_rps++;
3666 }
3667
3668 #endif /* CONFIG_RPS */
3669
3670 /*
3671 * Check if this softnet_data structure is another cpu one
3672 * If yes, queue it to our IPI list and return 1
3673 * If no, return 0
3674 */
3675 static int rps_ipi_queued(struct softnet_data *sd)
3676 {
3677 #ifdef CONFIG_RPS
3678 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3679
3680 if (sd != mysd) {
3681 sd->rps_ipi_next = mysd->rps_ipi_list;
3682 mysd->rps_ipi_list = sd;
3683
3684 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3685 return 1;
3686 }
3687 #endif /* CONFIG_RPS */
3688 return 0;
3689 }
3690
3691 #ifdef CONFIG_NET_FLOW_LIMIT
3692 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3693 #endif
3694
3695 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3696 {
3697 #ifdef CONFIG_NET_FLOW_LIMIT
3698 struct sd_flow_limit *fl;
3699 struct softnet_data *sd;
3700 unsigned int old_flow, new_flow;
3701
3702 if (qlen < (netdev_max_backlog >> 1))
3703 return false;
3704
3705 sd = this_cpu_ptr(&softnet_data);
3706
3707 rcu_read_lock();
3708 fl = rcu_dereference(sd->flow_limit);
3709 if (fl) {
3710 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3711 old_flow = fl->history[fl->history_head];
3712 fl->history[fl->history_head] = new_flow;
3713
3714 fl->history_head++;
3715 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3716
3717 if (likely(fl->buckets[old_flow]))
3718 fl->buckets[old_flow]--;
3719
3720 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3721 fl->count++;
3722 rcu_read_unlock();
3723 return true;
3724 }
3725 }
3726 rcu_read_unlock();
3727 #endif
3728 return false;
3729 }
3730
3731 /*
3732 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3733 * queue (may be a remote CPU queue).
3734 */
3735 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3736 unsigned int *qtail)
3737 {
3738 struct softnet_data *sd;
3739 unsigned long flags;
3740 unsigned int qlen;
3741
3742 sd = &per_cpu(softnet_data, cpu);
3743
3744 local_irq_save(flags);
3745
3746 rps_lock(sd);
3747 if (!netif_running(skb->dev))
3748 goto drop;
3749 qlen = skb_queue_len(&sd->input_pkt_queue);
3750 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3751 if (qlen) {
3752 enqueue:
3753 __skb_queue_tail(&sd->input_pkt_queue, skb);
3754 input_queue_tail_incr_save(sd, qtail);
3755 rps_unlock(sd);
3756 local_irq_restore(flags);
3757 return NET_RX_SUCCESS;
3758 }
3759
3760 /* Schedule NAPI for backlog device
3761 * We can use non atomic operation since we own the queue lock
3762 */
3763 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3764 if (!rps_ipi_queued(sd))
3765 ____napi_schedule(sd, &sd->backlog);
3766 }
3767 goto enqueue;
3768 }
3769
3770 drop:
3771 sd->dropped++;
3772 rps_unlock(sd);
3773
3774 local_irq_restore(flags);
3775
3776 atomic_long_inc(&skb->dev->rx_dropped);
3777 kfree_skb(skb);
3778 return NET_RX_DROP;
3779 }
3780
3781 static int netif_rx_internal(struct sk_buff *skb)
3782 {
3783 int ret;
3784
3785 net_timestamp_check(netdev_tstamp_prequeue, skb);
3786
3787 trace_netif_rx(skb);
3788 #ifdef CONFIG_RPS
3789 if (static_key_false(&rps_needed)) {
3790 struct rps_dev_flow voidflow, *rflow = &voidflow;
3791 int cpu;
3792
3793 preempt_disable();
3794 rcu_read_lock();
3795
3796 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3797 if (cpu < 0)
3798 cpu = smp_processor_id();
3799
3800 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3801
3802 rcu_read_unlock();
3803 preempt_enable();
3804 } else
3805 #endif
3806 {
3807 unsigned int qtail;
3808 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3809 put_cpu();
3810 }
3811 return ret;
3812 }
3813
3814 /**
3815 * netif_rx - post buffer to the network code
3816 * @skb: buffer to post
3817 *
3818 * This function receives a packet from a device driver and queues it for
3819 * the upper (protocol) levels to process. It always succeeds. The buffer
3820 * may be dropped during processing for congestion control or by the
3821 * protocol layers.
3822 *
3823 * return values:
3824 * NET_RX_SUCCESS (no congestion)
3825 * NET_RX_DROP (packet was dropped)
3826 *
3827 */
3828
3829 int netif_rx(struct sk_buff *skb)
3830 {
3831 trace_netif_rx_entry(skb);
3832
3833 return netif_rx_internal(skb);
3834 }
3835 EXPORT_SYMBOL(netif_rx);
3836
3837 int netif_rx_ni(struct sk_buff *skb)
3838 {
3839 int err;
3840
3841 trace_netif_rx_ni_entry(skb);
3842
3843 preempt_disable();
3844 err = netif_rx_internal(skb);
3845 if (local_softirq_pending())
3846 do_softirq();
3847 preempt_enable();
3848
3849 return err;
3850 }
3851 EXPORT_SYMBOL(netif_rx_ni);
3852
3853 static void net_tx_action(struct softirq_action *h)
3854 {
3855 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3856
3857 if (sd->completion_queue) {
3858 struct sk_buff *clist;
3859
3860 local_irq_disable();
3861 clist = sd->completion_queue;
3862 sd->completion_queue = NULL;
3863 local_irq_enable();
3864
3865 while (clist) {
3866 struct sk_buff *skb = clist;
3867 clist = clist->next;
3868
3869 WARN_ON(atomic_read(&skb->users));
3870 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3871 trace_consume_skb(skb);
3872 else
3873 trace_kfree_skb(skb, net_tx_action);
3874
3875 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3876 __kfree_skb(skb);
3877 else
3878 __kfree_skb_defer(skb);
3879 }
3880
3881 __kfree_skb_flush();
3882 }
3883
3884 if (sd->output_queue) {
3885 struct Qdisc *head;
3886
3887 local_irq_disable();
3888 head = sd->output_queue;
3889 sd->output_queue = NULL;
3890 sd->output_queue_tailp = &sd->output_queue;
3891 local_irq_enable();
3892
3893 while (head) {
3894 struct Qdisc *q = head;
3895 spinlock_t *root_lock;
3896
3897 head = head->next_sched;
3898
3899 root_lock = qdisc_lock(q);
3900 if (spin_trylock(root_lock)) {
3901 smp_mb__before_atomic();
3902 clear_bit(__QDISC_STATE_SCHED,
3903 &q->state);
3904 qdisc_run(q);
3905 spin_unlock(root_lock);
3906 } else {
3907 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3908 &q->state)) {
3909 __netif_reschedule(q);
3910 } else {
3911 smp_mb__before_atomic();
3912 clear_bit(__QDISC_STATE_SCHED,
3913 &q->state);
3914 }
3915 }
3916 }
3917 }
3918 }
3919
3920 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3921 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3922 /* This hook is defined here for ATM LANE */
3923 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3924 unsigned char *addr) __read_mostly;
3925 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3926 #endif
3927
3928 static inline struct sk_buff *
3929 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3930 struct net_device *orig_dev)
3931 {
3932 #ifdef CONFIG_NET_CLS_ACT
3933 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3934 struct tcf_result cl_res;
3935
3936 /* If there's at least one ingress present somewhere (so
3937 * we get here via enabled static key), remaining devices
3938 * that are not configured with an ingress qdisc will bail
3939 * out here.
3940 */
3941 if (!cl)
3942 return skb;
3943 if (*pt_prev) {
3944 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3945 *pt_prev = NULL;
3946 }
3947
3948 qdisc_skb_cb(skb)->pkt_len = skb->len;
3949 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3950 qdisc_bstats_cpu_update(cl->q, skb);
3951
3952 switch (tc_classify(skb, cl, &cl_res, false)) {
3953 case TC_ACT_OK:
3954 case TC_ACT_RECLASSIFY:
3955 skb->tc_index = TC_H_MIN(cl_res.classid);
3956 break;
3957 case TC_ACT_SHOT:
3958 qdisc_qstats_cpu_drop(cl->q);
3959 case TC_ACT_STOLEN:
3960 case TC_ACT_QUEUED:
3961 kfree_skb(skb);
3962 return NULL;
3963 case TC_ACT_REDIRECT:
3964 /* skb_mac_header check was done by cls/act_bpf, so
3965 * we can safely push the L2 header back before
3966 * redirecting to another netdev
3967 */
3968 __skb_push(skb, skb->mac_len);
3969 skb_do_redirect(skb);
3970 return NULL;
3971 default:
3972 break;
3973 }
3974 #endif /* CONFIG_NET_CLS_ACT */
3975 return skb;
3976 }
3977
3978 /**
3979 * netdev_rx_handler_register - register receive handler
3980 * @dev: device to register a handler for
3981 * @rx_handler: receive handler to register
3982 * @rx_handler_data: data pointer that is used by rx handler
3983 *
3984 * Register a receive handler for a device. This handler will then be
3985 * called from __netif_receive_skb. A negative errno code is returned
3986 * on a failure.
3987 *
3988 * The caller must hold the rtnl_mutex.
3989 *
3990 * For a general description of rx_handler, see enum rx_handler_result.
3991 */
3992 int netdev_rx_handler_register(struct net_device *dev,
3993 rx_handler_func_t *rx_handler,
3994 void *rx_handler_data)
3995 {
3996 ASSERT_RTNL();
3997
3998 if (dev->rx_handler)
3999 return -EBUSY;
4000
4001 /* Note: rx_handler_data must be set before rx_handler */
4002 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4003 rcu_assign_pointer(dev->rx_handler, rx_handler);
4004
4005 return 0;
4006 }
4007 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4008
4009 /**
4010 * netdev_rx_handler_unregister - unregister receive handler
4011 * @dev: device to unregister a handler from
4012 *
4013 * Unregister a receive handler from a device.
4014 *
4015 * The caller must hold the rtnl_mutex.
4016 */
4017 void netdev_rx_handler_unregister(struct net_device *dev)
4018 {
4019
4020 ASSERT_RTNL();
4021 RCU_INIT_POINTER(dev->rx_handler, NULL);
4022 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4023 * section has a guarantee to see a non NULL rx_handler_data
4024 * as well.
4025 */
4026 synchronize_net();
4027 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4028 }
4029 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4030
4031 /*
4032 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4033 * the special handling of PFMEMALLOC skbs.
4034 */
4035 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4036 {
4037 switch (skb->protocol) {
4038 case htons(ETH_P_ARP):
4039 case htons(ETH_P_IP):
4040 case htons(ETH_P_IPV6):
4041 case htons(ETH_P_8021Q):
4042 case htons(ETH_P_8021AD):
4043 return true;
4044 default:
4045 return false;
4046 }
4047 }
4048
4049 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4050 int *ret, struct net_device *orig_dev)
4051 {
4052 #ifdef CONFIG_NETFILTER_INGRESS
4053 if (nf_hook_ingress_active(skb)) {
4054 if (*pt_prev) {
4055 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4056 *pt_prev = NULL;
4057 }
4058
4059 return nf_hook_ingress(skb);
4060 }
4061 #endif /* CONFIG_NETFILTER_INGRESS */
4062 return 0;
4063 }
4064
4065 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4066 {
4067 struct packet_type *ptype, *pt_prev;
4068 rx_handler_func_t *rx_handler;
4069 struct net_device *orig_dev;
4070 bool deliver_exact = false;
4071 int ret = NET_RX_DROP;
4072 __be16 type;
4073
4074 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4075
4076 trace_netif_receive_skb(skb);
4077
4078 orig_dev = skb->dev;
4079
4080 skb_reset_network_header(skb);
4081 if (!skb_transport_header_was_set(skb))
4082 skb_reset_transport_header(skb);
4083 skb_reset_mac_len(skb);
4084
4085 pt_prev = NULL;
4086
4087 another_round:
4088 skb->skb_iif = skb->dev->ifindex;
4089
4090 __this_cpu_inc(softnet_data.processed);
4091
4092 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4093 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4094 skb = skb_vlan_untag(skb);
4095 if (unlikely(!skb))
4096 goto out;
4097 }
4098
4099 #ifdef CONFIG_NET_CLS_ACT
4100 if (skb->tc_verd & TC_NCLS) {
4101 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4102 goto ncls;
4103 }
4104 #endif
4105
4106 if (pfmemalloc)
4107 goto skip_taps;
4108
4109 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4110 if (pt_prev)
4111 ret = deliver_skb(skb, pt_prev, orig_dev);
4112 pt_prev = ptype;
4113 }
4114
4115 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4116 if (pt_prev)
4117 ret = deliver_skb(skb, pt_prev, orig_dev);
4118 pt_prev = ptype;
4119 }
4120
4121 skip_taps:
4122 #ifdef CONFIG_NET_INGRESS
4123 if (static_key_false(&ingress_needed)) {
4124 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4125 if (!skb)
4126 goto out;
4127
4128 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4129 goto out;
4130 }
4131 #endif
4132 #ifdef CONFIG_NET_CLS_ACT
4133 skb->tc_verd = 0;
4134 ncls:
4135 #endif
4136 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4137 goto drop;
4138
4139 if (skb_vlan_tag_present(skb)) {
4140 if (pt_prev) {
4141 ret = deliver_skb(skb, pt_prev, orig_dev);
4142 pt_prev = NULL;
4143 }
4144 if (vlan_do_receive(&skb))
4145 goto another_round;
4146 else if (unlikely(!skb))
4147 goto out;
4148 }
4149
4150 rx_handler = rcu_dereference(skb->dev->rx_handler);
4151 if (rx_handler) {
4152 if (pt_prev) {
4153 ret = deliver_skb(skb, pt_prev, orig_dev);
4154 pt_prev = NULL;
4155 }
4156 switch (rx_handler(&skb)) {
4157 case RX_HANDLER_CONSUMED:
4158 ret = NET_RX_SUCCESS;
4159 goto out;
4160 case RX_HANDLER_ANOTHER:
4161 goto another_round;
4162 case RX_HANDLER_EXACT:
4163 deliver_exact = true;
4164 case RX_HANDLER_PASS:
4165 break;
4166 default:
4167 BUG();
4168 }
4169 }
4170
4171 if (unlikely(skb_vlan_tag_present(skb))) {
4172 if (skb_vlan_tag_get_id(skb))
4173 skb->pkt_type = PACKET_OTHERHOST;
4174 /* Note: we might in the future use prio bits
4175 * and set skb->priority like in vlan_do_receive()
4176 * For the time being, just ignore Priority Code Point
4177 */
4178 skb->vlan_tci = 0;
4179 }
4180
4181 type = skb->protocol;
4182
4183 /* deliver only exact match when indicated */
4184 if (likely(!deliver_exact)) {
4185 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4186 &ptype_base[ntohs(type) &
4187 PTYPE_HASH_MASK]);
4188 }
4189
4190 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4191 &orig_dev->ptype_specific);
4192
4193 if (unlikely(skb->dev != orig_dev)) {
4194 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4195 &skb->dev->ptype_specific);
4196 }
4197
4198 if (pt_prev) {
4199 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4200 goto drop;
4201 else
4202 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4203 } else {
4204 drop:
4205 if (!deliver_exact)
4206 atomic_long_inc(&skb->dev->rx_dropped);
4207 else
4208 atomic_long_inc(&skb->dev->rx_nohandler);
4209 kfree_skb(skb);
4210 /* Jamal, now you will not able to escape explaining
4211 * me how you were going to use this. :-)
4212 */
4213 ret = NET_RX_DROP;
4214 }
4215
4216 out:
4217 return ret;
4218 }
4219
4220 static int __netif_receive_skb(struct sk_buff *skb)
4221 {
4222 int ret;
4223
4224 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4225 unsigned long pflags = current->flags;
4226
4227 /*
4228 * PFMEMALLOC skbs are special, they should
4229 * - be delivered to SOCK_MEMALLOC sockets only
4230 * - stay away from userspace
4231 * - have bounded memory usage
4232 *
4233 * Use PF_MEMALLOC as this saves us from propagating the allocation
4234 * context down to all allocation sites.
4235 */
4236 current->flags |= PF_MEMALLOC;
4237 ret = __netif_receive_skb_core(skb, true);
4238 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4239 } else
4240 ret = __netif_receive_skb_core(skb, false);
4241
4242 return ret;
4243 }
4244
4245 static int netif_receive_skb_internal(struct sk_buff *skb)
4246 {
4247 int ret;
4248
4249 net_timestamp_check(netdev_tstamp_prequeue, skb);
4250
4251 if (skb_defer_rx_timestamp(skb))
4252 return NET_RX_SUCCESS;
4253
4254 rcu_read_lock();
4255
4256 #ifdef CONFIG_RPS
4257 if (static_key_false(&rps_needed)) {
4258 struct rps_dev_flow voidflow, *rflow = &voidflow;
4259 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4260
4261 if (cpu >= 0) {
4262 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4263 rcu_read_unlock();
4264 return ret;
4265 }
4266 }
4267 #endif
4268 ret = __netif_receive_skb(skb);
4269 rcu_read_unlock();
4270 return ret;
4271 }
4272
4273 /**
4274 * netif_receive_skb - process receive buffer from network
4275 * @skb: buffer to process
4276 *
4277 * netif_receive_skb() is the main receive data processing function.
4278 * It always succeeds. The buffer may be dropped during processing
4279 * for congestion control or by the protocol layers.
4280 *
4281 * This function may only be called from softirq context and interrupts
4282 * should be enabled.
4283 *
4284 * Return values (usually ignored):
4285 * NET_RX_SUCCESS: no congestion
4286 * NET_RX_DROP: packet was dropped
4287 */
4288 int netif_receive_skb(struct sk_buff *skb)
4289 {
4290 trace_netif_receive_skb_entry(skb);
4291
4292 return netif_receive_skb_internal(skb);
4293 }
4294 EXPORT_SYMBOL(netif_receive_skb);
4295
4296 /* Network device is going away, flush any packets still pending
4297 * Called with irqs disabled.
4298 */
4299 static void flush_backlog(void *arg)
4300 {
4301 struct net_device *dev = arg;
4302 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4303 struct sk_buff *skb, *tmp;
4304
4305 rps_lock(sd);
4306 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4307 if (skb->dev == dev) {
4308 __skb_unlink(skb, &sd->input_pkt_queue);
4309 kfree_skb(skb);
4310 input_queue_head_incr(sd);
4311 }
4312 }
4313 rps_unlock(sd);
4314
4315 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4316 if (skb->dev == dev) {
4317 __skb_unlink(skb, &sd->process_queue);
4318 kfree_skb(skb);
4319 input_queue_head_incr(sd);
4320 }
4321 }
4322 }
4323
4324 static int napi_gro_complete(struct sk_buff *skb)
4325 {
4326 struct packet_offload *ptype;
4327 __be16 type = skb->protocol;
4328 struct list_head *head = &offload_base;
4329 int err = -ENOENT;
4330
4331 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4332
4333 if (NAPI_GRO_CB(skb)->count == 1) {
4334 skb_shinfo(skb)->gso_size = 0;
4335 goto out;
4336 }
4337
4338 rcu_read_lock();
4339 list_for_each_entry_rcu(ptype, head, list) {
4340 if (ptype->type != type || !ptype->callbacks.gro_complete)
4341 continue;
4342
4343 err = ptype->callbacks.gro_complete(skb, 0);
4344 break;
4345 }
4346 rcu_read_unlock();
4347
4348 if (err) {
4349 WARN_ON(&ptype->list == head);
4350 kfree_skb(skb);
4351 return NET_RX_SUCCESS;
4352 }
4353
4354 out:
4355 return netif_receive_skb_internal(skb);
4356 }
4357
4358 /* napi->gro_list contains packets ordered by age.
4359 * youngest packets at the head of it.
4360 * Complete skbs in reverse order to reduce latencies.
4361 */
4362 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4363 {
4364 struct sk_buff *skb, *prev = NULL;
4365
4366 /* scan list and build reverse chain */
4367 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4368 skb->prev = prev;
4369 prev = skb;
4370 }
4371
4372 for (skb = prev; skb; skb = prev) {
4373 skb->next = NULL;
4374
4375 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4376 return;
4377
4378 prev = skb->prev;
4379 napi_gro_complete(skb);
4380 napi->gro_count--;
4381 }
4382
4383 napi->gro_list = NULL;
4384 }
4385 EXPORT_SYMBOL(napi_gro_flush);
4386
4387 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4388 {
4389 struct sk_buff *p;
4390 unsigned int maclen = skb->dev->hard_header_len;
4391 u32 hash = skb_get_hash_raw(skb);
4392
4393 for (p = napi->gro_list; p; p = p->next) {
4394 unsigned long diffs;
4395
4396 NAPI_GRO_CB(p)->flush = 0;
4397
4398 if (hash != skb_get_hash_raw(p)) {
4399 NAPI_GRO_CB(p)->same_flow = 0;
4400 continue;
4401 }
4402
4403 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4404 diffs |= p->vlan_tci ^ skb->vlan_tci;
4405 diffs |= skb_metadata_dst_cmp(p, skb);
4406 if (maclen == ETH_HLEN)
4407 diffs |= compare_ether_header(skb_mac_header(p),
4408 skb_mac_header(skb));
4409 else if (!diffs)
4410 diffs = memcmp(skb_mac_header(p),
4411 skb_mac_header(skb),
4412 maclen);
4413 NAPI_GRO_CB(p)->same_flow = !diffs;
4414 }
4415 }
4416
4417 static void skb_gro_reset_offset(struct sk_buff *skb)
4418 {
4419 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4420 const skb_frag_t *frag0 = &pinfo->frags[0];
4421
4422 NAPI_GRO_CB(skb)->data_offset = 0;
4423 NAPI_GRO_CB(skb)->frag0 = NULL;
4424 NAPI_GRO_CB(skb)->frag0_len = 0;
4425
4426 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4427 pinfo->nr_frags &&
4428 !PageHighMem(skb_frag_page(frag0))) {
4429 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4430 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4431 }
4432 }
4433
4434 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4435 {
4436 struct skb_shared_info *pinfo = skb_shinfo(skb);
4437
4438 BUG_ON(skb->end - skb->tail < grow);
4439
4440 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4441
4442 skb->data_len -= grow;
4443 skb->tail += grow;
4444
4445 pinfo->frags[0].page_offset += grow;
4446 skb_frag_size_sub(&pinfo->frags[0], grow);
4447
4448 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4449 skb_frag_unref(skb, 0);
4450 memmove(pinfo->frags, pinfo->frags + 1,
4451 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4452 }
4453 }
4454
4455 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4456 {
4457 struct sk_buff **pp = NULL;
4458 struct packet_offload *ptype;
4459 __be16 type = skb->protocol;
4460 struct list_head *head = &offload_base;
4461 int same_flow;
4462 enum gro_result ret;
4463 int grow;
4464
4465 if (!(skb->dev->features & NETIF_F_GRO))
4466 goto normal;
4467
4468 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4469 goto normal;
4470
4471 gro_list_prepare(napi, skb);
4472
4473 rcu_read_lock();
4474 list_for_each_entry_rcu(ptype, head, list) {
4475 if (ptype->type != type || !ptype->callbacks.gro_receive)
4476 continue;
4477
4478 skb_set_network_header(skb, skb_gro_offset(skb));
4479 skb_reset_mac_len(skb);
4480 NAPI_GRO_CB(skb)->same_flow = 0;
4481 NAPI_GRO_CB(skb)->flush = 0;
4482 NAPI_GRO_CB(skb)->free = 0;
4483 NAPI_GRO_CB(skb)->encap_mark = 0;
4484 NAPI_GRO_CB(skb)->is_fou = 0;
4485 NAPI_GRO_CB(skb)->is_atomic = 1;
4486 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4487
4488 /* Setup for GRO checksum validation */
4489 switch (skb->ip_summed) {
4490 case CHECKSUM_COMPLETE:
4491 NAPI_GRO_CB(skb)->csum = skb->csum;
4492 NAPI_GRO_CB(skb)->csum_valid = 1;
4493 NAPI_GRO_CB(skb)->csum_cnt = 0;
4494 break;
4495 case CHECKSUM_UNNECESSARY:
4496 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4497 NAPI_GRO_CB(skb)->csum_valid = 0;
4498 break;
4499 default:
4500 NAPI_GRO_CB(skb)->csum_cnt = 0;
4501 NAPI_GRO_CB(skb)->csum_valid = 0;
4502 }
4503
4504 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4505 break;
4506 }
4507 rcu_read_unlock();
4508
4509 if (&ptype->list == head)
4510 goto normal;
4511
4512 same_flow = NAPI_GRO_CB(skb)->same_flow;
4513 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4514
4515 if (pp) {
4516 struct sk_buff *nskb = *pp;
4517
4518 *pp = nskb->next;
4519 nskb->next = NULL;
4520 napi_gro_complete(nskb);
4521 napi->gro_count--;
4522 }
4523
4524 if (same_flow)
4525 goto ok;
4526
4527 if (NAPI_GRO_CB(skb)->flush)
4528 goto normal;
4529
4530 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4531 struct sk_buff *nskb = napi->gro_list;
4532
4533 /* locate the end of the list to select the 'oldest' flow */
4534 while (nskb->next) {
4535 pp = &nskb->next;
4536 nskb = *pp;
4537 }
4538 *pp = NULL;
4539 nskb->next = NULL;
4540 napi_gro_complete(nskb);
4541 } else {
4542 napi->gro_count++;
4543 }
4544 NAPI_GRO_CB(skb)->count = 1;
4545 NAPI_GRO_CB(skb)->age = jiffies;
4546 NAPI_GRO_CB(skb)->last = skb;
4547 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4548 skb->next = napi->gro_list;
4549 napi->gro_list = skb;
4550 ret = GRO_HELD;
4551
4552 pull:
4553 grow = skb_gro_offset(skb) - skb_headlen(skb);
4554 if (grow > 0)
4555 gro_pull_from_frag0(skb, grow);
4556 ok:
4557 return ret;
4558
4559 normal:
4560 ret = GRO_NORMAL;
4561 goto pull;
4562 }
4563
4564 struct packet_offload *gro_find_receive_by_type(__be16 type)
4565 {
4566 struct list_head *offload_head = &offload_base;
4567 struct packet_offload *ptype;
4568
4569 list_for_each_entry_rcu(ptype, offload_head, list) {
4570 if (ptype->type != type || !ptype->callbacks.gro_receive)
4571 continue;
4572 return ptype;
4573 }
4574 return NULL;
4575 }
4576 EXPORT_SYMBOL(gro_find_receive_by_type);
4577
4578 struct packet_offload *gro_find_complete_by_type(__be16 type)
4579 {
4580 struct list_head *offload_head = &offload_base;
4581 struct packet_offload *ptype;
4582
4583 list_for_each_entry_rcu(ptype, offload_head, list) {
4584 if (ptype->type != type || !ptype->callbacks.gro_complete)
4585 continue;
4586 return ptype;
4587 }
4588 return NULL;
4589 }
4590 EXPORT_SYMBOL(gro_find_complete_by_type);
4591
4592 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4593 {
4594 switch (ret) {
4595 case GRO_NORMAL:
4596 if (netif_receive_skb_internal(skb))
4597 ret = GRO_DROP;
4598 break;
4599
4600 case GRO_DROP:
4601 kfree_skb(skb);
4602 break;
4603
4604 case GRO_MERGED_FREE:
4605 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4606 skb_dst_drop(skb);
4607 kmem_cache_free(skbuff_head_cache, skb);
4608 } else {
4609 __kfree_skb(skb);
4610 }
4611 break;
4612
4613 case GRO_HELD:
4614 case GRO_MERGED:
4615 break;
4616 }
4617
4618 return ret;
4619 }
4620
4621 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4622 {
4623 skb_mark_napi_id(skb, napi);
4624 trace_napi_gro_receive_entry(skb);
4625
4626 skb_gro_reset_offset(skb);
4627
4628 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4629 }
4630 EXPORT_SYMBOL(napi_gro_receive);
4631
4632 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4633 {
4634 if (unlikely(skb->pfmemalloc)) {
4635 consume_skb(skb);
4636 return;
4637 }
4638 __skb_pull(skb, skb_headlen(skb));
4639 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4640 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4641 skb->vlan_tci = 0;
4642 skb->dev = napi->dev;
4643 skb->skb_iif = 0;
4644 skb->encapsulation = 0;
4645 skb_shinfo(skb)->gso_type = 0;
4646 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4647
4648 napi->skb = skb;
4649 }
4650
4651 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4652 {
4653 struct sk_buff *skb = napi->skb;
4654
4655 if (!skb) {
4656 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4657 if (skb) {
4658 napi->skb = skb;
4659 skb_mark_napi_id(skb, napi);
4660 }
4661 }
4662 return skb;
4663 }
4664 EXPORT_SYMBOL(napi_get_frags);
4665
4666 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4667 struct sk_buff *skb,
4668 gro_result_t ret)
4669 {
4670 switch (ret) {
4671 case GRO_NORMAL:
4672 case GRO_HELD:
4673 __skb_push(skb, ETH_HLEN);
4674 skb->protocol = eth_type_trans(skb, skb->dev);
4675 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4676 ret = GRO_DROP;
4677 break;
4678
4679 case GRO_DROP:
4680 case GRO_MERGED_FREE:
4681 napi_reuse_skb(napi, skb);
4682 break;
4683
4684 case GRO_MERGED:
4685 break;
4686 }
4687
4688 return ret;
4689 }
4690
4691 /* Upper GRO stack assumes network header starts at gro_offset=0
4692 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4693 * We copy ethernet header into skb->data to have a common layout.
4694 */
4695 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4696 {
4697 struct sk_buff *skb = napi->skb;
4698 const struct ethhdr *eth;
4699 unsigned int hlen = sizeof(*eth);
4700
4701 napi->skb = NULL;
4702
4703 skb_reset_mac_header(skb);
4704 skb_gro_reset_offset(skb);
4705
4706 eth = skb_gro_header_fast(skb, 0);
4707 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4708 eth = skb_gro_header_slow(skb, hlen, 0);
4709 if (unlikely(!eth)) {
4710 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4711 __func__, napi->dev->name);
4712 napi_reuse_skb(napi, skb);
4713 return NULL;
4714 }
4715 } else {
4716 gro_pull_from_frag0(skb, hlen);
4717 NAPI_GRO_CB(skb)->frag0 += hlen;
4718 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4719 }
4720 __skb_pull(skb, hlen);
4721
4722 /*
4723 * This works because the only protocols we care about don't require
4724 * special handling.
4725 * We'll fix it up properly in napi_frags_finish()
4726 */
4727 skb->protocol = eth->h_proto;
4728
4729 return skb;
4730 }
4731
4732 gro_result_t napi_gro_frags(struct napi_struct *napi)
4733 {
4734 struct sk_buff *skb = napi_frags_skb(napi);
4735
4736 if (!skb)
4737 return GRO_DROP;
4738
4739 trace_napi_gro_frags_entry(skb);
4740
4741 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4742 }
4743 EXPORT_SYMBOL(napi_gro_frags);
4744
4745 /* Compute the checksum from gro_offset and return the folded value
4746 * after adding in any pseudo checksum.
4747 */
4748 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4749 {
4750 __wsum wsum;
4751 __sum16 sum;
4752
4753 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4754
4755 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4756 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4757 if (likely(!sum)) {
4758 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4759 !skb->csum_complete_sw)
4760 netdev_rx_csum_fault(skb->dev);
4761 }
4762
4763 NAPI_GRO_CB(skb)->csum = wsum;
4764 NAPI_GRO_CB(skb)->csum_valid = 1;
4765
4766 return sum;
4767 }
4768 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4769
4770 /*
4771 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4772 * Note: called with local irq disabled, but exits with local irq enabled.
4773 */
4774 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4775 {
4776 #ifdef CONFIG_RPS
4777 struct softnet_data *remsd = sd->rps_ipi_list;
4778
4779 if (remsd) {
4780 sd->rps_ipi_list = NULL;
4781
4782 local_irq_enable();
4783
4784 /* Send pending IPI's to kick RPS processing on remote cpus. */
4785 while (remsd) {
4786 struct softnet_data *next = remsd->rps_ipi_next;
4787
4788 if (cpu_online(remsd->cpu))
4789 smp_call_function_single_async(remsd->cpu,
4790 &remsd->csd);
4791 remsd = next;
4792 }
4793 } else
4794 #endif
4795 local_irq_enable();
4796 }
4797
4798 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4799 {
4800 #ifdef CONFIG_RPS
4801 return sd->rps_ipi_list != NULL;
4802 #else
4803 return false;
4804 #endif
4805 }
4806
4807 static int process_backlog(struct napi_struct *napi, int quota)
4808 {
4809 int work = 0;
4810 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4811
4812 /* Check if we have pending ipi, its better to send them now,
4813 * not waiting net_rx_action() end.
4814 */
4815 if (sd_has_rps_ipi_waiting(sd)) {
4816 local_irq_disable();
4817 net_rps_action_and_irq_enable(sd);
4818 }
4819
4820 napi->weight = weight_p;
4821 local_irq_disable();
4822 while (1) {
4823 struct sk_buff *skb;
4824
4825 while ((skb = __skb_dequeue(&sd->process_queue))) {
4826 rcu_read_lock();
4827 local_irq_enable();
4828 __netif_receive_skb(skb);
4829 rcu_read_unlock();
4830 local_irq_disable();
4831 input_queue_head_incr(sd);
4832 if (++work >= quota) {
4833 local_irq_enable();
4834 return work;
4835 }
4836 }
4837
4838 rps_lock(sd);
4839 if (skb_queue_empty(&sd->input_pkt_queue)) {
4840 /*
4841 * Inline a custom version of __napi_complete().
4842 * only current cpu owns and manipulates this napi,
4843 * and NAPI_STATE_SCHED is the only possible flag set
4844 * on backlog.
4845 * We can use a plain write instead of clear_bit(),
4846 * and we dont need an smp_mb() memory barrier.
4847 */
4848 napi->state = 0;
4849 rps_unlock(sd);
4850
4851 break;
4852 }
4853
4854 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4855 &sd->process_queue);
4856 rps_unlock(sd);
4857 }
4858 local_irq_enable();
4859
4860 return work;
4861 }
4862
4863 /**
4864 * __napi_schedule - schedule for receive
4865 * @n: entry to schedule
4866 *
4867 * The entry's receive function will be scheduled to run.
4868 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4869 */
4870 void __napi_schedule(struct napi_struct *n)
4871 {
4872 unsigned long flags;
4873
4874 local_irq_save(flags);
4875 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4876 local_irq_restore(flags);
4877 }
4878 EXPORT_SYMBOL(__napi_schedule);
4879
4880 /**
4881 * __napi_schedule_irqoff - schedule for receive
4882 * @n: entry to schedule
4883 *
4884 * Variant of __napi_schedule() assuming hard irqs are masked
4885 */
4886 void __napi_schedule_irqoff(struct napi_struct *n)
4887 {
4888 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4889 }
4890 EXPORT_SYMBOL(__napi_schedule_irqoff);
4891
4892 void __napi_complete(struct napi_struct *n)
4893 {
4894 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4895
4896 list_del_init(&n->poll_list);
4897 smp_mb__before_atomic();
4898 clear_bit(NAPI_STATE_SCHED, &n->state);
4899 }
4900 EXPORT_SYMBOL(__napi_complete);
4901
4902 void napi_complete_done(struct napi_struct *n, int work_done)
4903 {
4904 unsigned long flags;
4905
4906 /*
4907 * don't let napi dequeue from the cpu poll list
4908 * just in case its running on a different cpu
4909 */
4910 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4911 return;
4912
4913 if (n->gro_list) {
4914 unsigned long timeout = 0;
4915
4916 if (work_done)
4917 timeout = n->dev->gro_flush_timeout;
4918
4919 if (timeout)
4920 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4921 HRTIMER_MODE_REL_PINNED);
4922 else
4923 napi_gro_flush(n, false);
4924 }
4925 if (likely(list_empty(&n->poll_list))) {
4926 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4927 } else {
4928 /* If n->poll_list is not empty, we need to mask irqs */
4929 local_irq_save(flags);
4930 __napi_complete(n);
4931 local_irq_restore(flags);
4932 }
4933 }
4934 EXPORT_SYMBOL(napi_complete_done);
4935
4936 /* must be called under rcu_read_lock(), as we dont take a reference */
4937 static struct napi_struct *napi_by_id(unsigned int napi_id)
4938 {
4939 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4940 struct napi_struct *napi;
4941
4942 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4943 if (napi->napi_id == napi_id)
4944 return napi;
4945
4946 return NULL;
4947 }
4948
4949 #if defined(CONFIG_NET_RX_BUSY_POLL)
4950 #define BUSY_POLL_BUDGET 8
4951 bool sk_busy_loop(struct sock *sk, int nonblock)
4952 {
4953 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4954 int (*busy_poll)(struct napi_struct *dev);
4955 struct napi_struct *napi;
4956 int rc = false;
4957
4958 rcu_read_lock();
4959
4960 napi = napi_by_id(sk->sk_napi_id);
4961 if (!napi)
4962 goto out;
4963
4964 /* Note: ndo_busy_poll method is optional in linux-4.5 */
4965 busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4966
4967 do {
4968 rc = 0;
4969 local_bh_disable();
4970 if (busy_poll) {
4971 rc = busy_poll(napi);
4972 } else if (napi_schedule_prep(napi)) {
4973 void *have = netpoll_poll_lock(napi);
4974
4975 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4976 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4977 trace_napi_poll(napi);
4978 if (rc == BUSY_POLL_BUDGET) {
4979 napi_complete_done(napi, rc);
4980 napi_schedule(napi);
4981 }
4982 }
4983 netpoll_poll_unlock(have);
4984 }
4985 if (rc > 0)
4986 __NET_ADD_STATS(sock_net(sk),
4987 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4988 local_bh_enable();
4989
4990 if (rc == LL_FLUSH_FAILED)
4991 break; /* permanent failure */
4992
4993 cpu_relax();
4994 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4995 !need_resched() && !busy_loop_timeout(end_time));
4996
4997 rc = !skb_queue_empty(&sk->sk_receive_queue);
4998 out:
4999 rcu_read_unlock();
5000 return rc;
5001 }
5002 EXPORT_SYMBOL(sk_busy_loop);
5003
5004 #endif /* CONFIG_NET_RX_BUSY_POLL */
5005
5006 void napi_hash_add(struct napi_struct *napi)
5007 {
5008 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5009 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5010 return;
5011
5012 spin_lock(&napi_hash_lock);
5013
5014 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5015 do {
5016 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5017 napi_gen_id = NR_CPUS + 1;
5018 } while (napi_by_id(napi_gen_id));
5019 napi->napi_id = napi_gen_id;
5020
5021 hlist_add_head_rcu(&napi->napi_hash_node,
5022 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5023
5024 spin_unlock(&napi_hash_lock);
5025 }
5026 EXPORT_SYMBOL_GPL(napi_hash_add);
5027
5028 /* Warning : caller is responsible to make sure rcu grace period
5029 * is respected before freeing memory containing @napi
5030 */
5031 bool napi_hash_del(struct napi_struct *napi)
5032 {
5033 bool rcu_sync_needed = false;
5034
5035 spin_lock(&napi_hash_lock);
5036
5037 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5038 rcu_sync_needed = true;
5039 hlist_del_rcu(&napi->napi_hash_node);
5040 }
5041 spin_unlock(&napi_hash_lock);
5042 return rcu_sync_needed;
5043 }
5044 EXPORT_SYMBOL_GPL(napi_hash_del);
5045
5046 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5047 {
5048 struct napi_struct *napi;
5049
5050 napi = container_of(timer, struct napi_struct, timer);
5051 if (napi->gro_list)
5052 napi_schedule(napi);
5053
5054 return HRTIMER_NORESTART;
5055 }
5056
5057 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5058 int (*poll)(struct napi_struct *, int), int weight)
5059 {
5060 INIT_LIST_HEAD(&napi->poll_list);
5061 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5062 napi->timer.function = napi_watchdog;
5063 napi->gro_count = 0;
5064 napi->gro_list = NULL;
5065 napi->skb = NULL;
5066 napi->poll = poll;
5067 if (weight > NAPI_POLL_WEIGHT)
5068 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5069 weight, dev->name);
5070 napi->weight = weight;
5071 list_add(&napi->dev_list, &dev->napi_list);
5072 napi->dev = dev;
5073 #ifdef CONFIG_NETPOLL
5074 spin_lock_init(&napi->poll_lock);
5075 napi->poll_owner = -1;
5076 #endif
5077 set_bit(NAPI_STATE_SCHED, &napi->state);
5078 napi_hash_add(napi);
5079 }
5080 EXPORT_SYMBOL(netif_napi_add);
5081
5082 void napi_disable(struct napi_struct *n)
5083 {
5084 might_sleep();
5085 set_bit(NAPI_STATE_DISABLE, &n->state);
5086
5087 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5088 msleep(1);
5089 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5090 msleep(1);
5091
5092 hrtimer_cancel(&n->timer);
5093
5094 clear_bit(NAPI_STATE_DISABLE, &n->state);
5095 }
5096 EXPORT_SYMBOL(napi_disable);
5097
5098 /* Must be called in process context */
5099 void netif_napi_del(struct napi_struct *napi)
5100 {
5101 might_sleep();
5102 if (napi_hash_del(napi))
5103 synchronize_net();
5104 list_del_init(&napi->dev_list);
5105 napi_free_frags(napi);
5106
5107 kfree_skb_list(napi->gro_list);
5108 napi->gro_list = NULL;
5109 napi->gro_count = 0;
5110 }
5111 EXPORT_SYMBOL(netif_napi_del);
5112
5113 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5114 {
5115 void *have;
5116 int work, weight;
5117
5118 list_del_init(&n->poll_list);
5119
5120 have = netpoll_poll_lock(n);
5121
5122 weight = n->weight;
5123
5124 /* This NAPI_STATE_SCHED test is for avoiding a race
5125 * with netpoll's poll_napi(). Only the entity which
5126 * obtains the lock and sees NAPI_STATE_SCHED set will
5127 * actually make the ->poll() call. Therefore we avoid
5128 * accidentally calling ->poll() when NAPI is not scheduled.
5129 */
5130 work = 0;
5131 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5132 work = n->poll(n, weight);
5133 trace_napi_poll(n);
5134 }
5135
5136 WARN_ON_ONCE(work > weight);
5137
5138 if (likely(work < weight))
5139 goto out_unlock;
5140
5141 /* Drivers must not modify the NAPI state if they
5142 * consume the entire weight. In such cases this code
5143 * still "owns" the NAPI instance and therefore can
5144 * move the instance around on the list at-will.
5145 */
5146 if (unlikely(napi_disable_pending(n))) {
5147 napi_complete(n);
5148 goto out_unlock;
5149 }
5150
5151 if (n->gro_list) {
5152 /* flush too old packets
5153 * If HZ < 1000, flush all packets.
5154 */
5155 napi_gro_flush(n, HZ >= 1000);
5156 }
5157
5158 /* Some drivers may have called napi_schedule
5159 * prior to exhausting their budget.
5160 */
5161 if (unlikely(!list_empty(&n->poll_list))) {
5162 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5163 n->dev ? n->dev->name : "backlog");
5164 goto out_unlock;
5165 }
5166
5167 list_add_tail(&n->poll_list, repoll);
5168
5169 out_unlock:
5170 netpoll_poll_unlock(have);
5171
5172 return work;
5173 }
5174
5175 static void net_rx_action(struct softirq_action *h)
5176 {
5177 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5178 unsigned long time_limit = jiffies + 2;
5179 int budget = netdev_budget;
5180 LIST_HEAD(list);
5181 LIST_HEAD(repoll);
5182
5183 local_irq_disable();
5184 list_splice_init(&sd->poll_list, &list);
5185 local_irq_enable();
5186
5187 for (;;) {
5188 struct napi_struct *n;
5189
5190 if (list_empty(&list)) {
5191 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5192 return;
5193 break;
5194 }
5195
5196 n = list_first_entry(&list, struct napi_struct, poll_list);
5197 budget -= napi_poll(n, &repoll);
5198
5199 /* If softirq window is exhausted then punt.
5200 * Allow this to run for 2 jiffies since which will allow
5201 * an average latency of 1.5/HZ.
5202 */
5203 if (unlikely(budget <= 0 ||
5204 time_after_eq(jiffies, time_limit))) {
5205 sd->time_squeeze++;
5206 break;
5207 }
5208 }
5209
5210 __kfree_skb_flush();
5211 local_irq_disable();
5212
5213 list_splice_tail_init(&sd->poll_list, &list);
5214 list_splice_tail(&repoll, &list);
5215 list_splice(&list, &sd->poll_list);
5216 if (!list_empty(&sd->poll_list))
5217 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5218
5219 net_rps_action_and_irq_enable(sd);
5220 }
5221
5222 struct netdev_adjacent {
5223 struct net_device *dev;
5224
5225 /* upper master flag, there can only be one master device per list */
5226 bool master;
5227
5228 /* counter for the number of times this device was added to us */
5229 u16 ref_nr;
5230
5231 /* private field for the users */
5232 void *private;
5233
5234 struct list_head list;
5235 struct rcu_head rcu;
5236 };
5237
5238 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5239 struct list_head *adj_list)
5240 {
5241 struct netdev_adjacent *adj;
5242
5243 list_for_each_entry(adj, adj_list, list) {
5244 if (adj->dev == adj_dev)
5245 return adj;
5246 }
5247 return NULL;
5248 }
5249
5250 /**
5251 * netdev_has_upper_dev - Check if device is linked to an upper device
5252 * @dev: device
5253 * @upper_dev: upper device to check
5254 *
5255 * Find out if a device is linked to specified upper device and return true
5256 * in case it is. Note that this checks only immediate upper device,
5257 * not through a complete stack of devices. The caller must hold the RTNL lock.
5258 */
5259 bool netdev_has_upper_dev(struct net_device *dev,
5260 struct net_device *upper_dev)
5261 {
5262 ASSERT_RTNL();
5263
5264 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5265 }
5266 EXPORT_SYMBOL(netdev_has_upper_dev);
5267
5268 /**
5269 * netdev_has_any_upper_dev - Check if device is linked to some device
5270 * @dev: device
5271 *
5272 * Find out if a device is linked to an upper device and return true in case
5273 * it is. The caller must hold the RTNL lock.
5274 */
5275 static bool netdev_has_any_upper_dev(struct net_device *dev)
5276 {
5277 ASSERT_RTNL();
5278
5279 return !list_empty(&dev->all_adj_list.upper);
5280 }
5281
5282 /**
5283 * netdev_master_upper_dev_get - Get master upper device
5284 * @dev: device
5285 *
5286 * Find a master upper device and return pointer to it or NULL in case
5287 * it's not there. The caller must hold the RTNL lock.
5288 */
5289 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5290 {
5291 struct netdev_adjacent *upper;
5292
5293 ASSERT_RTNL();
5294
5295 if (list_empty(&dev->adj_list.upper))
5296 return NULL;
5297
5298 upper = list_first_entry(&dev->adj_list.upper,
5299 struct netdev_adjacent, list);
5300 if (likely(upper->master))
5301 return upper->dev;
5302 return NULL;
5303 }
5304 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5305
5306 void *netdev_adjacent_get_private(struct list_head *adj_list)
5307 {
5308 struct netdev_adjacent *adj;
5309
5310 adj = list_entry(adj_list, struct netdev_adjacent, list);
5311
5312 return adj->private;
5313 }
5314 EXPORT_SYMBOL(netdev_adjacent_get_private);
5315
5316 /**
5317 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5318 * @dev: device
5319 * @iter: list_head ** of the current position
5320 *
5321 * Gets the next device from the dev's upper list, starting from iter
5322 * position. The caller must hold RCU read lock.
5323 */
5324 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5325 struct list_head **iter)
5326 {
5327 struct netdev_adjacent *upper;
5328
5329 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5330
5331 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5332
5333 if (&upper->list == &dev->adj_list.upper)
5334 return NULL;
5335
5336 *iter = &upper->list;
5337
5338 return upper->dev;
5339 }
5340 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5341
5342 /**
5343 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5344 * @dev: device
5345 * @iter: list_head ** of the current position
5346 *
5347 * Gets the next device from the dev's upper list, starting from iter
5348 * position. The caller must hold RCU read lock.
5349 */
5350 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5351 struct list_head **iter)
5352 {
5353 struct netdev_adjacent *upper;
5354
5355 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5356
5357 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5358
5359 if (&upper->list == &dev->all_adj_list.upper)
5360 return NULL;
5361
5362 *iter = &upper->list;
5363
5364 return upper->dev;
5365 }
5366 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5367
5368 /**
5369 * netdev_lower_get_next_private - Get the next ->private from the
5370 * lower neighbour list
5371 * @dev: device
5372 * @iter: list_head ** of the current position
5373 *
5374 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5375 * list, starting from iter position. The caller must hold either hold the
5376 * RTNL lock or its own locking that guarantees that the neighbour lower
5377 * list will remain unchanged.
5378 */
5379 void *netdev_lower_get_next_private(struct net_device *dev,
5380 struct list_head **iter)
5381 {
5382 struct netdev_adjacent *lower;
5383
5384 lower = list_entry(*iter, struct netdev_adjacent, list);
5385
5386 if (&lower->list == &dev->adj_list.lower)
5387 return NULL;
5388
5389 *iter = lower->list.next;
5390
5391 return lower->private;
5392 }
5393 EXPORT_SYMBOL(netdev_lower_get_next_private);
5394
5395 /**
5396 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5397 * lower neighbour list, RCU
5398 * variant
5399 * @dev: device
5400 * @iter: list_head ** of the current position
5401 *
5402 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5403 * list, starting from iter position. The caller must hold RCU read lock.
5404 */
5405 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5406 struct list_head **iter)
5407 {
5408 struct netdev_adjacent *lower;
5409
5410 WARN_ON_ONCE(!rcu_read_lock_held());
5411
5412 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5413
5414 if (&lower->list == &dev->adj_list.lower)
5415 return NULL;
5416
5417 *iter = &lower->list;
5418
5419 return lower->private;
5420 }
5421 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5422
5423 /**
5424 * netdev_lower_get_next - Get the next device from the lower neighbour
5425 * list
5426 * @dev: device
5427 * @iter: list_head ** of the current position
5428 *
5429 * Gets the next netdev_adjacent from the dev's lower neighbour
5430 * list, starting from iter position. The caller must hold RTNL lock or
5431 * its own locking that guarantees that the neighbour lower
5432 * list will remain unchanged.
5433 */
5434 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5435 {
5436 struct netdev_adjacent *lower;
5437
5438 lower = list_entry(*iter, struct netdev_adjacent, list);
5439
5440 if (&lower->list == &dev->adj_list.lower)
5441 return NULL;
5442
5443 *iter = lower->list.next;
5444
5445 return lower->dev;
5446 }
5447 EXPORT_SYMBOL(netdev_lower_get_next);
5448
5449 /**
5450 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5451 * lower neighbour list, RCU
5452 * variant
5453 * @dev: device
5454 *
5455 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5456 * list. The caller must hold RCU read lock.
5457 */
5458 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5459 {
5460 struct netdev_adjacent *lower;
5461
5462 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5463 struct netdev_adjacent, list);
5464 if (lower)
5465 return lower->private;
5466 return NULL;
5467 }
5468 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5469
5470 /**
5471 * netdev_master_upper_dev_get_rcu - Get master upper device
5472 * @dev: device
5473 *
5474 * Find a master upper device and return pointer to it or NULL in case
5475 * it's not there. The caller must hold the RCU read lock.
5476 */
5477 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5478 {
5479 struct netdev_adjacent *upper;
5480
5481 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5482 struct netdev_adjacent, list);
5483 if (upper && likely(upper->master))
5484 return upper->dev;
5485 return NULL;
5486 }
5487 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5488
5489 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5490 struct net_device *adj_dev,
5491 struct list_head *dev_list)
5492 {
5493 char linkname[IFNAMSIZ+7];
5494 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5495 "upper_%s" : "lower_%s", adj_dev->name);
5496 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5497 linkname);
5498 }
5499 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5500 char *name,
5501 struct list_head *dev_list)
5502 {
5503 char linkname[IFNAMSIZ+7];
5504 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5505 "upper_%s" : "lower_%s", name);
5506 sysfs_remove_link(&(dev->dev.kobj), linkname);
5507 }
5508
5509 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5510 struct net_device *adj_dev,
5511 struct list_head *dev_list)
5512 {
5513 return (dev_list == &dev->adj_list.upper ||
5514 dev_list == &dev->adj_list.lower) &&
5515 net_eq(dev_net(dev), dev_net(adj_dev));
5516 }
5517
5518 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5519 struct net_device *adj_dev,
5520 struct list_head *dev_list,
5521 void *private, bool master)
5522 {
5523 struct netdev_adjacent *adj;
5524 int ret;
5525
5526 adj = __netdev_find_adj(adj_dev, dev_list);
5527
5528 if (adj) {
5529 adj->ref_nr++;
5530 return 0;
5531 }
5532
5533 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5534 if (!adj)
5535 return -ENOMEM;
5536
5537 adj->dev = adj_dev;
5538 adj->master = master;
5539 adj->ref_nr = 1;
5540 adj->private = private;
5541 dev_hold(adj_dev);
5542
5543 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5544 adj_dev->name, dev->name, adj_dev->name);
5545
5546 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5547 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5548 if (ret)
5549 goto free_adj;
5550 }
5551
5552 /* Ensure that master link is always the first item in list. */
5553 if (master) {
5554 ret = sysfs_create_link(&(dev->dev.kobj),
5555 &(adj_dev->dev.kobj), "master");
5556 if (ret)
5557 goto remove_symlinks;
5558
5559 list_add_rcu(&adj->list, dev_list);
5560 } else {
5561 list_add_tail_rcu(&adj->list, dev_list);
5562 }
5563
5564 return 0;
5565
5566 remove_symlinks:
5567 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5568 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5569 free_adj:
5570 kfree(adj);
5571 dev_put(adj_dev);
5572
5573 return ret;
5574 }
5575
5576 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5577 struct net_device *adj_dev,
5578 struct list_head *dev_list)
5579 {
5580 struct netdev_adjacent *adj;
5581
5582 adj = __netdev_find_adj(adj_dev, dev_list);
5583
5584 if (!adj) {
5585 pr_err("tried to remove device %s from %s\n",
5586 dev->name, adj_dev->name);
5587 BUG();
5588 }
5589
5590 if (adj->ref_nr > 1) {
5591 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5592 adj->ref_nr-1);
5593 adj->ref_nr--;
5594 return;
5595 }
5596
5597 if (adj->master)
5598 sysfs_remove_link(&(dev->dev.kobj), "master");
5599
5600 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5601 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5602
5603 list_del_rcu(&adj->list);
5604 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5605 adj_dev->name, dev->name, adj_dev->name);
5606 dev_put(adj_dev);
5607 kfree_rcu(adj, rcu);
5608 }
5609
5610 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5611 struct net_device *upper_dev,
5612 struct list_head *up_list,
5613 struct list_head *down_list,
5614 void *private, bool master)
5615 {
5616 int ret;
5617
5618 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5619 master);
5620 if (ret)
5621 return ret;
5622
5623 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5624 false);
5625 if (ret) {
5626 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5627 return ret;
5628 }
5629
5630 return 0;
5631 }
5632
5633 static int __netdev_adjacent_dev_link(struct net_device *dev,
5634 struct net_device *upper_dev)
5635 {
5636 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5637 &dev->all_adj_list.upper,
5638 &upper_dev->all_adj_list.lower,
5639 NULL, false);
5640 }
5641
5642 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5643 struct net_device *upper_dev,
5644 struct list_head *up_list,
5645 struct list_head *down_list)
5646 {
5647 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5648 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5649 }
5650
5651 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5652 struct net_device *upper_dev)
5653 {
5654 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5655 &dev->all_adj_list.upper,
5656 &upper_dev->all_adj_list.lower);
5657 }
5658
5659 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5660 struct net_device *upper_dev,
5661 void *private, bool master)
5662 {
5663 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5664
5665 if (ret)
5666 return ret;
5667
5668 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5669 &dev->adj_list.upper,
5670 &upper_dev->adj_list.lower,
5671 private, master);
5672 if (ret) {
5673 __netdev_adjacent_dev_unlink(dev, upper_dev);
5674 return ret;
5675 }
5676
5677 return 0;
5678 }
5679
5680 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5681 struct net_device *upper_dev)
5682 {
5683 __netdev_adjacent_dev_unlink(dev, upper_dev);
5684 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5685 &dev->adj_list.upper,
5686 &upper_dev->adj_list.lower);
5687 }
5688
5689 static int __netdev_upper_dev_link(struct net_device *dev,
5690 struct net_device *upper_dev, bool master,
5691 void *upper_priv, void *upper_info)
5692 {
5693 struct netdev_notifier_changeupper_info changeupper_info;
5694 struct netdev_adjacent *i, *j, *to_i, *to_j;
5695 int ret = 0;
5696
5697 ASSERT_RTNL();
5698
5699 if (dev == upper_dev)
5700 return -EBUSY;
5701
5702 /* To prevent loops, check if dev is not upper device to upper_dev. */
5703 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5704 return -EBUSY;
5705
5706 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5707 return -EEXIST;
5708
5709 if (master && netdev_master_upper_dev_get(dev))
5710 return -EBUSY;
5711
5712 changeupper_info.upper_dev = upper_dev;
5713 changeupper_info.master = master;
5714 changeupper_info.linking = true;
5715 changeupper_info.upper_info = upper_info;
5716
5717 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5718 &changeupper_info.info);
5719 ret = notifier_to_errno(ret);
5720 if (ret)
5721 return ret;
5722
5723 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5724 master);
5725 if (ret)
5726 return ret;
5727
5728 /* Now that we linked these devs, make all the upper_dev's
5729 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5730 * versa, and don't forget the devices itself. All of these
5731 * links are non-neighbours.
5732 */
5733 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5734 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5735 pr_debug("Interlinking %s with %s, non-neighbour\n",
5736 i->dev->name, j->dev->name);
5737 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5738 if (ret)
5739 goto rollback_mesh;
5740 }
5741 }
5742
5743 /* add dev to every upper_dev's upper device */
5744 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5745 pr_debug("linking %s's upper device %s with %s\n",
5746 upper_dev->name, i->dev->name, dev->name);
5747 ret = __netdev_adjacent_dev_link(dev, i->dev);
5748 if (ret)
5749 goto rollback_upper_mesh;
5750 }
5751
5752 /* add upper_dev to every dev's lower device */
5753 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5754 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5755 i->dev->name, upper_dev->name);
5756 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5757 if (ret)
5758 goto rollback_lower_mesh;
5759 }
5760
5761 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5762 &changeupper_info.info);
5763 ret = notifier_to_errno(ret);
5764 if (ret)
5765 goto rollback_lower_mesh;
5766
5767 return 0;
5768
5769 rollback_lower_mesh:
5770 to_i = i;
5771 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5772 if (i == to_i)
5773 break;
5774 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5775 }
5776
5777 i = NULL;
5778
5779 rollback_upper_mesh:
5780 to_i = i;
5781 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5782 if (i == to_i)
5783 break;
5784 __netdev_adjacent_dev_unlink(dev, i->dev);
5785 }
5786
5787 i = j = NULL;
5788
5789 rollback_mesh:
5790 to_i = i;
5791 to_j = j;
5792 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5793 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5794 if (i == to_i && j == to_j)
5795 break;
5796 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5797 }
5798 if (i == to_i)
5799 break;
5800 }
5801
5802 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5803
5804 return ret;
5805 }
5806
5807 /**
5808 * netdev_upper_dev_link - Add a link to the upper device
5809 * @dev: device
5810 * @upper_dev: new upper device
5811 *
5812 * Adds a link to device which is upper to this one. The caller must hold
5813 * the RTNL lock. On a failure a negative errno code is returned.
5814 * On success the reference counts are adjusted and the function
5815 * returns zero.
5816 */
5817 int netdev_upper_dev_link(struct net_device *dev,
5818 struct net_device *upper_dev)
5819 {
5820 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5821 }
5822 EXPORT_SYMBOL(netdev_upper_dev_link);
5823
5824 /**
5825 * netdev_master_upper_dev_link - Add a master link to the upper device
5826 * @dev: device
5827 * @upper_dev: new upper device
5828 * @upper_priv: upper device private
5829 * @upper_info: upper info to be passed down via notifier
5830 *
5831 * Adds a link to device which is upper to this one. In this case, only
5832 * one master upper device can be linked, although other non-master devices
5833 * might be linked as well. The caller must hold the RTNL lock.
5834 * On a failure a negative errno code is returned. On success the reference
5835 * counts are adjusted and the function returns zero.
5836 */
5837 int netdev_master_upper_dev_link(struct net_device *dev,
5838 struct net_device *upper_dev,
5839 void *upper_priv, void *upper_info)
5840 {
5841 return __netdev_upper_dev_link(dev, upper_dev, true,
5842 upper_priv, upper_info);
5843 }
5844 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5845
5846 /**
5847 * netdev_upper_dev_unlink - Removes a link to upper device
5848 * @dev: device
5849 * @upper_dev: new upper device
5850 *
5851 * Removes a link to device which is upper to this one. The caller must hold
5852 * the RTNL lock.
5853 */
5854 void netdev_upper_dev_unlink(struct net_device *dev,
5855 struct net_device *upper_dev)
5856 {
5857 struct netdev_notifier_changeupper_info changeupper_info;
5858 struct netdev_adjacent *i, *j;
5859 ASSERT_RTNL();
5860
5861 changeupper_info.upper_dev = upper_dev;
5862 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5863 changeupper_info.linking = false;
5864
5865 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5866 &changeupper_info.info);
5867
5868 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5869
5870 /* Here is the tricky part. We must remove all dev's lower
5871 * devices from all upper_dev's upper devices and vice
5872 * versa, to maintain the graph relationship.
5873 */
5874 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5875 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5876 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5877
5878 /* remove also the devices itself from lower/upper device
5879 * list
5880 */
5881 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5882 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5883
5884 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5885 __netdev_adjacent_dev_unlink(dev, i->dev);
5886
5887 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5888 &changeupper_info.info);
5889 }
5890 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5891
5892 /**
5893 * netdev_bonding_info_change - Dispatch event about slave change
5894 * @dev: device
5895 * @bonding_info: info to dispatch
5896 *
5897 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5898 * The caller must hold the RTNL lock.
5899 */
5900 void netdev_bonding_info_change(struct net_device *dev,
5901 struct netdev_bonding_info *bonding_info)
5902 {
5903 struct netdev_notifier_bonding_info info;
5904
5905 memcpy(&info.bonding_info, bonding_info,
5906 sizeof(struct netdev_bonding_info));
5907 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5908 &info.info);
5909 }
5910 EXPORT_SYMBOL(netdev_bonding_info_change);
5911
5912 static void netdev_adjacent_add_links(struct net_device *dev)
5913 {
5914 struct netdev_adjacent *iter;
5915
5916 struct net *net = dev_net(dev);
5917
5918 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5919 if (!net_eq(net,dev_net(iter->dev)))
5920 continue;
5921 netdev_adjacent_sysfs_add(iter->dev, dev,
5922 &iter->dev->adj_list.lower);
5923 netdev_adjacent_sysfs_add(dev, iter->dev,
5924 &dev->adj_list.upper);
5925 }
5926
5927 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5928 if (!net_eq(net,dev_net(iter->dev)))
5929 continue;
5930 netdev_adjacent_sysfs_add(iter->dev, dev,
5931 &iter->dev->adj_list.upper);
5932 netdev_adjacent_sysfs_add(dev, iter->dev,
5933 &dev->adj_list.lower);
5934 }
5935 }
5936
5937 static void netdev_adjacent_del_links(struct net_device *dev)
5938 {
5939 struct netdev_adjacent *iter;
5940
5941 struct net *net = dev_net(dev);
5942
5943 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5944 if (!net_eq(net,dev_net(iter->dev)))
5945 continue;
5946 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5947 &iter->dev->adj_list.lower);
5948 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5949 &dev->adj_list.upper);
5950 }
5951
5952 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5953 if (!net_eq(net,dev_net(iter->dev)))
5954 continue;
5955 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5956 &iter->dev->adj_list.upper);
5957 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5958 &dev->adj_list.lower);
5959 }
5960 }
5961
5962 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5963 {
5964 struct netdev_adjacent *iter;
5965
5966 struct net *net = dev_net(dev);
5967
5968 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5969 if (!net_eq(net,dev_net(iter->dev)))
5970 continue;
5971 netdev_adjacent_sysfs_del(iter->dev, oldname,
5972 &iter->dev->adj_list.lower);
5973 netdev_adjacent_sysfs_add(iter->dev, dev,
5974 &iter->dev->adj_list.lower);
5975 }
5976
5977 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5978 if (!net_eq(net,dev_net(iter->dev)))
5979 continue;
5980 netdev_adjacent_sysfs_del(iter->dev, oldname,
5981 &iter->dev->adj_list.upper);
5982 netdev_adjacent_sysfs_add(iter->dev, dev,
5983 &iter->dev->adj_list.upper);
5984 }
5985 }
5986
5987 void *netdev_lower_dev_get_private(struct net_device *dev,
5988 struct net_device *lower_dev)
5989 {
5990 struct netdev_adjacent *lower;
5991
5992 if (!lower_dev)
5993 return NULL;
5994 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5995 if (!lower)
5996 return NULL;
5997
5998 return lower->private;
5999 }
6000 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6001
6002
6003 int dev_get_nest_level(struct net_device *dev,
6004 bool (*type_check)(const struct net_device *dev))
6005 {
6006 struct net_device *lower = NULL;
6007 struct list_head *iter;
6008 int max_nest = -1;
6009 int nest;
6010
6011 ASSERT_RTNL();
6012
6013 netdev_for_each_lower_dev(dev, lower, iter) {
6014 nest = dev_get_nest_level(lower, type_check);
6015 if (max_nest < nest)
6016 max_nest = nest;
6017 }
6018
6019 if (type_check(dev))
6020 max_nest++;
6021
6022 return max_nest;
6023 }
6024 EXPORT_SYMBOL(dev_get_nest_level);
6025
6026 /**
6027 * netdev_lower_change - Dispatch event about lower device state change
6028 * @lower_dev: device
6029 * @lower_state_info: state to dispatch
6030 *
6031 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6032 * The caller must hold the RTNL lock.
6033 */
6034 void netdev_lower_state_changed(struct net_device *lower_dev,
6035 void *lower_state_info)
6036 {
6037 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6038
6039 ASSERT_RTNL();
6040 changelowerstate_info.lower_state_info = lower_state_info;
6041 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6042 &changelowerstate_info.info);
6043 }
6044 EXPORT_SYMBOL(netdev_lower_state_changed);
6045
6046 static void dev_change_rx_flags(struct net_device *dev, int flags)
6047 {
6048 const struct net_device_ops *ops = dev->netdev_ops;
6049
6050 if (ops->ndo_change_rx_flags)
6051 ops->ndo_change_rx_flags(dev, flags);
6052 }
6053
6054 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6055 {
6056 unsigned int old_flags = dev->flags;
6057 kuid_t uid;
6058 kgid_t gid;
6059
6060 ASSERT_RTNL();
6061
6062 dev->flags |= IFF_PROMISC;
6063 dev->promiscuity += inc;
6064 if (dev->promiscuity == 0) {
6065 /*
6066 * Avoid overflow.
6067 * If inc causes overflow, untouch promisc and return error.
6068 */
6069 if (inc < 0)
6070 dev->flags &= ~IFF_PROMISC;
6071 else {
6072 dev->promiscuity -= inc;
6073 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6074 dev->name);
6075 return -EOVERFLOW;
6076 }
6077 }
6078 if (dev->flags != old_flags) {
6079 pr_info("device %s %s promiscuous mode\n",
6080 dev->name,
6081 dev->flags & IFF_PROMISC ? "entered" : "left");
6082 if (audit_enabled) {
6083 current_uid_gid(&uid, &gid);
6084 audit_log(current->audit_context, GFP_ATOMIC,
6085 AUDIT_ANOM_PROMISCUOUS,
6086 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6087 dev->name, (dev->flags & IFF_PROMISC),
6088 (old_flags & IFF_PROMISC),
6089 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6090 from_kuid(&init_user_ns, uid),
6091 from_kgid(&init_user_ns, gid),
6092 audit_get_sessionid(current));
6093 }
6094
6095 dev_change_rx_flags(dev, IFF_PROMISC);
6096 }
6097 if (notify)
6098 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6099 return 0;
6100 }
6101
6102 /**
6103 * dev_set_promiscuity - update promiscuity count on a device
6104 * @dev: device
6105 * @inc: modifier
6106 *
6107 * Add or remove promiscuity from a device. While the count in the device
6108 * remains above zero the interface remains promiscuous. Once it hits zero
6109 * the device reverts back to normal filtering operation. A negative inc
6110 * value is used to drop promiscuity on the device.
6111 * Return 0 if successful or a negative errno code on error.
6112 */
6113 int dev_set_promiscuity(struct net_device *dev, int inc)
6114 {
6115 unsigned int old_flags = dev->flags;
6116 int err;
6117
6118 err = __dev_set_promiscuity(dev, inc, true);
6119 if (err < 0)
6120 return err;
6121 if (dev->flags != old_flags)
6122 dev_set_rx_mode(dev);
6123 return err;
6124 }
6125 EXPORT_SYMBOL(dev_set_promiscuity);
6126
6127 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6128 {
6129 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6130
6131 ASSERT_RTNL();
6132
6133 dev->flags |= IFF_ALLMULTI;
6134 dev->allmulti += inc;
6135 if (dev->allmulti == 0) {
6136 /*
6137 * Avoid overflow.
6138 * If inc causes overflow, untouch allmulti and return error.
6139 */
6140 if (inc < 0)
6141 dev->flags &= ~IFF_ALLMULTI;
6142 else {
6143 dev->allmulti -= inc;
6144 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6145 dev->name);
6146 return -EOVERFLOW;
6147 }
6148 }
6149 if (dev->flags ^ old_flags) {
6150 dev_change_rx_flags(dev, IFF_ALLMULTI);
6151 dev_set_rx_mode(dev);
6152 if (notify)
6153 __dev_notify_flags(dev, old_flags,
6154 dev->gflags ^ old_gflags);
6155 }
6156 return 0;
6157 }
6158
6159 /**
6160 * dev_set_allmulti - update allmulti count on a device
6161 * @dev: device
6162 * @inc: modifier
6163 *
6164 * Add or remove reception of all multicast frames to a device. While the
6165 * count in the device remains above zero the interface remains listening
6166 * to all interfaces. Once it hits zero the device reverts back to normal
6167 * filtering operation. A negative @inc value is used to drop the counter
6168 * when releasing a resource needing all multicasts.
6169 * Return 0 if successful or a negative errno code on error.
6170 */
6171
6172 int dev_set_allmulti(struct net_device *dev, int inc)
6173 {
6174 return __dev_set_allmulti(dev, inc, true);
6175 }
6176 EXPORT_SYMBOL(dev_set_allmulti);
6177
6178 /*
6179 * Upload unicast and multicast address lists to device and
6180 * configure RX filtering. When the device doesn't support unicast
6181 * filtering it is put in promiscuous mode while unicast addresses
6182 * are present.
6183 */
6184 void __dev_set_rx_mode(struct net_device *dev)
6185 {
6186 const struct net_device_ops *ops = dev->netdev_ops;
6187
6188 /* dev_open will call this function so the list will stay sane. */
6189 if (!(dev->flags&IFF_UP))
6190 return;
6191
6192 if (!netif_device_present(dev))
6193 return;
6194
6195 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6196 /* Unicast addresses changes may only happen under the rtnl,
6197 * therefore calling __dev_set_promiscuity here is safe.
6198 */
6199 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6200 __dev_set_promiscuity(dev, 1, false);
6201 dev->uc_promisc = true;
6202 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6203 __dev_set_promiscuity(dev, -1, false);
6204 dev->uc_promisc = false;
6205 }
6206 }
6207
6208 if (ops->ndo_set_rx_mode)
6209 ops->ndo_set_rx_mode(dev);
6210 }
6211
6212 void dev_set_rx_mode(struct net_device *dev)
6213 {
6214 netif_addr_lock_bh(dev);
6215 __dev_set_rx_mode(dev);
6216 netif_addr_unlock_bh(dev);
6217 }
6218
6219 /**
6220 * dev_get_flags - get flags reported to userspace
6221 * @dev: device
6222 *
6223 * Get the combination of flag bits exported through APIs to userspace.
6224 */
6225 unsigned int dev_get_flags(const struct net_device *dev)
6226 {
6227 unsigned int flags;
6228
6229 flags = (dev->flags & ~(IFF_PROMISC |
6230 IFF_ALLMULTI |
6231 IFF_RUNNING |
6232 IFF_LOWER_UP |
6233 IFF_DORMANT)) |
6234 (dev->gflags & (IFF_PROMISC |
6235 IFF_ALLMULTI));
6236
6237 if (netif_running(dev)) {
6238 if (netif_oper_up(dev))
6239 flags |= IFF_RUNNING;
6240 if (netif_carrier_ok(dev))
6241 flags |= IFF_LOWER_UP;
6242 if (netif_dormant(dev))
6243 flags |= IFF_DORMANT;
6244 }
6245
6246 return flags;
6247 }
6248 EXPORT_SYMBOL(dev_get_flags);
6249
6250 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6251 {
6252 unsigned int old_flags = dev->flags;
6253 int ret;
6254
6255 ASSERT_RTNL();
6256
6257 /*
6258 * Set the flags on our device.
6259 */
6260
6261 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6262 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6263 IFF_AUTOMEDIA)) |
6264 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6265 IFF_ALLMULTI));
6266
6267 /*
6268 * Load in the correct multicast list now the flags have changed.
6269 */
6270
6271 if ((old_flags ^ flags) & IFF_MULTICAST)
6272 dev_change_rx_flags(dev, IFF_MULTICAST);
6273
6274 dev_set_rx_mode(dev);
6275
6276 /*
6277 * Have we downed the interface. We handle IFF_UP ourselves
6278 * according to user attempts to set it, rather than blindly
6279 * setting it.
6280 */
6281
6282 ret = 0;
6283 if ((old_flags ^ flags) & IFF_UP)
6284 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6285
6286 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6287 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6288 unsigned int old_flags = dev->flags;
6289
6290 dev->gflags ^= IFF_PROMISC;
6291
6292 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6293 if (dev->flags != old_flags)
6294 dev_set_rx_mode(dev);
6295 }
6296
6297 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6298 is important. Some (broken) drivers set IFF_PROMISC, when
6299 IFF_ALLMULTI is requested not asking us and not reporting.
6300 */
6301 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6302 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6303
6304 dev->gflags ^= IFF_ALLMULTI;
6305 __dev_set_allmulti(dev, inc, false);
6306 }
6307
6308 return ret;
6309 }
6310
6311 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6312 unsigned int gchanges)
6313 {
6314 unsigned int changes = dev->flags ^ old_flags;
6315
6316 if (gchanges)
6317 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6318
6319 if (changes & IFF_UP) {
6320 if (dev->flags & IFF_UP)
6321 call_netdevice_notifiers(NETDEV_UP, dev);
6322 else
6323 call_netdevice_notifiers(NETDEV_DOWN, dev);
6324 }
6325
6326 if (dev->flags & IFF_UP &&
6327 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6328 struct netdev_notifier_change_info change_info;
6329
6330 change_info.flags_changed = changes;
6331 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6332 &change_info.info);
6333 }
6334 }
6335
6336 /**
6337 * dev_change_flags - change device settings
6338 * @dev: device
6339 * @flags: device state flags
6340 *
6341 * Change settings on device based state flags. The flags are
6342 * in the userspace exported format.
6343 */
6344 int dev_change_flags(struct net_device *dev, unsigned int flags)
6345 {
6346 int ret;
6347 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6348
6349 ret = __dev_change_flags(dev, flags);
6350 if (ret < 0)
6351 return ret;
6352
6353 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6354 __dev_notify_flags(dev, old_flags, changes);
6355 return ret;
6356 }
6357 EXPORT_SYMBOL(dev_change_flags);
6358
6359 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6360 {
6361 const struct net_device_ops *ops = dev->netdev_ops;
6362
6363 if (ops->ndo_change_mtu)
6364 return ops->ndo_change_mtu(dev, new_mtu);
6365
6366 dev->mtu = new_mtu;
6367 return 0;
6368 }
6369
6370 /**
6371 * dev_set_mtu - Change maximum transfer unit
6372 * @dev: device
6373 * @new_mtu: new transfer unit
6374 *
6375 * Change the maximum transfer size of the network device.
6376 */
6377 int dev_set_mtu(struct net_device *dev, int new_mtu)
6378 {
6379 int err, orig_mtu;
6380
6381 if (new_mtu == dev->mtu)
6382 return 0;
6383
6384 /* MTU must be positive. */
6385 if (new_mtu < 0)
6386 return -EINVAL;
6387
6388 if (!netif_device_present(dev))
6389 return -ENODEV;
6390
6391 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6392 err = notifier_to_errno(err);
6393 if (err)
6394 return err;
6395
6396 orig_mtu = dev->mtu;
6397 err = __dev_set_mtu(dev, new_mtu);
6398
6399 if (!err) {
6400 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6401 err = notifier_to_errno(err);
6402 if (err) {
6403 /* setting mtu back and notifying everyone again,
6404 * so that they have a chance to revert changes.
6405 */
6406 __dev_set_mtu(dev, orig_mtu);
6407 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6408 }
6409 }
6410 return err;
6411 }
6412 EXPORT_SYMBOL(dev_set_mtu);
6413
6414 /**
6415 * dev_set_group - Change group this device belongs to
6416 * @dev: device
6417 * @new_group: group this device should belong to
6418 */
6419 void dev_set_group(struct net_device *dev, int new_group)
6420 {
6421 dev->group = new_group;
6422 }
6423 EXPORT_SYMBOL(dev_set_group);
6424
6425 /**
6426 * dev_set_mac_address - Change Media Access Control Address
6427 * @dev: device
6428 * @sa: new address
6429 *
6430 * Change the hardware (MAC) address of the device
6431 */
6432 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6433 {
6434 const struct net_device_ops *ops = dev->netdev_ops;
6435 int err;
6436
6437 if (!ops->ndo_set_mac_address)
6438 return -EOPNOTSUPP;
6439 if (sa->sa_family != dev->type)
6440 return -EINVAL;
6441 if (!netif_device_present(dev))
6442 return -ENODEV;
6443 err = ops->ndo_set_mac_address(dev, sa);
6444 if (err)
6445 return err;
6446 dev->addr_assign_type = NET_ADDR_SET;
6447 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6448 add_device_randomness(dev->dev_addr, dev->addr_len);
6449 return 0;
6450 }
6451 EXPORT_SYMBOL(dev_set_mac_address);
6452
6453 /**
6454 * dev_change_carrier - Change device carrier
6455 * @dev: device
6456 * @new_carrier: new value
6457 *
6458 * Change device carrier
6459 */
6460 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6461 {
6462 const struct net_device_ops *ops = dev->netdev_ops;
6463
6464 if (!ops->ndo_change_carrier)
6465 return -EOPNOTSUPP;
6466 if (!netif_device_present(dev))
6467 return -ENODEV;
6468 return ops->ndo_change_carrier(dev, new_carrier);
6469 }
6470 EXPORT_SYMBOL(dev_change_carrier);
6471
6472 /**
6473 * dev_get_phys_port_id - Get device physical port ID
6474 * @dev: device
6475 * @ppid: port ID
6476 *
6477 * Get device physical port ID
6478 */
6479 int dev_get_phys_port_id(struct net_device *dev,
6480 struct netdev_phys_item_id *ppid)
6481 {
6482 const struct net_device_ops *ops = dev->netdev_ops;
6483
6484 if (!ops->ndo_get_phys_port_id)
6485 return -EOPNOTSUPP;
6486 return ops->ndo_get_phys_port_id(dev, ppid);
6487 }
6488 EXPORT_SYMBOL(dev_get_phys_port_id);
6489
6490 /**
6491 * dev_get_phys_port_name - Get device physical port name
6492 * @dev: device
6493 * @name: port name
6494 * @len: limit of bytes to copy to name
6495 *
6496 * Get device physical port name
6497 */
6498 int dev_get_phys_port_name(struct net_device *dev,
6499 char *name, size_t len)
6500 {
6501 const struct net_device_ops *ops = dev->netdev_ops;
6502
6503 if (!ops->ndo_get_phys_port_name)
6504 return -EOPNOTSUPP;
6505 return ops->ndo_get_phys_port_name(dev, name, len);
6506 }
6507 EXPORT_SYMBOL(dev_get_phys_port_name);
6508
6509 /**
6510 * dev_change_proto_down - update protocol port state information
6511 * @dev: device
6512 * @proto_down: new value
6513 *
6514 * This info can be used by switch drivers to set the phys state of the
6515 * port.
6516 */
6517 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6518 {
6519 const struct net_device_ops *ops = dev->netdev_ops;
6520
6521 if (!ops->ndo_change_proto_down)
6522 return -EOPNOTSUPP;
6523 if (!netif_device_present(dev))
6524 return -ENODEV;
6525 return ops->ndo_change_proto_down(dev, proto_down);
6526 }
6527 EXPORT_SYMBOL(dev_change_proto_down);
6528
6529 /**
6530 * dev_new_index - allocate an ifindex
6531 * @net: the applicable net namespace
6532 *
6533 * Returns a suitable unique value for a new device interface
6534 * number. The caller must hold the rtnl semaphore or the
6535 * dev_base_lock to be sure it remains unique.
6536 */
6537 static int dev_new_index(struct net *net)
6538 {
6539 int ifindex = net->ifindex;
6540 for (;;) {
6541 if (++ifindex <= 0)
6542 ifindex = 1;
6543 if (!__dev_get_by_index(net, ifindex))
6544 return net->ifindex = ifindex;
6545 }
6546 }
6547
6548 /* Delayed registration/unregisteration */
6549 static LIST_HEAD(net_todo_list);
6550 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6551
6552 static void net_set_todo(struct net_device *dev)
6553 {
6554 list_add_tail(&dev->todo_list, &net_todo_list);
6555 dev_net(dev)->dev_unreg_count++;
6556 }
6557
6558 static void rollback_registered_many(struct list_head *head)
6559 {
6560 struct net_device *dev, *tmp;
6561 LIST_HEAD(close_head);
6562
6563 BUG_ON(dev_boot_phase);
6564 ASSERT_RTNL();
6565
6566 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6567 /* Some devices call without registering
6568 * for initialization unwind. Remove those
6569 * devices and proceed with the remaining.
6570 */
6571 if (dev->reg_state == NETREG_UNINITIALIZED) {
6572 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6573 dev->name, dev);
6574
6575 WARN_ON(1);
6576 list_del(&dev->unreg_list);
6577 continue;
6578 }
6579 dev->dismantle = true;
6580 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6581 }
6582
6583 /* If device is running, close it first. */
6584 list_for_each_entry(dev, head, unreg_list)
6585 list_add_tail(&dev->close_list, &close_head);
6586 dev_close_many(&close_head, true);
6587
6588 list_for_each_entry(dev, head, unreg_list) {
6589 /* And unlink it from device chain. */
6590 unlist_netdevice(dev);
6591
6592 dev->reg_state = NETREG_UNREGISTERING;
6593 on_each_cpu(flush_backlog, dev, 1);
6594 }
6595
6596 synchronize_net();
6597
6598 list_for_each_entry(dev, head, unreg_list) {
6599 struct sk_buff *skb = NULL;
6600
6601 /* Shutdown queueing discipline. */
6602 dev_shutdown(dev);
6603
6604
6605 /* Notify protocols, that we are about to destroy
6606 this device. They should clean all the things.
6607 */
6608 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6609
6610 if (!dev->rtnl_link_ops ||
6611 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6612 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6613 GFP_KERNEL);
6614
6615 /*
6616 * Flush the unicast and multicast chains
6617 */
6618 dev_uc_flush(dev);
6619 dev_mc_flush(dev);
6620
6621 if (dev->netdev_ops->ndo_uninit)
6622 dev->netdev_ops->ndo_uninit(dev);
6623
6624 if (skb)
6625 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6626
6627 /* Notifier chain MUST detach us all upper devices. */
6628 WARN_ON(netdev_has_any_upper_dev(dev));
6629
6630 /* Remove entries from kobject tree */
6631 netdev_unregister_kobject(dev);
6632 #ifdef CONFIG_XPS
6633 /* Remove XPS queueing entries */
6634 netif_reset_xps_queues_gt(dev, 0);
6635 #endif
6636 }
6637
6638 synchronize_net();
6639
6640 list_for_each_entry(dev, head, unreg_list)
6641 dev_put(dev);
6642 }
6643
6644 static void rollback_registered(struct net_device *dev)
6645 {
6646 LIST_HEAD(single);
6647
6648 list_add(&dev->unreg_list, &single);
6649 rollback_registered_many(&single);
6650 list_del(&single);
6651 }
6652
6653 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6654 struct net_device *upper, netdev_features_t features)
6655 {
6656 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6657 netdev_features_t feature;
6658 int feature_bit;
6659
6660 for_each_netdev_feature(&upper_disables, feature_bit) {
6661 feature = __NETIF_F_BIT(feature_bit);
6662 if (!(upper->wanted_features & feature)
6663 && (features & feature)) {
6664 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6665 &feature, upper->name);
6666 features &= ~feature;
6667 }
6668 }
6669
6670 return features;
6671 }
6672
6673 static void netdev_sync_lower_features(struct net_device *upper,
6674 struct net_device *lower, netdev_features_t features)
6675 {
6676 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6677 netdev_features_t feature;
6678 int feature_bit;
6679
6680 for_each_netdev_feature(&upper_disables, feature_bit) {
6681 feature = __NETIF_F_BIT(feature_bit);
6682 if (!(features & feature) && (lower->features & feature)) {
6683 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6684 &feature, lower->name);
6685 lower->wanted_features &= ~feature;
6686 netdev_update_features(lower);
6687
6688 if (unlikely(lower->features & feature))
6689 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6690 &feature, lower->name);
6691 }
6692 }
6693 }
6694
6695 static netdev_features_t netdev_fix_features(struct net_device *dev,
6696 netdev_features_t features)
6697 {
6698 /* Fix illegal checksum combinations */
6699 if ((features & NETIF_F_HW_CSUM) &&
6700 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6701 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6702 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6703 }
6704
6705 /* TSO requires that SG is present as well. */
6706 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6707 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6708 features &= ~NETIF_F_ALL_TSO;
6709 }
6710
6711 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6712 !(features & NETIF_F_IP_CSUM)) {
6713 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6714 features &= ~NETIF_F_TSO;
6715 features &= ~NETIF_F_TSO_ECN;
6716 }
6717
6718 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6719 !(features & NETIF_F_IPV6_CSUM)) {
6720 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6721 features &= ~NETIF_F_TSO6;
6722 }
6723
6724 /* TSO ECN requires that TSO is present as well. */
6725 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6726 features &= ~NETIF_F_TSO_ECN;
6727
6728 /* Software GSO depends on SG. */
6729 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6730 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6731 features &= ~NETIF_F_GSO;
6732 }
6733
6734 /* UFO needs SG and checksumming */
6735 if (features & NETIF_F_UFO) {
6736 /* maybe split UFO into V4 and V6? */
6737 if (!(features & NETIF_F_HW_CSUM) &&
6738 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6739 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6740 netdev_dbg(dev,
6741 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6742 features &= ~NETIF_F_UFO;
6743 }
6744
6745 if (!(features & NETIF_F_SG)) {
6746 netdev_dbg(dev,
6747 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6748 features &= ~NETIF_F_UFO;
6749 }
6750 }
6751
6752 /* GSO partial features require GSO partial be set */
6753 if ((features & dev->gso_partial_features) &&
6754 !(features & NETIF_F_GSO_PARTIAL)) {
6755 netdev_dbg(dev,
6756 "Dropping partially supported GSO features since no GSO partial.\n");
6757 features &= ~dev->gso_partial_features;
6758 }
6759
6760 #ifdef CONFIG_NET_RX_BUSY_POLL
6761 if (dev->netdev_ops->ndo_busy_poll)
6762 features |= NETIF_F_BUSY_POLL;
6763 else
6764 #endif
6765 features &= ~NETIF_F_BUSY_POLL;
6766
6767 return features;
6768 }
6769
6770 int __netdev_update_features(struct net_device *dev)
6771 {
6772 struct net_device *upper, *lower;
6773 netdev_features_t features;
6774 struct list_head *iter;
6775 int err = -1;
6776
6777 ASSERT_RTNL();
6778
6779 features = netdev_get_wanted_features(dev);
6780
6781 if (dev->netdev_ops->ndo_fix_features)
6782 features = dev->netdev_ops->ndo_fix_features(dev, features);
6783
6784 /* driver might be less strict about feature dependencies */
6785 features = netdev_fix_features(dev, features);
6786
6787 /* some features can't be enabled if they're off an an upper device */
6788 netdev_for_each_upper_dev_rcu(dev, upper, iter)
6789 features = netdev_sync_upper_features(dev, upper, features);
6790
6791 if (dev->features == features)
6792 goto sync_lower;
6793
6794 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6795 &dev->features, &features);
6796
6797 if (dev->netdev_ops->ndo_set_features)
6798 err = dev->netdev_ops->ndo_set_features(dev, features);
6799 else
6800 err = 0;
6801
6802 if (unlikely(err < 0)) {
6803 netdev_err(dev,
6804 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6805 err, &features, &dev->features);
6806 /* return non-0 since some features might have changed and
6807 * it's better to fire a spurious notification than miss it
6808 */
6809 return -1;
6810 }
6811
6812 sync_lower:
6813 /* some features must be disabled on lower devices when disabled
6814 * on an upper device (think: bonding master or bridge)
6815 */
6816 netdev_for_each_lower_dev(dev, lower, iter)
6817 netdev_sync_lower_features(dev, lower, features);
6818
6819 if (!err)
6820 dev->features = features;
6821
6822 return err < 0 ? 0 : 1;
6823 }
6824
6825 /**
6826 * netdev_update_features - recalculate device features
6827 * @dev: the device to check
6828 *
6829 * Recalculate dev->features set and send notifications if it
6830 * has changed. Should be called after driver or hardware dependent
6831 * conditions might have changed that influence the features.
6832 */
6833 void netdev_update_features(struct net_device *dev)
6834 {
6835 if (__netdev_update_features(dev))
6836 netdev_features_change(dev);
6837 }
6838 EXPORT_SYMBOL(netdev_update_features);
6839
6840 /**
6841 * netdev_change_features - recalculate device features
6842 * @dev: the device to check
6843 *
6844 * Recalculate dev->features set and send notifications even
6845 * if they have not changed. Should be called instead of
6846 * netdev_update_features() if also dev->vlan_features might
6847 * have changed to allow the changes to be propagated to stacked
6848 * VLAN devices.
6849 */
6850 void netdev_change_features(struct net_device *dev)
6851 {
6852 __netdev_update_features(dev);
6853 netdev_features_change(dev);
6854 }
6855 EXPORT_SYMBOL(netdev_change_features);
6856
6857 /**
6858 * netif_stacked_transfer_operstate - transfer operstate
6859 * @rootdev: the root or lower level device to transfer state from
6860 * @dev: the device to transfer operstate to
6861 *
6862 * Transfer operational state from root to device. This is normally
6863 * called when a stacking relationship exists between the root
6864 * device and the device(a leaf device).
6865 */
6866 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6867 struct net_device *dev)
6868 {
6869 if (rootdev->operstate == IF_OPER_DORMANT)
6870 netif_dormant_on(dev);
6871 else
6872 netif_dormant_off(dev);
6873
6874 if (netif_carrier_ok(rootdev)) {
6875 if (!netif_carrier_ok(dev))
6876 netif_carrier_on(dev);
6877 } else {
6878 if (netif_carrier_ok(dev))
6879 netif_carrier_off(dev);
6880 }
6881 }
6882 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6883
6884 #ifdef CONFIG_SYSFS
6885 static int netif_alloc_rx_queues(struct net_device *dev)
6886 {
6887 unsigned int i, count = dev->num_rx_queues;
6888 struct netdev_rx_queue *rx;
6889 size_t sz = count * sizeof(*rx);
6890
6891 BUG_ON(count < 1);
6892
6893 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6894 if (!rx) {
6895 rx = vzalloc(sz);
6896 if (!rx)
6897 return -ENOMEM;
6898 }
6899 dev->_rx = rx;
6900
6901 for (i = 0; i < count; i++)
6902 rx[i].dev = dev;
6903 return 0;
6904 }
6905 #endif
6906
6907 static void netdev_init_one_queue(struct net_device *dev,
6908 struct netdev_queue *queue, void *_unused)
6909 {
6910 /* Initialize queue lock */
6911 spin_lock_init(&queue->_xmit_lock);
6912 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6913 queue->xmit_lock_owner = -1;
6914 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6915 queue->dev = dev;
6916 #ifdef CONFIG_BQL
6917 dql_init(&queue->dql, HZ);
6918 #endif
6919 }
6920
6921 static void netif_free_tx_queues(struct net_device *dev)
6922 {
6923 kvfree(dev->_tx);
6924 }
6925
6926 static int netif_alloc_netdev_queues(struct net_device *dev)
6927 {
6928 unsigned int count = dev->num_tx_queues;
6929 struct netdev_queue *tx;
6930 size_t sz = count * sizeof(*tx);
6931
6932 if (count < 1 || count > 0xffff)
6933 return -EINVAL;
6934
6935 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6936 if (!tx) {
6937 tx = vzalloc(sz);
6938 if (!tx)
6939 return -ENOMEM;
6940 }
6941 dev->_tx = tx;
6942
6943 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6944 spin_lock_init(&dev->tx_global_lock);
6945
6946 return 0;
6947 }
6948
6949 void netif_tx_stop_all_queues(struct net_device *dev)
6950 {
6951 unsigned int i;
6952
6953 for (i = 0; i < dev->num_tx_queues; i++) {
6954 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6955 netif_tx_stop_queue(txq);
6956 }
6957 }
6958 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6959
6960 /**
6961 * register_netdevice - register a network device
6962 * @dev: device to register
6963 *
6964 * Take a completed network device structure and add it to the kernel
6965 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6966 * chain. 0 is returned on success. A negative errno code is returned
6967 * on a failure to set up the device, or if the name is a duplicate.
6968 *
6969 * Callers must hold the rtnl semaphore. You may want
6970 * register_netdev() instead of this.
6971 *
6972 * BUGS:
6973 * The locking appears insufficient to guarantee two parallel registers
6974 * will not get the same name.
6975 */
6976
6977 int register_netdevice(struct net_device *dev)
6978 {
6979 int ret;
6980 struct net *net = dev_net(dev);
6981
6982 BUG_ON(dev_boot_phase);
6983 ASSERT_RTNL();
6984
6985 might_sleep();
6986
6987 /* When net_device's are persistent, this will be fatal. */
6988 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6989 BUG_ON(!net);
6990
6991 spin_lock_init(&dev->addr_list_lock);
6992 netdev_set_addr_lockdep_class(dev);
6993
6994 ret = dev_get_valid_name(net, dev, dev->name);
6995 if (ret < 0)
6996 goto out;
6997
6998 /* Init, if this function is available */
6999 if (dev->netdev_ops->ndo_init) {
7000 ret = dev->netdev_ops->ndo_init(dev);
7001 if (ret) {
7002 if (ret > 0)
7003 ret = -EIO;
7004 goto out;
7005 }
7006 }
7007
7008 if (((dev->hw_features | dev->features) &
7009 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7010 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7011 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7012 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7013 ret = -EINVAL;
7014 goto err_uninit;
7015 }
7016
7017 ret = -EBUSY;
7018 if (!dev->ifindex)
7019 dev->ifindex = dev_new_index(net);
7020 else if (__dev_get_by_index(net, dev->ifindex))
7021 goto err_uninit;
7022
7023 /* Transfer changeable features to wanted_features and enable
7024 * software offloads (GSO and GRO).
7025 */
7026 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7027 dev->features |= NETIF_F_SOFT_FEATURES;
7028 dev->wanted_features = dev->features & dev->hw_features;
7029
7030 if (!(dev->flags & IFF_LOOPBACK))
7031 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7032
7033 /* If IPv4 TCP segmentation offload is supported we should also
7034 * allow the device to enable segmenting the frame with the option
7035 * of ignoring a static IP ID value. This doesn't enable the
7036 * feature itself but allows the user to enable it later.
7037 */
7038 if (dev->hw_features & NETIF_F_TSO)
7039 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7040 if (dev->vlan_features & NETIF_F_TSO)
7041 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7042 if (dev->mpls_features & NETIF_F_TSO)
7043 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7044 if (dev->hw_enc_features & NETIF_F_TSO)
7045 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7046
7047 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7048 */
7049 dev->vlan_features |= NETIF_F_HIGHDMA;
7050
7051 /* Make NETIF_F_SG inheritable to tunnel devices.
7052 */
7053 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7054
7055 /* Make NETIF_F_SG inheritable to MPLS.
7056 */
7057 dev->mpls_features |= NETIF_F_SG;
7058
7059 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7060 ret = notifier_to_errno(ret);
7061 if (ret)
7062 goto err_uninit;
7063
7064 ret = netdev_register_kobject(dev);
7065 if (ret)
7066 goto err_uninit;
7067 dev->reg_state = NETREG_REGISTERED;
7068
7069 __netdev_update_features(dev);
7070
7071 /*
7072 * Default initial state at registry is that the
7073 * device is present.
7074 */
7075
7076 set_bit(__LINK_STATE_PRESENT, &dev->state);
7077
7078 linkwatch_init_dev(dev);
7079
7080 dev_init_scheduler(dev);
7081 dev_hold(dev);
7082 list_netdevice(dev);
7083 add_device_randomness(dev->dev_addr, dev->addr_len);
7084
7085 /* If the device has permanent device address, driver should
7086 * set dev_addr and also addr_assign_type should be set to
7087 * NET_ADDR_PERM (default value).
7088 */
7089 if (dev->addr_assign_type == NET_ADDR_PERM)
7090 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7091
7092 /* Notify protocols, that a new device appeared. */
7093 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7094 ret = notifier_to_errno(ret);
7095 if (ret) {
7096 rollback_registered(dev);
7097 dev->reg_state = NETREG_UNREGISTERED;
7098 }
7099 /*
7100 * Prevent userspace races by waiting until the network
7101 * device is fully setup before sending notifications.
7102 */
7103 if (!dev->rtnl_link_ops ||
7104 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7105 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7106
7107 out:
7108 return ret;
7109
7110 err_uninit:
7111 if (dev->netdev_ops->ndo_uninit)
7112 dev->netdev_ops->ndo_uninit(dev);
7113 goto out;
7114 }
7115 EXPORT_SYMBOL(register_netdevice);
7116
7117 /**
7118 * init_dummy_netdev - init a dummy network device for NAPI
7119 * @dev: device to init
7120 *
7121 * This takes a network device structure and initialize the minimum
7122 * amount of fields so it can be used to schedule NAPI polls without
7123 * registering a full blown interface. This is to be used by drivers
7124 * that need to tie several hardware interfaces to a single NAPI
7125 * poll scheduler due to HW limitations.
7126 */
7127 int init_dummy_netdev(struct net_device *dev)
7128 {
7129 /* Clear everything. Note we don't initialize spinlocks
7130 * are they aren't supposed to be taken by any of the
7131 * NAPI code and this dummy netdev is supposed to be
7132 * only ever used for NAPI polls
7133 */
7134 memset(dev, 0, sizeof(struct net_device));
7135
7136 /* make sure we BUG if trying to hit standard
7137 * register/unregister code path
7138 */
7139 dev->reg_state = NETREG_DUMMY;
7140
7141 /* NAPI wants this */
7142 INIT_LIST_HEAD(&dev->napi_list);
7143
7144 /* a dummy interface is started by default */
7145 set_bit(__LINK_STATE_PRESENT, &dev->state);
7146 set_bit(__LINK_STATE_START, &dev->state);
7147
7148 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7149 * because users of this 'device' dont need to change
7150 * its refcount.
7151 */
7152
7153 return 0;
7154 }
7155 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7156
7157
7158 /**
7159 * register_netdev - register a network device
7160 * @dev: device to register
7161 *
7162 * Take a completed network device structure and add it to the kernel
7163 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7164 * chain. 0 is returned on success. A negative errno code is returned
7165 * on a failure to set up the device, or if the name is a duplicate.
7166 *
7167 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7168 * and expands the device name if you passed a format string to
7169 * alloc_netdev.
7170 */
7171 int register_netdev(struct net_device *dev)
7172 {
7173 int err;
7174
7175 rtnl_lock();
7176 err = register_netdevice(dev);
7177 rtnl_unlock();
7178 return err;
7179 }
7180 EXPORT_SYMBOL(register_netdev);
7181
7182 int netdev_refcnt_read(const struct net_device *dev)
7183 {
7184 int i, refcnt = 0;
7185
7186 for_each_possible_cpu(i)
7187 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7188 return refcnt;
7189 }
7190 EXPORT_SYMBOL(netdev_refcnt_read);
7191
7192 /**
7193 * netdev_wait_allrefs - wait until all references are gone.
7194 * @dev: target net_device
7195 *
7196 * This is called when unregistering network devices.
7197 *
7198 * Any protocol or device that holds a reference should register
7199 * for netdevice notification, and cleanup and put back the
7200 * reference if they receive an UNREGISTER event.
7201 * We can get stuck here if buggy protocols don't correctly
7202 * call dev_put.
7203 */
7204 static void netdev_wait_allrefs(struct net_device *dev)
7205 {
7206 unsigned long rebroadcast_time, warning_time;
7207 int refcnt;
7208
7209 linkwatch_forget_dev(dev);
7210
7211 rebroadcast_time = warning_time = jiffies;
7212 refcnt = netdev_refcnt_read(dev);
7213
7214 while (refcnt != 0) {
7215 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7216 rtnl_lock();
7217
7218 /* Rebroadcast unregister notification */
7219 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7220
7221 __rtnl_unlock();
7222 rcu_barrier();
7223 rtnl_lock();
7224
7225 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7226 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7227 &dev->state)) {
7228 /* We must not have linkwatch events
7229 * pending on unregister. If this
7230 * happens, we simply run the queue
7231 * unscheduled, resulting in a noop
7232 * for this device.
7233 */
7234 linkwatch_run_queue();
7235 }
7236
7237 __rtnl_unlock();
7238
7239 rebroadcast_time = jiffies;
7240 }
7241
7242 msleep(250);
7243
7244 refcnt = netdev_refcnt_read(dev);
7245
7246 if (time_after(jiffies, warning_time + 10 * HZ)) {
7247 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7248 dev->name, refcnt);
7249 warning_time = jiffies;
7250 }
7251 }
7252 }
7253
7254 /* The sequence is:
7255 *
7256 * rtnl_lock();
7257 * ...
7258 * register_netdevice(x1);
7259 * register_netdevice(x2);
7260 * ...
7261 * unregister_netdevice(y1);
7262 * unregister_netdevice(y2);
7263 * ...
7264 * rtnl_unlock();
7265 * free_netdev(y1);
7266 * free_netdev(y2);
7267 *
7268 * We are invoked by rtnl_unlock().
7269 * This allows us to deal with problems:
7270 * 1) We can delete sysfs objects which invoke hotplug
7271 * without deadlocking with linkwatch via keventd.
7272 * 2) Since we run with the RTNL semaphore not held, we can sleep
7273 * safely in order to wait for the netdev refcnt to drop to zero.
7274 *
7275 * We must not return until all unregister events added during
7276 * the interval the lock was held have been completed.
7277 */
7278 void netdev_run_todo(void)
7279 {
7280 struct list_head list;
7281
7282 /* Snapshot list, allow later requests */
7283 list_replace_init(&net_todo_list, &list);
7284
7285 __rtnl_unlock();
7286
7287
7288 /* Wait for rcu callbacks to finish before next phase */
7289 if (!list_empty(&list))
7290 rcu_barrier();
7291
7292 while (!list_empty(&list)) {
7293 struct net_device *dev
7294 = list_first_entry(&list, struct net_device, todo_list);
7295 list_del(&dev->todo_list);
7296
7297 rtnl_lock();
7298 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7299 __rtnl_unlock();
7300
7301 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7302 pr_err("network todo '%s' but state %d\n",
7303 dev->name, dev->reg_state);
7304 dump_stack();
7305 continue;
7306 }
7307
7308 dev->reg_state = NETREG_UNREGISTERED;
7309
7310 netdev_wait_allrefs(dev);
7311
7312 /* paranoia */
7313 BUG_ON(netdev_refcnt_read(dev));
7314 BUG_ON(!list_empty(&dev->ptype_all));
7315 BUG_ON(!list_empty(&dev->ptype_specific));
7316 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7317 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7318 WARN_ON(dev->dn_ptr);
7319
7320 if (dev->destructor)
7321 dev->destructor(dev);
7322
7323 /* Report a network device has been unregistered */
7324 rtnl_lock();
7325 dev_net(dev)->dev_unreg_count--;
7326 __rtnl_unlock();
7327 wake_up(&netdev_unregistering_wq);
7328
7329 /* Free network device */
7330 kobject_put(&dev->dev.kobj);
7331 }
7332 }
7333
7334 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7335 * all the same fields in the same order as net_device_stats, with only
7336 * the type differing, but rtnl_link_stats64 may have additional fields
7337 * at the end for newer counters.
7338 */
7339 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7340 const struct net_device_stats *netdev_stats)
7341 {
7342 #if BITS_PER_LONG == 64
7343 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7344 memcpy(stats64, netdev_stats, sizeof(*stats64));
7345 /* zero out counters that only exist in rtnl_link_stats64 */
7346 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7347 sizeof(*stats64) - sizeof(*netdev_stats));
7348 #else
7349 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7350 const unsigned long *src = (const unsigned long *)netdev_stats;
7351 u64 *dst = (u64 *)stats64;
7352
7353 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7354 for (i = 0; i < n; i++)
7355 dst[i] = src[i];
7356 /* zero out counters that only exist in rtnl_link_stats64 */
7357 memset((char *)stats64 + n * sizeof(u64), 0,
7358 sizeof(*stats64) - n * sizeof(u64));
7359 #endif
7360 }
7361 EXPORT_SYMBOL(netdev_stats_to_stats64);
7362
7363 /**
7364 * dev_get_stats - get network device statistics
7365 * @dev: device to get statistics from
7366 * @storage: place to store stats
7367 *
7368 * Get network statistics from device. Return @storage.
7369 * The device driver may provide its own method by setting
7370 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7371 * otherwise the internal statistics structure is used.
7372 */
7373 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7374 struct rtnl_link_stats64 *storage)
7375 {
7376 const struct net_device_ops *ops = dev->netdev_ops;
7377
7378 if (ops->ndo_get_stats64) {
7379 memset(storage, 0, sizeof(*storage));
7380 ops->ndo_get_stats64(dev, storage);
7381 } else if (ops->ndo_get_stats) {
7382 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7383 } else {
7384 netdev_stats_to_stats64(storage, &dev->stats);
7385 }
7386 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7387 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7388 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7389 return storage;
7390 }
7391 EXPORT_SYMBOL(dev_get_stats);
7392
7393 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7394 {
7395 struct netdev_queue *queue = dev_ingress_queue(dev);
7396
7397 #ifdef CONFIG_NET_CLS_ACT
7398 if (queue)
7399 return queue;
7400 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7401 if (!queue)
7402 return NULL;
7403 netdev_init_one_queue(dev, queue, NULL);
7404 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7405 queue->qdisc_sleeping = &noop_qdisc;
7406 rcu_assign_pointer(dev->ingress_queue, queue);
7407 #endif
7408 return queue;
7409 }
7410
7411 static const struct ethtool_ops default_ethtool_ops;
7412
7413 void netdev_set_default_ethtool_ops(struct net_device *dev,
7414 const struct ethtool_ops *ops)
7415 {
7416 if (dev->ethtool_ops == &default_ethtool_ops)
7417 dev->ethtool_ops = ops;
7418 }
7419 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7420
7421 void netdev_freemem(struct net_device *dev)
7422 {
7423 char *addr = (char *)dev - dev->padded;
7424
7425 kvfree(addr);
7426 }
7427
7428 /**
7429 * alloc_netdev_mqs - allocate network device
7430 * @sizeof_priv: size of private data to allocate space for
7431 * @name: device name format string
7432 * @name_assign_type: origin of device name
7433 * @setup: callback to initialize device
7434 * @txqs: the number of TX subqueues to allocate
7435 * @rxqs: the number of RX subqueues to allocate
7436 *
7437 * Allocates a struct net_device with private data area for driver use
7438 * and performs basic initialization. Also allocates subqueue structs
7439 * for each queue on the device.
7440 */
7441 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7442 unsigned char name_assign_type,
7443 void (*setup)(struct net_device *),
7444 unsigned int txqs, unsigned int rxqs)
7445 {
7446 struct net_device *dev;
7447 size_t alloc_size;
7448 struct net_device *p;
7449
7450 BUG_ON(strlen(name) >= sizeof(dev->name));
7451
7452 if (txqs < 1) {
7453 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7454 return NULL;
7455 }
7456
7457 #ifdef CONFIG_SYSFS
7458 if (rxqs < 1) {
7459 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7460 return NULL;
7461 }
7462 #endif
7463
7464 alloc_size = sizeof(struct net_device);
7465 if (sizeof_priv) {
7466 /* ensure 32-byte alignment of private area */
7467 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7468 alloc_size += sizeof_priv;
7469 }
7470 /* ensure 32-byte alignment of whole construct */
7471 alloc_size += NETDEV_ALIGN - 1;
7472
7473 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7474 if (!p)
7475 p = vzalloc(alloc_size);
7476 if (!p)
7477 return NULL;
7478
7479 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7480 dev->padded = (char *)dev - (char *)p;
7481
7482 dev->pcpu_refcnt = alloc_percpu(int);
7483 if (!dev->pcpu_refcnt)
7484 goto free_dev;
7485
7486 if (dev_addr_init(dev))
7487 goto free_pcpu;
7488
7489 dev_mc_init(dev);
7490 dev_uc_init(dev);
7491
7492 dev_net_set(dev, &init_net);
7493
7494 dev->gso_max_size = GSO_MAX_SIZE;
7495 dev->gso_max_segs = GSO_MAX_SEGS;
7496
7497 INIT_LIST_HEAD(&dev->napi_list);
7498 INIT_LIST_HEAD(&dev->unreg_list);
7499 INIT_LIST_HEAD(&dev->close_list);
7500 INIT_LIST_HEAD(&dev->link_watch_list);
7501 INIT_LIST_HEAD(&dev->adj_list.upper);
7502 INIT_LIST_HEAD(&dev->adj_list.lower);
7503 INIT_LIST_HEAD(&dev->all_adj_list.upper);
7504 INIT_LIST_HEAD(&dev->all_adj_list.lower);
7505 INIT_LIST_HEAD(&dev->ptype_all);
7506 INIT_LIST_HEAD(&dev->ptype_specific);
7507 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7508 setup(dev);
7509
7510 if (!dev->tx_queue_len) {
7511 dev->priv_flags |= IFF_NO_QUEUE;
7512 dev->tx_queue_len = 1;
7513 }
7514
7515 dev->num_tx_queues = txqs;
7516 dev->real_num_tx_queues = txqs;
7517 if (netif_alloc_netdev_queues(dev))
7518 goto free_all;
7519
7520 #ifdef CONFIG_SYSFS
7521 dev->num_rx_queues = rxqs;
7522 dev->real_num_rx_queues = rxqs;
7523 if (netif_alloc_rx_queues(dev))
7524 goto free_all;
7525 #endif
7526
7527 strcpy(dev->name, name);
7528 dev->name_assign_type = name_assign_type;
7529 dev->group = INIT_NETDEV_GROUP;
7530 if (!dev->ethtool_ops)
7531 dev->ethtool_ops = &default_ethtool_ops;
7532
7533 nf_hook_ingress_init(dev);
7534
7535 return dev;
7536
7537 free_all:
7538 free_netdev(dev);
7539 return NULL;
7540
7541 free_pcpu:
7542 free_percpu(dev->pcpu_refcnt);
7543 free_dev:
7544 netdev_freemem(dev);
7545 return NULL;
7546 }
7547 EXPORT_SYMBOL(alloc_netdev_mqs);
7548
7549 /**
7550 * free_netdev - free network device
7551 * @dev: device
7552 *
7553 * This function does the last stage of destroying an allocated device
7554 * interface. The reference to the device object is released.
7555 * If this is the last reference then it will be freed.
7556 * Must be called in process context.
7557 */
7558 void free_netdev(struct net_device *dev)
7559 {
7560 struct napi_struct *p, *n;
7561
7562 might_sleep();
7563 netif_free_tx_queues(dev);
7564 #ifdef CONFIG_SYSFS
7565 kvfree(dev->_rx);
7566 #endif
7567
7568 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7569
7570 /* Flush device addresses */
7571 dev_addr_flush(dev);
7572
7573 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7574 netif_napi_del(p);
7575
7576 free_percpu(dev->pcpu_refcnt);
7577 dev->pcpu_refcnt = NULL;
7578
7579 /* Compatibility with error handling in drivers */
7580 if (dev->reg_state == NETREG_UNINITIALIZED) {
7581 netdev_freemem(dev);
7582 return;
7583 }
7584
7585 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7586 dev->reg_state = NETREG_RELEASED;
7587
7588 /* will free via device release */
7589 put_device(&dev->dev);
7590 }
7591 EXPORT_SYMBOL(free_netdev);
7592
7593 /**
7594 * synchronize_net - Synchronize with packet receive processing
7595 *
7596 * Wait for packets currently being received to be done.
7597 * Does not block later packets from starting.
7598 */
7599 void synchronize_net(void)
7600 {
7601 might_sleep();
7602 if (rtnl_is_locked())
7603 synchronize_rcu_expedited();
7604 else
7605 synchronize_rcu();
7606 }
7607 EXPORT_SYMBOL(synchronize_net);
7608
7609 /**
7610 * unregister_netdevice_queue - remove device from the kernel
7611 * @dev: device
7612 * @head: list
7613 *
7614 * This function shuts down a device interface and removes it
7615 * from the kernel tables.
7616 * If head not NULL, device is queued to be unregistered later.
7617 *
7618 * Callers must hold the rtnl semaphore. You may want
7619 * unregister_netdev() instead of this.
7620 */
7621
7622 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7623 {
7624 ASSERT_RTNL();
7625
7626 if (head) {
7627 list_move_tail(&dev->unreg_list, head);
7628 } else {
7629 rollback_registered(dev);
7630 /* Finish processing unregister after unlock */
7631 net_set_todo(dev);
7632 }
7633 }
7634 EXPORT_SYMBOL(unregister_netdevice_queue);
7635
7636 /**
7637 * unregister_netdevice_many - unregister many devices
7638 * @head: list of devices
7639 *
7640 * Note: As most callers use a stack allocated list_head,
7641 * we force a list_del() to make sure stack wont be corrupted later.
7642 */
7643 void unregister_netdevice_many(struct list_head *head)
7644 {
7645 struct net_device *dev;
7646
7647 if (!list_empty(head)) {
7648 rollback_registered_many(head);
7649 list_for_each_entry(dev, head, unreg_list)
7650 net_set_todo(dev);
7651 list_del(head);
7652 }
7653 }
7654 EXPORT_SYMBOL(unregister_netdevice_many);
7655
7656 /**
7657 * unregister_netdev - remove device from the kernel
7658 * @dev: device
7659 *
7660 * This function shuts down a device interface and removes it
7661 * from the kernel tables.
7662 *
7663 * This is just a wrapper for unregister_netdevice that takes
7664 * the rtnl semaphore. In general you want to use this and not
7665 * unregister_netdevice.
7666 */
7667 void unregister_netdev(struct net_device *dev)
7668 {
7669 rtnl_lock();
7670 unregister_netdevice(dev);
7671 rtnl_unlock();
7672 }
7673 EXPORT_SYMBOL(unregister_netdev);
7674
7675 /**
7676 * dev_change_net_namespace - move device to different nethost namespace
7677 * @dev: device
7678 * @net: network namespace
7679 * @pat: If not NULL name pattern to try if the current device name
7680 * is already taken in the destination network namespace.
7681 *
7682 * This function shuts down a device interface and moves it
7683 * to a new network namespace. On success 0 is returned, on
7684 * a failure a netagive errno code is returned.
7685 *
7686 * Callers must hold the rtnl semaphore.
7687 */
7688
7689 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7690 {
7691 int err;
7692
7693 ASSERT_RTNL();
7694
7695 /* Don't allow namespace local devices to be moved. */
7696 err = -EINVAL;
7697 if (dev->features & NETIF_F_NETNS_LOCAL)
7698 goto out;
7699
7700 /* Ensure the device has been registrered */
7701 if (dev->reg_state != NETREG_REGISTERED)
7702 goto out;
7703
7704 /* Get out if there is nothing todo */
7705 err = 0;
7706 if (net_eq(dev_net(dev), net))
7707 goto out;
7708
7709 /* Pick the destination device name, and ensure
7710 * we can use it in the destination network namespace.
7711 */
7712 err = -EEXIST;
7713 if (__dev_get_by_name(net, dev->name)) {
7714 /* We get here if we can't use the current device name */
7715 if (!pat)
7716 goto out;
7717 if (dev_get_valid_name(net, dev, pat) < 0)
7718 goto out;
7719 }
7720
7721 /*
7722 * And now a mini version of register_netdevice unregister_netdevice.
7723 */
7724
7725 /* If device is running close it first. */
7726 dev_close(dev);
7727
7728 /* And unlink it from device chain */
7729 err = -ENODEV;
7730 unlist_netdevice(dev);
7731
7732 synchronize_net();
7733
7734 /* Shutdown queueing discipline. */
7735 dev_shutdown(dev);
7736
7737 /* Notify protocols, that we are about to destroy
7738 this device. They should clean all the things.
7739
7740 Note that dev->reg_state stays at NETREG_REGISTERED.
7741 This is wanted because this way 8021q and macvlan know
7742 the device is just moving and can keep their slaves up.
7743 */
7744 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7745 rcu_barrier();
7746 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7747 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7748
7749 /*
7750 * Flush the unicast and multicast chains
7751 */
7752 dev_uc_flush(dev);
7753 dev_mc_flush(dev);
7754
7755 /* Send a netdev-removed uevent to the old namespace */
7756 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7757 netdev_adjacent_del_links(dev);
7758
7759 /* Actually switch the network namespace */
7760 dev_net_set(dev, net);
7761
7762 /* If there is an ifindex conflict assign a new one */
7763 if (__dev_get_by_index(net, dev->ifindex))
7764 dev->ifindex = dev_new_index(net);
7765
7766 /* Send a netdev-add uevent to the new namespace */
7767 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7768 netdev_adjacent_add_links(dev);
7769
7770 /* Fixup kobjects */
7771 err = device_rename(&dev->dev, dev->name);
7772 WARN_ON(err);
7773
7774 /* Add the device back in the hashes */
7775 list_netdevice(dev);
7776
7777 /* Notify protocols, that a new device appeared. */
7778 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7779
7780 /*
7781 * Prevent userspace races by waiting until the network
7782 * device is fully setup before sending notifications.
7783 */
7784 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7785
7786 synchronize_net();
7787 err = 0;
7788 out:
7789 return err;
7790 }
7791 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7792
7793 static int dev_cpu_callback(struct notifier_block *nfb,
7794 unsigned long action,
7795 void *ocpu)
7796 {
7797 struct sk_buff **list_skb;
7798 struct sk_buff *skb;
7799 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7800 struct softnet_data *sd, *oldsd;
7801
7802 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7803 return NOTIFY_OK;
7804
7805 local_irq_disable();
7806 cpu = smp_processor_id();
7807 sd = &per_cpu(softnet_data, cpu);
7808 oldsd = &per_cpu(softnet_data, oldcpu);
7809
7810 /* Find end of our completion_queue. */
7811 list_skb = &sd->completion_queue;
7812 while (*list_skb)
7813 list_skb = &(*list_skb)->next;
7814 /* Append completion queue from offline CPU. */
7815 *list_skb = oldsd->completion_queue;
7816 oldsd->completion_queue = NULL;
7817
7818 /* Append output queue from offline CPU. */
7819 if (oldsd->output_queue) {
7820 *sd->output_queue_tailp = oldsd->output_queue;
7821 sd->output_queue_tailp = oldsd->output_queue_tailp;
7822 oldsd->output_queue = NULL;
7823 oldsd->output_queue_tailp = &oldsd->output_queue;
7824 }
7825 /* Append NAPI poll list from offline CPU, with one exception :
7826 * process_backlog() must be called by cpu owning percpu backlog.
7827 * We properly handle process_queue & input_pkt_queue later.
7828 */
7829 while (!list_empty(&oldsd->poll_list)) {
7830 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7831 struct napi_struct,
7832 poll_list);
7833
7834 list_del_init(&napi->poll_list);
7835 if (napi->poll == process_backlog)
7836 napi->state = 0;
7837 else
7838 ____napi_schedule(sd, napi);
7839 }
7840
7841 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7842 local_irq_enable();
7843
7844 /* Process offline CPU's input_pkt_queue */
7845 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7846 netif_rx_ni(skb);
7847 input_queue_head_incr(oldsd);
7848 }
7849 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7850 netif_rx_ni(skb);
7851 input_queue_head_incr(oldsd);
7852 }
7853
7854 return NOTIFY_OK;
7855 }
7856
7857
7858 /**
7859 * netdev_increment_features - increment feature set by one
7860 * @all: current feature set
7861 * @one: new feature set
7862 * @mask: mask feature set
7863 *
7864 * Computes a new feature set after adding a device with feature set
7865 * @one to the master device with current feature set @all. Will not
7866 * enable anything that is off in @mask. Returns the new feature set.
7867 */
7868 netdev_features_t netdev_increment_features(netdev_features_t all,
7869 netdev_features_t one, netdev_features_t mask)
7870 {
7871 if (mask & NETIF_F_HW_CSUM)
7872 mask |= NETIF_F_CSUM_MASK;
7873 mask |= NETIF_F_VLAN_CHALLENGED;
7874
7875 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7876 all &= one | ~NETIF_F_ALL_FOR_ALL;
7877
7878 /* If one device supports hw checksumming, set for all. */
7879 if (all & NETIF_F_HW_CSUM)
7880 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7881
7882 return all;
7883 }
7884 EXPORT_SYMBOL(netdev_increment_features);
7885
7886 static struct hlist_head * __net_init netdev_create_hash(void)
7887 {
7888 int i;
7889 struct hlist_head *hash;
7890
7891 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7892 if (hash != NULL)
7893 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7894 INIT_HLIST_HEAD(&hash[i]);
7895
7896 return hash;
7897 }
7898
7899 /* Initialize per network namespace state */
7900 static int __net_init netdev_init(struct net *net)
7901 {
7902 if (net != &init_net)
7903 INIT_LIST_HEAD(&net->dev_base_head);
7904
7905 net->dev_name_head = netdev_create_hash();
7906 if (net->dev_name_head == NULL)
7907 goto err_name;
7908
7909 net->dev_index_head = netdev_create_hash();
7910 if (net->dev_index_head == NULL)
7911 goto err_idx;
7912
7913 return 0;
7914
7915 err_idx:
7916 kfree(net->dev_name_head);
7917 err_name:
7918 return -ENOMEM;
7919 }
7920
7921 /**
7922 * netdev_drivername - network driver for the device
7923 * @dev: network device
7924 *
7925 * Determine network driver for device.
7926 */
7927 const char *netdev_drivername(const struct net_device *dev)
7928 {
7929 const struct device_driver *driver;
7930 const struct device *parent;
7931 const char *empty = "";
7932
7933 parent = dev->dev.parent;
7934 if (!parent)
7935 return empty;
7936
7937 driver = parent->driver;
7938 if (driver && driver->name)
7939 return driver->name;
7940 return empty;
7941 }
7942
7943 static void __netdev_printk(const char *level, const struct net_device *dev,
7944 struct va_format *vaf)
7945 {
7946 if (dev && dev->dev.parent) {
7947 dev_printk_emit(level[1] - '0',
7948 dev->dev.parent,
7949 "%s %s %s%s: %pV",
7950 dev_driver_string(dev->dev.parent),
7951 dev_name(dev->dev.parent),
7952 netdev_name(dev), netdev_reg_state(dev),
7953 vaf);
7954 } else if (dev) {
7955 printk("%s%s%s: %pV",
7956 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7957 } else {
7958 printk("%s(NULL net_device): %pV", level, vaf);
7959 }
7960 }
7961
7962 void netdev_printk(const char *level, const struct net_device *dev,
7963 const char *format, ...)
7964 {
7965 struct va_format vaf;
7966 va_list args;
7967
7968 va_start(args, format);
7969
7970 vaf.fmt = format;
7971 vaf.va = &args;
7972
7973 __netdev_printk(level, dev, &vaf);
7974
7975 va_end(args);
7976 }
7977 EXPORT_SYMBOL(netdev_printk);
7978
7979 #define define_netdev_printk_level(func, level) \
7980 void func(const struct net_device *dev, const char *fmt, ...) \
7981 { \
7982 struct va_format vaf; \
7983 va_list args; \
7984 \
7985 va_start(args, fmt); \
7986 \
7987 vaf.fmt = fmt; \
7988 vaf.va = &args; \
7989 \
7990 __netdev_printk(level, dev, &vaf); \
7991 \
7992 va_end(args); \
7993 } \
7994 EXPORT_SYMBOL(func);
7995
7996 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7997 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7998 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7999 define_netdev_printk_level(netdev_err, KERN_ERR);
8000 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8001 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8002 define_netdev_printk_level(netdev_info, KERN_INFO);
8003
8004 static void __net_exit netdev_exit(struct net *net)
8005 {
8006 kfree(net->dev_name_head);
8007 kfree(net->dev_index_head);
8008 }
8009
8010 static struct pernet_operations __net_initdata netdev_net_ops = {
8011 .init = netdev_init,
8012 .exit = netdev_exit,
8013 };
8014
8015 static void __net_exit default_device_exit(struct net *net)
8016 {
8017 struct net_device *dev, *aux;
8018 /*
8019 * Push all migratable network devices back to the
8020 * initial network namespace
8021 */
8022 rtnl_lock();
8023 for_each_netdev_safe(net, dev, aux) {
8024 int err;
8025 char fb_name[IFNAMSIZ];
8026
8027 /* Ignore unmoveable devices (i.e. loopback) */
8028 if (dev->features & NETIF_F_NETNS_LOCAL)
8029 continue;
8030
8031 /* Leave virtual devices for the generic cleanup */
8032 if (dev->rtnl_link_ops)
8033 continue;
8034
8035 /* Push remaining network devices to init_net */
8036 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8037 err = dev_change_net_namespace(dev, &init_net, fb_name);
8038 if (err) {
8039 pr_emerg("%s: failed to move %s to init_net: %d\n",
8040 __func__, dev->name, err);
8041 BUG();
8042 }
8043 }
8044 rtnl_unlock();
8045 }
8046
8047 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8048 {
8049 /* Return with the rtnl_lock held when there are no network
8050 * devices unregistering in any network namespace in net_list.
8051 */
8052 struct net *net;
8053 bool unregistering;
8054 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8055
8056 add_wait_queue(&netdev_unregistering_wq, &wait);
8057 for (;;) {
8058 unregistering = false;
8059 rtnl_lock();
8060 list_for_each_entry(net, net_list, exit_list) {
8061 if (net->dev_unreg_count > 0) {
8062 unregistering = true;
8063 break;
8064 }
8065 }
8066 if (!unregistering)
8067 break;
8068 __rtnl_unlock();
8069
8070 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8071 }
8072 remove_wait_queue(&netdev_unregistering_wq, &wait);
8073 }
8074
8075 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8076 {
8077 /* At exit all network devices most be removed from a network
8078 * namespace. Do this in the reverse order of registration.
8079 * Do this across as many network namespaces as possible to
8080 * improve batching efficiency.
8081 */
8082 struct net_device *dev;
8083 struct net *net;
8084 LIST_HEAD(dev_kill_list);
8085
8086 /* To prevent network device cleanup code from dereferencing
8087 * loopback devices or network devices that have been freed
8088 * wait here for all pending unregistrations to complete,
8089 * before unregistring the loopback device and allowing the
8090 * network namespace be freed.
8091 *
8092 * The netdev todo list containing all network devices
8093 * unregistrations that happen in default_device_exit_batch
8094 * will run in the rtnl_unlock() at the end of
8095 * default_device_exit_batch.
8096 */
8097 rtnl_lock_unregistering(net_list);
8098 list_for_each_entry(net, net_list, exit_list) {
8099 for_each_netdev_reverse(net, dev) {
8100 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8101 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8102 else
8103 unregister_netdevice_queue(dev, &dev_kill_list);
8104 }
8105 }
8106 unregister_netdevice_many(&dev_kill_list);
8107 rtnl_unlock();
8108 }
8109
8110 static struct pernet_operations __net_initdata default_device_ops = {
8111 .exit = default_device_exit,
8112 .exit_batch = default_device_exit_batch,
8113 };
8114
8115 /*
8116 * Initialize the DEV module. At boot time this walks the device list and
8117 * unhooks any devices that fail to initialise (normally hardware not
8118 * present) and leaves us with a valid list of present and active devices.
8119 *
8120 */
8121
8122 /*
8123 * This is called single threaded during boot, so no need
8124 * to take the rtnl semaphore.
8125 */
8126 static int __init net_dev_init(void)
8127 {
8128 int i, rc = -ENOMEM;
8129
8130 BUG_ON(!dev_boot_phase);
8131
8132 if (dev_proc_init())
8133 goto out;
8134
8135 if (netdev_kobject_init())
8136 goto out;
8137
8138 INIT_LIST_HEAD(&ptype_all);
8139 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8140 INIT_LIST_HEAD(&ptype_base[i]);
8141
8142 INIT_LIST_HEAD(&offload_base);
8143
8144 if (register_pernet_subsys(&netdev_net_ops))
8145 goto out;
8146
8147 /*
8148 * Initialise the packet receive queues.
8149 */
8150
8151 for_each_possible_cpu(i) {
8152 struct softnet_data *sd = &per_cpu(softnet_data, i);
8153
8154 skb_queue_head_init(&sd->input_pkt_queue);
8155 skb_queue_head_init(&sd->process_queue);
8156 INIT_LIST_HEAD(&sd->poll_list);
8157 sd->output_queue_tailp = &sd->output_queue;
8158 #ifdef CONFIG_RPS
8159 sd->csd.func = rps_trigger_softirq;
8160 sd->csd.info = sd;
8161 sd->cpu = i;
8162 #endif
8163
8164 sd->backlog.poll = process_backlog;
8165 sd->backlog.weight = weight_p;
8166 }
8167
8168 dev_boot_phase = 0;
8169
8170 /* The loopback device is special if any other network devices
8171 * is present in a network namespace the loopback device must
8172 * be present. Since we now dynamically allocate and free the
8173 * loopback device ensure this invariant is maintained by
8174 * keeping the loopback device as the first device on the
8175 * list of network devices. Ensuring the loopback devices
8176 * is the first device that appears and the last network device
8177 * that disappears.
8178 */
8179 if (register_pernet_device(&loopback_net_ops))
8180 goto out;
8181
8182 if (register_pernet_device(&default_device_ops))
8183 goto out;
8184
8185 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8186 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8187
8188 hotcpu_notifier(dev_cpu_callback, 0);
8189 dst_subsys_init();
8190 rc = 0;
8191 out:
8192 return rc;
8193 }
8194
8195 subsys_initcall(net_dev_init);