]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/core/dev.c
net: Use __this_cpu_inc() in fast path
[mirror_ubuntu-artful-kernel.git] / net / core / dev.c
1 /*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <linux/pci.h>
134
135 #include "net-sysfs.h"
136
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143 /*
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
146 *
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
149 *
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
155 * --BLG
156 *
157 * 0800 IP
158 * 8100 802.1Q VLAN
159 * 0001 802.3
160 * 0002 AX.25
161 * 0004 802.2
162 * 8035 RARP
163 * 0005 SNAP
164 * 0805 X.25
165 * 0806 ARP
166 * 8137 IPX
167 * 0009 Localtalk
168 * 86DD IPv6
169 */
170
171 #define PTYPE_HASH_SIZE (16)
172 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
173
174 static DEFINE_SPINLOCK(ptype_lock);
175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176 static struct list_head ptype_all __read_mostly; /* Taps */
177
178 /*
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180 * semaphore.
181 *
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183 *
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
188 *
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
192 *
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
195 * semaphore held.
196 */
197 DEFINE_RWLOCK(dev_base_lock);
198 EXPORT_SYMBOL(dev_base_lock);
199
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224
225 /* Device list insertion */
226 static int list_netdevice(struct net_device *dev)
227 {
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
239 }
240
241 /* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254 }
255
256 /*
257 * Our notifier list
258 */
259
260 static RAW_NOTIFIER_HEAD(netdev_chain);
261
262 /*
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
265 */
266
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270 #ifdef CONFIG_LOCKDEP
271 /*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275 static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
310
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327 {
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333 }
334
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353
354 /*******************************************************************************
355
356 Protocol management and registration routines
357
358 *******************************************************************************/
359
360 /*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376 /**
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
379 *
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
383 *
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
387 */
388
389 void dev_add_pack(struct packet_type *pt)
390 {
391 int hash;
392
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
396 else {
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
399 }
400 spin_unlock_bh(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 struct list_head *head;
420 struct packet_type *pt1;
421
422 spin_lock_bh(&ptype_lock);
423
424 if (pt->type == htons(ETH_P_ALL))
425 head = &ptype_all;
426 else
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 spin_unlock_bh(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441
442 /**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461
462 /******************************************************************************
463
464 Device Boot-time Settings Routines
465
466 *******************************************************************************/
467
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471 /**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497
498 /**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527 /**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556 }
557
558 /*
559 * Saves at boot time configured settings for any netdevice.
560 */
561 int __init netdev_boot_setup(char *str)
562 {
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583 }
584
585 __setup("netdev=", netdev_boot_setup);
586
587 /*******************************************************************************
588
589 Device Interface Subroutines
590
591 *******************************************************************************/
592
593 /**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618
619 /**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645 /**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669
670 /**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695
696 /**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722 /**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745
746 /**
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 * BUGS:
758 * If the API was consistent this would be __dev_get_by_hwaddr
759 */
760
761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
762 {
763 struct net_device *dev;
764
765 ASSERT_RTNL();
766
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
770 return dev;
771
772 return NULL;
773 }
774 EXPORT_SYMBOL(dev_getbyhwaddr);
775
776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
777 {
778 struct net_device *dev;
779
780 ASSERT_RTNL();
781 for_each_netdev(net, dev)
782 if (dev->type == type)
783 return dev;
784
785 return NULL;
786 }
787 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
788
789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
790 {
791 struct net_device *dev, *ret = NULL;
792
793 rcu_read_lock();
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
796 dev_hold(dev);
797 ret = dev;
798 break;
799 }
800 rcu_read_unlock();
801 return ret;
802 }
803 EXPORT_SYMBOL(dev_getfirstbyhwtype);
804
805 /**
806 * dev_get_by_flags - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
810 *
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. The device returned has
813 * had a reference added and the pointer is safe until the user calls
814 * dev_put to indicate they have finished with it.
815 */
816
817 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
818 unsigned short mask)
819 {
820 struct net_device *dev, *ret;
821
822 ret = NULL;
823 rcu_read_lock();
824 for_each_netdev_rcu(net, dev) {
825 if (((dev->flags ^ if_flags) & mask) == 0) {
826 dev_hold(dev);
827 ret = dev;
828 break;
829 }
830 }
831 rcu_read_unlock();
832 return ret;
833 }
834 EXPORT_SYMBOL(dev_get_by_flags);
835
836 /**
837 * dev_valid_name - check if name is okay for network device
838 * @name: name string
839 *
840 * Network device names need to be valid file names to
841 * to allow sysfs to work. We also disallow any kind of
842 * whitespace.
843 */
844 int dev_valid_name(const char *name)
845 {
846 if (*name == '\0')
847 return 0;
848 if (strlen(name) >= IFNAMSIZ)
849 return 0;
850 if (!strcmp(name, ".") || !strcmp(name, ".."))
851 return 0;
852
853 while (*name) {
854 if (*name == '/' || isspace(*name))
855 return 0;
856 name++;
857 }
858 return 1;
859 }
860 EXPORT_SYMBOL(dev_valid_name);
861
862 /**
863 * __dev_alloc_name - allocate a name for a device
864 * @net: network namespace to allocate the device name in
865 * @name: name format string
866 * @buf: scratch buffer and result name string
867 *
868 * Passed a format string - eg "lt%d" it will try and find a suitable
869 * id. It scans list of devices to build up a free map, then chooses
870 * the first empty slot. The caller must hold the dev_base or rtnl lock
871 * while allocating the name and adding the device in order to avoid
872 * duplicates.
873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
874 * Returns the number of the unit assigned or a negative errno code.
875 */
876
877 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
878 {
879 int i = 0;
880 const char *p;
881 const int max_netdevices = 8*PAGE_SIZE;
882 unsigned long *inuse;
883 struct net_device *d;
884
885 p = strnchr(name, IFNAMSIZ-1, '%');
886 if (p) {
887 /*
888 * Verify the string as this thing may have come from
889 * the user. There must be either one "%d" and no other "%"
890 * characters.
891 */
892 if (p[1] != 'd' || strchr(p + 2, '%'))
893 return -EINVAL;
894
895 /* Use one page as a bit array of possible slots */
896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
897 if (!inuse)
898 return -ENOMEM;
899
900 for_each_netdev(net, d) {
901 if (!sscanf(d->name, name, &i))
902 continue;
903 if (i < 0 || i >= max_netdevices)
904 continue;
905
906 /* avoid cases where sscanf is not exact inverse of printf */
907 snprintf(buf, IFNAMSIZ, name, i);
908 if (!strncmp(buf, d->name, IFNAMSIZ))
909 set_bit(i, inuse);
910 }
911
912 i = find_first_zero_bit(inuse, max_netdevices);
913 free_page((unsigned long) inuse);
914 }
915
916 if (buf != name)
917 snprintf(buf, IFNAMSIZ, name, i);
918 if (!__dev_get_by_name(net, buf))
919 return i;
920
921 /* It is possible to run out of possible slots
922 * when the name is long and there isn't enough space left
923 * for the digits, or if all bits are used.
924 */
925 return -ENFILE;
926 }
927
928 /**
929 * dev_alloc_name - allocate a name for a device
930 * @dev: device
931 * @name: name format string
932 *
933 * Passed a format string - eg "lt%d" it will try and find a suitable
934 * id. It scans list of devices to build up a free map, then chooses
935 * the first empty slot. The caller must hold the dev_base or rtnl lock
936 * while allocating the name and adding the device in order to avoid
937 * duplicates.
938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
939 * Returns the number of the unit assigned or a negative errno code.
940 */
941
942 int dev_alloc_name(struct net_device *dev, const char *name)
943 {
944 char buf[IFNAMSIZ];
945 struct net *net;
946 int ret;
947
948 BUG_ON(!dev_net(dev));
949 net = dev_net(dev);
950 ret = __dev_alloc_name(net, name, buf);
951 if (ret >= 0)
952 strlcpy(dev->name, buf, IFNAMSIZ);
953 return ret;
954 }
955 EXPORT_SYMBOL(dev_alloc_name);
956
957 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
958 {
959 struct net *net;
960
961 BUG_ON(!dev_net(dev));
962 net = dev_net(dev);
963
964 if (!dev_valid_name(name))
965 return -EINVAL;
966
967 if (fmt && strchr(name, '%'))
968 return dev_alloc_name(dev, name);
969 else if (__dev_get_by_name(net, name))
970 return -EEXIST;
971 else if (dev->name != name)
972 strlcpy(dev->name, name, IFNAMSIZ);
973
974 return 0;
975 }
976
977 /**
978 * dev_change_name - change name of a device
979 * @dev: device
980 * @newname: name (or format string) must be at least IFNAMSIZ
981 *
982 * Change name of a device, can pass format strings "eth%d".
983 * for wildcarding.
984 */
985 int dev_change_name(struct net_device *dev, const char *newname)
986 {
987 char oldname[IFNAMSIZ];
988 int err = 0;
989 int ret;
990 struct net *net;
991
992 ASSERT_RTNL();
993 BUG_ON(!dev_net(dev));
994
995 net = dev_net(dev);
996 if (dev->flags & IFF_UP)
997 return -EBUSY;
998
999 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1000 return 0;
1001
1002 memcpy(oldname, dev->name, IFNAMSIZ);
1003
1004 err = dev_get_valid_name(dev, newname, 1);
1005 if (err < 0)
1006 return err;
1007
1008 rollback:
1009 ret = device_rename(&dev->dev, dev->name);
1010 if (ret) {
1011 memcpy(dev->name, oldname, IFNAMSIZ);
1012 return ret;
1013 }
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_del(&dev->name_hlist);
1017 write_unlock_bh(&dev_base_lock);
1018
1019 synchronize_rcu();
1020
1021 write_lock_bh(&dev_base_lock);
1022 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1023 write_unlock_bh(&dev_base_lock);
1024
1025 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1026 ret = notifier_to_errno(ret);
1027
1028 if (ret) {
1029 /* err >= 0 after dev_alloc_name() or stores the first errno */
1030 if (err >= 0) {
1031 err = ret;
1032 memcpy(dev->name, oldname, IFNAMSIZ);
1033 goto rollback;
1034 } else {
1035 printk(KERN_ERR
1036 "%s: name change rollback failed: %d.\n",
1037 dev->name, ret);
1038 }
1039 }
1040
1041 return err;
1042 }
1043
1044 /**
1045 * dev_set_alias - change ifalias of a device
1046 * @dev: device
1047 * @alias: name up to IFALIASZ
1048 * @len: limit of bytes to copy from info
1049 *
1050 * Set ifalias for a device,
1051 */
1052 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1053 {
1054 ASSERT_RTNL();
1055
1056 if (len >= IFALIASZ)
1057 return -EINVAL;
1058
1059 if (!len) {
1060 if (dev->ifalias) {
1061 kfree(dev->ifalias);
1062 dev->ifalias = NULL;
1063 }
1064 return 0;
1065 }
1066
1067 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1068 if (!dev->ifalias)
1069 return -ENOMEM;
1070
1071 strlcpy(dev->ifalias, alias, len+1);
1072 return len;
1073 }
1074
1075
1076 /**
1077 * netdev_features_change - device changes features
1078 * @dev: device to cause notification
1079 *
1080 * Called to indicate a device has changed features.
1081 */
1082 void netdev_features_change(struct net_device *dev)
1083 {
1084 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1085 }
1086 EXPORT_SYMBOL(netdev_features_change);
1087
1088 /**
1089 * netdev_state_change - device changes state
1090 * @dev: device to cause notification
1091 *
1092 * Called to indicate a device has changed state. This function calls
1093 * the notifier chains for netdev_chain and sends a NEWLINK message
1094 * to the routing socket.
1095 */
1096 void netdev_state_change(struct net_device *dev)
1097 {
1098 if (dev->flags & IFF_UP) {
1099 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1100 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1101 }
1102 }
1103 EXPORT_SYMBOL(netdev_state_change);
1104
1105 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1106 {
1107 return call_netdevice_notifiers(event, dev);
1108 }
1109 EXPORT_SYMBOL(netdev_bonding_change);
1110
1111 /**
1112 * dev_load - load a network module
1113 * @net: the applicable net namespace
1114 * @name: name of interface
1115 *
1116 * If a network interface is not present and the process has suitable
1117 * privileges this function loads the module. If module loading is not
1118 * available in this kernel then it becomes a nop.
1119 */
1120
1121 void dev_load(struct net *net, const char *name)
1122 {
1123 struct net_device *dev;
1124
1125 rcu_read_lock();
1126 dev = dev_get_by_name_rcu(net, name);
1127 rcu_read_unlock();
1128
1129 if (!dev && capable(CAP_NET_ADMIN))
1130 request_module("%s", name);
1131 }
1132 EXPORT_SYMBOL(dev_load);
1133
1134 static int __dev_open(struct net_device *dev)
1135 {
1136 const struct net_device_ops *ops = dev->netdev_ops;
1137 int ret;
1138
1139 ASSERT_RTNL();
1140
1141 /*
1142 * Is it even present?
1143 */
1144 if (!netif_device_present(dev))
1145 return -ENODEV;
1146
1147 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1148 ret = notifier_to_errno(ret);
1149 if (ret)
1150 return ret;
1151
1152 /*
1153 * Call device private open method
1154 */
1155 set_bit(__LINK_STATE_START, &dev->state);
1156
1157 if (ops->ndo_validate_addr)
1158 ret = ops->ndo_validate_addr(dev);
1159
1160 if (!ret && ops->ndo_open)
1161 ret = ops->ndo_open(dev);
1162
1163 /*
1164 * If it went open OK then:
1165 */
1166
1167 if (ret)
1168 clear_bit(__LINK_STATE_START, &dev->state);
1169 else {
1170 /*
1171 * Set the flags.
1172 */
1173 dev->flags |= IFF_UP;
1174
1175 /*
1176 * Enable NET_DMA
1177 */
1178 net_dmaengine_get();
1179
1180 /*
1181 * Initialize multicasting status
1182 */
1183 dev_set_rx_mode(dev);
1184
1185 /*
1186 * Wakeup transmit queue engine
1187 */
1188 dev_activate(dev);
1189 }
1190
1191 return ret;
1192 }
1193
1194 /**
1195 * dev_open - prepare an interface for use.
1196 * @dev: device to open
1197 *
1198 * Takes a device from down to up state. The device's private open
1199 * function is invoked and then the multicast lists are loaded. Finally
1200 * the device is moved into the up state and a %NETDEV_UP message is
1201 * sent to the netdev notifier chain.
1202 *
1203 * Calling this function on an active interface is a nop. On a failure
1204 * a negative errno code is returned.
1205 */
1206 int dev_open(struct net_device *dev)
1207 {
1208 int ret;
1209
1210 /*
1211 * Is it already up?
1212 */
1213 if (dev->flags & IFF_UP)
1214 return 0;
1215
1216 /*
1217 * Open device
1218 */
1219 ret = __dev_open(dev);
1220 if (ret < 0)
1221 return ret;
1222
1223 /*
1224 * ... and announce new interface.
1225 */
1226 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1227 call_netdevice_notifiers(NETDEV_UP, dev);
1228
1229 return ret;
1230 }
1231 EXPORT_SYMBOL(dev_open);
1232
1233 static int __dev_close(struct net_device *dev)
1234 {
1235 const struct net_device_ops *ops = dev->netdev_ops;
1236
1237 ASSERT_RTNL();
1238 might_sleep();
1239
1240 /*
1241 * Tell people we are going down, so that they can
1242 * prepare to death, when device is still operating.
1243 */
1244 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1245
1246 clear_bit(__LINK_STATE_START, &dev->state);
1247
1248 /* Synchronize to scheduled poll. We cannot touch poll list,
1249 * it can be even on different cpu. So just clear netif_running().
1250 *
1251 * dev->stop() will invoke napi_disable() on all of it's
1252 * napi_struct instances on this device.
1253 */
1254 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1255
1256 dev_deactivate(dev);
1257
1258 /*
1259 * Call the device specific close. This cannot fail.
1260 * Only if device is UP
1261 *
1262 * We allow it to be called even after a DETACH hot-plug
1263 * event.
1264 */
1265 if (ops->ndo_stop)
1266 ops->ndo_stop(dev);
1267
1268 /*
1269 * Device is now down.
1270 */
1271
1272 dev->flags &= ~IFF_UP;
1273
1274 /*
1275 * Shutdown NET_DMA
1276 */
1277 net_dmaengine_put();
1278
1279 return 0;
1280 }
1281
1282 /**
1283 * dev_close - shutdown an interface.
1284 * @dev: device to shutdown
1285 *
1286 * This function moves an active device into down state. A
1287 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1288 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1289 * chain.
1290 */
1291 int dev_close(struct net_device *dev)
1292 {
1293 if (!(dev->flags & IFF_UP))
1294 return 0;
1295
1296 __dev_close(dev);
1297
1298 /*
1299 * Tell people we are down
1300 */
1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1302 call_netdevice_notifiers(NETDEV_DOWN, dev);
1303
1304 return 0;
1305 }
1306 EXPORT_SYMBOL(dev_close);
1307
1308
1309 /**
1310 * dev_disable_lro - disable Large Receive Offload on a device
1311 * @dev: device
1312 *
1313 * Disable Large Receive Offload (LRO) on a net device. Must be
1314 * called under RTNL. This is needed if received packets may be
1315 * forwarded to another interface.
1316 */
1317 void dev_disable_lro(struct net_device *dev)
1318 {
1319 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1320 dev->ethtool_ops->set_flags) {
1321 u32 flags = dev->ethtool_ops->get_flags(dev);
1322 if (flags & ETH_FLAG_LRO) {
1323 flags &= ~ETH_FLAG_LRO;
1324 dev->ethtool_ops->set_flags(dev, flags);
1325 }
1326 }
1327 WARN_ON(dev->features & NETIF_F_LRO);
1328 }
1329 EXPORT_SYMBOL(dev_disable_lro);
1330
1331
1332 static int dev_boot_phase = 1;
1333
1334 /*
1335 * Device change register/unregister. These are not inline or static
1336 * as we export them to the world.
1337 */
1338
1339 /**
1340 * register_netdevice_notifier - register a network notifier block
1341 * @nb: notifier
1342 *
1343 * Register a notifier to be called when network device events occur.
1344 * The notifier passed is linked into the kernel structures and must
1345 * not be reused until it has been unregistered. A negative errno code
1346 * is returned on a failure.
1347 *
1348 * When registered all registration and up events are replayed
1349 * to the new notifier to allow device to have a race free
1350 * view of the network device list.
1351 */
1352
1353 int register_netdevice_notifier(struct notifier_block *nb)
1354 {
1355 struct net_device *dev;
1356 struct net_device *last;
1357 struct net *net;
1358 int err;
1359
1360 rtnl_lock();
1361 err = raw_notifier_chain_register(&netdev_chain, nb);
1362 if (err)
1363 goto unlock;
1364 if (dev_boot_phase)
1365 goto unlock;
1366 for_each_net(net) {
1367 for_each_netdev(net, dev) {
1368 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1369 err = notifier_to_errno(err);
1370 if (err)
1371 goto rollback;
1372
1373 if (!(dev->flags & IFF_UP))
1374 continue;
1375
1376 nb->notifier_call(nb, NETDEV_UP, dev);
1377 }
1378 }
1379
1380 unlock:
1381 rtnl_unlock();
1382 return err;
1383
1384 rollback:
1385 last = dev;
1386 for_each_net(net) {
1387 for_each_netdev(net, dev) {
1388 if (dev == last)
1389 break;
1390
1391 if (dev->flags & IFF_UP) {
1392 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1393 nb->notifier_call(nb, NETDEV_DOWN, dev);
1394 }
1395 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1396 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1397 }
1398 }
1399
1400 raw_notifier_chain_unregister(&netdev_chain, nb);
1401 goto unlock;
1402 }
1403 EXPORT_SYMBOL(register_netdevice_notifier);
1404
1405 /**
1406 * unregister_netdevice_notifier - unregister a network notifier block
1407 * @nb: notifier
1408 *
1409 * Unregister a notifier previously registered by
1410 * register_netdevice_notifier(). The notifier is unlinked into the
1411 * kernel structures and may then be reused. A negative errno code
1412 * is returned on a failure.
1413 */
1414
1415 int unregister_netdevice_notifier(struct notifier_block *nb)
1416 {
1417 int err;
1418
1419 rtnl_lock();
1420 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1421 rtnl_unlock();
1422 return err;
1423 }
1424 EXPORT_SYMBOL(unregister_netdevice_notifier);
1425
1426 /**
1427 * call_netdevice_notifiers - call all network notifier blocks
1428 * @val: value passed unmodified to notifier function
1429 * @dev: net_device pointer passed unmodified to notifier function
1430 *
1431 * Call all network notifier blocks. Parameters and return value
1432 * are as for raw_notifier_call_chain().
1433 */
1434
1435 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1436 {
1437 ASSERT_RTNL();
1438 return raw_notifier_call_chain(&netdev_chain, val, dev);
1439 }
1440
1441 /* When > 0 there are consumers of rx skb time stamps */
1442 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1443
1444 void net_enable_timestamp(void)
1445 {
1446 atomic_inc(&netstamp_needed);
1447 }
1448 EXPORT_SYMBOL(net_enable_timestamp);
1449
1450 void net_disable_timestamp(void)
1451 {
1452 atomic_dec(&netstamp_needed);
1453 }
1454 EXPORT_SYMBOL(net_disable_timestamp);
1455
1456 static inline void net_timestamp_set(struct sk_buff *skb)
1457 {
1458 if (atomic_read(&netstamp_needed))
1459 __net_timestamp(skb);
1460 else
1461 skb->tstamp.tv64 = 0;
1462 }
1463
1464 static inline void net_timestamp_check(struct sk_buff *skb)
1465 {
1466 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1467 __net_timestamp(skb);
1468 }
1469
1470 /**
1471 * dev_forward_skb - loopback an skb to another netif
1472 *
1473 * @dev: destination network device
1474 * @skb: buffer to forward
1475 *
1476 * return values:
1477 * NET_RX_SUCCESS (no congestion)
1478 * NET_RX_DROP (packet was dropped, but freed)
1479 *
1480 * dev_forward_skb can be used for injecting an skb from the
1481 * start_xmit function of one device into the receive queue
1482 * of another device.
1483 *
1484 * The receiving device may be in another namespace, so
1485 * we have to clear all information in the skb that could
1486 * impact namespace isolation.
1487 */
1488 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1489 {
1490 skb_orphan(skb);
1491
1492 if (!(dev->flags & IFF_UP) ||
1493 (skb->len > (dev->mtu + dev->hard_header_len))) {
1494 kfree_skb(skb);
1495 return NET_RX_DROP;
1496 }
1497 skb_set_dev(skb, dev);
1498 skb->tstamp.tv64 = 0;
1499 skb->pkt_type = PACKET_HOST;
1500 skb->protocol = eth_type_trans(skb, dev);
1501 return netif_rx(skb);
1502 }
1503 EXPORT_SYMBOL_GPL(dev_forward_skb);
1504
1505 /*
1506 * Support routine. Sends outgoing frames to any network
1507 * taps currently in use.
1508 */
1509
1510 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1511 {
1512 struct packet_type *ptype;
1513
1514 #ifdef CONFIG_NET_CLS_ACT
1515 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1516 net_timestamp_set(skb);
1517 #else
1518 net_timestamp_set(skb);
1519 #endif
1520
1521 rcu_read_lock();
1522 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1523 /* Never send packets back to the socket
1524 * they originated from - MvS (miquels@drinkel.ow.org)
1525 */
1526 if ((ptype->dev == dev || !ptype->dev) &&
1527 (ptype->af_packet_priv == NULL ||
1528 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1529 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1530 if (!skb2)
1531 break;
1532
1533 /* skb->nh should be correctly
1534 set by sender, so that the second statement is
1535 just protection against buggy protocols.
1536 */
1537 skb_reset_mac_header(skb2);
1538
1539 if (skb_network_header(skb2) < skb2->data ||
1540 skb2->network_header > skb2->tail) {
1541 if (net_ratelimit())
1542 printk(KERN_CRIT "protocol %04x is "
1543 "buggy, dev %s\n",
1544 skb2->protocol, dev->name);
1545 skb_reset_network_header(skb2);
1546 }
1547
1548 skb2->transport_header = skb2->network_header;
1549 skb2->pkt_type = PACKET_OUTGOING;
1550 ptype->func(skb2, skb->dev, ptype, skb->dev);
1551 }
1552 }
1553 rcu_read_unlock();
1554 }
1555
1556
1557 static inline void __netif_reschedule(struct Qdisc *q)
1558 {
1559 struct softnet_data *sd;
1560 unsigned long flags;
1561
1562 local_irq_save(flags);
1563 sd = &__get_cpu_var(softnet_data);
1564 q->next_sched = NULL;
1565 *sd->output_queue_tailp = q;
1566 sd->output_queue_tailp = &q->next_sched;
1567 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1568 local_irq_restore(flags);
1569 }
1570
1571 void __netif_schedule(struct Qdisc *q)
1572 {
1573 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1574 __netif_reschedule(q);
1575 }
1576 EXPORT_SYMBOL(__netif_schedule);
1577
1578 void dev_kfree_skb_irq(struct sk_buff *skb)
1579 {
1580 if (atomic_dec_and_test(&skb->users)) {
1581 struct softnet_data *sd;
1582 unsigned long flags;
1583
1584 local_irq_save(flags);
1585 sd = &__get_cpu_var(softnet_data);
1586 skb->next = sd->completion_queue;
1587 sd->completion_queue = skb;
1588 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1589 local_irq_restore(flags);
1590 }
1591 }
1592 EXPORT_SYMBOL(dev_kfree_skb_irq);
1593
1594 void dev_kfree_skb_any(struct sk_buff *skb)
1595 {
1596 if (in_irq() || irqs_disabled())
1597 dev_kfree_skb_irq(skb);
1598 else
1599 dev_kfree_skb(skb);
1600 }
1601 EXPORT_SYMBOL(dev_kfree_skb_any);
1602
1603
1604 /**
1605 * netif_device_detach - mark device as removed
1606 * @dev: network device
1607 *
1608 * Mark device as removed from system and therefore no longer available.
1609 */
1610 void netif_device_detach(struct net_device *dev)
1611 {
1612 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1613 netif_running(dev)) {
1614 netif_tx_stop_all_queues(dev);
1615 }
1616 }
1617 EXPORT_SYMBOL(netif_device_detach);
1618
1619 /**
1620 * netif_device_attach - mark device as attached
1621 * @dev: network device
1622 *
1623 * Mark device as attached from system and restart if needed.
1624 */
1625 void netif_device_attach(struct net_device *dev)
1626 {
1627 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1628 netif_running(dev)) {
1629 netif_tx_wake_all_queues(dev);
1630 __netdev_watchdog_up(dev);
1631 }
1632 }
1633 EXPORT_SYMBOL(netif_device_attach);
1634
1635 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1636 {
1637 return ((features & NETIF_F_GEN_CSUM) ||
1638 ((features & NETIF_F_IP_CSUM) &&
1639 protocol == htons(ETH_P_IP)) ||
1640 ((features & NETIF_F_IPV6_CSUM) &&
1641 protocol == htons(ETH_P_IPV6)) ||
1642 ((features & NETIF_F_FCOE_CRC) &&
1643 protocol == htons(ETH_P_FCOE)));
1644 }
1645
1646 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1647 {
1648 if (can_checksum_protocol(dev->features, skb->protocol))
1649 return true;
1650
1651 if (skb->protocol == htons(ETH_P_8021Q)) {
1652 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1653 if (can_checksum_protocol(dev->features & dev->vlan_features,
1654 veh->h_vlan_encapsulated_proto))
1655 return true;
1656 }
1657
1658 return false;
1659 }
1660
1661 /**
1662 * skb_dev_set -- assign a new device to a buffer
1663 * @skb: buffer for the new device
1664 * @dev: network device
1665 *
1666 * If an skb is owned by a device already, we have to reset
1667 * all data private to the namespace a device belongs to
1668 * before assigning it a new device.
1669 */
1670 #ifdef CONFIG_NET_NS
1671 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1672 {
1673 skb_dst_drop(skb);
1674 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1675 secpath_reset(skb);
1676 nf_reset(skb);
1677 skb_init_secmark(skb);
1678 skb->mark = 0;
1679 skb->priority = 0;
1680 skb->nf_trace = 0;
1681 skb->ipvs_property = 0;
1682 #ifdef CONFIG_NET_SCHED
1683 skb->tc_index = 0;
1684 #endif
1685 }
1686 skb->dev = dev;
1687 }
1688 EXPORT_SYMBOL(skb_set_dev);
1689 #endif /* CONFIG_NET_NS */
1690
1691 /*
1692 * Invalidate hardware checksum when packet is to be mangled, and
1693 * complete checksum manually on outgoing path.
1694 */
1695 int skb_checksum_help(struct sk_buff *skb)
1696 {
1697 __wsum csum;
1698 int ret = 0, offset;
1699
1700 if (skb->ip_summed == CHECKSUM_COMPLETE)
1701 goto out_set_summed;
1702
1703 if (unlikely(skb_shinfo(skb)->gso_size)) {
1704 /* Let GSO fix up the checksum. */
1705 goto out_set_summed;
1706 }
1707
1708 offset = skb->csum_start - skb_headroom(skb);
1709 BUG_ON(offset >= skb_headlen(skb));
1710 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1711
1712 offset += skb->csum_offset;
1713 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1714
1715 if (skb_cloned(skb) &&
1716 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1717 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1718 if (ret)
1719 goto out;
1720 }
1721
1722 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1723 out_set_summed:
1724 skb->ip_summed = CHECKSUM_NONE;
1725 out:
1726 return ret;
1727 }
1728 EXPORT_SYMBOL(skb_checksum_help);
1729
1730 /**
1731 * skb_gso_segment - Perform segmentation on skb.
1732 * @skb: buffer to segment
1733 * @features: features for the output path (see dev->features)
1734 *
1735 * This function segments the given skb and returns a list of segments.
1736 *
1737 * It may return NULL if the skb requires no segmentation. This is
1738 * only possible when GSO is used for verifying header integrity.
1739 */
1740 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1741 {
1742 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1743 struct packet_type *ptype;
1744 __be16 type = skb->protocol;
1745 int err;
1746
1747 skb_reset_mac_header(skb);
1748 skb->mac_len = skb->network_header - skb->mac_header;
1749 __skb_pull(skb, skb->mac_len);
1750
1751 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1752 struct net_device *dev = skb->dev;
1753 struct ethtool_drvinfo info = {};
1754
1755 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1756 dev->ethtool_ops->get_drvinfo(dev, &info);
1757
1758 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1759 "ip_summed=%d",
1760 info.driver, dev ? dev->features : 0L,
1761 skb->sk ? skb->sk->sk_route_caps : 0L,
1762 skb->len, skb->data_len, skb->ip_summed);
1763
1764 if (skb_header_cloned(skb) &&
1765 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1766 return ERR_PTR(err);
1767 }
1768
1769 rcu_read_lock();
1770 list_for_each_entry_rcu(ptype,
1771 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1772 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1773 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1774 err = ptype->gso_send_check(skb);
1775 segs = ERR_PTR(err);
1776 if (err || skb_gso_ok(skb, features))
1777 break;
1778 __skb_push(skb, (skb->data -
1779 skb_network_header(skb)));
1780 }
1781 segs = ptype->gso_segment(skb, features);
1782 break;
1783 }
1784 }
1785 rcu_read_unlock();
1786
1787 __skb_push(skb, skb->data - skb_mac_header(skb));
1788
1789 return segs;
1790 }
1791 EXPORT_SYMBOL(skb_gso_segment);
1792
1793 /* Take action when hardware reception checksum errors are detected. */
1794 #ifdef CONFIG_BUG
1795 void netdev_rx_csum_fault(struct net_device *dev)
1796 {
1797 if (net_ratelimit()) {
1798 printk(KERN_ERR "%s: hw csum failure.\n",
1799 dev ? dev->name : "<unknown>");
1800 dump_stack();
1801 }
1802 }
1803 EXPORT_SYMBOL(netdev_rx_csum_fault);
1804 #endif
1805
1806 /* Actually, we should eliminate this check as soon as we know, that:
1807 * 1. IOMMU is present and allows to map all the memory.
1808 * 2. No high memory really exists on this machine.
1809 */
1810
1811 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1812 {
1813 #ifdef CONFIG_HIGHMEM
1814 int i;
1815 if (!(dev->features & NETIF_F_HIGHDMA)) {
1816 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1817 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1818 return 1;
1819 }
1820
1821 if (PCI_DMA_BUS_IS_PHYS) {
1822 struct device *pdev = dev->dev.parent;
1823
1824 if (!pdev)
1825 return 0;
1826 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1827 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1828 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1829 return 1;
1830 }
1831 }
1832 #endif
1833 return 0;
1834 }
1835
1836 struct dev_gso_cb {
1837 void (*destructor)(struct sk_buff *skb);
1838 };
1839
1840 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1841
1842 static void dev_gso_skb_destructor(struct sk_buff *skb)
1843 {
1844 struct dev_gso_cb *cb;
1845
1846 do {
1847 struct sk_buff *nskb = skb->next;
1848
1849 skb->next = nskb->next;
1850 nskb->next = NULL;
1851 kfree_skb(nskb);
1852 } while (skb->next);
1853
1854 cb = DEV_GSO_CB(skb);
1855 if (cb->destructor)
1856 cb->destructor(skb);
1857 }
1858
1859 /**
1860 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1861 * @skb: buffer to segment
1862 *
1863 * This function segments the given skb and stores the list of segments
1864 * in skb->next.
1865 */
1866 static int dev_gso_segment(struct sk_buff *skb)
1867 {
1868 struct net_device *dev = skb->dev;
1869 struct sk_buff *segs;
1870 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1871 NETIF_F_SG : 0);
1872
1873 segs = skb_gso_segment(skb, features);
1874
1875 /* Verifying header integrity only. */
1876 if (!segs)
1877 return 0;
1878
1879 if (IS_ERR(segs))
1880 return PTR_ERR(segs);
1881
1882 skb->next = segs;
1883 DEV_GSO_CB(skb)->destructor = skb->destructor;
1884 skb->destructor = dev_gso_skb_destructor;
1885
1886 return 0;
1887 }
1888
1889 /*
1890 * Try to orphan skb early, right before transmission by the device.
1891 * We cannot orphan skb if tx timestamp is requested, since
1892 * drivers need to call skb_tstamp_tx() to send the timestamp.
1893 */
1894 static inline void skb_orphan_try(struct sk_buff *skb)
1895 {
1896 if (!skb_tx(skb)->flags)
1897 skb_orphan(skb);
1898 }
1899
1900 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1901 struct netdev_queue *txq)
1902 {
1903 const struct net_device_ops *ops = dev->netdev_ops;
1904 int rc = NETDEV_TX_OK;
1905
1906 if (likely(!skb->next)) {
1907 if (!list_empty(&ptype_all))
1908 dev_queue_xmit_nit(skb, dev);
1909
1910 /*
1911 * If device doesnt need skb->dst, release it right now while
1912 * its hot in this cpu cache
1913 */
1914 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1915 skb_dst_drop(skb);
1916
1917 skb_orphan_try(skb);
1918
1919 if (netif_needs_gso(dev, skb)) {
1920 if (unlikely(dev_gso_segment(skb)))
1921 goto out_kfree_skb;
1922 if (skb->next)
1923 goto gso;
1924 }
1925
1926 rc = ops->ndo_start_xmit(skb, dev);
1927 if (rc == NETDEV_TX_OK)
1928 txq_trans_update(txq);
1929 return rc;
1930 }
1931
1932 gso:
1933 do {
1934 struct sk_buff *nskb = skb->next;
1935
1936 skb->next = nskb->next;
1937 nskb->next = NULL;
1938
1939 /*
1940 * If device doesnt need nskb->dst, release it right now while
1941 * its hot in this cpu cache
1942 */
1943 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1944 skb_dst_drop(nskb);
1945
1946 rc = ops->ndo_start_xmit(nskb, dev);
1947 if (unlikely(rc != NETDEV_TX_OK)) {
1948 if (rc & ~NETDEV_TX_MASK)
1949 goto out_kfree_gso_skb;
1950 nskb->next = skb->next;
1951 skb->next = nskb;
1952 return rc;
1953 }
1954 txq_trans_update(txq);
1955 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1956 return NETDEV_TX_BUSY;
1957 } while (skb->next);
1958
1959 out_kfree_gso_skb:
1960 if (likely(skb->next == NULL))
1961 skb->destructor = DEV_GSO_CB(skb)->destructor;
1962 out_kfree_skb:
1963 kfree_skb(skb);
1964 return rc;
1965 }
1966
1967 static u32 hashrnd __read_mostly;
1968
1969 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1970 {
1971 u32 hash;
1972
1973 if (skb_rx_queue_recorded(skb)) {
1974 hash = skb_get_rx_queue(skb);
1975 while (unlikely(hash >= dev->real_num_tx_queues))
1976 hash -= dev->real_num_tx_queues;
1977 return hash;
1978 }
1979
1980 if (skb->sk && skb->sk->sk_hash)
1981 hash = skb->sk->sk_hash;
1982 else
1983 hash = (__force u16) skb->protocol;
1984
1985 hash = jhash_1word(hash, hashrnd);
1986
1987 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1988 }
1989 EXPORT_SYMBOL(skb_tx_hash);
1990
1991 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1992 {
1993 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1994 if (net_ratelimit()) {
1995 pr_warning("%s selects TX queue %d, but "
1996 "real number of TX queues is %d\n",
1997 dev->name, queue_index, dev->real_num_tx_queues);
1998 }
1999 return 0;
2000 }
2001 return queue_index;
2002 }
2003
2004 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2005 struct sk_buff *skb)
2006 {
2007 u16 queue_index;
2008 struct sock *sk = skb->sk;
2009
2010 if (sk_tx_queue_recorded(sk)) {
2011 queue_index = sk_tx_queue_get(sk);
2012 } else {
2013 const struct net_device_ops *ops = dev->netdev_ops;
2014
2015 if (ops->ndo_select_queue) {
2016 queue_index = ops->ndo_select_queue(dev, skb);
2017 queue_index = dev_cap_txqueue(dev, queue_index);
2018 } else {
2019 queue_index = 0;
2020 if (dev->real_num_tx_queues > 1)
2021 queue_index = skb_tx_hash(dev, skb);
2022
2023 if (sk) {
2024 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2025
2026 if (dst && skb_dst(skb) == dst)
2027 sk_tx_queue_set(sk, queue_index);
2028 }
2029 }
2030 }
2031
2032 skb_set_queue_mapping(skb, queue_index);
2033 return netdev_get_tx_queue(dev, queue_index);
2034 }
2035
2036 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2037 struct net_device *dev,
2038 struct netdev_queue *txq)
2039 {
2040 spinlock_t *root_lock = qdisc_lock(q);
2041 int rc;
2042
2043 spin_lock(root_lock);
2044 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2045 kfree_skb(skb);
2046 rc = NET_XMIT_DROP;
2047 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2048 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2049 /*
2050 * This is a work-conserving queue; there are no old skbs
2051 * waiting to be sent out; and the qdisc is not running -
2052 * xmit the skb directly.
2053 */
2054 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2055 skb_dst_force(skb);
2056 __qdisc_update_bstats(q, skb->len);
2057 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2058 __qdisc_run(q);
2059 else
2060 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2061
2062 rc = NET_XMIT_SUCCESS;
2063 } else {
2064 skb_dst_force(skb);
2065 rc = qdisc_enqueue_root(skb, q);
2066 qdisc_run(q);
2067 }
2068 spin_unlock(root_lock);
2069
2070 return rc;
2071 }
2072
2073 /*
2074 * Returns true if either:
2075 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2076 * 2. skb is fragmented and the device does not support SG, or if
2077 * at least one of fragments is in highmem and device does not
2078 * support DMA from it.
2079 */
2080 static inline int skb_needs_linearize(struct sk_buff *skb,
2081 struct net_device *dev)
2082 {
2083 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2084 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2085 illegal_highdma(dev, skb)));
2086 }
2087
2088 /**
2089 * dev_queue_xmit - transmit a buffer
2090 * @skb: buffer to transmit
2091 *
2092 * Queue a buffer for transmission to a network device. The caller must
2093 * have set the device and priority and built the buffer before calling
2094 * this function. The function can be called from an interrupt.
2095 *
2096 * A negative errno code is returned on a failure. A success does not
2097 * guarantee the frame will be transmitted as it may be dropped due
2098 * to congestion or traffic shaping.
2099 *
2100 * -----------------------------------------------------------------------------------
2101 * I notice this method can also return errors from the queue disciplines,
2102 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2103 * be positive.
2104 *
2105 * Regardless of the return value, the skb is consumed, so it is currently
2106 * difficult to retry a send to this method. (You can bump the ref count
2107 * before sending to hold a reference for retry if you are careful.)
2108 *
2109 * When calling this method, interrupts MUST be enabled. This is because
2110 * the BH enable code must have IRQs enabled so that it will not deadlock.
2111 * --BLG
2112 */
2113 int dev_queue_xmit(struct sk_buff *skb)
2114 {
2115 struct net_device *dev = skb->dev;
2116 struct netdev_queue *txq;
2117 struct Qdisc *q;
2118 int rc = -ENOMEM;
2119
2120 /* GSO will handle the following emulations directly. */
2121 if (netif_needs_gso(dev, skb))
2122 goto gso;
2123
2124 /* Convert a paged skb to linear, if required */
2125 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2126 goto out_kfree_skb;
2127
2128 /* If packet is not checksummed and device does not support
2129 * checksumming for this protocol, complete checksumming here.
2130 */
2131 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2132 skb_set_transport_header(skb, skb->csum_start -
2133 skb_headroom(skb));
2134 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2135 goto out_kfree_skb;
2136 }
2137
2138 gso:
2139 /* Disable soft irqs for various locks below. Also
2140 * stops preemption for RCU.
2141 */
2142 rcu_read_lock_bh();
2143
2144 txq = dev_pick_tx(dev, skb);
2145 q = rcu_dereference_bh(txq->qdisc);
2146
2147 #ifdef CONFIG_NET_CLS_ACT
2148 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2149 #endif
2150 if (q->enqueue) {
2151 rc = __dev_xmit_skb(skb, q, dev, txq);
2152 goto out;
2153 }
2154
2155 /* The device has no queue. Common case for software devices:
2156 loopback, all the sorts of tunnels...
2157
2158 Really, it is unlikely that netif_tx_lock protection is necessary
2159 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2160 counters.)
2161 However, it is possible, that they rely on protection
2162 made by us here.
2163
2164 Check this and shot the lock. It is not prone from deadlocks.
2165 Either shot noqueue qdisc, it is even simpler 8)
2166 */
2167 if (dev->flags & IFF_UP) {
2168 int cpu = smp_processor_id(); /* ok because BHs are off */
2169
2170 if (txq->xmit_lock_owner != cpu) {
2171
2172 HARD_TX_LOCK(dev, txq, cpu);
2173
2174 if (!netif_tx_queue_stopped(txq)) {
2175 rc = dev_hard_start_xmit(skb, dev, txq);
2176 if (dev_xmit_complete(rc)) {
2177 HARD_TX_UNLOCK(dev, txq);
2178 goto out;
2179 }
2180 }
2181 HARD_TX_UNLOCK(dev, txq);
2182 if (net_ratelimit())
2183 printk(KERN_CRIT "Virtual device %s asks to "
2184 "queue packet!\n", dev->name);
2185 } else {
2186 /* Recursion is detected! It is possible,
2187 * unfortunately */
2188 if (net_ratelimit())
2189 printk(KERN_CRIT "Dead loop on virtual device "
2190 "%s, fix it urgently!\n", dev->name);
2191 }
2192 }
2193
2194 rc = -ENETDOWN;
2195 rcu_read_unlock_bh();
2196
2197 out_kfree_skb:
2198 kfree_skb(skb);
2199 return rc;
2200 out:
2201 rcu_read_unlock_bh();
2202 return rc;
2203 }
2204 EXPORT_SYMBOL(dev_queue_xmit);
2205
2206
2207 /*=======================================================================
2208 Receiver routines
2209 =======================================================================*/
2210
2211 int netdev_max_backlog __read_mostly = 1000;
2212 int netdev_tstamp_prequeue __read_mostly = 1;
2213 int netdev_budget __read_mostly = 300;
2214 int weight_p __read_mostly = 64; /* old backlog weight */
2215
2216 /* Called with irq disabled */
2217 static inline void ____napi_schedule(struct softnet_data *sd,
2218 struct napi_struct *napi)
2219 {
2220 list_add_tail(&napi->poll_list, &sd->poll_list);
2221 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2222 }
2223
2224 #ifdef CONFIG_RPS
2225
2226 /* One global table that all flow-based protocols share. */
2227 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2228 EXPORT_SYMBOL(rps_sock_flow_table);
2229
2230 /*
2231 * get_rps_cpu is called from netif_receive_skb and returns the target
2232 * CPU from the RPS map of the receiving queue for a given skb.
2233 * rcu_read_lock must be held on entry.
2234 */
2235 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2236 struct rps_dev_flow **rflowp)
2237 {
2238 struct ipv6hdr *ip6;
2239 struct iphdr *ip;
2240 struct netdev_rx_queue *rxqueue;
2241 struct rps_map *map;
2242 struct rps_dev_flow_table *flow_table;
2243 struct rps_sock_flow_table *sock_flow_table;
2244 int cpu = -1;
2245 u8 ip_proto;
2246 u16 tcpu;
2247 u32 addr1, addr2, ihl;
2248 union {
2249 u32 v32;
2250 u16 v16[2];
2251 } ports;
2252
2253 if (skb_rx_queue_recorded(skb)) {
2254 u16 index = skb_get_rx_queue(skb);
2255 if (unlikely(index >= dev->num_rx_queues)) {
2256 if (net_ratelimit()) {
2257 pr_warning("%s received packet on queue "
2258 "%u, but number of RX queues is %u\n",
2259 dev->name, index, dev->num_rx_queues);
2260 }
2261 goto done;
2262 }
2263 rxqueue = dev->_rx + index;
2264 } else
2265 rxqueue = dev->_rx;
2266
2267 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2268 goto done;
2269
2270 if (skb->rxhash)
2271 goto got_hash; /* Skip hash computation on packet header */
2272
2273 switch (skb->protocol) {
2274 case __constant_htons(ETH_P_IP):
2275 if (!pskb_may_pull(skb, sizeof(*ip)))
2276 goto done;
2277
2278 ip = (struct iphdr *) skb->data;
2279 ip_proto = ip->protocol;
2280 addr1 = (__force u32) ip->saddr;
2281 addr2 = (__force u32) ip->daddr;
2282 ihl = ip->ihl;
2283 break;
2284 case __constant_htons(ETH_P_IPV6):
2285 if (!pskb_may_pull(skb, sizeof(*ip6)))
2286 goto done;
2287
2288 ip6 = (struct ipv6hdr *) skb->data;
2289 ip_proto = ip6->nexthdr;
2290 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2291 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2292 ihl = (40 >> 2);
2293 break;
2294 default:
2295 goto done;
2296 }
2297 switch (ip_proto) {
2298 case IPPROTO_TCP:
2299 case IPPROTO_UDP:
2300 case IPPROTO_DCCP:
2301 case IPPROTO_ESP:
2302 case IPPROTO_AH:
2303 case IPPROTO_SCTP:
2304 case IPPROTO_UDPLITE:
2305 if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2306 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4));
2307 if (ports.v16[1] < ports.v16[0])
2308 swap(ports.v16[0], ports.v16[1]);
2309 break;
2310 }
2311 default:
2312 ports.v32 = 0;
2313 break;
2314 }
2315
2316 /* get a consistent hash (same value on both flow directions) */
2317 if (addr2 < addr1)
2318 swap(addr1, addr2);
2319 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2320 if (!skb->rxhash)
2321 skb->rxhash = 1;
2322
2323 got_hash:
2324 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2325 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2326 if (flow_table && sock_flow_table) {
2327 u16 next_cpu;
2328 struct rps_dev_flow *rflow;
2329
2330 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2331 tcpu = rflow->cpu;
2332
2333 next_cpu = sock_flow_table->ents[skb->rxhash &
2334 sock_flow_table->mask];
2335
2336 /*
2337 * If the desired CPU (where last recvmsg was done) is
2338 * different from current CPU (one in the rx-queue flow
2339 * table entry), switch if one of the following holds:
2340 * - Current CPU is unset (equal to RPS_NO_CPU).
2341 * - Current CPU is offline.
2342 * - The current CPU's queue tail has advanced beyond the
2343 * last packet that was enqueued using this table entry.
2344 * This guarantees that all previous packets for the flow
2345 * have been dequeued, thus preserving in order delivery.
2346 */
2347 if (unlikely(tcpu != next_cpu) &&
2348 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2349 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2350 rflow->last_qtail)) >= 0)) {
2351 tcpu = rflow->cpu = next_cpu;
2352 if (tcpu != RPS_NO_CPU)
2353 rflow->last_qtail = per_cpu(softnet_data,
2354 tcpu).input_queue_head;
2355 }
2356 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2357 *rflowp = rflow;
2358 cpu = tcpu;
2359 goto done;
2360 }
2361 }
2362
2363 map = rcu_dereference(rxqueue->rps_map);
2364 if (map) {
2365 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2366
2367 if (cpu_online(tcpu)) {
2368 cpu = tcpu;
2369 goto done;
2370 }
2371 }
2372
2373 done:
2374 return cpu;
2375 }
2376
2377 /* Called from hardirq (IPI) context */
2378 static void rps_trigger_softirq(void *data)
2379 {
2380 struct softnet_data *sd = data;
2381
2382 ____napi_schedule(sd, &sd->backlog);
2383 sd->received_rps++;
2384 }
2385
2386 #endif /* CONFIG_RPS */
2387
2388 /*
2389 * Check if this softnet_data structure is another cpu one
2390 * If yes, queue it to our IPI list and return 1
2391 * If no, return 0
2392 */
2393 static int rps_ipi_queued(struct softnet_data *sd)
2394 {
2395 #ifdef CONFIG_RPS
2396 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2397
2398 if (sd != mysd) {
2399 sd->rps_ipi_next = mysd->rps_ipi_list;
2400 mysd->rps_ipi_list = sd;
2401
2402 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2403 return 1;
2404 }
2405 #endif /* CONFIG_RPS */
2406 return 0;
2407 }
2408
2409 /*
2410 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2411 * queue (may be a remote CPU queue).
2412 */
2413 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2414 unsigned int *qtail)
2415 {
2416 struct softnet_data *sd;
2417 unsigned long flags;
2418
2419 sd = &per_cpu(softnet_data, cpu);
2420
2421 local_irq_save(flags);
2422
2423 rps_lock(sd);
2424 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2425 if (skb_queue_len(&sd->input_pkt_queue)) {
2426 enqueue:
2427 __skb_queue_tail(&sd->input_pkt_queue, skb);
2428 input_queue_tail_incr_save(sd, qtail);
2429 rps_unlock(sd);
2430 local_irq_restore(flags);
2431 return NET_RX_SUCCESS;
2432 }
2433
2434 /* Schedule NAPI for backlog device
2435 * We can use non atomic operation since we own the queue lock
2436 */
2437 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2438 if (!rps_ipi_queued(sd))
2439 ____napi_schedule(sd, &sd->backlog);
2440 }
2441 goto enqueue;
2442 }
2443
2444 sd->dropped++;
2445 rps_unlock(sd);
2446
2447 local_irq_restore(flags);
2448
2449 kfree_skb(skb);
2450 return NET_RX_DROP;
2451 }
2452
2453 /**
2454 * netif_rx - post buffer to the network code
2455 * @skb: buffer to post
2456 *
2457 * This function receives a packet from a device driver and queues it for
2458 * the upper (protocol) levels to process. It always succeeds. The buffer
2459 * may be dropped during processing for congestion control or by the
2460 * protocol layers.
2461 *
2462 * return values:
2463 * NET_RX_SUCCESS (no congestion)
2464 * NET_RX_DROP (packet was dropped)
2465 *
2466 */
2467
2468 int netif_rx(struct sk_buff *skb)
2469 {
2470 int ret;
2471
2472 /* if netpoll wants it, pretend we never saw it */
2473 if (netpoll_rx(skb))
2474 return NET_RX_DROP;
2475
2476 if (netdev_tstamp_prequeue)
2477 net_timestamp_check(skb);
2478
2479 #ifdef CONFIG_RPS
2480 {
2481 struct rps_dev_flow voidflow, *rflow = &voidflow;
2482 int cpu;
2483
2484 rcu_read_lock();
2485
2486 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2487 if (cpu < 0)
2488 cpu = smp_processor_id();
2489
2490 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2491
2492 rcu_read_unlock();
2493 }
2494 #else
2495 {
2496 unsigned int qtail;
2497 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2498 put_cpu();
2499 }
2500 #endif
2501 return ret;
2502 }
2503 EXPORT_SYMBOL(netif_rx);
2504
2505 int netif_rx_ni(struct sk_buff *skb)
2506 {
2507 int err;
2508
2509 preempt_disable();
2510 err = netif_rx(skb);
2511 if (local_softirq_pending())
2512 do_softirq();
2513 preempt_enable();
2514
2515 return err;
2516 }
2517 EXPORT_SYMBOL(netif_rx_ni);
2518
2519 static void net_tx_action(struct softirq_action *h)
2520 {
2521 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2522
2523 if (sd->completion_queue) {
2524 struct sk_buff *clist;
2525
2526 local_irq_disable();
2527 clist = sd->completion_queue;
2528 sd->completion_queue = NULL;
2529 local_irq_enable();
2530
2531 while (clist) {
2532 struct sk_buff *skb = clist;
2533 clist = clist->next;
2534
2535 WARN_ON(atomic_read(&skb->users));
2536 __kfree_skb(skb);
2537 }
2538 }
2539
2540 if (sd->output_queue) {
2541 struct Qdisc *head;
2542
2543 local_irq_disable();
2544 head = sd->output_queue;
2545 sd->output_queue = NULL;
2546 sd->output_queue_tailp = &sd->output_queue;
2547 local_irq_enable();
2548
2549 while (head) {
2550 struct Qdisc *q = head;
2551 spinlock_t *root_lock;
2552
2553 head = head->next_sched;
2554
2555 root_lock = qdisc_lock(q);
2556 if (spin_trylock(root_lock)) {
2557 smp_mb__before_clear_bit();
2558 clear_bit(__QDISC_STATE_SCHED,
2559 &q->state);
2560 qdisc_run(q);
2561 spin_unlock(root_lock);
2562 } else {
2563 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2564 &q->state)) {
2565 __netif_reschedule(q);
2566 } else {
2567 smp_mb__before_clear_bit();
2568 clear_bit(__QDISC_STATE_SCHED,
2569 &q->state);
2570 }
2571 }
2572 }
2573 }
2574 }
2575
2576 static inline int deliver_skb(struct sk_buff *skb,
2577 struct packet_type *pt_prev,
2578 struct net_device *orig_dev)
2579 {
2580 atomic_inc(&skb->users);
2581 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2582 }
2583
2584 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2585
2586 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2587 /* This hook is defined here for ATM LANE */
2588 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2589 unsigned char *addr) __read_mostly;
2590 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2591 #endif
2592
2593 /*
2594 * If bridge module is loaded call bridging hook.
2595 * returns NULL if packet was consumed.
2596 */
2597 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2598 struct sk_buff *skb) __read_mostly;
2599 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2600
2601 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2602 struct packet_type **pt_prev, int *ret,
2603 struct net_device *orig_dev)
2604 {
2605 struct net_bridge_port *port;
2606
2607 if (skb->pkt_type == PACKET_LOOPBACK ||
2608 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2609 return skb;
2610
2611 if (*pt_prev) {
2612 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2613 *pt_prev = NULL;
2614 }
2615
2616 return br_handle_frame_hook(port, skb);
2617 }
2618 #else
2619 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2620 #endif
2621
2622 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2623 struct sk_buff *(*macvlan_handle_frame_hook)(struct macvlan_port *p,
2624 struct sk_buff *skb) __read_mostly;
2625 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2626
2627 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2628 struct packet_type **pt_prev,
2629 int *ret,
2630 struct net_device *orig_dev)
2631 {
2632 struct macvlan_port *port;
2633
2634 port = rcu_dereference(skb->dev->macvlan_port);
2635 if (!port)
2636 return skb;
2637
2638 if (*pt_prev) {
2639 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2640 *pt_prev = NULL;
2641 }
2642 return macvlan_handle_frame_hook(port, skb);
2643 }
2644 #else
2645 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2646 #endif
2647
2648 #ifdef CONFIG_NET_CLS_ACT
2649 /* TODO: Maybe we should just force sch_ingress to be compiled in
2650 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2651 * a compare and 2 stores extra right now if we dont have it on
2652 * but have CONFIG_NET_CLS_ACT
2653 * NOTE: This doesnt stop any functionality; if you dont have
2654 * the ingress scheduler, you just cant add policies on ingress.
2655 *
2656 */
2657 static int ing_filter(struct sk_buff *skb)
2658 {
2659 struct net_device *dev = skb->dev;
2660 u32 ttl = G_TC_RTTL(skb->tc_verd);
2661 struct netdev_queue *rxq;
2662 int result = TC_ACT_OK;
2663 struct Qdisc *q;
2664
2665 if (MAX_RED_LOOP < ttl++) {
2666 printk(KERN_WARNING
2667 "Redir loop detected Dropping packet (%d->%d)\n",
2668 skb->skb_iif, dev->ifindex);
2669 return TC_ACT_SHOT;
2670 }
2671
2672 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2673 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2674
2675 rxq = &dev->rx_queue;
2676
2677 q = rxq->qdisc;
2678 if (q != &noop_qdisc) {
2679 spin_lock(qdisc_lock(q));
2680 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2681 result = qdisc_enqueue_root(skb, q);
2682 spin_unlock(qdisc_lock(q));
2683 }
2684
2685 return result;
2686 }
2687
2688 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2689 struct packet_type **pt_prev,
2690 int *ret, struct net_device *orig_dev)
2691 {
2692 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2693 goto out;
2694
2695 if (*pt_prev) {
2696 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2697 *pt_prev = NULL;
2698 } else {
2699 /* Huh? Why does turning on AF_PACKET affect this? */
2700 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2701 }
2702
2703 switch (ing_filter(skb)) {
2704 case TC_ACT_SHOT:
2705 case TC_ACT_STOLEN:
2706 kfree_skb(skb);
2707 return NULL;
2708 }
2709
2710 out:
2711 skb->tc_verd = 0;
2712 return skb;
2713 }
2714 #endif
2715
2716 /*
2717 * netif_nit_deliver - deliver received packets to network taps
2718 * @skb: buffer
2719 *
2720 * This function is used to deliver incoming packets to network
2721 * taps. It should be used when the normal netif_receive_skb path
2722 * is bypassed, for example because of VLAN acceleration.
2723 */
2724 void netif_nit_deliver(struct sk_buff *skb)
2725 {
2726 struct packet_type *ptype;
2727
2728 if (list_empty(&ptype_all))
2729 return;
2730
2731 skb_reset_network_header(skb);
2732 skb_reset_transport_header(skb);
2733 skb->mac_len = skb->network_header - skb->mac_header;
2734
2735 rcu_read_lock();
2736 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2737 if (!ptype->dev || ptype->dev == skb->dev)
2738 deliver_skb(skb, ptype, skb->dev);
2739 }
2740 rcu_read_unlock();
2741 }
2742
2743 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2744 struct net_device *master)
2745 {
2746 if (skb->pkt_type == PACKET_HOST) {
2747 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2748
2749 memcpy(dest, master->dev_addr, ETH_ALEN);
2750 }
2751 }
2752
2753 /* On bonding slaves other than the currently active slave, suppress
2754 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2755 * ARP on active-backup slaves with arp_validate enabled.
2756 */
2757 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2758 {
2759 struct net_device *dev = skb->dev;
2760
2761 if (master->priv_flags & IFF_MASTER_ARPMON)
2762 dev->last_rx = jiffies;
2763
2764 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) {
2765 /* Do address unmangle. The local destination address
2766 * will be always the one master has. Provides the right
2767 * functionality in a bridge.
2768 */
2769 skb_bond_set_mac_by_master(skb, master);
2770 }
2771
2772 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2773 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2774 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2775 return 0;
2776
2777 if (master->priv_flags & IFF_MASTER_ALB) {
2778 if (skb->pkt_type != PACKET_BROADCAST &&
2779 skb->pkt_type != PACKET_MULTICAST)
2780 return 0;
2781 }
2782 if (master->priv_flags & IFF_MASTER_8023AD &&
2783 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2784 return 0;
2785
2786 return 1;
2787 }
2788 return 0;
2789 }
2790 EXPORT_SYMBOL(__skb_bond_should_drop);
2791
2792 static int __netif_receive_skb(struct sk_buff *skb)
2793 {
2794 struct packet_type *ptype, *pt_prev;
2795 struct net_device *orig_dev;
2796 struct net_device *master;
2797 struct net_device *null_or_orig;
2798 struct net_device *null_or_bond;
2799 int ret = NET_RX_DROP;
2800 __be16 type;
2801
2802 if (!netdev_tstamp_prequeue)
2803 net_timestamp_check(skb);
2804
2805 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2806 return NET_RX_SUCCESS;
2807
2808 /* if we've gotten here through NAPI, check netpoll */
2809 if (netpoll_receive_skb(skb))
2810 return NET_RX_DROP;
2811
2812 if (!skb->skb_iif)
2813 skb->skb_iif = skb->dev->ifindex;
2814
2815 null_or_orig = NULL;
2816 orig_dev = skb->dev;
2817 master = ACCESS_ONCE(orig_dev->master);
2818 if (master) {
2819 if (skb_bond_should_drop(skb, master))
2820 null_or_orig = orig_dev; /* deliver only exact match */
2821 else
2822 skb->dev = master;
2823 }
2824
2825 __this_cpu_inc(softnet_data.processed);
2826 skb_reset_network_header(skb);
2827 skb_reset_transport_header(skb);
2828 skb->mac_len = skb->network_header - skb->mac_header;
2829
2830 pt_prev = NULL;
2831
2832 rcu_read_lock();
2833
2834 #ifdef CONFIG_NET_CLS_ACT
2835 if (skb->tc_verd & TC_NCLS) {
2836 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2837 goto ncls;
2838 }
2839 #endif
2840
2841 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2842 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2843 ptype->dev == orig_dev) {
2844 if (pt_prev)
2845 ret = deliver_skb(skb, pt_prev, orig_dev);
2846 pt_prev = ptype;
2847 }
2848 }
2849
2850 #ifdef CONFIG_NET_CLS_ACT
2851 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2852 if (!skb)
2853 goto out;
2854 ncls:
2855 #endif
2856
2857 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2858 if (!skb)
2859 goto out;
2860 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2861 if (!skb)
2862 goto out;
2863
2864 /*
2865 * Make sure frames received on VLAN interfaces stacked on
2866 * bonding interfaces still make their way to any base bonding
2867 * device that may have registered for a specific ptype. The
2868 * handler may have to adjust skb->dev and orig_dev.
2869 */
2870 null_or_bond = NULL;
2871 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2872 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2873 null_or_bond = vlan_dev_real_dev(skb->dev);
2874 }
2875
2876 type = skb->protocol;
2877 list_for_each_entry_rcu(ptype,
2878 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2879 if (ptype->type == type && (ptype->dev == null_or_orig ||
2880 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2881 ptype->dev == null_or_bond)) {
2882 if (pt_prev)
2883 ret = deliver_skb(skb, pt_prev, orig_dev);
2884 pt_prev = ptype;
2885 }
2886 }
2887
2888 if (pt_prev) {
2889 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2890 } else {
2891 kfree_skb(skb);
2892 /* Jamal, now you will not able to escape explaining
2893 * me how you were going to use this. :-)
2894 */
2895 ret = NET_RX_DROP;
2896 }
2897
2898 out:
2899 rcu_read_unlock();
2900 return ret;
2901 }
2902
2903 /**
2904 * netif_receive_skb - process receive buffer from network
2905 * @skb: buffer to process
2906 *
2907 * netif_receive_skb() is the main receive data processing function.
2908 * It always succeeds. The buffer may be dropped during processing
2909 * for congestion control or by the protocol layers.
2910 *
2911 * This function may only be called from softirq context and interrupts
2912 * should be enabled.
2913 *
2914 * Return values (usually ignored):
2915 * NET_RX_SUCCESS: no congestion
2916 * NET_RX_DROP: packet was dropped
2917 */
2918 int netif_receive_skb(struct sk_buff *skb)
2919 {
2920 if (netdev_tstamp_prequeue)
2921 net_timestamp_check(skb);
2922
2923 #ifdef CONFIG_RPS
2924 {
2925 struct rps_dev_flow voidflow, *rflow = &voidflow;
2926 int cpu, ret;
2927
2928 rcu_read_lock();
2929
2930 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2931
2932 if (cpu >= 0) {
2933 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2934 rcu_read_unlock();
2935 } else {
2936 rcu_read_unlock();
2937 ret = __netif_receive_skb(skb);
2938 }
2939
2940 return ret;
2941 }
2942 #else
2943 return __netif_receive_skb(skb);
2944 #endif
2945 }
2946 EXPORT_SYMBOL(netif_receive_skb);
2947
2948 /* Network device is going away, flush any packets still pending
2949 * Called with irqs disabled.
2950 */
2951 static void flush_backlog(void *arg)
2952 {
2953 struct net_device *dev = arg;
2954 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2955 struct sk_buff *skb, *tmp;
2956
2957 rps_lock(sd);
2958 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
2959 if (skb->dev == dev) {
2960 __skb_unlink(skb, &sd->input_pkt_queue);
2961 kfree_skb(skb);
2962 input_queue_head_incr(sd);
2963 }
2964 }
2965 rps_unlock(sd);
2966
2967 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
2968 if (skb->dev == dev) {
2969 __skb_unlink(skb, &sd->process_queue);
2970 kfree_skb(skb);
2971 input_queue_head_incr(sd);
2972 }
2973 }
2974 }
2975
2976 static int napi_gro_complete(struct sk_buff *skb)
2977 {
2978 struct packet_type *ptype;
2979 __be16 type = skb->protocol;
2980 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2981 int err = -ENOENT;
2982
2983 if (NAPI_GRO_CB(skb)->count == 1) {
2984 skb_shinfo(skb)->gso_size = 0;
2985 goto out;
2986 }
2987
2988 rcu_read_lock();
2989 list_for_each_entry_rcu(ptype, head, list) {
2990 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2991 continue;
2992
2993 err = ptype->gro_complete(skb);
2994 break;
2995 }
2996 rcu_read_unlock();
2997
2998 if (err) {
2999 WARN_ON(&ptype->list == head);
3000 kfree_skb(skb);
3001 return NET_RX_SUCCESS;
3002 }
3003
3004 out:
3005 return netif_receive_skb(skb);
3006 }
3007
3008 static void napi_gro_flush(struct napi_struct *napi)
3009 {
3010 struct sk_buff *skb, *next;
3011
3012 for (skb = napi->gro_list; skb; skb = next) {
3013 next = skb->next;
3014 skb->next = NULL;
3015 napi_gro_complete(skb);
3016 }
3017
3018 napi->gro_count = 0;
3019 napi->gro_list = NULL;
3020 }
3021
3022 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3023 {
3024 struct sk_buff **pp = NULL;
3025 struct packet_type *ptype;
3026 __be16 type = skb->protocol;
3027 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3028 int same_flow;
3029 int mac_len;
3030 enum gro_result ret;
3031
3032 if (!(skb->dev->features & NETIF_F_GRO))
3033 goto normal;
3034
3035 if (skb_is_gso(skb) || skb_has_frags(skb))
3036 goto normal;
3037
3038 rcu_read_lock();
3039 list_for_each_entry_rcu(ptype, head, list) {
3040 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3041 continue;
3042
3043 skb_set_network_header(skb, skb_gro_offset(skb));
3044 mac_len = skb->network_header - skb->mac_header;
3045 skb->mac_len = mac_len;
3046 NAPI_GRO_CB(skb)->same_flow = 0;
3047 NAPI_GRO_CB(skb)->flush = 0;
3048 NAPI_GRO_CB(skb)->free = 0;
3049
3050 pp = ptype->gro_receive(&napi->gro_list, skb);
3051 break;
3052 }
3053 rcu_read_unlock();
3054
3055 if (&ptype->list == head)
3056 goto normal;
3057
3058 same_flow = NAPI_GRO_CB(skb)->same_flow;
3059 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3060
3061 if (pp) {
3062 struct sk_buff *nskb = *pp;
3063
3064 *pp = nskb->next;
3065 nskb->next = NULL;
3066 napi_gro_complete(nskb);
3067 napi->gro_count--;
3068 }
3069
3070 if (same_flow)
3071 goto ok;
3072
3073 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3074 goto normal;
3075
3076 napi->gro_count++;
3077 NAPI_GRO_CB(skb)->count = 1;
3078 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3079 skb->next = napi->gro_list;
3080 napi->gro_list = skb;
3081 ret = GRO_HELD;
3082
3083 pull:
3084 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3085 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3086
3087 BUG_ON(skb->end - skb->tail < grow);
3088
3089 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3090
3091 skb->tail += grow;
3092 skb->data_len -= grow;
3093
3094 skb_shinfo(skb)->frags[0].page_offset += grow;
3095 skb_shinfo(skb)->frags[0].size -= grow;
3096
3097 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3098 put_page(skb_shinfo(skb)->frags[0].page);
3099 memmove(skb_shinfo(skb)->frags,
3100 skb_shinfo(skb)->frags + 1,
3101 --skb_shinfo(skb)->nr_frags);
3102 }
3103 }
3104
3105 ok:
3106 return ret;
3107
3108 normal:
3109 ret = GRO_NORMAL;
3110 goto pull;
3111 }
3112 EXPORT_SYMBOL(dev_gro_receive);
3113
3114 static gro_result_t
3115 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3116 {
3117 struct sk_buff *p;
3118
3119 if (netpoll_rx_on(skb))
3120 return GRO_NORMAL;
3121
3122 for (p = napi->gro_list; p; p = p->next) {
3123 NAPI_GRO_CB(p)->same_flow =
3124 (p->dev == skb->dev) &&
3125 !compare_ether_header(skb_mac_header(p),
3126 skb_gro_mac_header(skb));
3127 NAPI_GRO_CB(p)->flush = 0;
3128 }
3129
3130 return dev_gro_receive(napi, skb);
3131 }
3132
3133 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3134 {
3135 switch (ret) {
3136 case GRO_NORMAL:
3137 if (netif_receive_skb(skb))
3138 ret = GRO_DROP;
3139 break;
3140
3141 case GRO_DROP:
3142 case GRO_MERGED_FREE:
3143 kfree_skb(skb);
3144 break;
3145
3146 case GRO_HELD:
3147 case GRO_MERGED:
3148 break;
3149 }
3150
3151 return ret;
3152 }
3153 EXPORT_SYMBOL(napi_skb_finish);
3154
3155 void skb_gro_reset_offset(struct sk_buff *skb)
3156 {
3157 NAPI_GRO_CB(skb)->data_offset = 0;
3158 NAPI_GRO_CB(skb)->frag0 = NULL;
3159 NAPI_GRO_CB(skb)->frag0_len = 0;
3160
3161 if (skb->mac_header == skb->tail &&
3162 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3163 NAPI_GRO_CB(skb)->frag0 =
3164 page_address(skb_shinfo(skb)->frags[0].page) +
3165 skb_shinfo(skb)->frags[0].page_offset;
3166 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3167 }
3168 }
3169 EXPORT_SYMBOL(skb_gro_reset_offset);
3170
3171 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3172 {
3173 skb_gro_reset_offset(skb);
3174
3175 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3176 }
3177 EXPORT_SYMBOL(napi_gro_receive);
3178
3179 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3180 {
3181 __skb_pull(skb, skb_headlen(skb));
3182 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3183
3184 napi->skb = skb;
3185 }
3186 EXPORT_SYMBOL(napi_reuse_skb);
3187
3188 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3189 {
3190 struct sk_buff *skb = napi->skb;
3191
3192 if (!skb) {
3193 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3194 if (skb)
3195 napi->skb = skb;
3196 }
3197 return skb;
3198 }
3199 EXPORT_SYMBOL(napi_get_frags);
3200
3201 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3202 gro_result_t ret)
3203 {
3204 switch (ret) {
3205 case GRO_NORMAL:
3206 case GRO_HELD:
3207 skb->protocol = eth_type_trans(skb, skb->dev);
3208
3209 if (ret == GRO_HELD)
3210 skb_gro_pull(skb, -ETH_HLEN);
3211 else if (netif_receive_skb(skb))
3212 ret = GRO_DROP;
3213 break;
3214
3215 case GRO_DROP:
3216 case GRO_MERGED_FREE:
3217 napi_reuse_skb(napi, skb);
3218 break;
3219
3220 case GRO_MERGED:
3221 break;
3222 }
3223
3224 return ret;
3225 }
3226 EXPORT_SYMBOL(napi_frags_finish);
3227
3228 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3229 {
3230 struct sk_buff *skb = napi->skb;
3231 struct ethhdr *eth;
3232 unsigned int hlen;
3233 unsigned int off;
3234
3235 napi->skb = NULL;
3236
3237 skb_reset_mac_header(skb);
3238 skb_gro_reset_offset(skb);
3239
3240 off = skb_gro_offset(skb);
3241 hlen = off + sizeof(*eth);
3242 eth = skb_gro_header_fast(skb, off);
3243 if (skb_gro_header_hard(skb, hlen)) {
3244 eth = skb_gro_header_slow(skb, hlen, off);
3245 if (unlikely(!eth)) {
3246 napi_reuse_skb(napi, skb);
3247 skb = NULL;
3248 goto out;
3249 }
3250 }
3251
3252 skb_gro_pull(skb, sizeof(*eth));
3253
3254 /*
3255 * This works because the only protocols we care about don't require
3256 * special handling. We'll fix it up properly at the end.
3257 */
3258 skb->protocol = eth->h_proto;
3259
3260 out:
3261 return skb;
3262 }
3263 EXPORT_SYMBOL(napi_frags_skb);
3264
3265 gro_result_t napi_gro_frags(struct napi_struct *napi)
3266 {
3267 struct sk_buff *skb = napi_frags_skb(napi);
3268
3269 if (!skb)
3270 return GRO_DROP;
3271
3272 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3273 }
3274 EXPORT_SYMBOL(napi_gro_frags);
3275
3276 /*
3277 * net_rps_action sends any pending IPI's for rps.
3278 * Note: called with local irq disabled, but exits with local irq enabled.
3279 */
3280 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3281 {
3282 #ifdef CONFIG_RPS
3283 struct softnet_data *remsd = sd->rps_ipi_list;
3284
3285 if (remsd) {
3286 sd->rps_ipi_list = NULL;
3287
3288 local_irq_enable();
3289
3290 /* Send pending IPI's to kick RPS processing on remote cpus. */
3291 while (remsd) {
3292 struct softnet_data *next = remsd->rps_ipi_next;
3293
3294 if (cpu_online(remsd->cpu))
3295 __smp_call_function_single(remsd->cpu,
3296 &remsd->csd, 0);
3297 remsd = next;
3298 }
3299 } else
3300 #endif
3301 local_irq_enable();
3302 }
3303
3304 static int process_backlog(struct napi_struct *napi, int quota)
3305 {
3306 int work = 0;
3307 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3308
3309 #ifdef CONFIG_RPS
3310 /* Check if we have pending ipi, its better to send them now,
3311 * not waiting net_rx_action() end.
3312 */
3313 if (sd->rps_ipi_list) {
3314 local_irq_disable();
3315 net_rps_action_and_irq_enable(sd);
3316 }
3317 #endif
3318 napi->weight = weight_p;
3319 local_irq_disable();
3320 while (work < quota) {
3321 struct sk_buff *skb;
3322 unsigned int qlen;
3323
3324 while ((skb = __skb_dequeue(&sd->process_queue))) {
3325 local_irq_enable();
3326 __netif_receive_skb(skb);
3327 local_irq_disable();
3328 input_queue_head_incr(sd);
3329 if (++work >= quota) {
3330 local_irq_enable();
3331 return work;
3332 }
3333 }
3334
3335 rps_lock(sd);
3336 qlen = skb_queue_len(&sd->input_pkt_queue);
3337 if (qlen)
3338 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3339 &sd->process_queue);
3340
3341 if (qlen < quota - work) {
3342 /*
3343 * Inline a custom version of __napi_complete().
3344 * only current cpu owns and manipulates this napi,
3345 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3346 * we can use a plain write instead of clear_bit(),
3347 * and we dont need an smp_mb() memory barrier.
3348 */
3349 list_del(&napi->poll_list);
3350 napi->state = 0;
3351
3352 quota = work + qlen;
3353 }
3354 rps_unlock(sd);
3355 }
3356 local_irq_enable();
3357
3358 return work;
3359 }
3360
3361 /**
3362 * __napi_schedule - schedule for receive
3363 * @n: entry to schedule
3364 *
3365 * The entry's receive function will be scheduled to run
3366 */
3367 void __napi_schedule(struct napi_struct *n)
3368 {
3369 unsigned long flags;
3370
3371 local_irq_save(flags);
3372 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3373 local_irq_restore(flags);
3374 }
3375 EXPORT_SYMBOL(__napi_schedule);
3376
3377 void __napi_complete(struct napi_struct *n)
3378 {
3379 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3380 BUG_ON(n->gro_list);
3381
3382 list_del(&n->poll_list);
3383 smp_mb__before_clear_bit();
3384 clear_bit(NAPI_STATE_SCHED, &n->state);
3385 }
3386 EXPORT_SYMBOL(__napi_complete);
3387
3388 void napi_complete(struct napi_struct *n)
3389 {
3390 unsigned long flags;
3391
3392 /*
3393 * don't let napi dequeue from the cpu poll list
3394 * just in case its running on a different cpu
3395 */
3396 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3397 return;
3398
3399 napi_gro_flush(n);
3400 local_irq_save(flags);
3401 __napi_complete(n);
3402 local_irq_restore(flags);
3403 }
3404 EXPORT_SYMBOL(napi_complete);
3405
3406 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3407 int (*poll)(struct napi_struct *, int), int weight)
3408 {
3409 INIT_LIST_HEAD(&napi->poll_list);
3410 napi->gro_count = 0;
3411 napi->gro_list = NULL;
3412 napi->skb = NULL;
3413 napi->poll = poll;
3414 napi->weight = weight;
3415 list_add(&napi->dev_list, &dev->napi_list);
3416 napi->dev = dev;
3417 #ifdef CONFIG_NETPOLL
3418 spin_lock_init(&napi->poll_lock);
3419 napi->poll_owner = -1;
3420 #endif
3421 set_bit(NAPI_STATE_SCHED, &napi->state);
3422 }
3423 EXPORT_SYMBOL(netif_napi_add);
3424
3425 void netif_napi_del(struct napi_struct *napi)
3426 {
3427 struct sk_buff *skb, *next;
3428
3429 list_del_init(&napi->dev_list);
3430 napi_free_frags(napi);
3431
3432 for (skb = napi->gro_list; skb; skb = next) {
3433 next = skb->next;
3434 skb->next = NULL;
3435 kfree_skb(skb);
3436 }
3437
3438 napi->gro_list = NULL;
3439 napi->gro_count = 0;
3440 }
3441 EXPORT_SYMBOL(netif_napi_del);
3442
3443 static void net_rx_action(struct softirq_action *h)
3444 {
3445 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3446 unsigned long time_limit = jiffies + 2;
3447 int budget = netdev_budget;
3448 void *have;
3449
3450 local_irq_disable();
3451
3452 while (!list_empty(&sd->poll_list)) {
3453 struct napi_struct *n;
3454 int work, weight;
3455
3456 /* If softirq window is exhuasted then punt.
3457 * Allow this to run for 2 jiffies since which will allow
3458 * an average latency of 1.5/HZ.
3459 */
3460 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3461 goto softnet_break;
3462
3463 local_irq_enable();
3464
3465 /* Even though interrupts have been re-enabled, this
3466 * access is safe because interrupts can only add new
3467 * entries to the tail of this list, and only ->poll()
3468 * calls can remove this head entry from the list.
3469 */
3470 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3471
3472 have = netpoll_poll_lock(n);
3473
3474 weight = n->weight;
3475
3476 /* This NAPI_STATE_SCHED test is for avoiding a race
3477 * with netpoll's poll_napi(). Only the entity which
3478 * obtains the lock and sees NAPI_STATE_SCHED set will
3479 * actually make the ->poll() call. Therefore we avoid
3480 * accidently calling ->poll() when NAPI is not scheduled.
3481 */
3482 work = 0;
3483 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3484 work = n->poll(n, weight);
3485 trace_napi_poll(n);
3486 }
3487
3488 WARN_ON_ONCE(work > weight);
3489
3490 budget -= work;
3491
3492 local_irq_disable();
3493
3494 /* Drivers must not modify the NAPI state if they
3495 * consume the entire weight. In such cases this code
3496 * still "owns" the NAPI instance and therefore can
3497 * move the instance around on the list at-will.
3498 */
3499 if (unlikely(work == weight)) {
3500 if (unlikely(napi_disable_pending(n))) {
3501 local_irq_enable();
3502 napi_complete(n);
3503 local_irq_disable();
3504 } else
3505 list_move_tail(&n->poll_list, &sd->poll_list);
3506 }
3507
3508 netpoll_poll_unlock(have);
3509 }
3510 out:
3511 net_rps_action_and_irq_enable(sd);
3512
3513 #ifdef CONFIG_NET_DMA
3514 /*
3515 * There may not be any more sk_buffs coming right now, so push
3516 * any pending DMA copies to hardware
3517 */
3518 dma_issue_pending_all();
3519 #endif
3520
3521 return;
3522
3523 softnet_break:
3524 sd->time_squeeze++;
3525 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3526 goto out;
3527 }
3528
3529 static gifconf_func_t *gifconf_list[NPROTO];
3530
3531 /**
3532 * register_gifconf - register a SIOCGIF handler
3533 * @family: Address family
3534 * @gifconf: Function handler
3535 *
3536 * Register protocol dependent address dumping routines. The handler
3537 * that is passed must not be freed or reused until it has been replaced
3538 * by another handler.
3539 */
3540 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3541 {
3542 if (family >= NPROTO)
3543 return -EINVAL;
3544 gifconf_list[family] = gifconf;
3545 return 0;
3546 }
3547 EXPORT_SYMBOL(register_gifconf);
3548
3549
3550 /*
3551 * Map an interface index to its name (SIOCGIFNAME)
3552 */
3553
3554 /*
3555 * We need this ioctl for efficient implementation of the
3556 * if_indextoname() function required by the IPv6 API. Without
3557 * it, we would have to search all the interfaces to find a
3558 * match. --pb
3559 */
3560
3561 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3562 {
3563 struct net_device *dev;
3564 struct ifreq ifr;
3565
3566 /*
3567 * Fetch the caller's info block.
3568 */
3569
3570 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3571 return -EFAULT;
3572
3573 rcu_read_lock();
3574 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3575 if (!dev) {
3576 rcu_read_unlock();
3577 return -ENODEV;
3578 }
3579
3580 strcpy(ifr.ifr_name, dev->name);
3581 rcu_read_unlock();
3582
3583 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3584 return -EFAULT;
3585 return 0;
3586 }
3587
3588 /*
3589 * Perform a SIOCGIFCONF call. This structure will change
3590 * size eventually, and there is nothing I can do about it.
3591 * Thus we will need a 'compatibility mode'.
3592 */
3593
3594 static int dev_ifconf(struct net *net, char __user *arg)
3595 {
3596 struct ifconf ifc;
3597 struct net_device *dev;
3598 char __user *pos;
3599 int len;
3600 int total;
3601 int i;
3602
3603 /*
3604 * Fetch the caller's info block.
3605 */
3606
3607 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3608 return -EFAULT;
3609
3610 pos = ifc.ifc_buf;
3611 len = ifc.ifc_len;
3612
3613 /*
3614 * Loop over the interfaces, and write an info block for each.
3615 */
3616
3617 total = 0;
3618 for_each_netdev(net, dev) {
3619 for (i = 0; i < NPROTO; i++) {
3620 if (gifconf_list[i]) {
3621 int done;
3622 if (!pos)
3623 done = gifconf_list[i](dev, NULL, 0);
3624 else
3625 done = gifconf_list[i](dev, pos + total,
3626 len - total);
3627 if (done < 0)
3628 return -EFAULT;
3629 total += done;
3630 }
3631 }
3632 }
3633
3634 /*
3635 * All done. Write the updated control block back to the caller.
3636 */
3637 ifc.ifc_len = total;
3638
3639 /*
3640 * Both BSD and Solaris return 0 here, so we do too.
3641 */
3642 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3643 }
3644
3645 #ifdef CONFIG_PROC_FS
3646 /*
3647 * This is invoked by the /proc filesystem handler to display a device
3648 * in detail.
3649 */
3650 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3651 __acquires(RCU)
3652 {
3653 struct net *net = seq_file_net(seq);
3654 loff_t off;
3655 struct net_device *dev;
3656
3657 rcu_read_lock();
3658 if (!*pos)
3659 return SEQ_START_TOKEN;
3660
3661 off = 1;
3662 for_each_netdev_rcu(net, dev)
3663 if (off++ == *pos)
3664 return dev;
3665
3666 return NULL;
3667 }
3668
3669 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3670 {
3671 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3672 first_net_device(seq_file_net(seq)) :
3673 next_net_device((struct net_device *)v);
3674
3675 ++*pos;
3676 return rcu_dereference(dev);
3677 }
3678
3679 void dev_seq_stop(struct seq_file *seq, void *v)
3680 __releases(RCU)
3681 {
3682 rcu_read_unlock();
3683 }
3684
3685 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3686 {
3687 const struct net_device_stats *stats = dev_get_stats(dev);
3688
3689 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3690 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3691 dev->name, stats->rx_bytes, stats->rx_packets,
3692 stats->rx_errors,
3693 stats->rx_dropped + stats->rx_missed_errors,
3694 stats->rx_fifo_errors,
3695 stats->rx_length_errors + stats->rx_over_errors +
3696 stats->rx_crc_errors + stats->rx_frame_errors,
3697 stats->rx_compressed, stats->multicast,
3698 stats->tx_bytes, stats->tx_packets,
3699 stats->tx_errors, stats->tx_dropped,
3700 stats->tx_fifo_errors, stats->collisions,
3701 stats->tx_carrier_errors +
3702 stats->tx_aborted_errors +
3703 stats->tx_window_errors +
3704 stats->tx_heartbeat_errors,
3705 stats->tx_compressed);
3706 }
3707
3708 /*
3709 * Called from the PROCfs module. This now uses the new arbitrary sized
3710 * /proc/net interface to create /proc/net/dev
3711 */
3712 static int dev_seq_show(struct seq_file *seq, void *v)
3713 {
3714 if (v == SEQ_START_TOKEN)
3715 seq_puts(seq, "Inter-| Receive "
3716 " | Transmit\n"
3717 " face |bytes packets errs drop fifo frame "
3718 "compressed multicast|bytes packets errs "
3719 "drop fifo colls carrier compressed\n");
3720 else
3721 dev_seq_printf_stats(seq, v);
3722 return 0;
3723 }
3724
3725 static struct softnet_data *softnet_get_online(loff_t *pos)
3726 {
3727 struct softnet_data *sd = NULL;
3728
3729 while (*pos < nr_cpu_ids)
3730 if (cpu_online(*pos)) {
3731 sd = &per_cpu(softnet_data, *pos);
3732 break;
3733 } else
3734 ++*pos;
3735 return sd;
3736 }
3737
3738 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3739 {
3740 return softnet_get_online(pos);
3741 }
3742
3743 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3744 {
3745 ++*pos;
3746 return softnet_get_online(pos);
3747 }
3748
3749 static void softnet_seq_stop(struct seq_file *seq, void *v)
3750 {
3751 }
3752
3753 static int softnet_seq_show(struct seq_file *seq, void *v)
3754 {
3755 struct softnet_data *sd = v;
3756
3757 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3758 sd->processed, sd->dropped, sd->time_squeeze, 0,
3759 0, 0, 0, 0, /* was fastroute */
3760 sd->cpu_collision, sd->received_rps);
3761 return 0;
3762 }
3763
3764 static const struct seq_operations dev_seq_ops = {
3765 .start = dev_seq_start,
3766 .next = dev_seq_next,
3767 .stop = dev_seq_stop,
3768 .show = dev_seq_show,
3769 };
3770
3771 static int dev_seq_open(struct inode *inode, struct file *file)
3772 {
3773 return seq_open_net(inode, file, &dev_seq_ops,
3774 sizeof(struct seq_net_private));
3775 }
3776
3777 static const struct file_operations dev_seq_fops = {
3778 .owner = THIS_MODULE,
3779 .open = dev_seq_open,
3780 .read = seq_read,
3781 .llseek = seq_lseek,
3782 .release = seq_release_net,
3783 };
3784
3785 static const struct seq_operations softnet_seq_ops = {
3786 .start = softnet_seq_start,
3787 .next = softnet_seq_next,
3788 .stop = softnet_seq_stop,
3789 .show = softnet_seq_show,
3790 };
3791
3792 static int softnet_seq_open(struct inode *inode, struct file *file)
3793 {
3794 return seq_open(file, &softnet_seq_ops);
3795 }
3796
3797 static const struct file_operations softnet_seq_fops = {
3798 .owner = THIS_MODULE,
3799 .open = softnet_seq_open,
3800 .read = seq_read,
3801 .llseek = seq_lseek,
3802 .release = seq_release,
3803 };
3804
3805 static void *ptype_get_idx(loff_t pos)
3806 {
3807 struct packet_type *pt = NULL;
3808 loff_t i = 0;
3809 int t;
3810
3811 list_for_each_entry_rcu(pt, &ptype_all, list) {
3812 if (i == pos)
3813 return pt;
3814 ++i;
3815 }
3816
3817 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3818 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3819 if (i == pos)
3820 return pt;
3821 ++i;
3822 }
3823 }
3824 return NULL;
3825 }
3826
3827 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3828 __acquires(RCU)
3829 {
3830 rcu_read_lock();
3831 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3832 }
3833
3834 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3835 {
3836 struct packet_type *pt;
3837 struct list_head *nxt;
3838 int hash;
3839
3840 ++*pos;
3841 if (v == SEQ_START_TOKEN)
3842 return ptype_get_idx(0);
3843
3844 pt = v;
3845 nxt = pt->list.next;
3846 if (pt->type == htons(ETH_P_ALL)) {
3847 if (nxt != &ptype_all)
3848 goto found;
3849 hash = 0;
3850 nxt = ptype_base[0].next;
3851 } else
3852 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3853
3854 while (nxt == &ptype_base[hash]) {
3855 if (++hash >= PTYPE_HASH_SIZE)
3856 return NULL;
3857 nxt = ptype_base[hash].next;
3858 }
3859 found:
3860 return list_entry(nxt, struct packet_type, list);
3861 }
3862
3863 static void ptype_seq_stop(struct seq_file *seq, void *v)
3864 __releases(RCU)
3865 {
3866 rcu_read_unlock();
3867 }
3868
3869 static int ptype_seq_show(struct seq_file *seq, void *v)
3870 {
3871 struct packet_type *pt = v;
3872
3873 if (v == SEQ_START_TOKEN)
3874 seq_puts(seq, "Type Device Function\n");
3875 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3876 if (pt->type == htons(ETH_P_ALL))
3877 seq_puts(seq, "ALL ");
3878 else
3879 seq_printf(seq, "%04x", ntohs(pt->type));
3880
3881 seq_printf(seq, " %-8s %pF\n",
3882 pt->dev ? pt->dev->name : "", pt->func);
3883 }
3884
3885 return 0;
3886 }
3887
3888 static const struct seq_operations ptype_seq_ops = {
3889 .start = ptype_seq_start,
3890 .next = ptype_seq_next,
3891 .stop = ptype_seq_stop,
3892 .show = ptype_seq_show,
3893 };
3894
3895 static int ptype_seq_open(struct inode *inode, struct file *file)
3896 {
3897 return seq_open_net(inode, file, &ptype_seq_ops,
3898 sizeof(struct seq_net_private));
3899 }
3900
3901 static const struct file_operations ptype_seq_fops = {
3902 .owner = THIS_MODULE,
3903 .open = ptype_seq_open,
3904 .read = seq_read,
3905 .llseek = seq_lseek,
3906 .release = seq_release_net,
3907 };
3908
3909
3910 static int __net_init dev_proc_net_init(struct net *net)
3911 {
3912 int rc = -ENOMEM;
3913
3914 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3915 goto out;
3916 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3917 goto out_dev;
3918 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3919 goto out_softnet;
3920
3921 if (wext_proc_init(net))
3922 goto out_ptype;
3923 rc = 0;
3924 out:
3925 return rc;
3926 out_ptype:
3927 proc_net_remove(net, "ptype");
3928 out_softnet:
3929 proc_net_remove(net, "softnet_stat");
3930 out_dev:
3931 proc_net_remove(net, "dev");
3932 goto out;
3933 }
3934
3935 static void __net_exit dev_proc_net_exit(struct net *net)
3936 {
3937 wext_proc_exit(net);
3938
3939 proc_net_remove(net, "ptype");
3940 proc_net_remove(net, "softnet_stat");
3941 proc_net_remove(net, "dev");
3942 }
3943
3944 static struct pernet_operations __net_initdata dev_proc_ops = {
3945 .init = dev_proc_net_init,
3946 .exit = dev_proc_net_exit,
3947 };
3948
3949 static int __init dev_proc_init(void)
3950 {
3951 return register_pernet_subsys(&dev_proc_ops);
3952 }
3953 #else
3954 #define dev_proc_init() 0
3955 #endif /* CONFIG_PROC_FS */
3956
3957
3958 /**
3959 * netdev_set_master - set up master/slave pair
3960 * @slave: slave device
3961 * @master: new master device
3962 *
3963 * Changes the master device of the slave. Pass %NULL to break the
3964 * bonding. The caller must hold the RTNL semaphore. On a failure
3965 * a negative errno code is returned. On success the reference counts
3966 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3967 * function returns zero.
3968 */
3969 int netdev_set_master(struct net_device *slave, struct net_device *master)
3970 {
3971 struct net_device *old = slave->master;
3972
3973 ASSERT_RTNL();
3974
3975 if (master) {
3976 if (old)
3977 return -EBUSY;
3978 dev_hold(master);
3979 }
3980
3981 slave->master = master;
3982
3983 if (old) {
3984 synchronize_net();
3985 dev_put(old);
3986 }
3987 if (master)
3988 slave->flags |= IFF_SLAVE;
3989 else
3990 slave->flags &= ~IFF_SLAVE;
3991
3992 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3993 return 0;
3994 }
3995 EXPORT_SYMBOL(netdev_set_master);
3996
3997 static void dev_change_rx_flags(struct net_device *dev, int flags)
3998 {
3999 const struct net_device_ops *ops = dev->netdev_ops;
4000
4001 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4002 ops->ndo_change_rx_flags(dev, flags);
4003 }
4004
4005 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4006 {
4007 unsigned short old_flags = dev->flags;
4008 uid_t uid;
4009 gid_t gid;
4010
4011 ASSERT_RTNL();
4012
4013 dev->flags |= IFF_PROMISC;
4014 dev->promiscuity += inc;
4015 if (dev->promiscuity == 0) {
4016 /*
4017 * Avoid overflow.
4018 * If inc causes overflow, untouch promisc and return error.
4019 */
4020 if (inc < 0)
4021 dev->flags &= ~IFF_PROMISC;
4022 else {
4023 dev->promiscuity -= inc;
4024 printk(KERN_WARNING "%s: promiscuity touches roof, "
4025 "set promiscuity failed, promiscuity feature "
4026 "of device might be broken.\n", dev->name);
4027 return -EOVERFLOW;
4028 }
4029 }
4030 if (dev->flags != old_flags) {
4031 printk(KERN_INFO "device %s %s promiscuous mode\n",
4032 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4033 "left");
4034 if (audit_enabled) {
4035 current_uid_gid(&uid, &gid);
4036 audit_log(current->audit_context, GFP_ATOMIC,
4037 AUDIT_ANOM_PROMISCUOUS,
4038 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4039 dev->name, (dev->flags & IFF_PROMISC),
4040 (old_flags & IFF_PROMISC),
4041 audit_get_loginuid(current),
4042 uid, gid,
4043 audit_get_sessionid(current));
4044 }
4045
4046 dev_change_rx_flags(dev, IFF_PROMISC);
4047 }
4048 return 0;
4049 }
4050
4051 /**
4052 * dev_set_promiscuity - update promiscuity count on a device
4053 * @dev: device
4054 * @inc: modifier
4055 *
4056 * Add or remove promiscuity from a device. While the count in the device
4057 * remains above zero the interface remains promiscuous. Once it hits zero
4058 * the device reverts back to normal filtering operation. A negative inc
4059 * value is used to drop promiscuity on the device.
4060 * Return 0 if successful or a negative errno code on error.
4061 */
4062 int dev_set_promiscuity(struct net_device *dev, int inc)
4063 {
4064 unsigned short old_flags = dev->flags;
4065 int err;
4066
4067 err = __dev_set_promiscuity(dev, inc);
4068 if (err < 0)
4069 return err;
4070 if (dev->flags != old_flags)
4071 dev_set_rx_mode(dev);
4072 return err;
4073 }
4074 EXPORT_SYMBOL(dev_set_promiscuity);
4075
4076 /**
4077 * dev_set_allmulti - update allmulti count on a device
4078 * @dev: device
4079 * @inc: modifier
4080 *
4081 * Add or remove reception of all multicast frames to a device. While the
4082 * count in the device remains above zero the interface remains listening
4083 * to all interfaces. Once it hits zero the device reverts back to normal
4084 * filtering operation. A negative @inc value is used to drop the counter
4085 * when releasing a resource needing all multicasts.
4086 * Return 0 if successful or a negative errno code on error.
4087 */
4088
4089 int dev_set_allmulti(struct net_device *dev, int inc)
4090 {
4091 unsigned short old_flags = dev->flags;
4092
4093 ASSERT_RTNL();
4094
4095 dev->flags |= IFF_ALLMULTI;
4096 dev->allmulti += inc;
4097 if (dev->allmulti == 0) {
4098 /*
4099 * Avoid overflow.
4100 * If inc causes overflow, untouch allmulti and return error.
4101 */
4102 if (inc < 0)
4103 dev->flags &= ~IFF_ALLMULTI;
4104 else {
4105 dev->allmulti -= inc;
4106 printk(KERN_WARNING "%s: allmulti touches roof, "
4107 "set allmulti failed, allmulti feature of "
4108 "device might be broken.\n", dev->name);
4109 return -EOVERFLOW;
4110 }
4111 }
4112 if (dev->flags ^ old_flags) {
4113 dev_change_rx_flags(dev, IFF_ALLMULTI);
4114 dev_set_rx_mode(dev);
4115 }
4116 return 0;
4117 }
4118 EXPORT_SYMBOL(dev_set_allmulti);
4119
4120 /*
4121 * Upload unicast and multicast address lists to device and
4122 * configure RX filtering. When the device doesn't support unicast
4123 * filtering it is put in promiscuous mode while unicast addresses
4124 * are present.
4125 */
4126 void __dev_set_rx_mode(struct net_device *dev)
4127 {
4128 const struct net_device_ops *ops = dev->netdev_ops;
4129
4130 /* dev_open will call this function so the list will stay sane. */
4131 if (!(dev->flags&IFF_UP))
4132 return;
4133
4134 if (!netif_device_present(dev))
4135 return;
4136
4137 if (ops->ndo_set_rx_mode)
4138 ops->ndo_set_rx_mode(dev);
4139 else {
4140 /* Unicast addresses changes may only happen under the rtnl,
4141 * therefore calling __dev_set_promiscuity here is safe.
4142 */
4143 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4144 __dev_set_promiscuity(dev, 1);
4145 dev->uc_promisc = 1;
4146 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4147 __dev_set_promiscuity(dev, -1);
4148 dev->uc_promisc = 0;
4149 }
4150
4151 if (ops->ndo_set_multicast_list)
4152 ops->ndo_set_multicast_list(dev);
4153 }
4154 }
4155
4156 void dev_set_rx_mode(struct net_device *dev)
4157 {
4158 netif_addr_lock_bh(dev);
4159 __dev_set_rx_mode(dev);
4160 netif_addr_unlock_bh(dev);
4161 }
4162
4163 /**
4164 * dev_get_flags - get flags reported to userspace
4165 * @dev: device
4166 *
4167 * Get the combination of flag bits exported through APIs to userspace.
4168 */
4169 unsigned dev_get_flags(const struct net_device *dev)
4170 {
4171 unsigned flags;
4172
4173 flags = (dev->flags & ~(IFF_PROMISC |
4174 IFF_ALLMULTI |
4175 IFF_RUNNING |
4176 IFF_LOWER_UP |
4177 IFF_DORMANT)) |
4178 (dev->gflags & (IFF_PROMISC |
4179 IFF_ALLMULTI));
4180
4181 if (netif_running(dev)) {
4182 if (netif_oper_up(dev))
4183 flags |= IFF_RUNNING;
4184 if (netif_carrier_ok(dev))
4185 flags |= IFF_LOWER_UP;
4186 if (netif_dormant(dev))
4187 flags |= IFF_DORMANT;
4188 }
4189
4190 return flags;
4191 }
4192 EXPORT_SYMBOL(dev_get_flags);
4193
4194 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4195 {
4196 int old_flags = dev->flags;
4197 int ret;
4198
4199 ASSERT_RTNL();
4200
4201 /*
4202 * Set the flags on our device.
4203 */
4204
4205 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4206 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4207 IFF_AUTOMEDIA)) |
4208 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4209 IFF_ALLMULTI));
4210
4211 /*
4212 * Load in the correct multicast list now the flags have changed.
4213 */
4214
4215 if ((old_flags ^ flags) & IFF_MULTICAST)
4216 dev_change_rx_flags(dev, IFF_MULTICAST);
4217
4218 dev_set_rx_mode(dev);
4219
4220 /*
4221 * Have we downed the interface. We handle IFF_UP ourselves
4222 * according to user attempts to set it, rather than blindly
4223 * setting it.
4224 */
4225
4226 ret = 0;
4227 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4228 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4229
4230 if (!ret)
4231 dev_set_rx_mode(dev);
4232 }
4233
4234 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4235 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4236
4237 dev->gflags ^= IFF_PROMISC;
4238 dev_set_promiscuity(dev, inc);
4239 }
4240
4241 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4242 is important. Some (broken) drivers set IFF_PROMISC, when
4243 IFF_ALLMULTI is requested not asking us and not reporting.
4244 */
4245 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4246 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4247
4248 dev->gflags ^= IFF_ALLMULTI;
4249 dev_set_allmulti(dev, inc);
4250 }
4251
4252 return ret;
4253 }
4254
4255 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4256 {
4257 unsigned int changes = dev->flags ^ old_flags;
4258
4259 if (changes & IFF_UP) {
4260 if (dev->flags & IFF_UP)
4261 call_netdevice_notifiers(NETDEV_UP, dev);
4262 else
4263 call_netdevice_notifiers(NETDEV_DOWN, dev);
4264 }
4265
4266 if (dev->flags & IFF_UP &&
4267 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4268 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4269 }
4270
4271 /**
4272 * dev_change_flags - change device settings
4273 * @dev: device
4274 * @flags: device state flags
4275 *
4276 * Change settings on device based state flags. The flags are
4277 * in the userspace exported format.
4278 */
4279 int dev_change_flags(struct net_device *dev, unsigned flags)
4280 {
4281 int ret, changes;
4282 int old_flags = dev->flags;
4283
4284 ret = __dev_change_flags(dev, flags);
4285 if (ret < 0)
4286 return ret;
4287
4288 changes = old_flags ^ dev->flags;
4289 if (changes)
4290 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4291
4292 __dev_notify_flags(dev, old_flags);
4293 return ret;
4294 }
4295 EXPORT_SYMBOL(dev_change_flags);
4296
4297 /**
4298 * dev_set_mtu - Change maximum transfer unit
4299 * @dev: device
4300 * @new_mtu: new transfer unit
4301 *
4302 * Change the maximum transfer size of the network device.
4303 */
4304 int dev_set_mtu(struct net_device *dev, int new_mtu)
4305 {
4306 const struct net_device_ops *ops = dev->netdev_ops;
4307 int err;
4308
4309 if (new_mtu == dev->mtu)
4310 return 0;
4311
4312 /* MTU must be positive. */
4313 if (new_mtu < 0)
4314 return -EINVAL;
4315
4316 if (!netif_device_present(dev))
4317 return -ENODEV;
4318
4319 err = 0;
4320 if (ops->ndo_change_mtu)
4321 err = ops->ndo_change_mtu(dev, new_mtu);
4322 else
4323 dev->mtu = new_mtu;
4324
4325 if (!err && dev->flags & IFF_UP)
4326 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4327 return err;
4328 }
4329 EXPORT_SYMBOL(dev_set_mtu);
4330
4331 /**
4332 * dev_set_mac_address - Change Media Access Control Address
4333 * @dev: device
4334 * @sa: new address
4335 *
4336 * Change the hardware (MAC) address of the device
4337 */
4338 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4339 {
4340 const struct net_device_ops *ops = dev->netdev_ops;
4341 int err;
4342
4343 if (!ops->ndo_set_mac_address)
4344 return -EOPNOTSUPP;
4345 if (sa->sa_family != dev->type)
4346 return -EINVAL;
4347 if (!netif_device_present(dev))
4348 return -ENODEV;
4349 err = ops->ndo_set_mac_address(dev, sa);
4350 if (!err)
4351 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4352 return err;
4353 }
4354 EXPORT_SYMBOL(dev_set_mac_address);
4355
4356 /*
4357 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4358 */
4359 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4360 {
4361 int err;
4362 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4363
4364 if (!dev)
4365 return -ENODEV;
4366
4367 switch (cmd) {
4368 case SIOCGIFFLAGS: /* Get interface flags */
4369 ifr->ifr_flags = (short) dev_get_flags(dev);
4370 return 0;
4371
4372 case SIOCGIFMETRIC: /* Get the metric on the interface
4373 (currently unused) */
4374 ifr->ifr_metric = 0;
4375 return 0;
4376
4377 case SIOCGIFMTU: /* Get the MTU of a device */
4378 ifr->ifr_mtu = dev->mtu;
4379 return 0;
4380
4381 case SIOCGIFHWADDR:
4382 if (!dev->addr_len)
4383 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4384 else
4385 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4386 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4387 ifr->ifr_hwaddr.sa_family = dev->type;
4388 return 0;
4389
4390 case SIOCGIFSLAVE:
4391 err = -EINVAL;
4392 break;
4393
4394 case SIOCGIFMAP:
4395 ifr->ifr_map.mem_start = dev->mem_start;
4396 ifr->ifr_map.mem_end = dev->mem_end;
4397 ifr->ifr_map.base_addr = dev->base_addr;
4398 ifr->ifr_map.irq = dev->irq;
4399 ifr->ifr_map.dma = dev->dma;
4400 ifr->ifr_map.port = dev->if_port;
4401 return 0;
4402
4403 case SIOCGIFINDEX:
4404 ifr->ifr_ifindex = dev->ifindex;
4405 return 0;
4406
4407 case SIOCGIFTXQLEN:
4408 ifr->ifr_qlen = dev->tx_queue_len;
4409 return 0;
4410
4411 default:
4412 /* dev_ioctl() should ensure this case
4413 * is never reached
4414 */
4415 WARN_ON(1);
4416 err = -EINVAL;
4417 break;
4418
4419 }
4420 return err;
4421 }
4422
4423 /*
4424 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4425 */
4426 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4427 {
4428 int err;
4429 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4430 const struct net_device_ops *ops;
4431
4432 if (!dev)
4433 return -ENODEV;
4434
4435 ops = dev->netdev_ops;
4436
4437 switch (cmd) {
4438 case SIOCSIFFLAGS: /* Set interface flags */
4439 return dev_change_flags(dev, ifr->ifr_flags);
4440
4441 case SIOCSIFMETRIC: /* Set the metric on the interface
4442 (currently unused) */
4443 return -EOPNOTSUPP;
4444
4445 case SIOCSIFMTU: /* Set the MTU of a device */
4446 return dev_set_mtu(dev, ifr->ifr_mtu);
4447
4448 case SIOCSIFHWADDR:
4449 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4450
4451 case SIOCSIFHWBROADCAST:
4452 if (ifr->ifr_hwaddr.sa_family != dev->type)
4453 return -EINVAL;
4454 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4455 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4456 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4457 return 0;
4458
4459 case SIOCSIFMAP:
4460 if (ops->ndo_set_config) {
4461 if (!netif_device_present(dev))
4462 return -ENODEV;
4463 return ops->ndo_set_config(dev, &ifr->ifr_map);
4464 }
4465 return -EOPNOTSUPP;
4466
4467 case SIOCADDMULTI:
4468 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4469 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4470 return -EINVAL;
4471 if (!netif_device_present(dev))
4472 return -ENODEV;
4473 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4474
4475 case SIOCDELMULTI:
4476 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4477 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4478 return -EINVAL;
4479 if (!netif_device_present(dev))
4480 return -ENODEV;
4481 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4482
4483 case SIOCSIFTXQLEN:
4484 if (ifr->ifr_qlen < 0)
4485 return -EINVAL;
4486 dev->tx_queue_len = ifr->ifr_qlen;
4487 return 0;
4488
4489 case SIOCSIFNAME:
4490 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4491 return dev_change_name(dev, ifr->ifr_newname);
4492
4493 /*
4494 * Unknown or private ioctl
4495 */
4496 default:
4497 if ((cmd >= SIOCDEVPRIVATE &&
4498 cmd <= SIOCDEVPRIVATE + 15) ||
4499 cmd == SIOCBONDENSLAVE ||
4500 cmd == SIOCBONDRELEASE ||
4501 cmd == SIOCBONDSETHWADDR ||
4502 cmd == SIOCBONDSLAVEINFOQUERY ||
4503 cmd == SIOCBONDINFOQUERY ||
4504 cmd == SIOCBONDCHANGEACTIVE ||
4505 cmd == SIOCGMIIPHY ||
4506 cmd == SIOCGMIIREG ||
4507 cmd == SIOCSMIIREG ||
4508 cmd == SIOCBRADDIF ||
4509 cmd == SIOCBRDELIF ||
4510 cmd == SIOCSHWTSTAMP ||
4511 cmd == SIOCWANDEV) {
4512 err = -EOPNOTSUPP;
4513 if (ops->ndo_do_ioctl) {
4514 if (netif_device_present(dev))
4515 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4516 else
4517 err = -ENODEV;
4518 }
4519 } else
4520 err = -EINVAL;
4521
4522 }
4523 return err;
4524 }
4525
4526 /*
4527 * This function handles all "interface"-type I/O control requests. The actual
4528 * 'doing' part of this is dev_ifsioc above.
4529 */
4530
4531 /**
4532 * dev_ioctl - network device ioctl
4533 * @net: the applicable net namespace
4534 * @cmd: command to issue
4535 * @arg: pointer to a struct ifreq in user space
4536 *
4537 * Issue ioctl functions to devices. This is normally called by the
4538 * user space syscall interfaces but can sometimes be useful for
4539 * other purposes. The return value is the return from the syscall if
4540 * positive or a negative errno code on error.
4541 */
4542
4543 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4544 {
4545 struct ifreq ifr;
4546 int ret;
4547 char *colon;
4548
4549 /* One special case: SIOCGIFCONF takes ifconf argument
4550 and requires shared lock, because it sleeps writing
4551 to user space.
4552 */
4553
4554 if (cmd == SIOCGIFCONF) {
4555 rtnl_lock();
4556 ret = dev_ifconf(net, (char __user *) arg);
4557 rtnl_unlock();
4558 return ret;
4559 }
4560 if (cmd == SIOCGIFNAME)
4561 return dev_ifname(net, (struct ifreq __user *)arg);
4562
4563 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4564 return -EFAULT;
4565
4566 ifr.ifr_name[IFNAMSIZ-1] = 0;
4567
4568 colon = strchr(ifr.ifr_name, ':');
4569 if (colon)
4570 *colon = 0;
4571
4572 /*
4573 * See which interface the caller is talking about.
4574 */
4575
4576 switch (cmd) {
4577 /*
4578 * These ioctl calls:
4579 * - can be done by all.
4580 * - atomic and do not require locking.
4581 * - return a value
4582 */
4583 case SIOCGIFFLAGS:
4584 case SIOCGIFMETRIC:
4585 case SIOCGIFMTU:
4586 case SIOCGIFHWADDR:
4587 case SIOCGIFSLAVE:
4588 case SIOCGIFMAP:
4589 case SIOCGIFINDEX:
4590 case SIOCGIFTXQLEN:
4591 dev_load(net, ifr.ifr_name);
4592 rcu_read_lock();
4593 ret = dev_ifsioc_locked(net, &ifr, cmd);
4594 rcu_read_unlock();
4595 if (!ret) {
4596 if (colon)
4597 *colon = ':';
4598 if (copy_to_user(arg, &ifr,
4599 sizeof(struct ifreq)))
4600 ret = -EFAULT;
4601 }
4602 return ret;
4603
4604 case SIOCETHTOOL:
4605 dev_load(net, ifr.ifr_name);
4606 rtnl_lock();
4607 ret = dev_ethtool(net, &ifr);
4608 rtnl_unlock();
4609 if (!ret) {
4610 if (colon)
4611 *colon = ':';
4612 if (copy_to_user(arg, &ifr,
4613 sizeof(struct ifreq)))
4614 ret = -EFAULT;
4615 }
4616 return ret;
4617
4618 /*
4619 * These ioctl calls:
4620 * - require superuser power.
4621 * - require strict serialization.
4622 * - return a value
4623 */
4624 case SIOCGMIIPHY:
4625 case SIOCGMIIREG:
4626 case SIOCSIFNAME:
4627 if (!capable(CAP_NET_ADMIN))
4628 return -EPERM;
4629 dev_load(net, ifr.ifr_name);
4630 rtnl_lock();
4631 ret = dev_ifsioc(net, &ifr, cmd);
4632 rtnl_unlock();
4633 if (!ret) {
4634 if (colon)
4635 *colon = ':';
4636 if (copy_to_user(arg, &ifr,
4637 sizeof(struct ifreq)))
4638 ret = -EFAULT;
4639 }
4640 return ret;
4641
4642 /*
4643 * These ioctl calls:
4644 * - require superuser power.
4645 * - require strict serialization.
4646 * - do not return a value
4647 */
4648 case SIOCSIFFLAGS:
4649 case SIOCSIFMETRIC:
4650 case SIOCSIFMTU:
4651 case SIOCSIFMAP:
4652 case SIOCSIFHWADDR:
4653 case SIOCSIFSLAVE:
4654 case SIOCADDMULTI:
4655 case SIOCDELMULTI:
4656 case SIOCSIFHWBROADCAST:
4657 case SIOCSIFTXQLEN:
4658 case SIOCSMIIREG:
4659 case SIOCBONDENSLAVE:
4660 case SIOCBONDRELEASE:
4661 case SIOCBONDSETHWADDR:
4662 case SIOCBONDCHANGEACTIVE:
4663 case SIOCBRADDIF:
4664 case SIOCBRDELIF:
4665 case SIOCSHWTSTAMP:
4666 if (!capable(CAP_NET_ADMIN))
4667 return -EPERM;
4668 /* fall through */
4669 case SIOCBONDSLAVEINFOQUERY:
4670 case SIOCBONDINFOQUERY:
4671 dev_load(net, ifr.ifr_name);
4672 rtnl_lock();
4673 ret = dev_ifsioc(net, &ifr, cmd);
4674 rtnl_unlock();
4675 return ret;
4676
4677 case SIOCGIFMEM:
4678 /* Get the per device memory space. We can add this but
4679 * currently do not support it */
4680 case SIOCSIFMEM:
4681 /* Set the per device memory buffer space.
4682 * Not applicable in our case */
4683 case SIOCSIFLINK:
4684 return -EINVAL;
4685
4686 /*
4687 * Unknown or private ioctl.
4688 */
4689 default:
4690 if (cmd == SIOCWANDEV ||
4691 (cmd >= SIOCDEVPRIVATE &&
4692 cmd <= SIOCDEVPRIVATE + 15)) {
4693 dev_load(net, ifr.ifr_name);
4694 rtnl_lock();
4695 ret = dev_ifsioc(net, &ifr, cmd);
4696 rtnl_unlock();
4697 if (!ret && copy_to_user(arg, &ifr,
4698 sizeof(struct ifreq)))
4699 ret = -EFAULT;
4700 return ret;
4701 }
4702 /* Take care of Wireless Extensions */
4703 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4704 return wext_handle_ioctl(net, &ifr, cmd, arg);
4705 return -EINVAL;
4706 }
4707 }
4708
4709
4710 /**
4711 * dev_new_index - allocate an ifindex
4712 * @net: the applicable net namespace
4713 *
4714 * Returns a suitable unique value for a new device interface
4715 * number. The caller must hold the rtnl semaphore or the
4716 * dev_base_lock to be sure it remains unique.
4717 */
4718 static int dev_new_index(struct net *net)
4719 {
4720 static int ifindex;
4721 for (;;) {
4722 if (++ifindex <= 0)
4723 ifindex = 1;
4724 if (!__dev_get_by_index(net, ifindex))
4725 return ifindex;
4726 }
4727 }
4728
4729 /* Delayed registration/unregisteration */
4730 static LIST_HEAD(net_todo_list);
4731
4732 static void net_set_todo(struct net_device *dev)
4733 {
4734 list_add_tail(&dev->todo_list, &net_todo_list);
4735 }
4736
4737 static void rollback_registered_many(struct list_head *head)
4738 {
4739 struct net_device *dev, *tmp;
4740
4741 BUG_ON(dev_boot_phase);
4742 ASSERT_RTNL();
4743
4744 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4745 /* Some devices call without registering
4746 * for initialization unwind. Remove those
4747 * devices and proceed with the remaining.
4748 */
4749 if (dev->reg_state == NETREG_UNINITIALIZED) {
4750 pr_debug("unregister_netdevice: device %s/%p never "
4751 "was registered\n", dev->name, dev);
4752
4753 WARN_ON(1);
4754 list_del(&dev->unreg_list);
4755 continue;
4756 }
4757
4758 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4759
4760 /* If device is running, close it first. */
4761 dev_close(dev);
4762
4763 /* And unlink it from device chain. */
4764 unlist_netdevice(dev);
4765
4766 dev->reg_state = NETREG_UNREGISTERING;
4767 }
4768
4769 synchronize_net();
4770
4771 list_for_each_entry(dev, head, unreg_list) {
4772 /* Shutdown queueing discipline. */
4773 dev_shutdown(dev);
4774
4775
4776 /* Notify protocols, that we are about to destroy
4777 this device. They should clean all the things.
4778 */
4779 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4780
4781 if (!dev->rtnl_link_ops ||
4782 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4783 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4784
4785 /*
4786 * Flush the unicast and multicast chains
4787 */
4788 dev_uc_flush(dev);
4789 dev_mc_flush(dev);
4790
4791 if (dev->netdev_ops->ndo_uninit)
4792 dev->netdev_ops->ndo_uninit(dev);
4793
4794 /* Notifier chain MUST detach us from master device. */
4795 WARN_ON(dev->master);
4796
4797 /* Remove entries from kobject tree */
4798 netdev_unregister_kobject(dev);
4799 }
4800
4801 /* Process any work delayed until the end of the batch */
4802 dev = list_first_entry(head, struct net_device, unreg_list);
4803 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4804
4805 synchronize_net();
4806
4807 list_for_each_entry(dev, head, unreg_list)
4808 dev_put(dev);
4809 }
4810
4811 static void rollback_registered(struct net_device *dev)
4812 {
4813 LIST_HEAD(single);
4814
4815 list_add(&dev->unreg_list, &single);
4816 rollback_registered_many(&single);
4817 }
4818
4819 static void __netdev_init_queue_locks_one(struct net_device *dev,
4820 struct netdev_queue *dev_queue,
4821 void *_unused)
4822 {
4823 spin_lock_init(&dev_queue->_xmit_lock);
4824 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4825 dev_queue->xmit_lock_owner = -1;
4826 }
4827
4828 static void netdev_init_queue_locks(struct net_device *dev)
4829 {
4830 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4831 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4832 }
4833
4834 unsigned long netdev_fix_features(unsigned long features, const char *name)
4835 {
4836 /* Fix illegal SG+CSUM combinations. */
4837 if ((features & NETIF_F_SG) &&
4838 !(features & NETIF_F_ALL_CSUM)) {
4839 if (name)
4840 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4841 "checksum feature.\n", name);
4842 features &= ~NETIF_F_SG;
4843 }
4844
4845 /* TSO requires that SG is present as well. */
4846 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4847 if (name)
4848 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4849 "SG feature.\n", name);
4850 features &= ~NETIF_F_TSO;
4851 }
4852
4853 if (features & NETIF_F_UFO) {
4854 if (!(features & NETIF_F_GEN_CSUM)) {
4855 if (name)
4856 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4857 "since no NETIF_F_HW_CSUM feature.\n",
4858 name);
4859 features &= ~NETIF_F_UFO;
4860 }
4861
4862 if (!(features & NETIF_F_SG)) {
4863 if (name)
4864 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4865 "since no NETIF_F_SG feature.\n", name);
4866 features &= ~NETIF_F_UFO;
4867 }
4868 }
4869
4870 return features;
4871 }
4872 EXPORT_SYMBOL(netdev_fix_features);
4873
4874 /**
4875 * netif_stacked_transfer_operstate - transfer operstate
4876 * @rootdev: the root or lower level device to transfer state from
4877 * @dev: the device to transfer operstate to
4878 *
4879 * Transfer operational state from root to device. This is normally
4880 * called when a stacking relationship exists between the root
4881 * device and the device(a leaf device).
4882 */
4883 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4884 struct net_device *dev)
4885 {
4886 if (rootdev->operstate == IF_OPER_DORMANT)
4887 netif_dormant_on(dev);
4888 else
4889 netif_dormant_off(dev);
4890
4891 if (netif_carrier_ok(rootdev)) {
4892 if (!netif_carrier_ok(dev))
4893 netif_carrier_on(dev);
4894 } else {
4895 if (netif_carrier_ok(dev))
4896 netif_carrier_off(dev);
4897 }
4898 }
4899 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4900
4901 /**
4902 * register_netdevice - register a network device
4903 * @dev: device to register
4904 *
4905 * Take a completed network device structure and add it to the kernel
4906 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4907 * chain. 0 is returned on success. A negative errno code is returned
4908 * on a failure to set up the device, or if the name is a duplicate.
4909 *
4910 * Callers must hold the rtnl semaphore. You may want
4911 * register_netdev() instead of this.
4912 *
4913 * BUGS:
4914 * The locking appears insufficient to guarantee two parallel registers
4915 * will not get the same name.
4916 */
4917
4918 int register_netdevice(struct net_device *dev)
4919 {
4920 int ret;
4921 struct net *net = dev_net(dev);
4922
4923 BUG_ON(dev_boot_phase);
4924 ASSERT_RTNL();
4925
4926 might_sleep();
4927
4928 /* When net_device's are persistent, this will be fatal. */
4929 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4930 BUG_ON(!net);
4931
4932 spin_lock_init(&dev->addr_list_lock);
4933 netdev_set_addr_lockdep_class(dev);
4934 netdev_init_queue_locks(dev);
4935
4936 dev->iflink = -1;
4937
4938 #ifdef CONFIG_RPS
4939 if (!dev->num_rx_queues) {
4940 /*
4941 * Allocate a single RX queue if driver never called
4942 * alloc_netdev_mq
4943 */
4944
4945 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4946 if (!dev->_rx) {
4947 ret = -ENOMEM;
4948 goto out;
4949 }
4950
4951 dev->_rx->first = dev->_rx;
4952 atomic_set(&dev->_rx->count, 1);
4953 dev->num_rx_queues = 1;
4954 }
4955 #endif
4956 /* Init, if this function is available */
4957 if (dev->netdev_ops->ndo_init) {
4958 ret = dev->netdev_ops->ndo_init(dev);
4959 if (ret) {
4960 if (ret > 0)
4961 ret = -EIO;
4962 goto out;
4963 }
4964 }
4965
4966 ret = dev_get_valid_name(dev, dev->name, 0);
4967 if (ret)
4968 goto err_uninit;
4969
4970 dev->ifindex = dev_new_index(net);
4971 if (dev->iflink == -1)
4972 dev->iflink = dev->ifindex;
4973
4974 /* Fix illegal checksum combinations */
4975 if ((dev->features & NETIF_F_HW_CSUM) &&
4976 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4977 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4978 dev->name);
4979 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4980 }
4981
4982 if ((dev->features & NETIF_F_NO_CSUM) &&
4983 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4984 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4985 dev->name);
4986 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4987 }
4988
4989 dev->features = netdev_fix_features(dev->features, dev->name);
4990
4991 /* Enable software GSO if SG is supported. */
4992 if (dev->features & NETIF_F_SG)
4993 dev->features |= NETIF_F_GSO;
4994
4995 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
4996 ret = notifier_to_errno(ret);
4997 if (ret)
4998 goto err_uninit;
4999
5000 ret = netdev_register_kobject(dev);
5001 if (ret)
5002 goto err_uninit;
5003 dev->reg_state = NETREG_REGISTERED;
5004
5005 /*
5006 * Default initial state at registry is that the
5007 * device is present.
5008 */
5009
5010 set_bit(__LINK_STATE_PRESENT, &dev->state);
5011
5012 dev_init_scheduler(dev);
5013 dev_hold(dev);
5014 list_netdevice(dev);
5015
5016 /* Notify protocols, that a new device appeared. */
5017 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5018 ret = notifier_to_errno(ret);
5019 if (ret) {
5020 rollback_registered(dev);
5021 dev->reg_state = NETREG_UNREGISTERED;
5022 }
5023 /*
5024 * Prevent userspace races by waiting until the network
5025 * device is fully setup before sending notifications.
5026 */
5027 if (!dev->rtnl_link_ops ||
5028 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5029 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5030
5031 out:
5032 return ret;
5033
5034 err_uninit:
5035 if (dev->netdev_ops->ndo_uninit)
5036 dev->netdev_ops->ndo_uninit(dev);
5037 goto out;
5038 }
5039 EXPORT_SYMBOL(register_netdevice);
5040
5041 /**
5042 * init_dummy_netdev - init a dummy network device for NAPI
5043 * @dev: device to init
5044 *
5045 * This takes a network device structure and initialize the minimum
5046 * amount of fields so it can be used to schedule NAPI polls without
5047 * registering a full blown interface. This is to be used by drivers
5048 * that need to tie several hardware interfaces to a single NAPI
5049 * poll scheduler due to HW limitations.
5050 */
5051 int init_dummy_netdev(struct net_device *dev)
5052 {
5053 /* Clear everything. Note we don't initialize spinlocks
5054 * are they aren't supposed to be taken by any of the
5055 * NAPI code and this dummy netdev is supposed to be
5056 * only ever used for NAPI polls
5057 */
5058 memset(dev, 0, sizeof(struct net_device));
5059
5060 /* make sure we BUG if trying to hit standard
5061 * register/unregister code path
5062 */
5063 dev->reg_state = NETREG_DUMMY;
5064
5065 /* initialize the ref count */
5066 atomic_set(&dev->refcnt, 1);
5067
5068 /* NAPI wants this */
5069 INIT_LIST_HEAD(&dev->napi_list);
5070
5071 /* a dummy interface is started by default */
5072 set_bit(__LINK_STATE_PRESENT, &dev->state);
5073 set_bit(__LINK_STATE_START, &dev->state);
5074
5075 return 0;
5076 }
5077 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5078
5079
5080 /**
5081 * register_netdev - register a network device
5082 * @dev: device to register
5083 *
5084 * Take a completed network device structure and add it to the kernel
5085 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5086 * chain. 0 is returned on success. A negative errno code is returned
5087 * on a failure to set up the device, or if the name is a duplicate.
5088 *
5089 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5090 * and expands the device name if you passed a format string to
5091 * alloc_netdev.
5092 */
5093 int register_netdev(struct net_device *dev)
5094 {
5095 int err;
5096
5097 rtnl_lock();
5098
5099 /*
5100 * If the name is a format string the caller wants us to do a
5101 * name allocation.
5102 */
5103 if (strchr(dev->name, '%')) {
5104 err = dev_alloc_name(dev, dev->name);
5105 if (err < 0)
5106 goto out;
5107 }
5108
5109 err = register_netdevice(dev);
5110 out:
5111 rtnl_unlock();
5112 return err;
5113 }
5114 EXPORT_SYMBOL(register_netdev);
5115
5116 /*
5117 * netdev_wait_allrefs - wait until all references are gone.
5118 *
5119 * This is called when unregistering network devices.
5120 *
5121 * Any protocol or device that holds a reference should register
5122 * for netdevice notification, and cleanup and put back the
5123 * reference if they receive an UNREGISTER event.
5124 * We can get stuck here if buggy protocols don't correctly
5125 * call dev_put.
5126 */
5127 static void netdev_wait_allrefs(struct net_device *dev)
5128 {
5129 unsigned long rebroadcast_time, warning_time;
5130
5131 linkwatch_forget_dev(dev);
5132
5133 rebroadcast_time = warning_time = jiffies;
5134 while (atomic_read(&dev->refcnt) != 0) {
5135 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5136 rtnl_lock();
5137
5138 /* Rebroadcast unregister notification */
5139 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5140 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5141 * should have already handle it the first time */
5142
5143 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5144 &dev->state)) {
5145 /* We must not have linkwatch events
5146 * pending on unregister. If this
5147 * happens, we simply run the queue
5148 * unscheduled, resulting in a noop
5149 * for this device.
5150 */
5151 linkwatch_run_queue();
5152 }
5153
5154 __rtnl_unlock();
5155
5156 rebroadcast_time = jiffies;
5157 }
5158
5159 msleep(250);
5160
5161 if (time_after(jiffies, warning_time + 10 * HZ)) {
5162 printk(KERN_EMERG "unregister_netdevice: "
5163 "waiting for %s to become free. Usage "
5164 "count = %d\n",
5165 dev->name, atomic_read(&dev->refcnt));
5166 warning_time = jiffies;
5167 }
5168 }
5169 }
5170
5171 /* The sequence is:
5172 *
5173 * rtnl_lock();
5174 * ...
5175 * register_netdevice(x1);
5176 * register_netdevice(x2);
5177 * ...
5178 * unregister_netdevice(y1);
5179 * unregister_netdevice(y2);
5180 * ...
5181 * rtnl_unlock();
5182 * free_netdev(y1);
5183 * free_netdev(y2);
5184 *
5185 * We are invoked by rtnl_unlock().
5186 * This allows us to deal with problems:
5187 * 1) We can delete sysfs objects which invoke hotplug
5188 * without deadlocking with linkwatch via keventd.
5189 * 2) Since we run with the RTNL semaphore not held, we can sleep
5190 * safely in order to wait for the netdev refcnt to drop to zero.
5191 *
5192 * We must not return until all unregister events added during
5193 * the interval the lock was held have been completed.
5194 */
5195 void netdev_run_todo(void)
5196 {
5197 struct list_head list;
5198
5199 /* Snapshot list, allow later requests */
5200 list_replace_init(&net_todo_list, &list);
5201
5202 __rtnl_unlock();
5203
5204 while (!list_empty(&list)) {
5205 struct net_device *dev
5206 = list_first_entry(&list, struct net_device, todo_list);
5207 list_del(&dev->todo_list);
5208
5209 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5210 printk(KERN_ERR "network todo '%s' but state %d\n",
5211 dev->name, dev->reg_state);
5212 dump_stack();
5213 continue;
5214 }
5215
5216 dev->reg_state = NETREG_UNREGISTERED;
5217
5218 on_each_cpu(flush_backlog, dev, 1);
5219
5220 netdev_wait_allrefs(dev);
5221
5222 /* paranoia */
5223 BUG_ON(atomic_read(&dev->refcnt));
5224 WARN_ON(dev->ip_ptr);
5225 WARN_ON(dev->ip6_ptr);
5226 WARN_ON(dev->dn_ptr);
5227
5228 if (dev->destructor)
5229 dev->destructor(dev);
5230
5231 /* Free network device */
5232 kobject_put(&dev->dev.kobj);
5233 }
5234 }
5235
5236 /**
5237 * dev_txq_stats_fold - fold tx_queues stats
5238 * @dev: device to get statistics from
5239 * @stats: struct net_device_stats to hold results
5240 */
5241 void dev_txq_stats_fold(const struct net_device *dev,
5242 struct net_device_stats *stats)
5243 {
5244 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5245 unsigned int i;
5246 struct netdev_queue *txq;
5247
5248 for (i = 0; i < dev->num_tx_queues; i++) {
5249 txq = netdev_get_tx_queue(dev, i);
5250 tx_bytes += txq->tx_bytes;
5251 tx_packets += txq->tx_packets;
5252 tx_dropped += txq->tx_dropped;
5253 }
5254 if (tx_bytes || tx_packets || tx_dropped) {
5255 stats->tx_bytes = tx_bytes;
5256 stats->tx_packets = tx_packets;
5257 stats->tx_dropped = tx_dropped;
5258 }
5259 }
5260 EXPORT_SYMBOL(dev_txq_stats_fold);
5261
5262 /**
5263 * dev_get_stats - get network device statistics
5264 * @dev: device to get statistics from
5265 *
5266 * Get network statistics from device. The device driver may provide
5267 * its own method by setting dev->netdev_ops->get_stats; otherwise
5268 * the internal statistics structure is used.
5269 */
5270 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5271 {
5272 const struct net_device_ops *ops = dev->netdev_ops;
5273
5274 if (ops->ndo_get_stats)
5275 return ops->ndo_get_stats(dev);
5276
5277 dev_txq_stats_fold(dev, &dev->stats);
5278 return &dev->stats;
5279 }
5280 EXPORT_SYMBOL(dev_get_stats);
5281
5282 static void netdev_init_one_queue(struct net_device *dev,
5283 struct netdev_queue *queue,
5284 void *_unused)
5285 {
5286 queue->dev = dev;
5287 }
5288
5289 static void netdev_init_queues(struct net_device *dev)
5290 {
5291 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5292 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5293 spin_lock_init(&dev->tx_global_lock);
5294 }
5295
5296 /**
5297 * alloc_netdev_mq - allocate network device
5298 * @sizeof_priv: size of private data to allocate space for
5299 * @name: device name format string
5300 * @setup: callback to initialize device
5301 * @queue_count: the number of subqueues to allocate
5302 *
5303 * Allocates a struct net_device with private data area for driver use
5304 * and performs basic initialization. Also allocates subquue structs
5305 * for each queue on the device at the end of the netdevice.
5306 */
5307 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5308 void (*setup)(struct net_device *), unsigned int queue_count)
5309 {
5310 struct netdev_queue *tx;
5311 struct net_device *dev;
5312 size_t alloc_size;
5313 struct net_device *p;
5314 #ifdef CONFIG_RPS
5315 struct netdev_rx_queue *rx;
5316 int i;
5317 #endif
5318
5319 BUG_ON(strlen(name) >= sizeof(dev->name));
5320
5321 alloc_size = sizeof(struct net_device);
5322 if (sizeof_priv) {
5323 /* ensure 32-byte alignment of private area */
5324 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5325 alloc_size += sizeof_priv;
5326 }
5327 /* ensure 32-byte alignment of whole construct */
5328 alloc_size += NETDEV_ALIGN - 1;
5329
5330 p = kzalloc(alloc_size, GFP_KERNEL);
5331 if (!p) {
5332 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5333 return NULL;
5334 }
5335
5336 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5337 if (!tx) {
5338 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5339 "tx qdiscs.\n");
5340 goto free_p;
5341 }
5342
5343 #ifdef CONFIG_RPS
5344 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5345 if (!rx) {
5346 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5347 "rx queues.\n");
5348 goto free_tx;
5349 }
5350
5351 atomic_set(&rx->count, queue_count);
5352
5353 /*
5354 * Set a pointer to first element in the array which holds the
5355 * reference count.
5356 */
5357 for (i = 0; i < queue_count; i++)
5358 rx[i].first = rx;
5359 #endif
5360
5361 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5362 dev->padded = (char *)dev - (char *)p;
5363
5364 if (dev_addr_init(dev))
5365 goto free_rx;
5366
5367 dev_mc_init(dev);
5368 dev_uc_init(dev);
5369
5370 dev_net_set(dev, &init_net);
5371
5372 dev->_tx = tx;
5373 dev->num_tx_queues = queue_count;
5374 dev->real_num_tx_queues = queue_count;
5375
5376 #ifdef CONFIG_RPS
5377 dev->_rx = rx;
5378 dev->num_rx_queues = queue_count;
5379 #endif
5380
5381 dev->gso_max_size = GSO_MAX_SIZE;
5382
5383 netdev_init_queues(dev);
5384
5385 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5386 dev->ethtool_ntuple_list.count = 0;
5387 INIT_LIST_HEAD(&dev->napi_list);
5388 INIT_LIST_HEAD(&dev->unreg_list);
5389 INIT_LIST_HEAD(&dev->link_watch_list);
5390 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5391 setup(dev);
5392 strcpy(dev->name, name);
5393 return dev;
5394
5395 free_rx:
5396 #ifdef CONFIG_RPS
5397 kfree(rx);
5398 free_tx:
5399 #endif
5400 kfree(tx);
5401 free_p:
5402 kfree(p);
5403 return NULL;
5404 }
5405 EXPORT_SYMBOL(alloc_netdev_mq);
5406
5407 /**
5408 * free_netdev - free network device
5409 * @dev: device
5410 *
5411 * This function does the last stage of destroying an allocated device
5412 * interface. The reference to the device object is released.
5413 * If this is the last reference then it will be freed.
5414 */
5415 void free_netdev(struct net_device *dev)
5416 {
5417 struct napi_struct *p, *n;
5418
5419 release_net(dev_net(dev));
5420
5421 kfree(dev->_tx);
5422
5423 /* Flush device addresses */
5424 dev_addr_flush(dev);
5425
5426 /* Clear ethtool n-tuple list */
5427 ethtool_ntuple_flush(dev);
5428
5429 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5430 netif_napi_del(p);
5431
5432 /* Compatibility with error handling in drivers */
5433 if (dev->reg_state == NETREG_UNINITIALIZED) {
5434 kfree((char *)dev - dev->padded);
5435 return;
5436 }
5437
5438 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5439 dev->reg_state = NETREG_RELEASED;
5440
5441 /* will free via device release */
5442 put_device(&dev->dev);
5443 }
5444 EXPORT_SYMBOL(free_netdev);
5445
5446 /**
5447 * synchronize_net - Synchronize with packet receive processing
5448 *
5449 * Wait for packets currently being received to be done.
5450 * Does not block later packets from starting.
5451 */
5452 void synchronize_net(void)
5453 {
5454 might_sleep();
5455 synchronize_rcu();
5456 }
5457 EXPORT_SYMBOL(synchronize_net);
5458
5459 /**
5460 * unregister_netdevice_queue - remove device from the kernel
5461 * @dev: device
5462 * @head: list
5463 *
5464 * This function shuts down a device interface and removes it
5465 * from the kernel tables.
5466 * If head not NULL, device is queued to be unregistered later.
5467 *
5468 * Callers must hold the rtnl semaphore. You may want
5469 * unregister_netdev() instead of this.
5470 */
5471
5472 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5473 {
5474 ASSERT_RTNL();
5475
5476 if (head) {
5477 list_move_tail(&dev->unreg_list, head);
5478 } else {
5479 rollback_registered(dev);
5480 /* Finish processing unregister after unlock */
5481 net_set_todo(dev);
5482 }
5483 }
5484 EXPORT_SYMBOL(unregister_netdevice_queue);
5485
5486 /**
5487 * unregister_netdevice_many - unregister many devices
5488 * @head: list of devices
5489 */
5490 void unregister_netdevice_many(struct list_head *head)
5491 {
5492 struct net_device *dev;
5493
5494 if (!list_empty(head)) {
5495 rollback_registered_many(head);
5496 list_for_each_entry(dev, head, unreg_list)
5497 net_set_todo(dev);
5498 }
5499 }
5500 EXPORT_SYMBOL(unregister_netdevice_many);
5501
5502 /**
5503 * unregister_netdev - remove device from the kernel
5504 * @dev: device
5505 *
5506 * This function shuts down a device interface and removes it
5507 * from the kernel tables.
5508 *
5509 * This is just a wrapper for unregister_netdevice that takes
5510 * the rtnl semaphore. In general you want to use this and not
5511 * unregister_netdevice.
5512 */
5513 void unregister_netdev(struct net_device *dev)
5514 {
5515 rtnl_lock();
5516 unregister_netdevice(dev);
5517 rtnl_unlock();
5518 }
5519 EXPORT_SYMBOL(unregister_netdev);
5520
5521 /**
5522 * dev_change_net_namespace - move device to different nethost namespace
5523 * @dev: device
5524 * @net: network namespace
5525 * @pat: If not NULL name pattern to try if the current device name
5526 * is already taken in the destination network namespace.
5527 *
5528 * This function shuts down a device interface and moves it
5529 * to a new network namespace. On success 0 is returned, on
5530 * a failure a netagive errno code is returned.
5531 *
5532 * Callers must hold the rtnl semaphore.
5533 */
5534
5535 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5536 {
5537 int err;
5538
5539 ASSERT_RTNL();
5540
5541 /* Don't allow namespace local devices to be moved. */
5542 err = -EINVAL;
5543 if (dev->features & NETIF_F_NETNS_LOCAL)
5544 goto out;
5545
5546 /* Ensure the device has been registrered */
5547 err = -EINVAL;
5548 if (dev->reg_state != NETREG_REGISTERED)
5549 goto out;
5550
5551 /* Get out if there is nothing todo */
5552 err = 0;
5553 if (net_eq(dev_net(dev), net))
5554 goto out;
5555
5556 /* Pick the destination device name, and ensure
5557 * we can use it in the destination network namespace.
5558 */
5559 err = -EEXIST;
5560 if (__dev_get_by_name(net, dev->name)) {
5561 /* We get here if we can't use the current device name */
5562 if (!pat)
5563 goto out;
5564 if (dev_get_valid_name(dev, pat, 1))
5565 goto out;
5566 }
5567
5568 /*
5569 * And now a mini version of register_netdevice unregister_netdevice.
5570 */
5571
5572 /* If device is running close it first. */
5573 dev_close(dev);
5574
5575 /* And unlink it from device chain */
5576 err = -ENODEV;
5577 unlist_netdevice(dev);
5578
5579 synchronize_net();
5580
5581 /* Shutdown queueing discipline. */
5582 dev_shutdown(dev);
5583
5584 /* Notify protocols, that we are about to destroy
5585 this device. They should clean all the things.
5586 */
5587 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5588 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5589
5590 /*
5591 * Flush the unicast and multicast chains
5592 */
5593 dev_uc_flush(dev);
5594 dev_mc_flush(dev);
5595
5596 /* Actually switch the network namespace */
5597 dev_net_set(dev, net);
5598
5599 /* If there is an ifindex conflict assign a new one */
5600 if (__dev_get_by_index(net, dev->ifindex)) {
5601 int iflink = (dev->iflink == dev->ifindex);
5602 dev->ifindex = dev_new_index(net);
5603 if (iflink)
5604 dev->iflink = dev->ifindex;
5605 }
5606
5607 /* Fixup kobjects */
5608 err = device_rename(&dev->dev, dev->name);
5609 WARN_ON(err);
5610
5611 /* Add the device back in the hashes */
5612 list_netdevice(dev);
5613
5614 /* Notify protocols, that a new device appeared. */
5615 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5616
5617 /*
5618 * Prevent userspace races by waiting until the network
5619 * device is fully setup before sending notifications.
5620 */
5621 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5622
5623 synchronize_net();
5624 err = 0;
5625 out:
5626 return err;
5627 }
5628 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5629
5630 static int dev_cpu_callback(struct notifier_block *nfb,
5631 unsigned long action,
5632 void *ocpu)
5633 {
5634 struct sk_buff **list_skb;
5635 struct sk_buff *skb;
5636 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5637 struct softnet_data *sd, *oldsd;
5638
5639 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5640 return NOTIFY_OK;
5641
5642 local_irq_disable();
5643 cpu = smp_processor_id();
5644 sd = &per_cpu(softnet_data, cpu);
5645 oldsd = &per_cpu(softnet_data, oldcpu);
5646
5647 /* Find end of our completion_queue. */
5648 list_skb = &sd->completion_queue;
5649 while (*list_skb)
5650 list_skb = &(*list_skb)->next;
5651 /* Append completion queue from offline CPU. */
5652 *list_skb = oldsd->completion_queue;
5653 oldsd->completion_queue = NULL;
5654
5655 /* Append output queue from offline CPU. */
5656 if (oldsd->output_queue) {
5657 *sd->output_queue_tailp = oldsd->output_queue;
5658 sd->output_queue_tailp = oldsd->output_queue_tailp;
5659 oldsd->output_queue = NULL;
5660 oldsd->output_queue_tailp = &oldsd->output_queue;
5661 }
5662
5663 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5664 local_irq_enable();
5665
5666 /* Process offline CPU's input_pkt_queue */
5667 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5668 netif_rx(skb);
5669 input_queue_head_incr(oldsd);
5670 }
5671 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5672 netif_rx(skb);
5673 input_queue_head_incr(oldsd);
5674 }
5675
5676 return NOTIFY_OK;
5677 }
5678
5679
5680 /**
5681 * netdev_increment_features - increment feature set by one
5682 * @all: current feature set
5683 * @one: new feature set
5684 * @mask: mask feature set
5685 *
5686 * Computes a new feature set after adding a device with feature set
5687 * @one to the master device with current feature set @all. Will not
5688 * enable anything that is off in @mask. Returns the new feature set.
5689 */
5690 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5691 unsigned long mask)
5692 {
5693 /* If device needs checksumming, downgrade to it. */
5694 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5695 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5696 else if (mask & NETIF_F_ALL_CSUM) {
5697 /* If one device supports v4/v6 checksumming, set for all. */
5698 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5699 !(all & NETIF_F_GEN_CSUM)) {
5700 all &= ~NETIF_F_ALL_CSUM;
5701 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5702 }
5703
5704 /* If one device supports hw checksumming, set for all. */
5705 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5706 all &= ~NETIF_F_ALL_CSUM;
5707 all |= NETIF_F_HW_CSUM;
5708 }
5709 }
5710
5711 one |= NETIF_F_ALL_CSUM;
5712
5713 one |= all & NETIF_F_ONE_FOR_ALL;
5714 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5715 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5716
5717 return all;
5718 }
5719 EXPORT_SYMBOL(netdev_increment_features);
5720
5721 static struct hlist_head *netdev_create_hash(void)
5722 {
5723 int i;
5724 struct hlist_head *hash;
5725
5726 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5727 if (hash != NULL)
5728 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5729 INIT_HLIST_HEAD(&hash[i]);
5730
5731 return hash;
5732 }
5733
5734 /* Initialize per network namespace state */
5735 static int __net_init netdev_init(struct net *net)
5736 {
5737 INIT_LIST_HEAD(&net->dev_base_head);
5738
5739 net->dev_name_head = netdev_create_hash();
5740 if (net->dev_name_head == NULL)
5741 goto err_name;
5742
5743 net->dev_index_head = netdev_create_hash();
5744 if (net->dev_index_head == NULL)
5745 goto err_idx;
5746
5747 return 0;
5748
5749 err_idx:
5750 kfree(net->dev_name_head);
5751 err_name:
5752 return -ENOMEM;
5753 }
5754
5755 /**
5756 * netdev_drivername - network driver for the device
5757 * @dev: network device
5758 * @buffer: buffer for resulting name
5759 * @len: size of buffer
5760 *
5761 * Determine network driver for device.
5762 */
5763 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5764 {
5765 const struct device_driver *driver;
5766 const struct device *parent;
5767
5768 if (len <= 0 || !buffer)
5769 return buffer;
5770 buffer[0] = 0;
5771
5772 parent = dev->dev.parent;
5773
5774 if (!parent)
5775 return buffer;
5776
5777 driver = parent->driver;
5778 if (driver && driver->name)
5779 strlcpy(buffer, driver->name, len);
5780 return buffer;
5781 }
5782
5783 static void __net_exit netdev_exit(struct net *net)
5784 {
5785 kfree(net->dev_name_head);
5786 kfree(net->dev_index_head);
5787 }
5788
5789 static struct pernet_operations __net_initdata netdev_net_ops = {
5790 .init = netdev_init,
5791 .exit = netdev_exit,
5792 };
5793
5794 static void __net_exit default_device_exit(struct net *net)
5795 {
5796 struct net_device *dev, *aux;
5797 /*
5798 * Push all migratable network devices back to the
5799 * initial network namespace
5800 */
5801 rtnl_lock();
5802 for_each_netdev_safe(net, dev, aux) {
5803 int err;
5804 char fb_name[IFNAMSIZ];
5805
5806 /* Ignore unmoveable devices (i.e. loopback) */
5807 if (dev->features & NETIF_F_NETNS_LOCAL)
5808 continue;
5809
5810 /* Leave virtual devices for the generic cleanup */
5811 if (dev->rtnl_link_ops)
5812 continue;
5813
5814 /* Push remaing network devices to init_net */
5815 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5816 err = dev_change_net_namespace(dev, &init_net, fb_name);
5817 if (err) {
5818 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5819 __func__, dev->name, err);
5820 BUG();
5821 }
5822 }
5823 rtnl_unlock();
5824 }
5825
5826 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5827 {
5828 /* At exit all network devices most be removed from a network
5829 * namespace. Do this in the reverse order of registeration.
5830 * Do this across as many network namespaces as possible to
5831 * improve batching efficiency.
5832 */
5833 struct net_device *dev;
5834 struct net *net;
5835 LIST_HEAD(dev_kill_list);
5836
5837 rtnl_lock();
5838 list_for_each_entry(net, net_list, exit_list) {
5839 for_each_netdev_reverse(net, dev) {
5840 if (dev->rtnl_link_ops)
5841 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5842 else
5843 unregister_netdevice_queue(dev, &dev_kill_list);
5844 }
5845 }
5846 unregister_netdevice_many(&dev_kill_list);
5847 rtnl_unlock();
5848 }
5849
5850 static struct pernet_operations __net_initdata default_device_ops = {
5851 .exit = default_device_exit,
5852 .exit_batch = default_device_exit_batch,
5853 };
5854
5855 /*
5856 * Initialize the DEV module. At boot time this walks the device list and
5857 * unhooks any devices that fail to initialise (normally hardware not
5858 * present) and leaves us with a valid list of present and active devices.
5859 *
5860 */
5861
5862 /*
5863 * This is called single threaded during boot, so no need
5864 * to take the rtnl semaphore.
5865 */
5866 static int __init net_dev_init(void)
5867 {
5868 int i, rc = -ENOMEM;
5869
5870 BUG_ON(!dev_boot_phase);
5871
5872 if (dev_proc_init())
5873 goto out;
5874
5875 if (netdev_kobject_init())
5876 goto out;
5877
5878 INIT_LIST_HEAD(&ptype_all);
5879 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5880 INIT_LIST_HEAD(&ptype_base[i]);
5881
5882 if (register_pernet_subsys(&netdev_net_ops))
5883 goto out;
5884
5885 /*
5886 * Initialise the packet receive queues.
5887 */
5888
5889 for_each_possible_cpu(i) {
5890 struct softnet_data *sd = &per_cpu(softnet_data, i);
5891
5892 memset(sd, 0, sizeof(*sd));
5893 skb_queue_head_init(&sd->input_pkt_queue);
5894 skb_queue_head_init(&sd->process_queue);
5895 sd->completion_queue = NULL;
5896 INIT_LIST_HEAD(&sd->poll_list);
5897 sd->output_queue = NULL;
5898 sd->output_queue_tailp = &sd->output_queue;
5899 #ifdef CONFIG_RPS
5900 sd->csd.func = rps_trigger_softirq;
5901 sd->csd.info = sd;
5902 sd->csd.flags = 0;
5903 sd->cpu = i;
5904 #endif
5905
5906 sd->backlog.poll = process_backlog;
5907 sd->backlog.weight = weight_p;
5908 sd->backlog.gro_list = NULL;
5909 sd->backlog.gro_count = 0;
5910 }
5911
5912 dev_boot_phase = 0;
5913
5914 /* The loopback device is special if any other network devices
5915 * is present in a network namespace the loopback device must
5916 * be present. Since we now dynamically allocate and free the
5917 * loopback device ensure this invariant is maintained by
5918 * keeping the loopback device as the first device on the
5919 * list of network devices. Ensuring the loopback devices
5920 * is the first device that appears and the last network device
5921 * that disappears.
5922 */
5923 if (register_pernet_device(&loopback_net_ops))
5924 goto out;
5925
5926 if (register_pernet_device(&default_device_ops))
5927 goto out;
5928
5929 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5930 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5931
5932 hotcpu_notifier(dev_cpu_callback, 0);
5933 dst_init();
5934 dev_mcast_init();
5935 rc = 0;
5936 out:
5937 return rc;
5938 }
5939
5940 subsys_initcall(net_dev_init);
5941
5942 static int __init initialize_hashrnd(void)
5943 {
5944 get_random_bytes(&hashrnd, sizeof(hashrnd));
5945 return 0;
5946 }
5947
5948 late_initcall_sync(initialize_hashrnd);
5949