]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/core/dev.c
netdev: Add netdev->select_queue() method.
[mirror_ubuntu-bionic-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/kallsyms.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124
125 #include "net-sysfs.h"
126
127 /*
128 * The list of packet types we will receive (as opposed to discard)
129 * and the routines to invoke.
130 *
131 * Why 16. Because with 16 the only overlap we get on a hash of the
132 * low nibble of the protocol value is RARP/SNAP/X.25.
133 *
134 * NOTE: That is no longer true with the addition of VLAN tags. Not
135 * sure which should go first, but I bet it won't make much
136 * difference if we are running VLANs. The good news is that
137 * this protocol won't be in the list unless compiled in, so
138 * the average user (w/out VLANs) will not be adversely affected.
139 * --BLG
140 *
141 * 0800 IP
142 * 8100 802.1Q VLAN
143 * 0001 802.3
144 * 0002 AX.25
145 * 0004 802.2
146 * 8035 RARP
147 * 0005 SNAP
148 * 0805 X.25
149 * 0806 ARP
150 * 8137 IPX
151 * 0009 Localtalk
152 * 86DD IPv6
153 */
154
155 #define PTYPE_HASH_SIZE (16)
156 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 static struct list_head ptype_all __read_mostly; /* Taps */
161
162 #ifdef CONFIG_NET_DMA
163 struct net_dma {
164 struct dma_client client;
165 spinlock_t lock;
166 cpumask_t channel_mask;
167 struct dma_chan **channels;
168 };
169
170 static enum dma_state_client
171 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
172 enum dma_state state);
173
174 static struct net_dma net_dma = {
175 .client = {
176 .event_callback = netdev_dma_event,
177 },
178 };
179 #endif
180
181 /*
182 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
183 * semaphore.
184 *
185 * Pure readers hold dev_base_lock for reading.
186 *
187 * Writers must hold the rtnl semaphore while they loop through the
188 * dev_base_head list, and hold dev_base_lock for writing when they do the
189 * actual updates. This allows pure readers to access the list even
190 * while a writer is preparing to update it.
191 *
192 * To put it another way, dev_base_lock is held for writing only to
193 * protect against pure readers; the rtnl semaphore provides the
194 * protection against other writers.
195 *
196 * See, for example usages, register_netdevice() and
197 * unregister_netdevice(), which must be called with the rtnl
198 * semaphore held.
199 */
200 DEFINE_RWLOCK(dev_base_lock);
201
202 EXPORT_SYMBOL(dev_base_lock);
203
204 #define NETDEV_HASHBITS 8
205 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
210 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
211 }
212
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
216 }
217
218 /* Device list insertion */
219 static int list_netdevice(struct net_device *dev)
220 {
221 struct net *net = dev_net(dev);
222
223 ASSERT_RTNL();
224
225 write_lock_bh(&dev_base_lock);
226 list_add_tail(&dev->dev_list, &net->dev_base_head);
227 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
228 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230 return 0;
231 }
232
233 /* Device list removal */
234 static void unlist_netdevice(struct net_device *dev)
235 {
236 ASSERT_RTNL();
237
238 /* Unlink dev from the device chain */
239 write_lock_bh(&dev_base_lock);
240 list_del(&dev->dev_list);
241 hlist_del(&dev->name_hlist);
242 hlist_del(&dev->index_hlist);
243 write_unlock_bh(&dev_base_lock);
244 }
245
246 /*
247 * Our notifier list
248 */
249
250 static RAW_NOTIFIER_HEAD(netdev_chain);
251
252 /*
253 * Device drivers call our routines to queue packets here. We empty the
254 * queue in the local softnet handler.
255 */
256
257 DEFINE_PER_CPU(struct softnet_data, softnet_data);
258
259 #ifdef CONFIG_DEBUG_LOCK_ALLOC
260 /*
261 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
262 * according to dev->type
263 */
264 static const unsigned short netdev_lock_type[] =
265 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
266 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
267 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
268 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
269 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
270 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
271 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
272 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
273 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
274 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
275 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
276 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
277 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
278 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
279 ARPHRD_NONE};
280
281 static const char *netdev_lock_name[] =
282 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
283 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
284 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
285 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
286 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
287 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
288 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
289 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
290 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
291 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
292 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
293 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
294 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
295 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
296 "_xmit_NONE"};
297
298 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
299
300 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
301 {
302 int i;
303
304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 if (netdev_lock_type[i] == dev_type)
306 return i;
307 /* the last key is used by default */
308 return ARRAY_SIZE(netdev_lock_type) - 1;
309 }
310
311 static inline void netdev_set_lockdep_class(spinlock_t *lock,
312 unsigned short dev_type)
313 {
314 int i;
315
316 i = netdev_lock_pos(dev_type);
317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 netdev_lock_name[i]);
319 }
320 #else
321 static inline void netdev_set_lockdep_class(spinlock_t *lock,
322 unsigned short dev_type)
323 {
324 }
325 #endif
326
327 /*******************************************************************************
328
329 Protocol management and registration routines
330
331 *******************************************************************************/
332
333 /*
334 * Add a protocol ID to the list. Now that the input handler is
335 * smarter we can dispense with all the messy stuff that used to be
336 * here.
337 *
338 * BEWARE!!! Protocol handlers, mangling input packets,
339 * MUST BE last in hash buckets and checking protocol handlers
340 * MUST start from promiscuous ptype_all chain in net_bh.
341 * It is true now, do not change it.
342 * Explanation follows: if protocol handler, mangling packet, will
343 * be the first on list, it is not able to sense, that packet
344 * is cloned and should be copied-on-write, so that it will
345 * change it and subsequent readers will get broken packet.
346 * --ANK (980803)
347 */
348
349 /**
350 * dev_add_pack - add packet handler
351 * @pt: packet type declaration
352 *
353 * Add a protocol handler to the networking stack. The passed &packet_type
354 * is linked into kernel lists and may not be freed until it has been
355 * removed from the kernel lists.
356 *
357 * This call does not sleep therefore it can not
358 * guarantee all CPU's that are in middle of receiving packets
359 * will see the new packet type (until the next received packet).
360 */
361
362 void dev_add_pack(struct packet_type *pt)
363 {
364 int hash;
365
366 spin_lock_bh(&ptype_lock);
367 if (pt->type == htons(ETH_P_ALL))
368 list_add_rcu(&pt->list, &ptype_all);
369 else {
370 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
371 list_add_rcu(&pt->list, &ptype_base[hash]);
372 }
373 spin_unlock_bh(&ptype_lock);
374 }
375
376 /**
377 * __dev_remove_pack - remove packet handler
378 * @pt: packet type declaration
379 *
380 * Remove a protocol handler that was previously added to the kernel
381 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
382 * from the kernel lists and can be freed or reused once this function
383 * returns.
384 *
385 * The packet type might still be in use by receivers
386 * and must not be freed until after all the CPU's have gone
387 * through a quiescent state.
388 */
389 void __dev_remove_pack(struct packet_type *pt)
390 {
391 struct list_head *head;
392 struct packet_type *pt1;
393
394 spin_lock_bh(&ptype_lock);
395
396 if (pt->type == htons(ETH_P_ALL))
397 head = &ptype_all;
398 else
399 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
400
401 list_for_each_entry(pt1, head, list) {
402 if (pt == pt1) {
403 list_del_rcu(&pt->list);
404 goto out;
405 }
406 }
407
408 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
409 out:
410 spin_unlock_bh(&ptype_lock);
411 }
412 /**
413 * dev_remove_pack - remove packet handler
414 * @pt: packet type declaration
415 *
416 * Remove a protocol handler that was previously added to the kernel
417 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
418 * from the kernel lists and can be freed or reused once this function
419 * returns.
420 *
421 * This call sleeps to guarantee that no CPU is looking at the packet
422 * type after return.
423 */
424 void dev_remove_pack(struct packet_type *pt)
425 {
426 __dev_remove_pack(pt);
427
428 synchronize_net();
429 }
430
431 /******************************************************************************
432
433 Device Boot-time Settings Routines
434
435 *******************************************************************************/
436
437 /* Boot time configuration table */
438 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
439
440 /**
441 * netdev_boot_setup_add - add new setup entry
442 * @name: name of the device
443 * @map: configured settings for the device
444 *
445 * Adds new setup entry to the dev_boot_setup list. The function
446 * returns 0 on error and 1 on success. This is a generic routine to
447 * all netdevices.
448 */
449 static int netdev_boot_setup_add(char *name, struct ifmap *map)
450 {
451 struct netdev_boot_setup *s;
452 int i;
453
454 s = dev_boot_setup;
455 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
456 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
457 memset(s[i].name, 0, sizeof(s[i].name));
458 strlcpy(s[i].name, name, IFNAMSIZ);
459 memcpy(&s[i].map, map, sizeof(s[i].map));
460 break;
461 }
462 }
463
464 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
465 }
466
467 /**
468 * netdev_boot_setup_check - check boot time settings
469 * @dev: the netdevice
470 *
471 * Check boot time settings for the device.
472 * The found settings are set for the device to be used
473 * later in the device probing.
474 * Returns 0 if no settings found, 1 if they are.
475 */
476 int netdev_boot_setup_check(struct net_device *dev)
477 {
478 struct netdev_boot_setup *s = dev_boot_setup;
479 int i;
480
481 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
482 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
483 !strcmp(dev->name, s[i].name)) {
484 dev->irq = s[i].map.irq;
485 dev->base_addr = s[i].map.base_addr;
486 dev->mem_start = s[i].map.mem_start;
487 dev->mem_end = s[i].map.mem_end;
488 return 1;
489 }
490 }
491 return 0;
492 }
493
494
495 /**
496 * netdev_boot_base - get address from boot time settings
497 * @prefix: prefix for network device
498 * @unit: id for network device
499 *
500 * Check boot time settings for the base address of device.
501 * The found settings are set for the device to be used
502 * later in the device probing.
503 * Returns 0 if no settings found.
504 */
505 unsigned long netdev_boot_base(const char *prefix, int unit)
506 {
507 const struct netdev_boot_setup *s = dev_boot_setup;
508 char name[IFNAMSIZ];
509 int i;
510
511 sprintf(name, "%s%d", prefix, unit);
512
513 /*
514 * If device already registered then return base of 1
515 * to indicate not to probe for this interface
516 */
517 if (__dev_get_by_name(&init_net, name))
518 return 1;
519
520 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
521 if (!strcmp(name, s[i].name))
522 return s[i].map.base_addr;
523 return 0;
524 }
525
526 /*
527 * Saves at boot time configured settings for any netdevice.
528 */
529 int __init netdev_boot_setup(char *str)
530 {
531 int ints[5];
532 struct ifmap map;
533
534 str = get_options(str, ARRAY_SIZE(ints), ints);
535 if (!str || !*str)
536 return 0;
537
538 /* Save settings */
539 memset(&map, 0, sizeof(map));
540 if (ints[0] > 0)
541 map.irq = ints[1];
542 if (ints[0] > 1)
543 map.base_addr = ints[2];
544 if (ints[0] > 2)
545 map.mem_start = ints[3];
546 if (ints[0] > 3)
547 map.mem_end = ints[4];
548
549 /* Add new entry to the list */
550 return netdev_boot_setup_add(str, &map);
551 }
552
553 __setup("netdev=", netdev_boot_setup);
554
555 /*******************************************************************************
556
557 Device Interface Subroutines
558
559 *******************************************************************************/
560
561 /**
562 * __dev_get_by_name - find a device by its name
563 * @net: the applicable net namespace
564 * @name: name to find
565 *
566 * Find an interface by name. Must be called under RTNL semaphore
567 * or @dev_base_lock. If the name is found a pointer to the device
568 * is returned. If the name is not found then %NULL is returned. The
569 * reference counters are not incremented so the caller must be
570 * careful with locks.
571 */
572
573 struct net_device *__dev_get_by_name(struct net *net, const char *name)
574 {
575 struct hlist_node *p;
576
577 hlist_for_each(p, dev_name_hash(net, name)) {
578 struct net_device *dev
579 = hlist_entry(p, struct net_device, name_hlist);
580 if (!strncmp(dev->name, name, IFNAMSIZ))
581 return dev;
582 }
583 return NULL;
584 }
585
586 /**
587 * dev_get_by_name - find a device by its name
588 * @net: the applicable net namespace
589 * @name: name to find
590 *
591 * Find an interface by name. This can be called from any
592 * context and does its own locking. The returned handle has
593 * the usage count incremented and the caller must use dev_put() to
594 * release it when it is no longer needed. %NULL is returned if no
595 * matching device is found.
596 */
597
598 struct net_device *dev_get_by_name(struct net *net, const char *name)
599 {
600 struct net_device *dev;
601
602 read_lock(&dev_base_lock);
603 dev = __dev_get_by_name(net, name);
604 if (dev)
605 dev_hold(dev);
606 read_unlock(&dev_base_lock);
607 return dev;
608 }
609
610 /**
611 * __dev_get_by_index - find a device by its ifindex
612 * @net: the applicable net namespace
613 * @ifindex: index of device
614 *
615 * Search for an interface by index. Returns %NULL if the device
616 * is not found or a pointer to the device. The device has not
617 * had its reference counter increased so the caller must be careful
618 * about locking. The caller must hold either the RTNL semaphore
619 * or @dev_base_lock.
620 */
621
622 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
623 {
624 struct hlist_node *p;
625
626 hlist_for_each(p, dev_index_hash(net, ifindex)) {
627 struct net_device *dev
628 = hlist_entry(p, struct net_device, index_hlist);
629 if (dev->ifindex == ifindex)
630 return dev;
631 }
632 return NULL;
633 }
634
635
636 /**
637 * dev_get_by_index - find a device by its ifindex
638 * @net: the applicable net namespace
639 * @ifindex: index of device
640 *
641 * Search for an interface by index. Returns NULL if the device
642 * is not found or a pointer to the device. The device returned has
643 * had a reference added and the pointer is safe until the user calls
644 * dev_put to indicate they have finished with it.
645 */
646
647 struct net_device *dev_get_by_index(struct net *net, int ifindex)
648 {
649 struct net_device *dev;
650
651 read_lock(&dev_base_lock);
652 dev = __dev_get_by_index(net, ifindex);
653 if (dev)
654 dev_hold(dev);
655 read_unlock(&dev_base_lock);
656 return dev;
657 }
658
659 /**
660 * dev_getbyhwaddr - find a device by its hardware address
661 * @net: the applicable net namespace
662 * @type: media type of device
663 * @ha: hardware address
664 *
665 * Search for an interface by MAC address. Returns NULL if the device
666 * is not found or a pointer to the device. The caller must hold the
667 * rtnl semaphore. The returned device has not had its ref count increased
668 * and the caller must therefore be careful about locking
669 *
670 * BUGS:
671 * If the API was consistent this would be __dev_get_by_hwaddr
672 */
673
674 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
675 {
676 struct net_device *dev;
677
678 ASSERT_RTNL();
679
680 for_each_netdev(net, dev)
681 if (dev->type == type &&
682 !memcmp(dev->dev_addr, ha, dev->addr_len))
683 return dev;
684
685 return NULL;
686 }
687
688 EXPORT_SYMBOL(dev_getbyhwaddr);
689
690 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
691 {
692 struct net_device *dev;
693
694 ASSERT_RTNL();
695 for_each_netdev(net, dev)
696 if (dev->type == type)
697 return dev;
698
699 return NULL;
700 }
701
702 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
703
704 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
705 {
706 struct net_device *dev;
707
708 rtnl_lock();
709 dev = __dev_getfirstbyhwtype(net, type);
710 if (dev)
711 dev_hold(dev);
712 rtnl_unlock();
713 return dev;
714 }
715
716 EXPORT_SYMBOL(dev_getfirstbyhwtype);
717
718 /**
719 * dev_get_by_flags - find any device with given flags
720 * @net: the applicable net namespace
721 * @if_flags: IFF_* values
722 * @mask: bitmask of bits in if_flags to check
723 *
724 * Search for any interface with the given flags. Returns NULL if a device
725 * is not found or a pointer to the device. The device returned has
726 * had a reference added and the pointer is safe until the user calls
727 * dev_put to indicate they have finished with it.
728 */
729
730 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
731 {
732 struct net_device *dev, *ret;
733
734 ret = NULL;
735 read_lock(&dev_base_lock);
736 for_each_netdev(net, dev) {
737 if (((dev->flags ^ if_flags) & mask) == 0) {
738 dev_hold(dev);
739 ret = dev;
740 break;
741 }
742 }
743 read_unlock(&dev_base_lock);
744 return ret;
745 }
746
747 /**
748 * dev_valid_name - check if name is okay for network device
749 * @name: name string
750 *
751 * Network device names need to be valid file names to
752 * to allow sysfs to work. We also disallow any kind of
753 * whitespace.
754 */
755 int dev_valid_name(const char *name)
756 {
757 if (*name == '\0')
758 return 0;
759 if (strlen(name) >= IFNAMSIZ)
760 return 0;
761 if (!strcmp(name, ".") || !strcmp(name, ".."))
762 return 0;
763
764 while (*name) {
765 if (*name == '/' || isspace(*name))
766 return 0;
767 name++;
768 }
769 return 1;
770 }
771
772 /**
773 * __dev_alloc_name - allocate a name for a device
774 * @net: network namespace to allocate the device name in
775 * @name: name format string
776 * @buf: scratch buffer and result name string
777 *
778 * Passed a format string - eg "lt%d" it will try and find a suitable
779 * id. It scans list of devices to build up a free map, then chooses
780 * the first empty slot. The caller must hold the dev_base or rtnl lock
781 * while allocating the name and adding the device in order to avoid
782 * duplicates.
783 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
784 * Returns the number of the unit assigned or a negative errno code.
785 */
786
787 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
788 {
789 int i = 0;
790 const char *p;
791 const int max_netdevices = 8*PAGE_SIZE;
792 unsigned long *inuse;
793 struct net_device *d;
794
795 p = strnchr(name, IFNAMSIZ-1, '%');
796 if (p) {
797 /*
798 * Verify the string as this thing may have come from
799 * the user. There must be either one "%d" and no other "%"
800 * characters.
801 */
802 if (p[1] != 'd' || strchr(p + 2, '%'))
803 return -EINVAL;
804
805 /* Use one page as a bit array of possible slots */
806 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
807 if (!inuse)
808 return -ENOMEM;
809
810 for_each_netdev(net, d) {
811 if (!sscanf(d->name, name, &i))
812 continue;
813 if (i < 0 || i >= max_netdevices)
814 continue;
815
816 /* avoid cases where sscanf is not exact inverse of printf */
817 snprintf(buf, IFNAMSIZ, name, i);
818 if (!strncmp(buf, d->name, IFNAMSIZ))
819 set_bit(i, inuse);
820 }
821
822 i = find_first_zero_bit(inuse, max_netdevices);
823 free_page((unsigned long) inuse);
824 }
825
826 snprintf(buf, IFNAMSIZ, name, i);
827 if (!__dev_get_by_name(net, buf))
828 return i;
829
830 /* It is possible to run out of possible slots
831 * when the name is long and there isn't enough space left
832 * for the digits, or if all bits are used.
833 */
834 return -ENFILE;
835 }
836
837 /**
838 * dev_alloc_name - allocate a name for a device
839 * @dev: device
840 * @name: name format string
841 *
842 * Passed a format string - eg "lt%d" it will try and find a suitable
843 * id. It scans list of devices to build up a free map, then chooses
844 * the first empty slot. The caller must hold the dev_base or rtnl lock
845 * while allocating the name and adding the device in order to avoid
846 * duplicates.
847 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
848 * Returns the number of the unit assigned or a negative errno code.
849 */
850
851 int dev_alloc_name(struct net_device *dev, const char *name)
852 {
853 char buf[IFNAMSIZ];
854 struct net *net;
855 int ret;
856
857 BUG_ON(!dev_net(dev));
858 net = dev_net(dev);
859 ret = __dev_alloc_name(net, name, buf);
860 if (ret >= 0)
861 strlcpy(dev->name, buf, IFNAMSIZ);
862 return ret;
863 }
864
865
866 /**
867 * dev_change_name - change name of a device
868 * @dev: device
869 * @newname: name (or format string) must be at least IFNAMSIZ
870 *
871 * Change name of a device, can pass format strings "eth%d".
872 * for wildcarding.
873 */
874 int dev_change_name(struct net_device *dev, char *newname)
875 {
876 char oldname[IFNAMSIZ];
877 int err = 0;
878 int ret;
879 struct net *net;
880
881 ASSERT_RTNL();
882 BUG_ON(!dev_net(dev));
883
884 net = dev_net(dev);
885 if (dev->flags & IFF_UP)
886 return -EBUSY;
887
888 if (!dev_valid_name(newname))
889 return -EINVAL;
890
891 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
892 return 0;
893
894 memcpy(oldname, dev->name, IFNAMSIZ);
895
896 if (strchr(newname, '%')) {
897 err = dev_alloc_name(dev, newname);
898 if (err < 0)
899 return err;
900 strcpy(newname, dev->name);
901 }
902 else if (__dev_get_by_name(net, newname))
903 return -EEXIST;
904 else
905 strlcpy(dev->name, newname, IFNAMSIZ);
906
907 rollback:
908 err = device_rename(&dev->dev, dev->name);
909 if (err) {
910 memcpy(dev->name, oldname, IFNAMSIZ);
911 return err;
912 }
913
914 write_lock_bh(&dev_base_lock);
915 hlist_del(&dev->name_hlist);
916 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
917 write_unlock_bh(&dev_base_lock);
918
919 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
920 ret = notifier_to_errno(ret);
921
922 if (ret) {
923 if (err) {
924 printk(KERN_ERR
925 "%s: name change rollback failed: %d.\n",
926 dev->name, ret);
927 } else {
928 err = ret;
929 memcpy(dev->name, oldname, IFNAMSIZ);
930 goto rollback;
931 }
932 }
933
934 return err;
935 }
936
937 /**
938 * netdev_features_change - device changes features
939 * @dev: device to cause notification
940 *
941 * Called to indicate a device has changed features.
942 */
943 void netdev_features_change(struct net_device *dev)
944 {
945 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
946 }
947 EXPORT_SYMBOL(netdev_features_change);
948
949 /**
950 * netdev_state_change - device changes state
951 * @dev: device to cause notification
952 *
953 * Called to indicate a device has changed state. This function calls
954 * the notifier chains for netdev_chain and sends a NEWLINK message
955 * to the routing socket.
956 */
957 void netdev_state_change(struct net_device *dev)
958 {
959 if (dev->flags & IFF_UP) {
960 call_netdevice_notifiers(NETDEV_CHANGE, dev);
961 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
962 }
963 }
964
965 void netdev_bonding_change(struct net_device *dev)
966 {
967 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
968 }
969 EXPORT_SYMBOL(netdev_bonding_change);
970
971 /**
972 * dev_load - load a network module
973 * @net: the applicable net namespace
974 * @name: name of interface
975 *
976 * If a network interface is not present and the process has suitable
977 * privileges this function loads the module. If module loading is not
978 * available in this kernel then it becomes a nop.
979 */
980
981 void dev_load(struct net *net, const char *name)
982 {
983 struct net_device *dev;
984
985 read_lock(&dev_base_lock);
986 dev = __dev_get_by_name(net, name);
987 read_unlock(&dev_base_lock);
988
989 if (!dev && capable(CAP_SYS_MODULE))
990 request_module("%s", name);
991 }
992
993 /**
994 * dev_open - prepare an interface for use.
995 * @dev: device to open
996 *
997 * Takes a device from down to up state. The device's private open
998 * function is invoked and then the multicast lists are loaded. Finally
999 * the device is moved into the up state and a %NETDEV_UP message is
1000 * sent to the netdev notifier chain.
1001 *
1002 * Calling this function on an active interface is a nop. On a failure
1003 * a negative errno code is returned.
1004 */
1005 int dev_open(struct net_device *dev)
1006 {
1007 int ret = 0;
1008
1009 ASSERT_RTNL();
1010
1011 /*
1012 * Is it already up?
1013 */
1014
1015 if (dev->flags & IFF_UP)
1016 return 0;
1017
1018 /*
1019 * Is it even present?
1020 */
1021 if (!netif_device_present(dev))
1022 return -ENODEV;
1023
1024 /*
1025 * Call device private open method
1026 */
1027 set_bit(__LINK_STATE_START, &dev->state);
1028
1029 if (dev->validate_addr)
1030 ret = dev->validate_addr(dev);
1031
1032 if (!ret && dev->open)
1033 ret = dev->open(dev);
1034
1035 /*
1036 * If it went open OK then:
1037 */
1038
1039 if (ret)
1040 clear_bit(__LINK_STATE_START, &dev->state);
1041 else {
1042 /*
1043 * Set the flags.
1044 */
1045 dev->flags |= IFF_UP;
1046
1047 /*
1048 * Initialize multicasting status
1049 */
1050 dev_set_rx_mode(dev);
1051
1052 /*
1053 * Wakeup transmit queue engine
1054 */
1055 dev_activate(dev);
1056
1057 /*
1058 * ... and announce new interface.
1059 */
1060 call_netdevice_notifiers(NETDEV_UP, dev);
1061 }
1062
1063 return ret;
1064 }
1065
1066 /**
1067 * dev_close - shutdown an interface.
1068 * @dev: device to shutdown
1069 *
1070 * This function moves an active device into down state. A
1071 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1072 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1073 * chain.
1074 */
1075 int dev_close(struct net_device *dev)
1076 {
1077 ASSERT_RTNL();
1078
1079 might_sleep();
1080
1081 if (!(dev->flags & IFF_UP))
1082 return 0;
1083
1084 /*
1085 * Tell people we are going down, so that they can
1086 * prepare to death, when device is still operating.
1087 */
1088 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1089
1090 clear_bit(__LINK_STATE_START, &dev->state);
1091
1092 /* Synchronize to scheduled poll. We cannot touch poll list,
1093 * it can be even on different cpu. So just clear netif_running().
1094 *
1095 * dev->stop() will invoke napi_disable() on all of it's
1096 * napi_struct instances on this device.
1097 */
1098 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1099
1100 dev_deactivate(dev);
1101
1102 /*
1103 * Call the device specific close. This cannot fail.
1104 * Only if device is UP
1105 *
1106 * We allow it to be called even after a DETACH hot-plug
1107 * event.
1108 */
1109 if (dev->stop)
1110 dev->stop(dev);
1111
1112 /*
1113 * Device is now down.
1114 */
1115
1116 dev->flags &= ~IFF_UP;
1117
1118 /*
1119 * Tell people we are down
1120 */
1121 call_netdevice_notifiers(NETDEV_DOWN, dev);
1122
1123 return 0;
1124 }
1125
1126
1127 /**
1128 * dev_disable_lro - disable Large Receive Offload on a device
1129 * @dev: device
1130 *
1131 * Disable Large Receive Offload (LRO) on a net device. Must be
1132 * called under RTNL. This is needed if received packets may be
1133 * forwarded to another interface.
1134 */
1135 void dev_disable_lro(struct net_device *dev)
1136 {
1137 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1138 dev->ethtool_ops->set_flags) {
1139 u32 flags = dev->ethtool_ops->get_flags(dev);
1140 if (flags & ETH_FLAG_LRO) {
1141 flags &= ~ETH_FLAG_LRO;
1142 dev->ethtool_ops->set_flags(dev, flags);
1143 }
1144 }
1145 WARN_ON(dev->features & NETIF_F_LRO);
1146 }
1147 EXPORT_SYMBOL(dev_disable_lro);
1148
1149
1150 static int dev_boot_phase = 1;
1151
1152 /*
1153 * Device change register/unregister. These are not inline or static
1154 * as we export them to the world.
1155 */
1156
1157 /**
1158 * register_netdevice_notifier - register a network notifier block
1159 * @nb: notifier
1160 *
1161 * Register a notifier to be called when network device events occur.
1162 * The notifier passed is linked into the kernel structures and must
1163 * not be reused until it has been unregistered. A negative errno code
1164 * is returned on a failure.
1165 *
1166 * When registered all registration and up events are replayed
1167 * to the new notifier to allow device to have a race free
1168 * view of the network device list.
1169 */
1170
1171 int register_netdevice_notifier(struct notifier_block *nb)
1172 {
1173 struct net_device *dev;
1174 struct net_device *last;
1175 struct net *net;
1176 int err;
1177
1178 rtnl_lock();
1179 err = raw_notifier_chain_register(&netdev_chain, nb);
1180 if (err)
1181 goto unlock;
1182 if (dev_boot_phase)
1183 goto unlock;
1184 for_each_net(net) {
1185 for_each_netdev(net, dev) {
1186 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1187 err = notifier_to_errno(err);
1188 if (err)
1189 goto rollback;
1190
1191 if (!(dev->flags & IFF_UP))
1192 continue;
1193
1194 nb->notifier_call(nb, NETDEV_UP, dev);
1195 }
1196 }
1197
1198 unlock:
1199 rtnl_unlock();
1200 return err;
1201
1202 rollback:
1203 last = dev;
1204 for_each_net(net) {
1205 for_each_netdev(net, dev) {
1206 if (dev == last)
1207 break;
1208
1209 if (dev->flags & IFF_UP) {
1210 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1211 nb->notifier_call(nb, NETDEV_DOWN, dev);
1212 }
1213 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1214 }
1215 }
1216
1217 raw_notifier_chain_unregister(&netdev_chain, nb);
1218 goto unlock;
1219 }
1220
1221 /**
1222 * unregister_netdevice_notifier - unregister a network notifier block
1223 * @nb: notifier
1224 *
1225 * Unregister a notifier previously registered by
1226 * register_netdevice_notifier(). The notifier is unlinked into the
1227 * kernel structures and may then be reused. A negative errno code
1228 * is returned on a failure.
1229 */
1230
1231 int unregister_netdevice_notifier(struct notifier_block *nb)
1232 {
1233 int err;
1234
1235 rtnl_lock();
1236 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1237 rtnl_unlock();
1238 return err;
1239 }
1240
1241 /**
1242 * call_netdevice_notifiers - call all network notifier blocks
1243 * @val: value passed unmodified to notifier function
1244 * @dev: net_device pointer passed unmodified to notifier function
1245 *
1246 * Call all network notifier blocks. Parameters and return value
1247 * are as for raw_notifier_call_chain().
1248 */
1249
1250 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1251 {
1252 return raw_notifier_call_chain(&netdev_chain, val, dev);
1253 }
1254
1255 /* When > 0 there are consumers of rx skb time stamps */
1256 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1257
1258 void net_enable_timestamp(void)
1259 {
1260 atomic_inc(&netstamp_needed);
1261 }
1262
1263 void net_disable_timestamp(void)
1264 {
1265 atomic_dec(&netstamp_needed);
1266 }
1267
1268 static inline void net_timestamp(struct sk_buff *skb)
1269 {
1270 if (atomic_read(&netstamp_needed))
1271 __net_timestamp(skb);
1272 else
1273 skb->tstamp.tv64 = 0;
1274 }
1275
1276 /*
1277 * Support routine. Sends outgoing frames to any network
1278 * taps currently in use.
1279 */
1280
1281 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1282 {
1283 struct packet_type *ptype;
1284
1285 net_timestamp(skb);
1286
1287 rcu_read_lock();
1288 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1289 /* Never send packets back to the socket
1290 * they originated from - MvS (miquels@drinkel.ow.org)
1291 */
1292 if ((ptype->dev == dev || !ptype->dev) &&
1293 (ptype->af_packet_priv == NULL ||
1294 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1295 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1296 if (!skb2)
1297 break;
1298
1299 /* skb->nh should be correctly
1300 set by sender, so that the second statement is
1301 just protection against buggy protocols.
1302 */
1303 skb_reset_mac_header(skb2);
1304
1305 if (skb_network_header(skb2) < skb2->data ||
1306 skb2->network_header > skb2->tail) {
1307 if (net_ratelimit())
1308 printk(KERN_CRIT "protocol %04x is "
1309 "buggy, dev %s\n",
1310 skb2->protocol, dev->name);
1311 skb_reset_network_header(skb2);
1312 }
1313
1314 skb2->transport_header = skb2->network_header;
1315 skb2->pkt_type = PACKET_OUTGOING;
1316 ptype->func(skb2, skb->dev, ptype, skb->dev);
1317 }
1318 }
1319 rcu_read_unlock();
1320 }
1321
1322
1323 void __netif_schedule(struct netdev_queue *txq)
1324 {
1325 struct net_device *dev = txq->dev;
1326
1327 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1328 struct softnet_data *sd;
1329 unsigned long flags;
1330
1331 local_irq_save(flags);
1332 sd = &__get_cpu_var(softnet_data);
1333 txq->next_sched = sd->output_queue;
1334 sd->output_queue = txq;
1335 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1336 local_irq_restore(flags);
1337 }
1338 }
1339 EXPORT_SYMBOL(__netif_schedule);
1340
1341 void dev_kfree_skb_irq(struct sk_buff *skb)
1342 {
1343 if (atomic_dec_and_test(&skb->users)) {
1344 struct softnet_data *sd;
1345 unsigned long flags;
1346
1347 local_irq_save(flags);
1348 sd = &__get_cpu_var(softnet_data);
1349 skb->next = sd->completion_queue;
1350 sd->completion_queue = skb;
1351 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1352 local_irq_restore(flags);
1353 }
1354 }
1355 EXPORT_SYMBOL(dev_kfree_skb_irq);
1356
1357 void dev_kfree_skb_any(struct sk_buff *skb)
1358 {
1359 if (in_irq() || irqs_disabled())
1360 dev_kfree_skb_irq(skb);
1361 else
1362 dev_kfree_skb(skb);
1363 }
1364 EXPORT_SYMBOL(dev_kfree_skb_any);
1365
1366
1367 /**
1368 * netif_device_detach - mark device as removed
1369 * @dev: network device
1370 *
1371 * Mark device as removed from system and therefore no longer available.
1372 */
1373 void netif_device_detach(struct net_device *dev)
1374 {
1375 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1376 netif_running(dev)) {
1377 netif_stop_queue(dev);
1378 }
1379 }
1380 EXPORT_SYMBOL(netif_device_detach);
1381
1382 /**
1383 * netif_device_attach - mark device as attached
1384 * @dev: network device
1385 *
1386 * Mark device as attached from system and restart if needed.
1387 */
1388 void netif_device_attach(struct net_device *dev)
1389 {
1390 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1391 netif_running(dev)) {
1392 netif_wake_queue(dev);
1393 __netdev_watchdog_up(dev);
1394 }
1395 }
1396 EXPORT_SYMBOL(netif_device_attach);
1397
1398 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1399 {
1400 return ((features & NETIF_F_GEN_CSUM) ||
1401 ((features & NETIF_F_IP_CSUM) &&
1402 protocol == htons(ETH_P_IP)) ||
1403 ((features & NETIF_F_IPV6_CSUM) &&
1404 protocol == htons(ETH_P_IPV6)));
1405 }
1406
1407 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1408 {
1409 if (can_checksum_protocol(dev->features, skb->protocol))
1410 return true;
1411
1412 if (skb->protocol == htons(ETH_P_8021Q)) {
1413 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1414 if (can_checksum_protocol(dev->features & dev->vlan_features,
1415 veh->h_vlan_encapsulated_proto))
1416 return true;
1417 }
1418
1419 return false;
1420 }
1421
1422 /*
1423 * Invalidate hardware checksum when packet is to be mangled, and
1424 * complete checksum manually on outgoing path.
1425 */
1426 int skb_checksum_help(struct sk_buff *skb)
1427 {
1428 __wsum csum;
1429 int ret = 0, offset;
1430
1431 if (skb->ip_summed == CHECKSUM_COMPLETE)
1432 goto out_set_summed;
1433
1434 if (unlikely(skb_shinfo(skb)->gso_size)) {
1435 /* Let GSO fix up the checksum. */
1436 goto out_set_summed;
1437 }
1438
1439 offset = skb->csum_start - skb_headroom(skb);
1440 BUG_ON(offset >= skb_headlen(skb));
1441 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1442
1443 offset += skb->csum_offset;
1444 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1445
1446 if (skb_cloned(skb) &&
1447 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1448 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1449 if (ret)
1450 goto out;
1451 }
1452
1453 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1454 out_set_summed:
1455 skb->ip_summed = CHECKSUM_NONE;
1456 out:
1457 return ret;
1458 }
1459
1460 /**
1461 * skb_gso_segment - Perform segmentation on skb.
1462 * @skb: buffer to segment
1463 * @features: features for the output path (see dev->features)
1464 *
1465 * This function segments the given skb and returns a list of segments.
1466 *
1467 * It may return NULL if the skb requires no segmentation. This is
1468 * only possible when GSO is used for verifying header integrity.
1469 */
1470 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1471 {
1472 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1473 struct packet_type *ptype;
1474 __be16 type = skb->protocol;
1475 int err;
1476
1477 BUG_ON(skb_shinfo(skb)->frag_list);
1478
1479 skb_reset_mac_header(skb);
1480 skb->mac_len = skb->network_header - skb->mac_header;
1481 __skb_pull(skb, skb->mac_len);
1482
1483 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1484 if (skb_header_cloned(skb) &&
1485 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1486 return ERR_PTR(err);
1487 }
1488
1489 rcu_read_lock();
1490 list_for_each_entry_rcu(ptype,
1491 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1492 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1493 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1494 err = ptype->gso_send_check(skb);
1495 segs = ERR_PTR(err);
1496 if (err || skb_gso_ok(skb, features))
1497 break;
1498 __skb_push(skb, (skb->data -
1499 skb_network_header(skb)));
1500 }
1501 segs = ptype->gso_segment(skb, features);
1502 break;
1503 }
1504 }
1505 rcu_read_unlock();
1506
1507 __skb_push(skb, skb->data - skb_mac_header(skb));
1508
1509 return segs;
1510 }
1511
1512 EXPORT_SYMBOL(skb_gso_segment);
1513
1514 /* Take action when hardware reception checksum errors are detected. */
1515 #ifdef CONFIG_BUG
1516 void netdev_rx_csum_fault(struct net_device *dev)
1517 {
1518 if (net_ratelimit()) {
1519 printk(KERN_ERR "%s: hw csum failure.\n",
1520 dev ? dev->name : "<unknown>");
1521 dump_stack();
1522 }
1523 }
1524 EXPORT_SYMBOL(netdev_rx_csum_fault);
1525 #endif
1526
1527 /* Actually, we should eliminate this check as soon as we know, that:
1528 * 1. IOMMU is present and allows to map all the memory.
1529 * 2. No high memory really exists on this machine.
1530 */
1531
1532 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1533 {
1534 #ifdef CONFIG_HIGHMEM
1535 int i;
1536
1537 if (dev->features & NETIF_F_HIGHDMA)
1538 return 0;
1539
1540 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1541 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1542 return 1;
1543
1544 #endif
1545 return 0;
1546 }
1547
1548 struct dev_gso_cb {
1549 void (*destructor)(struct sk_buff *skb);
1550 };
1551
1552 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1553
1554 static void dev_gso_skb_destructor(struct sk_buff *skb)
1555 {
1556 struct dev_gso_cb *cb;
1557
1558 do {
1559 struct sk_buff *nskb = skb->next;
1560
1561 skb->next = nskb->next;
1562 nskb->next = NULL;
1563 kfree_skb(nskb);
1564 } while (skb->next);
1565
1566 cb = DEV_GSO_CB(skb);
1567 if (cb->destructor)
1568 cb->destructor(skb);
1569 }
1570
1571 /**
1572 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1573 * @skb: buffer to segment
1574 *
1575 * This function segments the given skb and stores the list of segments
1576 * in skb->next.
1577 */
1578 static int dev_gso_segment(struct sk_buff *skb)
1579 {
1580 struct net_device *dev = skb->dev;
1581 struct sk_buff *segs;
1582 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1583 NETIF_F_SG : 0);
1584
1585 segs = skb_gso_segment(skb, features);
1586
1587 /* Verifying header integrity only. */
1588 if (!segs)
1589 return 0;
1590
1591 if (IS_ERR(segs))
1592 return PTR_ERR(segs);
1593
1594 skb->next = segs;
1595 DEV_GSO_CB(skb)->destructor = skb->destructor;
1596 skb->destructor = dev_gso_skb_destructor;
1597
1598 return 0;
1599 }
1600
1601 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1602 struct netdev_queue *txq)
1603 {
1604 if (likely(!skb->next)) {
1605 if (!list_empty(&ptype_all))
1606 dev_queue_xmit_nit(skb, dev);
1607
1608 if (netif_needs_gso(dev, skb)) {
1609 if (unlikely(dev_gso_segment(skb)))
1610 goto out_kfree_skb;
1611 if (skb->next)
1612 goto gso;
1613 }
1614
1615 return dev->hard_start_xmit(skb, dev);
1616 }
1617
1618 gso:
1619 do {
1620 struct sk_buff *nskb = skb->next;
1621 int rc;
1622
1623 skb->next = nskb->next;
1624 nskb->next = NULL;
1625 rc = dev->hard_start_xmit(nskb, dev);
1626 if (unlikely(rc)) {
1627 nskb->next = skb->next;
1628 skb->next = nskb;
1629 return rc;
1630 }
1631 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1632 return NETDEV_TX_BUSY;
1633 } while (skb->next);
1634
1635 skb->destructor = DEV_GSO_CB(skb)->destructor;
1636
1637 out_kfree_skb:
1638 kfree_skb(skb);
1639 return 0;
1640 }
1641
1642 /**
1643 * dev_queue_xmit - transmit a buffer
1644 * @skb: buffer to transmit
1645 *
1646 * Queue a buffer for transmission to a network device. The caller must
1647 * have set the device and priority and built the buffer before calling
1648 * this function. The function can be called from an interrupt.
1649 *
1650 * A negative errno code is returned on a failure. A success does not
1651 * guarantee the frame will be transmitted as it may be dropped due
1652 * to congestion or traffic shaping.
1653 *
1654 * -----------------------------------------------------------------------------------
1655 * I notice this method can also return errors from the queue disciplines,
1656 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1657 * be positive.
1658 *
1659 * Regardless of the return value, the skb is consumed, so it is currently
1660 * difficult to retry a send to this method. (You can bump the ref count
1661 * before sending to hold a reference for retry if you are careful.)
1662 *
1663 * When calling this method, interrupts MUST be enabled. This is because
1664 * the BH enable code must have IRQs enabled so that it will not deadlock.
1665 * --BLG
1666 */
1667
1668 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1669 struct sk_buff *skb)
1670 {
1671 u16 queue_index = 0;
1672
1673 if (dev->select_queue)
1674 queue_index = dev->select_queue(dev, skb);
1675
1676 skb_set_queue_mapping(skb, queue_index);
1677 return netdev_get_tx_queue(dev, queue_index);
1678 }
1679
1680 int dev_queue_xmit(struct sk_buff *skb)
1681 {
1682 struct net_device *dev = skb->dev;
1683 struct netdev_queue *txq;
1684 struct Qdisc *q;
1685 int rc = -ENOMEM;
1686
1687 /* GSO will handle the following emulations directly. */
1688 if (netif_needs_gso(dev, skb))
1689 goto gso;
1690
1691 if (skb_shinfo(skb)->frag_list &&
1692 !(dev->features & NETIF_F_FRAGLIST) &&
1693 __skb_linearize(skb))
1694 goto out_kfree_skb;
1695
1696 /* Fragmented skb is linearized if device does not support SG,
1697 * or if at least one of fragments is in highmem and device
1698 * does not support DMA from it.
1699 */
1700 if (skb_shinfo(skb)->nr_frags &&
1701 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1702 __skb_linearize(skb))
1703 goto out_kfree_skb;
1704
1705 /* If packet is not checksummed and device does not support
1706 * checksumming for this protocol, complete checksumming here.
1707 */
1708 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1709 skb_set_transport_header(skb, skb->csum_start -
1710 skb_headroom(skb));
1711 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1712 goto out_kfree_skb;
1713 }
1714
1715 gso:
1716 /* Disable soft irqs for various locks below. Also
1717 * stops preemption for RCU.
1718 */
1719 rcu_read_lock_bh();
1720
1721 txq = dev_pick_tx(dev, skb);
1722 spin_lock_prefetch(&txq->lock);
1723
1724 /* Updates of qdisc are serialized by queue->lock.
1725 * The struct Qdisc which is pointed to by qdisc is now a
1726 * rcu structure - it may be accessed without acquiring
1727 * a lock (but the structure may be stale.) The freeing of the
1728 * qdisc will be deferred until it's known that there are no
1729 * more references to it.
1730 *
1731 * If the qdisc has an enqueue function, we still need to
1732 * hold the queue->lock before calling it, since queue->lock
1733 * also serializes access to the device queue.
1734 */
1735
1736 q = rcu_dereference(txq->qdisc);
1737 #ifdef CONFIG_NET_CLS_ACT
1738 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1739 #endif
1740 if (q->enqueue) {
1741 /* Grab device queue */
1742 spin_lock(&txq->lock);
1743 q = txq->qdisc;
1744 if (q->enqueue) {
1745 rc = q->enqueue(skb, q);
1746 qdisc_run(txq);
1747 spin_unlock(&txq->lock);
1748
1749 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1750 goto out;
1751 }
1752 spin_unlock(&txq->lock);
1753 }
1754
1755 /* The device has no queue. Common case for software devices:
1756 loopback, all the sorts of tunnels...
1757
1758 Really, it is unlikely that netif_tx_lock protection is necessary
1759 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1760 counters.)
1761 However, it is possible, that they rely on protection
1762 made by us here.
1763
1764 Check this and shot the lock. It is not prone from deadlocks.
1765 Either shot noqueue qdisc, it is even simpler 8)
1766 */
1767 if (dev->flags & IFF_UP) {
1768 int cpu = smp_processor_id(); /* ok because BHs are off */
1769
1770 if (txq->xmit_lock_owner != cpu) {
1771
1772 HARD_TX_LOCK(dev, txq, cpu);
1773
1774 if (!netif_tx_queue_stopped(txq)) {
1775 rc = 0;
1776 if (!dev_hard_start_xmit(skb, dev, txq)) {
1777 HARD_TX_UNLOCK(dev, txq);
1778 goto out;
1779 }
1780 }
1781 HARD_TX_UNLOCK(dev, txq);
1782 if (net_ratelimit())
1783 printk(KERN_CRIT "Virtual device %s asks to "
1784 "queue packet!\n", dev->name);
1785 } else {
1786 /* Recursion is detected! It is possible,
1787 * unfortunately */
1788 if (net_ratelimit())
1789 printk(KERN_CRIT "Dead loop on virtual device "
1790 "%s, fix it urgently!\n", dev->name);
1791 }
1792 }
1793
1794 rc = -ENETDOWN;
1795 rcu_read_unlock_bh();
1796
1797 out_kfree_skb:
1798 kfree_skb(skb);
1799 return rc;
1800 out:
1801 rcu_read_unlock_bh();
1802 return rc;
1803 }
1804
1805
1806 /*=======================================================================
1807 Receiver routines
1808 =======================================================================*/
1809
1810 int netdev_max_backlog __read_mostly = 1000;
1811 int netdev_budget __read_mostly = 300;
1812 int weight_p __read_mostly = 64; /* old backlog weight */
1813
1814 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1815
1816
1817 /**
1818 * netif_rx - post buffer to the network code
1819 * @skb: buffer to post
1820 *
1821 * This function receives a packet from a device driver and queues it for
1822 * the upper (protocol) levels to process. It always succeeds. The buffer
1823 * may be dropped during processing for congestion control or by the
1824 * protocol layers.
1825 *
1826 * return values:
1827 * NET_RX_SUCCESS (no congestion)
1828 * NET_RX_DROP (packet was dropped)
1829 *
1830 */
1831
1832 int netif_rx(struct sk_buff *skb)
1833 {
1834 struct softnet_data *queue;
1835 unsigned long flags;
1836
1837 /* if netpoll wants it, pretend we never saw it */
1838 if (netpoll_rx(skb))
1839 return NET_RX_DROP;
1840
1841 if (!skb->tstamp.tv64)
1842 net_timestamp(skb);
1843
1844 /*
1845 * The code is rearranged so that the path is the most
1846 * short when CPU is congested, but is still operating.
1847 */
1848 local_irq_save(flags);
1849 queue = &__get_cpu_var(softnet_data);
1850
1851 __get_cpu_var(netdev_rx_stat).total++;
1852 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1853 if (queue->input_pkt_queue.qlen) {
1854 enqueue:
1855 dev_hold(skb->dev);
1856 __skb_queue_tail(&queue->input_pkt_queue, skb);
1857 local_irq_restore(flags);
1858 return NET_RX_SUCCESS;
1859 }
1860
1861 napi_schedule(&queue->backlog);
1862 goto enqueue;
1863 }
1864
1865 __get_cpu_var(netdev_rx_stat).dropped++;
1866 local_irq_restore(flags);
1867
1868 kfree_skb(skb);
1869 return NET_RX_DROP;
1870 }
1871
1872 int netif_rx_ni(struct sk_buff *skb)
1873 {
1874 int err;
1875
1876 preempt_disable();
1877 err = netif_rx(skb);
1878 if (local_softirq_pending())
1879 do_softirq();
1880 preempt_enable();
1881
1882 return err;
1883 }
1884
1885 EXPORT_SYMBOL(netif_rx_ni);
1886
1887 static inline struct net_device *skb_bond(struct sk_buff *skb)
1888 {
1889 struct net_device *dev = skb->dev;
1890
1891 if (dev->master) {
1892 if (skb_bond_should_drop(skb)) {
1893 kfree_skb(skb);
1894 return NULL;
1895 }
1896 skb->dev = dev->master;
1897 }
1898
1899 return dev;
1900 }
1901
1902
1903 static void net_tx_action(struct softirq_action *h)
1904 {
1905 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1906
1907 if (sd->completion_queue) {
1908 struct sk_buff *clist;
1909
1910 local_irq_disable();
1911 clist = sd->completion_queue;
1912 sd->completion_queue = NULL;
1913 local_irq_enable();
1914
1915 while (clist) {
1916 struct sk_buff *skb = clist;
1917 clist = clist->next;
1918
1919 BUG_TRAP(!atomic_read(&skb->users));
1920 __kfree_skb(skb);
1921 }
1922 }
1923
1924 if (sd->output_queue) {
1925 struct netdev_queue *head;
1926
1927 local_irq_disable();
1928 head = sd->output_queue;
1929 sd->output_queue = NULL;
1930 local_irq_enable();
1931
1932 while (head) {
1933 struct netdev_queue *txq = head;
1934 struct net_device *dev = txq->dev;
1935 head = head->next_sched;
1936
1937 smp_mb__before_clear_bit();
1938 clear_bit(__LINK_STATE_SCHED, &dev->state);
1939
1940 if (spin_trylock(&txq->lock)) {
1941 qdisc_run(txq);
1942 spin_unlock(&txq->lock);
1943 } else {
1944 netif_schedule_queue(txq);
1945 }
1946 }
1947 }
1948 }
1949
1950 static inline int deliver_skb(struct sk_buff *skb,
1951 struct packet_type *pt_prev,
1952 struct net_device *orig_dev)
1953 {
1954 atomic_inc(&skb->users);
1955 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1956 }
1957
1958 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1959 /* These hooks defined here for ATM */
1960 struct net_bridge;
1961 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1962 unsigned char *addr);
1963 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1964
1965 /*
1966 * If bridge module is loaded call bridging hook.
1967 * returns NULL if packet was consumed.
1968 */
1969 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1970 struct sk_buff *skb) __read_mostly;
1971 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1972 struct packet_type **pt_prev, int *ret,
1973 struct net_device *orig_dev)
1974 {
1975 struct net_bridge_port *port;
1976
1977 if (skb->pkt_type == PACKET_LOOPBACK ||
1978 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1979 return skb;
1980
1981 if (*pt_prev) {
1982 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1983 *pt_prev = NULL;
1984 }
1985
1986 return br_handle_frame_hook(port, skb);
1987 }
1988 #else
1989 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1990 #endif
1991
1992 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1993 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1994 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1995
1996 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1997 struct packet_type **pt_prev,
1998 int *ret,
1999 struct net_device *orig_dev)
2000 {
2001 if (skb->dev->macvlan_port == NULL)
2002 return skb;
2003
2004 if (*pt_prev) {
2005 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2006 *pt_prev = NULL;
2007 }
2008 return macvlan_handle_frame_hook(skb);
2009 }
2010 #else
2011 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2012 #endif
2013
2014 #ifdef CONFIG_NET_CLS_ACT
2015 /* TODO: Maybe we should just force sch_ingress to be compiled in
2016 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2017 * a compare and 2 stores extra right now if we dont have it on
2018 * but have CONFIG_NET_CLS_ACT
2019 * NOTE: This doesnt stop any functionality; if you dont have
2020 * the ingress scheduler, you just cant add policies on ingress.
2021 *
2022 */
2023 static int ing_filter(struct sk_buff *skb)
2024 {
2025 struct net_device *dev = skb->dev;
2026 u32 ttl = G_TC_RTTL(skb->tc_verd);
2027 struct netdev_queue *rxq;
2028 int result = TC_ACT_OK;
2029 struct Qdisc *q;
2030
2031 if (MAX_RED_LOOP < ttl++) {
2032 printk(KERN_WARNING
2033 "Redir loop detected Dropping packet (%d->%d)\n",
2034 skb->iif, dev->ifindex);
2035 return TC_ACT_SHOT;
2036 }
2037
2038 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2039 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2040
2041 rxq = &dev->rx_queue;
2042
2043 spin_lock(&rxq->lock);
2044 if ((q = rxq->qdisc) != NULL)
2045 result = q->enqueue(skb, q);
2046 spin_unlock(&rxq->lock);
2047
2048 return result;
2049 }
2050
2051 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2052 struct packet_type **pt_prev,
2053 int *ret, struct net_device *orig_dev)
2054 {
2055 if (!skb->dev->rx_queue.qdisc)
2056 goto out;
2057
2058 if (*pt_prev) {
2059 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2060 *pt_prev = NULL;
2061 } else {
2062 /* Huh? Why does turning on AF_PACKET affect this? */
2063 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2064 }
2065
2066 switch (ing_filter(skb)) {
2067 case TC_ACT_SHOT:
2068 case TC_ACT_STOLEN:
2069 kfree_skb(skb);
2070 return NULL;
2071 }
2072
2073 out:
2074 skb->tc_verd = 0;
2075 return skb;
2076 }
2077 #endif
2078
2079 /*
2080 * netif_nit_deliver - deliver received packets to network taps
2081 * @skb: buffer
2082 *
2083 * This function is used to deliver incoming packets to network
2084 * taps. It should be used when the normal netif_receive_skb path
2085 * is bypassed, for example because of VLAN acceleration.
2086 */
2087 void netif_nit_deliver(struct sk_buff *skb)
2088 {
2089 struct packet_type *ptype;
2090
2091 if (list_empty(&ptype_all))
2092 return;
2093
2094 skb_reset_network_header(skb);
2095 skb_reset_transport_header(skb);
2096 skb->mac_len = skb->network_header - skb->mac_header;
2097
2098 rcu_read_lock();
2099 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2100 if (!ptype->dev || ptype->dev == skb->dev)
2101 deliver_skb(skb, ptype, skb->dev);
2102 }
2103 rcu_read_unlock();
2104 }
2105
2106 /**
2107 * netif_receive_skb - process receive buffer from network
2108 * @skb: buffer to process
2109 *
2110 * netif_receive_skb() is the main receive data processing function.
2111 * It always succeeds. The buffer may be dropped during processing
2112 * for congestion control or by the protocol layers.
2113 *
2114 * This function may only be called from softirq context and interrupts
2115 * should be enabled.
2116 *
2117 * Return values (usually ignored):
2118 * NET_RX_SUCCESS: no congestion
2119 * NET_RX_DROP: packet was dropped
2120 */
2121 int netif_receive_skb(struct sk_buff *skb)
2122 {
2123 struct packet_type *ptype, *pt_prev;
2124 struct net_device *orig_dev;
2125 int ret = NET_RX_DROP;
2126 __be16 type;
2127
2128 /* if we've gotten here through NAPI, check netpoll */
2129 if (netpoll_receive_skb(skb))
2130 return NET_RX_DROP;
2131
2132 if (!skb->tstamp.tv64)
2133 net_timestamp(skb);
2134
2135 if (!skb->iif)
2136 skb->iif = skb->dev->ifindex;
2137
2138 orig_dev = skb_bond(skb);
2139
2140 if (!orig_dev)
2141 return NET_RX_DROP;
2142
2143 __get_cpu_var(netdev_rx_stat).total++;
2144
2145 skb_reset_network_header(skb);
2146 skb_reset_transport_header(skb);
2147 skb->mac_len = skb->network_header - skb->mac_header;
2148
2149 pt_prev = NULL;
2150
2151 rcu_read_lock();
2152
2153 /* Don't receive packets in an exiting network namespace */
2154 if (!net_alive(dev_net(skb->dev)))
2155 goto out;
2156
2157 #ifdef CONFIG_NET_CLS_ACT
2158 if (skb->tc_verd & TC_NCLS) {
2159 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2160 goto ncls;
2161 }
2162 #endif
2163
2164 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2165 if (!ptype->dev || ptype->dev == skb->dev) {
2166 if (pt_prev)
2167 ret = deliver_skb(skb, pt_prev, orig_dev);
2168 pt_prev = ptype;
2169 }
2170 }
2171
2172 #ifdef CONFIG_NET_CLS_ACT
2173 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2174 if (!skb)
2175 goto out;
2176 ncls:
2177 #endif
2178
2179 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2180 if (!skb)
2181 goto out;
2182 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2183 if (!skb)
2184 goto out;
2185
2186 type = skb->protocol;
2187 list_for_each_entry_rcu(ptype,
2188 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2189 if (ptype->type == type &&
2190 (!ptype->dev || ptype->dev == skb->dev)) {
2191 if (pt_prev)
2192 ret = deliver_skb(skb, pt_prev, orig_dev);
2193 pt_prev = ptype;
2194 }
2195 }
2196
2197 if (pt_prev) {
2198 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2199 } else {
2200 kfree_skb(skb);
2201 /* Jamal, now you will not able to escape explaining
2202 * me how you were going to use this. :-)
2203 */
2204 ret = NET_RX_DROP;
2205 }
2206
2207 out:
2208 rcu_read_unlock();
2209 return ret;
2210 }
2211
2212 static int process_backlog(struct napi_struct *napi, int quota)
2213 {
2214 int work = 0;
2215 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2216 unsigned long start_time = jiffies;
2217
2218 napi->weight = weight_p;
2219 do {
2220 struct sk_buff *skb;
2221 struct net_device *dev;
2222
2223 local_irq_disable();
2224 skb = __skb_dequeue(&queue->input_pkt_queue);
2225 if (!skb) {
2226 __napi_complete(napi);
2227 local_irq_enable();
2228 break;
2229 }
2230
2231 local_irq_enable();
2232
2233 dev = skb->dev;
2234
2235 netif_receive_skb(skb);
2236
2237 dev_put(dev);
2238 } while (++work < quota && jiffies == start_time);
2239
2240 return work;
2241 }
2242
2243 /**
2244 * __napi_schedule - schedule for receive
2245 * @n: entry to schedule
2246 *
2247 * The entry's receive function will be scheduled to run
2248 */
2249 void __napi_schedule(struct napi_struct *n)
2250 {
2251 unsigned long flags;
2252
2253 local_irq_save(flags);
2254 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2255 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2256 local_irq_restore(flags);
2257 }
2258 EXPORT_SYMBOL(__napi_schedule);
2259
2260
2261 static void net_rx_action(struct softirq_action *h)
2262 {
2263 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2264 unsigned long start_time = jiffies;
2265 int budget = netdev_budget;
2266 void *have;
2267
2268 local_irq_disable();
2269
2270 while (!list_empty(list)) {
2271 struct napi_struct *n;
2272 int work, weight;
2273
2274 /* If softirq window is exhuasted then punt.
2275 *
2276 * Note that this is a slight policy change from the
2277 * previous NAPI code, which would allow up to 2
2278 * jiffies to pass before breaking out. The test
2279 * used to be "jiffies - start_time > 1".
2280 */
2281 if (unlikely(budget <= 0 || jiffies != start_time))
2282 goto softnet_break;
2283
2284 local_irq_enable();
2285
2286 /* Even though interrupts have been re-enabled, this
2287 * access is safe because interrupts can only add new
2288 * entries to the tail of this list, and only ->poll()
2289 * calls can remove this head entry from the list.
2290 */
2291 n = list_entry(list->next, struct napi_struct, poll_list);
2292
2293 have = netpoll_poll_lock(n);
2294
2295 weight = n->weight;
2296
2297 /* This NAPI_STATE_SCHED test is for avoiding a race
2298 * with netpoll's poll_napi(). Only the entity which
2299 * obtains the lock and sees NAPI_STATE_SCHED set will
2300 * actually make the ->poll() call. Therefore we avoid
2301 * accidently calling ->poll() when NAPI is not scheduled.
2302 */
2303 work = 0;
2304 if (test_bit(NAPI_STATE_SCHED, &n->state))
2305 work = n->poll(n, weight);
2306
2307 WARN_ON_ONCE(work > weight);
2308
2309 budget -= work;
2310
2311 local_irq_disable();
2312
2313 /* Drivers must not modify the NAPI state if they
2314 * consume the entire weight. In such cases this code
2315 * still "owns" the NAPI instance and therefore can
2316 * move the instance around on the list at-will.
2317 */
2318 if (unlikely(work == weight)) {
2319 if (unlikely(napi_disable_pending(n)))
2320 __napi_complete(n);
2321 else
2322 list_move_tail(&n->poll_list, list);
2323 }
2324
2325 netpoll_poll_unlock(have);
2326 }
2327 out:
2328 local_irq_enable();
2329
2330 #ifdef CONFIG_NET_DMA
2331 /*
2332 * There may not be any more sk_buffs coming right now, so push
2333 * any pending DMA copies to hardware
2334 */
2335 if (!cpus_empty(net_dma.channel_mask)) {
2336 int chan_idx;
2337 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2338 struct dma_chan *chan = net_dma.channels[chan_idx];
2339 if (chan)
2340 dma_async_memcpy_issue_pending(chan);
2341 }
2342 }
2343 #endif
2344
2345 return;
2346
2347 softnet_break:
2348 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2349 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2350 goto out;
2351 }
2352
2353 static gifconf_func_t * gifconf_list [NPROTO];
2354
2355 /**
2356 * register_gifconf - register a SIOCGIF handler
2357 * @family: Address family
2358 * @gifconf: Function handler
2359 *
2360 * Register protocol dependent address dumping routines. The handler
2361 * that is passed must not be freed or reused until it has been replaced
2362 * by another handler.
2363 */
2364 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2365 {
2366 if (family >= NPROTO)
2367 return -EINVAL;
2368 gifconf_list[family] = gifconf;
2369 return 0;
2370 }
2371
2372
2373 /*
2374 * Map an interface index to its name (SIOCGIFNAME)
2375 */
2376
2377 /*
2378 * We need this ioctl for efficient implementation of the
2379 * if_indextoname() function required by the IPv6 API. Without
2380 * it, we would have to search all the interfaces to find a
2381 * match. --pb
2382 */
2383
2384 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2385 {
2386 struct net_device *dev;
2387 struct ifreq ifr;
2388
2389 /*
2390 * Fetch the caller's info block.
2391 */
2392
2393 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2394 return -EFAULT;
2395
2396 read_lock(&dev_base_lock);
2397 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2398 if (!dev) {
2399 read_unlock(&dev_base_lock);
2400 return -ENODEV;
2401 }
2402
2403 strcpy(ifr.ifr_name, dev->name);
2404 read_unlock(&dev_base_lock);
2405
2406 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2407 return -EFAULT;
2408 return 0;
2409 }
2410
2411 /*
2412 * Perform a SIOCGIFCONF call. This structure will change
2413 * size eventually, and there is nothing I can do about it.
2414 * Thus we will need a 'compatibility mode'.
2415 */
2416
2417 static int dev_ifconf(struct net *net, char __user *arg)
2418 {
2419 struct ifconf ifc;
2420 struct net_device *dev;
2421 char __user *pos;
2422 int len;
2423 int total;
2424 int i;
2425
2426 /*
2427 * Fetch the caller's info block.
2428 */
2429
2430 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2431 return -EFAULT;
2432
2433 pos = ifc.ifc_buf;
2434 len = ifc.ifc_len;
2435
2436 /*
2437 * Loop over the interfaces, and write an info block for each.
2438 */
2439
2440 total = 0;
2441 for_each_netdev(net, dev) {
2442 for (i = 0; i < NPROTO; i++) {
2443 if (gifconf_list[i]) {
2444 int done;
2445 if (!pos)
2446 done = gifconf_list[i](dev, NULL, 0);
2447 else
2448 done = gifconf_list[i](dev, pos + total,
2449 len - total);
2450 if (done < 0)
2451 return -EFAULT;
2452 total += done;
2453 }
2454 }
2455 }
2456
2457 /*
2458 * All done. Write the updated control block back to the caller.
2459 */
2460 ifc.ifc_len = total;
2461
2462 /*
2463 * Both BSD and Solaris return 0 here, so we do too.
2464 */
2465 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2466 }
2467
2468 #ifdef CONFIG_PROC_FS
2469 /*
2470 * This is invoked by the /proc filesystem handler to display a device
2471 * in detail.
2472 */
2473 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2474 __acquires(dev_base_lock)
2475 {
2476 struct net *net = seq_file_net(seq);
2477 loff_t off;
2478 struct net_device *dev;
2479
2480 read_lock(&dev_base_lock);
2481 if (!*pos)
2482 return SEQ_START_TOKEN;
2483
2484 off = 1;
2485 for_each_netdev(net, dev)
2486 if (off++ == *pos)
2487 return dev;
2488
2489 return NULL;
2490 }
2491
2492 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2493 {
2494 struct net *net = seq_file_net(seq);
2495 ++*pos;
2496 return v == SEQ_START_TOKEN ?
2497 first_net_device(net) : next_net_device((struct net_device *)v);
2498 }
2499
2500 void dev_seq_stop(struct seq_file *seq, void *v)
2501 __releases(dev_base_lock)
2502 {
2503 read_unlock(&dev_base_lock);
2504 }
2505
2506 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2507 {
2508 struct net_device_stats *stats = dev->get_stats(dev);
2509
2510 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2511 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2512 dev->name, stats->rx_bytes, stats->rx_packets,
2513 stats->rx_errors,
2514 stats->rx_dropped + stats->rx_missed_errors,
2515 stats->rx_fifo_errors,
2516 stats->rx_length_errors + stats->rx_over_errors +
2517 stats->rx_crc_errors + stats->rx_frame_errors,
2518 stats->rx_compressed, stats->multicast,
2519 stats->tx_bytes, stats->tx_packets,
2520 stats->tx_errors, stats->tx_dropped,
2521 stats->tx_fifo_errors, stats->collisions,
2522 stats->tx_carrier_errors +
2523 stats->tx_aborted_errors +
2524 stats->tx_window_errors +
2525 stats->tx_heartbeat_errors,
2526 stats->tx_compressed);
2527 }
2528
2529 /*
2530 * Called from the PROCfs module. This now uses the new arbitrary sized
2531 * /proc/net interface to create /proc/net/dev
2532 */
2533 static int dev_seq_show(struct seq_file *seq, void *v)
2534 {
2535 if (v == SEQ_START_TOKEN)
2536 seq_puts(seq, "Inter-| Receive "
2537 " | Transmit\n"
2538 " face |bytes packets errs drop fifo frame "
2539 "compressed multicast|bytes packets errs "
2540 "drop fifo colls carrier compressed\n");
2541 else
2542 dev_seq_printf_stats(seq, v);
2543 return 0;
2544 }
2545
2546 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2547 {
2548 struct netif_rx_stats *rc = NULL;
2549
2550 while (*pos < nr_cpu_ids)
2551 if (cpu_online(*pos)) {
2552 rc = &per_cpu(netdev_rx_stat, *pos);
2553 break;
2554 } else
2555 ++*pos;
2556 return rc;
2557 }
2558
2559 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2560 {
2561 return softnet_get_online(pos);
2562 }
2563
2564 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2565 {
2566 ++*pos;
2567 return softnet_get_online(pos);
2568 }
2569
2570 static void softnet_seq_stop(struct seq_file *seq, void *v)
2571 {
2572 }
2573
2574 static int softnet_seq_show(struct seq_file *seq, void *v)
2575 {
2576 struct netif_rx_stats *s = v;
2577
2578 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2579 s->total, s->dropped, s->time_squeeze, 0,
2580 0, 0, 0, 0, /* was fastroute */
2581 s->cpu_collision );
2582 return 0;
2583 }
2584
2585 static const struct seq_operations dev_seq_ops = {
2586 .start = dev_seq_start,
2587 .next = dev_seq_next,
2588 .stop = dev_seq_stop,
2589 .show = dev_seq_show,
2590 };
2591
2592 static int dev_seq_open(struct inode *inode, struct file *file)
2593 {
2594 return seq_open_net(inode, file, &dev_seq_ops,
2595 sizeof(struct seq_net_private));
2596 }
2597
2598 static const struct file_operations dev_seq_fops = {
2599 .owner = THIS_MODULE,
2600 .open = dev_seq_open,
2601 .read = seq_read,
2602 .llseek = seq_lseek,
2603 .release = seq_release_net,
2604 };
2605
2606 static const struct seq_operations softnet_seq_ops = {
2607 .start = softnet_seq_start,
2608 .next = softnet_seq_next,
2609 .stop = softnet_seq_stop,
2610 .show = softnet_seq_show,
2611 };
2612
2613 static int softnet_seq_open(struct inode *inode, struct file *file)
2614 {
2615 return seq_open(file, &softnet_seq_ops);
2616 }
2617
2618 static const struct file_operations softnet_seq_fops = {
2619 .owner = THIS_MODULE,
2620 .open = softnet_seq_open,
2621 .read = seq_read,
2622 .llseek = seq_lseek,
2623 .release = seq_release,
2624 };
2625
2626 static void *ptype_get_idx(loff_t pos)
2627 {
2628 struct packet_type *pt = NULL;
2629 loff_t i = 0;
2630 int t;
2631
2632 list_for_each_entry_rcu(pt, &ptype_all, list) {
2633 if (i == pos)
2634 return pt;
2635 ++i;
2636 }
2637
2638 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2639 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2640 if (i == pos)
2641 return pt;
2642 ++i;
2643 }
2644 }
2645 return NULL;
2646 }
2647
2648 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2649 __acquires(RCU)
2650 {
2651 rcu_read_lock();
2652 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2653 }
2654
2655 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2656 {
2657 struct packet_type *pt;
2658 struct list_head *nxt;
2659 int hash;
2660
2661 ++*pos;
2662 if (v == SEQ_START_TOKEN)
2663 return ptype_get_idx(0);
2664
2665 pt = v;
2666 nxt = pt->list.next;
2667 if (pt->type == htons(ETH_P_ALL)) {
2668 if (nxt != &ptype_all)
2669 goto found;
2670 hash = 0;
2671 nxt = ptype_base[0].next;
2672 } else
2673 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2674
2675 while (nxt == &ptype_base[hash]) {
2676 if (++hash >= PTYPE_HASH_SIZE)
2677 return NULL;
2678 nxt = ptype_base[hash].next;
2679 }
2680 found:
2681 return list_entry(nxt, struct packet_type, list);
2682 }
2683
2684 static void ptype_seq_stop(struct seq_file *seq, void *v)
2685 __releases(RCU)
2686 {
2687 rcu_read_unlock();
2688 }
2689
2690 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2691 {
2692 #ifdef CONFIG_KALLSYMS
2693 unsigned long offset = 0, symsize;
2694 const char *symname;
2695 char *modname;
2696 char namebuf[128];
2697
2698 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2699 &modname, namebuf);
2700
2701 if (symname) {
2702 char *delim = ":";
2703
2704 if (!modname)
2705 modname = delim = "";
2706 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2707 symname, offset);
2708 return;
2709 }
2710 #endif
2711
2712 seq_printf(seq, "[%p]", sym);
2713 }
2714
2715 static int ptype_seq_show(struct seq_file *seq, void *v)
2716 {
2717 struct packet_type *pt = v;
2718
2719 if (v == SEQ_START_TOKEN)
2720 seq_puts(seq, "Type Device Function\n");
2721 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2722 if (pt->type == htons(ETH_P_ALL))
2723 seq_puts(seq, "ALL ");
2724 else
2725 seq_printf(seq, "%04x", ntohs(pt->type));
2726
2727 seq_printf(seq, " %-8s ",
2728 pt->dev ? pt->dev->name : "");
2729 ptype_seq_decode(seq, pt->func);
2730 seq_putc(seq, '\n');
2731 }
2732
2733 return 0;
2734 }
2735
2736 static const struct seq_operations ptype_seq_ops = {
2737 .start = ptype_seq_start,
2738 .next = ptype_seq_next,
2739 .stop = ptype_seq_stop,
2740 .show = ptype_seq_show,
2741 };
2742
2743 static int ptype_seq_open(struct inode *inode, struct file *file)
2744 {
2745 return seq_open_net(inode, file, &ptype_seq_ops,
2746 sizeof(struct seq_net_private));
2747 }
2748
2749 static const struct file_operations ptype_seq_fops = {
2750 .owner = THIS_MODULE,
2751 .open = ptype_seq_open,
2752 .read = seq_read,
2753 .llseek = seq_lseek,
2754 .release = seq_release_net,
2755 };
2756
2757
2758 static int __net_init dev_proc_net_init(struct net *net)
2759 {
2760 int rc = -ENOMEM;
2761
2762 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2763 goto out;
2764 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2765 goto out_dev;
2766 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2767 goto out_softnet;
2768
2769 if (wext_proc_init(net))
2770 goto out_ptype;
2771 rc = 0;
2772 out:
2773 return rc;
2774 out_ptype:
2775 proc_net_remove(net, "ptype");
2776 out_softnet:
2777 proc_net_remove(net, "softnet_stat");
2778 out_dev:
2779 proc_net_remove(net, "dev");
2780 goto out;
2781 }
2782
2783 static void __net_exit dev_proc_net_exit(struct net *net)
2784 {
2785 wext_proc_exit(net);
2786
2787 proc_net_remove(net, "ptype");
2788 proc_net_remove(net, "softnet_stat");
2789 proc_net_remove(net, "dev");
2790 }
2791
2792 static struct pernet_operations __net_initdata dev_proc_ops = {
2793 .init = dev_proc_net_init,
2794 .exit = dev_proc_net_exit,
2795 };
2796
2797 static int __init dev_proc_init(void)
2798 {
2799 return register_pernet_subsys(&dev_proc_ops);
2800 }
2801 #else
2802 #define dev_proc_init() 0
2803 #endif /* CONFIG_PROC_FS */
2804
2805
2806 /**
2807 * netdev_set_master - set up master/slave pair
2808 * @slave: slave device
2809 * @master: new master device
2810 *
2811 * Changes the master device of the slave. Pass %NULL to break the
2812 * bonding. The caller must hold the RTNL semaphore. On a failure
2813 * a negative errno code is returned. On success the reference counts
2814 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2815 * function returns zero.
2816 */
2817 int netdev_set_master(struct net_device *slave, struct net_device *master)
2818 {
2819 struct net_device *old = slave->master;
2820
2821 ASSERT_RTNL();
2822
2823 if (master) {
2824 if (old)
2825 return -EBUSY;
2826 dev_hold(master);
2827 }
2828
2829 slave->master = master;
2830
2831 synchronize_net();
2832
2833 if (old)
2834 dev_put(old);
2835
2836 if (master)
2837 slave->flags |= IFF_SLAVE;
2838 else
2839 slave->flags &= ~IFF_SLAVE;
2840
2841 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2842 return 0;
2843 }
2844
2845 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2846 {
2847 unsigned short old_flags = dev->flags;
2848
2849 ASSERT_RTNL();
2850
2851 dev->flags |= IFF_PROMISC;
2852 dev->promiscuity += inc;
2853 if (dev->promiscuity == 0) {
2854 /*
2855 * Avoid overflow.
2856 * If inc causes overflow, untouch promisc and return error.
2857 */
2858 if (inc < 0)
2859 dev->flags &= ~IFF_PROMISC;
2860 else {
2861 dev->promiscuity -= inc;
2862 printk(KERN_WARNING "%s: promiscuity touches roof, "
2863 "set promiscuity failed, promiscuity feature "
2864 "of device might be broken.\n", dev->name);
2865 return -EOVERFLOW;
2866 }
2867 }
2868 if (dev->flags != old_flags) {
2869 printk(KERN_INFO "device %s %s promiscuous mode\n",
2870 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2871 "left");
2872 if (audit_enabled)
2873 audit_log(current->audit_context, GFP_ATOMIC,
2874 AUDIT_ANOM_PROMISCUOUS,
2875 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2876 dev->name, (dev->flags & IFF_PROMISC),
2877 (old_flags & IFF_PROMISC),
2878 audit_get_loginuid(current),
2879 current->uid, current->gid,
2880 audit_get_sessionid(current));
2881
2882 if (dev->change_rx_flags)
2883 dev->change_rx_flags(dev, IFF_PROMISC);
2884 }
2885 return 0;
2886 }
2887
2888 /**
2889 * dev_set_promiscuity - update promiscuity count on a device
2890 * @dev: device
2891 * @inc: modifier
2892 *
2893 * Add or remove promiscuity from a device. While the count in the device
2894 * remains above zero the interface remains promiscuous. Once it hits zero
2895 * the device reverts back to normal filtering operation. A negative inc
2896 * value is used to drop promiscuity on the device.
2897 * Return 0 if successful or a negative errno code on error.
2898 */
2899 int dev_set_promiscuity(struct net_device *dev, int inc)
2900 {
2901 unsigned short old_flags = dev->flags;
2902 int err;
2903
2904 err = __dev_set_promiscuity(dev, inc);
2905 if (err < 0)
2906 return err;
2907 if (dev->flags != old_flags)
2908 dev_set_rx_mode(dev);
2909 return err;
2910 }
2911
2912 /**
2913 * dev_set_allmulti - update allmulti count on a device
2914 * @dev: device
2915 * @inc: modifier
2916 *
2917 * Add or remove reception of all multicast frames to a device. While the
2918 * count in the device remains above zero the interface remains listening
2919 * to all interfaces. Once it hits zero the device reverts back to normal
2920 * filtering operation. A negative @inc value is used to drop the counter
2921 * when releasing a resource needing all multicasts.
2922 * Return 0 if successful or a negative errno code on error.
2923 */
2924
2925 int dev_set_allmulti(struct net_device *dev, int inc)
2926 {
2927 unsigned short old_flags = dev->flags;
2928
2929 ASSERT_RTNL();
2930
2931 dev->flags |= IFF_ALLMULTI;
2932 dev->allmulti += inc;
2933 if (dev->allmulti == 0) {
2934 /*
2935 * Avoid overflow.
2936 * If inc causes overflow, untouch allmulti and return error.
2937 */
2938 if (inc < 0)
2939 dev->flags &= ~IFF_ALLMULTI;
2940 else {
2941 dev->allmulti -= inc;
2942 printk(KERN_WARNING "%s: allmulti touches roof, "
2943 "set allmulti failed, allmulti feature of "
2944 "device might be broken.\n", dev->name);
2945 return -EOVERFLOW;
2946 }
2947 }
2948 if (dev->flags ^ old_flags) {
2949 if (dev->change_rx_flags)
2950 dev->change_rx_flags(dev, IFF_ALLMULTI);
2951 dev_set_rx_mode(dev);
2952 }
2953 return 0;
2954 }
2955
2956 /*
2957 * Upload unicast and multicast address lists to device and
2958 * configure RX filtering. When the device doesn't support unicast
2959 * filtering it is put in promiscuous mode while unicast addresses
2960 * are present.
2961 */
2962 void __dev_set_rx_mode(struct net_device *dev)
2963 {
2964 /* dev_open will call this function so the list will stay sane. */
2965 if (!(dev->flags&IFF_UP))
2966 return;
2967
2968 if (!netif_device_present(dev))
2969 return;
2970
2971 if (dev->set_rx_mode)
2972 dev->set_rx_mode(dev);
2973 else {
2974 /* Unicast addresses changes may only happen under the rtnl,
2975 * therefore calling __dev_set_promiscuity here is safe.
2976 */
2977 if (dev->uc_count > 0 && !dev->uc_promisc) {
2978 __dev_set_promiscuity(dev, 1);
2979 dev->uc_promisc = 1;
2980 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2981 __dev_set_promiscuity(dev, -1);
2982 dev->uc_promisc = 0;
2983 }
2984
2985 if (dev->set_multicast_list)
2986 dev->set_multicast_list(dev);
2987 }
2988 }
2989
2990 void dev_set_rx_mode(struct net_device *dev)
2991 {
2992 netif_addr_lock_bh(dev);
2993 __dev_set_rx_mode(dev);
2994 netif_addr_unlock_bh(dev);
2995 }
2996
2997 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2998 void *addr, int alen, int glbl)
2999 {
3000 struct dev_addr_list *da;
3001
3002 for (; (da = *list) != NULL; list = &da->next) {
3003 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3004 alen == da->da_addrlen) {
3005 if (glbl) {
3006 int old_glbl = da->da_gusers;
3007 da->da_gusers = 0;
3008 if (old_glbl == 0)
3009 break;
3010 }
3011 if (--da->da_users)
3012 return 0;
3013
3014 *list = da->next;
3015 kfree(da);
3016 (*count)--;
3017 return 0;
3018 }
3019 }
3020 return -ENOENT;
3021 }
3022
3023 int __dev_addr_add(struct dev_addr_list **list, int *count,
3024 void *addr, int alen, int glbl)
3025 {
3026 struct dev_addr_list *da;
3027
3028 for (da = *list; da != NULL; da = da->next) {
3029 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3030 da->da_addrlen == alen) {
3031 if (glbl) {
3032 int old_glbl = da->da_gusers;
3033 da->da_gusers = 1;
3034 if (old_glbl)
3035 return 0;
3036 }
3037 da->da_users++;
3038 return 0;
3039 }
3040 }
3041
3042 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3043 if (da == NULL)
3044 return -ENOMEM;
3045 memcpy(da->da_addr, addr, alen);
3046 da->da_addrlen = alen;
3047 da->da_users = 1;
3048 da->da_gusers = glbl ? 1 : 0;
3049 da->next = *list;
3050 *list = da;
3051 (*count)++;
3052 return 0;
3053 }
3054
3055 /**
3056 * dev_unicast_delete - Release secondary unicast address.
3057 * @dev: device
3058 * @addr: address to delete
3059 * @alen: length of @addr
3060 *
3061 * Release reference to a secondary unicast address and remove it
3062 * from the device if the reference count drops to zero.
3063 *
3064 * The caller must hold the rtnl_mutex.
3065 */
3066 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3067 {
3068 int err;
3069
3070 ASSERT_RTNL();
3071
3072 netif_addr_lock_bh(dev);
3073 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3074 if (!err)
3075 __dev_set_rx_mode(dev);
3076 netif_addr_unlock_bh(dev);
3077 return err;
3078 }
3079 EXPORT_SYMBOL(dev_unicast_delete);
3080
3081 /**
3082 * dev_unicast_add - add a secondary unicast address
3083 * @dev: device
3084 * @addr: address to add
3085 * @alen: length of @addr
3086 *
3087 * Add a secondary unicast address to the device or increase
3088 * the reference count if it already exists.
3089 *
3090 * The caller must hold the rtnl_mutex.
3091 */
3092 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3093 {
3094 int err;
3095
3096 ASSERT_RTNL();
3097
3098 netif_addr_lock_bh(dev);
3099 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3100 if (!err)
3101 __dev_set_rx_mode(dev);
3102 netif_addr_unlock_bh(dev);
3103 return err;
3104 }
3105 EXPORT_SYMBOL(dev_unicast_add);
3106
3107 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3108 struct dev_addr_list **from, int *from_count)
3109 {
3110 struct dev_addr_list *da, *next;
3111 int err = 0;
3112
3113 da = *from;
3114 while (da != NULL) {
3115 next = da->next;
3116 if (!da->da_synced) {
3117 err = __dev_addr_add(to, to_count,
3118 da->da_addr, da->da_addrlen, 0);
3119 if (err < 0)
3120 break;
3121 da->da_synced = 1;
3122 da->da_users++;
3123 } else if (da->da_users == 1) {
3124 __dev_addr_delete(to, to_count,
3125 da->da_addr, da->da_addrlen, 0);
3126 __dev_addr_delete(from, from_count,
3127 da->da_addr, da->da_addrlen, 0);
3128 }
3129 da = next;
3130 }
3131 return err;
3132 }
3133
3134 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3135 struct dev_addr_list **from, int *from_count)
3136 {
3137 struct dev_addr_list *da, *next;
3138
3139 da = *from;
3140 while (da != NULL) {
3141 next = da->next;
3142 if (da->da_synced) {
3143 __dev_addr_delete(to, to_count,
3144 da->da_addr, da->da_addrlen, 0);
3145 da->da_synced = 0;
3146 __dev_addr_delete(from, from_count,
3147 da->da_addr, da->da_addrlen, 0);
3148 }
3149 da = next;
3150 }
3151 }
3152
3153 /**
3154 * dev_unicast_sync - Synchronize device's unicast list to another device
3155 * @to: destination device
3156 * @from: source device
3157 *
3158 * Add newly added addresses to the destination device and release
3159 * addresses that have no users left. The source device must be
3160 * locked by netif_tx_lock_bh.
3161 *
3162 * This function is intended to be called from the dev->set_rx_mode
3163 * function of layered software devices.
3164 */
3165 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3166 {
3167 int err = 0;
3168
3169 netif_addr_lock_bh(to);
3170 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3171 &from->uc_list, &from->uc_count);
3172 if (!err)
3173 __dev_set_rx_mode(to);
3174 netif_addr_unlock_bh(to);
3175 return err;
3176 }
3177 EXPORT_SYMBOL(dev_unicast_sync);
3178
3179 /**
3180 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3181 * @to: destination device
3182 * @from: source device
3183 *
3184 * Remove all addresses that were added to the destination device by
3185 * dev_unicast_sync(). This function is intended to be called from the
3186 * dev->stop function of layered software devices.
3187 */
3188 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3189 {
3190 netif_addr_lock_bh(from);
3191 netif_addr_lock(to);
3192
3193 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3194 &from->uc_list, &from->uc_count);
3195 __dev_set_rx_mode(to);
3196
3197 netif_addr_unlock(to);
3198 netif_addr_unlock_bh(from);
3199 }
3200 EXPORT_SYMBOL(dev_unicast_unsync);
3201
3202 static void __dev_addr_discard(struct dev_addr_list **list)
3203 {
3204 struct dev_addr_list *tmp;
3205
3206 while (*list != NULL) {
3207 tmp = *list;
3208 *list = tmp->next;
3209 if (tmp->da_users > tmp->da_gusers)
3210 printk("__dev_addr_discard: address leakage! "
3211 "da_users=%d\n", tmp->da_users);
3212 kfree(tmp);
3213 }
3214 }
3215
3216 static void dev_addr_discard(struct net_device *dev)
3217 {
3218 netif_addr_lock_bh(dev);
3219
3220 __dev_addr_discard(&dev->uc_list);
3221 dev->uc_count = 0;
3222
3223 __dev_addr_discard(&dev->mc_list);
3224 dev->mc_count = 0;
3225
3226 netif_addr_unlock_bh(dev);
3227 }
3228
3229 unsigned dev_get_flags(const struct net_device *dev)
3230 {
3231 unsigned flags;
3232
3233 flags = (dev->flags & ~(IFF_PROMISC |
3234 IFF_ALLMULTI |
3235 IFF_RUNNING |
3236 IFF_LOWER_UP |
3237 IFF_DORMANT)) |
3238 (dev->gflags & (IFF_PROMISC |
3239 IFF_ALLMULTI));
3240
3241 if (netif_running(dev)) {
3242 if (netif_oper_up(dev))
3243 flags |= IFF_RUNNING;
3244 if (netif_carrier_ok(dev))
3245 flags |= IFF_LOWER_UP;
3246 if (netif_dormant(dev))
3247 flags |= IFF_DORMANT;
3248 }
3249
3250 return flags;
3251 }
3252
3253 int dev_change_flags(struct net_device *dev, unsigned flags)
3254 {
3255 int ret, changes;
3256 int old_flags = dev->flags;
3257
3258 ASSERT_RTNL();
3259
3260 /*
3261 * Set the flags on our device.
3262 */
3263
3264 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3265 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3266 IFF_AUTOMEDIA)) |
3267 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3268 IFF_ALLMULTI));
3269
3270 /*
3271 * Load in the correct multicast list now the flags have changed.
3272 */
3273
3274 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3275 dev->change_rx_flags(dev, IFF_MULTICAST);
3276
3277 dev_set_rx_mode(dev);
3278
3279 /*
3280 * Have we downed the interface. We handle IFF_UP ourselves
3281 * according to user attempts to set it, rather than blindly
3282 * setting it.
3283 */
3284
3285 ret = 0;
3286 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3287 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3288
3289 if (!ret)
3290 dev_set_rx_mode(dev);
3291 }
3292
3293 if (dev->flags & IFF_UP &&
3294 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3295 IFF_VOLATILE)))
3296 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3297
3298 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3299 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3300 dev->gflags ^= IFF_PROMISC;
3301 dev_set_promiscuity(dev, inc);
3302 }
3303
3304 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3305 is important. Some (broken) drivers set IFF_PROMISC, when
3306 IFF_ALLMULTI is requested not asking us and not reporting.
3307 */
3308 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3309 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3310 dev->gflags ^= IFF_ALLMULTI;
3311 dev_set_allmulti(dev, inc);
3312 }
3313
3314 /* Exclude state transition flags, already notified */
3315 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3316 if (changes)
3317 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3318
3319 return ret;
3320 }
3321
3322 int dev_set_mtu(struct net_device *dev, int new_mtu)
3323 {
3324 int err;
3325
3326 if (new_mtu == dev->mtu)
3327 return 0;
3328
3329 /* MTU must be positive. */
3330 if (new_mtu < 0)
3331 return -EINVAL;
3332
3333 if (!netif_device_present(dev))
3334 return -ENODEV;
3335
3336 err = 0;
3337 if (dev->change_mtu)
3338 err = dev->change_mtu(dev, new_mtu);
3339 else
3340 dev->mtu = new_mtu;
3341 if (!err && dev->flags & IFF_UP)
3342 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3343 return err;
3344 }
3345
3346 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3347 {
3348 int err;
3349
3350 if (!dev->set_mac_address)
3351 return -EOPNOTSUPP;
3352 if (sa->sa_family != dev->type)
3353 return -EINVAL;
3354 if (!netif_device_present(dev))
3355 return -ENODEV;
3356 err = dev->set_mac_address(dev, sa);
3357 if (!err)
3358 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3359 return err;
3360 }
3361
3362 /*
3363 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3364 */
3365 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3366 {
3367 int err;
3368 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3369
3370 if (!dev)
3371 return -ENODEV;
3372
3373 switch (cmd) {
3374 case SIOCGIFFLAGS: /* Get interface flags */
3375 ifr->ifr_flags = dev_get_flags(dev);
3376 return 0;
3377
3378 case SIOCGIFMETRIC: /* Get the metric on the interface
3379 (currently unused) */
3380 ifr->ifr_metric = 0;
3381 return 0;
3382
3383 case SIOCGIFMTU: /* Get the MTU of a device */
3384 ifr->ifr_mtu = dev->mtu;
3385 return 0;
3386
3387 case SIOCGIFHWADDR:
3388 if (!dev->addr_len)
3389 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3390 else
3391 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3392 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3393 ifr->ifr_hwaddr.sa_family = dev->type;
3394 return 0;
3395
3396 case SIOCGIFSLAVE:
3397 err = -EINVAL;
3398 break;
3399
3400 case SIOCGIFMAP:
3401 ifr->ifr_map.mem_start = dev->mem_start;
3402 ifr->ifr_map.mem_end = dev->mem_end;
3403 ifr->ifr_map.base_addr = dev->base_addr;
3404 ifr->ifr_map.irq = dev->irq;
3405 ifr->ifr_map.dma = dev->dma;
3406 ifr->ifr_map.port = dev->if_port;
3407 return 0;
3408
3409 case SIOCGIFINDEX:
3410 ifr->ifr_ifindex = dev->ifindex;
3411 return 0;
3412
3413 case SIOCGIFTXQLEN:
3414 ifr->ifr_qlen = dev->tx_queue_len;
3415 return 0;
3416
3417 default:
3418 /* dev_ioctl() should ensure this case
3419 * is never reached
3420 */
3421 WARN_ON(1);
3422 err = -EINVAL;
3423 break;
3424
3425 }
3426 return err;
3427 }
3428
3429 /*
3430 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3431 */
3432 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3433 {
3434 int err;
3435 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3436
3437 if (!dev)
3438 return -ENODEV;
3439
3440 switch (cmd) {
3441 case SIOCSIFFLAGS: /* Set interface flags */
3442 return dev_change_flags(dev, ifr->ifr_flags);
3443
3444 case SIOCSIFMETRIC: /* Set the metric on the interface
3445 (currently unused) */
3446 return -EOPNOTSUPP;
3447
3448 case SIOCSIFMTU: /* Set the MTU of a device */
3449 return dev_set_mtu(dev, ifr->ifr_mtu);
3450
3451 case SIOCSIFHWADDR:
3452 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3453
3454 case SIOCSIFHWBROADCAST:
3455 if (ifr->ifr_hwaddr.sa_family != dev->type)
3456 return -EINVAL;
3457 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3458 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3459 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3460 return 0;
3461
3462 case SIOCSIFMAP:
3463 if (dev->set_config) {
3464 if (!netif_device_present(dev))
3465 return -ENODEV;
3466 return dev->set_config(dev, &ifr->ifr_map);
3467 }
3468 return -EOPNOTSUPP;
3469
3470 case SIOCADDMULTI:
3471 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3472 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3473 return -EINVAL;
3474 if (!netif_device_present(dev))
3475 return -ENODEV;
3476 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3477 dev->addr_len, 1);
3478
3479 case SIOCDELMULTI:
3480 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3481 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3482 return -EINVAL;
3483 if (!netif_device_present(dev))
3484 return -ENODEV;
3485 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3486 dev->addr_len, 1);
3487
3488 case SIOCSIFTXQLEN:
3489 if (ifr->ifr_qlen < 0)
3490 return -EINVAL;
3491 dev->tx_queue_len = ifr->ifr_qlen;
3492 return 0;
3493
3494 case SIOCSIFNAME:
3495 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3496 return dev_change_name(dev, ifr->ifr_newname);
3497
3498 /*
3499 * Unknown or private ioctl
3500 */
3501
3502 default:
3503 if ((cmd >= SIOCDEVPRIVATE &&
3504 cmd <= SIOCDEVPRIVATE + 15) ||
3505 cmd == SIOCBONDENSLAVE ||
3506 cmd == SIOCBONDRELEASE ||
3507 cmd == SIOCBONDSETHWADDR ||
3508 cmd == SIOCBONDSLAVEINFOQUERY ||
3509 cmd == SIOCBONDINFOQUERY ||
3510 cmd == SIOCBONDCHANGEACTIVE ||
3511 cmd == SIOCGMIIPHY ||
3512 cmd == SIOCGMIIREG ||
3513 cmd == SIOCSMIIREG ||
3514 cmd == SIOCBRADDIF ||
3515 cmd == SIOCBRDELIF ||
3516 cmd == SIOCWANDEV) {
3517 err = -EOPNOTSUPP;
3518 if (dev->do_ioctl) {
3519 if (netif_device_present(dev))
3520 err = dev->do_ioctl(dev, ifr,
3521 cmd);
3522 else
3523 err = -ENODEV;
3524 }
3525 } else
3526 err = -EINVAL;
3527
3528 }
3529 return err;
3530 }
3531
3532 /*
3533 * This function handles all "interface"-type I/O control requests. The actual
3534 * 'doing' part of this is dev_ifsioc above.
3535 */
3536
3537 /**
3538 * dev_ioctl - network device ioctl
3539 * @net: the applicable net namespace
3540 * @cmd: command to issue
3541 * @arg: pointer to a struct ifreq in user space
3542 *
3543 * Issue ioctl functions to devices. This is normally called by the
3544 * user space syscall interfaces but can sometimes be useful for
3545 * other purposes. The return value is the return from the syscall if
3546 * positive or a negative errno code on error.
3547 */
3548
3549 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3550 {
3551 struct ifreq ifr;
3552 int ret;
3553 char *colon;
3554
3555 /* One special case: SIOCGIFCONF takes ifconf argument
3556 and requires shared lock, because it sleeps writing
3557 to user space.
3558 */
3559
3560 if (cmd == SIOCGIFCONF) {
3561 rtnl_lock();
3562 ret = dev_ifconf(net, (char __user *) arg);
3563 rtnl_unlock();
3564 return ret;
3565 }
3566 if (cmd == SIOCGIFNAME)
3567 return dev_ifname(net, (struct ifreq __user *)arg);
3568
3569 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3570 return -EFAULT;
3571
3572 ifr.ifr_name[IFNAMSIZ-1] = 0;
3573
3574 colon = strchr(ifr.ifr_name, ':');
3575 if (colon)
3576 *colon = 0;
3577
3578 /*
3579 * See which interface the caller is talking about.
3580 */
3581
3582 switch (cmd) {
3583 /*
3584 * These ioctl calls:
3585 * - can be done by all.
3586 * - atomic and do not require locking.
3587 * - return a value
3588 */
3589 case SIOCGIFFLAGS:
3590 case SIOCGIFMETRIC:
3591 case SIOCGIFMTU:
3592 case SIOCGIFHWADDR:
3593 case SIOCGIFSLAVE:
3594 case SIOCGIFMAP:
3595 case SIOCGIFINDEX:
3596 case SIOCGIFTXQLEN:
3597 dev_load(net, ifr.ifr_name);
3598 read_lock(&dev_base_lock);
3599 ret = dev_ifsioc_locked(net, &ifr, cmd);
3600 read_unlock(&dev_base_lock);
3601 if (!ret) {
3602 if (colon)
3603 *colon = ':';
3604 if (copy_to_user(arg, &ifr,
3605 sizeof(struct ifreq)))
3606 ret = -EFAULT;
3607 }
3608 return ret;
3609
3610 case SIOCETHTOOL:
3611 dev_load(net, ifr.ifr_name);
3612 rtnl_lock();
3613 ret = dev_ethtool(net, &ifr);
3614 rtnl_unlock();
3615 if (!ret) {
3616 if (colon)
3617 *colon = ':';
3618 if (copy_to_user(arg, &ifr,
3619 sizeof(struct ifreq)))
3620 ret = -EFAULT;
3621 }
3622 return ret;
3623
3624 /*
3625 * These ioctl calls:
3626 * - require superuser power.
3627 * - require strict serialization.
3628 * - return a value
3629 */
3630 case SIOCGMIIPHY:
3631 case SIOCGMIIREG:
3632 case SIOCSIFNAME:
3633 if (!capable(CAP_NET_ADMIN))
3634 return -EPERM;
3635 dev_load(net, ifr.ifr_name);
3636 rtnl_lock();
3637 ret = dev_ifsioc(net, &ifr, cmd);
3638 rtnl_unlock();
3639 if (!ret) {
3640 if (colon)
3641 *colon = ':';
3642 if (copy_to_user(arg, &ifr,
3643 sizeof(struct ifreq)))
3644 ret = -EFAULT;
3645 }
3646 return ret;
3647
3648 /*
3649 * These ioctl calls:
3650 * - require superuser power.
3651 * - require strict serialization.
3652 * - do not return a value
3653 */
3654 case SIOCSIFFLAGS:
3655 case SIOCSIFMETRIC:
3656 case SIOCSIFMTU:
3657 case SIOCSIFMAP:
3658 case SIOCSIFHWADDR:
3659 case SIOCSIFSLAVE:
3660 case SIOCADDMULTI:
3661 case SIOCDELMULTI:
3662 case SIOCSIFHWBROADCAST:
3663 case SIOCSIFTXQLEN:
3664 case SIOCSMIIREG:
3665 case SIOCBONDENSLAVE:
3666 case SIOCBONDRELEASE:
3667 case SIOCBONDSETHWADDR:
3668 case SIOCBONDCHANGEACTIVE:
3669 case SIOCBRADDIF:
3670 case SIOCBRDELIF:
3671 if (!capable(CAP_NET_ADMIN))
3672 return -EPERM;
3673 /* fall through */
3674 case SIOCBONDSLAVEINFOQUERY:
3675 case SIOCBONDINFOQUERY:
3676 dev_load(net, ifr.ifr_name);
3677 rtnl_lock();
3678 ret = dev_ifsioc(net, &ifr, cmd);
3679 rtnl_unlock();
3680 return ret;
3681
3682 case SIOCGIFMEM:
3683 /* Get the per device memory space. We can add this but
3684 * currently do not support it */
3685 case SIOCSIFMEM:
3686 /* Set the per device memory buffer space.
3687 * Not applicable in our case */
3688 case SIOCSIFLINK:
3689 return -EINVAL;
3690
3691 /*
3692 * Unknown or private ioctl.
3693 */
3694 default:
3695 if (cmd == SIOCWANDEV ||
3696 (cmd >= SIOCDEVPRIVATE &&
3697 cmd <= SIOCDEVPRIVATE + 15)) {
3698 dev_load(net, ifr.ifr_name);
3699 rtnl_lock();
3700 ret = dev_ifsioc(net, &ifr, cmd);
3701 rtnl_unlock();
3702 if (!ret && copy_to_user(arg, &ifr,
3703 sizeof(struct ifreq)))
3704 ret = -EFAULT;
3705 return ret;
3706 }
3707 /* Take care of Wireless Extensions */
3708 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3709 return wext_handle_ioctl(net, &ifr, cmd, arg);
3710 return -EINVAL;
3711 }
3712 }
3713
3714
3715 /**
3716 * dev_new_index - allocate an ifindex
3717 * @net: the applicable net namespace
3718 *
3719 * Returns a suitable unique value for a new device interface
3720 * number. The caller must hold the rtnl semaphore or the
3721 * dev_base_lock to be sure it remains unique.
3722 */
3723 static int dev_new_index(struct net *net)
3724 {
3725 static int ifindex;
3726 for (;;) {
3727 if (++ifindex <= 0)
3728 ifindex = 1;
3729 if (!__dev_get_by_index(net, ifindex))
3730 return ifindex;
3731 }
3732 }
3733
3734 /* Delayed registration/unregisteration */
3735 static DEFINE_SPINLOCK(net_todo_list_lock);
3736 static LIST_HEAD(net_todo_list);
3737
3738 static void net_set_todo(struct net_device *dev)
3739 {
3740 spin_lock(&net_todo_list_lock);
3741 list_add_tail(&dev->todo_list, &net_todo_list);
3742 spin_unlock(&net_todo_list_lock);
3743 }
3744
3745 static void rollback_registered(struct net_device *dev)
3746 {
3747 BUG_ON(dev_boot_phase);
3748 ASSERT_RTNL();
3749
3750 /* Some devices call without registering for initialization unwind. */
3751 if (dev->reg_state == NETREG_UNINITIALIZED) {
3752 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3753 "was registered\n", dev->name, dev);
3754
3755 WARN_ON(1);
3756 return;
3757 }
3758
3759 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3760
3761 /* If device is running, close it first. */
3762 dev_close(dev);
3763
3764 /* And unlink it from device chain. */
3765 unlist_netdevice(dev);
3766
3767 dev->reg_state = NETREG_UNREGISTERING;
3768
3769 synchronize_net();
3770
3771 /* Shutdown queueing discipline. */
3772 dev_shutdown(dev);
3773
3774
3775 /* Notify protocols, that we are about to destroy
3776 this device. They should clean all the things.
3777 */
3778 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3779
3780 /*
3781 * Flush the unicast and multicast chains
3782 */
3783 dev_addr_discard(dev);
3784
3785 if (dev->uninit)
3786 dev->uninit(dev);
3787
3788 /* Notifier chain MUST detach us from master device. */
3789 BUG_TRAP(!dev->master);
3790
3791 /* Remove entries from kobject tree */
3792 netdev_unregister_kobject(dev);
3793
3794 synchronize_net();
3795
3796 dev_put(dev);
3797 }
3798
3799 static void __netdev_init_queue_locks_one(struct net_device *dev,
3800 struct netdev_queue *dev_queue,
3801 void *_unused)
3802 {
3803 spin_lock_init(&dev_queue->_xmit_lock);
3804 netdev_set_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3805 dev_queue->xmit_lock_owner = -1;
3806 }
3807
3808 static void netdev_init_queue_locks(struct net_device *dev)
3809 {
3810 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3811 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
3812 }
3813
3814 /**
3815 * register_netdevice - register a network device
3816 * @dev: device to register
3817 *
3818 * Take a completed network device structure and add it to the kernel
3819 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3820 * chain. 0 is returned on success. A negative errno code is returned
3821 * on a failure to set up the device, or if the name is a duplicate.
3822 *
3823 * Callers must hold the rtnl semaphore. You may want
3824 * register_netdev() instead of this.
3825 *
3826 * BUGS:
3827 * The locking appears insufficient to guarantee two parallel registers
3828 * will not get the same name.
3829 */
3830
3831 int register_netdevice(struct net_device *dev)
3832 {
3833 struct hlist_head *head;
3834 struct hlist_node *p;
3835 int ret;
3836 struct net *net;
3837
3838 BUG_ON(dev_boot_phase);
3839 ASSERT_RTNL();
3840
3841 might_sleep();
3842
3843 /* When net_device's are persistent, this will be fatal. */
3844 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3845 BUG_ON(!dev_net(dev));
3846 net = dev_net(dev);
3847
3848 spin_lock_init(&dev->addr_list_lock);
3849 netdev_init_queue_locks(dev);
3850
3851 dev->iflink = -1;
3852
3853 /* Init, if this function is available */
3854 if (dev->init) {
3855 ret = dev->init(dev);
3856 if (ret) {
3857 if (ret > 0)
3858 ret = -EIO;
3859 goto out;
3860 }
3861 }
3862
3863 if (!dev_valid_name(dev->name)) {
3864 ret = -EINVAL;
3865 goto err_uninit;
3866 }
3867
3868 dev->ifindex = dev_new_index(net);
3869 if (dev->iflink == -1)
3870 dev->iflink = dev->ifindex;
3871
3872 /* Check for existence of name */
3873 head = dev_name_hash(net, dev->name);
3874 hlist_for_each(p, head) {
3875 struct net_device *d
3876 = hlist_entry(p, struct net_device, name_hlist);
3877 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3878 ret = -EEXIST;
3879 goto err_uninit;
3880 }
3881 }
3882
3883 /* Fix illegal checksum combinations */
3884 if ((dev->features & NETIF_F_HW_CSUM) &&
3885 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3886 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3887 dev->name);
3888 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3889 }
3890
3891 if ((dev->features & NETIF_F_NO_CSUM) &&
3892 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3893 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3894 dev->name);
3895 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3896 }
3897
3898
3899 /* Fix illegal SG+CSUM combinations. */
3900 if ((dev->features & NETIF_F_SG) &&
3901 !(dev->features & NETIF_F_ALL_CSUM)) {
3902 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3903 dev->name);
3904 dev->features &= ~NETIF_F_SG;
3905 }
3906
3907 /* TSO requires that SG is present as well. */
3908 if ((dev->features & NETIF_F_TSO) &&
3909 !(dev->features & NETIF_F_SG)) {
3910 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3911 dev->name);
3912 dev->features &= ~NETIF_F_TSO;
3913 }
3914 if (dev->features & NETIF_F_UFO) {
3915 if (!(dev->features & NETIF_F_HW_CSUM)) {
3916 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3917 "NETIF_F_HW_CSUM feature.\n",
3918 dev->name);
3919 dev->features &= ~NETIF_F_UFO;
3920 }
3921 if (!(dev->features & NETIF_F_SG)) {
3922 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3923 "NETIF_F_SG feature.\n",
3924 dev->name);
3925 dev->features &= ~NETIF_F_UFO;
3926 }
3927 }
3928
3929 netdev_initialize_kobject(dev);
3930 ret = netdev_register_kobject(dev);
3931 if (ret)
3932 goto err_uninit;
3933 dev->reg_state = NETREG_REGISTERED;
3934
3935 /*
3936 * Default initial state at registry is that the
3937 * device is present.
3938 */
3939
3940 set_bit(__LINK_STATE_PRESENT, &dev->state);
3941
3942 dev_init_scheduler(dev);
3943 dev_hold(dev);
3944 list_netdevice(dev);
3945
3946 /* Notify protocols, that a new device appeared. */
3947 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3948 ret = notifier_to_errno(ret);
3949 if (ret) {
3950 rollback_registered(dev);
3951 dev->reg_state = NETREG_UNREGISTERED;
3952 }
3953
3954 out:
3955 return ret;
3956
3957 err_uninit:
3958 if (dev->uninit)
3959 dev->uninit(dev);
3960 goto out;
3961 }
3962
3963 /**
3964 * register_netdev - register a network device
3965 * @dev: device to register
3966 *
3967 * Take a completed network device structure and add it to the kernel
3968 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3969 * chain. 0 is returned on success. A negative errno code is returned
3970 * on a failure to set up the device, or if the name is a duplicate.
3971 *
3972 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3973 * and expands the device name if you passed a format string to
3974 * alloc_netdev.
3975 */
3976 int register_netdev(struct net_device *dev)
3977 {
3978 int err;
3979
3980 rtnl_lock();
3981
3982 /*
3983 * If the name is a format string the caller wants us to do a
3984 * name allocation.
3985 */
3986 if (strchr(dev->name, '%')) {
3987 err = dev_alloc_name(dev, dev->name);
3988 if (err < 0)
3989 goto out;
3990 }
3991
3992 err = register_netdevice(dev);
3993 out:
3994 rtnl_unlock();
3995 return err;
3996 }
3997 EXPORT_SYMBOL(register_netdev);
3998
3999 /*
4000 * netdev_wait_allrefs - wait until all references are gone.
4001 *
4002 * This is called when unregistering network devices.
4003 *
4004 * Any protocol or device that holds a reference should register
4005 * for netdevice notification, and cleanup and put back the
4006 * reference if they receive an UNREGISTER event.
4007 * We can get stuck here if buggy protocols don't correctly
4008 * call dev_put.
4009 */
4010 static void netdev_wait_allrefs(struct net_device *dev)
4011 {
4012 unsigned long rebroadcast_time, warning_time;
4013
4014 rebroadcast_time = warning_time = jiffies;
4015 while (atomic_read(&dev->refcnt) != 0) {
4016 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4017 rtnl_lock();
4018
4019 /* Rebroadcast unregister notification */
4020 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4021
4022 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4023 &dev->state)) {
4024 /* We must not have linkwatch events
4025 * pending on unregister. If this
4026 * happens, we simply run the queue
4027 * unscheduled, resulting in a noop
4028 * for this device.
4029 */
4030 linkwatch_run_queue();
4031 }
4032
4033 __rtnl_unlock();
4034
4035 rebroadcast_time = jiffies;
4036 }
4037
4038 msleep(250);
4039
4040 if (time_after(jiffies, warning_time + 10 * HZ)) {
4041 printk(KERN_EMERG "unregister_netdevice: "
4042 "waiting for %s to become free. Usage "
4043 "count = %d\n",
4044 dev->name, atomic_read(&dev->refcnt));
4045 warning_time = jiffies;
4046 }
4047 }
4048 }
4049
4050 /* The sequence is:
4051 *
4052 * rtnl_lock();
4053 * ...
4054 * register_netdevice(x1);
4055 * register_netdevice(x2);
4056 * ...
4057 * unregister_netdevice(y1);
4058 * unregister_netdevice(y2);
4059 * ...
4060 * rtnl_unlock();
4061 * free_netdev(y1);
4062 * free_netdev(y2);
4063 *
4064 * We are invoked by rtnl_unlock() after it drops the semaphore.
4065 * This allows us to deal with problems:
4066 * 1) We can delete sysfs objects which invoke hotplug
4067 * without deadlocking with linkwatch via keventd.
4068 * 2) Since we run with the RTNL semaphore not held, we can sleep
4069 * safely in order to wait for the netdev refcnt to drop to zero.
4070 */
4071 static DEFINE_MUTEX(net_todo_run_mutex);
4072 void netdev_run_todo(void)
4073 {
4074 struct list_head list;
4075
4076 /* Need to guard against multiple cpu's getting out of order. */
4077 mutex_lock(&net_todo_run_mutex);
4078
4079 /* Not safe to do outside the semaphore. We must not return
4080 * until all unregister events invoked by the local processor
4081 * have been completed (either by this todo run, or one on
4082 * another cpu).
4083 */
4084 if (list_empty(&net_todo_list))
4085 goto out;
4086
4087 /* Snapshot list, allow later requests */
4088 spin_lock(&net_todo_list_lock);
4089 list_replace_init(&net_todo_list, &list);
4090 spin_unlock(&net_todo_list_lock);
4091
4092 while (!list_empty(&list)) {
4093 struct net_device *dev
4094 = list_entry(list.next, struct net_device, todo_list);
4095 list_del(&dev->todo_list);
4096
4097 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4098 printk(KERN_ERR "network todo '%s' but state %d\n",
4099 dev->name, dev->reg_state);
4100 dump_stack();
4101 continue;
4102 }
4103
4104 dev->reg_state = NETREG_UNREGISTERED;
4105
4106 netdev_wait_allrefs(dev);
4107
4108 /* paranoia */
4109 BUG_ON(atomic_read(&dev->refcnt));
4110 BUG_TRAP(!dev->ip_ptr);
4111 BUG_TRAP(!dev->ip6_ptr);
4112 BUG_TRAP(!dev->dn_ptr);
4113
4114 if (dev->destructor)
4115 dev->destructor(dev);
4116
4117 /* Free network device */
4118 kobject_put(&dev->dev.kobj);
4119 }
4120
4121 out:
4122 mutex_unlock(&net_todo_run_mutex);
4123 }
4124
4125 static struct net_device_stats *internal_stats(struct net_device *dev)
4126 {
4127 return &dev->stats;
4128 }
4129
4130 static void netdev_init_one_queue(struct net_device *dev,
4131 struct netdev_queue *queue,
4132 void *_unused)
4133 {
4134 spin_lock_init(&queue->lock);
4135 queue->dev = dev;
4136 }
4137
4138 static void netdev_init_queues(struct net_device *dev)
4139 {
4140 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4141 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4142 }
4143
4144 /**
4145 * alloc_netdev_mq - allocate network device
4146 * @sizeof_priv: size of private data to allocate space for
4147 * @name: device name format string
4148 * @setup: callback to initialize device
4149 * @queue_count: the number of subqueues to allocate
4150 *
4151 * Allocates a struct net_device with private data area for driver use
4152 * and performs basic initialization. Also allocates subquue structs
4153 * for each queue on the device at the end of the netdevice.
4154 */
4155 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4156 void (*setup)(struct net_device *), unsigned int queue_count)
4157 {
4158 struct netdev_queue *tx;
4159 struct net_device *dev;
4160 int alloc_size;
4161 void *p;
4162
4163 BUG_ON(strlen(name) >= sizeof(dev->name));
4164
4165 alloc_size = sizeof(struct net_device);
4166 if (sizeof_priv) {
4167 /* ensure 32-byte alignment of private area */
4168 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4169 alloc_size += sizeof_priv;
4170 }
4171 /* ensure 32-byte alignment of whole construct */
4172 alloc_size += NETDEV_ALIGN_CONST;
4173
4174 p = kzalloc(alloc_size, GFP_KERNEL);
4175 if (!p) {
4176 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4177 return NULL;
4178 }
4179
4180 tx = kzalloc(sizeof(struct netdev_queue) * queue_count, GFP_KERNEL);
4181 if (!tx) {
4182 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4183 "tx qdiscs.\n");
4184 kfree(p);
4185 return NULL;
4186 }
4187
4188 dev = (struct net_device *)
4189 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4190 dev->padded = (char *)dev - (char *)p;
4191 dev_net_set(dev, &init_net);
4192
4193 dev->_tx = tx;
4194 dev->num_tx_queues = queue_count;
4195 dev->real_num_tx_queues = queue_count;
4196
4197 if (sizeof_priv) {
4198 dev->priv = ((char *)dev +
4199 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST)
4200 & ~NETDEV_ALIGN_CONST));
4201 }
4202
4203 dev->gso_max_size = GSO_MAX_SIZE;
4204
4205 netdev_init_queues(dev);
4206
4207 dev->get_stats = internal_stats;
4208 netpoll_netdev_init(dev);
4209 setup(dev);
4210 strcpy(dev->name, name);
4211 return dev;
4212 }
4213 EXPORT_SYMBOL(alloc_netdev_mq);
4214
4215 /**
4216 * free_netdev - free network device
4217 * @dev: device
4218 *
4219 * This function does the last stage of destroying an allocated device
4220 * interface. The reference to the device object is released.
4221 * If this is the last reference then it will be freed.
4222 */
4223 void free_netdev(struct net_device *dev)
4224 {
4225 release_net(dev_net(dev));
4226
4227 kfree(dev->_tx);
4228
4229 /* Compatibility with error handling in drivers */
4230 if (dev->reg_state == NETREG_UNINITIALIZED) {
4231 kfree((char *)dev - dev->padded);
4232 return;
4233 }
4234
4235 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4236 dev->reg_state = NETREG_RELEASED;
4237
4238 /* will free via device release */
4239 put_device(&dev->dev);
4240 }
4241
4242 /* Synchronize with packet receive processing. */
4243 void synchronize_net(void)
4244 {
4245 might_sleep();
4246 synchronize_rcu();
4247 }
4248
4249 /**
4250 * unregister_netdevice - remove device from the kernel
4251 * @dev: device
4252 *
4253 * This function shuts down a device interface and removes it
4254 * from the kernel tables.
4255 *
4256 * Callers must hold the rtnl semaphore. You may want
4257 * unregister_netdev() instead of this.
4258 */
4259
4260 void unregister_netdevice(struct net_device *dev)
4261 {
4262 ASSERT_RTNL();
4263
4264 rollback_registered(dev);
4265 /* Finish processing unregister after unlock */
4266 net_set_todo(dev);
4267 }
4268
4269 /**
4270 * unregister_netdev - remove device from the kernel
4271 * @dev: device
4272 *
4273 * This function shuts down a device interface and removes it
4274 * from the kernel tables.
4275 *
4276 * This is just a wrapper for unregister_netdevice that takes
4277 * the rtnl semaphore. In general you want to use this and not
4278 * unregister_netdevice.
4279 */
4280 void unregister_netdev(struct net_device *dev)
4281 {
4282 rtnl_lock();
4283 unregister_netdevice(dev);
4284 rtnl_unlock();
4285 }
4286
4287 EXPORT_SYMBOL(unregister_netdev);
4288
4289 /**
4290 * dev_change_net_namespace - move device to different nethost namespace
4291 * @dev: device
4292 * @net: network namespace
4293 * @pat: If not NULL name pattern to try if the current device name
4294 * is already taken in the destination network namespace.
4295 *
4296 * This function shuts down a device interface and moves it
4297 * to a new network namespace. On success 0 is returned, on
4298 * a failure a netagive errno code is returned.
4299 *
4300 * Callers must hold the rtnl semaphore.
4301 */
4302
4303 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4304 {
4305 char buf[IFNAMSIZ];
4306 const char *destname;
4307 int err;
4308
4309 ASSERT_RTNL();
4310
4311 /* Don't allow namespace local devices to be moved. */
4312 err = -EINVAL;
4313 if (dev->features & NETIF_F_NETNS_LOCAL)
4314 goto out;
4315
4316 /* Ensure the device has been registrered */
4317 err = -EINVAL;
4318 if (dev->reg_state != NETREG_REGISTERED)
4319 goto out;
4320
4321 /* Get out if there is nothing todo */
4322 err = 0;
4323 if (net_eq(dev_net(dev), net))
4324 goto out;
4325
4326 /* Pick the destination device name, and ensure
4327 * we can use it in the destination network namespace.
4328 */
4329 err = -EEXIST;
4330 destname = dev->name;
4331 if (__dev_get_by_name(net, destname)) {
4332 /* We get here if we can't use the current device name */
4333 if (!pat)
4334 goto out;
4335 if (!dev_valid_name(pat))
4336 goto out;
4337 if (strchr(pat, '%')) {
4338 if (__dev_alloc_name(net, pat, buf) < 0)
4339 goto out;
4340 destname = buf;
4341 } else
4342 destname = pat;
4343 if (__dev_get_by_name(net, destname))
4344 goto out;
4345 }
4346
4347 /*
4348 * And now a mini version of register_netdevice unregister_netdevice.
4349 */
4350
4351 /* If device is running close it first. */
4352 dev_close(dev);
4353
4354 /* And unlink it from device chain */
4355 err = -ENODEV;
4356 unlist_netdevice(dev);
4357
4358 synchronize_net();
4359
4360 /* Shutdown queueing discipline. */
4361 dev_shutdown(dev);
4362
4363 /* Notify protocols, that we are about to destroy
4364 this device. They should clean all the things.
4365 */
4366 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4367
4368 /*
4369 * Flush the unicast and multicast chains
4370 */
4371 dev_addr_discard(dev);
4372
4373 /* Actually switch the network namespace */
4374 dev_net_set(dev, net);
4375
4376 /* Assign the new device name */
4377 if (destname != dev->name)
4378 strcpy(dev->name, destname);
4379
4380 /* If there is an ifindex conflict assign a new one */
4381 if (__dev_get_by_index(net, dev->ifindex)) {
4382 int iflink = (dev->iflink == dev->ifindex);
4383 dev->ifindex = dev_new_index(net);
4384 if (iflink)
4385 dev->iflink = dev->ifindex;
4386 }
4387
4388 /* Fixup kobjects */
4389 netdev_unregister_kobject(dev);
4390 err = netdev_register_kobject(dev);
4391 WARN_ON(err);
4392
4393 /* Add the device back in the hashes */
4394 list_netdevice(dev);
4395
4396 /* Notify protocols, that a new device appeared. */
4397 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4398
4399 synchronize_net();
4400 err = 0;
4401 out:
4402 return err;
4403 }
4404
4405 static int dev_cpu_callback(struct notifier_block *nfb,
4406 unsigned long action,
4407 void *ocpu)
4408 {
4409 struct sk_buff **list_skb;
4410 struct netdev_queue **list_net;
4411 struct sk_buff *skb;
4412 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4413 struct softnet_data *sd, *oldsd;
4414
4415 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4416 return NOTIFY_OK;
4417
4418 local_irq_disable();
4419 cpu = smp_processor_id();
4420 sd = &per_cpu(softnet_data, cpu);
4421 oldsd = &per_cpu(softnet_data, oldcpu);
4422
4423 /* Find end of our completion_queue. */
4424 list_skb = &sd->completion_queue;
4425 while (*list_skb)
4426 list_skb = &(*list_skb)->next;
4427 /* Append completion queue from offline CPU. */
4428 *list_skb = oldsd->completion_queue;
4429 oldsd->completion_queue = NULL;
4430
4431 /* Find end of our output_queue. */
4432 list_net = &sd->output_queue;
4433 while (*list_net)
4434 list_net = &(*list_net)->next_sched;
4435 /* Append output queue from offline CPU. */
4436 *list_net = oldsd->output_queue;
4437 oldsd->output_queue = NULL;
4438
4439 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4440 local_irq_enable();
4441
4442 /* Process offline CPU's input_pkt_queue */
4443 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4444 netif_rx(skb);
4445
4446 return NOTIFY_OK;
4447 }
4448
4449 #ifdef CONFIG_NET_DMA
4450 /**
4451 * net_dma_rebalance - try to maintain one DMA channel per CPU
4452 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4453 *
4454 * This is called when the number of channels allocated to the net_dma client
4455 * changes. The net_dma client tries to have one DMA channel per CPU.
4456 */
4457
4458 static void net_dma_rebalance(struct net_dma *net_dma)
4459 {
4460 unsigned int cpu, i, n, chan_idx;
4461 struct dma_chan *chan;
4462
4463 if (cpus_empty(net_dma->channel_mask)) {
4464 for_each_online_cpu(cpu)
4465 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4466 return;
4467 }
4468
4469 i = 0;
4470 cpu = first_cpu(cpu_online_map);
4471
4472 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4473 chan = net_dma->channels[chan_idx];
4474
4475 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4476 + (i < (num_online_cpus() %
4477 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4478
4479 while(n) {
4480 per_cpu(softnet_data, cpu).net_dma = chan;
4481 cpu = next_cpu(cpu, cpu_online_map);
4482 n--;
4483 }
4484 i++;
4485 }
4486 }
4487
4488 /**
4489 * netdev_dma_event - event callback for the net_dma_client
4490 * @client: should always be net_dma_client
4491 * @chan: DMA channel for the event
4492 * @state: DMA state to be handled
4493 */
4494 static enum dma_state_client
4495 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4496 enum dma_state state)
4497 {
4498 int i, found = 0, pos = -1;
4499 struct net_dma *net_dma =
4500 container_of(client, struct net_dma, client);
4501 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4502
4503 spin_lock(&net_dma->lock);
4504 switch (state) {
4505 case DMA_RESOURCE_AVAILABLE:
4506 for (i = 0; i < nr_cpu_ids; i++)
4507 if (net_dma->channels[i] == chan) {
4508 found = 1;
4509 break;
4510 } else if (net_dma->channels[i] == NULL && pos < 0)
4511 pos = i;
4512
4513 if (!found && pos >= 0) {
4514 ack = DMA_ACK;
4515 net_dma->channels[pos] = chan;
4516 cpu_set(pos, net_dma->channel_mask);
4517 net_dma_rebalance(net_dma);
4518 }
4519 break;
4520 case DMA_RESOURCE_REMOVED:
4521 for (i = 0; i < nr_cpu_ids; i++)
4522 if (net_dma->channels[i] == chan) {
4523 found = 1;
4524 pos = i;
4525 break;
4526 }
4527
4528 if (found) {
4529 ack = DMA_ACK;
4530 cpu_clear(pos, net_dma->channel_mask);
4531 net_dma->channels[i] = NULL;
4532 net_dma_rebalance(net_dma);
4533 }
4534 break;
4535 default:
4536 break;
4537 }
4538 spin_unlock(&net_dma->lock);
4539
4540 return ack;
4541 }
4542
4543 /**
4544 * netdev_dma_regiser - register the networking subsystem as a DMA client
4545 */
4546 static int __init netdev_dma_register(void)
4547 {
4548 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4549 GFP_KERNEL);
4550 if (unlikely(!net_dma.channels)) {
4551 printk(KERN_NOTICE
4552 "netdev_dma: no memory for net_dma.channels\n");
4553 return -ENOMEM;
4554 }
4555 spin_lock_init(&net_dma.lock);
4556 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4557 dma_async_client_register(&net_dma.client);
4558 dma_async_client_chan_request(&net_dma.client);
4559 return 0;
4560 }
4561
4562 #else
4563 static int __init netdev_dma_register(void) { return -ENODEV; }
4564 #endif /* CONFIG_NET_DMA */
4565
4566 /**
4567 * netdev_compute_feature - compute conjunction of two feature sets
4568 * @all: first feature set
4569 * @one: second feature set
4570 *
4571 * Computes a new feature set after adding a device with feature set
4572 * @one to the master device with current feature set @all. Returns
4573 * the new feature set.
4574 */
4575 int netdev_compute_features(unsigned long all, unsigned long one)
4576 {
4577 /* if device needs checksumming, downgrade to hw checksumming */
4578 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4579 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4580
4581 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4582 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4583 all ^= NETIF_F_HW_CSUM
4584 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4585
4586 if (one & NETIF_F_GSO)
4587 one |= NETIF_F_GSO_SOFTWARE;
4588 one |= NETIF_F_GSO;
4589
4590 /* If even one device supports robust GSO, enable it for all. */
4591 if (one & NETIF_F_GSO_ROBUST)
4592 all |= NETIF_F_GSO_ROBUST;
4593
4594 all &= one | NETIF_F_LLTX;
4595
4596 if (!(all & NETIF_F_ALL_CSUM))
4597 all &= ~NETIF_F_SG;
4598 if (!(all & NETIF_F_SG))
4599 all &= ~NETIF_F_GSO_MASK;
4600
4601 return all;
4602 }
4603 EXPORT_SYMBOL(netdev_compute_features);
4604
4605 static struct hlist_head *netdev_create_hash(void)
4606 {
4607 int i;
4608 struct hlist_head *hash;
4609
4610 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4611 if (hash != NULL)
4612 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4613 INIT_HLIST_HEAD(&hash[i]);
4614
4615 return hash;
4616 }
4617
4618 /* Initialize per network namespace state */
4619 static int __net_init netdev_init(struct net *net)
4620 {
4621 INIT_LIST_HEAD(&net->dev_base_head);
4622
4623 net->dev_name_head = netdev_create_hash();
4624 if (net->dev_name_head == NULL)
4625 goto err_name;
4626
4627 net->dev_index_head = netdev_create_hash();
4628 if (net->dev_index_head == NULL)
4629 goto err_idx;
4630
4631 return 0;
4632
4633 err_idx:
4634 kfree(net->dev_name_head);
4635 err_name:
4636 return -ENOMEM;
4637 }
4638
4639 static void __net_exit netdev_exit(struct net *net)
4640 {
4641 kfree(net->dev_name_head);
4642 kfree(net->dev_index_head);
4643 }
4644
4645 static struct pernet_operations __net_initdata netdev_net_ops = {
4646 .init = netdev_init,
4647 .exit = netdev_exit,
4648 };
4649
4650 static void __net_exit default_device_exit(struct net *net)
4651 {
4652 struct net_device *dev, *next;
4653 /*
4654 * Push all migratable of the network devices back to the
4655 * initial network namespace
4656 */
4657 rtnl_lock();
4658 for_each_netdev_safe(net, dev, next) {
4659 int err;
4660 char fb_name[IFNAMSIZ];
4661
4662 /* Ignore unmoveable devices (i.e. loopback) */
4663 if (dev->features & NETIF_F_NETNS_LOCAL)
4664 continue;
4665
4666 /* Push remaing network devices to init_net */
4667 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4668 err = dev_change_net_namespace(dev, &init_net, fb_name);
4669 if (err) {
4670 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4671 __func__, dev->name, err);
4672 BUG();
4673 }
4674 }
4675 rtnl_unlock();
4676 }
4677
4678 static struct pernet_operations __net_initdata default_device_ops = {
4679 .exit = default_device_exit,
4680 };
4681
4682 /*
4683 * Initialize the DEV module. At boot time this walks the device list and
4684 * unhooks any devices that fail to initialise (normally hardware not
4685 * present) and leaves us with a valid list of present and active devices.
4686 *
4687 */
4688
4689 /*
4690 * This is called single threaded during boot, so no need
4691 * to take the rtnl semaphore.
4692 */
4693 static int __init net_dev_init(void)
4694 {
4695 int i, rc = -ENOMEM;
4696
4697 BUG_ON(!dev_boot_phase);
4698
4699 if (dev_proc_init())
4700 goto out;
4701
4702 if (netdev_kobject_init())
4703 goto out;
4704
4705 INIT_LIST_HEAD(&ptype_all);
4706 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4707 INIT_LIST_HEAD(&ptype_base[i]);
4708
4709 if (register_pernet_subsys(&netdev_net_ops))
4710 goto out;
4711
4712 if (register_pernet_device(&default_device_ops))
4713 goto out;
4714
4715 /*
4716 * Initialise the packet receive queues.
4717 */
4718
4719 for_each_possible_cpu(i) {
4720 struct softnet_data *queue;
4721
4722 queue = &per_cpu(softnet_data, i);
4723 skb_queue_head_init(&queue->input_pkt_queue);
4724 queue->completion_queue = NULL;
4725 INIT_LIST_HEAD(&queue->poll_list);
4726
4727 queue->backlog.poll = process_backlog;
4728 queue->backlog.weight = weight_p;
4729 }
4730
4731 netdev_dma_register();
4732
4733 dev_boot_phase = 0;
4734
4735 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4736 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4737
4738 hotcpu_notifier(dev_cpu_callback, 0);
4739 dst_init();
4740 dev_mcast_init();
4741 rc = 0;
4742 out:
4743 return rc;
4744 }
4745
4746 subsys_initcall(net_dev_init);
4747
4748 EXPORT_SYMBOL(__dev_get_by_index);
4749 EXPORT_SYMBOL(__dev_get_by_name);
4750 EXPORT_SYMBOL(__dev_remove_pack);
4751 EXPORT_SYMBOL(dev_valid_name);
4752 EXPORT_SYMBOL(dev_add_pack);
4753 EXPORT_SYMBOL(dev_alloc_name);
4754 EXPORT_SYMBOL(dev_close);
4755 EXPORT_SYMBOL(dev_get_by_flags);
4756 EXPORT_SYMBOL(dev_get_by_index);
4757 EXPORT_SYMBOL(dev_get_by_name);
4758 EXPORT_SYMBOL(dev_open);
4759 EXPORT_SYMBOL(dev_queue_xmit);
4760 EXPORT_SYMBOL(dev_remove_pack);
4761 EXPORT_SYMBOL(dev_set_allmulti);
4762 EXPORT_SYMBOL(dev_set_promiscuity);
4763 EXPORT_SYMBOL(dev_change_flags);
4764 EXPORT_SYMBOL(dev_set_mtu);
4765 EXPORT_SYMBOL(dev_set_mac_address);
4766 EXPORT_SYMBOL(free_netdev);
4767 EXPORT_SYMBOL(netdev_boot_setup_check);
4768 EXPORT_SYMBOL(netdev_set_master);
4769 EXPORT_SYMBOL(netdev_state_change);
4770 EXPORT_SYMBOL(netif_receive_skb);
4771 EXPORT_SYMBOL(netif_rx);
4772 EXPORT_SYMBOL(register_gifconf);
4773 EXPORT_SYMBOL(register_netdevice);
4774 EXPORT_SYMBOL(register_netdevice_notifier);
4775 EXPORT_SYMBOL(skb_checksum_help);
4776 EXPORT_SYMBOL(synchronize_net);
4777 EXPORT_SYMBOL(unregister_netdevice);
4778 EXPORT_SYMBOL(unregister_netdevice_notifier);
4779 EXPORT_SYMBOL(net_enable_timestamp);
4780 EXPORT_SYMBOL(net_disable_timestamp);
4781 EXPORT_SYMBOL(dev_get_flags);
4782
4783 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4784 EXPORT_SYMBOL(br_handle_frame_hook);
4785 EXPORT_SYMBOL(br_fdb_get_hook);
4786 EXPORT_SYMBOL(br_fdb_put_hook);
4787 #endif
4788
4789 #ifdef CONFIG_KMOD
4790 EXPORT_SYMBOL(dev_load);
4791 #endif
4792
4793 EXPORT_PER_CPU_SYMBOL(softnet_data);