]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/core/dev.c
Merge branch 'acpi-config'
[mirror_ubuntu-hirsute-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
135
136 #include "net-sysfs.h"
137
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly; /* Taps */
148 static struct list_head offload_base __read_mostly;
149
150 static int netif_rx_internal(struct sk_buff *skb);
151
152 /*
153 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
154 * semaphore.
155 *
156 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
157 *
158 * Writers must hold the rtnl semaphore while they loop through the
159 * dev_base_head list, and hold dev_base_lock for writing when they do the
160 * actual updates. This allows pure readers to access the list even
161 * while a writer is preparing to update it.
162 *
163 * To put it another way, dev_base_lock is held for writing only to
164 * protect against pure readers; the rtnl semaphore provides the
165 * protection against other writers.
166 *
167 * See, for example usages, register_netdevice() and
168 * unregister_netdevice(), which must be called with the rtnl
169 * semaphore held.
170 */
171 DEFINE_RWLOCK(dev_base_lock);
172 EXPORT_SYMBOL(dev_base_lock);
173
174 /* protects napi_hash addition/deletion and napi_gen_id */
175 static DEFINE_SPINLOCK(napi_hash_lock);
176
177 static unsigned int napi_gen_id;
178 static DEFINE_HASHTABLE(napi_hash, 8);
179
180 static seqcount_t devnet_rename_seq;
181
182 static inline void dev_base_seq_inc(struct net *net)
183 {
184 while (++net->dev_base_seq == 0);
185 }
186
187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
188 {
189 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
190
191 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
192 }
193
194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
195 {
196 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
197 }
198
199 static inline void rps_lock(struct softnet_data *sd)
200 {
201 #ifdef CONFIG_RPS
202 spin_lock(&sd->input_pkt_queue.lock);
203 #endif
204 }
205
206 static inline void rps_unlock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 spin_unlock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212
213 /* Device list insertion */
214 static void list_netdevice(struct net_device *dev)
215 {
216 struct net *net = dev_net(dev);
217
218 ASSERT_RTNL();
219
220 write_lock_bh(&dev_base_lock);
221 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
222 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
223 hlist_add_head_rcu(&dev->index_hlist,
224 dev_index_hash(net, dev->ifindex));
225 write_unlock_bh(&dev_base_lock);
226
227 dev_base_seq_inc(net);
228 }
229
230 /* Device list removal
231 * caller must respect a RCU grace period before freeing/reusing dev
232 */
233 static void unlist_netdevice(struct net_device *dev)
234 {
235 ASSERT_RTNL();
236
237 /* Unlink dev from the device chain */
238 write_lock_bh(&dev_base_lock);
239 list_del_rcu(&dev->dev_list);
240 hlist_del_rcu(&dev->name_hlist);
241 hlist_del_rcu(&dev->index_hlist);
242 write_unlock_bh(&dev_base_lock);
243
244 dev_base_seq_inc(dev_net(dev));
245 }
246
247 /*
248 * Our notifier list
249 */
250
251 static RAW_NOTIFIER_HEAD(netdev_chain);
252
253 /*
254 * Device drivers call our routines to queue packets here. We empty the
255 * queue in the local softnet handler.
256 */
257
258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
259 EXPORT_PER_CPU_SYMBOL(softnet_data);
260
261 #ifdef CONFIG_LOCKDEP
262 /*
263 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
264 * according to dev->type
265 */
266 static const unsigned short netdev_lock_type[] =
267 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
268 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
269 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
270 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
271 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
272 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
273 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
274 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
275 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
276 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
277 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
278 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
279 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
280 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
281 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
282
283 static const char *const netdev_lock_name[] =
284 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
285 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
286 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
287 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
288 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
289 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
290 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
291 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
292 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
293 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
294 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
295 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
296 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
297 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
298 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
299
300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
302
303 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304 {
305 int i;
306
307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 if (netdev_lock_type[i] == dev_type)
309 return i;
310 /* the last key is used by default */
311 return ARRAY_SIZE(netdev_lock_type) - 1;
312 }
313
314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
315 unsigned short dev_type)
316 {
317 int i;
318
319 i = netdev_lock_pos(dev_type);
320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 netdev_lock_name[i]);
322 }
323
324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
325 {
326 int i;
327
328 i = netdev_lock_pos(dev->type);
329 lockdep_set_class_and_name(&dev->addr_list_lock,
330 &netdev_addr_lock_key[i],
331 netdev_lock_name[i]);
332 }
333 #else
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
336 {
337 }
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 {
340 }
341 #endif
342
343 /*******************************************************************************
344
345 Protocol management and registration routines
346
347 *******************************************************************************/
348
349 /*
350 * Add a protocol ID to the list. Now that the input handler is
351 * smarter we can dispense with all the messy stuff that used to be
352 * here.
353 *
354 * BEWARE!!! Protocol handlers, mangling input packets,
355 * MUST BE last in hash buckets and checking protocol handlers
356 * MUST start from promiscuous ptype_all chain in net_bh.
357 * It is true now, do not change it.
358 * Explanation follows: if protocol handler, mangling packet, will
359 * be the first on list, it is not able to sense, that packet
360 * is cloned and should be copied-on-write, so that it will
361 * change it and subsequent readers will get broken packet.
362 * --ANK (980803)
363 */
364
365 static inline struct list_head *ptype_head(const struct packet_type *pt)
366 {
367 if (pt->type == htons(ETH_P_ALL))
368 return &ptype_all;
369 else
370 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
371 }
372
373 /**
374 * dev_add_pack - add packet handler
375 * @pt: packet type declaration
376 *
377 * Add a protocol handler to the networking stack. The passed &packet_type
378 * is linked into kernel lists and may not be freed until it has been
379 * removed from the kernel lists.
380 *
381 * This call does not sleep therefore it can not
382 * guarantee all CPU's that are in middle of receiving packets
383 * will see the new packet type (until the next received packet).
384 */
385
386 void dev_add_pack(struct packet_type *pt)
387 {
388 struct list_head *head = ptype_head(pt);
389
390 spin_lock(&ptype_lock);
391 list_add_rcu(&pt->list, head);
392 spin_unlock(&ptype_lock);
393 }
394 EXPORT_SYMBOL(dev_add_pack);
395
396 /**
397 * __dev_remove_pack - remove packet handler
398 * @pt: packet type declaration
399 *
400 * Remove a protocol handler that was previously added to the kernel
401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
402 * from the kernel lists and can be freed or reused once this function
403 * returns.
404 *
405 * The packet type might still be in use by receivers
406 * and must not be freed until after all the CPU's have gone
407 * through a quiescent state.
408 */
409 void __dev_remove_pack(struct packet_type *pt)
410 {
411 struct list_head *head = ptype_head(pt);
412 struct packet_type *pt1;
413
414 spin_lock(&ptype_lock);
415
416 list_for_each_entry(pt1, head, list) {
417 if (pt == pt1) {
418 list_del_rcu(&pt->list);
419 goto out;
420 }
421 }
422
423 pr_warn("dev_remove_pack: %p not found\n", pt);
424 out:
425 spin_unlock(&ptype_lock);
426 }
427 EXPORT_SYMBOL(__dev_remove_pack);
428
429 /**
430 * dev_remove_pack - remove packet handler
431 * @pt: packet type declaration
432 *
433 * Remove a protocol handler that was previously added to the kernel
434 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
435 * from the kernel lists and can be freed or reused once this function
436 * returns.
437 *
438 * This call sleeps to guarantee that no CPU is looking at the packet
439 * type after return.
440 */
441 void dev_remove_pack(struct packet_type *pt)
442 {
443 __dev_remove_pack(pt);
444
445 synchronize_net();
446 }
447 EXPORT_SYMBOL(dev_remove_pack);
448
449
450 /**
451 * dev_add_offload - register offload handlers
452 * @po: protocol offload declaration
453 *
454 * Add protocol offload handlers to the networking stack. The passed
455 * &proto_offload is linked into kernel lists and may not be freed until
456 * it has been removed from the kernel lists.
457 *
458 * This call does not sleep therefore it can not
459 * guarantee all CPU's that are in middle of receiving packets
460 * will see the new offload handlers (until the next received packet).
461 */
462 void dev_add_offload(struct packet_offload *po)
463 {
464 struct list_head *head = &offload_base;
465
466 spin_lock(&offload_lock);
467 list_add_rcu(&po->list, head);
468 spin_unlock(&offload_lock);
469 }
470 EXPORT_SYMBOL(dev_add_offload);
471
472 /**
473 * __dev_remove_offload - remove offload handler
474 * @po: packet offload declaration
475 *
476 * Remove a protocol offload handler that was previously added to the
477 * kernel offload handlers by dev_add_offload(). The passed &offload_type
478 * is removed from the kernel lists and can be freed or reused once this
479 * function returns.
480 *
481 * The packet type might still be in use by receivers
482 * and must not be freed until after all the CPU's have gone
483 * through a quiescent state.
484 */
485 static void __dev_remove_offload(struct packet_offload *po)
486 {
487 struct list_head *head = &offload_base;
488 struct packet_offload *po1;
489
490 spin_lock(&offload_lock);
491
492 list_for_each_entry(po1, head, list) {
493 if (po == po1) {
494 list_del_rcu(&po->list);
495 goto out;
496 }
497 }
498
499 pr_warn("dev_remove_offload: %p not found\n", po);
500 out:
501 spin_unlock(&offload_lock);
502 }
503
504 /**
505 * dev_remove_offload - remove packet offload handler
506 * @po: packet offload declaration
507 *
508 * Remove a packet offload handler that was previously added to the kernel
509 * offload handlers by dev_add_offload(). The passed &offload_type is
510 * removed from the kernel lists and can be freed or reused once this
511 * function returns.
512 *
513 * This call sleeps to guarantee that no CPU is looking at the packet
514 * type after return.
515 */
516 void dev_remove_offload(struct packet_offload *po)
517 {
518 __dev_remove_offload(po);
519
520 synchronize_net();
521 }
522 EXPORT_SYMBOL(dev_remove_offload);
523
524 /******************************************************************************
525
526 Device Boot-time Settings Routines
527
528 *******************************************************************************/
529
530 /* Boot time configuration table */
531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
532
533 /**
534 * netdev_boot_setup_add - add new setup entry
535 * @name: name of the device
536 * @map: configured settings for the device
537 *
538 * Adds new setup entry to the dev_boot_setup list. The function
539 * returns 0 on error and 1 on success. This is a generic routine to
540 * all netdevices.
541 */
542 static int netdev_boot_setup_add(char *name, struct ifmap *map)
543 {
544 struct netdev_boot_setup *s;
545 int i;
546
547 s = dev_boot_setup;
548 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
549 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
550 memset(s[i].name, 0, sizeof(s[i].name));
551 strlcpy(s[i].name, name, IFNAMSIZ);
552 memcpy(&s[i].map, map, sizeof(s[i].map));
553 break;
554 }
555 }
556
557 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
558 }
559
560 /**
561 * netdev_boot_setup_check - check boot time settings
562 * @dev: the netdevice
563 *
564 * Check boot time settings for the device.
565 * The found settings are set for the device to be used
566 * later in the device probing.
567 * Returns 0 if no settings found, 1 if they are.
568 */
569 int netdev_boot_setup_check(struct net_device *dev)
570 {
571 struct netdev_boot_setup *s = dev_boot_setup;
572 int i;
573
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
576 !strcmp(dev->name, s[i].name)) {
577 dev->irq = s[i].map.irq;
578 dev->base_addr = s[i].map.base_addr;
579 dev->mem_start = s[i].map.mem_start;
580 dev->mem_end = s[i].map.mem_end;
581 return 1;
582 }
583 }
584 return 0;
585 }
586 EXPORT_SYMBOL(netdev_boot_setup_check);
587
588
589 /**
590 * netdev_boot_base - get address from boot time settings
591 * @prefix: prefix for network device
592 * @unit: id for network device
593 *
594 * Check boot time settings for the base address of device.
595 * The found settings are set for the device to be used
596 * later in the device probing.
597 * Returns 0 if no settings found.
598 */
599 unsigned long netdev_boot_base(const char *prefix, int unit)
600 {
601 const struct netdev_boot_setup *s = dev_boot_setup;
602 char name[IFNAMSIZ];
603 int i;
604
605 sprintf(name, "%s%d", prefix, unit);
606
607 /*
608 * If device already registered then return base of 1
609 * to indicate not to probe for this interface
610 */
611 if (__dev_get_by_name(&init_net, name))
612 return 1;
613
614 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
615 if (!strcmp(name, s[i].name))
616 return s[i].map.base_addr;
617 return 0;
618 }
619
620 /*
621 * Saves at boot time configured settings for any netdevice.
622 */
623 int __init netdev_boot_setup(char *str)
624 {
625 int ints[5];
626 struct ifmap map;
627
628 str = get_options(str, ARRAY_SIZE(ints), ints);
629 if (!str || !*str)
630 return 0;
631
632 /* Save settings */
633 memset(&map, 0, sizeof(map));
634 if (ints[0] > 0)
635 map.irq = ints[1];
636 if (ints[0] > 1)
637 map.base_addr = ints[2];
638 if (ints[0] > 2)
639 map.mem_start = ints[3];
640 if (ints[0] > 3)
641 map.mem_end = ints[4];
642
643 /* Add new entry to the list */
644 return netdev_boot_setup_add(str, &map);
645 }
646
647 __setup("netdev=", netdev_boot_setup);
648
649 /*******************************************************************************
650
651 Device Interface Subroutines
652
653 *******************************************************************************/
654
655 /**
656 * __dev_get_by_name - find a device by its name
657 * @net: the applicable net namespace
658 * @name: name to find
659 *
660 * Find an interface by name. Must be called under RTNL semaphore
661 * or @dev_base_lock. If the name is found a pointer to the device
662 * is returned. If the name is not found then %NULL is returned. The
663 * reference counters are not incremented so the caller must be
664 * careful with locks.
665 */
666
667 struct net_device *__dev_get_by_name(struct net *net, const char *name)
668 {
669 struct net_device *dev;
670 struct hlist_head *head = dev_name_hash(net, name);
671
672 hlist_for_each_entry(dev, head, name_hlist)
673 if (!strncmp(dev->name, name, IFNAMSIZ))
674 return dev;
675
676 return NULL;
677 }
678 EXPORT_SYMBOL(__dev_get_by_name);
679
680 /**
681 * dev_get_by_name_rcu - find a device by its name
682 * @net: the applicable net namespace
683 * @name: name to find
684 *
685 * Find an interface by name.
686 * If the name is found a pointer to the device is returned.
687 * If the name is not found then %NULL is returned.
688 * The reference counters are not incremented so the caller must be
689 * careful with locks. The caller must hold RCU lock.
690 */
691
692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
693 {
694 struct net_device *dev;
695 struct hlist_head *head = dev_name_hash(net, name);
696
697 hlist_for_each_entry_rcu(dev, head, name_hlist)
698 if (!strncmp(dev->name, name, IFNAMSIZ))
699 return dev;
700
701 return NULL;
702 }
703 EXPORT_SYMBOL(dev_get_by_name_rcu);
704
705 /**
706 * dev_get_by_name - find a device by its name
707 * @net: the applicable net namespace
708 * @name: name to find
709 *
710 * Find an interface by name. This can be called from any
711 * context and does its own locking. The returned handle has
712 * the usage count incremented and the caller must use dev_put() to
713 * release it when it is no longer needed. %NULL is returned if no
714 * matching device is found.
715 */
716
717 struct net_device *dev_get_by_name(struct net *net, const char *name)
718 {
719 struct net_device *dev;
720
721 rcu_read_lock();
722 dev = dev_get_by_name_rcu(net, name);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
727 }
728 EXPORT_SYMBOL(dev_get_by_name);
729
730 /**
731 * __dev_get_by_index - find a device by its ifindex
732 * @net: the applicable net namespace
733 * @ifindex: index of device
734 *
735 * Search for an interface by index. Returns %NULL if the device
736 * is not found or a pointer to the device. The device has not
737 * had its reference counter increased so the caller must be careful
738 * about locking. The caller must hold either the RTNL semaphore
739 * or @dev_base_lock.
740 */
741
742 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
743 {
744 struct net_device *dev;
745 struct hlist_head *head = dev_index_hash(net, ifindex);
746
747 hlist_for_each_entry(dev, head, index_hlist)
748 if (dev->ifindex == ifindex)
749 return dev;
750
751 return NULL;
752 }
753 EXPORT_SYMBOL(__dev_get_by_index);
754
755 /**
756 * dev_get_by_index_rcu - find a device by its ifindex
757 * @net: the applicable net namespace
758 * @ifindex: index of device
759 *
760 * Search for an interface by index. Returns %NULL if the device
761 * is not found or a pointer to the device. The device has not
762 * had its reference counter increased so the caller must be careful
763 * about locking. The caller must hold RCU lock.
764 */
765
766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
767 {
768 struct net_device *dev;
769 struct hlist_head *head = dev_index_hash(net, ifindex);
770
771 hlist_for_each_entry_rcu(dev, head, index_hlist)
772 if (dev->ifindex == ifindex)
773 return dev;
774
775 return NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_index_rcu);
778
779
780 /**
781 * dev_get_by_index - find a device by its ifindex
782 * @net: the applicable net namespace
783 * @ifindex: index of device
784 *
785 * Search for an interface by index. Returns NULL if the device
786 * is not found or a pointer to the device. The device returned has
787 * had a reference added and the pointer is safe until the user calls
788 * dev_put to indicate they have finished with it.
789 */
790
791 struct net_device *dev_get_by_index(struct net *net, int ifindex)
792 {
793 struct net_device *dev;
794
795 rcu_read_lock();
796 dev = dev_get_by_index_rcu(net, ifindex);
797 if (dev)
798 dev_hold(dev);
799 rcu_read_unlock();
800 return dev;
801 }
802 EXPORT_SYMBOL(dev_get_by_index);
803
804 /**
805 * netdev_get_name - get a netdevice name, knowing its ifindex.
806 * @net: network namespace
807 * @name: a pointer to the buffer where the name will be stored.
808 * @ifindex: the ifindex of the interface to get the name from.
809 *
810 * The use of raw_seqcount_begin() and cond_resched() before
811 * retrying is required as we want to give the writers a chance
812 * to complete when CONFIG_PREEMPT is not set.
813 */
814 int netdev_get_name(struct net *net, char *name, int ifindex)
815 {
816 struct net_device *dev;
817 unsigned int seq;
818
819 retry:
820 seq = raw_seqcount_begin(&devnet_rename_seq);
821 rcu_read_lock();
822 dev = dev_get_by_index_rcu(net, ifindex);
823 if (!dev) {
824 rcu_read_unlock();
825 return -ENODEV;
826 }
827
828 strcpy(name, dev->name);
829 rcu_read_unlock();
830 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
831 cond_resched();
832 goto retry;
833 }
834
835 return 0;
836 }
837
838 /**
839 * dev_getbyhwaddr_rcu - find a device by its hardware address
840 * @net: the applicable net namespace
841 * @type: media type of device
842 * @ha: hardware address
843 *
844 * Search for an interface by MAC address. Returns NULL if the device
845 * is not found or a pointer to the device.
846 * The caller must hold RCU or RTNL.
847 * The returned device has not had its ref count increased
848 * and the caller must therefore be careful about locking
849 *
850 */
851
852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853 const char *ha)
854 {
855 struct net_device *dev;
856
857 for_each_netdev_rcu(net, dev)
858 if (dev->type == type &&
859 !memcmp(dev->dev_addr, ha, dev->addr_len))
860 return dev;
861
862 return NULL;
863 }
864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
865
866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
867 {
868 struct net_device *dev;
869
870 ASSERT_RTNL();
871 for_each_netdev(net, dev)
872 if (dev->type == type)
873 return dev;
874
875 return NULL;
876 }
877 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
878
879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
880 {
881 struct net_device *dev, *ret = NULL;
882
883 rcu_read_lock();
884 for_each_netdev_rcu(net, dev)
885 if (dev->type == type) {
886 dev_hold(dev);
887 ret = dev;
888 break;
889 }
890 rcu_read_unlock();
891 return ret;
892 }
893 EXPORT_SYMBOL(dev_getfirstbyhwtype);
894
895 /**
896 * dev_get_by_flags_rcu - find any device with given flags
897 * @net: the applicable net namespace
898 * @if_flags: IFF_* values
899 * @mask: bitmask of bits in if_flags to check
900 *
901 * Search for any interface with the given flags. Returns NULL if a device
902 * is not found or a pointer to the device. Must be called inside
903 * rcu_read_lock(), and result refcount is unchanged.
904 */
905
906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907 unsigned short mask)
908 {
909 struct net_device *dev, *ret;
910
911 ret = NULL;
912 for_each_netdev_rcu(net, dev) {
913 if (((dev->flags ^ if_flags) & mask) == 0) {
914 ret = dev;
915 break;
916 }
917 }
918 return ret;
919 }
920 EXPORT_SYMBOL(dev_get_by_flags_rcu);
921
922 /**
923 * dev_valid_name - check if name is okay for network device
924 * @name: name string
925 *
926 * Network device names need to be valid file names to
927 * to allow sysfs to work. We also disallow any kind of
928 * whitespace.
929 */
930 bool dev_valid_name(const char *name)
931 {
932 if (*name == '\0')
933 return false;
934 if (strlen(name) >= IFNAMSIZ)
935 return false;
936 if (!strcmp(name, ".") || !strcmp(name, ".."))
937 return false;
938
939 while (*name) {
940 if (*name == '/' || isspace(*name))
941 return false;
942 name++;
943 }
944 return true;
945 }
946 EXPORT_SYMBOL(dev_valid_name);
947
948 /**
949 * __dev_alloc_name - allocate a name for a device
950 * @net: network namespace to allocate the device name in
951 * @name: name format string
952 * @buf: scratch buffer and result name string
953 *
954 * Passed a format string - eg "lt%d" it will try and find a suitable
955 * id. It scans list of devices to build up a free map, then chooses
956 * the first empty slot. The caller must hold the dev_base or rtnl lock
957 * while allocating the name and adding the device in order to avoid
958 * duplicates.
959 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
960 * Returns the number of the unit assigned or a negative errno code.
961 */
962
963 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
964 {
965 int i = 0;
966 const char *p;
967 const int max_netdevices = 8*PAGE_SIZE;
968 unsigned long *inuse;
969 struct net_device *d;
970
971 p = strnchr(name, IFNAMSIZ-1, '%');
972 if (p) {
973 /*
974 * Verify the string as this thing may have come from
975 * the user. There must be either one "%d" and no other "%"
976 * characters.
977 */
978 if (p[1] != 'd' || strchr(p + 2, '%'))
979 return -EINVAL;
980
981 /* Use one page as a bit array of possible slots */
982 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
983 if (!inuse)
984 return -ENOMEM;
985
986 for_each_netdev(net, d) {
987 if (!sscanf(d->name, name, &i))
988 continue;
989 if (i < 0 || i >= max_netdevices)
990 continue;
991
992 /* avoid cases where sscanf is not exact inverse of printf */
993 snprintf(buf, IFNAMSIZ, name, i);
994 if (!strncmp(buf, d->name, IFNAMSIZ))
995 set_bit(i, inuse);
996 }
997
998 i = find_first_zero_bit(inuse, max_netdevices);
999 free_page((unsigned long) inuse);
1000 }
1001
1002 if (buf != name)
1003 snprintf(buf, IFNAMSIZ, name, i);
1004 if (!__dev_get_by_name(net, buf))
1005 return i;
1006
1007 /* It is possible to run out of possible slots
1008 * when the name is long and there isn't enough space left
1009 * for the digits, or if all bits are used.
1010 */
1011 return -ENFILE;
1012 }
1013
1014 /**
1015 * dev_alloc_name - allocate a name for a device
1016 * @dev: device
1017 * @name: name format string
1018 *
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1023 * duplicates.
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1026 */
1027
1028 int dev_alloc_name(struct net_device *dev, const char *name)
1029 {
1030 char buf[IFNAMSIZ];
1031 struct net *net;
1032 int ret;
1033
1034 BUG_ON(!dev_net(dev));
1035 net = dev_net(dev);
1036 ret = __dev_alloc_name(net, name, buf);
1037 if (ret >= 0)
1038 strlcpy(dev->name, buf, IFNAMSIZ);
1039 return ret;
1040 }
1041 EXPORT_SYMBOL(dev_alloc_name);
1042
1043 static int dev_alloc_name_ns(struct net *net,
1044 struct net_device *dev,
1045 const char *name)
1046 {
1047 char buf[IFNAMSIZ];
1048 int ret;
1049
1050 ret = __dev_alloc_name(net, name, buf);
1051 if (ret >= 0)
1052 strlcpy(dev->name, buf, IFNAMSIZ);
1053 return ret;
1054 }
1055
1056 static int dev_get_valid_name(struct net *net,
1057 struct net_device *dev,
1058 const char *name)
1059 {
1060 BUG_ON(!net);
1061
1062 if (!dev_valid_name(name))
1063 return -EINVAL;
1064
1065 if (strchr(name, '%'))
1066 return dev_alloc_name_ns(net, dev, name);
1067 else if (__dev_get_by_name(net, name))
1068 return -EEXIST;
1069 else if (dev->name != name)
1070 strlcpy(dev->name, name, IFNAMSIZ);
1071
1072 return 0;
1073 }
1074
1075 /**
1076 * dev_change_name - change name of a device
1077 * @dev: device
1078 * @newname: name (or format string) must be at least IFNAMSIZ
1079 *
1080 * Change name of a device, can pass format strings "eth%d".
1081 * for wildcarding.
1082 */
1083 int dev_change_name(struct net_device *dev, const char *newname)
1084 {
1085 char oldname[IFNAMSIZ];
1086 int err = 0;
1087 int ret;
1088 struct net *net;
1089
1090 ASSERT_RTNL();
1091 BUG_ON(!dev_net(dev));
1092
1093 net = dev_net(dev);
1094 if (dev->flags & IFF_UP)
1095 return -EBUSY;
1096
1097 write_seqcount_begin(&devnet_rename_seq);
1098
1099 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1100 write_seqcount_end(&devnet_rename_seq);
1101 return 0;
1102 }
1103
1104 memcpy(oldname, dev->name, IFNAMSIZ);
1105
1106 err = dev_get_valid_name(net, dev, newname);
1107 if (err < 0) {
1108 write_seqcount_end(&devnet_rename_seq);
1109 return err;
1110 }
1111
1112 rollback:
1113 ret = device_rename(&dev->dev, dev->name);
1114 if (ret) {
1115 memcpy(dev->name, oldname, IFNAMSIZ);
1116 write_seqcount_end(&devnet_rename_seq);
1117 return ret;
1118 }
1119
1120 write_seqcount_end(&devnet_rename_seq);
1121
1122 netdev_adjacent_rename_links(dev, oldname);
1123
1124 write_lock_bh(&dev_base_lock);
1125 hlist_del_rcu(&dev->name_hlist);
1126 write_unlock_bh(&dev_base_lock);
1127
1128 synchronize_rcu();
1129
1130 write_lock_bh(&dev_base_lock);
1131 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1132 write_unlock_bh(&dev_base_lock);
1133
1134 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1135 ret = notifier_to_errno(ret);
1136
1137 if (ret) {
1138 /* err >= 0 after dev_alloc_name() or stores the first errno */
1139 if (err >= 0) {
1140 err = ret;
1141 write_seqcount_begin(&devnet_rename_seq);
1142 memcpy(dev->name, oldname, IFNAMSIZ);
1143 memcpy(oldname, newname, IFNAMSIZ);
1144 goto rollback;
1145 } else {
1146 pr_err("%s: name change rollback failed: %d\n",
1147 dev->name, ret);
1148 }
1149 }
1150
1151 return err;
1152 }
1153
1154 /**
1155 * dev_set_alias - change ifalias of a device
1156 * @dev: device
1157 * @alias: name up to IFALIASZ
1158 * @len: limit of bytes to copy from info
1159 *
1160 * Set ifalias for a device,
1161 */
1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1163 {
1164 char *new_ifalias;
1165
1166 ASSERT_RTNL();
1167
1168 if (len >= IFALIASZ)
1169 return -EINVAL;
1170
1171 if (!len) {
1172 kfree(dev->ifalias);
1173 dev->ifalias = NULL;
1174 return 0;
1175 }
1176
1177 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1178 if (!new_ifalias)
1179 return -ENOMEM;
1180 dev->ifalias = new_ifalias;
1181
1182 strlcpy(dev->ifalias, alias, len+1);
1183 return len;
1184 }
1185
1186
1187 /**
1188 * netdev_features_change - device changes features
1189 * @dev: device to cause notification
1190 *
1191 * Called to indicate a device has changed features.
1192 */
1193 void netdev_features_change(struct net_device *dev)
1194 {
1195 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1196 }
1197 EXPORT_SYMBOL(netdev_features_change);
1198
1199 /**
1200 * netdev_state_change - device changes state
1201 * @dev: device to cause notification
1202 *
1203 * Called to indicate a device has changed state. This function calls
1204 * the notifier chains for netdev_chain and sends a NEWLINK message
1205 * to the routing socket.
1206 */
1207 void netdev_state_change(struct net_device *dev)
1208 {
1209 if (dev->flags & IFF_UP) {
1210 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1211 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1212 }
1213 }
1214 EXPORT_SYMBOL(netdev_state_change);
1215
1216 /**
1217 * netdev_notify_peers - notify network peers about existence of @dev
1218 * @dev: network device
1219 *
1220 * Generate traffic such that interested network peers are aware of
1221 * @dev, such as by generating a gratuitous ARP. This may be used when
1222 * a device wants to inform the rest of the network about some sort of
1223 * reconfiguration such as a failover event or virtual machine
1224 * migration.
1225 */
1226 void netdev_notify_peers(struct net_device *dev)
1227 {
1228 rtnl_lock();
1229 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1230 rtnl_unlock();
1231 }
1232 EXPORT_SYMBOL(netdev_notify_peers);
1233
1234 static int __dev_open(struct net_device *dev)
1235 {
1236 const struct net_device_ops *ops = dev->netdev_ops;
1237 int ret;
1238
1239 ASSERT_RTNL();
1240
1241 if (!netif_device_present(dev))
1242 return -ENODEV;
1243
1244 /* Block netpoll from trying to do any rx path servicing.
1245 * If we don't do this there is a chance ndo_poll_controller
1246 * or ndo_poll may be running while we open the device
1247 */
1248 netpoll_poll_disable(dev);
1249
1250 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1251 ret = notifier_to_errno(ret);
1252 if (ret)
1253 return ret;
1254
1255 set_bit(__LINK_STATE_START, &dev->state);
1256
1257 if (ops->ndo_validate_addr)
1258 ret = ops->ndo_validate_addr(dev);
1259
1260 if (!ret && ops->ndo_open)
1261 ret = ops->ndo_open(dev);
1262
1263 netpoll_poll_enable(dev);
1264
1265 if (ret)
1266 clear_bit(__LINK_STATE_START, &dev->state);
1267 else {
1268 dev->flags |= IFF_UP;
1269 net_dmaengine_get();
1270 dev_set_rx_mode(dev);
1271 dev_activate(dev);
1272 add_device_randomness(dev->dev_addr, dev->addr_len);
1273 }
1274
1275 return ret;
1276 }
1277
1278 /**
1279 * dev_open - prepare an interface for use.
1280 * @dev: device to open
1281 *
1282 * Takes a device from down to up state. The device's private open
1283 * function is invoked and then the multicast lists are loaded. Finally
1284 * the device is moved into the up state and a %NETDEV_UP message is
1285 * sent to the netdev notifier chain.
1286 *
1287 * Calling this function on an active interface is a nop. On a failure
1288 * a negative errno code is returned.
1289 */
1290 int dev_open(struct net_device *dev)
1291 {
1292 int ret;
1293
1294 if (dev->flags & IFF_UP)
1295 return 0;
1296
1297 ret = __dev_open(dev);
1298 if (ret < 0)
1299 return ret;
1300
1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1302 call_netdevice_notifiers(NETDEV_UP, dev);
1303
1304 return ret;
1305 }
1306 EXPORT_SYMBOL(dev_open);
1307
1308 static int __dev_close_many(struct list_head *head)
1309 {
1310 struct net_device *dev;
1311
1312 ASSERT_RTNL();
1313 might_sleep();
1314
1315 list_for_each_entry(dev, head, close_list) {
1316 /* Temporarily disable netpoll until the interface is down */
1317 netpoll_poll_disable(dev);
1318
1319 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1320
1321 clear_bit(__LINK_STATE_START, &dev->state);
1322
1323 /* Synchronize to scheduled poll. We cannot touch poll list, it
1324 * can be even on different cpu. So just clear netif_running().
1325 *
1326 * dev->stop() will invoke napi_disable() on all of it's
1327 * napi_struct instances on this device.
1328 */
1329 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1330 }
1331
1332 dev_deactivate_many(head);
1333
1334 list_for_each_entry(dev, head, close_list) {
1335 const struct net_device_ops *ops = dev->netdev_ops;
1336
1337 /*
1338 * Call the device specific close. This cannot fail.
1339 * Only if device is UP
1340 *
1341 * We allow it to be called even after a DETACH hot-plug
1342 * event.
1343 */
1344 if (ops->ndo_stop)
1345 ops->ndo_stop(dev);
1346
1347 dev->flags &= ~IFF_UP;
1348 net_dmaengine_put();
1349 netpoll_poll_enable(dev);
1350 }
1351
1352 return 0;
1353 }
1354
1355 static int __dev_close(struct net_device *dev)
1356 {
1357 int retval;
1358 LIST_HEAD(single);
1359
1360 list_add(&dev->close_list, &single);
1361 retval = __dev_close_many(&single);
1362 list_del(&single);
1363
1364 return retval;
1365 }
1366
1367 static int dev_close_many(struct list_head *head)
1368 {
1369 struct net_device *dev, *tmp;
1370
1371 /* Remove the devices that don't need to be closed */
1372 list_for_each_entry_safe(dev, tmp, head, close_list)
1373 if (!(dev->flags & IFF_UP))
1374 list_del_init(&dev->close_list);
1375
1376 __dev_close_many(head);
1377
1378 list_for_each_entry_safe(dev, tmp, head, close_list) {
1379 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1380 call_netdevice_notifiers(NETDEV_DOWN, dev);
1381 list_del_init(&dev->close_list);
1382 }
1383
1384 return 0;
1385 }
1386
1387 /**
1388 * dev_close - shutdown an interface.
1389 * @dev: device to shutdown
1390 *
1391 * This function moves an active device into down state. A
1392 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1393 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1394 * chain.
1395 */
1396 int dev_close(struct net_device *dev)
1397 {
1398 if (dev->flags & IFF_UP) {
1399 LIST_HEAD(single);
1400
1401 list_add(&dev->close_list, &single);
1402 dev_close_many(&single);
1403 list_del(&single);
1404 }
1405 return 0;
1406 }
1407 EXPORT_SYMBOL(dev_close);
1408
1409
1410 /**
1411 * dev_disable_lro - disable Large Receive Offload on a device
1412 * @dev: device
1413 *
1414 * Disable Large Receive Offload (LRO) on a net device. Must be
1415 * called under RTNL. This is needed if received packets may be
1416 * forwarded to another interface.
1417 */
1418 void dev_disable_lro(struct net_device *dev)
1419 {
1420 /*
1421 * If we're trying to disable lro on a vlan device
1422 * use the underlying physical device instead
1423 */
1424 if (is_vlan_dev(dev))
1425 dev = vlan_dev_real_dev(dev);
1426
1427 /* the same for macvlan devices */
1428 if (netif_is_macvlan(dev))
1429 dev = macvlan_dev_real_dev(dev);
1430
1431 dev->wanted_features &= ~NETIF_F_LRO;
1432 netdev_update_features(dev);
1433
1434 if (unlikely(dev->features & NETIF_F_LRO))
1435 netdev_WARN(dev, "failed to disable LRO!\n");
1436 }
1437 EXPORT_SYMBOL(dev_disable_lro);
1438
1439 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1440 struct net_device *dev)
1441 {
1442 struct netdev_notifier_info info;
1443
1444 netdev_notifier_info_init(&info, dev);
1445 return nb->notifier_call(nb, val, &info);
1446 }
1447
1448 static int dev_boot_phase = 1;
1449
1450 /**
1451 * register_netdevice_notifier - register a network notifier block
1452 * @nb: notifier
1453 *
1454 * Register a notifier to be called when network device events occur.
1455 * The notifier passed is linked into the kernel structures and must
1456 * not be reused until it has been unregistered. A negative errno code
1457 * is returned on a failure.
1458 *
1459 * When registered all registration and up events are replayed
1460 * to the new notifier to allow device to have a race free
1461 * view of the network device list.
1462 */
1463
1464 int register_netdevice_notifier(struct notifier_block *nb)
1465 {
1466 struct net_device *dev;
1467 struct net_device *last;
1468 struct net *net;
1469 int err;
1470
1471 rtnl_lock();
1472 err = raw_notifier_chain_register(&netdev_chain, nb);
1473 if (err)
1474 goto unlock;
1475 if (dev_boot_phase)
1476 goto unlock;
1477 for_each_net(net) {
1478 for_each_netdev(net, dev) {
1479 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1480 err = notifier_to_errno(err);
1481 if (err)
1482 goto rollback;
1483
1484 if (!(dev->flags & IFF_UP))
1485 continue;
1486
1487 call_netdevice_notifier(nb, NETDEV_UP, dev);
1488 }
1489 }
1490
1491 unlock:
1492 rtnl_unlock();
1493 return err;
1494
1495 rollback:
1496 last = dev;
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev == last)
1500 goto outroll;
1501
1502 if (dev->flags & IFF_UP) {
1503 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1504 dev);
1505 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1506 }
1507 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1508 }
1509 }
1510
1511 outroll:
1512 raw_notifier_chain_unregister(&netdev_chain, nb);
1513 goto unlock;
1514 }
1515 EXPORT_SYMBOL(register_netdevice_notifier);
1516
1517 /**
1518 * unregister_netdevice_notifier - unregister a network notifier block
1519 * @nb: notifier
1520 *
1521 * Unregister a notifier previously registered by
1522 * register_netdevice_notifier(). The notifier is unlinked into the
1523 * kernel structures and may then be reused. A negative errno code
1524 * is returned on a failure.
1525 *
1526 * After unregistering unregister and down device events are synthesized
1527 * for all devices on the device list to the removed notifier to remove
1528 * the need for special case cleanup code.
1529 */
1530
1531 int unregister_netdevice_notifier(struct notifier_block *nb)
1532 {
1533 struct net_device *dev;
1534 struct net *net;
1535 int err;
1536
1537 rtnl_lock();
1538 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1539 if (err)
1540 goto unlock;
1541
1542 for_each_net(net) {
1543 for_each_netdev(net, dev) {
1544 if (dev->flags & IFF_UP) {
1545 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1546 dev);
1547 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1548 }
1549 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1550 }
1551 }
1552 unlock:
1553 rtnl_unlock();
1554 return err;
1555 }
1556 EXPORT_SYMBOL(unregister_netdevice_notifier);
1557
1558 /**
1559 * call_netdevice_notifiers_info - call all network notifier blocks
1560 * @val: value passed unmodified to notifier function
1561 * @dev: net_device pointer passed unmodified to notifier function
1562 * @info: notifier information data
1563 *
1564 * Call all network notifier blocks. Parameters and return value
1565 * are as for raw_notifier_call_chain().
1566 */
1567
1568 static int call_netdevice_notifiers_info(unsigned long val,
1569 struct net_device *dev,
1570 struct netdev_notifier_info *info)
1571 {
1572 ASSERT_RTNL();
1573 netdev_notifier_info_init(info, dev);
1574 return raw_notifier_call_chain(&netdev_chain, val, info);
1575 }
1576
1577 /**
1578 * call_netdevice_notifiers - call all network notifier blocks
1579 * @val: value passed unmodified to notifier function
1580 * @dev: net_device pointer passed unmodified to notifier function
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1586 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1587 {
1588 struct netdev_notifier_info info;
1589
1590 return call_netdevice_notifiers_info(val, dev, &info);
1591 }
1592 EXPORT_SYMBOL(call_netdevice_notifiers);
1593
1594 static struct static_key netstamp_needed __read_mostly;
1595 #ifdef HAVE_JUMP_LABEL
1596 /* We are not allowed to call static_key_slow_dec() from irq context
1597 * If net_disable_timestamp() is called from irq context, defer the
1598 * static_key_slow_dec() calls.
1599 */
1600 static atomic_t netstamp_needed_deferred;
1601 #endif
1602
1603 void net_enable_timestamp(void)
1604 {
1605 #ifdef HAVE_JUMP_LABEL
1606 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1607
1608 if (deferred) {
1609 while (--deferred)
1610 static_key_slow_dec(&netstamp_needed);
1611 return;
1612 }
1613 #endif
1614 static_key_slow_inc(&netstamp_needed);
1615 }
1616 EXPORT_SYMBOL(net_enable_timestamp);
1617
1618 void net_disable_timestamp(void)
1619 {
1620 #ifdef HAVE_JUMP_LABEL
1621 if (in_interrupt()) {
1622 atomic_inc(&netstamp_needed_deferred);
1623 return;
1624 }
1625 #endif
1626 static_key_slow_dec(&netstamp_needed);
1627 }
1628 EXPORT_SYMBOL(net_disable_timestamp);
1629
1630 static inline void net_timestamp_set(struct sk_buff *skb)
1631 {
1632 skb->tstamp.tv64 = 0;
1633 if (static_key_false(&netstamp_needed))
1634 __net_timestamp(skb);
1635 }
1636
1637 #define net_timestamp_check(COND, SKB) \
1638 if (static_key_false(&netstamp_needed)) { \
1639 if ((COND) && !(SKB)->tstamp.tv64) \
1640 __net_timestamp(SKB); \
1641 } \
1642
1643 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1644 {
1645 unsigned int len;
1646
1647 if (!(dev->flags & IFF_UP))
1648 return false;
1649
1650 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1651 if (skb->len <= len)
1652 return true;
1653
1654 /* if TSO is enabled, we don't care about the length as the packet
1655 * could be forwarded without being segmented before
1656 */
1657 if (skb_is_gso(skb))
1658 return true;
1659
1660 return false;
1661 }
1662 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1663
1664 /**
1665 * dev_forward_skb - loopback an skb to another netif
1666 *
1667 * @dev: destination network device
1668 * @skb: buffer to forward
1669 *
1670 * return values:
1671 * NET_RX_SUCCESS (no congestion)
1672 * NET_RX_DROP (packet was dropped, but freed)
1673 *
1674 * dev_forward_skb can be used for injecting an skb from the
1675 * start_xmit function of one device into the receive queue
1676 * of another device.
1677 *
1678 * The receiving device may be in another namespace, so
1679 * we have to clear all information in the skb that could
1680 * impact namespace isolation.
1681 */
1682 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683 {
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1689 }
1690 }
1691
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 skb_scrub_packet(skb, true);
1699 skb->protocol = eth_type_trans(skb, dev);
1700
1701 return netif_rx_internal(skb);
1702 }
1703 EXPORT_SYMBOL_GPL(dev_forward_skb);
1704
1705 static inline int deliver_skb(struct sk_buff *skb,
1706 struct packet_type *pt_prev,
1707 struct net_device *orig_dev)
1708 {
1709 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1710 return -ENOMEM;
1711 atomic_inc(&skb->users);
1712 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1713 }
1714
1715 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1716 {
1717 if (!ptype->af_packet_priv || !skb->sk)
1718 return false;
1719
1720 if (ptype->id_match)
1721 return ptype->id_match(ptype, skb->sk);
1722 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1723 return true;
1724
1725 return false;
1726 }
1727
1728 /*
1729 * Support routine. Sends outgoing frames to any network
1730 * taps currently in use.
1731 */
1732
1733 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1734 {
1735 struct packet_type *ptype;
1736 struct sk_buff *skb2 = NULL;
1737 struct packet_type *pt_prev = NULL;
1738
1739 rcu_read_lock();
1740 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1741 /* Never send packets back to the socket
1742 * they originated from - MvS (miquels@drinkel.ow.org)
1743 */
1744 if ((ptype->dev == dev || !ptype->dev) &&
1745 (!skb_loop_sk(ptype, skb))) {
1746 if (pt_prev) {
1747 deliver_skb(skb2, pt_prev, skb->dev);
1748 pt_prev = ptype;
1749 continue;
1750 }
1751
1752 skb2 = skb_clone(skb, GFP_ATOMIC);
1753 if (!skb2)
1754 break;
1755
1756 net_timestamp_set(skb2);
1757
1758 /* skb->nh should be correctly
1759 set by sender, so that the second statement is
1760 just protection against buggy protocols.
1761 */
1762 skb_reset_mac_header(skb2);
1763
1764 if (skb_network_header(skb2) < skb2->data ||
1765 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1766 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1767 ntohs(skb2->protocol),
1768 dev->name);
1769 skb_reset_network_header(skb2);
1770 }
1771
1772 skb2->transport_header = skb2->network_header;
1773 skb2->pkt_type = PACKET_OUTGOING;
1774 pt_prev = ptype;
1775 }
1776 }
1777 if (pt_prev)
1778 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1779 rcu_read_unlock();
1780 }
1781
1782 /**
1783 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1784 * @dev: Network device
1785 * @txq: number of queues available
1786 *
1787 * If real_num_tx_queues is changed the tc mappings may no longer be
1788 * valid. To resolve this verify the tc mapping remains valid and if
1789 * not NULL the mapping. With no priorities mapping to this
1790 * offset/count pair it will no longer be used. In the worst case TC0
1791 * is invalid nothing can be done so disable priority mappings. If is
1792 * expected that drivers will fix this mapping if they can before
1793 * calling netif_set_real_num_tx_queues.
1794 */
1795 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1796 {
1797 int i;
1798 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1799
1800 /* If TC0 is invalidated disable TC mapping */
1801 if (tc->offset + tc->count > txq) {
1802 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1803 dev->num_tc = 0;
1804 return;
1805 }
1806
1807 /* Invalidated prio to tc mappings set to TC0 */
1808 for (i = 1; i < TC_BITMASK + 1; i++) {
1809 int q = netdev_get_prio_tc_map(dev, i);
1810
1811 tc = &dev->tc_to_txq[q];
1812 if (tc->offset + tc->count > txq) {
1813 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1814 i, q);
1815 netdev_set_prio_tc_map(dev, i, 0);
1816 }
1817 }
1818 }
1819
1820 #ifdef CONFIG_XPS
1821 static DEFINE_MUTEX(xps_map_mutex);
1822 #define xmap_dereference(P) \
1823 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1824
1825 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1826 int cpu, u16 index)
1827 {
1828 struct xps_map *map = NULL;
1829 int pos;
1830
1831 if (dev_maps)
1832 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1833
1834 for (pos = 0; map && pos < map->len; pos++) {
1835 if (map->queues[pos] == index) {
1836 if (map->len > 1) {
1837 map->queues[pos] = map->queues[--map->len];
1838 } else {
1839 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1840 kfree_rcu(map, rcu);
1841 map = NULL;
1842 }
1843 break;
1844 }
1845 }
1846
1847 return map;
1848 }
1849
1850 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1851 {
1852 struct xps_dev_maps *dev_maps;
1853 int cpu, i;
1854 bool active = false;
1855
1856 mutex_lock(&xps_map_mutex);
1857 dev_maps = xmap_dereference(dev->xps_maps);
1858
1859 if (!dev_maps)
1860 goto out_no_maps;
1861
1862 for_each_possible_cpu(cpu) {
1863 for (i = index; i < dev->num_tx_queues; i++) {
1864 if (!remove_xps_queue(dev_maps, cpu, i))
1865 break;
1866 }
1867 if (i == dev->num_tx_queues)
1868 active = true;
1869 }
1870
1871 if (!active) {
1872 RCU_INIT_POINTER(dev->xps_maps, NULL);
1873 kfree_rcu(dev_maps, rcu);
1874 }
1875
1876 for (i = index; i < dev->num_tx_queues; i++)
1877 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1878 NUMA_NO_NODE);
1879
1880 out_no_maps:
1881 mutex_unlock(&xps_map_mutex);
1882 }
1883
1884 static struct xps_map *expand_xps_map(struct xps_map *map,
1885 int cpu, u16 index)
1886 {
1887 struct xps_map *new_map;
1888 int alloc_len = XPS_MIN_MAP_ALLOC;
1889 int i, pos;
1890
1891 for (pos = 0; map && pos < map->len; pos++) {
1892 if (map->queues[pos] != index)
1893 continue;
1894 return map;
1895 }
1896
1897 /* Need to add queue to this CPU's existing map */
1898 if (map) {
1899 if (pos < map->alloc_len)
1900 return map;
1901
1902 alloc_len = map->alloc_len * 2;
1903 }
1904
1905 /* Need to allocate new map to store queue on this CPU's map */
1906 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1907 cpu_to_node(cpu));
1908 if (!new_map)
1909 return NULL;
1910
1911 for (i = 0; i < pos; i++)
1912 new_map->queues[i] = map->queues[i];
1913 new_map->alloc_len = alloc_len;
1914 new_map->len = pos;
1915
1916 return new_map;
1917 }
1918
1919 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1920 u16 index)
1921 {
1922 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1923 struct xps_map *map, *new_map;
1924 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1925 int cpu, numa_node_id = -2;
1926 bool active = false;
1927
1928 mutex_lock(&xps_map_mutex);
1929
1930 dev_maps = xmap_dereference(dev->xps_maps);
1931
1932 /* allocate memory for queue storage */
1933 for_each_online_cpu(cpu) {
1934 if (!cpumask_test_cpu(cpu, mask))
1935 continue;
1936
1937 if (!new_dev_maps)
1938 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1939 if (!new_dev_maps) {
1940 mutex_unlock(&xps_map_mutex);
1941 return -ENOMEM;
1942 }
1943
1944 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1945 NULL;
1946
1947 map = expand_xps_map(map, cpu, index);
1948 if (!map)
1949 goto error;
1950
1951 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1952 }
1953
1954 if (!new_dev_maps)
1955 goto out_no_new_maps;
1956
1957 for_each_possible_cpu(cpu) {
1958 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959 /* add queue to CPU maps */
1960 int pos = 0;
1961
1962 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963 while ((pos < map->len) && (map->queues[pos] != index))
1964 pos++;
1965
1966 if (pos == map->len)
1967 map->queues[map->len++] = index;
1968 #ifdef CONFIG_NUMA
1969 if (numa_node_id == -2)
1970 numa_node_id = cpu_to_node(cpu);
1971 else if (numa_node_id != cpu_to_node(cpu))
1972 numa_node_id = -1;
1973 #endif
1974 } else if (dev_maps) {
1975 /* fill in the new device map from the old device map */
1976 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978 }
1979
1980 }
1981
1982 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1983
1984 /* Cleanup old maps */
1985 if (dev_maps) {
1986 for_each_possible_cpu(cpu) {
1987 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1989 if (map && map != new_map)
1990 kfree_rcu(map, rcu);
1991 }
1992
1993 kfree_rcu(dev_maps, rcu);
1994 }
1995
1996 dev_maps = new_dev_maps;
1997 active = true;
1998
1999 out_no_new_maps:
2000 /* update Tx queue numa node */
2001 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002 (numa_node_id >= 0) ? numa_node_id :
2003 NUMA_NO_NODE);
2004
2005 if (!dev_maps)
2006 goto out_no_maps;
2007
2008 /* removes queue from unused CPUs */
2009 for_each_possible_cpu(cpu) {
2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2011 continue;
2012
2013 if (remove_xps_queue(dev_maps, cpu, index))
2014 active = true;
2015 }
2016
2017 /* free map if not active */
2018 if (!active) {
2019 RCU_INIT_POINTER(dev->xps_maps, NULL);
2020 kfree_rcu(dev_maps, rcu);
2021 }
2022
2023 out_no_maps:
2024 mutex_unlock(&xps_map_mutex);
2025
2026 return 0;
2027 error:
2028 /* remove any maps that we added */
2029 for_each_possible_cpu(cpu) {
2030 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2032 NULL;
2033 if (new_map && new_map != map)
2034 kfree(new_map);
2035 }
2036
2037 mutex_unlock(&xps_map_mutex);
2038
2039 kfree(new_dev_maps);
2040 return -ENOMEM;
2041 }
2042 EXPORT_SYMBOL(netif_set_xps_queue);
2043
2044 #endif
2045 /*
2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2048 */
2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2050 {
2051 int rc;
2052
2053 if (txq < 1 || txq > dev->num_tx_queues)
2054 return -EINVAL;
2055
2056 if (dev->reg_state == NETREG_REGISTERED ||
2057 dev->reg_state == NETREG_UNREGISTERING) {
2058 ASSERT_RTNL();
2059
2060 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2061 txq);
2062 if (rc)
2063 return rc;
2064
2065 if (dev->num_tc)
2066 netif_setup_tc(dev, txq);
2067
2068 if (txq < dev->real_num_tx_queues) {
2069 qdisc_reset_all_tx_gt(dev, txq);
2070 #ifdef CONFIG_XPS
2071 netif_reset_xps_queues_gt(dev, txq);
2072 #endif
2073 }
2074 }
2075
2076 dev->real_num_tx_queues = txq;
2077 return 0;
2078 }
2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2080
2081 #ifdef CONFIG_SYSFS
2082 /**
2083 * netif_set_real_num_rx_queues - set actual number of RX queues used
2084 * @dev: Network device
2085 * @rxq: Actual number of RX queues
2086 *
2087 * This must be called either with the rtnl_lock held or before
2088 * registration of the net device. Returns 0 on success, or a
2089 * negative error code. If called before registration, it always
2090 * succeeds.
2091 */
2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2093 {
2094 int rc;
2095
2096 if (rxq < 1 || rxq > dev->num_rx_queues)
2097 return -EINVAL;
2098
2099 if (dev->reg_state == NETREG_REGISTERED) {
2100 ASSERT_RTNL();
2101
2102 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2103 rxq);
2104 if (rc)
2105 return rc;
2106 }
2107
2108 dev->real_num_rx_queues = rxq;
2109 return 0;
2110 }
2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2112 #endif
2113
2114 /**
2115 * netif_get_num_default_rss_queues - default number of RSS queues
2116 *
2117 * This routine should set an upper limit on the number of RSS queues
2118 * used by default by multiqueue devices.
2119 */
2120 int netif_get_num_default_rss_queues(void)
2121 {
2122 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2123 }
2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2125
2126 static inline void __netif_reschedule(struct Qdisc *q)
2127 {
2128 struct softnet_data *sd;
2129 unsigned long flags;
2130
2131 local_irq_save(flags);
2132 sd = &__get_cpu_var(softnet_data);
2133 q->next_sched = NULL;
2134 *sd->output_queue_tailp = q;
2135 sd->output_queue_tailp = &q->next_sched;
2136 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137 local_irq_restore(flags);
2138 }
2139
2140 void __netif_schedule(struct Qdisc *q)
2141 {
2142 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143 __netif_reschedule(q);
2144 }
2145 EXPORT_SYMBOL(__netif_schedule);
2146
2147 struct dev_kfree_skb_cb {
2148 enum skb_free_reason reason;
2149 };
2150
2151 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2152 {
2153 return (struct dev_kfree_skb_cb *)skb->cb;
2154 }
2155
2156 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2157 {
2158 unsigned long flags;
2159
2160 if (likely(atomic_read(&skb->users) == 1)) {
2161 smp_rmb();
2162 atomic_set(&skb->users, 0);
2163 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2164 return;
2165 }
2166 get_kfree_skb_cb(skb)->reason = reason;
2167 local_irq_save(flags);
2168 skb->next = __this_cpu_read(softnet_data.completion_queue);
2169 __this_cpu_write(softnet_data.completion_queue, skb);
2170 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2171 local_irq_restore(flags);
2172 }
2173 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2174
2175 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2176 {
2177 if (in_irq() || irqs_disabled())
2178 __dev_kfree_skb_irq(skb, reason);
2179 else
2180 dev_kfree_skb(skb);
2181 }
2182 EXPORT_SYMBOL(__dev_kfree_skb_any);
2183
2184
2185 /**
2186 * netif_device_detach - mark device as removed
2187 * @dev: network device
2188 *
2189 * Mark device as removed from system and therefore no longer available.
2190 */
2191 void netif_device_detach(struct net_device *dev)
2192 {
2193 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2194 netif_running(dev)) {
2195 netif_tx_stop_all_queues(dev);
2196 }
2197 }
2198 EXPORT_SYMBOL(netif_device_detach);
2199
2200 /**
2201 * netif_device_attach - mark device as attached
2202 * @dev: network device
2203 *
2204 * Mark device as attached from system and restart if needed.
2205 */
2206 void netif_device_attach(struct net_device *dev)
2207 {
2208 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2209 netif_running(dev)) {
2210 netif_tx_wake_all_queues(dev);
2211 __netdev_watchdog_up(dev);
2212 }
2213 }
2214 EXPORT_SYMBOL(netif_device_attach);
2215
2216 static void skb_warn_bad_offload(const struct sk_buff *skb)
2217 {
2218 static const netdev_features_t null_features = 0;
2219 struct net_device *dev = skb->dev;
2220 const char *driver = "";
2221
2222 if (!net_ratelimit())
2223 return;
2224
2225 if (dev && dev->dev.parent)
2226 driver = dev_driver_string(dev->dev.parent);
2227
2228 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2229 "gso_type=%d ip_summed=%d\n",
2230 driver, dev ? &dev->features : &null_features,
2231 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2232 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2233 skb_shinfo(skb)->gso_type, skb->ip_summed);
2234 }
2235
2236 /*
2237 * Invalidate hardware checksum when packet is to be mangled, and
2238 * complete checksum manually on outgoing path.
2239 */
2240 int skb_checksum_help(struct sk_buff *skb)
2241 {
2242 __wsum csum;
2243 int ret = 0, offset;
2244
2245 if (skb->ip_summed == CHECKSUM_COMPLETE)
2246 goto out_set_summed;
2247
2248 if (unlikely(skb_shinfo(skb)->gso_size)) {
2249 skb_warn_bad_offload(skb);
2250 return -EINVAL;
2251 }
2252
2253 /* Before computing a checksum, we should make sure no frag could
2254 * be modified by an external entity : checksum could be wrong.
2255 */
2256 if (skb_has_shared_frag(skb)) {
2257 ret = __skb_linearize(skb);
2258 if (ret)
2259 goto out;
2260 }
2261
2262 offset = skb_checksum_start_offset(skb);
2263 BUG_ON(offset >= skb_headlen(skb));
2264 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2265
2266 offset += skb->csum_offset;
2267 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2268
2269 if (skb_cloned(skb) &&
2270 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2271 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2272 if (ret)
2273 goto out;
2274 }
2275
2276 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2277 out_set_summed:
2278 skb->ip_summed = CHECKSUM_NONE;
2279 out:
2280 return ret;
2281 }
2282 EXPORT_SYMBOL(skb_checksum_help);
2283
2284 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2285 {
2286 __be16 type = skb->protocol;
2287 int vlan_depth = ETH_HLEN;
2288
2289 /* Tunnel gso handlers can set protocol to ethernet. */
2290 if (type == htons(ETH_P_TEB)) {
2291 struct ethhdr *eth;
2292
2293 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2294 return 0;
2295
2296 eth = (struct ethhdr *)skb_mac_header(skb);
2297 type = eth->h_proto;
2298 }
2299
2300 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2301 struct vlan_hdr *vh;
2302
2303 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2304 return 0;
2305
2306 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2307 type = vh->h_vlan_encapsulated_proto;
2308 vlan_depth += VLAN_HLEN;
2309 }
2310
2311 *depth = vlan_depth;
2312
2313 return type;
2314 }
2315
2316 /**
2317 * skb_mac_gso_segment - mac layer segmentation handler.
2318 * @skb: buffer to segment
2319 * @features: features for the output path (see dev->features)
2320 */
2321 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2322 netdev_features_t features)
2323 {
2324 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2325 struct packet_offload *ptype;
2326 int vlan_depth = skb->mac_len;
2327 __be16 type = skb_network_protocol(skb, &vlan_depth);
2328
2329 if (unlikely(!type))
2330 return ERR_PTR(-EINVAL);
2331
2332 __skb_pull(skb, vlan_depth);
2333
2334 rcu_read_lock();
2335 list_for_each_entry_rcu(ptype, &offload_base, list) {
2336 if (ptype->type == type && ptype->callbacks.gso_segment) {
2337 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2338 int err;
2339
2340 err = ptype->callbacks.gso_send_check(skb);
2341 segs = ERR_PTR(err);
2342 if (err || skb_gso_ok(skb, features))
2343 break;
2344 __skb_push(skb, (skb->data -
2345 skb_network_header(skb)));
2346 }
2347 segs = ptype->callbacks.gso_segment(skb, features);
2348 break;
2349 }
2350 }
2351 rcu_read_unlock();
2352
2353 __skb_push(skb, skb->data - skb_mac_header(skb));
2354
2355 return segs;
2356 }
2357 EXPORT_SYMBOL(skb_mac_gso_segment);
2358
2359
2360 /* openvswitch calls this on rx path, so we need a different check.
2361 */
2362 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2363 {
2364 if (tx_path)
2365 return skb->ip_summed != CHECKSUM_PARTIAL;
2366 else
2367 return skb->ip_summed == CHECKSUM_NONE;
2368 }
2369
2370 /**
2371 * __skb_gso_segment - Perform segmentation on skb.
2372 * @skb: buffer to segment
2373 * @features: features for the output path (see dev->features)
2374 * @tx_path: whether it is called in TX path
2375 *
2376 * This function segments the given skb and returns a list of segments.
2377 *
2378 * It may return NULL if the skb requires no segmentation. This is
2379 * only possible when GSO is used for verifying header integrity.
2380 */
2381 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2382 netdev_features_t features, bool tx_path)
2383 {
2384 if (unlikely(skb_needs_check(skb, tx_path))) {
2385 int err;
2386
2387 skb_warn_bad_offload(skb);
2388
2389 if (skb_header_cloned(skb) &&
2390 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2391 return ERR_PTR(err);
2392 }
2393
2394 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2395 SKB_GSO_CB(skb)->encap_level = 0;
2396
2397 skb_reset_mac_header(skb);
2398 skb_reset_mac_len(skb);
2399
2400 return skb_mac_gso_segment(skb, features);
2401 }
2402 EXPORT_SYMBOL(__skb_gso_segment);
2403
2404 /* Take action when hardware reception checksum errors are detected. */
2405 #ifdef CONFIG_BUG
2406 void netdev_rx_csum_fault(struct net_device *dev)
2407 {
2408 if (net_ratelimit()) {
2409 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2410 dump_stack();
2411 }
2412 }
2413 EXPORT_SYMBOL(netdev_rx_csum_fault);
2414 #endif
2415
2416 /* Actually, we should eliminate this check as soon as we know, that:
2417 * 1. IOMMU is present and allows to map all the memory.
2418 * 2. No high memory really exists on this machine.
2419 */
2420
2421 static int illegal_highdma(const struct net_device *dev, struct sk_buff *skb)
2422 {
2423 #ifdef CONFIG_HIGHMEM
2424 int i;
2425 if (!(dev->features & NETIF_F_HIGHDMA)) {
2426 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2427 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2428 if (PageHighMem(skb_frag_page(frag)))
2429 return 1;
2430 }
2431 }
2432
2433 if (PCI_DMA_BUS_IS_PHYS) {
2434 struct device *pdev = dev->dev.parent;
2435
2436 if (!pdev)
2437 return 0;
2438 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2439 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2440 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2441 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2442 return 1;
2443 }
2444 }
2445 #endif
2446 return 0;
2447 }
2448
2449 struct dev_gso_cb {
2450 void (*destructor)(struct sk_buff *skb);
2451 };
2452
2453 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2454
2455 static void dev_gso_skb_destructor(struct sk_buff *skb)
2456 {
2457 struct dev_gso_cb *cb;
2458
2459 kfree_skb_list(skb->next);
2460 skb->next = NULL;
2461
2462 cb = DEV_GSO_CB(skb);
2463 if (cb->destructor)
2464 cb->destructor(skb);
2465 }
2466
2467 /**
2468 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2469 * @skb: buffer to segment
2470 * @features: device features as applicable to this skb
2471 *
2472 * This function segments the given skb and stores the list of segments
2473 * in skb->next.
2474 */
2475 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2476 {
2477 struct sk_buff *segs;
2478
2479 segs = skb_gso_segment(skb, features);
2480
2481 /* Verifying header integrity only. */
2482 if (!segs)
2483 return 0;
2484
2485 if (IS_ERR(segs))
2486 return PTR_ERR(segs);
2487
2488 skb->next = segs;
2489 DEV_GSO_CB(skb)->destructor = skb->destructor;
2490 skb->destructor = dev_gso_skb_destructor;
2491
2492 return 0;
2493 }
2494
2495 static netdev_features_t harmonize_features(struct sk_buff *skb,
2496 const struct net_device *dev,
2497 netdev_features_t features)
2498 {
2499 int tmp;
2500
2501 if (skb->ip_summed != CHECKSUM_NONE &&
2502 !can_checksum_protocol(features, skb_network_protocol(skb, &tmp))) {
2503 features &= ~NETIF_F_ALL_CSUM;
2504 } else if (illegal_highdma(dev, skb)) {
2505 features &= ~NETIF_F_SG;
2506 }
2507
2508 return features;
2509 }
2510
2511 netdev_features_t netif_skb_dev_features(struct sk_buff *skb,
2512 const struct net_device *dev)
2513 {
2514 __be16 protocol = skb->protocol;
2515 netdev_features_t features = dev->features;
2516
2517 if (skb_shinfo(skb)->gso_segs > dev->gso_max_segs)
2518 features &= ~NETIF_F_GSO_MASK;
2519
2520 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2521 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2522 protocol = veh->h_vlan_encapsulated_proto;
2523 } else if (!vlan_tx_tag_present(skb)) {
2524 return harmonize_features(skb, dev, features);
2525 }
2526
2527 features &= (dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2528 NETIF_F_HW_VLAN_STAG_TX);
2529
2530 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2531 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2532 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2533 NETIF_F_HW_VLAN_STAG_TX;
2534
2535 return harmonize_features(skb, dev, features);
2536 }
2537 EXPORT_SYMBOL(netif_skb_dev_features);
2538
2539 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2540 struct netdev_queue *txq)
2541 {
2542 const struct net_device_ops *ops = dev->netdev_ops;
2543 int rc = NETDEV_TX_OK;
2544 unsigned int skb_len;
2545
2546 if (likely(!skb->next)) {
2547 netdev_features_t features;
2548
2549 /*
2550 * If device doesn't need skb->dst, release it right now while
2551 * its hot in this cpu cache
2552 */
2553 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2554 skb_dst_drop(skb);
2555
2556 features = netif_skb_features(skb);
2557
2558 if (vlan_tx_tag_present(skb) &&
2559 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2560 skb = __vlan_put_tag(skb, skb->vlan_proto,
2561 vlan_tx_tag_get(skb));
2562 if (unlikely(!skb))
2563 goto out;
2564
2565 skb->vlan_tci = 0;
2566 }
2567
2568 /* If encapsulation offload request, verify we are testing
2569 * hardware encapsulation features instead of standard
2570 * features for the netdev
2571 */
2572 if (skb->encapsulation)
2573 features &= dev->hw_enc_features;
2574
2575 if (netif_needs_gso(skb, features)) {
2576 if (unlikely(dev_gso_segment(skb, features)))
2577 goto out_kfree_skb;
2578 if (skb->next)
2579 goto gso;
2580 } else {
2581 if (skb_needs_linearize(skb, features) &&
2582 __skb_linearize(skb))
2583 goto out_kfree_skb;
2584
2585 /* If packet is not checksummed and device does not
2586 * support checksumming for this protocol, complete
2587 * checksumming here.
2588 */
2589 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2590 if (skb->encapsulation)
2591 skb_set_inner_transport_header(skb,
2592 skb_checksum_start_offset(skb));
2593 else
2594 skb_set_transport_header(skb,
2595 skb_checksum_start_offset(skb));
2596 if (!(features & NETIF_F_ALL_CSUM) &&
2597 skb_checksum_help(skb))
2598 goto out_kfree_skb;
2599 }
2600 }
2601
2602 if (!list_empty(&ptype_all))
2603 dev_queue_xmit_nit(skb, dev);
2604
2605 skb_len = skb->len;
2606 trace_net_dev_start_xmit(skb, dev);
2607 rc = ops->ndo_start_xmit(skb, dev);
2608 trace_net_dev_xmit(skb, rc, dev, skb_len);
2609 if (rc == NETDEV_TX_OK)
2610 txq_trans_update(txq);
2611 return rc;
2612 }
2613
2614 gso:
2615 do {
2616 struct sk_buff *nskb = skb->next;
2617
2618 skb->next = nskb->next;
2619 nskb->next = NULL;
2620
2621 if (!list_empty(&ptype_all))
2622 dev_queue_xmit_nit(nskb, dev);
2623
2624 skb_len = nskb->len;
2625 trace_net_dev_start_xmit(nskb, dev);
2626 rc = ops->ndo_start_xmit(nskb, dev);
2627 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2628 if (unlikely(rc != NETDEV_TX_OK)) {
2629 if (rc & ~NETDEV_TX_MASK)
2630 goto out_kfree_gso_skb;
2631 nskb->next = skb->next;
2632 skb->next = nskb;
2633 return rc;
2634 }
2635 txq_trans_update(txq);
2636 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2637 return NETDEV_TX_BUSY;
2638 } while (skb->next);
2639
2640 out_kfree_gso_skb:
2641 if (likely(skb->next == NULL)) {
2642 skb->destructor = DEV_GSO_CB(skb)->destructor;
2643 consume_skb(skb);
2644 return rc;
2645 }
2646 out_kfree_skb:
2647 kfree_skb(skb);
2648 out:
2649 return rc;
2650 }
2651 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2652
2653 static void qdisc_pkt_len_init(struct sk_buff *skb)
2654 {
2655 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2656
2657 qdisc_skb_cb(skb)->pkt_len = skb->len;
2658
2659 /* To get more precise estimation of bytes sent on wire,
2660 * we add to pkt_len the headers size of all segments
2661 */
2662 if (shinfo->gso_size) {
2663 unsigned int hdr_len;
2664 u16 gso_segs = shinfo->gso_segs;
2665
2666 /* mac layer + network layer */
2667 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2668
2669 /* + transport layer */
2670 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2671 hdr_len += tcp_hdrlen(skb);
2672 else
2673 hdr_len += sizeof(struct udphdr);
2674
2675 if (shinfo->gso_type & SKB_GSO_DODGY)
2676 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2677 shinfo->gso_size);
2678
2679 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2680 }
2681 }
2682
2683 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2684 struct net_device *dev,
2685 struct netdev_queue *txq)
2686 {
2687 spinlock_t *root_lock = qdisc_lock(q);
2688 bool contended;
2689 int rc;
2690
2691 qdisc_pkt_len_init(skb);
2692 qdisc_calculate_pkt_len(skb, q);
2693 /*
2694 * Heuristic to force contended enqueues to serialize on a
2695 * separate lock before trying to get qdisc main lock.
2696 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2697 * and dequeue packets faster.
2698 */
2699 contended = qdisc_is_running(q);
2700 if (unlikely(contended))
2701 spin_lock(&q->busylock);
2702
2703 spin_lock(root_lock);
2704 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2705 kfree_skb(skb);
2706 rc = NET_XMIT_DROP;
2707 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2708 qdisc_run_begin(q)) {
2709 /*
2710 * This is a work-conserving queue; there are no old skbs
2711 * waiting to be sent out; and the qdisc is not running -
2712 * xmit the skb directly.
2713 */
2714 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2715 skb_dst_force(skb);
2716
2717 qdisc_bstats_update(q, skb);
2718
2719 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2720 if (unlikely(contended)) {
2721 spin_unlock(&q->busylock);
2722 contended = false;
2723 }
2724 __qdisc_run(q);
2725 } else
2726 qdisc_run_end(q);
2727
2728 rc = NET_XMIT_SUCCESS;
2729 } else {
2730 skb_dst_force(skb);
2731 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2732 if (qdisc_run_begin(q)) {
2733 if (unlikely(contended)) {
2734 spin_unlock(&q->busylock);
2735 contended = false;
2736 }
2737 __qdisc_run(q);
2738 }
2739 }
2740 spin_unlock(root_lock);
2741 if (unlikely(contended))
2742 spin_unlock(&q->busylock);
2743 return rc;
2744 }
2745
2746 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2747 static void skb_update_prio(struct sk_buff *skb)
2748 {
2749 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2750
2751 if (!skb->priority && skb->sk && map) {
2752 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2753
2754 if (prioidx < map->priomap_len)
2755 skb->priority = map->priomap[prioidx];
2756 }
2757 }
2758 #else
2759 #define skb_update_prio(skb)
2760 #endif
2761
2762 static DEFINE_PER_CPU(int, xmit_recursion);
2763 #define RECURSION_LIMIT 10
2764
2765 /**
2766 * dev_loopback_xmit - loop back @skb
2767 * @skb: buffer to transmit
2768 */
2769 int dev_loopback_xmit(struct sk_buff *skb)
2770 {
2771 skb_reset_mac_header(skb);
2772 __skb_pull(skb, skb_network_offset(skb));
2773 skb->pkt_type = PACKET_LOOPBACK;
2774 skb->ip_summed = CHECKSUM_UNNECESSARY;
2775 WARN_ON(!skb_dst(skb));
2776 skb_dst_force(skb);
2777 netif_rx_ni(skb);
2778 return 0;
2779 }
2780 EXPORT_SYMBOL(dev_loopback_xmit);
2781
2782 /**
2783 * __dev_queue_xmit - transmit a buffer
2784 * @skb: buffer to transmit
2785 * @accel_priv: private data used for L2 forwarding offload
2786 *
2787 * Queue a buffer for transmission to a network device. The caller must
2788 * have set the device and priority and built the buffer before calling
2789 * this function. The function can be called from an interrupt.
2790 *
2791 * A negative errno code is returned on a failure. A success does not
2792 * guarantee the frame will be transmitted as it may be dropped due
2793 * to congestion or traffic shaping.
2794 *
2795 * -----------------------------------------------------------------------------------
2796 * I notice this method can also return errors from the queue disciplines,
2797 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2798 * be positive.
2799 *
2800 * Regardless of the return value, the skb is consumed, so it is currently
2801 * difficult to retry a send to this method. (You can bump the ref count
2802 * before sending to hold a reference for retry if you are careful.)
2803 *
2804 * When calling this method, interrupts MUST be enabled. This is because
2805 * the BH enable code must have IRQs enabled so that it will not deadlock.
2806 * --BLG
2807 */
2808 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2809 {
2810 struct net_device *dev = skb->dev;
2811 struct netdev_queue *txq;
2812 struct Qdisc *q;
2813 int rc = -ENOMEM;
2814
2815 skb_reset_mac_header(skb);
2816
2817 /* Disable soft irqs for various locks below. Also
2818 * stops preemption for RCU.
2819 */
2820 rcu_read_lock_bh();
2821
2822 skb_update_prio(skb);
2823
2824 txq = netdev_pick_tx(dev, skb, accel_priv);
2825 q = rcu_dereference_bh(txq->qdisc);
2826
2827 #ifdef CONFIG_NET_CLS_ACT
2828 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2829 #endif
2830 trace_net_dev_queue(skb);
2831 if (q->enqueue) {
2832 rc = __dev_xmit_skb(skb, q, dev, txq);
2833 goto out;
2834 }
2835
2836 /* The device has no queue. Common case for software devices:
2837 loopback, all the sorts of tunnels...
2838
2839 Really, it is unlikely that netif_tx_lock protection is necessary
2840 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2841 counters.)
2842 However, it is possible, that they rely on protection
2843 made by us here.
2844
2845 Check this and shot the lock. It is not prone from deadlocks.
2846 Either shot noqueue qdisc, it is even simpler 8)
2847 */
2848 if (dev->flags & IFF_UP) {
2849 int cpu = smp_processor_id(); /* ok because BHs are off */
2850
2851 if (txq->xmit_lock_owner != cpu) {
2852
2853 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2854 goto recursion_alert;
2855
2856 HARD_TX_LOCK(dev, txq, cpu);
2857
2858 if (!netif_xmit_stopped(txq)) {
2859 __this_cpu_inc(xmit_recursion);
2860 rc = dev_hard_start_xmit(skb, dev, txq);
2861 __this_cpu_dec(xmit_recursion);
2862 if (dev_xmit_complete(rc)) {
2863 HARD_TX_UNLOCK(dev, txq);
2864 goto out;
2865 }
2866 }
2867 HARD_TX_UNLOCK(dev, txq);
2868 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2869 dev->name);
2870 } else {
2871 /* Recursion is detected! It is possible,
2872 * unfortunately
2873 */
2874 recursion_alert:
2875 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2876 dev->name);
2877 }
2878 }
2879
2880 rc = -ENETDOWN;
2881 rcu_read_unlock_bh();
2882
2883 atomic_long_inc(&dev->tx_dropped);
2884 kfree_skb(skb);
2885 return rc;
2886 out:
2887 rcu_read_unlock_bh();
2888 return rc;
2889 }
2890
2891 int dev_queue_xmit(struct sk_buff *skb)
2892 {
2893 return __dev_queue_xmit(skb, NULL);
2894 }
2895 EXPORT_SYMBOL(dev_queue_xmit);
2896
2897 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2898 {
2899 return __dev_queue_xmit(skb, accel_priv);
2900 }
2901 EXPORT_SYMBOL(dev_queue_xmit_accel);
2902
2903
2904 /*=======================================================================
2905 Receiver routines
2906 =======================================================================*/
2907
2908 int netdev_max_backlog __read_mostly = 1000;
2909 EXPORT_SYMBOL(netdev_max_backlog);
2910
2911 int netdev_tstamp_prequeue __read_mostly = 1;
2912 int netdev_budget __read_mostly = 300;
2913 int weight_p __read_mostly = 64; /* old backlog weight */
2914
2915 /* Called with irq disabled */
2916 static inline void ____napi_schedule(struct softnet_data *sd,
2917 struct napi_struct *napi)
2918 {
2919 list_add_tail(&napi->poll_list, &sd->poll_list);
2920 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2921 }
2922
2923 #ifdef CONFIG_RPS
2924
2925 /* One global table that all flow-based protocols share. */
2926 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2927 EXPORT_SYMBOL(rps_sock_flow_table);
2928
2929 struct static_key rps_needed __read_mostly;
2930
2931 static struct rps_dev_flow *
2932 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2933 struct rps_dev_flow *rflow, u16 next_cpu)
2934 {
2935 if (next_cpu != RPS_NO_CPU) {
2936 #ifdef CONFIG_RFS_ACCEL
2937 struct netdev_rx_queue *rxqueue;
2938 struct rps_dev_flow_table *flow_table;
2939 struct rps_dev_flow *old_rflow;
2940 u32 flow_id;
2941 u16 rxq_index;
2942 int rc;
2943
2944 /* Should we steer this flow to a different hardware queue? */
2945 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2946 !(dev->features & NETIF_F_NTUPLE))
2947 goto out;
2948 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2949 if (rxq_index == skb_get_rx_queue(skb))
2950 goto out;
2951
2952 rxqueue = dev->_rx + rxq_index;
2953 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2954 if (!flow_table)
2955 goto out;
2956 flow_id = skb_get_hash(skb) & flow_table->mask;
2957 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2958 rxq_index, flow_id);
2959 if (rc < 0)
2960 goto out;
2961 old_rflow = rflow;
2962 rflow = &flow_table->flows[flow_id];
2963 rflow->filter = rc;
2964 if (old_rflow->filter == rflow->filter)
2965 old_rflow->filter = RPS_NO_FILTER;
2966 out:
2967 #endif
2968 rflow->last_qtail =
2969 per_cpu(softnet_data, next_cpu).input_queue_head;
2970 }
2971
2972 rflow->cpu = next_cpu;
2973 return rflow;
2974 }
2975
2976 /*
2977 * get_rps_cpu is called from netif_receive_skb and returns the target
2978 * CPU from the RPS map of the receiving queue for a given skb.
2979 * rcu_read_lock must be held on entry.
2980 */
2981 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2982 struct rps_dev_flow **rflowp)
2983 {
2984 struct netdev_rx_queue *rxqueue;
2985 struct rps_map *map;
2986 struct rps_dev_flow_table *flow_table;
2987 struct rps_sock_flow_table *sock_flow_table;
2988 int cpu = -1;
2989 u16 tcpu;
2990 u32 hash;
2991
2992 if (skb_rx_queue_recorded(skb)) {
2993 u16 index = skb_get_rx_queue(skb);
2994 if (unlikely(index >= dev->real_num_rx_queues)) {
2995 WARN_ONCE(dev->real_num_rx_queues > 1,
2996 "%s received packet on queue %u, but number "
2997 "of RX queues is %u\n",
2998 dev->name, index, dev->real_num_rx_queues);
2999 goto done;
3000 }
3001 rxqueue = dev->_rx + index;
3002 } else
3003 rxqueue = dev->_rx;
3004
3005 map = rcu_dereference(rxqueue->rps_map);
3006 if (map) {
3007 if (map->len == 1 &&
3008 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3009 tcpu = map->cpus[0];
3010 if (cpu_online(tcpu))
3011 cpu = tcpu;
3012 goto done;
3013 }
3014 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3015 goto done;
3016 }
3017
3018 skb_reset_network_header(skb);
3019 hash = skb_get_hash(skb);
3020 if (!hash)
3021 goto done;
3022
3023 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3024 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3025 if (flow_table && sock_flow_table) {
3026 u16 next_cpu;
3027 struct rps_dev_flow *rflow;
3028
3029 rflow = &flow_table->flows[hash & flow_table->mask];
3030 tcpu = rflow->cpu;
3031
3032 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3033
3034 /*
3035 * If the desired CPU (where last recvmsg was done) is
3036 * different from current CPU (one in the rx-queue flow
3037 * table entry), switch if one of the following holds:
3038 * - Current CPU is unset (equal to RPS_NO_CPU).
3039 * - Current CPU is offline.
3040 * - The current CPU's queue tail has advanced beyond the
3041 * last packet that was enqueued using this table entry.
3042 * This guarantees that all previous packets for the flow
3043 * have been dequeued, thus preserving in order delivery.
3044 */
3045 if (unlikely(tcpu != next_cpu) &&
3046 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3047 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3048 rflow->last_qtail)) >= 0)) {
3049 tcpu = next_cpu;
3050 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3051 }
3052
3053 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3054 *rflowp = rflow;
3055 cpu = tcpu;
3056 goto done;
3057 }
3058 }
3059
3060 if (map) {
3061 tcpu = map->cpus[((u64) hash * map->len) >> 32];
3062
3063 if (cpu_online(tcpu)) {
3064 cpu = tcpu;
3065 goto done;
3066 }
3067 }
3068
3069 done:
3070 return cpu;
3071 }
3072
3073 #ifdef CONFIG_RFS_ACCEL
3074
3075 /**
3076 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3077 * @dev: Device on which the filter was set
3078 * @rxq_index: RX queue index
3079 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3080 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3081 *
3082 * Drivers that implement ndo_rx_flow_steer() should periodically call
3083 * this function for each installed filter and remove the filters for
3084 * which it returns %true.
3085 */
3086 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3087 u32 flow_id, u16 filter_id)
3088 {
3089 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3090 struct rps_dev_flow_table *flow_table;
3091 struct rps_dev_flow *rflow;
3092 bool expire = true;
3093 int cpu;
3094
3095 rcu_read_lock();
3096 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3097 if (flow_table && flow_id <= flow_table->mask) {
3098 rflow = &flow_table->flows[flow_id];
3099 cpu = ACCESS_ONCE(rflow->cpu);
3100 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3101 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3102 rflow->last_qtail) <
3103 (int)(10 * flow_table->mask)))
3104 expire = false;
3105 }
3106 rcu_read_unlock();
3107 return expire;
3108 }
3109 EXPORT_SYMBOL(rps_may_expire_flow);
3110
3111 #endif /* CONFIG_RFS_ACCEL */
3112
3113 /* Called from hardirq (IPI) context */
3114 static void rps_trigger_softirq(void *data)
3115 {
3116 struct softnet_data *sd = data;
3117
3118 ____napi_schedule(sd, &sd->backlog);
3119 sd->received_rps++;
3120 }
3121
3122 #endif /* CONFIG_RPS */
3123
3124 /*
3125 * Check if this softnet_data structure is another cpu one
3126 * If yes, queue it to our IPI list and return 1
3127 * If no, return 0
3128 */
3129 static int rps_ipi_queued(struct softnet_data *sd)
3130 {
3131 #ifdef CONFIG_RPS
3132 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3133
3134 if (sd != mysd) {
3135 sd->rps_ipi_next = mysd->rps_ipi_list;
3136 mysd->rps_ipi_list = sd;
3137
3138 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3139 return 1;
3140 }
3141 #endif /* CONFIG_RPS */
3142 return 0;
3143 }
3144
3145 #ifdef CONFIG_NET_FLOW_LIMIT
3146 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3147 #endif
3148
3149 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3150 {
3151 #ifdef CONFIG_NET_FLOW_LIMIT
3152 struct sd_flow_limit *fl;
3153 struct softnet_data *sd;
3154 unsigned int old_flow, new_flow;
3155
3156 if (qlen < (netdev_max_backlog >> 1))
3157 return false;
3158
3159 sd = &__get_cpu_var(softnet_data);
3160
3161 rcu_read_lock();
3162 fl = rcu_dereference(sd->flow_limit);
3163 if (fl) {
3164 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3165 old_flow = fl->history[fl->history_head];
3166 fl->history[fl->history_head] = new_flow;
3167
3168 fl->history_head++;
3169 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3170
3171 if (likely(fl->buckets[old_flow]))
3172 fl->buckets[old_flow]--;
3173
3174 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3175 fl->count++;
3176 rcu_read_unlock();
3177 return true;
3178 }
3179 }
3180 rcu_read_unlock();
3181 #endif
3182 return false;
3183 }
3184
3185 /*
3186 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3187 * queue (may be a remote CPU queue).
3188 */
3189 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3190 unsigned int *qtail)
3191 {
3192 struct softnet_data *sd;
3193 unsigned long flags;
3194 unsigned int qlen;
3195
3196 sd = &per_cpu(softnet_data, cpu);
3197
3198 local_irq_save(flags);
3199
3200 rps_lock(sd);
3201 qlen = skb_queue_len(&sd->input_pkt_queue);
3202 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3203 if (skb_queue_len(&sd->input_pkt_queue)) {
3204 enqueue:
3205 __skb_queue_tail(&sd->input_pkt_queue, skb);
3206 input_queue_tail_incr_save(sd, qtail);
3207 rps_unlock(sd);
3208 local_irq_restore(flags);
3209 return NET_RX_SUCCESS;
3210 }
3211
3212 /* Schedule NAPI for backlog device
3213 * We can use non atomic operation since we own the queue lock
3214 */
3215 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3216 if (!rps_ipi_queued(sd))
3217 ____napi_schedule(sd, &sd->backlog);
3218 }
3219 goto enqueue;
3220 }
3221
3222 sd->dropped++;
3223 rps_unlock(sd);
3224
3225 local_irq_restore(flags);
3226
3227 atomic_long_inc(&skb->dev->rx_dropped);
3228 kfree_skb(skb);
3229 return NET_RX_DROP;
3230 }
3231
3232 static int netif_rx_internal(struct sk_buff *skb)
3233 {
3234 int ret;
3235
3236 net_timestamp_check(netdev_tstamp_prequeue, skb);
3237
3238 trace_netif_rx(skb);
3239 #ifdef CONFIG_RPS
3240 if (static_key_false(&rps_needed)) {
3241 struct rps_dev_flow voidflow, *rflow = &voidflow;
3242 int cpu;
3243
3244 preempt_disable();
3245 rcu_read_lock();
3246
3247 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3248 if (cpu < 0)
3249 cpu = smp_processor_id();
3250
3251 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3252
3253 rcu_read_unlock();
3254 preempt_enable();
3255 } else
3256 #endif
3257 {
3258 unsigned int qtail;
3259 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3260 put_cpu();
3261 }
3262 return ret;
3263 }
3264
3265 /**
3266 * netif_rx - post buffer to the network code
3267 * @skb: buffer to post
3268 *
3269 * This function receives a packet from a device driver and queues it for
3270 * the upper (protocol) levels to process. It always succeeds. The buffer
3271 * may be dropped during processing for congestion control or by the
3272 * protocol layers.
3273 *
3274 * return values:
3275 * NET_RX_SUCCESS (no congestion)
3276 * NET_RX_DROP (packet was dropped)
3277 *
3278 */
3279
3280 int netif_rx(struct sk_buff *skb)
3281 {
3282 trace_netif_rx_entry(skb);
3283
3284 return netif_rx_internal(skb);
3285 }
3286 EXPORT_SYMBOL(netif_rx);
3287
3288 int netif_rx_ni(struct sk_buff *skb)
3289 {
3290 int err;
3291
3292 trace_netif_rx_ni_entry(skb);
3293
3294 preempt_disable();
3295 err = netif_rx_internal(skb);
3296 if (local_softirq_pending())
3297 do_softirq();
3298 preempt_enable();
3299
3300 return err;
3301 }
3302 EXPORT_SYMBOL(netif_rx_ni);
3303
3304 static void net_tx_action(struct softirq_action *h)
3305 {
3306 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3307
3308 if (sd->completion_queue) {
3309 struct sk_buff *clist;
3310
3311 local_irq_disable();
3312 clist = sd->completion_queue;
3313 sd->completion_queue = NULL;
3314 local_irq_enable();
3315
3316 while (clist) {
3317 struct sk_buff *skb = clist;
3318 clist = clist->next;
3319
3320 WARN_ON(atomic_read(&skb->users));
3321 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3322 trace_consume_skb(skb);
3323 else
3324 trace_kfree_skb(skb, net_tx_action);
3325 __kfree_skb(skb);
3326 }
3327 }
3328
3329 if (sd->output_queue) {
3330 struct Qdisc *head;
3331
3332 local_irq_disable();
3333 head = sd->output_queue;
3334 sd->output_queue = NULL;
3335 sd->output_queue_tailp = &sd->output_queue;
3336 local_irq_enable();
3337
3338 while (head) {
3339 struct Qdisc *q = head;
3340 spinlock_t *root_lock;
3341
3342 head = head->next_sched;
3343
3344 root_lock = qdisc_lock(q);
3345 if (spin_trylock(root_lock)) {
3346 smp_mb__before_clear_bit();
3347 clear_bit(__QDISC_STATE_SCHED,
3348 &q->state);
3349 qdisc_run(q);
3350 spin_unlock(root_lock);
3351 } else {
3352 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3353 &q->state)) {
3354 __netif_reschedule(q);
3355 } else {
3356 smp_mb__before_clear_bit();
3357 clear_bit(__QDISC_STATE_SCHED,
3358 &q->state);
3359 }
3360 }
3361 }
3362 }
3363 }
3364
3365 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3366 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3367 /* This hook is defined here for ATM LANE */
3368 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3369 unsigned char *addr) __read_mostly;
3370 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3371 #endif
3372
3373 #ifdef CONFIG_NET_CLS_ACT
3374 /* TODO: Maybe we should just force sch_ingress to be compiled in
3375 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3376 * a compare and 2 stores extra right now if we dont have it on
3377 * but have CONFIG_NET_CLS_ACT
3378 * NOTE: This doesn't stop any functionality; if you dont have
3379 * the ingress scheduler, you just can't add policies on ingress.
3380 *
3381 */
3382 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3383 {
3384 struct net_device *dev = skb->dev;
3385 u32 ttl = G_TC_RTTL(skb->tc_verd);
3386 int result = TC_ACT_OK;
3387 struct Qdisc *q;
3388
3389 if (unlikely(MAX_RED_LOOP < ttl++)) {
3390 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3391 skb->skb_iif, dev->ifindex);
3392 return TC_ACT_SHOT;
3393 }
3394
3395 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3396 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3397
3398 q = rxq->qdisc;
3399 if (q != &noop_qdisc) {
3400 spin_lock(qdisc_lock(q));
3401 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3402 result = qdisc_enqueue_root(skb, q);
3403 spin_unlock(qdisc_lock(q));
3404 }
3405
3406 return result;
3407 }
3408
3409 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3410 struct packet_type **pt_prev,
3411 int *ret, struct net_device *orig_dev)
3412 {
3413 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3414
3415 if (!rxq || rxq->qdisc == &noop_qdisc)
3416 goto out;
3417
3418 if (*pt_prev) {
3419 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3420 *pt_prev = NULL;
3421 }
3422
3423 switch (ing_filter(skb, rxq)) {
3424 case TC_ACT_SHOT:
3425 case TC_ACT_STOLEN:
3426 kfree_skb(skb);
3427 return NULL;
3428 }
3429
3430 out:
3431 skb->tc_verd = 0;
3432 return skb;
3433 }
3434 #endif
3435
3436 /**
3437 * netdev_rx_handler_register - register receive handler
3438 * @dev: device to register a handler for
3439 * @rx_handler: receive handler to register
3440 * @rx_handler_data: data pointer that is used by rx handler
3441 *
3442 * Register a receive handler for a device. This handler will then be
3443 * called from __netif_receive_skb. A negative errno code is returned
3444 * on a failure.
3445 *
3446 * The caller must hold the rtnl_mutex.
3447 *
3448 * For a general description of rx_handler, see enum rx_handler_result.
3449 */
3450 int netdev_rx_handler_register(struct net_device *dev,
3451 rx_handler_func_t *rx_handler,
3452 void *rx_handler_data)
3453 {
3454 ASSERT_RTNL();
3455
3456 if (dev->rx_handler)
3457 return -EBUSY;
3458
3459 /* Note: rx_handler_data must be set before rx_handler */
3460 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3461 rcu_assign_pointer(dev->rx_handler, rx_handler);
3462
3463 return 0;
3464 }
3465 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3466
3467 /**
3468 * netdev_rx_handler_unregister - unregister receive handler
3469 * @dev: device to unregister a handler from
3470 *
3471 * Unregister a receive handler from a device.
3472 *
3473 * The caller must hold the rtnl_mutex.
3474 */
3475 void netdev_rx_handler_unregister(struct net_device *dev)
3476 {
3477
3478 ASSERT_RTNL();
3479 RCU_INIT_POINTER(dev->rx_handler, NULL);
3480 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3481 * section has a guarantee to see a non NULL rx_handler_data
3482 * as well.
3483 */
3484 synchronize_net();
3485 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3486 }
3487 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3488
3489 /*
3490 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3491 * the special handling of PFMEMALLOC skbs.
3492 */
3493 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3494 {
3495 switch (skb->protocol) {
3496 case htons(ETH_P_ARP):
3497 case htons(ETH_P_IP):
3498 case htons(ETH_P_IPV6):
3499 case htons(ETH_P_8021Q):
3500 case htons(ETH_P_8021AD):
3501 return true;
3502 default:
3503 return false;
3504 }
3505 }
3506
3507 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3508 {
3509 struct packet_type *ptype, *pt_prev;
3510 rx_handler_func_t *rx_handler;
3511 struct net_device *orig_dev;
3512 struct net_device *null_or_dev;
3513 bool deliver_exact = false;
3514 int ret = NET_RX_DROP;
3515 __be16 type;
3516
3517 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3518
3519 trace_netif_receive_skb(skb);
3520
3521 orig_dev = skb->dev;
3522
3523 skb_reset_network_header(skb);
3524 if (!skb_transport_header_was_set(skb))
3525 skb_reset_transport_header(skb);
3526 skb_reset_mac_len(skb);
3527
3528 pt_prev = NULL;
3529
3530 rcu_read_lock();
3531
3532 another_round:
3533 skb->skb_iif = skb->dev->ifindex;
3534
3535 __this_cpu_inc(softnet_data.processed);
3536
3537 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3538 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3539 skb = vlan_untag(skb);
3540 if (unlikely(!skb))
3541 goto unlock;
3542 }
3543
3544 #ifdef CONFIG_NET_CLS_ACT
3545 if (skb->tc_verd & TC_NCLS) {
3546 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3547 goto ncls;
3548 }
3549 #endif
3550
3551 if (pfmemalloc)
3552 goto skip_taps;
3553
3554 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3555 if (!ptype->dev || ptype->dev == skb->dev) {
3556 if (pt_prev)
3557 ret = deliver_skb(skb, pt_prev, orig_dev);
3558 pt_prev = ptype;
3559 }
3560 }
3561
3562 skip_taps:
3563 #ifdef CONFIG_NET_CLS_ACT
3564 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3565 if (!skb)
3566 goto unlock;
3567 ncls:
3568 #endif
3569
3570 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3571 goto drop;
3572
3573 if (vlan_tx_tag_present(skb)) {
3574 if (pt_prev) {
3575 ret = deliver_skb(skb, pt_prev, orig_dev);
3576 pt_prev = NULL;
3577 }
3578 if (vlan_do_receive(&skb))
3579 goto another_round;
3580 else if (unlikely(!skb))
3581 goto unlock;
3582 }
3583
3584 rx_handler = rcu_dereference(skb->dev->rx_handler);
3585 if (rx_handler) {
3586 if (pt_prev) {
3587 ret = deliver_skb(skb, pt_prev, orig_dev);
3588 pt_prev = NULL;
3589 }
3590 switch (rx_handler(&skb)) {
3591 case RX_HANDLER_CONSUMED:
3592 ret = NET_RX_SUCCESS;
3593 goto unlock;
3594 case RX_HANDLER_ANOTHER:
3595 goto another_round;
3596 case RX_HANDLER_EXACT:
3597 deliver_exact = true;
3598 case RX_HANDLER_PASS:
3599 break;
3600 default:
3601 BUG();
3602 }
3603 }
3604
3605 if (unlikely(vlan_tx_tag_present(skb))) {
3606 if (vlan_tx_tag_get_id(skb))
3607 skb->pkt_type = PACKET_OTHERHOST;
3608 /* Note: we might in the future use prio bits
3609 * and set skb->priority like in vlan_do_receive()
3610 * For the time being, just ignore Priority Code Point
3611 */
3612 skb->vlan_tci = 0;
3613 }
3614
3615 /* deliver only exact match when indicated */
3616 null_or_dev = deliver_exact ? skb->dev : NULL;
3617
3618 type = skb->protocol;
3619 list_for_each_entry_rcu(ptype,
3620 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3621 if (ptype->type == type &&
3622 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3623 ptype->dev == orig_dev)) {
3624 if (pt_prev)
3625 ret = deliver_skb(skb, pt_prev, orig_dev);
3626 pt_prev = ptype;
3627 }
3628 }
3629
3630 if (pt_prev) {
3631 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3632 goto drop;
3633 else
3634 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3635 } else {
3636 drop:
3637 atomic_long_inc(&skb->dev->rx_dropped);
3638 kfree_skb(skb);
3639 /* Jamal, now you will not able to escape explaining
3640 * me how you were going to use this. :-)
3641 */
3642 ret = NET_RX_DROP;
3643 }
3644
3645 unlock:
3646 rcu_read_unlock();
3647 return ret;
3648 }
3649
3650 static int __netif_receive_skb(struct sk_buff *skb)
3651 {
3652 int ret;
3653
3654 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3655 unsigned long pflags = current->flags;
3656
3657 /*
3658 * PFMEMALLOC skbs are special, they should
3659 * - be delivered to SOCK_MEMALLOC sockets only
3660 * - stay away from userspace
3661 * - have bounded memory usage
3662 *
3663 * Use PF_MEMALLOC as this saves us from propagating the allocation
3664 * context down to all allocation sites.
3665 */
3666 current->flags |= PF_MEMALLOC;
3667 ret = __netif_receive_skb_core(skb, true);
3668 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3669 } else
3670 ret = __netif_receive_skb_core(skb, false);
3671
3672 return ret;
3673 }
3674
3675 static int netif_receive_skb_internal(struct sk_buff *skb)
3676 {
3677 net_timestamp_check(netdev_tstamp_prequeue, skb);
3678
3679 if (skb_defer_rx_timestamp(skb))
3680 return NET_RX_SUCCESS;
3681
3682 #ifdef CONFIG_RPS
3683 if (static_key_false(&rps_needed)) {
3684 struct rps_dev_flow voidflow, *rflow = &voidflow;
3685 int cpu, ret;
3686
3687 rcu_read_lock();
3688
3689 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3690
3691 if (cpu >= 0) {
3692 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3693 rcu_read_unlock();
3694 return ret;
3695 }
3696 rcu_read_unlock();
3697 }
3698 #endif
3699 return __netif_receive_skb(skb);
3700 }
3701
3702 /**
3703 * netif_receive_skb - process receive buffer from network
3704 * @skb: buffer to process
3705 *
3706 * netif_receive_skb() is the main receive data processing function.
3707 * It always succeeds. The buffer may be dropped during processing
3708 * for congestion control or by the protocol layers.
3709 *
3710 * This function may only be called from softirq context and interrupts
3711 * should be enabled.
3712 *
3713 * Return values (usually ignored):
3714 * NET_RX_SUCCESS: no congestion
3715 * NET_RX_DROP: packet was dropped
3716 */
3717 int netif_receive_skb(struct sk_buff *skb)
3718 {
3719 trace_netif_receive_skb_entry(skb);
3720
3721 return netif_receive_skb_internal(skb);
3722 }
3723 EXPORT_SYMBOL(netif_receive_skb);
3724
3725 /* Network device is going away, flush any packets still pending
3726 * Called with irqs disabled.
3727 */
3728 static void flush_backlog(void *arg)
3729 {
3730 struct net_device *dev = arg;
3731 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3732 struct sk_buff *skb, *tmp;
3733
3734 rps_lock(sd);
3735 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3736 if (skb->dev == dev) {
3737 __skb_unlink(skb, &sd->input_pkt_queue);
3738 kfree_skb(skb);
3739 input_queue_head_incr(sd);
3740 }
3741 }
3742 rps_unlock(sd);
3743
3744 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3745 if (skb->dev == dev) {
3746 __skb_unlink(skb, &sd->process_queue);
3747 kfree_skb(skb);
3748 input_queue_head_incr(sd);
3749 }
3750 }
3751 }
3752
3753 static int napi_gro_complete(struct sk_buff *skb)
3754 {
3755 struct packet_offload *ptype;
3756 __be16 type = skb->protocol;
3757 struct list_head *head = &offload_base;
3758 int err = -ENOENT;
3759
3760 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3761
3762 if (NAPI_GRO_CB(skb)->count == 1) {
3763 skb_shinfo(skb)->gso_size = 0;
3764 goto out;
3765 }
3766
3767 rcu_read_lock();
3768 list_for_each_entry_rcu(ptype, head, list) {
3769 if (ptype->type != type || !ptype->callbacks.gro_complete)
3770 continue;
3771
3772 err = ptype->callbacks.gro_complete(skb, 0);
3773 break;
3774 }
3775 rcu_read_unlock();
3776
3777 if (err) {
3778 WARN_ON(&ptype->list == head);
3779 kfree_skb(skb);
3780 return NET_RX_SUCCESS;
3781 }
3782
3783 out:
3784 return netif_receive_skb_internal(skb);
3785 }
3786
3787 /* napi->gro_list contains packets ordered by age.
3788 * youngest packets at the head of it.
3789 * Complete skbs in reverse order to reduce latencies.
3790 */
3791 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3792 {
3793 struct sk_buff *skb, *prev = NULL;
3794
3795 /* scan list and build reverse chain */
3796 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3797 skb->prev = prev;
3798 prev = skb;
3799 }
3800
3801 for (skb = prev; skb; skb = prev) {
3802 skb->next = NULL;
3803
3804 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3805 return;
3806
3807 prev = skb->prev;
3808 napi_gro_complete(skb);
3809 napi->gro_count--;
3810 }
3811
3812 napi->gro_list = NULL;
3813 }
3814 EXPORT_SYMBOL(napi_gro_flush);
3815
3816 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3817 {
3818 struct sk_buff *p;
3819 unsigned int maclen = skb->dev->hard_header_len;
3820 u32 hash = skb_get_hash_raw(skb);
3821
3822 for (p = napi->gro_list; p; p = p->next) {
3823 unsigned long diffs;
3824
3825 NAPI_GRO_CB(p)->flush = 0;
3826
3827 if (hash != skb_get_hash_raw(p)) {
3828 NAPI_GRO_CB(p)->same_flow = 0;
3829 continue;
3830 }
3831
3832 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3833 diffs |= p->vlan_tci ^ skb->vlan_tci;
3834 if (maclen == ETH_HLEN)
3835 diffs |= compare_ether_header(skb_mac_header(p),
3836 skb_mac_header(skb));
3837 else if (!diffs)
3838 diffs = memcmp(skb_mac_header(p),
3839 skb_mac_header(skb),
3840 maclen);
3841 NAPI_GRO_CB(p)->same_flow = !diffs;
3842 }
3843 }
3844
3845 static void skb_gro_reset_offset(struct sk_buff *skb)
3846 {
3847 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3848 const skb_frag_t *frag0 = &pinfo->frags[0];
3849
3850 NAPI_GRO_CB(skb)->data_offset = 0;
3851 NAPI_GRO_CB(skb)->frag0 = NULL;
3852 NAPI_GRO_CB(skb)->frag0_len = 0;
3853
3854 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3855 pinfo->nr_frags &&
3856 !PageHighMem(skb_frag_page(frag0))) {
3857 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3858 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3859 }
3860 }
3861
3862 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3863 {
3864 struct skb_shared_info *pinfo = skb_shinfo(skb);
3865
3866 BUG_ON(skb->end - skb->tail < grow);
3867
3868 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3869
3870 skb->data_len -= grow;
3871 skb->tail += grow;
3872
3873 pinfo->frags[0].page_offset += grow;
3874 skb_frag_size_sub(&pinfo->frags[0], grow);
3875
3876 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3877 skb_frag_unref(skb, 0);
3878 memmove(pinfo->frags, pinfo->frags + 1,
3879 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3880 }
3881 }
3882
3883 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3884 {
3885 struct sk_buff **pp = NULL;
3886 struct packet_offload *ptype;
3887 __be16 type = skb->protocol;
3888 struct list_head *head = &offload_base;
3889 int same_flow;
3890 enum gro_result ret;
3891 int grow;
3892
3893 if (!(skb->dev->features & NETIF_F_GRO))
3894 goto normal;
3895
3896 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3897 goto normal;
3898
3899 gro_list_prepare(napi, skb);
3900 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3901
3902 rcu_read_lock();
3903 list_for_each_entry_rcu(ptype, head, list) {
3904 if (ptype->type != type || !ptype->callbacks.gro_receive)
3905 continue;
3906
3907 skb_set_network_header(skb, skb_gro_offset(skb));
3908 skb_reset_mac_len(skb);
3909 NAPI_GRO_CB(skb)->same_flow = 0;
3910 NAPI_GRO_CB(skb)->flush = 0;
3911 NAPI_GRO_CB(skb)->free = 0;
3912 NAPI_GRO_CB(skb)->udp_mark = 0;
3913
3914 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3915 break;
3916 }
3917 rcu_read_unlock();
3918
3919 if (&ptype->list == head)
3920 goto normal;
3921
3922 same_flow = NAPI_GRO_CB(skb)->same_flow;
3923 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3924
3925 if (pp) {
3926 struct sk_buff *nskb = *pp;
3927
3928 *pp = nskb->next;
3929 nskb->next = NULL;
3930 napi_gro_complete(nskb);
3931 napi->gro_count--;
3932 }
3933
3934 if (same_flow)
3935 goto ok;
3936
3937 if (NAPI_GRO_CB(skb)->flush)
3938 goto normal;
3939
3940 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3941 struct sk_buff *nskb = napi->gro_list;
3942
3943 /* locate the end of the list to select the 'oldest' flow */
3944 while (nskb->next) {
3945 pp = &nskb->next;
3946 nskb = *pp;
3947 }
3948 *pp = NULL;
3949 nskb->next = NULL;
3950 napi_gro_complete(nskb);
3951 } else {
3952 napi->gro_count++;
3953 }
3954 NAPI_GRO_CB(skb)->count = 1;
3955 NAPI_GRO_CB(skb)->age = jiffies;
3956 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3957 skb->next = napi->gro_list;
3958 napi->gro_list = skb;
3959 ret = GRO_HELD;
3960
3961 pull:
3962 grow = skb_gro_offset(skb) - skb_headlen(skb);
3963 if (grow > 0)
3964 gro_pull_from_frag0(skb, grow);
3965 ok:
3966 return ret;
3967
3968 normal:
3969 ret = GRO_NORMAL;
3970 goto pull;
3971 }
3972
3973 struct packet_offload *gro_find_receive_by_type(__be16 type)
3974 {
3975 struct list_head *offload_head = &offload_base;
3976 struct packet_offload *ptype;
3977
3978 list_for_each_entry_rcu(ptype, offload_head, list) {
3979 if (ptype->type != type || !ptype->callbacks.gro_receive)
3980 continue;
3981 return ptype;
3982 }
3983 return NULL;
3984 }
3985 EXPORT_SYMBOL(gro_find_receive_by_type);
3986
3987 struct packet_offload *gro_find_complete_by_type(__be16 type)
3988 {
3989 struct list_head *offload_head = &offload_base;
3990 struct packet_offload *ptype;
3991
3992 list_for_each_entry_rcu(ptype, offload_head, list) {
3993 if (ptype->type != type || !ptype->callbacks.gro_complete)
3994 continue;
3995 return ptype;
3996 }
3997 return NULL;
3998 }
3999 EXPORT_SYMBOL(gro_find_complete_by_type);
4000
4001 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4002 {
4003 switch (ret) {
4004 case GRO_NORMAL:
4005 if (netif_receive_skb_internal(skb))
4006 ret = GRO_DROP;
4007 break;
4008
4009 case GRO_DROP:
4010 kfree_skb(skb);
4011 break;
4012
4013 case GRO_MERGED_FREE:
4014 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4015 kmem_cache_free(skbuff_head_cache, skb);
4016 else
4017 __kfree_skb(skb);
4018 break;
4019
4020 case GRO_HELD:
4021 case GRO_MERGED:
4022 break;
4023 }
4024
4025 return ret;
4026 }
4027
4028 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4029 {
4030 trace_napi_gro_receive_entry(skb);
4031
4032 skb_gro_reset_offset(skb);
4033
4034 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4035 }
4036 EXPORT_SYMBOL(napi_gro_receive);
4037
4038 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4039 {
4040 __skb_pull(skb, skb_headlen(skb));
4041 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4042 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4043 skb->vlan_tci = 0;
4044 skb->dev = napi->dev;
4045 skb->skb_iif = 0;
4046
4047 napi->skb = skb;
4048 }
4049
4050 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4051 {
4052 struct sk_buff *skb = napi->skb;
4053
4054 if (!skb) {
4055 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4056 napi->skb = skb;
4057 }
4058 return skb;
4059 }
4060 EXPORT_SYMBOL(napi_get_frags);
4061
4062 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4063 struct sk_buff *skb,
4064 gro_result_t ret)
4065 {
4066 switch (ret) {
4067 case GRO_NORMAL:
4068 case GRO_HELD:
4069 __skb_push(skb, ETH_HLEN);
4070 skb->protocol = eth_type_trans(skb, skb->dev);
4071 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4072 ret = GRO_DROP;
4073 break;
4074
4075 case GRO_DROP:
4076 case GRO_MERGED_FREE:
4077 napi_reuse_skb(napi, skb);
4078 break;
4079
4080 case GRO_MERGED:
4081 break;
4082 }
4083
4084 return ret;
4085 }
4086
4087 /* Upper GRO stack assumes network header starts at gro_offset=0
4088 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4089 * We copy ethernet header into skb->data to have a common layout.
4090 */
4091 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4092 {
4093 struct sk_buff *skb = napi->skb;
4094 const struct ethhdr *eth;
4095 unsigned int hlen = sizeof(*eth);
4096
4097 napi->skb = NULL;
4098
4099 skb_reset_mac_header(skb);
4100 skb_gro_reset_offset(skb);
4101
4102 eth = skb_gro_header_fast(skb, 0);
4103 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4104 eth = skb_gro_header_slow(skb, hlen, 0);
4105 if (unlikely(!eth)) {
4106 napi_reuse_skb(napi, skb);
4107 return NULL;
4108 }
4109 } else {
4110 gro_pull_from_frag0(skb, hlen);
4111 NAPI_GRO_CB(skb)->frag0 += hlen;
4112 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4113 }
4114 __skb_pull(skb, hlen);
4115
4116 /*
4117 * This works because the only protocols we care about don't require
4118 * special handling.
4119 * We'll fix it up properly in napi_frags_finish()
4120 */
4121 skb->protocol = eth->h_proto;
4122
4123 return skb;
4124 }
4125
4126 gro_result_t napi_gro_frags(struct napi_struct *napi)
4127 {
4128 struct sk_buff *skb = napi_frags_skb(napi);
4129
4130 if (!skb)
4131 return GRO_DROP;
4132
4133 trace_napi_gro_frags_entry(skb);
4134
4135 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4136 }
4137 EXPORT_SYMBOL(napi_gro_frags);
4138
4139 /*
4140 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4141 * Note: called with local irq disabled, but exits with local irq enabled.
4142 */
4143 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4144 {
4145 #ifdef CONFIG_RPS
4146 struct softnet_data *remsd = sd->rps_ipi_list;
4147
4148 if (remsd) {
4149 sd->rps_ipi_list = NULL;
4150
4151 local_irq_enable();
4152
4153 /* Send pending IPI's to kick RPS processing on remote cpus. */
4154 while (remsd) {
4155 struct softnet_data *next = remsd->rps_ipi_next;
4156
4157 if (cpu_online(remsd->cpu))
4158 smp_call_function_single_async(remsd->cpu,
4159 &remsd->csd);
4160 remsd = next;
4161 }
4162 } else
4163 #endif
4164 local_irq_enable();
4165 }
4166
4167 static int process_backlog(struct napi_struct *napi, int quota)
4168 {
4169 int work = 0;
4170 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4171
4172 #ifdef CONFIG_RPS
4173 /* Check if we have pending ipi, its better to send them now,
4174 * not waiting net_rx_action() end.
4175 */
4176 if (sd->rps_ipi_list) {
4177 local_irq_disable();
4178 net_rps_action_and_irq_enable(sd);
4179 }
4180 #endif
4181 napi->weight = weight_p;
4182 local_irq_disable();
4183 while (work < quota) {
4184 struct sk_buff *skb;
4185 unsigned int qlen;
4186
4187 while ((skb = __skb_dequeue(&sd->process_queue))) {
4188 local_irq_enable();
4189 __netif_receive_skb(skb);
4190 local_irq_disable();
4191 input_queue_head_incr(sd);
4192 if (++work >= quota) {
4193 local_irq_enable();
4194 return work;
4195 }
4196 }
4197
4198 rps_lock(sd);
4199 qlen = skb_queue_len(&sd->input_pkt_queue);
4200 if (qlen)
4201 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4202 &sd->process_queue);
4203
4204 if (qlen < quota - work) {
4205 /*
4206 * Inline a custom version of __napi_complete().
4207 * only current cpu owns and manipulates this napi,
4208 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4209 * we can use a plain write instead of clear_bit(),
4210 * and we dont need an smp_mb() memory barrier.
4211 */
4212 list_del(&napi->poll_list);
4213 napi->state = 0;
4214
4215 quota = work + qlen;
4216 }
4217 rps_unlock(sd);
4218 }
4219 local_irq_enable();
4220
4221 return work;
4222 }
4223
4224 /**
4225 * __napi_schedule - schedule for receive
4226 * @n: entry to schedule
4227 *
4228 * The entry's receive function will be scheduled to run
4229 */
4230 void __napi_schedule(struct napi_struct *n)
4231 {
4232 unsigned long flags;
4233
4234 local_irq_save(flags);
4235 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4236 local_irq_restore(flags);
4237 }
4238 EXPORT_SYMBOL(__napi_schedule);
4239
4240 void __napi_complete(struct napi_struct *n)
4241 {
4242 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4243 BUG_ON(n->gro_list);
4244
4245 list_del(&n->poll_list);
4246 smp_mb__before_clear_bit();
4247 clear_bit(NAPI_STATE_SCHED, &n->state);
4248 }
4249 EXPORT_SYMBOL(__napi_complete);
4250
4251 void napi_complete(struct napi_struct *n)
4252 {
4253 unsigned long flags;
4254
4255 /*
4256 * don't let napi dequeue from the cpu poll list
4257 * just in case its running on a different cpu
4258 */
4259 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4260 return;
4261
4262 napi_gro_flush(n, false);
4263 local_irq_save(flags);
4264 __napi_complete(n);
4265 local_irq_restore(flags);
4266 }
4267 EXPORT_SYMBOL(napi_complete);
4268
4269 /* must be called under rcu_read_lock(), as we dont take a reference */
4270 struct napi_struct *napi_by_id(unsigned int napi_id)
4271 {
4272 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4273 struct napi_struct *napi;
4274
4275 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4276 if (napi->napi_id == napi_id)
4277 return napi;
4278
4279 return NULL;
4280 }
4281 EXPORT_SYMBOL_GPL(napi_by_id);
4282
4283 void napi_hash_add(struct napi_struct *napi)
4284 {
4285 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4286
4287 spin_lock(&napi_hash_lock);
4288
4289 /* 0 is not a valid id, we also skip an id that is taken
4290 * we expect both events to be extremely rare
4291 */
4292 napi->napi_id = 0;
4293 while (!napi->napi_id) {
4294 napi->napi_id = ++napi_gen_id;
4295 if (napi_by_id(napi->napi_id))
4296 napi->napi_id = 0;
4297 }
4298
4299 hlist_add_head_rcu(&napi->napi_hash_node,
4300 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4301
4302 spin_unlock(&napi_hash_lock);
4303 }
4304 }
4305 EXPORT_SYMBOL_GPL(napi_hash_add);
4306
4307 /* Warning : caller is responsible to make sure rcu grace period
4308 * is respected before freeing memory containing @napi
4309 */
4310 void napi_hash_del(struct napi_struct *napi)
4311 {
4312 spin_lock(&napi_hash_lock);
4313
4314 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4315 hlist_del_rcu(&napi->napi_hash_node);
4316
4317 spin_unlock(&napi_hash_lock);
4318 }
4319 EXPORT_SYMBOL_GPL(napi_hash_del);
4320
4321 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4322 int (*poll)(struct napi_struct *, int), int weight)
4323 {
4324 INIT_LIST_HEAD(&napi->poll_list);
4325 napi->gro_count = 0;
4326 napi->gro_list = NULL;
4327 napi->skb = NULL;
4328 napi->poll = poll;
4329 if (weight > NAPI_POLL_WEIGHT)
4330 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4331 weight, dev->name);
4332 napi->weight = weight;
4333 list_add(&napi->dev_list, &dev->napi_list);
4334 napi->dev = dev;
4335 #ifdef CONFIG_NETPOLL
4336 spin_lock_init(&napi->poll_lock);
4337 napi->poll_owner = -1;
4338 #endif
4339 set_bit(NAPI_STATE_SCHED, &napi->state);
4340 }
4341 EXPORT_SYMBOL(netif_napi_add);
4342
4343 void netif_napi_del(struct napi_struct *napi)
4344 {
4345 list_del_init(&napi->dev_list);
4346 napi_free_frags(napi);
4347
4348 kfree_skb_list(napi->gro_list);
4349 napi->gro_list = NULL;
4350 napi->gro_count = 0;
4351 }
4352 EXPORT_SYMBOL(netif_napi_del);
4353
4354 static void net_rx_action(struct softirq_action *h)
4355 {
4356 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4357 unsigned long time_limit = jiffies + 2;
4358 int budget = netdev_budget;
4359 void *have;
4360
4361 local_irq_disable();
4362
4363 while (!list_empty(&sd->poll_list)) {
4364 struct napi_struct *n;
4365 int work, weight;
4366
4367 /* If softirq window is exhuasted then punt.
4368 * Allow this to run for 2 jiffies since which will allow
4369 * an average latency of 1.5/HZ.
4370 */
4371 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4372 goto softnet_break;
4373
4374 local_irq_enable();
4375
4376 /* Even though interrupts have been re-enabled, this
4377 * access is safe because interrupts can only add new
4378 * entries to the tail of this list, and only ->poll()
4379 * calls can remove this head entry from the list.
4380 */
4381 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4382
4383 have = netpoll_poll_lock(n);
4384
4385 weight = n->weight;
4386
4387 /* This NAPI_STATE_SCHED test is for avoiding a race
4388 * with netpoll's poll_napi(). Only the entity which
4389 * obtains the lock and sees NAPI_STATE_SCHED set will
4390 * actually make the ->poll() call. Therefore we avoid
4391 * accidentally calling ->poll() when NAPI is not scheduled.
4392 */
4393 work = 0;
4394 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4395 work = n->poll(n, weight);
4396 trace_napi_poll(n);
4397 }
4398
4399 WARN_ON_ONCE(work > weight);
4400
4401 budget -= work;
4402
4403 local_irq_disable();
4404
4405 /* Drivers must not modify the NAPI state if they
4406 * consume the entire weight. In such cases this code
4407 * still "owns" the NAPI instance and therefore can
4408 * move the instance around on the list at-will.
4409 */
4410 if (unlikely(work == weight)) {
4411 if (unlikely(napi_disable_pending(n))) {
4412 local_irq_enable();
4413 napi_complete(n);
4414 local_irq_disable();
4415 } else {
4416 if (n->gro_list) {
4417 /* flush too old packets
4418 * If HZ < 1000, flush all packets.
4419 */
4420 local_irq_enable();
4421 napi_gro_flush(n, HZ >= 1000);
4422 local_irq_disable();
4423 }
4424 list_move_tail(&n->poll_list, &sd->poll_list);
4425 }
4426 }
4427
4428 netpoll_poll_unlock(have);
4429 }
4430 out:
4431 net_rps_action_and_irq_enable(sd);
4432
4433 #ifdef CONFIG_NET_DMA
4434 /*
4435 * There may not be any more sk_buffs coming right now, so push
4436 * any pending DMA copies to hardware
4437 */
4438 dma_issue_pending_all();
4439 #endif
4440
4441 return;
4442
4443 softnet_break:
4444 sd->time_squeeze++;
4445 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4446 goto out;
4447 }
4448
4449 struct netdev_adjacent {
4450 struct net_device *dev;
4451
4452 /* upper master flag, there can only be one master device per list */
4453 bool master;
4454
4455 /* counter for the number of times this device was added to us */
4456 u16 ref_nr;
4457
4458 /* private field for the users */
4459 void *private;
4460
4461 struct list_head list;
4462 struct rcu_head rcu;
4463 };
4464
4465 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4466 struct net_device *adj_dev,
4467 struct list_head *adj_list)
4468 {
4469 struct netdev_adjacent *adj;
4470
4471 list_for_each_entry(adj, adj_list, list) {
4472 if (adj->dev == adj_dev)
4473 return adj;
4474 }
4475 return NULL;
4476 }
4477
4478 /**
4479 * netdev_has_upper_dev - Check if device is linked to an upper device
4480 * @dev: device
4481 * @upper_dev: upper device to check
4482 *
4483 * Find out if a device is linked to specified upper device and return true
4484 * in case it is. Note that this checks only immediate upper device,
4485 * not through a complete stack of devices. The caller must hold the RTNL lock.
4486 */
4487 bool netdev_has_upper_dev(struct net_device *dev,
4488 struct net_device *upper_dev)
4489 {
4490 ASSERT_RTNL();
4491
4492 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4493 }
4494 EXPORT_SYMBOL(netdev_has_upper_dev);
4495
4496 /**
4497 * netdev_has_any_upper_dev - Check if device is linked to some device
4498 * @dev: device
4499 *
4500 * Find out if a device is linked to an upper device and return true in case
4501 * it is. The caller must hold the RTNL lock.
4502 */
4503 static bool netdev_has_any_upper_dev(struct net_device *dev)
4504 {
4505 ASSERT_RTNL();
4506
4507 return !list_empty(&dev->all_adj_list.upper);
4508 }
4509
4510 /**
4511 * netdev_master_upper_dev_get - Get master upper device
4512 * @dev: device
4513 *
4514 * Find a master upper device and return pointer to it or NULL in case
4515 * it's not there. The caller must hold the RTNL lock.
4516 */
4517 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4518 {
4519 struct netdev_adjacent *upper;
4520
4521 ASSERT_RTNL();
4522
4523 if (list_empty(&dev->adj_list.upper))
4524 return NULL;
4525
4526 upper = list_first_entry(&dev->adj_list.upper,
4527 struct netdev_adjacent, list);
4528 if (likely(upper->master))
4529 return upper->dev;
4530 return NULL;
4531 }
4532 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4533
4534 void *netdev_adjacent_get_private(struct list_head *adj_list)
4535 {
4536 struct netdev_adjacent *adj;
4537
4538 adj = list_entry(adj_list, struct netdev_adjacent, list);
4539
4540 return adj->private;
4541 }
4542 EXPORT_SYMBOL(netdev_adjacent_get_private);
4543
4544 /**
4545 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4546 * @dev: device
4547 * @iter: list_head ** of the current position
4548 *
4549 * Gets the next device from the dev's upper list, starting from iter
4550 * position. The caller must hold RCU read lock.
4551 */
4552 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4553 struct list_head **iter)
4554 {
4555 struct netdev_adjacent *upper;
4556
4557 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4558
4559 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4560
4561 if (&upper->list == &dev->all_adj_list.upper)
4562 return NULL;
4563
4564 *iter = &upper->list;
4565
4566 return upper->dev;
4567 }
4568 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4569
4570 /**
4571 * netdev_lower_get_next_private - Get the next ->private from the
4572 * lower neighbour list
4573 * @dev: device
4574 * @iter: list_head ** of the current position
4575 *
4576 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4577 * list, starting from iter position. The caller must hold either hold the
4578 * RTNL lock or its own locking that guarantees that the neighbour lower
4579 * list will remain unchainged.
4580 */
4581 void *netdev_lower_get_next_private(struct net_device *dev,
4582 struct list_head **iter)
4583 {
4584 struct netdev_adjacent *lower;
4585
4586 lower = list_entry(*iter, struct netdev_adjacent, list);
4587
4588 if (&lower->list == &dev->adj_list.lower)
4589 return NULL;
4590
4591 if (iter)
4592 *iter = lower->list.next;
4593
4594 return lower->private;
4595 }
4596 EXPORT_SYMBOL(netdev_lower_get_next_private);
4597
4598 /**
4599 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4600 * lower neighbour list, RCU
4601 * variant
4602 * @dev: device
4603 * @iter: list_head ** of the current position
4604 *
4605 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4606 * list, starting from iter position. The caller must hold RCU read lock.
4607 */
4608 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4609 struct list_head **iter)
4610 {
4611 struct netdev_adjacent *lower;
4612
4613 WARN_ON_ONCE(!rcu_read_lock_held());
4614
4615 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4616
4617 if (&lower->list == &dev->adj_list.lower)
4618 return NULL;
4619
4620 if (iter)
4621 *iter = &lower->list;
4622
4623 return lower->private;
4624 }
4625 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4626
4627 /**
4628 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4629 * lower neighbour list, RCU
4630 * variant
4631 * @dev: device
4632 *
4633 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4634 * list. The caller must hold RCU read lock.
4635 */
4636 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4637 {
4638 struct netdev_adjacent *lower;
4639
4640 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4641 struct netdev_adjacent, list);
4642 if (lower)
4643 return lower->private;
4644 return NULL;
4645 }
4646 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4647
4648 /**
4649 * netdev_master_upper_dev_get_rcu - Get master upper device
4650 * @dev: device
4651 *
4652 * Find a master upper device and return pointer to it or NULL in case
4653 * it's not there. The caller must hold the RCU read lock.
4654 */
4655 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4656 {
4657 struct netdev_adjacent *upper;
4658
4659 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4660 struct netdev_adjacent, list);
4661 if (upper && likely(upper->master))
4662 return upper->dev;
4663 return NULL;
4664 }
4665 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4666
4667 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4668 struct net_device *adj_dev,
4669 struct list_head *dev_list)
4670 {
4671 char linkname[IFNAMSIZ+7];
4672 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4673 "upper_%s" : "lower_%s", adj_dev->name);
4674 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4675 linkname);
4676 }
4677 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4678 char *name,
4679 struct list_head *dev_list)
4680 {
4681 char linkname[IFNAMSIZ+7];
4682 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4683 "upper_%s" : "lower_%s", name);
4684 sysfs_remove_link(&(dev->dev.kobj), linkname);
4685 }
4686
4687 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4688 (dev_list == &dev->adj_list.upper || \
4689 dev_list == &dev->adj_list.lower)
4690
4691 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4692 struct net_device *adj_dev,
4693 struct list_head *dev_list,
4694 void *private, bool master)
4695 {
4696 struct netdev_adjacent *adj;
4697 int ret;
4698
4699 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4700
4701 if (adj) {
4702 adj->ref_nr++;
4703 return 0;
4704 }
4705
4706 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4707 if (!adj)
4708 return -ENOMEM;
4709
4710 adj->dev = adj_dev;
4711 adj->master = master;
4712 adj->ref_nr = 1;
4713 adj->private = private;
4714 dev_hold(adj_dev);
4715
4716 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4717 adj_dev->name, dev->name, adj_dev->name);
4718
4719 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4720 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4721 if (ret)
4722 goto free_adj;
4723 }
4724
4725 /* Ensure that master link is always the first item in list. */
4726 if (master) {
4727 ret = sysfs_create_link(&(dev->dev.kobj),
4728 &(adj_dev->dev.kobj), "master");
4729 if (ret)
4730 goto remove_symlinks;
4731
4732 list_add_rcu(&adj->list, dev_list);
4733 } else {
4734 list_add_tail_rcu(&adj->list, dev_list);
4735 }
4736
4737 return 0;
4738
4739 remove_symlinks:
4740 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4741 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4742 free_adj:
4743 kfree(adj);
4744 dev_put(adj_dev);
4745
4746 return ret;
4747 }
4748
4749 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4750 struct net_device *adj_dev,
4751 struct list_head *dev_list)
4752 {
4753 struct netdev_adjacent *adj;
4754
4755 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4756
4757 if (!adj) {
4758 pr_err("tried to remove device %s from %s\n",
4759 dev->name, adj_dev->name);
4760 BUG();
4761 }
4762
4763 if (adj->ref_nr > 1) {
4764 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4765 adj->ref_nr-1);
4766 adj->ref_nr--;
4767 return;
4768 }
4769
4770 if (adj->master)
4771 sysfs_remove_link(&(dev->dev.kobj), "master");
4772
4773 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4774 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4775
4776 list_del_rcu(&adj->list);
4777 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4778 adj_dev->name, dev->name, adj_dev->name);
4779 dev_put(adj_dev);
4780 kfree_rcu(adj, rcu);
4781 }
4782
4783 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4784 struct net_device *upper_dev,
4785 struct list_head *up_list,
4786 struct list_head *down_list,
4787 void *private, bool master)
4788 {
4789 int ret;
4790
4791 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4792 master);
4793 if (ret)
4794 return ret;
4795
4796 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4797 false);
4798 if (ret) {
4799 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4800 return ret;
4801 }
4802
4803 return 0;
4804 }
4805
4806 static int __netdev_adjacent_dev_link(struct net_device *dev,
4807 struct net_device *upper_dev)
4808 {
4809 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4810 &dev->all_adj_list.upper,
4811 &upper_dev->all_adj_list.lower,
4812 NULL, false);
4813 }
4814
4815 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4816 struct net_device *upper_dev,
4817 struct list_head *up_list,
4818 struct list_head *down_list)
4819 {
4820 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4821 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4822 }
4823
4824 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4825 struct net_device *upper_dev)
4826 {
4827 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4828 &dev->all_adj_list.upper,
4829 &upper_dev->all_adj_list.lower);
4830 }
4831
4832 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4833 struct net_device *upper_dev,
4834 void *private, bool master)
4835 {
4836 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4837
4838 if (ret)
4839 return ret;
4840
4841 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4842 &dev->adj_list.upper,
4843 &upper_dev->adj_list.lower,
4844 private, master);
4845 if (ret) {
4846 __netdev_adjacent_dev_unlink(dev, upper_dev);
4847 return ret;
4848 }
4849
4850 return 0;
4851 }
4852
4853 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4854 struct net_device *upper_dev)
4855 {
4856 __netdev_adjacent_dev_unlink(dev, upper_dev);
4857 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4858 &dev->adj_list.upper,
4859 &upper_dev->adj_list.lower);
4860 }
4861
4862 static int __netdev_upper_dev_link(struct net_device *dev,
4863 struct net_device *upper_dev, bool master,
4864 void *private)
4865 {
4866 struct netdev_adjacent *i, *j, *to_i, *to_j;
4867 int ret = 0;
4868
4869 ASSERT_RTNL();
4870
4871 if (dev == upper_dev)
4872 return -EBUSY;
4873
4874 /* To prevent loops, check if dev is not upper device to upper_dev. */
4875 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4876 return -EBUSY;
4877
4878 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4879 return -EEXIST;
4880
4881 if (master && netdev_master_upper_dev_get(dev))
4882 return -EBUSY;
4883
4884 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4885 master);
4886 if (ret)
4887 return ret;
4888
4889 /* Now that we linked these devs, make all the upper_dev's
4890 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4891 * versa, and don't forget the devices itself. All of these
4892 * links are non-neighbours.
4893 */
4894 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4895 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4896 pr_debug("Interlinking %s with %s, non-neighbour\n",
4897 i->dev->name, j->dev->name);
4898 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4899 if (ret)
4900 goto rollback_mesh;
4901 }
4902 }
4903
4904 /* add dev to every upper_dev's upper device */
4905 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4906 pr_debug("linking %s's upper device %s with %s\n",
4907 upper_dev->name, i->dev->name, dev->name);
4908 ret = __netdev_adjacent_dev_link(dev, i->dev);
4909 if (ret)
4910 goto rollback_upper_mesh;
4911 }
4912
4913 /* add upper_dev to every dev's lower device */
4914 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4915 pr_debug("linking %s's lower device %s with %s\n", dev->name,
4916 i->dev->name, upper_dev->name);
4917 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4918 if (ret)
4919 goto rollback_lower_mesh;
4920 }
4921
4922 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4923 return 0;
4924
4925 rollback_lower_mesh:
4926 to_i = i;
4927 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4928 if (i == to_i)
4929 break;
4930 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4931 }
4932
4933 i = NULL;
4934
4935 rollback_upper_mesh:
4936 to_i = i;
4937 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4938 if (i == to_i)
4939 break;
4940 __netdev_adjacent_dev_unlink(dev, i->dev);
4941 }
4942
4943 i = j = NULL;
4944
4945 rollback_mesh:
4946 to_i = i;
4947 to_j = j;
4948 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4949 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4950 if (i == to_i && j == to_j)
4951 break;
4952 __netdev_adjacent_dev_unlink(i->dev, j->dev);
4953 }
4954 if (i == to_i)
4955 break;
4956 }
4957
4958 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4959
4960 return ret;
4961 }
4962
4963 /**
4964 * netdev_upper_dev_link - Add a link to the upper device
4965 * @dev: device
4966 * @upper_dev: new upper device
4967 *
4968 * Adds a link to device which is upper to this one. The caller must hold
4969 * the RTNL lock. On a failure a negative errno code is returned.
4970 * On success the reference counts are adjusted and the function
4971 * returns zero.
4972 */
4973 int netdev_upper_dev_link(struct net_device *dev,
4974 struct net_device *upper_dev)
4975 {
4976 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
4977 }
4978 EXPORT_SYMBOL(netdev_upper_dev_link);
4979
4980 /**
4981 * netdev_master_upper_dev_link - Add a master link to the upper device
4982 * @dev: device
4983 * @upper_dev: new upper device
4984 *
4985 * Adds a link to device which is upper to this one. In this case, only
4986 * one master upper device can be linked, although other non-master devices
4987 * might be linked as well. The caller must hold the RTNL lock.
4988 * On a failure a negative errno code is returned. On success the reference
4989 * counts are adjusted and the function returns zero.
4990 */
4991 int netdev_master_upper_dev_link(struct net_device *dev,
4992 struct net_device *upper_dev)
4993 {
4994 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
4995 }
4996 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4997
4998 int netdev_master_upper_dev_link_private(struct net_device *dev,
4999 struct net_device *upper_dev,
5000 void *private)
5001 {
5002 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5003 }
5004 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5005
5006 /**
5007 * netdev_upper_dev_unlink - Removes a link to upper device
5008 * @dev: device
5009 * @upper_dev: new upper device
5010 *
5011 * Removes a link to device which is upper to this one. The caller must hold
5012 * the RTNL lock.
5013 */
5014 void netdev_upper_dev_unlink(struct net_device *dev,
5015 struct net_device *upper_dev)
5016 {
5017 struct netdev_adjacent *i, *j;
5018 ASSERT_RTNL();
5019
5020 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5021
5022 /* Here is the tricky part. We must remove all dev's lower
5023 * devices from all upper_dev's upper devices and vice
5024 * versa, to maintain the graph relationship.
5025 */
5026 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5027 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5028 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5029
5030 /* remove also the devices itself from lower/upper device
5031 * list
5032 */
5033 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5034 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5035
5036 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5037 __netdev_adjacent_dev_unlink(dev, i->dev);
5038
5039 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5040 }
5041 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5042
5043 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5044 {
5045 struct netdev_adjacent *iter;
5046
5047 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5048 netdev_adjacent_sysfs_del(iter->dev, oldname,
5049 &iter->dev->adj_list.lower);
5050 netdev_adjacent_sysfs_add(iter->dev, dev,
5051 &iter->dev->adj_list.lower);
5052 }
5053
5054 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5055 netdev_adjacent_sysfs_del(iter->dev, oldname,
5056 &iter->dev->adj_list.upper);
5057 netdev_adjacent_sysfs_add(iter->dev, dev,
5058 &iter->dev->adj_list.upper);
5059 }
5060 }
5061
5062 void *netdev_lower_dev_get_private(struct net_device *dev,
5063 struct net_device *lower_dev)
5064 {
5065 struct netdev_adjacent *lower;
5066
5067 if (!lower_dev)
5068 return NULL;
5069 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5070 if (!lower)
5071 return NULL;
5072
5073 return lower->private;
5074 }
5075 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5076
5077 static void dev_change_rx_flags(struct net_device *dev, int flags)
5078 {
5079 const struct net_device_ops *ops = dev->netdev_ops;
5080
5081 if (ops->ndo_change_rx_flags)
5082 ops->ndo_change_rx_flags(dev, flags);
5083 }
5084
5085 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5086 {
5087 unsigned int old_flags = dev->flags;
5088 kuid_t uid;
5089 kgid_t gid;
5090
5091 ASSERT_RTNL();
5092
5093 dev->flags |= IFF_PROMISC;
5094 dev->promiscuity += inc;
5095 if (dev->promiscuity == 0) {
5096 /*
5097 * Avoid overflow.
5098 * If inc causes overflow, untouch promisc and return error.
5099 */
5100 if (inc < 0)
5101 dev->flags &= ~IFF_PROMISC;
5102 else {
5103 dev->promiscuity -= inc;
5104 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5105 dev->name);
5106 return -EOVERFLOW;
5107 }
5108 }
5109 if (dev->flags != old_flags) {
5110 pr_info("device %s %s promiscuous mode\n",
5111 dev->name,
5112 dev->flags & IFF_PROMISC ? "entered" : "left");
5113 if (audit_enabled) {
5114 current_uid_gid(&uid, &gid);
5115 audit_log(current->audit_context, GFP_ATOMIC,
5116 AUDIT_ANOM_PROMISCUOUS,
5117 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5118 dev->name, (dev->flags & IFF_PROMISC),
5119 (old_flags & IFF_PROMISC),
5120 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5121 from_kuid(&init_user_ns, uid),
5122 from_kgid(&init_user_ns, gid),
5123 audit_get_sessionid(current));
5124 }
5125
5126 dev_change_rx_flags(dev, IFF_PROMISC);
5127 }
5128 if (notify)
5129 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5130 return 0;
5131 }
5132
5133 /**
5134 * dev_set_promiscuity - update promiscuity count on a device
5135 * @dev: device
5136 * @inc: modifier
5137 *
5138 * Add or remove promiscuity from a device. While the count in the device
5139 * remains above zero the interface remains promiscuous. Once it hits zero
5140 * the device reverts back to normal filtering operation. A negative inc
5141 * value is used to drop promiscuity on the device.
5142 * Return 0 if successful or a negative errno code on error.
5143 */
5144 int dev_set_promiscuity(struct net_device *dev, int inc)
5145 {
5146 unsigned int old_flags = dev->flags;
5147 int err;
5148
5149 err = __dev_set_promiscuity(dev, inc, true);
5150 if (err < 0)
5151 return err;
5152 if (dev->flags != old_flags)
5153 dev_set_rx_mode(dev);
5154 return err;
5155 }
5156 EXPORT_SYMBOL(dev_set_promiscuity);
5157
5158 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5159 {
5160 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5161
5162 ASSERT_RTNL();
5163
5164 dev->flags |= IFF_ALLMULTI;
5165 dev->allmulti += inc;
5166 if (dev->allmulti == 0) {
5167 /*
5168 * Avoid overflow.
5169 * If inc causes overflow, untouch allmulti and return error.
5170 */
5171 if (inc < 0)
5172 dev->flags &= ~IFF_ALLMULTI;
5173 else {
5174 dev->allmulti -= inc;
5175 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5176 dev->name);
5177 return -EOVERFLOW;
5178 }
5179 }
5180 if (dev->flags ^ old_flags) {
5181 dev_change_rx_flags(dev, IFF_ALLMULTI);
5182 dev_set_rx_mode(dev);
5183 if (notify)
5184 __dev_notify_flags(dev, old_flags,
5185 dev->gflags ^ old_gflags);
5186 }
5187 return 0;
5188 }
5189
5190 /**
5191 * dev_set_allmulti - update allmulti count on a device
5192 * @dev: device
5193 * @inc: modifier
5194 *
5195 * Add or remove reception of all multicast frames to a device. While the
5196 * count in the device remains above zero the interface remains listening
5197 * to all interfaces. Once it hits zero the device reverts back to normal
5198 * filtering operation. A negative @inc value is used to drop the counter
5199 * when releasing a resource needing all multicasts.
5200 * Return 0 if successful or a negative errno code on error.
5201 */
5202
5203 int dev_set_allmulti(struct net_device *dev, int inc)
5204 {
5205 return __dev_set_allmulti(dev, inc, true);
5206 }
5207 EXPORT_SYMBOL(dev_set_allmulti);
5208
5209 /*
5210 * Upload unicast and multicast address lists to device and
5211 * configure RX filtering. When the device doesn't support unicast
5212 * filtering it is put in promiscuous mode while unicast addresses
5213 * are present.
5214 */
5215 void __dev_set_rx_mode(struct net_device *dev)
5216 {
5217 const struct net_device_ops *ops = dev->netdev_ops;
5218
5219 /* dev_open will call this function so the list will stay sane. */
5220 if (!(dev->flags&IFF_UP))
5221 return;
5222
5223 if (!netif_device_present(dev))
5224 return;
5225
5226 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5227 /* Unicast addresses changes may only happen under the rtnl,
5228 * therefore calling __dev_set_promiscuity here is safe.
5229 */
5230 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5231 __dev_set_promiscuity(dev, 1, false);
5232 dev->uc_promisc = true;
5233 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5234 __dev_set_promiscuity(dev, -1, false);
5235 dev->uc_promisc = false;
5236 }
5237 }
5238
5239 if (ops->ndo_set_rx_mode)
5240 ops->ndo_set_rx_mode(dev);
5241 }
5242
5243 void dev_set_rx_mode(struct net_device *dev)
5244 {
5245 netif_addr_lock_bh(dev);
5246 __dev_set_rx_mode(dev);
5247 netif_addr_unlock_bh(dev);
5248 }
5249
5250 /**
5251 * dev_get_flags - get flags reported to userspace
5252 * @dev: device
5253 *
5254 * Get the combination of flag bits exported through APIs to userspace.
5255 */
5256 unsigned int dev_get_flags(const struct net_device *dev)
5257 {
5258 unsigned int flags;
5259
5260 flags = (dev->flags & ~(IFF_PROMISC |
5261 IFF_ALLMULTI |
5262 IFF_RUNNING |
5263 IFF_LOWER_UP |
5264 IFF_DORMANT)) |
5265 (dev->gflags & (IFF_PROMISC |
5266 IFF_ALLMULTI));
5267
5268 if (netif_running(dev)) {
5269 if (netif_oper_up(dev))
5270 flags |= IFF_RUNNING;
5271 if (netif_carrier_ok(dev))
5272 flags |= IFF_LOWER_UP;
5273 if (netif_dormant(dev))
5274 flags |= IFF_DORMANT;
5275 }
5276
5277 return flags;
5278 }
5279 EXPORT_SYMBOL(dev_get_flags);
5280
5281 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5282 {
5283 unsigned int old_flags = dev->flags;
5284 int ret;
5285
5286 ASSERT_RTNL();
5287
5288 /*
5289 * Set the flags on our device.
5290 */
5291
5292 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5293 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5294 IFF_AUTOMEDIA)) |
5295 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5296 IFF_ALLMULTI));
5297
5298 /*
5299 * Load in the correct multicast list now the flags have changed.
5300 */
5301
5302 if ((old_flags ^ flags) & IFF_MULTICAST)
5303 dev_change_rx_flags(dev, IFF_MULTICAST);
5304
5305 dev_set_rx_mode(dev);
5306
5307 /*
5308 * Have we downed the interface. We handle IFF_UP ourselves
5309 * according to user attempts to set it, rather than blindly
5310 * setting it.
5311 */
5312
5313 ret = 0;
5314 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5315 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5316
5317 if (!ret)
5318 dev_set_rx_mode(dev);
5319 }
5320
5321 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5322 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5323 unsigned int old_flags = dev->flags;
5324
5325 dev->gflags ^= IFF_PROMISC;
5326
5327 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5328 if (dev->flags != old_flags)
5329 dev_set_rx_mode(dev);
5330 }
5331
5332 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5333 is important. Some (broken) drivers set IFF_PROMISC, when
5334 IFF_ALLMULTI is requested not asking us and not reporting.
5335 */
5336 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5337 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5338
5339 dev->gflags ^= IFF_ALLMULTI;
5340 __dev_set_allmulti(dev, inc, false);
5341 }
5342
5343 return ret;
5344 }
5345
5346 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5347 unsigned int gchanges)
5348 {
5349 unsigned int changes = dev->flags ^ old_flags;
5350
5351 if (gchanges)
5352 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5353
5354 if (changes & IFF_UP) {
5355 if (dev->flags & IFF_UP)
5356 call_netdevice_notifiers(NETDEV_UP, dev);
5357 else
5358 call_netdevice_notifiers(NETDEV_DOWN, dev);
5359 }
5360
5361 if (dev->flags & IFF_UP &&
5362 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5363 struct netdev_notifier_change_info change_info;
5364
5365 change_info.flags_changed = changes;
5366 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5367 &change_info.info);
5368 }
5369 }
5370
5371 /**
5372 * dev_change_flags - change device settings
5373 * @dev: device
5374 * @flags: device state flags
5375 *
5376 * Change settings on device based state flags. The flags are
5377 * in the userspace exported format.
5378 */
5379 int dev_change_flags(struct net_device *dev, unsigned int flags)
5380 {
5381 int ret;
5382 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5383
5384 ret = __dev_change_flags(dev, flags);
5385 if (ret < 0)
5386 return ret;
5387
5388 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5389 __dev_notify_flags(dev, old_flags, changes);
5390 return ret;
5391 }
5392 EXPORT_SYMBOL(dev_change_flags);
5393
5394 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5395 {
5396 const struct net_device_ops *ops = dev->netdev_ops;
5397
5398 if (ops->ndo_change_mtu)
5399 return ops->ndo_change_mtu(dev, new_mtu);
5400
5401 dev->mtu = new_mtu;
5402 return 0;
5403 }
5404
5405 /**
5406 * dev_set_mtu - Change maximum transfer unit
5407 * @dev: device
5408 * @new_mtu: new transfer unit
5409 *
5410 * Change the maximum transfer size of the network device.
5411 */
5412 int dev_set_mtu(struct net_device *dev, int new_mtu)
5413 {
5414 int err, orig_mtu;
5415
5416 if (new_mtu == dev->mtu)
5417 return 0;
5418
5419 /* MTU must be positive. */
5420 if (new_mtu < 0)
5421 return -EINVAL;
5422
5423 if (!netif_device_present(dev))
5424 return -ENODEV;
5425
5426 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5427 err = notifier_to_errno(err);
5428 if (err)
5429 return err;
5430
5431 orig_mtu = dev->mtu;
5432 err = __dev_set_mtu(dev, new_mtu);
5433
5434 if (!err) {
5435 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5436 err = notifier_to_errno(err);
5437 if (err) {
5438 /* setting mtu back and notifying everyone again,
5439 * so that they have a chance to revert changes.
5440 */
5441 __dev_set_mtu(dev, orig_mtu);
5442 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5443 }
5444 }
5445 return err;
5446 }
5447 EXPORT_SYMBOL(dev_set_mtu);
5448
5449 /**
5450 * dev_set_group - Change group this device belongs to
5451 * @dev: device
5452 * @new_group: group this device should belong to
5453 */
5454 void dev_set_group(struct net_device *dev, int new_group)
5455 {
5456 dev->group = new_group;
5457 }
5458 EXPORT_SYMBOL(dev_set_group);
5459
5460 /**
5461 * dev_set_mac_address - Change Media Access Control Address
5462 * @dev: device
5463 * @sa: new address
5464 *
5465 * Change the hardware (MAC) address of the device
5466 */
5467 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5468 {
5469 const struct net_device_ops *ops = dev->netdev_ops;
5470 int err;
5471
5472 if (!ops->ndo_set_mac_address)
5473 return -EOPNOTSUPP;
5474 if (sa->sa_family != dev->type)
5475 return -EINVAL;
5476 if (!netif_device_present(dev))
5477 return -ENODEV;
5478 err = ops->ndo_set_mac_address(dev, sa);
5479 if (err)
5480 return err;
5481 dev->addr_assign_type = NET_ADDR_SET;
5482 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5483 add_device_randomness(dev->dev_addr, dev->addr_len);
5484 return 0;
5485 }
5486 EXPORT_SYMBOL(dev_set_mac_address);
5487
5488 /**
5489 * dev_change_carrier - Change device carrier
5490 * @dev: device
5491 * @new_carrier: new value
5492 *
5493 * Change device carrier
5494 */
5495 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5496 {
5497 const struct net_device_ops *ops = dev->netdev_ops;
5498
5499 if (!ops->ndo_change_carrier)
5500 return -EOPNOTSUPP;
5501 if (!netif_device_present(dev))
5502 return -ENODEV;
5503 return ops->ndo_change_carrier(dev, new_carrier);
5504 }
5505 EXPORT_SYMBOL(dev_change_carrier);
5506
5507 /**
5508 * dev_get_phys_port_id - Get device physical port ID
5509 * @dev: device
5510 * @ppid: port ID
5511 *
5512 * Get device physical port ID
5513 */
5514 int dev_get_phys_port_id(struct net_device *dev,
5515 struct netdev_phys_port_id *ppid)
5516 {
5517 const struct net_device_ops *ops = dev->netdev_ops;
5518
5519 if (!ops->ndo_get_phys_port_id)
5520 return -EOPNOTSUPP;
5521 return ops->ndo_get_phys_port_id(dev, ppid);
5522 }
5523 EXPORT_SYMBOL(dev_get_phys_port_id);
5524
5525 /**
5526 * dev_new_index - allocate an ifindex
5527 * @net: the applicable net namespace
5528 *
5529 * Returns a suitable unique value for a new device interface
5530 * number. The caller must hold the rtnl semaphore or the
5531 * dev_base_lock to be sure it remains unique.
5532 */
5533 static int dev_new_index(struct net *net)
5534 {
5535 int ifindex = net->ifindex;
5536 for (;;) {
5537 if (++ifindex <= 0)
5538 ifindex = 1;
5539 if (!__dev_get_by_index(net, ifindex))
5540 return net->ifindex = ifindex;
5541 }
5542 }
5543
5544 /* Delayed registration/unregisteration */
5545 static LIST_HEAD(net_todo_list);
5546 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5547
5548 static void net_set_todo(struct net_device *dev)
5549 {
5550 list_add_tail(&dev->todo_list, &net_todo_list);
5551 dev_net(dev)->dev_unreg_count++;
5552 }
5553
5554 static void rollback_registered_many(struct list_head *head)
5555 {
5556 struct net_device *dev, *tmp;
5557 LIST_HEAD(close_head);
5558
5559 BUG_ON(dev_boot_phase);
5560 ASSERT_RTNL();
5561
5562 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5563 /* Some devices call without registering
5564 * for initialization unwind. Remove those
5565 * devices and proceed with the remaining.
5566 */
5567 if (dev->reg_state == NETREG_UNINITIALIZED) {
5568 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5569 dev->name, dev);
5570
5571 WARN_ON(1);
5572 list_del(&dev->unreg_list);
5573 continue;
5574 }
5575 dev->dismantle = true;
5576 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5577 }
5578
5579 /* If device is running, close it first. */
5580 list_for_each_entry(dev, head, unreg_list)
5581 list_add_tail(&dev->close_list, &close_head);
5582 dev_close_many(&close_head);
5583
5584 list_for_each_entry(dev, head, unreg_list) {
5585 /* And unlink it from device chain. */
5586 unlist_netdevice(dev);
5587
5588 dev->reg_state = NETREG_UNREGISTERING;
5589 }
5590
5591 synchronize_net();
5592
5593 list_for_each_entry(dev, head, unreg_list) {
5594 /* Shutdown queueing discipline. */
5595 dev_shutdown(dev);
5596
5597
5598 /* Notify protocols, that we are about to destroy
5599 this device. They should clean all the things.
5600 */
5601 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5602
5603 if (!dev->rtnl_link_ops ||
5604 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5605 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5606
5607 /*
5608 * Flush the unicast and multicast chains
5609 */
5610 dev_uc_flush(dev);
5611 dev_mc_flush(dev);
5612
5613 if (dev->netdev_ops->ndo_uninit)
5614 dev->netdev_ops->ndo_uninit(dev);
5615
5616 /* Notifier chain MUST detach us all upper devices. */
5617 WARN_ON(netdev_has_any_upper_dev(dev));
5618
5619 /* Remove entries from kobject tree */
5620 netdev_unregister_kobject(dev);
5621 #ifdef CONFIG_XPS
5622 /* Remove XPS queueing entries */
5623 netif_reset_xps_queues_gt(dev, 0);
5624 #endif
5625 }
5626
5627 synchronize_net();
5628
5629 list_for_each_entry(dev, head, unreg_list)
5630 dev_put(dev);
5631 }
5632
5633 static void rollback_registered(struct net_device *dev)
5634 {
5635 LIST_HEAD(single);
5636
5637 list_add(&dev->unreg_list, &single);
5638 rollback_registered_many(&single);
5639 list_del(&single);
5640 }
5641
5642 static netdev_features_t netdev_fix_features(struct net_device *dev,
5643 netdev_features_t features)
5644 {
5645 /* Fix illegal checksum combinations */
5646 if ((features & NETIF_F_HW_CSUM) &&
5647 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5648 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5649 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5650 }
5651
5652 /* TSO requires that SG is present as well. */
5653 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5654 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5655 features &= ~NETIF_F_ALL_TSO;
5656 }
5657
5658 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5659 !(features & NETIF_F_IP_CSUM)) {
5660 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5661 features &= ~NETIF_F_TSO;
5662 features &= ~NETIF_F_TSO_ECN;
5663 }
5664
5665 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5666 !(features & NETIF_F_IPV6_CSUM)) {
5667 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5668 features &= ~NETIF_F_TSO6;
5669 }
5670
5671 /* TSO ECN requires that TSO is present as well. */
5672 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5673 features &= ~NETIF_F_TSO_ECN;
5674
5675 /* Software GSO depends on SG. */
5676 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5677 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5678 features &= ~NETIF_F_GSO;
5679 }
5680
5681 /* UFO needs SG and checksumming */
5682 if (features & NETIF_F_UFO) {
5683 /* maybe split UFO into V4 and V6? */
5684 if (!((features & NETIF_F_GEN_CSUM) ||
5685 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5686 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5687 netdev_dbg(dev,
5688 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5689 features &= ~NETIF_F_UFO;
5690 }
5691
5692 if (!(features & NETIF_F_SG)) {
5693 netdev_dbg(dev,
5694 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5695 features &= ~NETIF_F_UFO;
5696 }
5697 }
5698
5699 return features;
5700 }
5701
5702 int __netdev_update_features(struct net_device *dev)
5703 {
5704 netdev_features_t features;
5705 int err = 0;
5706
5707 ASSERT_RTNL();
5708
5709 features = netdev_get_wanted_features(dev);
5710
5711 if (dev->netdev_ops->ndo_fix_features)
5712 features = dev->netdev_ops->ndo_fix_features(dev, features);
5713
5714 /* driver might be less strict about feature dependencies */
5715 features = netdev_fix_features(dev, features);
5716
5717 if (dev->features == features)
5718 return 0;
5719
5720 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5721 &dev->features, &features);
5722
5723 if (dev->netdev_ops->ndo_set_features)
5724 err = dev->netdev_ops->ndo_set_features(dev, features);
5725
5726 if (unlikely(err < 0)) {
5727 netdev_err(dev,
5728 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5729 err, &features, &dev->features);
5730 return -1;
5731 }
5732
5733 if (!err)
5734 dev->features = features;
5735
5736 return 1;
5737 }
5738
5739 /**
5740 * netdev_update_features - recalculate device features
5741 * @dev: the device to check
5742 *
5743 * Recalculate dev->features set and send notifications if it
5744 * has changed. Should be called after driver or hardware dependent
5745 * conditions might have changed that influence the features.
5746 */
5747 void netdev_update_features(struct net_device *dev)
5748 {
5749 if (__netdev_update_features(dev))
5750 netdev_features_change(dev);
5751 }
5752 EXPORT_SYMBOL(netdev_update_features);
5753
5754 /**
5755 * netdev_change_features - recalculate device features
5756 * @dev: the device to check
5757 *
5758 * Recalculate dev->features set and send notifications even
5759 * if they have not changed. Should be called instead of
5760 * netdev_update_features() if also dev->vlan_features might
5761 * have changed to allow the changes to be propagated to stacked
5762 * VLAN devices.
5763 */
5764 void netdev_change_features(struct net_device *dev)
5765 {
5766 __netdev_update_features(dev);
5767 netdev_features_change(dev);
5768 }
5769 EXPORT_SYMBOL(netdev_change_features);
5770
5771 /**
5772 * netif_stacked_transfer_operstate - transfer operstate
5773 * @rootdev: the root or lower level device to transfer state from
5774 * @dev: the device to transfer operstate to
5775 *
5776 * Transfer operational state from root to device. This is normally
5777 * called when a stacking relationship exists between the root
5778 * device and the device(a leaf device).
5779 */
5780 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5781 struct net_device *dev)
5782 {
5783 if (rootdev->operstate == IF_OPER_DORMANT)
5784 netif_dormant_on(dev);
5785 else
5786 netif_dormant_off(dev);
5787
5788 if (netif_carrier_ok(rootdev)) {
5789 if (!netif_carrier_ok(dev))
5790 netif_carrier_on(dev);
5791 } else {
5792 if (netif_carrier_ok(dev))
5793 netif_carrier_off(dev);
5794 }
5795 }
5796 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5797
5798 #ifdef CONFIG_SYSFS
5799 static int netif_alloc_rx_queues(struct net_device *dev)
5800 {
5801 unsigned int i, count = dev->num_rx_queues;
5802 struct netdev_rx_queue *rx;
5803
5804 BUG_ON(count < 1);
5805
5806 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5807 if (!rx)
5808 return -ENOMEM;
5809
5810 dev->_rx = rx;
5811
5812 for (i = 0; i < count; i++)
5813 rx[i].dev = dev;
5814 return 0;
5815 }
5816 #endif
5817
5818 static void netdev_init_one_queue(struct net_device *dev,
5819 struct netdev_queue *queue, void *_unused)
5820 {
5821 /* Initialize queue lock */
5822 spin_lock_init(&queue->_xmit_lock);
5823 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5824 queue->xmit_lock_owner = -1;
5825 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5826 queue->dev = dev;
5827 #ifdef CONFIG_BQL
5828 dql_init(&queue->dql, HZ);
5829 #endif
5830 }
5831
5832 static void netif_free_tx_queues(struct net_device *dev)
5833 {
5834 if (is_vmalloc_addr(dev->_tx))
5835 vfree(dev->_tx);
5836 else
5837 kfree(dev->_tx);
5838 }
5839
5840 static int netif_alloc_netdev_queues(struct net_device *dev)
5841 {
5842 unsigned int count = dev->num_tx_queues;
5843 struct netdev_queue *tx;
5844 size_t sz = count * sizeof(*tx);
5845
5846 BUG_ON(count < 1 || count > 0xffff);
5847
5848 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5849 if (!tx) {
5850 tx = vzalloc(sz);
5851 if (!tx)
5852 return -ENOMEM;
5853 }
5854 dev->_tx = tx;
5855
5856 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5857 spin_lock_init(&dev->tx_global_lock);
5858
5859 return 0;
5860 }
5861
5862 /**
5863 * register_netdevice - register a network device
5864 * @dev: device to register
5865 *
5866 * Take a completed network device structure and add it to the kernel
5867 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5868 * chain. 0 is returned on success. A negative errno code is returned
5869 * on a failure to set up the device, or if the name is a duplicate.
5870 *
5871 * Callers must hold the rtnl semaphore. You may want
5872 * register_netdev() instead of this.
5873 *
5874 * BUGS:
5875 * The locking appears insufficient to guarantee two parallel registers
5876 * will not get the same name.
5877 */
5878
5879 int register_netdevice(struct net_device *dev)
5880 {
5881 int ret;
5882 struct net *net = dev_net(dev);
5883
5884 BUG_ON(dev_boot_phase);
5885 ASSERT_RTNL();
5886
5887 might_sleep();
5888
5889 /* When net_device's are persistent, this will be fatal. */
5890 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5891 BUG_ON(!net);
5892
5893 spin_lock_init(&dev->addr_list_lock);
5894 netdev_set_addr_lockdep_class(dev);
5895
5896 dev->iflink = -1;
5897
5898 ret = dev_get_valid_name(net, dev, dev->name);
5899 if (ret < 0)
5900 goto out;
5901
5902 /* Init, if this function is available */
5903 if (dev->netdev_ops->ndo_init) {
5904 ret = dev->netdev_ops->ndo_init(dev);
5905 if (ret) {
5906 if (ret > 0)
5907 ret = -EIO;
5908 goto out;
5909 }
5910 }
5911
5912 if (((dev->hw_features | dev->features) &
5913 NETIF_F_HW_VLAN_CTAG_FILTER) &&
5914 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5915 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5916 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5917 ret = -EINVAL;
5918 goto err_uninit;
5919 }
5920
5921 ret = -EBUSY;
5922 if (!dev->ifindex)
5923 dev->ifindex = dev_new_index(net);
5924 else if (__dev_get_by_index(net, dev->ifindex))
5925 goto err_uninit;
5926
5927 if (dev->iflink == -1)
5928 dev->iflink = dev->ifindex;
5929
5930 /* Transfer changeable features to wanted_features and enable
5931 * software offloads (GSO and GRO).
5932 */
5933 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5934 dev->features |= NETIF_F_SOFT_FEATURES;
5935 dev->wanted_features = dev->features & dev->hw_features;
5936
5937 if (!(dev->flags & IFF_LOOPBACK)) {
5938 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5939 }
5940
5941 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5942 */
5943 dev->vlan_features |= NETIF_F_HIGHDMA;
5944
5945 /* Make NETIF_F_SG inheritable to tunnel devices.
5946 */
5947 dev->hw_enc_features |= NETIF_F_SG;
5948
5949 /* Make NETIF_F_SG inheritable to MPLS.
5950 */
5951 dev->mpls_features |= NETIF_F_SG;
5952
5953 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5954 ret = notifier_to_errno(ret);
5955 if (ret)
5956 goto err_uninit;
5957
5958 ret = netdev_register_kobject(dev);
5959 if (ret)
5960 goto err_uninit;
5961 dev->reg_state = NETREG_REGISTERED;
5962
5963 __netdev_update_features(dev);
5964
5965 /*
5966 * Default initial state at registry is that the
5967 * device is present.
5968 */
5969
5970 set_bit(__LINK_STATE_PRESENT, &dev->state);
5971
5972 linkwatch_init_dev(dev);
5973
5974 dev_init_scheduler(dev);
5975 dev_hold(dev);
5976 list_netdevice(dev);
5977 add_device_randomness(dev->dev_addr, dev->addr_len);
5978
5979 /* If the device has permanent device address, driver should
5980 * set dev_addr and also addr_assign_type should be set to
5981 * NET_ADDR_PERM (default value).
5982 */
5983 if (dev->addr_assign_type == NET_ADDR_PERM)
5984 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5985
5986 /* Notify protocols, that a new device appeared. */
5987 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5988 ret = notifier_to_errno(ret);
5989 if (ret) {
5990 rollback_registered(dev);
5991 dev->reg_state = NETREG_UNREGISTERED;
5992 }
5993 /*
5994 * Prevent userspace races by waiting until the network
5995 * device is fully setup before sending notifications.
5996 */
5997 if (!dev->rtnl_link_ops ||
5998 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5999 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6000
6001 out:
6002 return ret;
6003
6004 err_uninit:
6005 if (dev->netdev_ops->ndo_uninit)
6006 dev->netdev_ops->ndo_uninit(dev);
6007 goto out;
6008 }
6009 EXPORT_SYMBOL(register_netdevice);
6010
6011 /**
6012 * init_dummy_netdev - init a dummy network device for NAPI
6013 * @dev: device to init
6014 *
6015 * This takes a network device structure and initialize the minimum
6016 * amount of fields so it can be used to schedule NAPI polls without
6017 * registering a full blown interface. This is to be used by drivers
6018 * that need to tie several hardware interfaces to a single NAPI
6019 * poll scheduler due to HW limitations.
6020 */
6021 int init_dummy_netdev(struct net_device *dev)
6022 {
6023 /* Clear everything. Note we don't initialize spinlocks
6024 * are they aren't supposed to be taken by any of the
6025 * NAPI code and this dummy netdev is supposed to be
6026 * only ever used for NAPI polls
6027 */
6028 memset(dev, 0, sizeof(struct net_device));
6029
6030 /* make sure we BUG if trying to hit standard
6031 * register/unregister code path
6032 */
6033 dev->reg_state = NETREG_DUMMY;
6034
6035 /* NAPI wants this */
6036 INIT_LIST_HEAD(&dev->napi_list);
6037
6038 /* a dummy interface is started by default */
6039 set_bit(__LINK_STATE_PRESENT, &dev->state);
6040 set_bit(__LINK_STATE_START, &dev->state);
6041
6042 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6043 * because users of this 'device' dont need to change
6044 * its refcount.
6045 */
6046
6047 return 0;
6048 }
6049 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6050
6051
6052 /**
6053 * register_netdev - register a network device
6054 * @dev: device to register
6055 *
6056 * Take a completed network device structure and add it to the kernel
6057 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6058 * chain. 0 is returned on success. A negative errno code is returned
6059 * on a failure to set up the device, or if the name is a duplicate.
6060 *
6061 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6062 * and expands the device name if you passed a format string to
6063 * alloc_netdev.
6064 */
6065 int register_netdev(struct net_device *dev)
6066 {
6067 int err;
6068
6069 rtnl_lock();
6070 err = register_netdevice(dev);
6071 rtnl_unlock();
6072 return err;
6073 }
6074 EXPORT_SYMBOL(register_netdev);
6075
6076 int netdev_refcnt_read(const struct net_device *dev)
6077 {
6078 int i, refcnt = 0;
6079
6080 for_each_possible_cpu(i)
6081 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6082 return refcnt;
6083 }
6084 EXPORT_SYMBOL(netdev_refcnt_read);
6085
6086 /**
6087 * netdev_wait_allrefs - wait until all references are gone.
6088 * @dev: target net_device
6089 *
6090 * This is called when unregistering network devices.
6091 *
6092 * Any protocol or device that holds a reference should register
6093 * for netdevice notification, and cleanup and put back the
6094 * reference if they receive an UNREGISTER event.
6095 * We can get stuck here if buggy protocols don't correctly
6096 * call dev_put.
6097 */
6098 static void netdev_wait_allrefs(struct net_device *dev)
6099 {
6100 unsigned long rebroadcast_time, warning_time;
6101 int refcnt;
6102
6103 linkwatch_forget_dev(dev);
6104
6105 rebroadcast_time = warning_time = jiffies;
6106 refcnt = netdev_refcnt_read(dev);
6107
6108 while (refcnt != 0) {
6109 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6110 rtnl_lock();
6111
6112 /* Rebroadcast unregister notification */
6113 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6114
6115 __rtnl_unlock();
6116 rcu_barrier();
6117 rtnl_lock();
6118
6119 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6120 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6121 &dev->state)) {
6122 /* We must not have linkwatch events
6123 * pending on unregister. If this
6124 * happens, we simply run the queue
6125 * unscheduled, resulting in a noop
6126 * for this device.
6127 */
6128 linkwatch_run_queue();
6129 }
6130
6131 __rtnl_unlock();
6132
6133 rebroadcast_time = jiffies;
6134 }
6135
6136 msleep(250);
6137
6138 refcnt = netdev_refcnt_read(dev);
6139
6140 if (time_after(jiffies, warning_time + 10 * HZ)) {
6141 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6142 dev->name, refcnt);
6143 warning_time = jiffies;
6144 }
6145 }
6146 }
6147
6148 /* The sequence is:
6149 *
6150 * rtnl_lock();
6151 * ...
6152 * register_netdevice(x1);
6153 * register_netdevice(x2);
6154 * ...
6155 * unregister_netdevice(y1);
6156 * unregister_netdevice(y2);
6157 * ...
6158 * rtnl_unlock();
6159 * free_netdev(y1);
6160 * free_netdev(y2);
6161 *
6162 * We are invoked by rtnl_unlock().
6163 * This allows us to deal with problems:
6164 * 1) We can delete sysfs objects which invoke hotplug
6165 * without deadlocking with linkwatch via keventd.
6166 * 2) Since we run with the RTNL semaphore not held, we can sleep
6167 * safely in order to wait for the netdev refcnt to drop to zero.
6168 *
6169 * We must not return until all unregister events added during
6170 * the interval the lock was held have been completed.
6171 */
6172 void netdev_run_todo(void)
6173 {
6174 struct list_head list;
6175
6176 /* Snapshot list, allow later requests */
6177 list_replace_init(&net_todo_list, &list);
6178
6179 __rtnl_unlock();
6180
6181
6182 /* Wait for rcu callbacks to finish before next phase */
6183 if (!list_empty(&list))
6184 rcu_barrier();
6185
6186 while (!list_empty(&list)) {
6187 struct net_device *dev
6188 = list_first_entry(&list, struct net_device, todo_list);
6189 list_del(&dev->todo_list);
6190
6191 rtnl_lock();
6192 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6193 __rtnl_unlock();
6194
6195 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6196 pr_err("network todo '%s' but state %d\n",
6197 dev->name, dev->reg_state);
6198 dump_stack();
6199 continue;
6200 }
6201
6202 dev->reg_state = NETREG_UNREGISTERED;
6203
6204 on_each_cpu(flush_backlog, dev, 1);
6205
6206 netdev_wait_allrefs(dev);
6207
6208 /* paranoia */
6209 BUG_ON(netdev_refcnt_read(dev));
6210 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6211 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6212 WARN_ON(dev->dn_ptr);
6213
6214 if (dev->destructor)
6215 dev->destructor(dev);
6216
6217 /* Report a network device has been unregistered */
6218 rtnl_lock();
6219 dev_net(dev)->dev_unreg_count--;
6220 __rtnl_unlock();
6221 wake_up(&netdev_unregistering_wq);
6222
6223 /* Free network device */
6224 kobject_put(&dev->dev.kobj);
6225 }
6226 }
6227
6228 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6229 * fields in the same order, with only the type differing.
6230 */
6231 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6232 const struct net_device_stats *netdev_stats)
6233 {
6234 #if BITS_PER_LONG == 64
6235 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6236 memcpy(stats64, netdev_stats, sizeof(*stats64));
6237 #else
6238 size_t i, n = sizeof(*stats64) / sizeof(u64);
6239 const unsigned long *src = (const unsigned long *)netdev_stats;
6240 u64 *dst = (u64 *)stats64;
6241
6242 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6243 sizeof(*stats64) / sizeof(u64));
6244 for (i = 0; i < n; i++)
6245 dst[i] = src[i];
6246 #endif
6247 }
6248 EXPORT_SYMBOL(netdev_stats_to_stats64);
6249
6250 /**
6251 * dev_get_stats - get network device statistics
6252 * @dev: device to get statistics from
6253 * @storage: place to store stats
6254 *
6255 * Get network statistics from device. Return @storage.
6256 * The device driver may provide its own method by setting
6257 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6258 * otherwise the internal statistics structure is used.
6259 */
6260 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6261 struct rtnl_link_stats64 *storage)
6262 {
6263 const struct net_device_ops *ops = dev->netdev_ops;
6264
6265 if (ops->ndo_get_stats64) {
6266 memset(storage, 0, sizeof(*storage));
6267 ops->ndo_get_stats64(dev, storage);
6268 } else if (ops->ndo_get_stats) {
6269 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6270 } else {
6271 netdev_stats_to_stats64(storage, &dev->stats);
6272 }
6273 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6274 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6275 return storage;
6276 }
6277 EXPORT_SYMBOL(dev_get_stats);
6278
6279 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6280 {
6281 struct netdev_queue *queue = dev_ingress_queue(dev);
6282
6283 #ifdef CONFIG_NET_CLS_ACT
6284 if (queue)
6285 return queue;
6286 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6287 if (!queue)
6288 return NULL;
6289 netdev_init_one_queue(dev, queue, NULL);
6290 queue->qdisc = &noop_qdisc;
6291 queue->qdisc_sleeping = &noop_qdisc;
6292 rcu_assign_pointer(dev->ingress_queue, queue);
6293 #endif
6294 return queue;
6295 }
6296
6297 static const struct ethtool_ops default_ethtool_ops;
6298
6299 void netdev_set_default_ethtool_ops(struct net_device *dev,
6300 const struct ethtool_ops *ops)
6301 {
6302 if (dev->ethtool_ops == &default_ethtool_ops)
6303 dev->ethtool_ops = ops;
6304 }
6305 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6306
6307 void netdev_freemem(struct net_device *dev)
6308 {
6309 char *addr = (char *)dev - dev->padded;
6310
6311 if (is_vmalloc_addr(addr))
6312 vfree(addr);
6313 else
6314 kfree(addr);
6315 }
6316
6317 /**
6318 * alloc_netdev_mqs - allocate network device
6319 * @sizeof_priv: size of private data to allocate space for
6320 * @name: device name format string
6321 * @setup: callback to initialize device
6322 * @txqs: the number of TX subqueues to allocate
6323 * @rxqs: the number of RX subqueues to allocate
6324 *
6325 * Allocates a struct net_device with private data area for driver use
6326 * and performs basic initialization. Also allocates subqueue structs
6327 * for each queue on the device.
6328 */
6329 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6330 void (*setup)(struct net_device *),
6331 unsigned int txqs, unsigned int rxqs)
6332 {
6333 struct net_device *dev;
6334 size_t alloc_size;
6335 struct net_device *p;
6336
6337 BUG_ON(strlen(name) >= sizeof(dev->name));
6338
6339 if (txqs < 1) {
6340 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6341 return NULL;
6342 }
6343
6344 #ifdef CONFIG_SYSFS
6345 if (rxqs < 1) {
6346 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6347 return NULL;
6348 }
6349 #endif
6350
6351 alloc_size = sizeof(struct net_device);
6352 if (sizeof_priv) {
6353 /* ensure 32-byte alignment of private area */
6354 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6355 alloc_size += sizeof_priv;
6356 }
6357 /* ensure 32-byte alignment of whole construct */
6358 alloc_size += NETDEV_ALIGN - 1;
6359
6360 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6361 if (!p)
6362 p = vzalloc(alloc_size);
6363 if (!p)
6364 return NULL;
6365
6366 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6367 dev->padded = (char *)dev - (char *)p;
6368
6369 dev->pcpu_refcnt = alloc_percpu(int);
6370 if (!dev->pcpu_refcnt)
6371 goto free_dev;
6372
6373 if (dev_addr_init(dev))
6374 goto free_pcpu;
6375
6376 dev_mc_init(dev);
6377 dev_uc_init(dev);
6378
6379 dev_net_set(dev, &init_net);
6380
6381 dev->gso_max_size = GSO_MAX_SIZE;
6382 dev->gso_max_segs = GSO_MAX_SEGS;
6383
6384 INIT_LIST_HEAD(&dev->napi_list);
6385 INIT_LIST_HEAD(&dev->unreg_list);
6386 INIT_LIST_HEAD(&dev->close_list);
6387 INIT_LIST_HEAD(&dev->link_watch_list);
6388 INIT_LIST_HEAD(&dev->adj_list.upper);
6389 INIT_LIST_HEAD(&dev->adj_list.lower);
6390 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6391 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6392 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6393 setup(dev);
6394
6395 dev->num_tx_queues = txqs;
6396 dev->real_num_tx_queues = txqs;
6397 if (netif_alloc_netdev_queues(dev))
6398 goto free_all;
6399
6400 #ifdef CONFIG_SYSFS
6401 dev->num_rx_queues = rxqs;
6402 dev->real_num_rx_queues = rxqs;
6403 if (netif_alloc_rx_queues(dev))
6404 goto free_all;
6405 #endif
6406
6407 strcpy(dev->name, name);
6408 dev->group = INIT_NETDEV_GROUP;
6409 if (!dev->ethtool_ops)
6410 dev->ethtool_ops = &default_ethtool_ops;
6411 return dev;
6412
6413 free_all:
6414 free_netdev(dev);
6415 return NULL;
6416
6417 free_pcpu:
6418 free_percpu(dev->pcpu_refcnt);
6419 netif_free_tx_queues(dev);
6420 #ifdef CONFIG_SYSFS
6421 kfree(dev->_rx);
6422 #endif
6423
6424 free_dev:
6425 netdev_freemem(dev);
6426 return NULL;
6427 }
6428 EXPORT_SYMBOL(alloc_netdev_mqs);
6429
6430 /**
6431 * free_netdev - free network device
6432 * @dev: device
6433 *
6434 * This function does the last stage of destroying an allocated device
6435 * interface. The reference to the device object is released.
6436 * If this is the last reference then it will be freed.
6437 */
6438 void free_netdev(struct net_device *dev)
6439 {
6440 struct napi_struct *p, *n;
6441
6442 release_net(dev_net(dev));
6443
6444 netif_free_tx_queues(dev);
6445 #ifdef CONFIG_SYSFS
6446 kfree(dev->_rx);
6447 #endif
6448
6449 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6450
6451 /* Flush device addresses */
6452 dev_addr_flush(dev);
6453
6454 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6455 netif_napi_del(p);
6456
6457 free_percpu(dev->pcpu_refcnt);
6458 dev->pcpu_refcnt = NULL;
6459
6460 /* Compatibility with error handling in drivers */
6461 if (dev->reg_state == NETREG_UNINITIALIZED) {
6462 netdev_freemem(dev);
6463 return;
6464 }
6465
6466 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6467 dev->reg_state = NETREG_RELEASED;
6468
6469 /* will free via device release */
6470 put_device(&dev->dev);
6471 }
6472 EXPORT_SYMBOL(free_netdev);
6473
6474 /**
6475 * synchronize_net - Synchronize with packet receive processing
6476 *
6477 * Wait for packets currently being received to be done.
6478 * Does not block later packets from starting.
6479 */
6480 void synchronize_net(void)
6481 {
6482 might_sleep();
6483 if (rtnl_is_locked())
6484 synchronize_rcu_expedited();
6485 else
6486 synchronize_rcu();
6487 }
6488 EXPORT_SYMBOL(synchronize_net);
6489
6490 /**
6491 * unregister_netdevice_queue - remove device from the kernel
6492 * @dev: device
6493 * @head: list
6494 *
6495 * This function shuts down a device interface and removes it
6496 * from the kernel tables.
6497 * If head not NULL, device is queued to be unregistered later.
6498 *
6499 * Callers must hold the rtnl semaphore. You may want
6500 * unregister_netdev() instead of this.
6501 */
6502
6503 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6504 {
6505 ASSERT_RTNL();
6506
6507 if (head) {
6508 list_move_tail(&dev->unreg_list, head);
6509 } else {
6510 rollback_registered(dev);
6511 /* Finish processing unregister after unlock */
6512 net_set_todo(dev);
6513 }
6514 }
6515 EXPORT_SYMBOL(unregister_netdevice_queue);
6516
6517 /**
6518 * unregister_netdevice_many - unregister many devices
6519 * @head: list of devices
6520 */
6521 void unregister_netdevice_many(struct list_head *head)
6522 {
6523 struct net_device *dev;
6524
6525 if (!list_empty(head)) {
6526 rollback_registered_many(head);
6527 list_for_each_entry(dev, head, unreg_list)
6528 net_set_todo(dev);
6529 }
6530 }
6531 EXPORT_SYMBOL(unregister_netdevice_many);
6532
6533 /**
6534 * unregister_netdev - remove device from the kernel
6535 * @dev: device
6536 *
6537 * This function shuts down a device interface and removes it
6538 * from the kernel tables.
6539 *
6540 * This is just a wrapper for unregister_netdevice that takes
6541 * the rtnl semaphore. In general you want to use this and not
6542 * unregister_netdevice.
6543 */
6544 void unregister_netdev(struct net_device *dev)
6545 {
6546 rtnl_lock();
6547 unregister_netdevice(dev);
6548 rtnl_unlock();
6549 }
6550 EXPORT_SYMBOL(unregister_netdev);
6551
6552 /**
6553 * dev_change_net_namespace - move device to different nethost namespace
6554 * @dev: device
6555 * @net: network namespace
6556 * @pat: If not NULL name pattern to try if the current device name
6557 * is already taken in the destination network namespace.
6558 *
6559 * This function shuts down a device interface and moves it
6560 * to a new network namespace. On success 0 is returned, on
6561 * a failure a netagive errno code is returned.
6562 *
6563 * Callers must hold the rtnl semaphore.
6564 */
6565
6566 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6567 {
6568 int err;
6569
6570 ASSERT_RTNL();
6571
6572 /* Don't allow namespace local devices to be moved. */
6573 err = -EINVAL;
6574 if (dev->features & NETIF_F_NETNS_LOCAL)
6575 goto out;
6576
6577 /* Ensure the device has been registrered */
6578 if (dev->reg_state != NETREG_REGISTERED)
6579 goto out;
6580
6581 /* Get out if there is nothing todo */
6582 err = 0;
6583 if (net_eq(dev_net(dev), net))
6584 goto out;
6585
6586 /* Pick the destination device name, and ensure
6587 * we can use it in the destination network namespace.
6588 */
6589 err = -EEXIST;
6590 if (__dev_get_by_name(net, dev->name)) {
6591 /* We get here if we can't use the current device name */
6592 if (!pat)
6593 goto out;
6594 if (dev_get_valid_name(net, dev, pat) < 0)
6595 goto out;
6596 }
6597
6598 /*
6599 * And now a mini version of register_netdevice unregister_netdevice.
6600 */
6601
6602 /* If device is running close it first. */
6603 dev_close(dev);
6604
6605 /* And unlink it from device chain */
6606 err = -ENODEV;
6607 unlist_netdevice(dev);
6608
6609 synchronize_net();
6610
6611 /* Shutdown queueing discipline. */
6612 dev_shutdown(dev);
6613
6614 /* Notify protocols, that we are about to destroy
6615 this device. They should clean all the things.
6616
6617 Note that dev->reg_state stays at NETREG_REGISTERED.
6618 This is wanted because this way 8021q and macvlan know
6619 the device is just moving and can keep their slaves up.
6620 */
6621 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6622 rcu_barrier();
6623 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6624 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6625
6626 /*
6627 * Flush the unicast and multicast chains
6628 */
6629 dev_uc_flush(dev);
6630 dev_mc_flush(dev);
6631
6632 /* Send a netdev-removed uevent to the old namespace */
6633 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6634
6635 /* Actually switch the network namespace */
6636 dev_net_set(dev, net);
6637
6638 /* If there is an ifindex conflict assign a new one */
6639 if (__dev_get_by_index(net, dev->ifindex)) {
6640 int iflink = (dev->iflink == dev->ifindex);
6641 dev->ifindex = dev_new_index(net);
6642 if (iflink)
6643 dev->iflink = dev->ifindex;
6644 }
6645
6646 /* Send a netdev-add uevent to the new namespace */
6647 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6648
6649 /* Fixup kobjects */
6650 err = device_rename(&dev->dev, dev->name);
6651 WARN_ON(err);
6652
6653 /* Add the device back in the hashes */
6654 list_netdevice(dev);
6655
6656 /* Notify protocols, that a new device appeared. */
6657 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6658
6659 /*
6660 * Prevent userspace races by waiting until the network
6661 * device is fully setup before sending notifications.
6662 */
6663 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6664
6665 synchronize_net();
6666 err = 0;
6667 out:
6668 return err;
6669 }
6670 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6671
6672 static int dev_cpu_callback(struct notifier_block *nfb,
6673 unsigned long action,
6674 void *ocpu)
6675 {
6676 struct sk_buff **list_skb;
6677 struct sk_buff *skb;
6678 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6679 struct softnet_data *sd, *oldsd;
6680
6681 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6682 return NOTIFY_OK;
6683
6684 local_irq_disable();
6685 cpu = smp_processor_id();
6686 sd = &per_cpu(softnet_data, cpu);
6687 oldsd = &per_cpu(softnet_data, oldcpu);
6688
6689 /* Find end of our completion_queue. */
6690 list_skb = &sd->completion_queue;
6691 while (*list_skb)
6692 list_skb = &(*list_skb)->next;
6693 /* Append completion queue from offline CPU. */
6694 *list_skb = oldsd->completion_queue;
6695 oldsd->completion_queue = NULL;
6696
6697 /* Append output queue from offline CPU. */
6698 if (oldsd->output_queue) {
6699 *sd->output_queue_tailp = oldsd->output_queue;
6700 sd->output_queue_tailp = oldsd->output_queue_tailp;
6701 oldsd->output_queue = NULL;
6702 oldsd->output_queue_tailp = &oldsd->output_queue;
6703 }
6704 /* Append NAPI poll list from offline CPU. */
6705 if (!list_empty(&oldsd->poll_list)) {
6706 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6707 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6708 }
6709
6710 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6711 local_irq_enable();
6712
6713 /* Process offline CPU's input_pkt_queue */
6714 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6715 netif_rx_internal(skb);
6716 input_queue_head_incr(oldsd);
6717 }
6718 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6719 netif_rx_internal(skb);
6720 input_queue_head_incr(oldsd);
6721 }
6722
6723 return NOTIFY_OK;
6724 }
6725
6726
6727 /**
6728 * netdev_increment_features - increment feature set by one
6729 * @all: current feature set
6730 * @one: new feature set
6731 * @mask: mask feature set
6732 *
6733 * Computes a new feature set after adding a device with feature set
6734 * @one to the master device with current feature set @all. Will not
6735 * enable anything that is off in @mask. Returns the new feature set.
6736 */
6737 netdev_features_t netdev_increment_features(netdev_features_t all,
6738 netdev_features_t one, netdev_features_t mask)
6739 {
6740 if (mask & NETIF_F_GEN_CSUM)
6741 mask |= NETIF_F_ALL_CSUM;
6742 mask |= NETIF_F_VLAN_CHALLENGED;
6743
6744 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6745 all &= one | ~NETIF_F_ALL_FOR_ALL;
6746
6747 /* If one device supports hw checksumming, set for all. */
6748 if (all & NETIF_F_GEN_CSUM)
6749 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6750
6751 return all;
6752 }
6753 EXPORT_SYMBOL(netdev_increment_features);
6754
6755 static struct hlist_head * __net_init netdev_create_hash(void)
6756 {
6757 int i;
6758 struct hlist_head *hash;
6759
6760 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6761 if (hash != NULL)
6762 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6763 INIT_HLIST_HEAD(&hash[i]);
6764
6765 return hash;
6766 }
6767
6768 /* Initialize per network namespace state */
6769 static int __net_init netdev_init(struct net *net)
6770 {
6771 if (net != &init_net)
6772 INIT_LIST_HEAD(&net->dev_base_head);
6773
6774 net->dev_name_head = netdev_create_hash();
6775 if (net->dev_name_head == NULL)
6776 goto err_name;
6777
6778 net->dev_index_head = netdev_create_hash();
6779 if (net->dev_index_head == NULL)
6780 goto err_idx;
6781
6782 return 0;
6783
6784 err_idx:
6785 kfree(net->dev_name_head);
6786 err_name:
6787 return -ENOMEM;
6788 }
6789
6790 /**
6791 * netdev_drivername - network driver for the device
6792 * @dev: network device
6793 *
6794 * Determine network driver for device.
6795 */
6796 const char *netdev_drivername(const struct net_device *dev)
6797 {
6798 const struct device_driver *driver;
6799 const struct device *parent;
6800 const char *empty = "";
6801
6802 parent = dev->dev.parent;
6803 if (!parent)
6804 return empty;
6805
6806 driver = parent->driver;
6807 if (driver && driver->name)
6808 return driver->name;
6809 return empty;
6810 }
6811
6812 static int __netdev_printk(const char *level, const struct net_device *dev,
6813 struct va_format *vaf)
6814 {
6815 int r;
6816
6817 if (dev && dev->dev.parent) {
6818 r = dev_printk_emit(level[1] - '0',
6819 dev->dev.parent,
6820 "%s %s %s: %pV",
6821 dev_driver_string(dev->dev.parent),
6822 dev_name(dev->dev.parent),
6823 netdev_name(dev), vaf);
6824 } else if (dev) {
6825 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6826 } else {
6827 r = printk("%s(NULL net_device): %pV", level, vaf);
6828 }
6829
6830 return r;
6831 }
6832
6833 int netdev_printk(const char *level, const struct net_device *dev,
6834 const char *format, ...)
6835 {
6836 struct va_format vaf;
6837 va_list args;
6838 int r;
6839
6840 va_start(args, format);
6841
6842 vaf.fmt = format;
6843 vaf.va = &args;
6844
6845 r = __netdev_printk(level, dev, &vaf);
6846
6847 va_end(args);
6848
6849 return r;
6850 }
6851 EXPORT_SYMBOL(netdev_printk);
6852
6853 #define define_netdev_printk_level(func, level) \
6854 int func(const struct net_device *dev, const char *fmt, ...) \
6855 { \
6856 int r; \
6857 struct va_format vaf; \
6858 va_list args; \
6859 \
6860 va_start(args, fmt); \
6861 \
6862 vaf.fmt = fmt; \
6863 vaf.va = &args; \
6864 \
6865 r = __netdev_printk(level, dev, &vaf); \
6866 \
6867 va_end(args); \
6868 \
6869 return r; \
6870 } \
6871 EXPORT_SYMBOL(func);
6872
6873 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6874 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6875 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6876 define_netdev_printk_level(netdev_err, KERN_ERR);
6877 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6878 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6879 define_netdev_printk_level(netdev_info, KERN_INFO);
6880
6881 static void __net_exit netdev_exit(struct net *net)
6882 {
6883 kfree(net->dev_name_head);
6884 kfree(net->dev_index_head);
6885 }
6886
6887 static struct pernet_operations __net_initdata netdev_net_ops = {
6888 .init = netdev_init,
6889 .exit = netdev_exit,
6890 };
6891
6892 static void __net_exit default_device_exit(struct net *net)
6893 {
6894 struct net_device *dev, *aux;
6895 /*
6896 * Push all migratable network devices back to the
6897 * initial network namespace
6898 */
6899 rtnl_lock();
6900 for_each_netdev_safe(net, dev, aux) {
6901 int err;
6902 char fb_name[IFNAMSIZ];
6903
6904 /* Ignore unmoveable devices (i.e. loopback) */
6905 if (dev->features & NETIF_F_NETNS_LOCAL)
6906 continue;
6907
6908 /* Leave virtual devices for the generic cleanup */
6909 if (dev->rtnl_link_ops)
6910 continue;
6911
6912 /* Push remaining network devices to init_net */
6913 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6914 err = dev_change_net_namespace(dev, &init_net, fb_name);
6915 if (err) {
6916 pr_emerg("%s: failed to move %s to init_net: %d\n",
6917 __func__, dev->name, err);
6918 BUG();
6919 }
6920 }
6921 rtnl_unlock();
6922 }
6923
6924 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6925 {
6926 /* Return with the rtnl_lock held when there are no network
6927 * devices unregistering in any network namespace in net_list.
6928 */
6929 struct net *net;
6930 bool unregistering;
6931 DEFINE_WAIT(wait);
6932
6933 for (;;) {
6934 prepare_to_wait(&netdev_unregistering_wq, &wait,
6935 TASK_UNINTERRUPTIBLE);
6936 unregistering = false;
6937 rtnl_lock();
6938 list_for_each_entry(net, net_list, exit_list) {
6939 if (net->dev_unreg_count > 0) {
6940 unregistering = true;
6941 break;
6942 }
6943 }
6944 if (!unregistering)
6945 break;
6946 __rtnl_unlock();
6947 schedule();
6948 }
6949 finish_wait(&netdev_unregistering_wq, &wait);
6950 }
6951
6952 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6953 {
6954 /* At exit all network devices most be removed from a network
6955 * namespace. Do this in the reverse order of registration.
6956 * Do this across as many network namespaces as possible to
6957 * improve batching efficiency.
6958 */
6959 struct net_device *dev;
6960 struct net *net;
6961 LIST_HEAD(dev_kill_list);
6962
6963 /* To prevent network device cleanup code from dereferencing
6964 * loopback devices or network devices that have been freed
6965 * wait here for all pending unregistrations to complete,
6966 * before unregistring the loopback device and allowing the
6967 * network namespace be freed.
6968 *
6969 * The netdev todo list containing all network devices
6970 * unregistrations that happen in default_device_exit_batch
6971 * will run in the rtnl_unlock() at the end of
6972 * default_device_exit_batch.
6973 */
6974 rtnl_lock_unregistering(net_list);
6975 list_for_each_entry(net, net_list, exit_list) {
6976 for_each_netdev_reverse(net, dev) {
6977 if (dev->rtnl_link_ops)
6978 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6979 else
6980 unregister_netdevice_queue(dev, &dev_kill_list);
6981 }
6982 }
6983 unregister_netdevice_many(&dev_kill_list);
6984 list_del(&dev_kill_list);
6985 rtnl_unlock();
6986 }
6987
6988 static struct pernet_operations __net_initdata default_device_ops = {
6989 .exit = default_device_exit,
6990 .exit_batch = default_device_exit_batch,
6991 };
6992
6993 /*
6994 * Initialize the DEV module. At boot time this walks the device list and
6995 * unhooks any devices that fail to initialise (normally hardware not
6996 * present) and leaves us with a valid list of present and active devices.
6997 *
6998 */
6999
7000 /*
7001 * This is called single threaded during boot, so no need
7002 * to take the rtnl semaphore.
7003 */
7004 static int __init net_dev_init(void)
7005 {
7006 int i, rc = -ENOMEM;
7007
7008 BUG_ON(!dev_boot_phase);
7009
7010 if (dev_proc_init())
7011 goto out;
7012
7013 if (netdev_kobject_init())
7014 goto out;
7015
7016 INIT_LIST_HEAD(&ptype_all);
7017 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7018 INIT_LIST_HEAD(&ptype_base[i]);
7019
7020 INIT_LIST_HEAD(&offload_base);
7021
7022 if (register_pernet_subsys(&netdev_net_ops))
7023 goto out;
7024
7025 /*
7026 * Initialise the packet receive queues.
7027 */
7028
7029 for_each_possible_cpu(i) {
7030 struct softnet_data *sd = &per_cpu(softnet_data, i);
7031
7032 skb_queue_head_init(&sd->input_pkt_queue);
7033 skb_queue_head_init(&sd->process_queue);
7034 INIT_LIST_HEAD(&sd->poll_list);
7035 sd->output_queue_tailp = &sd->output_queue;
7036 #ifdef CONFIG_RPS
7037 sd->csd.func = rps_trigger_softirq;
7038 sd->csd.info = sd;
7039 sd->cpu = i;
7040 #endif
7041
7042 sd->backlog.poll = process_backlog;
7043 sd->backlog.weight = weight_p;
7044 }
7045
7046 dev_boot_phase = 0;
7047
7048 /* The loopback device is special if any other network devices
7049 * is present in a network namespace the loopback device must
7050 * be present. Since we now dynamically allocate and free the
7051 * loopback device ensure this invariant is maintained by
7052 * keeping the loopback device as the first device on the
7053 * list of network devices. Ensuring the loopback devices
7054 * is the first device that appears and the last network device
7055 * that disappears.
7056 */
7057 if (register_pernet_device(&loopback_net_ops))
7058 goto out;
7059
7060 if (register_pernet_device(&default_device_ops))
7061 goto out;
7062
7063 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7064 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7065
7066 hotcpu_notifier(dev_cpu_callback, 0);
7067 dst_init();
7068 rc = 0;
7069 out:
7070 return rc;
7071 }
7072
7073 subsys_initcall(net_dev_init);